, particular it is not necessarily expressed as in

, In this alternative calculation order, the Kronecker terms are never multiplied directly to X. This type of operation suboptimally exploits the sparsity of X because the sparsity is lost after first mode product and does not intervene in the ensuing mode products

[. Bibliography and . Adler, Audio Inpainting, IEEE Transactions on Audio, Speech and Language Processing, vol.20, issue.3, p.161, 2012.

. Agarwal, Learning Sparsely Used Overcomplete Dictionaries via Alternating Minimization, SIAM Journal on Optimization, vol.26, issue.4, p.209, 2016.

A. Aharon and M. Elad, Sparse and Redundant Modeling of Image Content Using an Image-Signature-Dictionary, SIAM Journal on Imaging Sciences, vol.1, issue.3, p.39, 2008.

A. , An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation, IEEE Transactions on Signal Processing, vol.54, issue.11, pp.132-146, 2006.

A. Baker and . Simplicity, , p.17, 2016.

Q. Barthelemy, A. Larue, A. Mayoue, D. Mercier, and J. I. Mars, Shift 2D Rotation Invariant Sparse Coding for Multivariate Signals, IEEE Transactions on Signal Processing, vol.60, issue.4, p.40, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00678446

&. Basuhail, A. Kozaitis-;-abdullah, S. Basuhail, and . Peter-kozaitis, Waveletbased noise reduction in multispectral imagery, Algorithms for multispectral and hyperspectral imagery IV, vol.3372, p.153, 1998.

K. Batselier and N. Wong, A constructive arbitrary-degree Kronecker product decomposition of tensors, Numerical Linear Algebra with Applications, vol.24, issue.5, p.99, 2017.

&. Beck, M. Beck, and . Teboulle, A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM Journal on Imaging Sciences, vol.2, issue.1, p.162, 2009.

A. Beck, First-order methods in optimization, Society for Industrial and Applied Mathematics, p.54, 2017.

[. Bijma, The spatiotemporal MEG covariance matrix modeled as a sum of Kronecker products, vol.27, p.99, 2005.

J. M. Bioucas-dias and M. A. Figueiredo, A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration, IEEE Transactions on Image Processing, vol.16, issue.12, p.162, 2007.

J. M. Bioucas-dias and J. M. Nascimento, Hyperspectral Subspace Identification, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.8, p.146, 2008.

C. M. Bishop, Pattern recognition and machine learning (information science and statistics), p.36, 2006.

[. Bonnefoy, Liva Ralaivola and Rémi Gribonval. Dynamic screening: Accelerating first-order algorithms for the lasso and group-lasso, IEEE Transactions on Signal Processing, vol.63, issue.19, p.193, 2015.

&. Boyd, S. Vandenberghe, L. Boyd, and . Vandenberghe, Convex optimization, p.62, 2004.

K. Bredies and . Hanna-katriina-pikkarainen, ESAIM: Control, Optimisation and Calculus of Variations, vol.19, p.211, 2013.

[. Bristow, Fast Convolutional Sparse Coding, 2013 IEEE Conference on Computer Vision and Pattern Recognition, p.40, 2013.

R. Bro, Multi-way analysis in the food industry: models, algorithms, and applications, Det Biovidenskabelige Fakultet for Fødevarer, VeteFaculty of Life Sciences, Institut for FødevarevidenskabDepartment of Food Science, Kvalitet og TeknologiQuality & Technology, p.74, 1998.

. Bruckstein, From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images, SIAM Rev, vol.51, issue.1, p.148, 2009.

. Buades, , 2005.

. Morel, A non-local algorithm for image denoising, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), vol.2, p.126, 2005.

F. Caiafa-&-cichocki-;-cesar, A. Caiafa, and . Cichocki, Multidimensional compressed sensing and their applications, Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol.3, issue.6, p.116, 2013.

;. E. Candes-&-tao, T. Candes, and . Tao, Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?, IEEE Transactions on Information Theory, vol.52, p.50, 2006.

;. J. Carroll-&-chang, D. Carroll, and J. Chang, Analysis of individual differences in multidimensional scaling via an n-way generalization of, Eckart-Young" decomposition. Psychometrika, vol.35, issue.3, pp.87-89, 1970.

[. Carroll, Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters, Psychometrika, vol.45, issue.1, p.92, 1980.

. Castrodad, Learning Discriminative Sparse Representations for Modeling, Source Separation, and Mapping of Hyperspectral Imagery, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.11, p.146, 2011.

. Chabiron, Toward fast transform learning, International Journal of Computer Vision, vol.114, issue.2, p.40, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01281930

A. Chambolle and C. Dossal, On the convergence of the iterates of, FISTA". Journal of Optimization Theory and Applications, vol.166, p.53, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01060130

T. Chambolle-&-pock-;-antonin-chambolle and . Pock, A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.40, issue.1, p.162, 2011.

;. G. Chen-&-qian, S. Chen, and . Qian, Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet Shrinkage, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.3, p.148, 2011.

[. Chen, Atomic Decomposition by Basis Pursuit, SIAM Journal on Scientific Computing, vol.20, issue.1, p.162, 1998.

[. Chen, Hyperspectral Image Classification Using Dictionary-Based Sparse Representation, IEEE Transactions on Geoscience and Remote Sensing, vol.49, issue.10, p.146, 2011.

;. P. Combettes-&-wajs, V. Combettes, and . Wajs, Signal Recovery by Proximal Forward-Backward Splitting, Multiscale Modeling & Simulation, vol.4, issue.4, p.52, 2005.

. Comon, Tensor decompositions, alternating least squares and other tales, Journal of Chemometrics, vol.23, issue.7-8, p.89, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00410057

P. Comon, Tensors : A brief introduction, IEEE Signal Processing Magazine, vol.31, issue.3, p.91, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00923279

;. W. Dai-&-milenkovic, O. Dai, and . Milenkovic, Subspace Pursuit for Compressive Sensing Signal Reconstruction, IEEE Transactions on Information Theory, vol.55, issue.5, p.51, 2009.

F. Dantas-&-gribonval-;-cassio, R. Dantas, and . Gribonval, Dynamic Screening with Approximate Dictionaries, XXVIème colloque GRETSI, p.161, 0200.

F. Cassio, R. Dantas, and . Gribonval, Faster and still safe: combining screening techniques and structured dictionaries to accelerate the Lasso, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol.161, p.182, 0200.

. F. Dantas-&-gribonval-2019a]-c and R. Dantas, Stable Safe Screening and Structured Dictionaries for Faster 1 Regularization, IEEE Transactions on Signal Processing, vol.67, issue.14, p.201, 2019.

F. Dantas-&-gribonval-2019b]-cassio, R. Dantas, and . Gribonval, Stable Screening -Python code. (hal-02129219), p.195, 2019.

C. F. Dantas, M. N. Da-costa, and R. R. Lopes, Learning Dictionaries as a Sum of Kronecker Products, IEEE Signal Processing Letters, vol.24, issue.5, p.149, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01672349

. Dantas, Learning fast dictionaries for sparse representations using low-rank tensor decompositions, International Conference on Latent Variable Analysis and Signal Separation (LVA/ICA), vol.95, p.125, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01709343

. Dantas, Hyperspectral Image Denoising using Dictionary Learning, 10th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), p.125, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02175630

. Dantas, Learning Tensor-structured Dictionaries with Application to Hyperspectral Image Denoising, 27th European Signal Processing Conference (EUSIPCO), p.125, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02126782

. Daubechies, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, vol.57, issue.11, p.162, 2004.

. [de-lathauwer, A Multilinear Singular Value Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, p.91, 2000.

;. V. Silva-&-lim, L. Silva, and . Lim, Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem, SIAM Journal on Matrix Analysis and Applications, vol.30, issue.3, p.104, 2008.

M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Transactions on Image Processing, vol.14, issue.12, p.126, 2005.

;. I. Domanov-&-de, L. Domanov, and . Lathauwer, On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors-Part I: Basic Results and Uniqueness of One Factor Matrix, SIAM Journal on Matrix Analysis and Applications, vol.34, issue.3, p.88, 2013.

;. I. Domanov-&-de, L. Domanov, and . Lathauwer, On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors-Part II: Uniqueness of the Overall Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.34, issue.3, p.89, 2013.

&. Donoho, L. Elad-;-david, M. Donoho, and . Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization, Proceedings of the National Academy of Sciences, vol.100, issue.5, p.33, 2003.

[. Donoho, Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit, IEEE Transactions on Information Theory, vol.58, issue.2, p.51, 2012.

D. L. Donoho, Wedgelets: nearly minimax estimation of edges, Ann. Statist, vol.27, issue.3, p.126, 1999.

&. Dossal, C. Mallat, S. Dossal, and . Mallat, Sparse spike deconvolution with minimum scale, Signal Processing with Adaptive Sparse Structured Representations (SPARS workshop), p.161, 2005.

&. Dumitrescu, B. Irofti, P. Dumitrescu, and . Irofti, Structured dictionaries, p.39, 2018.

;. C. Eckart-&-young, G. Eckart, and . Young, The approximation of one matrix by another of lower rank, Psychometrika, vol.1, issue.3, pp.211-218, 1936.

. Efron, Least angle regression, Annals of Statistics, vol.32, p.58, 2004.

. El-ghaoui, Safe feature elimination in sparse supervised learning, vol.14, p.171, 2010.

M. Elad and M. Aharon, Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries, IEEE Transactions on Image Processing, vol.15, issue.12, p.149, 2006.

, Prologue. In Sparse and Redundant Representations, p.125, 2010.

. Engan, Method of optimal directions for frame design, Acoustics, Speech, and Signal Processing, vol.5, p.38, 1999.

;. R. Eslami-&-radha, H. Eslami, and . Radha, Translation-Invariant Contourlet Transform and Its Application to Image Denoising, IEEE Transactions on Image Processing, vol.15, issue.11, p.126, 2006.

&. Lv, ;. Jianqing-fan, and J. Lv, Sure independence screening for ultrahigh dimensional feature space, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.70, issue.5, p.165, 2008.

O. Fercoq and P. Richtárik, Accelerated, Parallel, and Proximal Coordinate Descent, SIAM Journal on Optimization, vol.25, issue.4, p.59, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02287265

[. Fercoq, Mind the duality gap: safer rules for the Lasso, International Conference on Machine Learning, vol.37, pp.333-342, 2015.

&. Foucart and . Rauhut, Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing, pp.18-162, 2013.

. Friedman, Holger Höfling and Robert Tibshirani. Pathwise coordinate optimization, Ann. Appl. Stat, vol.1, issue.2, p.59, 2007.

[. Fu, Adaptive Spatial-Spectral Dictionary Learning for Hyperspectral Image Denoising, 2015 IEEE International Conference on Computer Vision (ICCV), p.126, 2015.

J. Wenjiang and . Fu, Penalized Regressions: The Bridge versus the Lasso, Journal of Computational and Graphical Statistics, vol.7, issue.3, p.59, 1998.

;. C. Garcia-cardona-&-wohlberg, B. Garcia-cardona, and . Wohlberg, Convolutional Dictionary Learning: A Comparative Review and New Algorithms, IEEE Transactions on Computational Imaging, vol.4, issue.3, p.40, 2018.

[. Ghamisi, Advances in Hyperspectral Image and Signal Processing: A Comprehensive Overview of the State of the Art, IEEE Geoscience and Remote Sensing Magazine, vol.5, issue.4, p.139, 2017.

M. Ghassemi, Z. Shakeri, A. D. Sarwate, and W. U. Bajwa, STARK: Structured Dictionary Learning Through Rank-one Tensor Recovery, IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), p.99, 2017.

M. Golbabaee and P. Vandergheynst, Hyperspectral image compressed sensing via low-rank and joint-sparse matrix recovery, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p.147, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00705915

I. F. Gorodnitsky, B. D. Rao-;-alexandre-gramfort, M. Kowalski, and M. Hämäläinen, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm, IEEE Transactions on Signal Processing, vol.45, issue.3, p.205, 1997.

[. Gramfort, MNE software for processing MEG and EEG data, Neuroimage, vol.86, p.204, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02369299

K. Gregor-&-lecun, Y. Gregor, and . Lecun, Learning Fast Approximations of Sparse Coding, Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML'10, p.211, 2010.

;. R. Gribonval-&-nielsen, M. Gribonval, and . Nielsen, Sparse representations in unions of bases, IEEE Transactions on Information Theory, vol.49, issue.12, p.33, 2003.

;. R. Gribonval-&-nielsen, M. Gribonval, and . Nielsen, Highly sparse representations from dictionaries are unique and independent of the sparseness measure, Applied and Computational Harmonic Analysis, vol.22, issue.3, p.29, 2007.

, Sparse and Spurious: Dictionary Learning With Noise and Outliers, IEEE Transactions on Information Theory, vol.61, issue.11, p.99, 2015.

, Sample Complexity of Dictionary Learning and Other Matrix Factorizations, IEEE Transactions on Information Theory, vol.61, issue.6, p.39, 2015.

G. Gui and H. Li, Penalized Cox Regression Analysis in the High-dimensional and Low-sample Size Settings, with Applications to Microarray Gene Expression Data, Bioinformatics, vol.21, issue.13, p.161, 2005.

W. Hackbusch, Tensor spaces and numerical tensor calculus, p.74, 2012.

&. Harshman, A. Lundy-;-richard, M. E. Harshman, and . Lundy, Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp, Psychometrika, vol.61, issue.1, p.92, 1996.

R. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-modal factor analysis, UCLA Working Papers in Phonetics, vol.16, pp.87-89, 1970.

R. A. Harshman, PARAFAC2: Mathematical and technical notes, UCLA Working Papers in Phonetics, vol.22, p.92, 1972.

. Richard-a-harshman, Models for analysis of asymmetrical relationships among N objects or stimuli, First Joint Meeting of the Psychometric Society and the Society of Mathematical Psychology, p.92, 1978.

[. Hawe, Separable dictionary learning, IEEE Conference on Computer Vision and Pattern Recognition, p.99, 2013.

V. Henderson-&-searle-;-harold, S. R. Henderson, and . Searle, The vec-permutation matrix, the vec operator and Kronecker products: a review. Linear and Multilinear Algebra, vol.9, p.81, 1981.

&. Herzet, C. Drémeau, A. Herzet, and . Drémeau, Joint Screening Tests for LASSO, IEEE International Conference on Acoustic, Speech and Signal Processing, p.166, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01739477

C. Herzet, C. Dorffer, and A. Drémeau, Gather and Conquer: Region-Based Strategies to Accelerate Safe Screening Tests, IEEE Transactions on Signal Processing, vol.67, issue.12, pp.166-179, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02303198

L. Frank and . Hitchcock, The Expression of a Tensor or a Polyadic as a Sum of Products, Journal of Mathematics and Physics, vol.6, issue.1-4, p.87, 1927.

&. Horn, A. Johnson-;-roger, C. R. Horn, and . Johnson, Matrix analysis, p.81, 2012.

. Jain, Orthogonal Matching Pursuit with Replacement, Advances in Neural Information Processing Systems, vol.24, p.51, 2011.

J. Johnson and C. Guestrin, Blitz: A principled metaalgorithm for scaling sparse optimization, International Conference on Machine Learning, p.165, 2015.

P. Jost, P. Vandergheynst, S. Lesage, and R. , MoTIF: An Efficient Algorithm for Learning Translation Invariant Dictionaries, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, vol.5, p.40, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00544911

J. , On the Minimax Risk of Dictionary Learning, IEEE Transactions on Information Theory, vol.62, issue.3, p.98, 2016.

;. C. Kervrann-&-boulanger, J. Kervrann, and . Boulanger, Optimal Spatial Adaptation for Patch-Based Image Denoising, IEEE Transactions on Image Processing, vol.15, issue.10, p.126, 2006.

K. Kim and H. Park, Fast active-set-type algorithms for l1-regularized linear regression, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, p.165, 2010.

[. Kim, An interior-point method for large-scale l 1-regularized least squares. Selected Topics in Signal Processing, IEEE Journal, vol.1, issue.4, p.57, 2007.

&. Kolda, G. Bader-;-tamara, B. W. Kolda, and . Bader, Tensor Decompositions and Applications. SIAM REVIEW, vol.51, issue.3, pp.455-500, 2009.

T. G. Kolda, Orthogonal Tensor Decompositions. SIAM Journal on Matrix Analysis and Applications, vol.23, issue.1, p.89, 2001.

T. G. Kolda, Multilinear Operators for Higher-order Decompositions, p.76, 2006.

[. Kowalski, Alexandre Gramfort and Sandrine Anthoine. Accelerating ISTA with an active set strategy, OPT 2011: 4th International Workshop on Optimization for Machine Learning, p.58, 2011.

J. B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra and its Applications, vol.18, issue.2, pp.31-88, 1977.

[. Labate, Sparse multidimensional representation using shearlets, Optics & Photonics 2005, pages 59140U-59140U. International Society for Optics and Photonics, p.126, 2005.

[. Lam, Denoising hyperspectral images using spectral domain statistics, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012), p.126, 2012.

J. M. Landsberg, Tensors: geometry and applications, vol.128, p.73, 2012.

. [le-magoarou, Approximate Fast Graph Fourier Transforms via Multilayer Sparse Approximations, IEEE Transactions on Signal and Information Processing over Networks, vol.4, issue.2, p.210, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01416110

[. Lesage, Frédéric Bimbot and Laurent Benaroya. Learning unions of orthonormal bases with thresholded singular value decomposition, Acoustics, Speech, and Signal Processing, vol.5, p.39, 2005.

[. Li, Discriminative dictionary learning with low-rank regularization for face recognition, 10th IEEE International Conference and Workshops on, p.40, 2013.

[. Li, An input-adaptive and in-place approach to dense tensor-times-matrix multiply, SC '15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, p.210, 2015.

[. Liu, Cramér-Rao Lower Bounds for Low-Rank Decomposition of Multidimensional Arrays, IEEE Trans. on Signal Processing, vol.49, p.88, 2001.

[. Liu, Safe Screening with Variational Inequalities and Its Application to Lasso, Proceedings of the 31st International Conference on Machine Learning, vol.32, p.164, 2014.

M. Loth, Active Set Algorithms for the LASSO. Theses, p.58, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00845441

;. A. Massias-&-salmon, M. Gramfort, J. Massias, and . Salmon, From safe screening rules to working sets for faster Lasso-type solvers, NIPS Workshop on Optimization for Machine Learning, p.165, 2017.

[. Ma, Sparse representation for face recognition based on discriminative low-rank dictionary learning, Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, p.40, 2012.

;. L. Magoarou-&-gribonval and R. Le-magoarou, Chasing butterflies: In search of efficient dictionaries, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p.40, 2015.

;. L. Magoarou-&-gribonval and R. Le-magoarou, Flexible Multilayer Sparse Approximations of Matrices and Applications, IEEE Journal of Selected Topics in Signal Processing, vol.10, issue.4, pp.189-204, 2016.

;. M. Mahmoudi-&-sapiro, G. Mahmoudi, and . Sapiro, Fast image and video denoising via nonlocal means of similar neighborhoods, IEEE Signal Processing Letters, vol.12, issue.12, p.126, 2005.

[. Mailhé, Shift-invariant dictionary learning for sparse representations: extending K-SVD, Signal Processing Conference, p.40, 2008.

, Sparse Representation for Color Image Restoration, IEEE Transactions on Image Processing, vol.17, issue.1, pp.125-126, 2008.

, Online dictionary learning for sparse coding, Proceedings of the 26th Annual International Conference on Machine Learning, p.121, 2009.

[. Malioutov, A sparse signal reconstruction perspective for source localization with sensor arrays, IEEE Transactions on Signal Processing, vol.53, issue.8, p.161, 2005.

G. Mallat-&-zhang-;-stéphane, Z. Mallat, and . Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, vol.41, issue.12, p.161, 1993.

, Stephane Mallat. A wavelet tour of signal processing, pp.99-126, 2008.

;. A. Malti-&-herzet, C. Malti, and . Herzet, Safe screening tests for LASSO based on firmly non-expansiveness, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p.164, 2016.

. Manolakis, Hyperspectral subpixel target detection using the linear mixing model, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.7, pp.146-147, 2001.

;. V. Mar?enko-&-pastur, L. A. Mar?enko, and . Pastur, DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES. Mathematics of the USSR-Sbornik, vol.1, issue.4, p.152, 1967.

. Massias, Celer: a fast solver for the lasso with dual extrapolation, International Conference on Machine Learning, p.165, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01833398

;. K. Matsuura-&-okabe, Y. Matsuura, and . Okabe, Selective minimum-norm solution of the biomagnetic inverse problem, IEEE Transactions on Biomedical Engineering, vol.42, issue.6, pp.608-615, 1995.

D. A. Matthews, High-Performance Tensor Contraction without Transposition, SIAM J. Scientific Computing, vol.40, issue.1, p.210, 2018.

J. Moreau, Fonctions convexes duales et points proximaux dans un espace hilbertien. Comptes rendus hebdomadaires des séances de l'Académie des sciences, vol.255, p.52, 1962.
URL : https://hal.archives-ouvertes.fr/hal-01867195

B. Natarajan, Sparse Approximate Solutions to Linear Systems, SIAM Journal on Computing, vol.24, issue.2, pp.227-234, 1995.

. Ndiaye, Gap safe screening rules for sparsity enforcing penalties, Journal of Machine Learning Research, vol.18, issue.128, p.174, 2017.

&. Needell, D. Tropp, J. A. Needell, and . Tropp, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Applied and Computational Harmonic Analysis, vol.26, issue.3, p.51, 2009.

&. Needell, D. Vershynin, R. Needell, and . Vershynin, Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit, Foundations of Computational Mathematics, vol.9, issue.3, p.51, 2009.

;. D. Needell-&-vershynin, R. Needell, and . Vershynin, Signal Recovery From Incomplete and Inaccurate Measurements Via Regularized Orthogonal Matching Pursuit, IEEE Journal of Selected Topics in Signal Processing, vol.4, issue.2, p.51, 2010.

A. S. Nemirovsky and D. B. Yudin, Problem complexity and method efficiency in optimization, p.53, 1983.

Y. E. Nesterov, A method for solving the convex programming problem with convergence rate O(1/k 2 ), Proceedings of the USSR Academy of Sciences, vol.269, p.53, 1983.

[. Nutini, Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection, Proceedings of the 32nd International Conference on Machine Learning, vol.37, p.59, 2015.

[. Osborne, A new approach to variable selection in least squares problems, IMA Journal of Numerical Analysis, vol.20, issue.3, p.57, 2000.

Y. Vardan-papyan, M. Romano, and . Elad, Convolutional Neural Networks Analyzed via Convolutional Sparse Coding, Journal of Machine Learning Research, vol.18, issue.83, p.40, 2017.

Y. Vardan-papyan, M. Romano, J. Elad, and . Sulam, Convolutional Dictionary Learning via Local Processing, IEEE International Conference on Computer Vision (ICCV), p.40, 2017.

V. Papyan, Y. Romano, J. Sulam, and M. Elad, Theoretical Foundations of Deep Learning via Sparse Representations: A Multilayer Sparse Model and Its Connection to Convolutional Neural Networks, IEEE Signal Processing Magazine, vol.35, issue.4, p.40, 2018.

]. Y. Pati, R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, pp.40-44, 1993.

. Peng, Decomposable Nonlocal Tensor Dictionary Learning for Multispectral Image Denoising, IEEE Conference on Computer Vision and Pattern Recognition, p.99, 2014.

E. , L. Pennec, and S. Mallat, Sparse geometric image representations with bandelets, IEEE Transactions on Image Processing, vol.14, issue.4, p.126, 2005.

G. Pope, C. Aubel, and C. Studer, Learning phase-invariant dictionaries, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, p.40, 2013.

[. Portilla, Image denoising using scale mixtures of Gaussians in the wavelet domain, IEEE Transactions on Image Processing, vol.12, issue.11, p.126, 2003.

B. Rasti, J. R. Sveinsson, M. O. Ulfarsson, and J. A. Benediktsson, Hyperspectral Image Denoising Using First Order Spectral Roughness Penalty in Wavelet Domain, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol.7, issue.6, p.143, 2014.

[. Rasti, Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling, IEEE Geoscience and Remote Sensing Letters, vol.14, issue.12, p.154, 2017.

[. Rasti, Noise Reduction in Hyperspectral Imagery: Overview and Application, Remote Sensing, vol.10, issue.3, p.146, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01960932

R. Tyrrell-rockafellar, Convex analysis. Princeton Mathematical Series, p.51, 1970.

F. Roemer, G. D. Galdo, and M. Haardt, Tensorbased algorithms for learning multidimensional separable dictionaries, Acoustics, Speech and Signal Processing, p.99, 2014.

. Rubinstein, Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit, CS Technion, vol.40, issue.8, p.140, 2008.

. Rubinstein, Dictionaries for sparse representation modeling, Proceedings of the IEEE, vol.98, p.37, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00565811

, Double sparsity: Learning sparse dictionaries for sparse signal approximation, IEEE Transactions on Signal Processing, vol.58, issue.3, p.131, 2010.

C. Rusu, B. Dumitrescu, and S. A. Tsaftaris, Explicit Shift-Invariant Dictionary Learning, IEEE Signal Processing Letters, vol.21, issue.1, p.40, 2014.

. Sardy, Block Coordinate Relaxation Methods for Nonparametric Wavelet Denoising, Journal of Computational and Graphical Statistics, vol.9, issue.2, p.39, 2000.

. Schwab, Global Optimality in Separable Dictionary Learning with Applications to the Analysis of Diffusion MRI, p.209, 2019.

, Les tenseurs. Actualités scientifiques et industrielles. Editions Hermann, vol.83, p.85, 1975.

[. Shakeri, Minimax Lower Bounds for Kronecker-Structured Dictionary Learning, Proceedings of the 2016 IEEE International Symposium on Information Theory, p.98, 2016.

[. Shakeri, Sample complexity bounds for dictionary learning of tensor data, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.98-134, 2017.

[. Shakeri, Identifiability of Kronecker-structured Dictionaries for Tensor Data, p.98, 2017.

[. Shakeri, Identification of Kronecker-structured Dictionaries: An Asymptotic Analysis, Computational Advances in Multi-Sensor Adaptive Processing, p.99, 2017.

[. Shakeri, Minimax Lower Bounds on Dictionary Learning for Tensor Data, IEEE Transactions on Information Theory, vol.64, issue.4, p.98, 2018.

[. Shakeri, Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization, Information Theoretic Methods in Data Science, chapter 5, vol.155, p.59, 2016.

D. Nicholas, R. Sidiropoulos, and . Bro, On the uniqueness of multilinear decomposition of N-way arrays, Journal of Chemometrics, vol.14, issue.3, p.88, 2000.

[. Simoncelli, Shiftable multiscale transforms, IEEE Transactions on Information Theory, vol.38, issue.2, p.126, 1992.

R. V. Southwell, Relaxation methods in engineering science: A treatise on approximate computation, p.59, 1940.

[. Spielman, Exact Recovery of Sparsely-Used Dictionaries, 2012.

. Williamson, Proceedings of the 25th Annual Conference on Learning Theory, vol.23, p.209, 2012.

[. Starck, The curvelet transform for image denoising, IEEE Transactions on image processing, vol.11, issue.6, p.126, 2002.

J. Sulam, B. Ophir, M. Zibulevsky, and M. Elad, Trainlets: Dictionary Learning in High Dimensions, IEEE Transactions on Signal Processing, vol.64, issue.12, p.121, 2016.

C. Tadonki and B. Philippe, Parallel Numerical Linear Algebra. chapter Parallel Multiplication of a Vector by a Kronecker Product of Matrices, p.98, 2001.

M. F. Berge-&-sidiropoulos-;-jos, N. D. Berge, and . Sidiropoulos, On uniqueness in candecomp/parafac, Psychometrika, vol.67, issue.3, p.88, 2002.

. Thiagarajan, Shiftinvariant sparse representation of images using learned dictionaries, IEEE Workshop on Machine Learning for Signal Processing, p.40, 2008.

[. Tibshirani, Strong rules for discarding predictors in lasso-type problems, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.74, issue.2, p.165, 2011.

R. Tibshirani, Regression Shrinkage and Selection via the Lasso, Journal of the Royal Statistical Society. Series B (Methodological), vol.58, issue.1, p.162, 1996.

R. J. Tibshirani, The lasso problem and uniqueness, Electron. J. Statist, vol.7, p.173, 2013.

&. Tomasi, G. Bro, R. Tomasi, and . Bro, A comparison of algorithms for fitting the PARAFAC model, Computational Statistics & Data Analysis, vol.50, p.89, 2006.

;. I. Tosic-&-frossard, P. Tosic, and . Frossard, Dictionary Learning, IEEE Signal Processing Magazine, vol.28, issue.2, p.37, 2011.

J. A. Tropp, Greed is good: algorithmic results for sparse approximation, IEEE Transactions on Information Theory, vol.50, issue.10, p.35, 2004.

;. P. Tseng-&-yun, S. Tseng, and . Yun, Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization, Journal of Optimization Theory and Applications, vol.140, issue.3, p.59, 2008.

P. Tseng, Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization, Journal of Optimization Theory and Applications, vol.109, issue.3, p.59, 2001.

T. Tsiligkaridis and A. O. Hero, Covariance Estimation in High Dimensions Via Kronecker Product Expansions, IEEE Transactions on Signal Processing, vol.61, issue.21, p.210, 2013.

R. Ledyard and . Tucker, Van Loan & Pitsianis 1993] Charles F Van Loan and Nikos Pitsianis. Approximation with Kronecker products, Some mathematical notes on three-mode factor analysis. Psychometrika, vol.31, p.100, 1966.

. Vannieuwenhoven, Nick Vannieuwenhoven, Nick Vanbaelen, Karl Meerbergen and Raf Vandebril. The dense multiple-vector tensor-vector product: An initial study, p.210, 2013.

M. A. Vasilescu and D. Terzopoulos, Multilinear subspace analysis of image ensembles, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol.2, p.92, 2003.

N. Vervliet, O. Debals, L. Sorber, M. Van-barel, and L. De, , p.104, 2016.

;. H. Wang-&-ahuja, N. Wang, and . Ahuja, Compact representation of multidimensional data using tensor rank-one decomposition, Proceedings of the 17th International Conference on Pattern Recognition, vol.1, p.92, 2004.

[. Wang, Lasso Screening Rules via Dual Polytope Projection, Journal of Machine Learning Research, vol.16, issue.1, p.164, 2015.

L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Transactions on Information Theory, vol.20, issue.3, p.33, 1974.

[. Wright, Sparse Reconstruction by Separable Approximation, IEEE Transactions on Signal Processing, vol.57, issue.7, p.162, 2009.

T. Wu-&-lange-;-tong, K. Wu, and . Lange, Coordinate descent algorithms for lasso penalized regression, Ann. Appl. Stat, vol.2, issue.1, p.59, 2008.

;. Z. Xiang-&-ramadge, P. J. Xiang, and . Ramadge, Fast lasso screening tests based on correlations, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), p.164, 2012.

. Xiang, Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries, Advances in Neural Information Processing Systems (NIPS), vol.24, p.164, 2011.

Z. J. Xiang, Y. Wang, and P. J. Ramadge, Screening Tests for Lasso Problems, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.39, issue.5, p.211, 2017.

Z. Xing, M. Zhou, A. Castrodad, G. Sapiro, and L. Carin, Dictionary Learning for Noisy and Incomplete Hyperspectral Images, SIAM Journal on Imaging Sciences, vol.5, issue.1, pp.126-146, 2012.

. Zhang, Learning Structured Low-Rank Representations for Image Classification, Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, p.40, 2013.

;. Y. Zhao-&-yang, J. Zhao, and . Yang, Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint, IEEE Transactions on Geoscience and Remote Sensing, vol.53, issue.1, pp.126-146, 2015.

. Zheng, Improved sparse representation with low-rank representation for robust face recognition, Neurocomputing, p.40, 2016.

;. S. Zubair-&-wang, W. Zubair, and . Wang, Tensor dictionary learning with sparse TUCKER decomposition, 18th International Conference on Digital Signal Processing (DSP), p.99, 2013.