M. Acosta, BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives, In: Applied Physics Reviews, vol.4, p.41305, 2017.

M. Anoufa, Nanocomposites et effet de dimensionnalité pour le stockage de l'énergie, p.246, 2012.

K. Asaoka and N. Kuwayama, Temperature dependence of thermal expansion coefficient for palladium-based binary alloy, In: Dental materials journal, vol.9, pp.47-57, 1990.

C. Berbecaru, Structural and Electrical Properties of BNT-BT0 . 08 Ceramics Processed by Spark Plasma Sintering, vol.5, pp.106-109, 2011.

A. Alexei, Z. Bokov, and . Ye, Dielectric relaxation in relaxor ferroelectrics, Journal of Advanced dielectrics, vol.2, p.1241010, 2012.

, Capacitors -Insulation Resistance, pp.2010-2019

C. Capacitors and F. , , pp.2010-2019

L. Henri, Techniques de l'ingénieur Matériaux pour l'électronique et dispositifs associés base documentaire : TIB271DUO.ref. article, p.1925, 2018.

M. Cernea, Sol-gel synthesis and characterization of BaTiO3-doped (Bi0.5Na0.5)TiO3 piezoelectric ceramics, Journal of Alloys and Compounds, vol.490, pp.690-694, 2010.

M. Chandrasekhar and P. Kumar, Synthesis and characterizations of BNT-BT and BNT-BT-KNN ceramics for actuator and energy storage applications, Ceramics International, vol.41, pp.5574-5580, 2015.

X. Chen, High relative permittivity, low dielectric loss and good thermal stability of BaTiO3-bi(Mg0.5Zr0.5)O3 solid solution, Ceramics International, vol.41, pp.2081-2088, 2015.

X. Chen, High relative permittivity, low dielectric loss and good thermal stability of novel (K0.5Na0.5)NbO3-Bi(Zn0.75W0.25)O3 solid solution, Materials Letters, vol.145, pp.247-249, 2015.

H. Cheng, MnO2-modified 0.98(K0.5Na0.5)NbO3-0.02LaFeO3 ceramics with low dielectric loss for high temperature ceramics capacitors applications, Ceramics International, vol.40, pp.5019-5023, 2014.

. Ks-deepa, J. Sebastian, and . James, Effect of interparticle distance and interfacial area on the properties of insulator-conductor composites, Applied Physics Letters, vol.91, p.202904, 2007.

V. Dorcet, P. Trolliard, and . Boullay, Reinvestigation of Phase Transitions in Na 0
URL : https://hal.archives-ouvertes.fr/hal-00354508

, Part I: First Order Rhombohedral to Orthorhombic Phase Transition, Chemistry of Materials, vol.20, pp.897-4756, 2008.

V. Dorcet, P. Trolliard, and . Boullay, Reinvestigation of Phase Transitions in Na 0
URL : https://hal.archives-ouvertes.fr/hal-00354508

, Part I: First Order Rhombohedral to Orthorhombic Phase Transition, Chemistry of Materials, vol.20, pp.897-4756, 2008.

. Gui-fen-fan, Effects of manganese additive on piezoelectric properties of (Bi 1/2 Na 1/2 )TiO 3 -BaTiO 3 ferroelectric ceramics, Journal of Materials Science, vol.42, pp.472-476, 2007.

H. Fricke, The Maxwell-Wagner dispersion in a suspension of ellipsoids, The Journal of Physical Chemistry, vol.57, pp.934-937, 1953.

W. Ge, Evolution of structure in Na0. 5Bi0. 5TiO3 single crystals with BaTiO3, Applied Physics Letters, vol.105, p.162913, 2014.

C. Groh, High-Temperature Multilayer Ceramic Capacitors Based on 100 x (94Bi 1/2 Na 1/2 TiO 3 -6BaTiO 3 )-x K 0.5 Na 0.5 NbO 3, Journal of the American Ceramic Society, vol.99, issue.6, pp.2040-2046, 2016.

H. Guo, Improved electrical properties of Co-doped 0.92 NBT-0.04 KBT-0.04 BT lead-free ceramics, Journal of Materials Science: Materials in Electronics, vol.29, pp.19063-19069, 2018.

Y. Guo, K. Kakimoto, and H. Ohsato, Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics". In: Materials Letters teste 59, vol.2, pp.241-244, 2005.

Y. Guo, Composition-induced antiferroelectric phase and giant strain in lead-free (Nay,Biz)Ti1xO3(1x)-xBaTiO3 ceramics Yiping, Physical Review B, vol.83, 2011.

S. Huband and P. A. Thomas, Depolarisation of Na0. 5Bi0. 5TiO3-based relaxors and the resultant double hysteresis loops, Journal of Applied Physics, vol.121, p.184105, 2017.

A. Saeed-ullah-jan, S. J. Zeb, and . Milne, Dielectric ceramic with stable relative permittivity and low loss from -60 to 300 ÂC: A potential high temperature capacitor material, Journal of the European Ceramic Society, vol.36, issue.11, pp.2713-2718, 2016.

A. Saeed-ullah-jan, S. Zeb, and . Milne, Electrical properties of Ca-modified Na0. 5Bi0. 5TiO3-BaTiO3 ceramics, Ceramics International, vol.40, pp.15439-15445, 2014.

. Zhao-jingbo, Improvement in the piezoelectric temperature stability of (K0.5Na0.5)NbO3 ceramics, Chinese Science Bulletin, vol.56, pp.788-792, 2011.

L. Jylhä, Modeling of electrical properties of composites, 2008.

L. Jylhä and A. Sihvola, Equation for the effective permittivity of particle-filled composites for material design applications, Journal of Physics D: Applied Physics, vol.40, p.4966, 2007.

. Jonas-l-kaufman, Permittivity effects of particle agglomeration in ferroelectric ceramic-epoxy composites using finite element modeling, AIP Advances 8, vol.12, p.125020, 2018.

W. Brudger and A. V. Cooke, High-temperature dielectric materials ans capacitors made therefrom

W. Brudger and A. V. Cooke, Patent High-temperature dielectric materials and capacitors made therefrom

T. Kimura, Preparation of crystallographically textured Bi0. 5Na0. 5TiO3-BaTiO3 ceramics by reactive-templated grain growth method, Ceramics International, vol.30, pp.1161-1167, 2004.

S. Kong, Defect-Driven Structural Distortions at the Surface of Relaxor Ferroelectrics, Advanced Functional Materials, p.1900344, 2019.

J. König, M. Spreitzer, and D. Suvorov, Influence of the synthesis conditions on the dielectric properties in the Bi0.5Na0.5TiO3-KTaO3 system, Journal of the European Ceramic Society, vol.31, 2011.

Y. Li, Impedance spectroscopy and dielectric properties of Na0.5Bi0.5TiO3-NaNbO3 ceramics, Physica B: Condensed Matter, vol.365, pp.76-81, 2005.

H. Lidjici, Étude, Élaboration Et Caractérisation De Céramiques Piézoélectriques, 2011.

Z. Liu, Y. Wang, and Y. Li, Combinatorial study of ceramic tapecasting slurries, ACS combinatorial science, vol.14, issue.3, pp.205-210, 2012.

P. Lunkenheimer, Colossal dielectric constants in transition-metal oxides, The European Physical Journal Special Topics, vol.180, pp.61-89, 2009.

Z. Lv, Study on Dielectric Properties of Aluminum Borate Whisker Reinforced Aluminum Phosphate Composite, DEStech Transactions on Materials Science and Engineering amst, 2016.

D. Ma, Temperature stability, structural evolution and dielectric properties of BaTiO3-Bi(Mg2/3Ta1/3)O3 perovskite ceramics, Ceramics International, vol.41, pp.7157-7161, 2015.

A. Mahajen, Effect of processing on the Structures and Properties of Bismuth Sodium Titanate compounds, European Materials Research Society (E-MRS) Fall meeting 2017, 2017.

D. Maurya, Synthesis-Structure-Property Relationships in Lead-Free Piezoelectric Materials, 2012.

R. Ryan, M. R. Mcquade, and . Dolgos, A review of the structure-property relationships in lead-free piezoelectric (1x)Na0.5Bi0.5TiO3-(x)BaTiO3, Journal of Solid State Chemistry, vol.242, pp.140-147, 2016.

E. Mercadelli, Influence of the synthesis route on the properties of BNBT ceramics, Processing and Application of Ceramics, vol.3, issue.2, pp.1820-61310902073, 2009.

R. E. Mistler and E. R. Twiname, Tape Casting: Theory and Practice, p.9781574980295, 2000.

V. R. Mudinepalli, Structural, dielectric and ferroelectric properties of lead-free Na0.5Bi0.5TiO3 ceramics prepared by spark plasma sintering technique, In: Indian Journal of Physics, vol.90, pp.973-1458, 2016.

R. Muhammad, BaTiO3-Bi(Mg2/3Nb1/3)O3 Ceramics for High-Temperature Capacitor Applications, Journal of the American Ceramic Society, vol.99, pp.2089-2095, 2016.

X. Ning, Y. Pu, W. Ping, and . Zhuo, Large Dielectric Constant and M axwell-W agner Effects in BaTiO3/Cu Composites, Journal of the American Ceramic Society, vol.95, pp.999-1003, 2012.

M. Otoni?ar, Compositional range and electrical properties of the morphotropic phase boundary in the Na0. 5Bi0. 5TiO3-K0. 5Bi0. 5TiO3 system, Journal of the European Ceramic Society, vol.30, pp.971-979, 2010.

S. Patel, Tuning of dielectric, pyroelectric and ferroelectric properties of 0.715 Bi0. 5Na0. 5TiO3-0.065 BaTiO3-0.22 SrTiO3 ceramic by internal clamping, AIP Advances, vol.5, p.87145, 2015.

H. Qi and R. Zuo, Linear-like lead-free relaxor antiferroelectric (Bi 0.5 Na 0.5 )TiO 3 -NaNbO 3 with giant energy-storage density/efficiency and super stability against temperature and frequency, Journal of Materials Chemistry A, vol.7, issue.8, pp.2050-7488, 2019.

. Venkata-ramana-mudinepalli, Phase Transitions Of The Ferroelectric Na0.5Bi0.5TiO3 By Dielectric And Internal Friction Measurements, Advanced Materials Letters, vol.6, issue.1, pp.27-32, 2015.

M. Venkata-ramana, Synthesis of Lead Free Sodium Bismuth Titanate (Nbt) Ceramic By Conventional and Microwave Sintering Methods, Journal of Advanced Dielectrics, pp.71-77, 2011.

R. Ranjan and A. Dviwedi, Structure and dielectric properties of (Na0. 50Bi0. 50) 1-xBaxTiO3: 0 x 0.10, Solid state communications, vol.135, pp.394-399, 2005.

, REACH -Les grands principes, 2018.

C. Règlement, , 2018.

R. E. Mistler-&-eric and R. Twiname, Tape Casting Theory and Practice, p.1574980297, 2000.

. Rohs, , 2018.

A. Loey, R. D. Salam, H. Matthews, and . Robertson, Pyrolysis of polyvinyl butyral (PVB) binder in thermoelectric green tapes, Journal of the European Ceramic Society, vol.20, pp.1375-1383, 2000.

H. Florian and . Schader, Stress-modulated relaxor-to-ferroelectric transition in leadfree (N a 1/2 B i 1/2) Ti O 3-BaTi O 3 ferroelectrics, Physical Review B, vol.93, p.134111, 2016.

J. Shi, Bi deficiencies induced high permittivity in lead-free BNBT-BST hightemperature dielectrics, Journal of Alloys and Compounds, vol.627, pp.463-467, 2015.

, Sol-Gel Science for Ceramic Materials

J. Song, Piezoelectric and dielectric properties in grain oriented (Bi0. 5Na0. 5) TiO3-BaTiO3 ceramics, Ferroelectrics, vol.338, issue.1, pp.3-8, 2006.

M. Spreitzer, M. Valant, and D. Suvorov, Sodium deficiency in Na 0

, J. Mater. Chem, vol.17, pp.959-9428, 2007.

, Technologie et caractéristiques des MLCC, 1996.

K. Thangavelu, R. Ramadurai, and S. Asthana, Evidence for the suppression of intermediate anti-ferroelectric ordering and observation of hardening mechanism in Na1/2Bi1/2TiO3 ceramics through cobalt substitution, AIP Advances, vol.4, p.17111, 2014.

C. Wang, The temperature-dependent piezoelectric and electromechanical properties of cobalt-modified sodium bismuth titanate, Ceramics International, vol.42, pp.4268-4273, 2016.

W. Cl, Theories and Methods of First Order Ferroelectric Phase Transitions, 2010.

D. Wang, Photophysical and photocatalytic properties of SrTiO3 doped with Cr cations on different sites, The Journal of Physical Chemistry B, vol.110, pp.15824-15830, 2006.

L. Wang, Dielectric and Piezoelectric Properties of Lead-free BaTiO3-Bi(Zn0.5Ti0.5)O3 and (Bi0.5Na0.5)TiO3-Bi(Zn0.5Ti0.5)O3 Ceramics, Ferroelectrics, vol.380, pp.177-182, 2009.

Y. Wang, Evolution of phase transformation behavior and dielectric temperature stability of BaTiO3-Bi(Zn0.5Zr0.5)O3 ceramics system, Journal of Alloys and Compounds, vol.551, pp.365-369, 2013.

C. Wu, The Influences of NaNbO<sub>3</sub> on the Dielectric and Structure Characteristics of (1-X) (Na<sub>0.5</sub>Bi<sub>0.5</sub>)TiO<sub>3</sub>-x NaNbO<sub>3</sub> Ceramics, Advanced Materials Research, pp.1064-1069, 2011.

X. Xia, Z. Zhong, and G. J. Weng, Maxwell-Wagner-Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites, Mechanics of Materials, vol.109, 2017.

X. Xu, Enhancements in Dielectric Response Characterization of Insulation Materials, p.71, 2013.

Z. Yan, Microstructure evolution during sintering of multilayer ceramic capacitors: nanotomography and discrete simulations, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01070456

F. Yang, Defect chemistry and electrical properties of sodium bismuth titanate perovskite, Journal of Materials Chemistry A, vol.6, p.20507496, 2018.

P. Yusong, C. Shen-qianqian, and . Yan, FABRICATION AND MECHANICAL PROPERTIES OF Na0. 5Bi0. 5TiO3-BaTiO3 LEAD-FREE PIEZOELECTRIC CE-RAMICS", In: Ceramics-Silikáty, vol.58, pp.50-55, 2014.

A. Zeb and S. J. Milne, High temperature dielectric ceramics: a review of temperaturestable high-permittivity perovskites, Journal of Materials Science: Materials in Electronics, vol.26, pp.957-4522, 2015.

A. Zeb and S. J. Milne, Low variation in relative permittivity over the temperature range 25-450C for ceramics in the system (1x), Journal of the European Ceramic Society, vol.34, issue.7, pp.1727-1732, 2014.

A. Zeb, Temperature-Stable Relative Permittivity from 70C to 500C in (Ba 0.8 Ca 0.2 )TiO 3 -Bi(Mg 0.5 Ti 0.5 )O 3 -NaNbO 3 Ceramics, Journal of the American Ceramic Society, vol.97, pp.2479-2483, 2014.

, Tomas Zednicek. Capacitors News and Trends. Noordwijk, 2018.

J. Zhang, Fabrication and Characterization of High-Frequency Ultrasound Transducers Based on Lead-Free BNT-BT Tape-Casting Thick Film, Sensors 18, vol.9, p.3166, 2018.

Q. Zhang, Structural and Dielectric Properties of Bi (Mg1/2Ti1/2)O3-BaTiO3 Lead-Free Ceramics, Journal of the American Ceramic Society, vol.94, 2011.

. S. Ed and . Zhang, , pp.4335-4339

S. Zhang, Temperature-dependent electrical properties of 0.94 Bi0. 5Na0. 5TiO3-0.06 BaTiO3 ceramics, Journal of the American Ceramic Society, vol.91, pp.3950-3954, 2008.

J. Zhao, Enhancement of energy-storage properties of K0.5Na0.5NbO3 modified Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 lead-free ceramics, In: Journal of Materials Science: Materials in Electronics, vol.27, pp.466-473, 2016.

D. Zhou, Influence of ZrO2 and SnO2 on the synthesis of Ba2Ti9O20 powders, Ceramics international, vol.30, pp.671-673, 2004.