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Résumé étendu

Ce résumé présente de manière concise les di�érents travaux abordés

dans cette thèse. Les détails techniques concernant les outils utilisés et les

méthodes proposées sont donnés dans la suite du manuscrit (en anglais).

Introduction

Les problèmes inverses consistent à déterminer les causes expliquant un ensemble de don-

nées observées. Ces observations sont souvent indirectes, ce qui signi�e que les données

d'intérêt ont subi un processus de transformation, et le dé� de ce type de problème ma-

thématique est précisément d'inverser ce processus sous-jacent. Souvent on ne dispose que

d'une quantité insu�sante d'observations pour pouvoir accomplir cette tâche. Mathémati-

quement, cela implique l'existence de plus d'inconnues (degrés de liberté) que d'équations

(contraintes), et le problème est ditsous-déterminéou simplementmal posé. Il est donc

nécessaire de rajouter des contraintes supplémentaires en s'appuyant sur desaprioris sur

les signaux d'entrée ou l'application visée.

Un apriori très répandu dans plusieurs domaines (que ce soit le traitement du signal,

les statistiques ou l'apprentissage automatique) est laparcimonie. La parcimonie suppose

que les signaux peuvent être décrits comme une combinaison de très peu d'éléments d'une

collection (les atomes d'un dictionnaire). Ce paradigme donne lieu à ce qu'on appelle les

problèmes inverses à contraintes de parcimonie, qui ont attiré une attention croissante

dans les dernières années et dont les exemples d'application vont de la restauration audio

ou d'images à la tomographie sismique. Il est donc crucial de pouvoir résoudre ces pro-

blèmes de façon e�cace, ce qui n'est pas une tâche facile vu qu'il n'existe pas de solution

analytique et qu'il faut donc recourir à des méthodes computationnelles itératives. De

nombreuses études ont été menées dans cette direction et ont donné lieu à des méthodes

itératives aujourd'hui bien répandues et aux bonnes performances. Cependant, lorsque

la taille des problèmes augmente, en raison notamment de la vertigineuse croissance des

données disponibles, la complexité computationnelle de ces algorithmes peut vite devenir

un goulot d'étranglement.
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Accélérer la résolution de problèmes inverses linéaires à contrainte de

parcimonie en combinant deux approches principales :

1. L'utilisation de dictionnaires structurés rapides à manipuler (dé-

taillée en partie II) ;

2. L'élimination d'atomes (colonnes de la matrice dictionnaire) in-

utiles via les tests d'élagage sûrs (détaillée en partie III).

Objectif général de la thèse

Cette thèse est organisée en trois parties (détaillées dans la suite) : une première partie

de revue de la littérature et des outils utilisés dans le reste du manuscrit ; deux autres

parties recueillant les contributions de cette thèse.

Première partie

En partie I, nous passons en revue les modèles, outils d'optimisation et d'autres concepts

mathématiques qui serviront de base pour les contributions présentés en parties II et III.

Le chapitre 1 décrit di�érentes formulations mathématiques d'un problème inverse à

contrainte de parcimonie. Les deux principales familles étudiées sont : 1) Formulations

contraintes ou régularisées en normè0 (opérateur qui compte le nombre d'entrées non-

nulles d'un vecteur). Cela donne lieu à des problèmes non-convexes et par conséquent assez

durs à résoudre. 2) Relaxations convexes basées sur la norme`1 (qui est donnée par la

somme des valeurs absolues des entrées d'un vecteur), ce qui mène à des problèmes abor-

dables par des techniques d'optimisation convexe. Nous mentionnons également d'autres

façons de promouvoir la parcimonie de la solution et rappelons quelques garanties théo-

riques liées à la résolution de ces problèmes.

Dans les problèmes mentionnés précédemment, la matrice dictionnaire est supposée

connue et �xe. Dans certains cas, pourtant, il peut être intéressant d'apprendre le diction-

naire sur une base de données. Cela donne lieu à la tâche d'apprentissage de dictionnaire

que nous abordons également en chapitre 1. Nous posons les problèmes d'optimisation

associés et rappelons quelques algorithmes importants de la littérature.

Au chapitre 2, nous présentons quelques outils d'optimisation utiles pour la reconstruc-

tion parcimonieuse de signaux. En particulier, nous détaillons les principaux algorithmes

associés à chacune des deux familles de problèmes mentionnés au chapitre précédent. Pour

la formulation en norme`0, nous nous concentrons sur les approches gloutonnes de type
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Matching Pursuit (MP) et ses variations comme le Matching Pursuit Orthogonal (OMP)

ainsi que ses di�érentes implémentations possibles. En ce qui concerne les formulations

en norme`1, nous étudions les algorithmes de type gradient proximal comme ISTA (al-

gorithme de seuillage doux itératif) et sa variante accélérée FISTA. D'autres approches

connexes sont brièvement décrites, sans prétention de dresser une liste exhaustive des

méthodes existantes. Finalement, nous étudions le principe de dualité Lagrangienne sur

la base duquel nous dérivons le dual du problème Lasso et ses conditions d'optimalité.

Ces derniers concepts seront particulièrement utiles en partie III.

Une partie importante des méthodes proposées dans cette thèse utilise des outils ten-

soriels. C'est pourquoi le chapitre 3 est dédié à étudier le formalisme tensoriel, ainsi qu'à

donner un aperçu des concepts et outils de base de ce domaine : des di�érentes formes

de représentation et de manipulation des tenseurs, aux principales décompositions tenso-

rielles, en passant par des opérations tensorielles classiques (produit externe, produit de

Kronecker et le produit tensoriel générique). Ces concepts seront utiles plus particulière-

ment dans la partie II du manuscrit. Par example, une des transformées présentées est la

décomposition Canonique Polyadique (CPD) qui exprime un tenseur comme combinaison

linéaire de tenseurs de rang unitaire. Cette transformée est ensuite utilisée aux chapitres

4 et 5 respectivement pour approcher des matrices en tant que somme de produits de

Kronecker et pour apprendre des dictionnaires ayant ce même type de structure.

Deuxième partie

La partie II rassemble les contributions liées aux dictionnaires structurés rapides.

Au chapitre 4 nous abordons le problème d'approximation de matrices par des matrices

structurées. Plus particulièrement, nous proposons une famille de matrices structurées qui

s'écrivent comme une somme deR produits de Kronecker àK termes � ou, en notation plus

concise, des matrices dites (R; K)-KS (Kronecker structured). Nous appelons ce modèle

HO-SuKro (Higher Order Sum of Kroneckers). En plus d'émerger naturellement lors de la

manipulation de donnés multi-dimensionnelles, les matrices ayant ce type de structure sont

déterminées par un nombre de paramètres inférieur à celui d'une matrice non structurée,

ce qui implique plusieurs avantages :

1. Coût de stockage réduit ;

2. Coût de calcul réduit en opérations de type matrice-vecteur ;

3. Complexité statistique réduite, c.à.d. un nombre inférieur de données est requis lors

de l'entrainement.
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Un algorithme simple est proposé pour approcher un opérateur linéaire arbitraire (de di-

mension �nie) par une matrice (R; K)-KS, où K correspond à l'ordre tensoriel des données

ciblées. Tandis que la décomposition en valeurs singulières (SVD) peut être utilisée pour

le casK = 2, la décomposition tensorielle canonique polyadique (CPD) rend possible la

généralisation à des ordres supérieursK > 2.

Au chapitre 5 nous considérons le problème d'apprentissage de dictionnaires structu-

rés. Dans un premier temps, nous proposons une méthode de type gradient projeté pour

apprendre des dictionnaires HO-SuKro, dans laquelle l'opérateur de projection utilise la

CPD. Dans un deuxième temps, une approche plus e�cace de type moindres carrés al-

ternés est proposée pour cette même tâche. Ce deuxième algorithme est nettement plus

rapide que son précédent car il ne quitte jamais l'espace de contrainte et ne requiert donc

pas le déploiement explicite des termes de Kronecker. Nous avons également étudié les

complexités computationelles des deux algorithmes proposés, et nous discutons de l'uti-

lisation des dictionnaires structurés pour l'accélération des algorithmes traditionnels de

codage parcimonieux. Un écart considérable a été observé entre les accélérations théo-

riques et celles obtenues en pratique, mais plusieurs pistes existent pour la réduction de

cet écart.

Les résultat expérimentaux sont présentés en chapitre 6. Les algorithmes d'apprentis-

sage de dictionnaire proposés sont évalués sur des applications de débruitage d'images.

Deux types distincts d'images sont considérés : images couleurs et hyperspectrales. Des

résultats encourageants ont été obtenus dans les deux cas. La contrainte de structure

tensorielle imposée au dictionnaire s'est avérée béné�que en termes de performances de

débruitage par rapport à un dictionnaire non structuré, en particulier dans les scénarios

de bruit élevé. En plus de servir de régularisation pour éviter le surapprentissage dans de

tels scénarios très bruités, la contrainte de structure a également apporté plus de robus-

tesse à l'entraînement sur des jeux de données de taille réduite. En ce qui concerne plus

particulièrement les données hyperspectrales, une approche de débruitage plus élaborée a

été proposée en intégrant une hypothèse de rang faible sur les images, ce qui a conduit à

une performance de débruitage supérieure aux méthodes de l'état de l'art.

Troisième partie

La partie III contient les contributions liées aux régles d'élagage d'atomes. Après un bref

rappel en chapitre 7 des approches existantes pour l'accélération de problèmes inverses

avec régularisation en normè1, au chapitre 8 nous nous intéressons plus particulièrement
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aux techniques d'élimination de variables (les règles d'élagage sûres), qui sont à la base des

approches proposées dans les chapitres suivants. Ces tests ont pour but de retrouver (et

éliminer) des atomes ne correspondant pas au support de la solution �nale,avant même

de résoudre le problème.

Dans le but de combiner les tests d'élagage sûrs et les opérateurs structurés rapides,

nous proposons, en chapitre 9, une méthodologie pour dé�nir des tests d'élagage sûrs

malgré une connaissance inexacte des atomes (les colonnes de la matrice de dictionnaire).

Le formalisme proposé donne lieu à une nouvelle famille de tests d'élagage ditsstables,

qui peuvent gérer des erreurs d'approximation dans les atomes tout en gardant la sûreté

du test (c'est à dire, sans aucun risque d'éliminer des atomes associés au support de la

solution). La source d'erreur peut être multiple, mais nous nous intéressons au cas où

cela découle de l'utilisation d'approximations structurées de la matrice de dictionnaire.

Certains des principaux tests d'élagage existants dans la littérature sont étendus à ce nou-

veau cadre (c'est-à-dire que leur version stable est dérivée), notamment les test sphériques

statiques [El Ghaouiet al. 2010] et dynamiques [Bonnefoyet al. 2015], [Fercoqet al. 2015].

Au chapitre 10 les tests d'élagage stables sont employés dans un algorithme rapide

pour la résolution du problème lasso. Cet algorithme utilise une série d'approximations

rapides de la matrice dictionnaire et peut être aisément combiné avec presque tous les

algorithmes de premier ordre existants dans la littérature. Nous dérivons également un

critère robuste pour déterminer les itérations auxquelles remplacer le dictionnaire en cours

d'utilisation par une autre approximation plus �ne.

Les résultats de simulation, au chapitre 11, montrent des réductions signi�catives des

temps d'exécution de l'algorithme proposé en comparaison avec des algorithmes similaires

qui n'utilisent pas les dictionnaires approchés et/ou les tests d'élagage. Dans une large

gamme de scénarios testés, les résultats expérimentaux démontrent la complémentarité des

deux stratégies combinées, justi�ant l'e�ort de les concilier. Les dictionnaires structurés

accélèrent la phase initiale de l'optimisation qui correspond à la principale faiblesse des

techniques d'élagage, en particulier dans les scénarios faiblement régularisés. Dans ce cas,

les tests d'élagage peuvent nécessiter plusieurs itérations avant de commencer à éliminer

des atomes.

Conclusion

Ce dernier chapitre récapitule les contributions décrites dans le manuscrit et présente

quelques perspectives de recherche futures.
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Concernant les dictionnaires structurés discutés en partie II, les perspectives incluent :

des études théoriques supplémentaires sur les propriétés de convergence des algorithmes

proposés ainsi que sur le choix des di�érents hyperparamètres. Nous envisageons également

l'extension du modèle proposé (HO-SuKro) à d'autres applications tels que l'inpainting

et le dé�outage d'images, à d'autres types de données comme de l'audio, des données

médicales ou sismiques. Dans un sens plus large, nous identi�ons même des passerelles

possibles avec le domaine émergent du traitement de signal sur graphes.

Des nombreuses extensions et variations sont également possibles pour l'élagage stable

discuté en partie III. Par exemple, le cadre proposé pourrait être appliqué à d'autres

problèmes inverses à contrainte de parcimonie tels que le groupe-lasso ou la régression

logistique régularisée. Une autre perspective très intéressante est de géneraliser les tests

d'élagage au cas continu [Bredies & Pikkarainen 2013] dans lequel le dictionnaire est

constitué d'un nombre in�ni d'atomes déterminés par des paramètres continus.
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Introduction

How to choose one among a (potentially in�nite) set of possible explanations to a given

observed situation? Is it reasonable to assume that there is a better explanation?

These questions relate to the fundamental problem ofunderdetermination in philos-

ophy of science: for a given set of observations or data, there is an in�nite number of

possible models explaining those same data.

A common response to this riddle is based on thePrinciple of Parsimony [Baker 2016],

which favors the simplicity of the model. One of its formulations, often referred to as

Occam's razor, reads: one should not increase, beyond what is necessary, the number of

entities required to explain anything.

In mathematics, and more precisely in the context of inverse problems, the term under-

determination designates a very precise situation: there are less constraints (equations)

than degrees of freedom (unknowns). It similarly implies the multiplicity of the solution.

The two concepts, in philosophy and mathematics, are therefore intimately connected

and, as before, a criterion has to be de�ned to chose one among all solutions. Parsimony

appears once again as a legitimate candidate.

Inverse problems, as an archetype of science itself, consist in determining the causal

factors explaining some observed data. In this context, parsimony can take multiple forms.

For instance, assuming a linear model is a common simplicity prior. It consists in searching

to describe the observations as a linear combination of a set of explanatory variables.

Another natural form of simplicity assumption is sparsity. The sparsity prior consists

in describing each observation as a combination of a small number of such explanatory

variables.

Even though such supplementary assumptions might resolve the underdetermination

issue by ensuring the uniqueness of the solution, they do not imply the existence of a

tractable procedure to solve the new constrained problem in practice.

In this thesis, we are confronted with the challenge of providing e�cient

algorithms to tackle sparsity-constrained linear inverse problems.
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Indeed, such problems are ubiquitous in signal processing, statistics and machine learn-

ing with di�erent interpretations and terminology. Examples range from audio and image

restoration to seismic tomography. But in all cases it comes down to similar optimization

problems. Given the ever-growing volume of available data, it is essential to be able to

e�ciently solve such problems as the number of involved variables grow.

More explicitly, we are faced with the problem of approximating an observation vector

y 2 Rn as a linear combination of the columns of a dictionary matrixD 2 Rn�m . The

columns ofD can be seen as the building blocks for reconstructingy and for this reason are

hereby referred to asatoms, following the usual terminology in the sparse signal represen-

tation community. The dictionary matrix D is also called measurement matrix [Foucart &

Rauhut 2013] or design matrix [Tibshirani 1996] respectively in compressive sensing and

statistics communities. We thus seek to determine a coe�cient vectorx 2 Rm containing

the weights of the linear combination, such thaty � Dx . Other denominations for the

coe�cient vector x include: representation vector (signal processing) or regression vector

(statistics). The problem is underdetermined whenn < m and the sparsity constraint

implies that only a few atoms of the dictionary are combined in the reconstruction of the

input data � which, in turn, implies that the coe�cient vector x is composed mainly of

zeros. Therefore, in the context of sparse signal processing, the dictionary matrix de�nes

a representation domain in which the input data can be �explained� with parsimony.

Finding sparse solutions to linear inverse problems

Solving sparsity-constrained linear inverse problems is not an easy task. In general, it

cannot be solved analytically and it is necessary to resort to iterative computational

approaches.

Actually, it can be shown that, in general, �nding the sparsest solution to an under-

determined linear system cannot be solved in polynomial time. It is a classical problem

of combinatorial search; one would need to sweep exhaustively through all possible sparse

subsets of non-zero elements, generating the corresponding subsystems and checking if it

can be solved. The complexity of exhaustive search is exponential inm and intractable

in practice.

Despite these theoretical di�culties, several algorithms exist to provide either sub-

optimal solutions to this problem or exact solutions to similar relaxed problems. These

correspond respectively to the two following families of algorithms: which will be further

detailed in the remainder of this document:
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1. Greedy algorithms [Mallat & Zhang 1993, Patiet al. 1993, Needell & Tropp 2009,

Donohoet al. 2012];

2. Convex relaxation based approaches [Daubechieset al. 2004,Beck & Teboulle 2009,

Bioucas-Dias & Figueiredo 2007,Wrightet al. 2009,Chambolle & Pock 2011].

Both families of existing algorithms can become computationally prohibitive in high-

dimensional settings, which is why accelerating techniques remain an active research topic.

Accelerate the resolution of sparsity-constrained linear inverse problems

by combining two main approaches:

1. The use of structured dictionaries which are e�cient to manipulate;

2. Safe screening tests, to quickly eliminate useless dictionary atoms.

General objective of this thesis

Fast structured dictionaries

The main bottleneck of existing iterative algorithms in terms of computational complexity

is the cost of the required matrix-vector products involving the dictionary matrix, which

dominates the overall iteration cost.

A possible way to address this limitation is to constrain the dictionary matrix to a

certain type of structure which would allow for fast matrix-vector products. This type

of approach is inspired by the idea of designing fast transforms to implement certain

structured linear transforms. A notable example is the Fast Fourier Transform (FFT) al-

gorithm, which was decisive to ensure the feasibility of most early digital signal processing

algorithms.

In practice, the dictionary can sometimes be pre-determined by the application in ques-

tion and might not be structured. For instance, in inverse problems it can be determined

by the physical characteristics of the system, like the forward map in electroencephalogra-

phy (EEG) measurements. A possible strategy, in this case, is to perform initial iterations

using a fast structured approximation of the dictionary. In that sense, we explore strategies

to e�ciently approximate a generic linear operator by a structured one.

In other cases, the dictionary can be learned from the data at hand. This gives rise

to the so-calledDictionary Learning task. For such scenario, we explore algorithms to

explicitly impose the desired structure during the learning process.
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Di�erent types of structure, more or less suited to a given application or type of

data, can be imagined. In this kind of work, there is always a compromise between the

�exibility of the structure and the provided speedup. In this thesis, we primarily explore a

tensorial structure which is particularly suited to multidimensional data. The considered

structure consists in dictionaries formed as sums of Kronecker (or tensorial) products of

sub-dictionaries of smaller size.

Interestingly, structure can also be seen as a form of parsimony, since it corresponds

to a constraint that limits the inherent complexity of the objects in question (for instance

here, �nite-dimensional linear operators represented by matrices). Indeed, such struc-

tured matrices are determined by a smaller set of parameters than their unstructured

counterpart. There are fewer degrees of freedom or, using the same terminology as in the

parsimony principle, less entities required to explain them.

Screening: Elimination of useless atoms

The fact that the coe�cient vector x is composed mostly of zeros implies that most

of the atoms (columns ofD) are not at all used to reconstruct the input signal. The

so-calledscreening testsintroduced by [El Ghaoui et al. 2010] allow us to identify such

unused atoms before even solving forx. These atoms, referred to asinactive, can be

harmlessly removed from the dictionary to signi�cantly simplify the considered problem.

Also, the new restricted dictionary is more compact and readily-applicable in matrix-

vector operations.

The screening strategy applies exclusively to the family of convex relaxation tech-

niques. Yet, it is transparent to the underlying solver and can be readily combined with

almost any existing algorithm within this particular family.

In order to combine this strategy with the use of structured dictionaries, considering

that a fast but approximate structured version of the dictionary is available, we de�ne a

new class of screening tests, calledstable screening, which are robust to approximation

errors given that an error bound is provided.

We aim at a scenario in which a coarser (but faster) version of the true dictionary is

used in the initial phase of an iterative optimization procedure and �ner approximations

are progressively adopted as approaching convergence until eventually the original dic-

tionary takes over. This also reinforces the importance of studying techniques to provide

structured approximations with controlled precision levels.
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Thesis organization and contributions

Part I: The �rst part of this document reviews the signal models, optimization tools

and other mathematical concepts which are used in the following parts.

While in chapter 1 we review the sparse signal model and the associated optimization

problems, in chapter 2 we describe the main optimization tools commonly used to tackle

such problems. Finally, in chapter 3 we review some useful concepts in tensor algebra.

Part II: This part gathers the contributions associated to fast structured dictionaries.

Such contributions are listed below, followed by the chapter's organization.

ˆ A new dictionary learning model is introduced where the dictionary matrix is con-

strained as a sum ofR Kronecker products ofK terms (or simply (R; K )-KS). The

proposed model is termed Higher Order Sum of Kroneckers (HO-SuKro). Besides

exploiting the inherent multidimensional nature of the data, the proposed dictio-

naries are determined by a smaller number of parameters than a fully unstructured

dictionary, which implies several advantages: 1) reduced storage cost; 2) reduced

computational complexity on operations involving the dictionary matrix; 3) reduced

sample complexity, i.e. fewer training data is required.

ˆ A simple algorithm is proposed to approximate an arbitrary linear operator as

(R; K )-KS matrix, which is particularly suited to applications with Kth-order input

data. It uses the Canonical Polyadic Decomposition (CPD) to generalize for orders

K > 2, while the Singular Value Decomposition (SVD) is used in the caseK = 2.

ˆ A structured Dictionary Learning algorithm is proposed for training HO-SuKro dic-

tionaries from data via a projected gradient procedure. Some color image denoising

experiments are performed to illustrate the interest of the proposed techniques.

ˆ A more e�cient alternating optimization algorithm is introduced for the HO-SuKro

dictionary learning task. The proposed Alternating Least Squares algorithm markedly

faster than the previously proposed one since it never leaves the constraint space

and, thus, doesn't require the explicit unfolding of the Kronecker terms.

ˆ A Hyperspectral image (HSI) denoising technique is proposed, by combining two as-

sumptions: (i) noiseless hyperspectral images in matrix form are low-rank, and (ii)
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image patches are sparse in a proper representation domain de�ned through a dictio-

nary. We employ both a unstructured and a Kronecker-structured dictionary learned

from patches of the noisy HSI and show that the dictionary learning approach is

more e�cient than state-of-the-art methods with �xed Wavelet transforms.

In chapter 4 we describe the proposed HO-SuKro structure and how to approximate

a generic linear operator in this setting. Chapter 5 describes the two proposed structured

dictionary learning algorithms and chapter 6 gathers the experimental results in both

color image and hyperspectral image denoising tasks.

Part III: The third part gathers the contributions related to screening tests.

ˆ We introduce a formalism for de�ning safe screening tests which are robust to ap-

proximation errors on the dictionary matrix given that an error bound is provided.

The source of this error can be manifold, but we will focus on the case where it is a

side e�ect of manipulating structured approximations of the true dictionary matrix.

The resulting tests are calledstable screeningtests.

ˆ Some of the main existing screening tests are extended to this new framework

(i.e. their stable version is derived). Namely: 1) the seminal static sphere test

in [El Ghaoui et al. 2010]; 2) the dynamic sphere test in [Bonnefoyet al. 2015];

3) the state-of-the-art GAP sphere test in [Fercoqet al. 2015].

ˆ The proposed stable screening is employed in a fast algorithm for`1-minimization

problems, by making use of fast structured approximations of the problem's dictio-

nary matrix. It uses a fast approximation of the dictionary at the initial iterations

and then switches to �ner approximations until eventually adopting the original

dictionary. Simulation results show signi�cant reductions in both computational

complexity and execution times for a wide range of tested scenarios. A robust crite-

rion for choosing an appropriate switching moment is proposed, based on both the

duality gap saturation and the screening ratio.

After recalling the conventional safe screening technique in chapter 8, we introduce the

stable screening framework in chapter 9. The proposed fast algorithm for`1-regularized

problems is described in chapter 10. Finally, experimental results are reported in chap-

ter 11.
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Chapter 1

Sparsity

In this chapter we review some di�erent formulations of a sparsity-inducing linear inverse

problem. The two main families of problems are summarized in sections 1.1 and 1.2.

The `0 operator (hereafter loosely referred to as̀0 norm1) which counts the number

of non-zero entries of a vector, provides a very natural notion of sparsity. The sparsity

assumption can therefore be enforced via a constraint or penalization �i.e. regularization�

on the `0 norm of a solution. This operator, however, is neither convex nor continuous

and the resulting problems (section 1.1) are NP-hard. Relaxed problems (section 1.2) can

be obtained by replacing thè 0 norm by the `1 norm, which is given by the sum of the

absolute values of a vector. This norm has the advantage of being convex (and continuous),

and so are the corresponding problems. For completeness, in section 1.3 we mention other

ways to promote sparse solutions which are not further explored in this thesis. In section

1.4 we provide some useful existing theoretical guarantees for sparse inverse problems.

The dictionary matrix in the mentioned problems is supposed to be given. Yet, in some

cases, it might be interesting to learn it from the data. This gives rise to the Dictionary

Learning task, brie�y reviewed in section 1.5.

1.1 `0 formulation

The problem of �nding sparse solutions to an underdetermined linear system of equations

Dx = y (with D 2 Rn�m a full-rank matrix and n < m ) is commonly referred to asSparse

coding. Mathematically, it can be described as the following minimization problem:

(P0) : min
x

kxk0 s:t: y = Dx ; (1.1)

wherex 2 Rm is a sparse representation of a signaly 2 Rn in the dictionary D 2 Rn�m .

The columns ofD, which are referred to as atoms, are a full and overcomplete set.

1. Strictly speaking, it is not a norm as it is not homogeneous: fort 6= 0;ktu k0 = kuk0 6=tku k0.
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Part I, Chapter 1 � Sparsity

In practical applications, we allow some deviation� from the model rather than seeking

a perfect reconstruction:

(P �
0) : min

x
kxk0 s:t: ky � Dx k2

2 � �; (1.2)

An alternative form, in which the sparsity k is known (or imposed), is:

(P k
0 ) : min

x
ky � Dx k2

2 s:t: kxk0 � k; (1.3)

Although there is a clear inverse relation between� and k � the higher the �, the smaller

the correspondingk � such relation cannot be trivially characterized.

The (P 0) problem, as well as its approximate (noisy) versions(P �
0) and (P k

0 ), are

non-convex and hard to solve, due to the discrete and discontinuous nature of the`0

norm. Actually, these problems can be shown to be NP-hard [Natarajan 1995] as their

solution requires an exhaustive search through all possible sparse solution supports, which

is exponential inm. Indeed, for a given sparsity level (say,s non-zero elements), there are
�

m
s

�
possible supports.

Given the infeasibility of an optimal solution, several greedy approximation techniques

have been proposed to tackle these problems, as will be detailed in section 2.1.

1.2 `1 formulation

Another class of algorithms uses a convex relaxation of thè0 norm to the `1 norm:

kxk1 =
P

i jx i j. It can be formulated in a constrained form (exact and inexact respectively)

(P1) : min
x

kxk1 s:t: y = Dx (1.4)

(P �
1) : min

x
kxk1 s:t: ky � Dx k2

2 � �; (1.5)

but we will be more interested in its unconstrained formulation:

(P �
1 ) : min

x
1
2ky � Dx k2

2 + �kx k1 (1.6)

which is also known as lasso [Tibshirani 1996] or basis pursuit denoising (BPDN) [Chen

et al. 1998]. The resulting problems are convex which means that they can be more easily

tackled by standard optimization tools � even if the `1 norm is not di�erentiable. For
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1.3. Other sparsity-promoting functions

instance, (P1) can be cast as a linear programming problem and solved using interior-

point or simplex methods [Chenet al. 1998]. Or, in an even simpler approach,(P �
1 ) can

be tackled by proximal gradient methods [Beck & Teboulle 2009]. These methods will be

more thoroughly reviewed in section 2.2.

1.3 Other sparsity-promoting functions

Additional criteria are needed to narrow the choice of one among the in�nitely many

solutions of the underdetermined linear systemsDx = y. More generally, these criteria

can be encoded by a functiong(x ) penalizing the solutions which do not have a certain

desirable characteristic (for instance, the sparsity). This leads to the following problem

(Pg) : min
x

g(x ) s:t: y = Dx (1.7)

Sparsity-inducing functions include the mentioned̀0 and `1, but are not restricted to

those. Actually, any `p-norm with 0 < p < 1 can induce sparsity2:

kxkp =

 
X

i

jx i jp
! 1=p

In fact, any function g(x ) =
P

i �(x i ) with �(x) symmetric, monotonically non-decreasing,

and with a monotonic non-increasing derivative forx � 0 will serve the same purpose of

enforcing sparsity [Elad 2010] [Gribonval & Nielsen 2007]. Some notable examples are:

�(x) = 1 � exp(jxj); �(x) = log(1 + jxj); �(x) = jxj=(1 + jxj):

A geometric intuition To get some more intuition, consider the problem(Pg) with

g(x ) = kxkp
p, The linear set of equations forming the constraint de�nes a feasible set of

solutions that are on an a�ne subspace. Any feasible solution therefore lies in this set,

which is a hyperplane of dimensionRm�n embedded inRm . Among all solutions from this

hyperplane, we seek the one with minimum̀p norm. Geometrically, this corresponds to

�blowing� a small `p ball (set of points in Rm in which the `p norm equals a constant

value) until it �rst touches the feasible set. The intersecting point is the sought solution.

This procedure is illustrated in Figure 1.1 for a 3-dimensional space (m = 3) comparing

2. Once again, forp < 1 the term norm is not accurate, since the triangle inequality is not satis�ed.

29



Part I, Chapter 1 � Sparsity

Figure 1.1 � The solution of (Pg) with g(x ) = kxkp
p is given by the intersection between

the `p-ball and the plane corresponding toDx = y. This intersection is demonstrated for
p = 2 (top left), p = 1:5 (top right), p = 1 (bottom left), and p = 0:7 (bottom right).
When p � 1, the intersection takes place along the axes, leading to a sparse solution.
Source: [Elad 2010]

several values ofp. The feasibility set (solutions of the underdetermined linear system

y = Dx ) is given by a tilted plane. Note that for p � 1 the intersection point tend to

occur in the ball-corners, which take place along the axes. In such points, 2 of the 3

coordinates are zeros, which is the tendency to sparsity we referred to. On the other

hand, norms with p > 1 tend to give intersection points with three non-zero coordinates.

1.4 Some theoretical guarantees

The problem of �nding sparse solutions to underdetermined systems of linear equations

has been largely studied in the literature. The theoretical guarantees achieved so far

include uniqueness conditions for the sparsest solution, conditions under which(P0) and

(P1) have the same solution, as well as results on the impact of noise and the behavior of

approximate solutions.
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In subsections 1.4.1 and 1.4.2 we present some uniqueness and recoverability results

on the exact recovery case (y = Dx ). In subsection 1.4.3 we discuss the uniqueness on

the (P �
1 ) problem (lasso or basis pursuit), which will be of particular interest in part III

of this thesis.

1.4.1 Uniqueness via the Spark

A crucial concept for the study of uniqueness of sparse solutions is the spark of a ma-

trix, introduced in [Donoho & Elad 2003]. Interestingly, an equivalent property, termed

Kruskal rank, previously appeared in the tensor literature to study the uniqueness of

tensor decompositions [Kruskal 1977].

De�nition 1 (Spark [Donoho & Elad 2003]). Given a matrix D we de�ne � = spark(D)

as the smallest possible number such that that there exists a subgroup of� columns from

D that are linearly dependent.

It is important to emphasize the di�erence to the concept of rank of a matrix. The

rank is de�ned as themaximal number of columns fromD that are linearly independent.

Actually, the spark of a matrix is far more di�cult to obtain than its rank, as its compu-

tation (the spark) in general requires a combinatorial search over all possible subsets of

columns fromD.

Spark leads to a simple criterion for uniqueness of sparse solutions.

Theorem 1 (Uniqueness - Spark [Gorodnitsky & Rao 1997]).If a system of linear equa-

tions Dx = y has a solutionx such thatkxk0 < spark(D)=2, this solution is necessarily

the sparsest possible.

Proof. Consider two di�erent solutions, i.e. 9 x1 6=x2 j y = Dx 1 = Dx 2. Thus, the

di�erence x1 � x2 must be in the null space of the columns ofD. Hence some group of

columns fromD must be linearly dependent.

From the de�nition of the spark, we have that every vectorz in the null space haskzk0 �

spark(D) (i.e. one needs to combine at leastspark(D) columns of D to create linear

dependency). This implies that

kx1 � x2k0 � spark(D):
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By applying the triangle inequality on the `0 norm, we have

kx1k0 + kx2k0 � spark(D);

which means that any two solutions(x 1; x2) must have at leastspark(D) nonzero entries

combined. If there exists a solution satisfyingkx1k0 < spark(D)=2, then any other solution

x2 must satisfy kx1k0 > spark(D)=2, implying that x1 is the sparsest solution.

Clearly, the value of spark is very informative, since we can check for global optimality

of a given solution by simply comparing its sparsity to the spark. Large values of spark

are desirable as they make the condition in theorem 1 easier to satisfy. Some bounds can

be drawn for the spark. Clearly, if there are no zero columns, thenspark(D) � 2. Also,

from the de�nition of rank, any set of rank(D) + 1 columns ofD are necessarily linear

dependent, which givesspark(D) � rank(D)+1 � n +1. Moreover, if the entries ofD are

random independent and identically distributed (i.i.d.) from any continuous distribution,

then with probability 1 the maximal spark is achieved:spark(D) = n + 1 [Bruckstein

et al. 2009]. In this case, uniqueness is ensured for every solution withbn
2 c or fewer

nonzero entries.

1.4.2 Uniqueness via the mutual coherence

The spark is at least as di�cult to evaluate as solving(P0). Thus, simpler ways to guar-

antee uniqueness are of interest. A very simple way uses the concept of mutual coherence

De�nition 2 ( [Mallat & Zhang 1993]). The mutual coherence of a matrixD is the

largest absolute normalized inner product between di�erent columns fromD. Denoting dk

the k-th column of D, the mutual coherence is given by

�(D) = max
1�i6=j �m

jd T
i d j j

kd i k2kd j k2

Mutual coherence is much easier to compute than the spark, as it requires only an

order of m2 inner products for a matrix with m columns. The fact that we are to able

lower bound the spark with the mutual coherence is, therefore, very useful.

Lemma 1 ( [Donoho & Elad 2003]). For any matrix D 2 Rn�m ,

spark(D) � 1 + 1=�(D):
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Proof. See, for instance, [Brucksteinet al. 2009].

Lemma 1 allow us to derive a looser but more readily-applicable version of Theorem 1

using the mutual coherence.

Theorem 2 (Uniqueness - Mutual coherence [Donoho & Elad 2003]).If a system of

linear equationsDx = y has a solutionx such thatkxk0 < 1
2(1 + 1=�(D)), this solution

is necessarily the sparsest possible.

So far, we have established su�cient conditions for aǹ0 minimizer to be unique. In

principle, there is no reason for the same solutionx to be an `1 minimizer as well � i.e. a

solution to (P1). It turns out [Gribonval & Nielsen 2003] that the condition in theorem 1

(kx k0 < 1
2(1 + 1=�(D)) is also su�cient to imply that x is the `1 minimizer provided that

D has unit-norm columns.

In summary, for matricesD with incoherent columns, whenever(P0) has a su�ciently

sparse solution, that solution is unique and is equal to the solution of(P1). Lower coherence

values are desirable as they make the uniqueness condition easier to satisfy. It has been

shown [Welch 1974] that for a general(n � m) matrix D, the mutual coherence is lower

bounded by

�(D) �

s
m � n

n(m � 1)
: (1.8)

It implies in particular for m > n , by plugging m = �n with � > 1 in (1.8), that

�(D) � 1=
p

n. This gives a sparsity bound in theorem 2 of the order of
p

n=2, which is

smaller than the one obtained with the spark: up ton=2.

1.4.3 Uniqueness in lasso

The `1-regularized unconstrained formulation, i.e. the(P �
1 ) problem or simply lasso, is

convex but not strictly so whenm > n ; and, therefore, the uniqueness of the solution is

not guaranteed. As a convex problem, every local minimum is also a global minimum but

not necessarily unique. Multiple solutions can achieve the (same) minimum cost function.

A detailed study on the uniqueness of the lasso solution is provided by [Tibshirani 2013].

Lemma 2 ( [Tibshirani 2013]). For any y, D, and � � 0, the lasso problem(P �
1 ) has the

following properties:
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(i) There is either a unique solution or an (uncountably) in�nite number of solutions.

(ii) Every lasso solution x? gives the same �tted valueDx .

(iii) If � > 0, then every lasso solutionx? has the samè 1 norm, kx̂k1.

Fortunately, uniqueness can be guaranteed under very mild conditions.

Lemma 3 (Lasso uniquennes - su�cient condition [Tibshirani 2013]). If the entries of

D 2 Rn�m are drawn from a continuous probability distribution onRn�m , then for any y

and � > 0, the lasso solution is unique with probability one.

According to this result, we do not have to worry about uniqueness when the atoms

come from a continuous distribution, regardless of the sizes ofn and m. Actually, this

result can be extended to other data �delity terms (not only the squared error): it holds

for `1 penalized minimization with any di�erentiable, strictly convex loss function.

In the case of discretely distributed atoms, even though the solutionmight not be

unique, we can still guarantee that any two lasso solutions must have the same signs over

their common support [Tibshirani 2013]. Concerning the support of di�erent solutions, it

is useful to de�ne the following set:

De�nition 3 (Equicorrelation set). For a lasso problem withD 2 Rn�m , y 2 Rn and

� � 0, and any solutionx?, we de�ne the equicorrelation setE by

E =
n
i 2 f 1; : : : ; mg : jd T

i (y � Dx ?)j = �
o

:

Lemma 4 (Support of lasso solutions). The support of a lasso solution is always a subset

of the equicorrelation set.

Actually, a more explicit su�cient condition for uniqueness of the lasso solution is

that null(D E) = f0g (or, equivalently, rank(D E) = jEj) where D E stands for the dictio-

nary matrix restricted to the columns belonging to the equicorrelation set andjEj is the

cardinality of this set.

1.4.4 Exact recovery condition

The de�nition of an Exact Recovery Condition (ERC) in [Tropp 2004] brings an additional

and interesting insight towards the performance limits of the OMP (a classical greedy

approach for`0 minimization �to be detailed in section 2.1.1� which iteratively increases
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the solution support by picking the �most promising� atom at each iteration) and the

basis pursuit (or the lasso, i.e. thè1-regularized least-squares formulation).

De�nition 4 (ERC [Tropp 2004]). For a given supportS and for a matrix D, the Exact

Recovery Condition (ERC) is given by

ERC(D; S) : max
i=2S

kD y
Sd i k1 < 1:

This condition considers linear systems of equations of the formD Sx = d i , with d i

being a column fromD that is outside the supportS. The ERC states that the minimum

`2-energy solution3 (i.e. D y
Sd i ) to all these systems should have aǹ1-norm length smaller

than 1. The ERC provides a guarantee on the success of pursuit techniques:

Theorem 3. ERC(D; S) is a su�cient condition for both OMP and BP to recover the

sparsest solution of a systemDx = y, with S being the solution support (i.e.y = D SxS).

It is possible to show that the ERC is at least as general as the mutual coherence

result in Theorem 2.

Theorem 4. For a matrix D with mutual-coherence�(D), then for all supports S with

cardinality equal or smaller than1
2(1 + 1=�(D)), the ERC is satis�ed.

1.5 Dictionary Learning

In the context of sparse representations, a problem that has attracted great attention is

the choice of a dictionary to e�ciently sparsify a certain class of signals of interest.

The �rst dictionaries to be used were existing transforms � such as the Fourier,

wavelet, short-time Fourier transform (STFT), and Gabor transforms, see e.g., [Mallat &

Zhang 1993], [Chenet al. 1998]. This type of dictionary is characterized by an analytic

formulation, and an important advantage of this approach is that the resulting dictionary

usually features a fast implementation (e.g. the Fast Fourier Transform ) which does not

involve explicit multiplication by the dictionary matrix. On the other hand, the dictionary

can only be as successful as its underlying model, and indeed, these models tend to be

over-simplistic compared to the complexity of natural phenomena. For example, not all

signals can be sparsely approximated as a sum of sinusoids, particularly signals containing

discontinuities. In such cases, a Fourier dictionary would not lead to satisfactory results.

3. Or the least-squares estimation, whend i =2 span(DS ), which is typically the case.
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Data-driven techniques, on the other hand, can be used to learn dictionaries that are

better adapted to speci�c instances of the data, replacing the use of generic models. As

with machine learning techniques [Bishop 2006], the idea is that the structure of complex

natural phenomena can be more accurately extracted from the data itself than by using

a prior mathematical description.

This new paradigm gives rise to the dictionary learning task. The idea here is to learn

a suitable dictionary from some training data. In this setting, rather than a single input

signal y, we now consider a set ofN input signals arranged as the columns of atraining

data matrix: Y = [ y1; y2; : : : yN ] 2 Rn�N .

Given Y , we seek to simultaneously learn: 1) a representation domain that e�ciently

sparsi�es the input data (in the dictionary matrix D 2 Rn�m ); 2) the corresponding

sparse representations of each input signal (as the columns of arepresentation matrix

X = [ x1; x2; : : : xN ] 2 Rm�N ).

This task can be formalized, among other possible formulations, as the following op-

timization problem:

min
D2S D ;X

kY � DX k2
F +

NX

i=1

g(x i ): (1.9)

The goal is to minimize the representation error over the training data � measured by the

�rst term, the data �delity term � while enforcing the sparsity of the columns ofX via

a generic sparsity-enforcing penalizationg : Rm 7! R � for instance, the `0 or `1 norms

of the columnsx i (see chapter 1). Similarly to the sparsity-inducing problems introduced

in chapter 1, analogous constrained formulations could also be considered. Finally, the

dictionary columns are usually restricted to unit Euclidean norm in order to avoid a

scale ambiguity problem.4 This means that the constraint setSD is, most often, simply

the set of matrices with unit Euclidean norm columns. An exception is made for the so-

called structured dictionary learning methods (overviewed in section 1.5.2), in which the

dictionary is further constrained to a certain structure of interest.

As formulated in (1.9), the dictionary learning problem can be regarded as a matrix

factorization problem. The input data matrix Y is factorized into a product between a

dictionary D and a sparse coe�cient matrix X:

Y � DX ; (1.10)

4. Otherwise, one could arbitrarily reduceg(x i ) by transferring energy from x i to the atom d i .
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Figure 1.2 � Dictionary learning problem: matrix formulation.

where each data sample inY is approximated as a linear combination of only a few

columns ofD, referred to asatoms. This matrix formulation is illustrated in Figure 1.2.

The considered problem is jointly non-convex inD and X which explains the predomi-

nance of sub-optimal approaches to tackle it in the literature (see [Rubinsteinet al. 2010a]

or [Tosic & Frossard 2011] for a survey). Since there are two variables to simultaneously

estimate from the data, most of the existing training methods adopt an alternating opti-

mization strategy with two steps:

Sparse coding step: For a �xed dictionary (D), �nd the best sparse approximation (X )

for the input data.

min
X

kY � DX k2
F +

P
i g(x i ) = min

fx i gN
i =1

P
i ky i � Dx i k2

2 + g(x i ): (1.11)

This is usually handled as a set ofN independent sparse representation problems as

the ones introduced in sections 1.1 and 1.2, one for each input datay i . In practice,

any of the formulations presented in sections 1.1 and 1.2 can be used and, similarly,

any of the corresponding optimization algorithms which will be described in sections

2.1 and 2.2 can be applied.

Dictionary update step: For a �xed sparse representation matrix (X), optimize the

dictionary atoms for better data approximation:

min
D2S D

kDX � Y k2
F : (1.12)

Each of the several existing dictionary learning algorithms proposes a di�erent ap-

proach to solve this problem, especially if the constraintSD is nontrivial. Some of

these techniques are brie�y described in sections 1.5.1 and 1.5.2.
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1.5.1 Unconstrained Dictionary Learning

The following dictionary learning algorithms employ the mentioned alternating minimiza-

tion strategy. The sparse coding step can be performed by any standard technique and

is not detailed here. The dictionary update step is usually performed in an unrestricted

manner while unit-norm constraint in D is handled as a post-processing step.

Method of Optimal Directions (MOD)

The Method of Optimal Directions (MOD) was introduced by [Enganet al. 1999], and

was one of the �rst proposed methods for dictionary learning. The dictionary update step

uses the well-known analytic solution for the linear least squares (LS) problem

D = YX y; (1.13)

wherey denotes the Moore-Penrose pseudo-inverse5 (X y = X T (XX T )�1 ).

Despite its conceptual simplicity, the method su�ers from the relatively high com-

plexity of the required matrix inversion. Several subsequent works have thus focused on

reducing this complexity.

K-SVD

The K-SVD algorithm, introduced by [Aharon et al. 2006], is probably the most popular

unconstrained dictionary learning algorithm. The main contribution of the K-SVD is that

the dictionary update, rather than using a matrix inversion, is performed atom-by-atom

in a simple and e�cient process. Further acceleration is provided by updating both the

current atom and its associated sparse coe�cients simultaneously. The K-SVD algorithm

takes its name from the Singular Value Decomposition (SVD) process that forms the core

of the atom update step.

The dictionary optimization step updates one column (atom) at a time, �xing all

columns except one, saydk , and updating its value along with the corresponding coef-

�cients in the matrix X to optimally reduce the mean squared error. This is markedly

di�erent from all previous methods, which freezeX while �nding a better D.

Fixing all columns ofD exceptdk , and denotingx k
T the k-th row of X, which contains

the coe�cients related to the atom dk , the penalty term in the objective function (1.12)

5. Note that if an atom is never used (i.e. a row ofX is all zeros), the pseudo-inverseX y does not exist.
In this case, any value can be assigned to the corresponding atom with no e�ect in the cost function.
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can be rewritten as:

kY � DXk 2
F =






Y �

mX

i=1

d i x i
T







2

F

=








0

@Y �
X

i6=k

d i x i
T

1

A � dkx k
T








2

F

= kEk � dkx k
T k2

F (1.14)

where the productDX has been decomposed as the sum ofm rank-1 matrices. All terms

but the one associated with thek-th atom are grouped andEk stands for the error for

each of theN samples when thek-th atom is removed.

The minimization of (1.14) fordk and x k
T corresponds to a rank-1 approximation ofEk ,

which is optimally solved by the SVD truncated to its �rst component6. To avoid intro-

duction of new non-zeros inX , the update process is performed using only the examples

whose current representations use the atomdk .

1.5.2 Structured Dictionaries

The learning techniques mentioned so far lead to non-structured dictionaries which are

relatively costly to apply; therefore these methods remain limited to signals of relatively

small size. The most recent contributions to the �eld, thus, focus on parametric models

in the training process, which produce structured dictionaries [Dumitrescu & Irofti 2018].

The idea is to preserve the best of both scenarios: the computational e�ciency of the an-

alytic dictionaries and the �exibility of the learned ones. Naturally, any kind of structure

imposition corresponds to a restriction on the search space, leading to less adapted dictio-

naries in general. The challenge is ultimately to better handle this compromise, providing

a higher computational reduction by paying as little as possible in terms of performance.

As a byproduct, structured dictionaries also require fewer training symbols, since they

have fewer parameters to be learned [Gribonvalet al. 2015b,Shakeriet al. 2019].

Early proposals Countless types of dictionary structures may be imagined. Learning a

dictionary as a union of orthonormal bases was proposed in [Lesageet al. 2005]. This type

of structure allows e�cient sparse-coding via block coordinate relaxation (BCR) [Sardy

et al. 2000] . Another proposition is thesignature dictionary [Aharon & Elad 2008], in

which the dictionary is described by a compact image called signature. Each of its
p

n�
p

n

sub-blocks constitute an atom of the dictionary. The reduced number of parameters (only

one per atom) also makes this model more restrictive than other structures.

6. This result follows from the Eckart-Young theorem [Eckart & Young 1936].
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Sparsity-related More recently, in [Magoarou & Gribonval 2015] the authors impose

the dictionary to be the product of several sparse matrices. The total complexity in this

case is determined by the number of non-zero values on the factor matrices. Still on the

sparsity line, [Rubinsteinet al. 2010b] proposes to learn a dictionary in the formD = �A,

where� is a pre-speci�edbase dictionarythat has a fast implementation (e.g. DCT) and

A is a column sparse matrix. In other words, the atoms in this dictionary are sparse

linear combinations of atoms from thebase dictionary. In [Sulam et al. 2016] this idea is

taken further, replacing the �xed base dictionary by an adaptable multi-scale one (cropped

Wavelets are used). This brings more �exibility to the model, while keeping its scalability.

Shift invariance Shift invariant dictionaries [Mailhé et al. 2008,Thiagarajanet al. 2008,

Jost et al. 2006, Barthelemyet al. 2012] bring the advantage of being insensitive to the

way a long signal is cut into smaller patches for processing. They also often have fast

representation algorithms based on the FFT. In [Popeet al. 2013, Rusuet al. 2014] the

shift invariance is promoted by explicitly imposing a circulant structure on the dictionary

matrix. In [Chabiron et al. 2015], the dictionary atoms are the composition of several

circular convolutions using sparse kernels. A closely related idea has gained great popu-

larity recently: the convolutional sparse representation model [Bristowet al. 2013,Papyan

et al. 2017b,Garcia-Cardona & Wohlberg 2018] where the dictionary is a concatenation of

circulant matrices. Its popularity is partly due to the strong connections with the promi-

nent topic of convolutional neural networks [Papyanet al. 2017a,Papyanet al. 2018].

Low rank and tensor structure A straightforward approach for complexity reduc-

tion is introducing a low-rank restriction on the dictionary. This approach has notably

been applied for face recognition [Maet al. 2012,Li et al. 2013,Zhanget al. 2013,Zheng

et al. 2016]. A seemingly unrelated approach, proposed in [Haweet al. 2013, Roemer

et al. 2014], is to learn separable dictionaries which are formed as the Kronecker product

of two smaller terms, i.e.D = D 1 � D 2. This particular structure arises naturally when

treating two-dimensional data, such as images. In this case, the direct and transpose

operators can be obtained directly from the sub-dictionaries, which have much smaller di-

mensions, thus leading to considerable complexity savings. As will be shown in chapter 4,

the Kronecker-product constraint can be formulated as a rank-one constraint, so that the

two approaches (separability and low-rankness) are actually related. [Dantaset al. 2017]

also leveraged this relationship to extend the proposal in [Haweet al. 2013] to a sum of
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Kronecker products, where the number of summing terms provides a trade-o� between

complexity and �exibility.

The separable structure was also proposed for 3-dimensional data, i.e. the Kronecker

product of three termsD = D 1 � D 2 � D 3 [Zubair & Wang 2013,Penget al. 2014], and

even for an arbitrary tensor order [Caiafa & Cichocki 2013,Ghassemiet al. 2017] based on

the Tucker decomposition, a model coined as Tucker Dictionary Learning. In this thesis

(part II), we generalize this model to a sum of Kronecker products of any order, aiming

at multidimensional data of arbitrary order.
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Chapter 2

Optimization tools

In this chapter, we review some useful optimization tools for sparse signal reconstruction.

Two main families of algorithms are explored in sections 2.1 and 2.2, always focusing

on the algorithms which will intervene in the remainder of this document. In section 2.1,

we review algorithms tackling thè 0 problems with a greedy strategy, and, in section 2.2,

convex optimization algorithms tackling the relaxed̀ 1 problems. Other related approaches

are brie�y overviewed in each section, but with no pretension to make an exhaustive list

of the existing methods.

In section 2.3, the Lagrangian duality framework is reviewed and the lasso dual prob-

lem is derived along with its optimality conditions. These concepts will be particularly

useful in part III of this thesis.

2.1 Greedy pursuit

The greedy approach is a long-established algorithmic paradigm which consists in making

locally optimal choices at each stage. In some sense, it renounces to treat the problem as a

whole (usually because it is intractable) to approach it as smaller short-term subproblems.

Naturally, the greedy strategy does not usually lead to a globally optimal solution, but

can make hard problems approachable in practice.

Greedy algorithms have been proposed for addressing the NP-hard problem of �nding

the sparsest solution of an underdetermined system of equations � not only the exact

reconstruction case(P0) but also its inexact counterparts(P �
0) and (P k

0 ). The general

procedure consists in iteratively expanding the support set by adding one (or several)

most promising atom in each step. The column that maximally reduces approximation

error given the current support is chosen at each iteration. We focus on the most prominent

greedy approach for̀ 0 minimization, orthogonal matching pursuit (OMP) and some of its

di�erent possible implementations in section 2.1.1. In section 2.1.2, other greedy pursuit

algorithms are brie�y discussed.

43



Part I, Chapter 2 � Optimization tools

2.1.1 (Orthogonal) Matching Pursuit

Matching pursuit algorithms build the support incrementally. At each iteration, one more

atom is added to the support set of the solution candidatex. We terminate the algorithm

either after a �xed number of iterationsK or when the magnitude of the residualky� Dx k2
2

reaches a speci�ed threshold.

Algorithm 1 Matching Pursuit Algorithms - Pseudocode

1: INPUTS: Input vector y, Dictionary D
2: Initialize: residual as the input vector; solution as zero vector; support as empty set.
3: repeat
4: Select atom : add to support highest correlated atom with current residual.
5: Update solution estimate: Update coe�cients within the support.
6: Update residual : calculate residual w.r.t. current reconstruction.
7: until
8: OUTPUTS: Sparse coe�cient vectorx

Notation A vector x restricted to a support set S (i.e. containing only the entries

indexed by the setS) is denotedxS. Similarly, D S denotes a matrixD restricted to the

columns indexed by the setS, and D S;S a matrix restricted to both columns and lines

indexed by S. The j -th entry of a vector x is denotedx j and the entry in column i and

line j of a matrix D is denotedD i;j . By convention, the unspeci�ed entries of a vector are

assumed to be zero.

Matching pursuit

For compactness, we do not provide the detailed algorithm for Matching Pursuit (MP).

Instead, we provide that of Orthogonal Matching Pursuit in Alg. 2, which is very similar.

The only di�erence is in thesolution updatestep. In Matching pursuit, only the coe�cient

corresponding to the last selected atom is updated. All other coe�cients (from previously

selected atoms) are kept unchanged. This comes down to replacing line 8 in Alg. 2 by:

x k+1 = x k ; xk+1
j ? = xk

j ? + dT
j ? r k=kdj ? k2

2

In Matching pursuit, di�erently from its Orthogonal version, a same atom can be

selected more than once. Also, although being less complex, MP generally leads to less

accurate approximations than OMP.
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2.1. Greedy pursuit

Orthogonal matching pursuit

In Orthogonal Matching Pursuit, the coe�cients of the entire support are recalculated

every time an atom is added (i.e. every iteration). The update corresponds to solving a

least squares problem onx restricted to the current supportS for optimally approximating

y, which gives:xS = D y
Sy, wherey denotes the Moore-Penrose pseudoinverse.

Algorithm 2 x = OMP(D; y)

1: . Initialization
2: r 0 = y; x0 = 0; S0 = support(x 0) = ;; k = 0;
3: while stopping criterion is not met do
4: . Select atom
5: j ? = argmaxj jd T

j r k j=kdj k2

6: Sk+1 = Sk [ fj ?g
7: . Update solution estimate
8: x k+1

Sk +1 = D y
Sk +1 y

9: . Update residual
10: r k+1 = y � D Sk +1 x k+1

Sk +1

11: k = k + 1
12: end while

Select atom (line 5-6 in in Alg. 2) At each iteration, the atom the most correlated with

the current residual is selected. Its index, denotedj ?, is added to the supportS. This

criterion is equivalent to choosing the atom which minimizes the representation error�(j )

when reconstructing the residual. By choosing wisely thej -th coe�cient x j , we have:

�(j ) = min
x j

kx j d j � r k2
2 = krk 2

2 �
(d T

j r )2

kd j k2
2

:

Therefore, j ? = argmin j �(j ) = argmax j jd T
j r j=kdj k2.

Update solution estimate (line 8 in in Alg. 2) This is done by minimizing the ap-

proximation error ky � Dx k2
2 with respect to x, restricting its support to S.

x = argmin
x 0

ky � Dx 0k2
2; s:t: support(x0) = S

() xS = argmin
x 0

S

ky � D Sx0
Sk2

2 = D y
Sy
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Update redidual (line 10 in in Alg. 2) We denoter = y � Dx the residual. Since the

support S is known, we can simply calculater = y � D SxS.

Least Squares via the Cholesky Update

The OMP least squares step can be computed more e�ciently using the Cholesky decom-

position.

De�nition 5 (Cholesky factorization). Let A be a symmetric, positive-de�nite matrix.

There exists a real lower triangular matrixL such thatA = LL T .

We maintain the Cholesky decomposition ofG k = GSk;Sk = D T
Sk D Sk , the Gram matrix

of D restricted to the current support Sk at iteration k. It can be used to solve the LS

equation

xSk = D y
Sk y

() xSk =
�
D T

Sk D Sk

� �1
D T

Sk y

()
�
D T

Sk D Sk

�
xSk = D T

Sk y

() L k(L k)T xSk = D T
Sk y

At each iteration, we need to update the Cholesky decompositionL k ; computeb := D T
Sk y,

solveL ku = b and then solve(L k)T x = u.

The core insight of this acceleration is that one can determine the Cholesky decom-

position of G k+1 from that of G k with little extra computational e�ort. First, note that

G k+1 can be related toG k as follows

G k+1 = D T
Sk +1 D Sk +1 =

2

4
D T

Sk D Sk D T
Sk d j ?

dT
j ? D Sk dT

j ? d j ?

3

5 =

2

4
G k v

vT aj ?

3

5

with v = D T
Sk d j ? , aj ? = dT

j ? d j ? and j ? the index of the atom selected at iterationk + 1.

One can now easily verify that the Cholesky update (L k+1 from L k) is given by:

L k+1 =

2

4
L k 0

wT
q

aj ? � wT w

3

5

wherew is given by solvingL kw = v. For the �rst iteration, L 1 = aj ? is trivial.
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2.1. Greedy pursuit

Algorithm 3 x = OMP-Cholesky(D; y)

1: . Initialization
2: r 0 = y; x0 = 0; S0 = support(x 0) = ;; k = 0;
3: while stopping criterion is not met do
4: . Select atom
5: j ? = argmaxj jd T

j r k j=kdj k2

6: . Cholesky update
7: if k > 0 then
8: w = Solve forw

n
L kw = D T

Sk d j ?

o

9: L k+1 =

"
L k 0
wT

q
aj ? � wT w

#

10: end if
11: Sk+1 = Sk [ fj ?g
12: . Update solution estimate
13: x k+1

Sk +1 = Solve forxSk +1

n
L k+1 (L k+1 )T xSk +1 = D T

Sk +1 y
o

14: . Update residual
15: r k+1 = y � D Sk +1 x k+1

Sk +1

16: k = k + 1
17: end while

Batch OMP

When a large number of signals must be reconstructed using the same dictionary (for

instance, in a Dictionary Learning task), it is worthwhile to consider pre-computation

to reduce the total amount of work involved in coding the entire set. The Batch-OMP

implementation [Rubinstein et al. 2008] follows this approach.1

The key observation is that the atom selection step at each iteration does not require

knowing r or x, but only D T r . The idea is therefore to replace the explicit computation of

r and its multiplication by D T with a lower-cost computation ofD T r . Denoting � = D T r,

� 0 = D T y, GS = D T D S and GS;S = D T
SD S, we can write

� = D T (y � D SD y
Sy)

= � 0 � GSD y
Sy

= � 0 � GS(D T
SD S)�1 D T

Sy

= � 0 � GS(G S;S)�1 � 0
S (2.1)

1. The denomination Batch-OMP proposed by the authors is somewhat misleading. One would expect
several input signalsy to be processed simultaneously (in a batch), which is not the case.
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Part I, Chapter 2 � Optimization tools

This means that given the pre-computed� 0 and G, we can compute� each iteration

without explicitly computing r . The modi�ed update step requires only multiplication

by the matrix GS instead of the complete dictionaryD T . The former is considerably less

costly for small supports. Note that the matrixGS;S can be inverted using the progressive

Cholesky factorization discussed above (GSk ;Sk = G k in the previous notation).

The limitation of this approach is that since the residual is never explicitly computed,

an error-based stopping criterion becomes challenging to employ. Fortunately, this problem

can be circumvented by deriving a similar incremental formula for thè2 residual error

(i.e. krk2
2).

r k+1 = y � Dx k+1

= y � Dx k + Dx k � Dx k+1

= r k + D(x k � x k+1 ) (2.2)

The orthogonalization process in OMP ensures that at each iteration, the residual is

orthogonal to the current signal approximation. We thus have for allk,

(r k)T Dx k = 0: (2.3)

Using expression (2.2) and property (2.3), we obtain after some manipulation the following

recurrence for the squared approximation error:

kr k+1 k2
2 = kr kk2

2 � (x k+1 )T Gx k+1 + (x k)T Gx k (2.4)

The complete algorithm, combined with the Cholesky update, is presented as Al-

gorithm 4. Note that the algorithm becomes simpler when the stopping criterion is

given by a �xed number of iterations. For better readability, we introduce the notations:

� = Gx = GSxS, and � = xT Gx = xT
S � S. Under this notation, the error update is given

by kr k+1 k2
2 = kr kk2

2 � � k+1 + � k .

Note that the computation of � k at each iteration is extremely cheap, as intermediate

variable � has to be computed anyway for the update of�. Therefore, the only added

work in computing � k is the dot product between this vector� and the sparse vectorx k ,

which requires a negligible amount of work. More details concerning the computational

complexities are given below.
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2.1. Greedy pursuit

Algorithm 4 x = Batch-OMP-Cholesky(D; y, G = D T D)

1: . Initialization
2: x0 = 0; S0 = support(x 0) = ;; k = 0; � 0 = D T y; kr 0k2

2 = yT y;
3: while stopping criterion is not met do
4: . Select atom
5: j ? = argmaxj j� j j=

q
Gj;j

6: . Cholesky update
7: if k > 0 then
8: w = Solve forw

n
L kw = GSk ;j ?

o

9: L k+1 =

"
L k 0

wT
q

Gj ?; j ? � wT w

#

10: end if
11: Sk+1 = Sk [ fj ?g
12: . Update solution estimate
13: x k+1

Sk +1 = Solve forxSk +1

n
L k+1 (L k+1 )T xSk +1 = � 0

Sk +1

o

14: . Update �
15: � = GSk +1 xSk +1

16: � = � 0 � �
17: . Update residual norm
18: if error-based stopping criterionthen
19: � k+1 = xT

Sk +1 � Sk +1

20: kr k+1 k2
2 = kr kk2

2 � � k+1 + � k

21: end if
22: k = k + 1
23: end while
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Complexity Analysis

The detailed computational complexities of the di�erent OMP implementations are shown

in Table 2.1. The total results (both per iteration and for a total ofK iterations) have

been slightly simpli�ed for improved readability. We consider the complexity of solving a

k � k lower triangular system of equations (via back-substitution) to bek2.

In OMP-Batch we suppose thatG is pre-computed. Similarly, in OMP-Cholesky we

suppose allaj = dT
j d j to be pre-calculated. Basically, OMP-Batch reduces the iteration

cost by the expense of some extra initialization and memory cost. Namely: a total of2nm

operations for initializing � 0 and 2n for krk2
2.

Sincem > n � k, we can see that the complexities are dominated by the full matrix-

vector products (those that are not restricted to the solution support) with a cost of2nm.

This motivates the study of structured dictionaries (part II), which can mitigate this cost.

Table 2.1 � OMP complexity analysis

Operation OMP Naive OMP Cholesky OMP Batch
Initialization � � 2nm + 2n
Select atom 2nm + 2m 2nm + 2m 2m
Cholesky update � 2nk + k2 k2

Update solution 2n(k2 + k) + k3 + 2k2 2n + 2k2 2k2

Update � � � 2mk + m
Update residual 2nk + n 2nk + n 2k
Total per iteration v 2mn + 2nk2 + k3 v 2mn + 4nk + 3k2 v 2mk + 3k2

Total K iterations 2mnK + nK 3 + K 4 2mnK + 2nK 2 + K 3 2mn + mK 2 + K 3

2.1.2 Other greedy pursuit approaches

Further research has led to more sophisticated pursuit methods than OMP. These tech-

niques rely on several improvements to the basic greedy approaches, which include:

1. selecting multiple atoms per iteration;

2. pruning the set of active atoms at each step;

3. theoretical analysis, e.g. using the Restricted Isometry Property (RIP) [Candes &

Tao 2006] .
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2.2. Convex relaxation

To cite some methods, stagewise orthogonal matching pursuit (StOMP) [Donoho

et al. 2012] selects multiple atoms at each step. The regularized orthogonal matching

pursuit (ROMP) [Needell & Vershynin 2009], [Needell & Vershynin 2010] was the �rst

provide a RIP-based analysis. OMP with replacement (OMPR) [Jainet al. 2011] intro-

duces the idea of pruning the current support. Compressive sampling matching pursuit

(CoSaMP) [Needell & Tropp 2009] assembles all the listed ideas to essentially obtain opti-

mal performance guarantees. A similar algorithm, called subspace pursuit, was proposed

in [Dai & Milenkovic 2009] with equivalent guarantees. CoSaMP is generally faster and

more e�ective than OMP, except perhaps when the number of nonzeros in the repre-

sentation is very small. Compared to the convex optimization approaches presented in

the next section, CoSaMP can be faster but is usually less e�ective (in terms of spar-

sity/reconstruction error tradeo�).

2.2 Convex relaxation

In this section we present some optimization strategies that can tackle sparse representa-

tion problems in the `1 convex relaxation form. We will focus our analysis on �rst-order

proximal gradient approaches (section 2.2.1), and brie�y discuss some other convex ap-

proaches in section 2.2.2.

2.2.1 Proximal algorithms

Let us �rst consider a more general problem of minimizing the sum of two functions:

min
x2R m

fF (x ) := f (x ) + g(x )g : (2.5)

We assume thatf is convex and di�erentiable with a � -Lipschitz continuous gradientrf

with � 2 ]0;+1[ , i.e.,

8(x 1; x2) 2 Rm � Rm ; krf (x 1) � rf (x 2)k2 � � kx1 � x2k2:

We do not suppose thatg is di�erentiable, instead we suppose simply thatg is a lower

semicontinuous convex function [Rockafellar 1970, section 7] fromRm to ] � 1 ; +1] with

domg := fx 2 Rm : g(x ) < +1g 6= ;. Let us denote � 0(Rm ) the space of all such

functions.
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Let us introduce the concept of aproximity operator, an extension of the notion of a

projection operator proposed by [Moreau 1962]:

De�nition 6 (Proximity operator) . Let g 2 � 0(Rm ). For every x 2 Rm and for any

 > 0, the minimization problem

proxg (x ) = argmin
y2R m

g (y ) + 1
2kx � yk2

2

admits a unique solution, which is denoted byproxg (x ). The operator proxg : Rm ! Rm

thus de�ned is the proximity operator ofg .

An important property of the proximity operator is the �rm non-expansiveness:

(8x 1 2 Rm )(8x 2 2 Rm ) (2.6)

k proxg(x 1) � proxg(x 2)k2
2 + k(x 1 � proxg(x 1)) � (x 2 � proxg(x 2))k2

2 � k x1 � x2k2
2:

It can be shown [Combettes & Wajs 2005] that Problem (2.5) admits at least one solu-

tion and that its solutions are characterized by the �xed point equationx = prox g (x �  rf (x )).

This equation suggests an iterative procedure calledproximal gradient algorithm

x k+1 = prox  k g

�
x k �  krf (x k)

�
(2.7)

for values of the step-size parameter k in a suitable bounded interval. It is also referred to

as forward-backward splittingsince it can be broken up into a forward (explicit) gradient

step using the functionf , and a backward (implicit) step using the functiong.

When the function g is a characteristic function (see De�nition 9 below) of a certain

convex and closed subsetA of the domain, i.e.g(x ) = IA (x ), the proximal step reduces to

a projection overA and the proximal gradient algorithm in (2.7) reduces to theprojected

gradient algorithm.

Step-size Two main strategies that ensure convergence are used in practice. Basically,

they both provide su�cient condition for the algorithm to produce a nonincreasing se-

quence of function valuesF (x k) (we refer the reader to [Beck & Teboulle 2009] [Beck 2017,

section 10.4.2] for the technical details, skipped here for conciseness).

ˆ Constant step : Choose, for allk,  k =  2 ]0;2=� ]. Recall that � is the Lischitz

constant associated torf .

52



2.2. Convex relaxation

ˆ Backtracking : At iteration k the choice of k goes by: starting with a relatively

large estimate of the step size and iteratively shrinking it (i.e., �backtracking�) until

a decrease of the objective function is observed that adequately corresponds to the

expected decrease (related to the gradient magnitude at that point)2. The goal is

to obtain a constant  k satisfying:

f (x k+1 ) � f (x k) + hrf (x k); x k+1 � x k i +
1

2 k
kx k+1 � x kk2

2: (2.8)

where x k+1 is obtained from x k using (2.7). While (2.8) is not satis�ed, we set

 k = � k with a shrinkage factor� < 1, and repeat.

Convergence rates and Nesterov acceleration The proximal gradient algorithm,

with both the described step-size strategies, has a rate of convergenceO(1=k) for the

objective function. That is, after k iterations F (x k) � F (x ?) � C=k for some positive

constant C and a solutionx? � see, for instance, [Beck 2017, theorem 10.21].

In the smooth setting (i.e. for g(x ) � 0) a gradient method with convergence rate of

O(1=k2) has been proposed by [Nesterov 1983]. This convergence rate can be shown to be

optimal for a �rst order method [Nemirovsky & Yudin 1983]. The remarkable fact is that

the accelerated method demands roughly the same computational e�ort as the traditional

gradient method (namely, one single gradient evaluation per iteration). The acceleration

only requires the memorization of one extra solution iterate (not only the last estimate

but also the previous one) and the computation of an additional pointzk that is smartly

chosen and easy to compute. First we de�ne the following sequences3:

t0 = 0; tk+1 =
1 +

q
1 + 4t2

k

2
: (2.9)

2. Backtracking line search for proximal gradient descent is similar to gradient descent but operates
only on f , the smooth part of F . The �rm non-expansiveness property of the proximity operator (see
equation (2.6)) is crucial for this extension to the proximal gradient case.

3. Sequence (2.9) is just one example of suitable sequence, the one originally proposed in [Nes-
terov 1983]. A suitable sequence is one for whichfF (x k )gk2N converges toF (x ?) in the same O(1=k2)
rate. Actually, one can choose for instance any sequenceft k gk �0 satisfying for all k � 0: (a) tk � k+2

2 ;
(b) t2

k+1 � tk+1 � t2
k (see [Beck 2017, section 10.7.2]). Also, weak convergence has been shown [Chambolle

& Dossal 2015] for any sequencetk = k+a�1
a with a > 2.
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Part I, Chapter 2 � Optimization tools

Now the algorithm is simply de�ned by the following equations, with an arbitrary initial

point x0 = z0,

x k+1 = zk +  kD T (y � Dz k)

zk+1 = x k+1 +

 
tk � 1
tk+1

!

(x k+1 � x k)

Informally, Nesterov's Accelerated Gradient Descent performs a regular gradient step to

go from zk to x k+1 , and then it �slides� a little further than x k+1 in the direction given

by the previous point x k .

This approach extends naturally to the proximal gradient setting by simply adding the

proximal step on top of the accelerated gradient procedure (see Algorithm 6 for an

example). The convergence rate ofO(1=k2) is also obtained in this case � see, for in-

stance, [Beck 2017, theorem 10.34]).

Iterative Shrinkage-Thresholding algorithm

Applying the proximal gradient approach to the`1-regularized least-squares problem(P �
1 ),

we obtain the classic Iterative Shrinkage-Thresholding Algorithm (ISTA) [Daubechies

et al. 2004]. Using the previous notations we have:

f (x ) = 1
2ky � Dx k2

2; g(x ) = �kx k1 (2.10)

f is smooth with

rf (x ) = D T (Dx � y) (2.11)

which is � -Lipschitz continuous, with � = kD T Dk and k � k denotes the matrix spectral

norm given by the highest singular value. Also, the proximity operator associated to the

`1-norm is given by the soft-thresholding operation denotedST and de�ned coordinate-

wise as follows

�
prox�k�k 1

(x )
�

i
= sign(x i ) � max(0; jx i j � �) =

�
ST� (x )

�

i
(2.12)
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2.2. Convex relaxation

ISTA can be compactly described as follows for step-size of k at iteration k.

x k+1 = ST  k �

�
x k +  kD T (y � Dx k)

�
(2.13)

A detailed description is given in Algorithm 5.

Algorithm 5 x = ISTA(D; y)

1: Fix x0 2 Rm

2: while stopping criterion is not met do
3: Choose step size k

4: . Proximal gradient step
5: x k+1 = ST  k �

�
x k +  kD T (y � Dx k)

�

6: k = k + 1
7: end while

Fast Iterative Shrinkage-Thresholding algorithm

Applying the Nesterov acceleration to the ISTA algorithm leads to its fast variant FISTA

[Beck & Teboulle 2009], which is described in Algorithm 6. The main di�erence with

respect to the ISTA is that the proximal gradient step is not employed on the previous

iterate x k , but rather on the intermediate variablezk which consists of a very speci�c

linear combination of the previous two iteratesfx k ; x k�1 g. This simple modi�cation allows

to achieve faster convergence guarantees with some minor computational and memory

overhead � two previous iterates have to be kept in memory instead of one.

Algorithm 6 x = FISTA(D; y)

1: Fix x0 2 Rm ; Set z0 = x0; k = 0; t0 = 0;
2: while stopping criterion is not met do
3: Choose step size k

4: . Proximal gradient step
5: x k+1 = ST  k �

�
zk +  kD T (y � Dz k)

�

6: . Update intermediate variable

7: tk+1 =
1+

p
1+4t 2

k
2

8: zk+1 = x k+1 +
�

tk �1
tk +1

�
(x k+1 � x k)

9: k = k + 1
10: end while
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Convergence rate While ISTA has a convergence rate ofO(1=k), its improved variant

FISTA attains a convergence rate ofO(1=k2) [Beck & Teboulle 2009], under the same

conditions on step-size k discussed in subsection 2.2.1.

Other proximal gradient algorithms for the lasso Several variations of proximal

gradient algorithms have been proposed for the lasso. They can di�er from ISTA and

FISTA in several points, but in the end they are very similar in spirit and the theoretical

basis remain the same. For instance in SpaRSA [Wrightet al. 2009] the step-size is chosen

by applying the so-called Brazilai-Borwein rule. TwIST [Bioucas-Dias & Figueiredo 2007],

like FISTA, combines two previous iterates to accelerate the convergence, but in a slightly

di�erent way. Similarly, [Chambolle & Pock 2011] use a primal-dual framework to derive

an algorithm comparable to FISTA but with di�erent rules for updating the intermediate

variables and stepsize. See [Bonnefoyet al. 2015, Table I] for a summary of the update

steps in the mentioned algorithms.

Complexity analysis

The detailed computational complexities are shown in Table 2.2. Similarly to the OMP-like

algorithms in section 2.1.1, the computational complexities are dominated by the matrix-

vector operations involving the dictionary matrix. This is the case in both ISTA and

FISTA. The requested additional computation for latter in the update of the intermediate

variable z is clearly marginal.

Table 2.2 � (F)ISTA complexity analysis

Operation ISTA FISTA
Gradient step 4nm + m + n 4nm + m + n
Proximal step 3m 3m
Update zk � 3n
Total per iteration 4mn + 4m + n 4mn + 4m + 4n

2.2.2 Other convex approaches

Linear programming and Interior-point methods

Some of the earliest approaches to solve`1-minimization problems were proposed in [Chen

et al. 1998]. The authors exploit the fact that the(P1) problem (equality-constrained`1-
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2.2. Convex relaxation

Figure 2.1 � Lasso coe�cients (colored lines) as a function of the regularization penalty
�. Between two breakpoint (dashed lines) each coe�cient is given by a linear function.
Source: scikit-learn.org

minimization problem) can be cast as a linear programming (LP) problem to solve it

using classic simplex methods, interior-point methods.

The `1-regularized least-squares problem(P �
1 ), in turn, can be cast as a quadratic

programming (QP) problem which can also be tackled by interior-point methods [Chen

et al. 1998] [Kim et al. 2007]. In general, interior-point methods are not competitive with

the proximal gradient methods of section 2.2.1 on problems with very sparse solutions. On

the other hand, their performance is insensitive to the sparsity of the solution or the value

of the regularization parameter, which can make them interesting in speci�c scenarios.

Homotopy methods

Homotopy methods [Osborneet al. 2000] solve the lasso problem for all possible regu-

larization values at once (also called the lasso path), for a �xed dictionary and input

signal. A key observation is that, as the regularization penalty decreases, new atoms are

progressively added to the solution which becomes less and less sparse �even if some atom

removal may also occur. Actually, by inspecting the solution coe�cientsx i as a function

of the regularization �, one observes a piecewise linear behavior as illustrated in �gure

2.1. The task, thus, comes down to characterizing the breakpoints � i.e. when and which

atom has to enter or leave the support.
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The most prominent method of this type is the least-angle regression algorithm (LARS)

[Efron et al. 2004], which is quite competitive when the goal is to characterize a full reg-

ularization path. It starts with the highest possible regularization (such that the solution

is trivially the all-zeros vector) � = kD T yk1 and then progressively reduces� while test-

ing if an atom has to be added to or removed from the support. The next breakpoint is

thus identi�ed and the solution coe�cients are recalculated for the new support (which

is enough to completely characterize the coe�cients behavior since the last breakpoint,

due to the mentioned linearity). There are two necessary conditions for this algorithm to

work properly, which can also be an obstacle sometimes: (i) one single event can happen

at each breakpoint, either one single atom enters or leaves the supportS, (ii) D T
SD S has

to be invertible for all supports throughout the lasso path, which is actually a su�cient

condition for unicity of the solution. LARS can therefore be inapplicable in some cases.

In addition, numerical precision issues can easily harm its performance when conditions

(i) or (ii) are barely satis�ed (i.e. two very close events or an ill-conditionedD T
SD S).

Active set methods

This set of algorithms comes as complement to the previously described solvers, since the

proposed strategy can be combined to almost any existing lasso solver.

The active set methods (also called working sets) [Kim & Park 2010,Kowalskiet al. 2011,

Loth 2011,Johnson & Guestrin 2015] decompose the original problem into several smaller

sub-problems �restricted to a subset of the atoms, the active set. Then, if the optimality

conditions (see section 2.3.4) are not veri�ed, the support is increased by including more

promising atoms. Usually, the atoms the more correlated to the residual are chosen.

The motivation of such methods is that each sub-problem can be more readily solved

(using any existing lasso solver) and, as such, one hopes to accelerate the resolution of

the initial problem.

This type of correlation-based criterion is heuristic and does not guarantee to select

the exact support at a given step. The choice of an e�cient heuristic is, therefore, crucial

to the success of this type of strategy.

(Block) Coordinate Descent

Coordinate (or block coordinate) descent (BCD) is a quite general and e�cient optimiza-

tion strategy, which consist in optimizing with respect to one coordinate (or a block of

coordinates) at a time and looping until convergence. The interest of this type of method
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is the considerably low cost of each individual minimization, both in terms of compu-

tational and memory requirements. Some paralelization can also envisioned [Fercoq &

Richtárik 2015]. This strategy is particularly useful when the dictionaries are not associ-

ated to a fast implicit operator (e.g. FFT, wavelets) but rather given by explicit matrices.

In the context of sparse regression problem, (block) coordinate descent has been �rst

suggested by [Fu 1998] and has since had a great success especially in the statistical

machine learning community [Tseng 2001] [Friedmanet al. 2007] [Wu & Lange 2008]

[Shalev-Shwartz & Zhang 2016]. Di�erent BCD strategies exist depending on how one

iterates over coordinates: it can be a cyclic rule as used by [Friedmanet al. 2007], random

[Shalev-Shwartz & Zhang 2016], or greedy (meaning that the updated coordinate is the one

leading to the best improvement on the objective or on a surrogate) [Wu & Lange 2008].

The latter rule, recently studied by [Tseng & Yun 2008] [Nutiniet al. 2015] is historically

known as the Gauss-Southwell (GS) rule [Southwell 1940].

2.3 Duality

In this section, after introducing some basic de�nitions, we review the Lagrangian dual-

ity framework (subsection 2.3.1) and the optimality conditions (subsection 2.3.2). These

concepts are then applied to the lasso problem in subsections 2.3.3 and 2.3.4.

Preliminary de�nitions and notations

In constrained optimization problems, it is useful to de�ne cost functions with value+1

outside the feasible region. For allf : Rn ! R [ f +1g, the domain of f , denoted by

domf , is the set of pointsx such that f (x ) < +1, i.e domf := fx 2 Rn : f (x ) < +1g.

De�nition 7 (Proper function). A function f is calledproper if domf 6=; (i.e f 6� +1)

and if f never takes the value�1.

Throughout this section, we consider only proper functionsf : Rn ! (�1; +1].

Other useful de�nitions:

De�nition 8 (Convex function). A function f : Rn ! (�1; +1] is convex ifdomf is

a convex set and if for allx ; y 2 domf , and 0 � � � 1, we have

f (� x + (1 � � )y ) � �f (x ) + (1 � � )f (y ):
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De�nition 9 (Characteristic function). The in�nite indicator function (or characteristic

function) IA : Rn ! (�1; +1] is de�ned as follows for a subsetA of a domainX :

IA (u ) :=

8
><

>:

0; u 2 A;

+1; u =2 A;
(2.14)

De�nition 10 (Elementwise comparison). For x; y 2 Rn , we write x � y if 8i 2

f1; : : : ; ng; x i � yi . We de�ne x � y analogously.

De�nition 11 (A�ne hull). The a�ne hull, a�( A), of a set A � Rn is the smallest a�ne

set containingA or, equivalently, the set of all a�ne combinations of elements ofA.

De�nition 12 (Relative interior). Denoting B(x ; �) a ball of radius� centered onx, the

relative interior of a set A, denotedrelint( A), is de�ned as:

relint( A) := fx 2 A : 9� > 0; B(x ; �) \ a�( A) � Ag:

Let us now introduce an important concept which generalizes the gradient for non-

smooth functions. Informally, the subgradient of a function is the usual gradient, except

at non-regular points. There, the subgradient is any slope that lies �under� the function.

The set of all such slopes is called the subdi�erential.

De�nition 13 (Subgradient and subdi�erential). Consider f : Rn ! R. We call g 2 Rn

a subgradient off at a point x 2 domf if:

8z 2 domf; f (z) � f (x ) + hg; z � x i

The subdi�erential @f(x ) of f at x is the set of all subsubgradients off at x.

Remark 1. This is a global de�nition compared to the gradient which is local.

Property 1. Let f : Rn ! (�1; 1] be a convex function, di�erentiable atx. Then,

@f(x ) = frf (x )g.

Unconstrained optimality conditions A point x 2 Rn is called a minimizer of a

function f : Rn ! R if f (x ) � f (y ); 8y 2 domf . The set of minimizers off is denoted

argminf .
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Theorem 5 (Fermat's rule). Consider a convex functionf , then

x 2 argminf () 0 2 @f(x )

Proof. x 2 argminf () 8y ; f (y ) � f (x ) + h0;y � x i () 0 2 @f(x )

2.3.1 Lagrangian Duality

Primal Problem

We consider the following optimization problem,

min
x2dom P

f (x ) s.t.

8
><

>:

gi (x ) � 0 8i = 1 : : : q

hj (x ) = 0 8j = 1 : : : p
(P )

In the sequel, we refer togi as theinequality constraintswhile we refer tohj as theequality

constraints. The problem (P) is often referred to as theprimal problem(the dual problem

will be de�ned later). We supposeP to be a convex problem, which means

ˆ f and gi (8i = 1 : : : q) are convex functions.

ˆ hj (8j = 1 : : : p) are a�ne functions; i.e. hj (x ) = aT
j x � b i .

The domain domP , domf \ q
i=1 domgi \ p

j =1 domhj � Rn is a convex set as it is an

intersection of convex sets. Theprimal feasible setis a (convex4) subset of the domain in

which all the contraints are satis�ed. We assume this set to be non-empty.

De�nition 14 (Feasible primal). A point x 2 Rn is said to be feasible for problem(P ) if

(1) x 2 D ; (2) gi (x ) � 0 for all i = 1 : : : q; (3) hj (x ) = 0 for all j = 1 : : : p.

The primal optimal value p? 2 [�1; +1) associated to (P) is the in�mum of f (x )

over the feasible set. Aprimal solution x? is a feasible primal point such thatp? = f (x ?).

Note that p? might be attained by multiple (even in�nitely many) x?. Also, there is no

guarantee about the existence of a primal solution, i.e. that the primal value be attained.

4. The feasible set is also an intersection of convex sets:domP is convex; the constraints gi de�ne
sublevel setsfx j gi (x ) � 0g of convex functions, which are convex sets; and the constraintshj de�ne
hyperplanesfx j aT

i x = b i g.
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Remark [Equivalent formulations] Problem (P) could be equivalently formulated with

only inequality constraints. Indeed, each equality constrainthj (x ) = 0 could be rewritten

as a pair of inqualitieshj (x ) � 0 and �h j (x ) � 0.

Similarly, (P ) could be rewritten as an unconstrained problem, using the characteristic

function IA (�) introduced earlier, which gives:minx2R n f (x )+
P q

i=1 Igi (x)�0 +
P p

j =1 Ih j (x)=0 .

We will, however, stick with our initial formulation.

Lagrangian

De�nition 15 (Lagrangian). We de�ne the Lagrangian associated with the problem(P )

as the functionL : domP � Rq
+ � Rp ! R such that

L(x ; �; � ) = f (x ) +
qX

i=1

� i gi (x ) +
pX

j =1

� j hj (x ); (2.15)

where�; � are referred to asdual variables.

Interpretation of the Lagrangian. Consider the unconstrained version of problem

(P ) using characteristic functions:

min
x2R n

ef (x ); with ef (x ) = f (x ) +
qX

i=1

Igi �0 (x ) +
pX

j =1

Ih i =0 (x ) (2.16)

The Lagrangian function now appears as a relaxed version ofef (x ) where the indicatorsI

have been linearized. [Boyd & Vandenberghe 2004] quali�es these indicators functions as

�in�nitely hard� displeasure function, while the linearized version is said �soft�.

Lagrange dual function

De�nition 16 (Lagrange dual function). Given a couple of dual variables� 2 Rq
+ ; � 2

Rp, the Lagrange dual function D : Rq � Rp ! R is de�ned as the in�mum of the

Lagrangian:

D(�; � ) = inf
x2D

L(x ; �; � ): (2.17)

We have the following property [Boyd & Vandenberghe 2004, section 5.1.2]

Property 2. The Lagrange dual functionD is concave, even if problem(P ) is not convex.
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Proof. Let � 1; � 2 2 Rq, � 1; � 2 2 Rp and t 2 [0; 1]. De�ne � 2 Rq, � 2 Rp such that

(�; � ) = t(� 1; � 1) + (1 � t)(� 2; � 2). We have

D(�; � ) = inf
x2D

L(x ; �; � )

by linearity of L w.r.t. � and � , we obtain

= inf
x2D

tL(x ; � 1; � 1) + (1 � t)L(x ; � 2; � 2)

� inf
x2D

tL(x ; � 1; � 1) + inf
x2D

(1 � t)L(x ; � 2; � 2)

= tD (� 1; � 1) + (1 � t)D (� 2; � 2); (2.18)

which concludes the proof.

The dual function provides lower bounds on the optimal valuep? of the primal problem

(P ). This property is called weak duality.

Property 3 (Weak duality). For any � 2 Rq
+ ; � 2 Rp, we have

D(�; � ) � p?: (2.19)

Proof. Let x0 be a feasible point (see De�nition 14) for problem (P). We have:

L(x 0; �; � ) = f (x 0) +
qX

i=1

� i
|{z}
�0

gi (x 0)
| {z }

�0

+
pX

j =1

� j hj (x 0)
| {z }

=0

Then
P q

i=1 � i gi (x 0) +
P p

j =1 � j hj (x 0) � 0 so

L(x 0; �; � ) � f (x 0): (2.20)

Hence

D(�; � ) = inf
x2D

L(x ; �; � ) � L (x 0; �; � ) � f (x 0): (2.21)

Since this holds for any feasiblex0, taking the in�mum over x0 we obtain (2.19).

Lagrange dual problem

As stated in property 3, the Lagrange dual function gives a lower bound on the optimal

value of the problem (P). A natural question is thereforeWhat is the best lower bound?

This leads to the de�nition of the following optimization problem.
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De�nition 17 (Lagrange dual problem).

d? = max
��0;�

D(�; � ) (D)

Property 4. The dual problem(D) is convex (even if(P ) is not).

A pair (�; � ) is calleddual feasiblewhen� � 0 and D(�; � ) > �1. We denote d? 2 R

the dual optimal valueassociated to (D). We refer to (� ?; � ?) as dual optimal if they are

dual feasible and reach the optimal valued? = D(� ?; � ?).

2.3.2 Optimality conditions

Strong duality

In the general case, using the weak duality property, one can check thatd? � p?. Strong

duality refers to pairs of primal-dual problems for whichd? = p?.

When strong duality holds, it is therefore su�cient to solve the dual problem (which

is convex) to obtain the solution to the primal problem (which may not be convex).

The fact that strong duality allows to solve a formally simpler problem than the primal

optimization problem is one of the main argument for using optimization algorithms in

the dual space, such as dual ascent, ADMM and such.

Slater's constraint quali�cation

A natural question to ask: are there veri�able conditions on the primal problem, so that

it is guaranteed that strong duality holds? A family of such conditions is referred to as

Slater's constraint quali�cation, designed for convex primal problems.

Theorem 6 (Slater's conditions). Given a primal problem(P ), if

ˆ Problem (P ) is convex.

ˆ 9x 2 relint(dom P) such that

8i; gi (x ) < 0 (2.22)

8j; h j (x ) = 0 (2.23)

then strong duality holds. In addition, the dual optimal value is attained, i.e., there exists

a dual feasible pair(� ?; � ?) with D(� ?; � ?) = d? = p?.
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Slater's constraint quali�cation can be understood as �if there exist astrictly feasible

point in the interior of the domain domP, then strong duality holds�. Note that the

inequality constraints have to be strictly satis�ed.

Duality gap and Dual certi�cates

Because of the weak duality, if a feasible pair of dual variables(�; � ) is exhibited, then

D(�; � ) provides a lower bound onp?. This pair can therefore be used tocertify the

optimality of a solution candidate x.

De�nition 18. A pair (�; � ) is a dual certi�cate of p? i�

(�; � ) 2 domD (2.24)

Note that for any x and given a dual certi�cate (�; � ),

0 � f (x) � p? � f (x ) � D(�; � ) =: � (2.25)

Here, we can say, without knowing the true value ofp?, that f (x ) is �-suboptimal. The

quantity f (x ) � D(�; � ) is referred as theduality gap and can be used to as stopping

criterion in primal-dual algorithms, where dual certi�cates are computed at each iteration.

If strong duality holds, the duality gap becomes even more interesting, as it can be made

arbitrarily small.

Complementary slackness

Let (x ?; � ?; � ?) be an admissible tuple such thatf (x ?) = D(� ?; � ?) (i.e. strong duality

holds). Under such conditions, we have the following properties:

Property 5. inf x L(x ; � ?; � ?) = L(x ?; � ?; � ?), i.e. x? is a minimizer of the Lagrangian

function taken at optimal dual variables.

Property 6 (Complementary Slackness).� ?
i gi (x ?) = 0; 8i = 1; : : : ; q:
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Proof. A proof is obtained by studying the following (trivial) inequalities.

f (x ?) = D(� ?; � ?) (2.26)

= inf
x

f (x ) +
X

i

� ?
i gi (x ) +

X

j

� ?
j hj (x ) (2.27)

� f (x ?) +
X

i

� ?
i gi (x ?) +

X

j

� ?
j hj (x ?) (2.28)

� f (x ?) (2.29)

which means that both inequalities are actually equalities. The �rst inequality implies

that that x? minimizesL(x ; � ?; � ?). The second inequality implies that

X

i

� ?
i gi (x ?) = 0 (2.30)

And since each term in this sum is nonpositive, we have that� ?
i gi (x ?) = 0; 8i.

Complementary slackness states that when strong duality holds, at a minimizer of the

primal problem and a maximizer of a dual problem, the constraints are either active with

a null Lagrange multiplier, or the constraints are inactive with a positive multiplier.

� ?
i > 0 =) gi (x ?) = 0 or, equivalently, gi (x ?) < 0 =) � ?

i = 0 (2.31)

Karush-Kuhn-Tucker (KKT) optimality conditions

In a convex problem, the KKT conditions are a set of su�cient conditions for optimality.

If, in addition, strong duality holds, then the KKT conditions become also necessary and

provide a mean to assess the optimality of a triplet of variables(x ; �; � ). Basically, the

KKT conditions group up feasibility, complementary slackness and the annulation of the

gradient at the optimum � or the analogue condition on the subgradient iff; g i ; hi are not

di�erentiable, which is the Fermat's rule.

66



2.3. Duality

Theorem 7 (KKT Conditions) . Denote as KKT conditions the following set of equations:

8i; gi (x ) � 0 (KKT.1)

8j; h j (x ) = 0 (KKT.2)

8i; � i � 0 (KKT.3)

8i; � i gi (x ) = 0 (KKT.4)

0 2 @x L(x ; �; � ): (KKT.5)

If the primal problem is convex, any tuple(x ; �; � ) that satis�es the KKT conditions is

solution to the primal and dual problems. Reciprocally, if strong duality holds, any solution

(x ?; � ?; � ?) of the primal and dual problems must satisfy the KKT conditions.

Necessity and su�ciency In whole generality, KKT conditions are not always neces-

sary nor su�cient. However, we have the following implications:

ˆ Convexity of the primal problem ) su�ciency of KKT.

ˆ (Slater's conditions)) Strong duality ) necessity of KKT, regardless of convexity.

Note that in (KKT.5) a more general condition on the subgradient was used. In the

simpler case whenf; g i ; hi are di�erentiable, this condition becomes

r x L(x ; �; � ) = 0 : (KKT.5')

2.3.3 Lasso dual

In this subsection we apply the previous concepts to derive the dual of the lasso problem.

Let us recall the lasso problem, for an observationy 2 Rn and a dictionary D 2 Rn�m :

min
x2R m

1
2ky � Dx k2

2 + �kx k1 (P �
1 )

As a foreword, let us pose an important property of problem (P �
1 ).

Property 7. Strong duality holds for the lasso problem.

Proof. The cost function is convex, and there are no inequality constraints. Therefore,

Slater's conditions are trivially satis�ed.
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Since there are no constraints in (P �
1 ), a simple trick is needed for deriving the lasso

dual with the usual Lagrangian framework. An equality constraint can be arti�cially

created via the introduction of a new variable:

min
x;z

1
2ky � zk2

2 + �kx k1 s.t. z = Dx (P lasso)

We can now easily derive the Lagrangian function

L(x ; z; � ) = 1
2ky � zk2

2 + �kx k1 + � T (z � Dx ): (2.32)

The dual function is given by:

D(� ) = min
x;z

L(x ; z; � ) (2.33)

After some calculation (postponed to Appendix A.1), the following closed form solution

is obtained for the Dual function:

D(� ) =

8
><

>:

1
2 (ky k2

2 � ky � � k2
2) if kD T �

� k1 � 1

�1
(2.34)

Lasso dual problem This yields the following dual problemmax� D(� ):

max
�

1
2

�
kyk2

2 � ky � � k2
2

�
s.t. kD T �

� k1 � 1: (D lasso)

For convenience, one may set� , �
� , which yields:

max
�

1
2

�

kyk2
2 � � 2k

y
�

� � k2
2

�

s.t. kD T � k1 � 1: (2.35)

Note that (2.35) is a projection problem. Indeed, we are trying to �nd� in the feasible

set kD T � k1 � 1 which minimizes the distance toy=�. Therefore, the solution � ? is the

projection of y=� on the feasible setkD T � k1 � 1.

This is illustrated on �gure 2.2. The constraint kD T � k1 � 1 can be interpreted as a

set of m constraints, one for each atom of the dictionary. Each of those leads to a pair of

linear boundaries on the constraint set.
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Figure 2.2 � Lasso dual problem as a projection problem withn = 2, m = 3 (� 2 R2,
D 2 R2�3 ). Each atom leads to a pair of linear boundaries on the feasible region (in gray).

Figure 2.3 � All points lying in the blue zones are
projected onto one of the corners of the polytope
(which implies a primal solution with two non-
zero entries). The remaining points, lying in the
white stripes, are projected onto an edge (imply-
ing 1-sparse primal solutions). The further we get
from the center of the polytope, the more consider-
able the blue area becomes (compared to the white
area). Note how the outer circle crosses more blue,
proportionally (in radians), than the inner circle.

Discussion As a projection problem, its solution will typically lie in the boundary of

the feasible set (except for the trivial case ofy=� lying inside the feasible region, in which

case the primal solution is the zero vector). The atoms associated to saturated constraints,

i.e. the borders which are touched by the dual solution, are those associated to nonzero

coe�cients in a primal solution. Another intuition can be drawn from this problem when

varying the regularization parameter �: as � gets smaller,y=� gets further from the

polytope de�ned by the constraints. The further y=� lies from the polytope, the higher

the chance that its projection lies in a corner (intersection between two atom constraints)

rather than in a simple edge, as illustrated in Figure 2.3. This goes in line with the fact

that weaker regularizations leads to less sparse solutions. Naturally, this analysis is quite

limited in R2, since we only have edges and corners (respectively corresponding to 1-sparse

and 2-sparse solutions). In higher dimensions, more possibilities arise. For instance, inR3

we have faces, edges and corners (respectively associated to 1, 2 and 3-sparse solutions).
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2.3.4 Lasso optimality conditions

The optimality conditions of the lasso can be obtained in di�erent ways. Here, we will

show two ways of doing so.

The �rst one (in subsectionFermat's rule) is more straight-forward and simply applies

the Fermat's rule, which provides necessary and su�cient optimality conditions for convex

non-di�erentiable unconstrained problems (such as the lasso).

The second one (in subsectionKKT conditions) uses the KKT conditions within the

primal-dual framework discussed so far. Although it leads to a more convoluted derivation,

it also provides some additional insights which will be useful for obtaining dual certi�cates

and calculating duality gaps, as well as for the screening tests in part III of this thesis.

Fermat's rule

Fermat's rule for the lasso gives:

0 2 @x ( 1
2ky � Dx k2

2 + �kx k1)

() 1
� D T (y � Dx ) 2 @x kxk1: (2.36)

The subdi�erential of the `1 norm is fairly easy to calculate. We can, for instance,

exploit its separability to reason coordinate-wise'(x ) = kxk1 =
P

i jx i j =
P

i ' i (x i ). We

use the subdi�erential of the absolute value scalar function

@'i (x i ) 2

8
>>>><

>>>>:

[�1; 1] if x i = 0

f1g if x i > 0

f�1g if x i < 0

: (2.37)

Fermat's rule thus becomes:

d i
T (y � Dx )

�
=

8
><

>:

sign(x i ) if x i 6= 0

2 [�1; 1] otherwise
(2.38)

whered i is the i-th column of the matrix D.
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KKT conditions

Let us now write the KKT conditions for the lasso, considering the primal and dual

problems (Plasso) and (D lasso).

ˆ (KKT.1) (inequality constraints must be satis�ed) does not apply here.

ˆ (KKT.2) (equality contraints must be satis�ed) gives z = Dx .

ˆ (KKT.3) (lagrangian multipliers � i related to inequality constraints must be non-

negative) does not apply.

ˆ (KKT.4) (complementary slackness) does not apply.

ˆ (KKT.5) (stationarity conditions, i.e. gradients vanish) see below.

The last KKT condition reads

r zL(x ; z; � ) = 0 (2.39a)

0 2 @x L(x ; z; � ): (2.39b)

Eq. (2.39a) simply givesz = y � � .

In Eq. (2.39b) we used the subdi�erential since thè1 norm is not di�erentiable. By

reasoning similarly to equation (2.38) in the previous subsection, we obtain:

d i
T �

�
=

8
><

>:

sign(x i ) if x i 6= 0

2 [�1; 1] otherwise:
(2.40)

Summary Using the notation � = �
� .

d i
T � =

8
><

>:

sign(x i ) if x i 6= 0

2 [�1; 1] otherwise:
(2.41)

Finally, combining (KKT.2) and (2.39a) we obtain the following relation between the

primal x and dual � variables at the optimum:

�� = y � Dx : (2.42)
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Trivial lasso solution

In view of the dual problem (2.35), it is now easy to notice that if� > kD T yk1 , then the

zero vector is the unique lasso primal solution, i.e.x? = 0. Indeed, under such conditions,

y=� lies inside the dual feasible set and the projection problem is trivially solved, with

solution � ? = y=�. From the optimality conditions (2.41) we obtain for every atom d i ,

dT
i � ? = d T

i y
� � kD T yk 1

� < 1 , which implies that all entries x i = 0.

Dual certi�cates

If we are able to map a primal estimatex to a dual feasible� , we can calculate theduality

gap f (x ) � D(� ), which provides an optimality bound for x (i.e. how far f (x ) is from

f (x ?)). In addition, since strong duality holds for the lasso, the duality gap tends to zero

as the primal-dual pair converge to the optimal(x ?; � ?).

Now, how can we exhibit a feasible dual point for the lasso problem?

Proposition 1 (Dual scaling).

8z 2 Rm n f0g; � =
z

kD T zk1
(2.43)

is always dual feasible.

Proof. By construction kD T � k1 = 1. Recall that here a feasible dual variable needs to

satisfy the set constraint in (2.35),kD T � k1 � 1.

So, given a solution estimatex, we can calculate a dual feasible� by taking z = y � Dx

in (2.43). This dual point � is interesting because it can be shown that asx ! x?, it also

converges to the optimal� ! � ?. Indeed, from (2.41) and (2.42), we know respectively

that � = kD T (y � Dx ?)k1 and � ? = ( y � Dx ?)=�.
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Tensor formalism

There are many ways to de�ne a tensor. Probably the simplest one is to see it as a

multiway array of data, as usually done in the data science community. Although this

de�nition doesn't quite capture the entire complexity and generality of tensors, it has the

advantage of providing an immediate visualization of the concept. For instance, let us

de�ne a three-way array (the extension to a higher number of ways is straightforward).

De�nition 19. (Multidimensional array) A three way array A of sizeI 1 � I 2 � I 3 is an

element of the �nite-dimensional real vector spaceRI 1 �I 2 �I 3 . It is uniquely de�ned by the

set of its coordinatesA i 1 ;i 2 ;i 3 where1 � i 1 � I 1, 1 � i 2 � I 2 and 1 � i 3 � I 3.

In this interpretation, tensors are a generalization of vectors and matrices to a higher

order. But in a more general way, tensors can be seen as a generalization of linear maps.

In this setting, a tensor is identi�ed to a multilinear map from vector spaces to a resulting

vector space [Landsberg 2012, Section 2.3]. This is a basis-independent de�nition, which

embodies a more general class of objects than �nite-dimensional arrays. In the same way

as linear maps are more general than matrices, tensors are more general than multiway

arrays. In the case of �nite-dimensional real vector spaces with �xed bases, just like linear

maps can be represented by matrices, tensors can be represented by arrays of numerical

values � or coordinates � related to the speci�c bases.

Figure 3.1 � Exemples of one, two and three-dimensional arrays.
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Foreword: Having mentioned this more general view, it is important to emphasize that

the multiway-array interpretation is su�cient for understanding most of the concepts and

tools evoked in this thesis (except maybe the tensor product). In section 3.2.3 we provide

another general de�nition of tensors based on the tensor product. But, in practice, we will

deal with �nite real multi-way arrays. For further readings on multiway array processing

we refer the reader to [Bro 1998] [Kolda & Bader 2009] and for a more in-depth algebraic

approach on tensors we refer the reader to [Hackbusch 2012] [Schwartz 1975].

3.1 Array manipulation

The concepts and operations de�ned in this section are much easier to understand with

examples. We will often consider a generic multiway array as an illustration:

T 2 RI 1 �I 2 �����I N with entries Ti 1 ;i 2 ;:::;i N ; i1 2 f 1; : : : ; I1g; : : : ; iN 2 f 1; : : : ; IN g

Three-way arrays are su�cient to illustrate most of the concepts we need, so we will

sometimes setN =3, giving T 2 RI 1 �I 2 �I 3 .

Let us introduce some vocabulary and basic concepts.

Order, modes, ways The order of a tensor is the numberN of dimensions, or equiv-

alently the number of indexes necessary to identify each entry of the array. It is

also known as ways or modes. For instance, a matrix is an array of order two (or a

2-mode tensor). A 3-way array is given by a cube of data.

Frobenius norm The Euclidian norm of a vectorized matrix yields its Frobenius norm.

Analogously, we de�ne the squared Frobenius norm of a multiway arrayT as the

sum of the squares of all its element:kT k2
F =

P
i 1 ;:::;i N

T2
i 1 ;:::;i N

.

Subarrays: �bers and slices Subarrays are formed when a subset of the indices is

�xed. A colon is used to indicate all elements of a given mode.

Fibers are de�ned by �xing every index but one, they are the higher-order analogue

of matrix rows and columns. A column is a mode-1 �ber, a row is a mode-2 �ber,

higher-order �bers are indistinctly called tube �bers. In a third-order tensorT we

denote respectivelyt :;i 2 ;i 3 , t i 1 ;:;i 3 and t i 1 ;i 2 ;: the possible �bers.

Slices are de�ned by �xing all but two indices, giving two-dimensional sections of
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3.1. Array manipulation

Mode-1 �bers Mode-2 �bers Mode-3 �bers Horizontal slices Lateral slices Frontal slices

Figure 3.2 � Fibers and slices of a three-mode array.

a tensor. In a third-order tensor, there are three possible slicesT i 1 ;:;: (horizontal)

T :;i 2 ;: (lateral) and T :;:;i 3 (frontal). They are illustrated in Figure 3.2.

It is usual to represent a three way array by concatenating its frontal slices. For

example,T 2 R2;3;2 with entries Ti 1 ;i 2 ;i 3 can be represented as follows:

2

4
T1;1;1 T1;3;1 T1;3;1 T2;1;2 T2;2;2 T2;3;2

T2;1;1 T2;2;1 T2;3;1 T2;1;2 T2;2;2 T2;3;2

3

5

For more concrete illustrations, we will use a three-way arrayX 2 R3�4�2 given by

X =

2

6
6
6
4

1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

3

7
7
7
5

3.1.1 Vectorization

The vectorization operation rearranges the elements of a multiway array in a one-dimensional

array. A convention has to be adopted on the order that the di�erent indices are swept.

It is important to emphasize that the ordering convention is not really important as long

as it is consistent across related calculations [Kolda & Bader 2009]. The usual de�nition

states that an array should be vectorized by sweeping the �rst mode with all other modes

�xed, then the second and so on. In a data cube this means stacking the columns of the

�rst frontal slice ( i 2 = 1), then doing the same for the second slice (i 2 = 2) until the end.

For a generic three-mode tensorT 2 RI 1 ;I 2 ;I 3 we havevec :RI 1 ;I 2 ;I 3 ! RI 1 I 2 I 3 given by

vec(T )(i 3 �1)I 1 I 2+(i 2 �1) I 1+i 1 = Ti 1 ;i 2 ;i 3
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For our concrete example withX the resulting vector is:

vec(X ) =

2

6
6
6
6
6
6
6
6
6
4

1

2

3
...

24

3

7
7
7
7
7
7
7
7
7
5

:

3.1.2 Tensorization

In general, tensorization is the process of forming a higher-order array by rearranging

the elements of a smaller-order one (usually a vector or a matrix). Although there are

plenty possible tensorization operations, we will be interested in a reverse operation to the

vectorization. This particular tensorization operation transforms a vector into a tensor.

For it to be completely speci�ed, the dimensions of the resulting tensor has to provided.

Given a vectort 2 RI 1 :::I N , we denotetensI 1 ;:::;I N (t) 2 RI 1 �����I N the resulting tensor.

This tensorization operation is such that, for anyT 2 RI 1 ;:::;I N :

tensI 1 ;:::;I N (vec(T )) = T

3.1.3 Matricization

Matricization, also calledunfolding or �attening, is the process of reordering the elements

of a multi-way array into a matrix. Among all the possible rearrangements that would

lead to a matrix, some of them stand out. Here, we will focus on the special case ofmode-n

unfolding. A more general treatment of matricization can be found in [Kolda 2006].

Mode-n unfolding

The mode-n unfolding of a tensorT 2 RI 1 �I 2 �I 3 is denoted byT (n) and arranges its mode-

n �bers as the columns of the resulting matrix. Now, the column ordering convention may

vary, but once again, the most important is that it remains consistent across related

calculations. We will adopt a standard convention [Kolda & Bader 2009] which sweeps

the remaining indexes similarly to the vectorization operation, i.e. �rst modes �rst (i1,

then i 2 and so on).
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3.1. Array manipulation

The n-mode unfolding of a tensorT 2 RI 1 �����I N gives a matrixT (n) 2 RI n �I 1 :::I n�1 I n+1 :::I N .

In our example with tensorX , the three possible unfoldings are given by:

X (1) =

2

6
6
6
4

1 4 7 10 13 16 19 22

2 5 8 11 14 17 20 23

3 6 9 12 15 18 21 24

3

7
7
7
5

X (2) =

2

6
6
6
6
6
6
4

1 2 3 13 14 15

4 5 6 16 17 18

7 8 9 19 20 21

10 11 12 22 23 24

3

7
7
7
7
7
7
5

X (3) =

2

4
1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

3

5

Unvectorization

Similarly to the tensorization case, we will also consider an operation that reverses the

vectorization of a matrix. So, it inputs a vector and outputs a matrix. For this operation

to be fully speci�ed, the dimensions of the resulting matrix have to be provided.

Given a vector x 2 RI , we denoteunvecI 1 ;I 2 (x ) the output matrix of size (I 1 � I 2),

provided that I = I 1I 2. This particular matricization operation is such that, for any

matrix X 2 RI 1 �I 2 :

unvecI 1 ;I 2 (vec(X)) = X:

Actually, this can be seen as an special case of the tensorization operation de�ned in

section 3.1.2, since for any vectorx we have thatunvecI 1 ;I 2 (x ) = tens I 1 ;I 2 (x ): Nevertheless,

we choose to explicitly distinguish the matrix case by keeping the distinct notationunvec.

3.1.4 Contractions

Tensor contraction is an operation involving two tensors which results in another tensor

with order equal to the sum of the orders of each tensor minus two. In multi-way arrays,

it consists of a summation over a pair of indices.

Matrix multiplication can be seen as a particular case of tensor contraction. However,

for higher-order arrays there are more possible combinations of indexes to be contracted
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than in the matrix case.

Given two tensorsT and T 0 of order N and N 0, we denoteT � n;n 0 T 0 a contraction

in which the summation is made over then-th index of T and the n0-th index of T 0. The

result U is a tensor of orderN + N 0 � 2 with entries:

Ui 1 ;:::;i n�1 ;i n+1 ;:::;i N ;j 1 ;:::;j n 0�1 ;j n 0+1 ;:::;j N 0 =
X

l

Ti 1 ;:::;i n�1 ;l;:::;i N T0
j 1 ;:::;j n 0�1 ;l;:::;j N 0

Note that a convention was adopted for the mode ordering on the resulting tensor.

n-Mode product

For the purposes of this thesis, we are interested in a particular type of tensor contraction

called then-mode product, which consists in multiplying a tensor by a matrix in mode n. It

has been the usual practice to always sum over the second matrix index. As a consequence,

this kind of contraction is fully determined by a single index and we denote it by� n .

The n-mode product between a tensorT 2 RI 1 ;:::;I N and a matrix M J �I n gives an

N -mode tensor of size(I 1 � � � � � I n�1 � J � I n+1 � � � � � I N ) with elements

(T � n M) i 1 ;:::;i n�1 ;j;i n+1 ;:::;i N =
I nX

l=1

Ti 1 ;:::;i n�1 ;l;i n+1 ;:::;i N M jl

The idea can also be expressed in terms of unfolded tensors:

U = T � n M () U (n) = MT (n) :

For series of multiplications in distinct modes, the order of the multiplication is irrel-

evant, i.e. T � n1 M 1 � n2 M 2 = T � n2 M 2 � n1 M 1 (n1 6=n2).

The n-mode product can also be de�ned between a tensor and a vectorv 2 RI n . The

resulting tensorT � n v, calculated similarly to the matrix case, is of orderN � 1 with

sizes(I 1 � : : : I n�1 � I n+1 � � � � � I N ).

3.2 Tensor operations

We start by introducing two basic operations in the context of multiway array processing:

the outer product (subsection 3.2.1) and the Kronecker product (subsection 3.2.2). We

later de�ne the more general notion of tensor product, in subsection 3.2.3. Despite being
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3.2. Tensor operations

Figure 3.3 � The outer product of three vector leads to a three-way array.

the foundation of tensor algebra (one can for instance de�ne tensors from the notion of

tensor product) it is often skipped due to its more abstract nature. Instead, authors often

favor its easier-to-grasp basis-dependent special cases: the outer product, which may be

seen as a tensor product of vectors in the canonical basis of each vector space; and the

Kronecker product, which is the expression of the tensor product for matrices.

3.2.1 Outer product

The outer product between two vectorsu 2 RI 1 and v 2 RI 2 is a well-known operation

that gives a matrix (I 1 � I 2) matrix:

u � v = uv T =

2

6
6
6
4

u1v1 : : : u1vm
...

. . .
...

unv1 : : : unvm

3

7
7
7
5

This concept can be generalized to the outer product between N vectorsu1 � � � � � uN ,

with un 2 RI n . The result is a N-mode array of size(I 1 � � � � � I N ), with entries given by

(u 1 � � � � � uN ) i 1 ;i 2 :::;i N = ui 1 ui 2 : : : ui N ; for all 1 � i n � I n

The outer product can be seen as a building block of tensors, as they allow to generate

elementaryN -mode tensors fromN vectors. Such elementary tensors are called rank-one

tensors (in analogy to rank-one matrices, which are outer product between two vectors).

We will get back to this point in section 3.2.3, where we formalize the intuition that these

can be seen as elementary tensors. Figure 3.3 shows an example of a third-order array

resulting from such an outer product.
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Figure 3.4 � Illustration of the Kronecker product of two (left) and three (right) matrices.

3.2.2 Kronecker product

Before de�ning the Kronecker product between two matrices, let us de�ne it for two

vectorsu 2 RI 1 , v 2 RI 2 . We denoteu � v the result, which is a vector of dimensionI 1I 2

given by

u � v =

2

6
6
6
4

u1v
...

uI 1 v

3

7
7
7
5

=

2

6
6
6
6
6
6
6
6
6
6
4

u1v1...
u1vI 2

...
uI 1 v1...
uI 1 vI 2

3

7
7
7
7
7
7
7
7
7
7
5

:

This is closely related to the outer product. Indeed, we have the following relation:

u � u = vec
�
(u � v)T

�

Now, for two matrices A 2 RI 1 �J 1 and B 2 RI 2 �J 2 , the Kronecker product gives a

matrix denoted A � B of size(I 1I 2 � J1J2) de�ned by

A � B =

2

6
6
6
6
6
6
4

a1;1B a1;2B : : : a1;J1 B

a2;1B a2;2B : : : a2;J1 B
...

...
. . .

...

aI 1 ;1B aI 1 ;2B : : : aI 1 ;J1 B

3

7
7
7
7
7
7
5

which can be related to the Kronecker product between vectors

A � B =
h
a1 � b1 ::: a1 � bJ2 a2 � b1 ::: a2 � bJ2 : : : aJ1 � b1 ::: aJ1 � bJ2

i
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This notion can be extended forN matrices, sayA 1; A 2; : : : ;A N with A n 2 RI n �J n , by

performing successive Kronecker products. For instanceA 1 � A 2 � A 3 = ( A 1 � A 2) � A 3

and, generalizing:A 1� A 2 � � � � A N = (( A 1� A 2) � A 3) � � � � A N . The resulting matrix is of

size(I 1I 2 : : : I N � J1J2 : : : JN ). Actually, we will see just below that the Kronecker product

is associative, meaning that the order in which these multiple product are performed does

not matter. Figure 3.4 illustrates the Kronecker product between two and three matrices.

Some useful properties

Let us now introduce some important properties of the Kronecker product, focusing on

the ones which will useful in the remainder of this document. For a more complete list of

properties, we refer the reader to [Horn & Johnson 2012, chapter 4].

Property 8 (Bilinearity) . The Kronecker product is linear w.r.t. each of its entries, i.e.

for all A 2 RI 1 �J 1 , B 2 RI 2 �J 2 , C 2 RI 3 �J 3 , � 2 R:

A � (B + C) = A � B + A � C

(A + B) � C = A � C + B � C

(� A) � B = A � (� B) = � (A � B)

A � 0 = 0 � A = 0

Property 9 (Associativity) . The Kronecker product is associative, i.e. for allA 2 RI 1 �J 1 ,

B 2 RI 2 �J 2 , C 2 RI 3 �J 3 :

(A � B) � C = A � (B � C)

However, it is important to point out that the Kronecker product is not commutative:

A � B 6= B � A, even though these two terms can be related through permutation

matrices [Henderson & Searle 1981].

Property 10 (Transpose). Transposition is distributive over the Kronecker product:

(A � B) T = A T � B T

Property 11 (Mixed-product). The product of two Kronecker products yields another

Kronecker product. If A, B, C and D are matrices of such size that one can form the
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Part I, Chapter 3 � Tensor formalism

matrix products AC and BD, then:

(A � B)(C � D) = (AC ) � (BD)

The following property follows directly from the mixed product property 11.

Property 12 (Inverse of a Kronecker product).A � B is invertible if and only if bothA

and B are invertible, in which case the inverse is given by

(A � B) �1 = A �1 � B �1

The invertible product property holds for the Moore�Penrose pseudoinverse as well:

(A � B) y = A y � B y

Relation with mode products

Suppose matricesA n 2 RI n �J n . A very interesting property of the Kronecker product

emerges when it is multiplied by a vectorized matrix, sayX 2 RJ1 �J 2 :

(A 2 � A 1) vec(X) = vec(A 1XA T
2 )

which means that each of the composing matricesA 1 and A 2 apply separately to the

columns and rows of the matrixX. This identity can also be expressed in terms of mode

products:

y = ( A 2 � A 1) vec(X) () Y = X � 1 A 1 � 2 A 2;

denoting y 2 RI 1 I 2 the resulting vector and Y its analogous before vectorization, i.e.

y = vec(Y ).

It can be extended to a higher order. When applying a Kronecker product ofN

matrices to anN -way array X 2 RJ1 �����J N , we have

y = ( A N � � � � � A 1) vec(X ) () Y = X � 1 A 1 � � � � N A N ; (3.1)

with y 2 RI 1 :::I N and Y 2 RI 1 �����I N , such that y = vec(Y ).
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This property is particularly useful when treating multi-dimensional data. A linear

operator that can be written as a Kronecker product is sometimes referred to as aseparable

operator, since it acts independently on each mode of the data. We will explore this point in

part II and push it further by allowing operators written as a sum of Kronecker products.

Another related property will be useful in part II. It is simply a di�erent way of

expressing (3.1) by using the n-mode unfolding to isolate then-th Kronecker term:

Y = X � 1 A 1 � � � � N A N

() Y (n) = A nX (n) (A N � � � � � A n�1 � A n+1 � � � � � A 1)T : (3.2)

It brings to light the linear dependency betweenY (n) and A n .

3.2.3 Tensor product

Before giving a formal de�nition of the tensor product, let us provide some intuition.

Given vector spacesU1; : : : ; UN and W the tensor product 
 is basically a way of

building a new vector spaceU1 
 � � � 
 UN in which multilinear maps U1 � � � � � UN ! W

become linear mapsU1 
 � � � 
 UN ! W.

The multilinear maps de�ned below are very interesting since they act linearly in each

of the original vector spacesseparately. Hence, the interest of the tensor product is that

now, in this new vector spaceU1 
 � � � 
 UN , such multilinear operations can be treated

with usual linear algebra tools.

De�nition 20 (Multilinearity) . For U1; : : : ; UN and W vector spaces and a �eldK (e.g.

R or C), a map f : U1 � � � � � UN ! W is said to be multilinear if

f (x 1; :::; � xn + � yn ; :::; xN ) = �f (x 1; :::; xn ; :::; xN ) + �f (x 1; :::; yn ; :::; xN ); 8n; 8�; � 2 K:

Let us consider the case of two vector spacesU and V for simplicity. Multilinearity

now translates into bilinearity. A tensor product 
 de�nes a new vector spaceU 
 V and

an operation 
 on vectors such that, for every bilinear mapf : U � V ! W, there is a

corresponding linear mapg : U 
 V ! W with f (u ; v) = g(u 
 v) for any vectorsu 2 U,

v 2 V and u 
 v 2 U 
 V.

The following theorem (proved in [Schwartz 1975, p4-5]) ensures the existence and

uniqueness (up to an isomorphism) of one such operator. It provides a formal de�nition
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Part I, Chapter 3 � Tensor formalism

of the tensor product for the case of two vector spaces (bilinearity), but it also holds for

multiple spaces (multilinearity).

Theorem 8 (Tensor product [Schwartz 1975]). If U and V are vector spaces, then:

1. (existence of the tensor product) there exists a vector spaceU 
 V and a bilinear

map 
 : U � V ! U 
 V having the following property: for any vector spaceW and

any bilinear mapf : U � V ! W, there exists a unique linear mapg : U 
 V ! W

such thatf (u ; v) = g(u 
 v) for all u 2 U and v 2 V.

One such bilinear map is called atensor product of U and V.

2. (uniqueness of the tensor product up to a composition with an isomorphism) If


 0 : U � V ! U 
 0V is another map with the same property, there exists a unique

linear bijection h : U 
 V ! U 
 0V such that
 0 = h� 
 and 
 = h�1 � 
 0 (denoting

� the composition, not to be confused with the outer product denoted equally).

A formal de�nition of tensors can be derived from the notion of tensor product.

De�nition 21 (Tensor). A tensor is a vector of a tensor product space(U 
 V;
), which

is the vector space generated fromU and V by a tensor product
.

To illustrate this abstract concept of tensor product, let us present a concrete example.

Example 1. Take U = Rn , V = Rm and W = R. In this particular case, the outer

product, denoted�, is a tensor product. This can be veri�ed by showing that a generic

bilinear map f : Rn � Rm ! R can be associated to a linear mapg : Rn � Rm ! R.

Since f is a bilinear form, it can be represented by a matrixA 2 Rn�m , such that

8u 2 Rn ; v 2 Rm

f (u ; v) = uT Av =
X

i;j

ui A i;j vj

The corresponding mapg(u � v) takes as input vectorsu � v 2 Rn � Rm in the form

u � v = uv T =

2

6
6
6
4

u1v1 : : : u1vm
...

. . .
...

unv1 : : : unvm

3

7
7
7
5

84



3.2. Tensor operations

g(�) can be exhibited as the following linear form

g(u � v) = tr( A T (u � v)) = vec( A) T vec(u � v) =
X

i;j

A i;j ui vj

Obviously, the tensor product is more general than the outer product since the spaces

U and V need not beRn . In addition, the outer product is not the only possible tensor

product in this setting. Another example is the Kronecker product between vectors:

u � v =

2

6
6
6
4

u1v
...

unv

3

7
7
7
5

The corresponding linear formg : Rn � Rm ! R is simply

g(u � v) = vec(A T )T (u � v) =
X

i;j

A i;j ui vj

In conformation to Theorem 8 the two exhibited tensor products are isomorphic:

vec((u � v)T ) = u � v.

Naturally, not every bilinear map de�ned in U � V is a tensor product. The following

result [Schwartz 1975, Corolary 1bis] provides a necessary and su�cient condition for one

such map to be a tensor product.

Theorem 9. A bilinear map � from U � V to a vector space denotedU � V is a tensor

product if and only if there exist bases(u i ) i2I , (v j ) j 2J of U andV such that(u i �v j )(i;j )2I �J

form a basis ofU � V (in which case it is true for any basis ofU and V).

In view of theorem 9, it is now easy to show that the outer product (example 2) and

the Kronecker product (example 3) are tensor products, respectively in the space of �nite

1-dimensional and 2-dimensional arrays.

Example 2 (Outer product). Let U = Rn , V = Rm and consider the canonical basis

(ei )1�i�n of Rn and (ej )1�j �m of Rm , the outer product� : Rn � Rm ! Rn�m gives:

(ei � ej ) = E i;j whereE i;j 2 Rn�m denotes a matrix with entryE i;j = 1 and all other

entries zero. This set(E i;j )1�i�n; 0�j �m is clearly a basis ofRn�m .
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Example 3 (Kronecker product). The same can be done for the Kronecker product,

with U = Rn1 �m 1 and V = Rn2 �m 2 and basis(E i;j ) ij of Rn�m de�ned above. The

Kronecker product � : Rn1 �m 1 � Rn2 �m 2 ! Rn1n2 �m 1m1 gives:

(E i;j � E l;k ) = En2 (i�1)+k;m 2 (j �1)+l , which is a basis for the spaceRn1n2 �m 1m2 .

Two important corollaries can be derived from theorem 9.

Corollary 1 (Dimension ofU 
 V). If U and V have �nite dimensionsdim(U), dim(V ),

then dim(U 
 V) = dim( U) � dim(V ).

Corollary 2 (Decomposable tensors). The set fu 
 v; u 2 U;v 2 Vg spans U 
 V.

Tensors that can be written asu 
 v are called decomposable, or rank-1 tensors.

Note that the dimension of the resulting space is the product (not the sum) of the

dimensions of the initial spaces. Corollary 2, in its turn, states the very important result

that any tensor can be written as a sum of rank-1 tensors. However not all tensors are

rank-1, and the problem of �nding, if it exists, the smallest necessary number of rank-

1 tensors to express a given tensor is a non-trivial problem. We will get back to this

discussion in section 3.3. For now, let us see what this result implies to the Kronecker

product as a tensor product.

Matrices as a sum of Kronecker products

The fact that the Kronecker product is a tensor product between two (or more) matrices

� see example 3 � implies, from corollary 2, that matrices written as a Kronecker product

A � B span the set of all matrices.

In other words, any matrix M 2 Rn�m can be expressed as a sum of Kronecker products

M =
P

i A i � B i with A i 2 Rn1 �m 1 , B i 2 Rn2 �m 2 and n1n2 = n, m1m2 = m.1 Each term

A i � B i can be seen as a rank-1 tensor in the tensor product spaceRn1 �m 1 � Rn1 �m 1 =

Rn1n2 �m 1m2 = Rn�m . So, a Kronecker product matrix can be seen as rank-1 tensor in the

space ofn � m matrices.

In chapter 4 we provide another way of visualizing this same result, by exhibiting

a suitable rearrangement operation that transforms a Kronecker product matrix into a

rank-1 matrix (in the usual sense). The same rearrangement maps a generic matrix into a

1. Even if n and m are prime number, there is always the trivial (though useless in practice) solution
of setting n1 = 1, n2 = n and m1 = 1, m2 = n.
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3.3. Canonical Polyadic Decomposition

Figure 3.5 � Polyadic decomposition of a three-way array.

rank-R matrix, which is known to be written as a sum of R rank-1 matrices. Consequently,

the original matrix can be written as the as a sum of R Kronecker products.

This result also holds for the Kronecker product of three or more matrices, by using

the same reasoning and setting
Q

k nk = n,
Q

k mk = m.

3.3 Canonical Polyadic Decomposition

In 1927, [Hitchcock 1927] proposed the idea of the polyadic form of a tensor, i.e., expressing

a order-N tensor as a linear combination of decomposable tensors:

T =
RX

r =1

ar
1 � � � � � ar

N (3.3)

In a more general formulation, the summing terms are written asa1 
 � � � 
 aN which

corresponds to the rank-1 tensors introduced in Corollary 2. Here we take the outer

product as the standard tensor product between vectors. The vectorsar
n may be assembled

as the columns of a matrixA n = [ a1
n ; : : : ; aR

n ], which leads to the compact notation

T = JA1; : : : ;A N K. Figure 3.5 gives a visual representation of this decomposition in the

third-order case.

Tensor rank The smallest valueR for which (3.3) holds is called the tensor rank.

If a tensor is of order three or higher, the rank may depend on the �eld, in the sense

that a real tensor of rank R may have smaller rank if we allow the decomposition to be

complex. In this thesis, we will restrict ourselves to the �eld of real numbers.

This decomposition has later been reintroduced in the literature as CANDECOMP

(canonical decomposition) by [Carroll & Chang 1970], PARAFAC (parallel factors) [Harsh-

man 1970], not to mention other independent appearances of the concept in di�erent
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communities. If the number of rank-1 termsR is minimal, the decomposition is called

canonical. For simplicity, we will refer to it in a simple abbreviate form as the CPD.2

From Corollary we know that any tensor can be decomposed in such a way. It doesn't

imply, however, the uniqueness of the decomposition.

3.3.1 On the uniqueness of the CPD

First of all, notice that even a rank-1 tensorT of orderN is not uniquely represented by an

outer product of N vectors since there remains a scaling and permutation indeterminacy

between the factors. So, we are rather interested in the uniqueness of the rank-1 terms

a1 � � � � � aN . This is sometimes calledessential uniqueness. As a simpli�cation, we will

simply write uniqueness while actually referring to essential uniqueness.

The CPD is generally not unique. A lot of research has been made to �nd special

scenarios where there is uniqueness. Roughly speaking, the decomposition can be unique

if R is small.

Probably the most general and well-known result on uniqueness was obtained by

[Kruskal 1977] for three-way arrays and later extended by [Sidiropoulos & Bro 2000]

to higher orders. It provides a su�cient condition for uniqueness by using the concept

of Kruskal rank of a matrix A, denoted � A , which is the largest number� such that

any subset of� columns of A are linearly independent3. For a N -mode array T with

decompositionT = JA1; : : : ;A N K, a su�cient condition for uniqueness of the CPD is:

2R + N � 1 �
NX

n=1

� A n

Later, [ten Berge & Sidiropoulos 2002] showed that this su�cient condition is also neces-

sary for tensors of rankR = 2 and R = 3, but not for R > 3.

A necessary condition for uniqueness was provided by [Liuet al. 2001]:

R � min
n=1;:::;N

0

B
B
@

NY

m=1
m6=n

rank(A m )

1

C
C
A

Further recent results may be found, for instance, in [Domanov & De Lathauwer 2013a]

2. We call it CPD even when it is not calculated for the minimal rank, since, conveniently, it may
stand for both Canonical Polyadic or CANDECOMP/PARAFAC decomposition.

3. We recall that the Kruskal rank is closely related to the spark (cf. de�nition 1): spark(A) = � A +1.
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3.3. Canonical Polyadic Decomposition

[Domanov & De Lathauwer 2013b]. They are sometimes much more powerful than Kruskal's

bound.

In part II we propose an algorithm in which we are led to compute a CPD. Fortunately,

we restrict ourselves to the low-rank regime, in which the CPD is known to behave better.

3.3.2 Computing the CPD

Given a tensor, there is no straightforward algorithm to determine its rank, i.e. the min-

imum number of rank-one components in the CP decomposition. The rank of a tensor is

usually determined numerically by �tting various CP decompositions with di�erent R.

In practice, rather than calculating exact decompositions, we are more often confronted

to the problem of �nding a good rank-R approximation of a given tensor. In the matrix

case, the best rank-R approximation is known to be given by the SVD truncated to its �rst

R terms [Eckart & Young 1936]. It is important to emphasize that, for higher-order arrays,

there is no equivalent of one such result. As an illustration, the best rank-1 approximation

of a cubic tensor might not be a factor in its best rank-2 approximation [Kolda 2001].

Now, let us focus on the case where the number of components is �xed beforehand.

The goal is to compute a CPD withR components that best approximatesT , i.e.,

min
T̂

kT � T̂ kF with T̂ =
RX

r =1

ar
1 � � � � � ar

N = JA1; : : : ;A nK

The most widespread algorithm for addressing this problem is a very simple alternating

least squares (ALS) method proposed in [Carroll & Chang 1970] and [Harshman 1970].

The ALS approach iteratively updates each of the factorsA n by �xing all other terms,

until convergence. Having �xed all but one matrix, the problem reduces to a linear least-

squares problem, which can be solved with a simple Moore-Penrose pseudoinverse. We do

not provide the explicit update step of the ALS procedure because it requires the notion

of Katri-Rao product, which we didn't de�ne here. The full algorithm can be found for

instance in [Kolda & Bader 2009, Figure 3.3].

This algorithm may be considerably sensitive to the initialization and is not guaranteed

to converge to a global minimum. Some techniques for improving the e�ciency of ALS

are discussed in [Comonet al. 2009]. We refer the reader to [Kolda & Bader 2009, Section

3.4] for a brief overview of other existing algorithms, and [Tomasi & Bro 2006] for an

experimental comparison of di�erent algorithms.
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Part I, Chapter 3 � Tensor formalism

3.4 Other tensor decomposition

Let us make a connection with the SVD of a rank-R matrixM:

M = U�V T : (3.4)

It is characterized by two features: 1)U 2 RI �R andV 2 RJ �R have orthonormal columns,

and 2) � 2 RR�R is diagonal. We will see that it is not possible to directly generalize this

decomposition to higher-order arrays while preserving both of these features.

Alternatively, one can express the SVD as a sum of rank-1 matrices:

M =
RX

r =1

� r u r � v r (3.5)

where� r = � r;r is the r -th term in the diagonal of � , and u r and v r are the r -th column

of the matricesU and V respectively.

Note that the CPD of an N -way array T can be expressed in a similar way by imposing

the vectorsar
n to be of unit-norm and introducing the scaling factors� r 2 R:

T =
RX

r =1

� r ar
1 � � � � � ar

N (3.6)

The di�erence between (3.5) and (3.6) is that, in the latter, there is no orthogonality

restriction between the vectorsfa r
ngR

r =1 (i.e. matrices A n are not constrained to have

orthonormal columns.

It is also interesting to rewrite the CPD in a di�erent way, to make a connection with

other tensor decompositions:

T = G � 1 A 1 � � � � N A N with G diagonal (i.e.Gi;j;k;l 6= 0() i = j = k = l) (3.7)

whereG 2 RR�����R is called thecore tensor. We can compactly denoteT = JG; A 1; : : : ;A N K.

By removing the diagonality constraint on the core tensor, we obtain the more general

Tucker decomposition.
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3.4. Other tensor decomposition

Figure 3.6 � Tucker decomposition of a three-way array.

3.4.1 Tucker decomposition

Tucker decomposition [Tucker 1966] decomposes a tensor into a core tensor multiplied (or

transformed) by a matrix along each mode. For anN -way tensorT 2 RI 1 �����I N it gives:

T = G � 1 A 1 � � � � N A N =
R1X

r 1=1

: : :
RNX

r N =1

Gr 1 ;:::;r N ar 1
1 � � � � � ar N

N = JG; A 1; : : : ;A N K (3.8)

whereA n 2 RI n �r n are the factor matrices and can be thought of as the principal compo-

nents in each mode. The core tensorG 2 RR1 ;:::;R N shows the level of interaction between

the di�erent components. See Figure 3.6 for a visual representation.

Getting back to the analogy with the SVD: if we impose both the diagonality ofG and

orthogonality between the columns of matricesA n , the number of free parameters becomes

smaller than the number of equations, then there is generally no solution [Comon 2014].

That's why, when extending the SVD to higher orders, we have to choose one of the

constraints. When we constrainG to be diagonal (with R1 = � � � = RN = R), but relax

the orthogonality constraint on factor matrices, we obtain the CPD. If, on the other hand,

we keep the orthonormality constraint, but allowG to have nonzero entries outside its

diagonal, we obtain the so-called HOSVD (Higher-order SVD) [De Lathauweret al. 2000].

3.4.2 Higher-Order SVD

HOSVD is equivalent to the Tucker decomposition (3.8) when constraining the factor

matrices A n to have orthonormal columns.4

The dimensions of the core tensor(R1; : : : ; RN ) are related to the concepts ofn-rank

and multilinear rank.

4. Strictly speaking, they are semi-orthogonal matrices. A non-square(n � m) matrix A with n > m
is semi-orthogonal if A T A = I n .
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Part I, Chapter 3 � Tensor formalism

De�nition 22 (n-rank). The mode-n rank, or simply n-rank,Rn of a tensor T is the

column rank of its n-unfolding matrixT (n) .

De�nition 23 (Multilinear rank) . The N-uple of n-ranks(R1; : : : ; RN ) is the multilinear

rank of a N-way tensorT .

For an exact decomposition, the dimensions of the core tensor may be imposed to be

(R1 � R2 � R3), whereRn is the n-rank of the decomposed tensor. In addition, the n-rank

cannot exceed the tensor rankR nor the nth dimensionI n , i.e. Rn < R and Rn < I n , 8n.

A typical application of Tucker and HOSVD is data compression, see for instance

[Vasilescu & Terzopoulos 2003] [Wang & Ahuja 2004]. That is because, in many cases,

the storage for the decomposed version of the tensor can be signi�cantly less costly than

for the original tensor.

3.4.3 More decompositions

There exist a great variety of tensor decompositions, more or less related to Tucker and

CPD. We will just very brie�y cite some of them without getting further into the details.

The Tucker2 decomposition [Tucker 1966] of a third-order array sets one of the factor

matrices in the Tucker decomposition to be the identity matrix:T = G � 1 A 1 � 2 A 2 =

JG; A 1; A 2; IK.

PARAFAC2 [Harshman 1972] can be seen as a relaxed variant of CP that can be

applied to a collection of matrices that each have the same number of columns but a

di�erent number of rows, say fM kgK
k=1 . PARAFAC2 performs an SVD of each of the

matrices M k with the additional constraint that the right factor V is shared among all

matrices: M k = U k � kV . It can also be applied to three-way tensors as a particular case

where all matrices have the same number of rows.

Other decompositions include: CANDELINC [Carrollet al. 1980], DEDICOM [Harsh-

man 1978], and PARATUCK2 [Harshman & Lundy 1996]. We refer the reader to [Kolda

& Bader 2009] for a more detailed survey.
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Chapter 4

Approximation by

Kronecker-structured matrices

In this chapter, we introduce the Kronecker structure and its relation to multidimensional

data. We also address the problem of approximating a general linear operator as a sum

of Kronecker products.

This chapter is partly based on the article [Dantaset al. 2018].

4.1 Kronecker structure and multidimensional data

Multi-dimensional data arise in a large variety of applications such as telecommunications,

biomedical sciences, image and video processing to name a few [Kolda & Bader 2009].

In most machine learning and data processing techniques, however, input data are

assumed to be vectors. Consider, for instance, the Dictionary Learning problem introduced

in section 1.5, in which input data samples are given by vectorsy i arranged as the columns

of a data matrix Y = [ y1; : : : ; yN ]. Similar formulations are commonly adopted in related

learning approaches. When the targeted data is multidimensional � say, images as 2-

dimensional data or color and hyperspectral images as 3-D data examples � it is usual to

perform a vectorization of each data sample to conform them to the vectorial framework,

as illustrated in Figure 4.1.

Explicitly accounting for this tensorial structure of the data can be more advantageous

than relying on its vectorized version. It avoids losing the original neighboring relations

and inter-mode correlations, besides providing a more e�cient and economic representa-

tion and subsequent processing.

The Kronecker product structure arises naturally when dealing with multi-dimensional

(tensorial) data, since it manages to recover the underlying tensorial nature of vectorized

data samples. Indeed, when applied to a vectorized tensor, each composing factor of a
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Part II, Chapter 4 � Approximation by Kronecker-structured matrices

Figure 4.1 � Input data samples are usually vectorized.

Kronecker-structured linear operator acts independently on each mode of the data (cf.

equation (3.1)). For this reason, such operators are commonly calledseparable operators.

A widespread example is the 2D-DCT, which is de�ned as a composition via Kronecker

product of two 1D-DCTs. The same argument applies to the 3D-DCT. Conveniently,

such operators are more compact to store and can be applied much more e�ciently in

computational terms than their unstructured counterpart.

Nevertheless, relatively little attention has been paid to exploiting this type of struc-

ture on representation learning methods such as dictionary learning algorithms, which

aim at obtaining a set of explanatory variables (the dictionary) capable of sparsely ap-

proximating an input dataset. Conventional methods impose no particular structure to

the dictionary matrix learned from the vectorized input samples, therefore completely

disregarding a potential multi-dimensional characteristic of the data.

Here, we propose a broader class of structured operators which has the separable

structure as a special case. We generalize the Kronecker structure by allowing matrices

to be written as asum of Kronecker products:

D =
RX

r =1

D r
1 � � � � � D r

K =
RX

r =1

K

�
k=1

D r
k ; (4.1)

which we refer to as arank-R K -Kronecker-structured matrix (or simply (R; K )-KS and

evenK -KS when R = 1). In [Tsiligkaridis & Hero 2013], where a particular case of this

model (with K = 2) was proposed (see section 4.1.2 for more details),R is referred to as

the separation rank. As we will see in section 4.1.1, this structure may lead to signi�cant
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4.1. Kronecker structure and multidimensional data

memory and computational savings when compared to an unstructured matrix. At the

same time, because we allow sums of several Kronecker terms, we make the structure more

�exible thus increasing its approximation capabilities with respect to the conventional

Kronecker structure (i.e. ordinary separable operators).

Actually, provided that the rank R can be set large enough, any matrixD may be writ-

ten as a (R,K)-KS matrix [Tsiligkaridis & Hero 2013]. This point has also been discussed

in section 3.2.3: it follows from Corollary 2 that matrices written as Kronecker products

(R = 1) can be seen as rank-1 tensors in the tensor space generated by the Kronecker

product and, as such, they span the entire space of matrices of size(
Q

k nk �
Q

k mk).

In this chapter, we provide a novel method to approximate general linear operators

as a sum of Kronecker products. To this end, we draw a parallel between the problem of

approximating an arbitrary linear operator by a Kronecker-structured one and the low-

rank tensor approximation problem. Later, in chapter 5, this parallel is proved useful in

the dictionary learning context. That's why in this chapter we choose to denoteD the

matrices to be approximated.

4.1.1 Motivations

The quest for Kronecker-structured linear operators has various motivations besides the

suitability to multi-dimensional signals:

1. reduced computational complexity;

2. diminished memory requirements and

3. smaller sample complexity on learning applications.

Computational complexity

The complexity savings on matrix-vector multiplications are explained as follows. For an

(n � m) K -KS matrix D = D K � � � � � D 1 with factors D k 2 Rnk �m k , n =
Q K

k=1 nk and

m =
Q K

k=1 mk , the matrix-vector product Dx can be rewritten as

y = ( D K � � � � � D 1)x ! Y = X � 1 D 1 � 2 � � � � K D K (4.2)

whereY 2 Rn1 �����n K and X 2 Rm1 �����m K are the tensorized versions ofy 2 Rn1 :::n K and

x 2 Rm1 :::m K respectively (cf. section 3.1.2) and� k denotes the mode-k tensor matrix
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Part II, Chapter 4 � Approximation by Kronecker-structured matrices

product. In other words, it comes down to multiplying each factor by the corresponding

mode on the tensorized versionX of the vector x.

Since the composing factorsD k are much smaller thanD, the total complexity for

computing (4.2) can be signi�cantly smaller than the usualO(nm). In particular, when

the factors are all square (i.e.nk = mk 8k) the total number of operations is given by

(
Q K

k=1 nk)(
P K

k=1 nk) [Tadonki & Philippe 2001] compared to(
Q K

k=1 nk)2 operations for an

unstructured matrix of the same size. Note that a set of products
Q

k nk in the latter is

replaced by a summation
P

k nk in former, which is a signi�cant complexity reduction.

For a sum of R Kronecker products, the mentioned complexity is simply multiplied

by R, since we now have a sum ofR terms similar to (4.2):

y =
RX

r =1

(D r
K � � � � � D r

1)x ! Y =
RX

r =1

X � 1 D r
1 � 2 � � � � K D r

K : (4.3)

In addition, as the summing terms are independent from each other, they can be calculated

in parallel. This potential parallelization can even further accelerate this computation.

Storage cost

The total storage cost for the structured operator is proportional to(
P K

k=1 nkmk) instead

of (
Q K

k=1 nkmk).

Indeed, a non-structured(n � m) matrix, with n =
Q K

k=1 nk and m =
Q K

k=1 mk , has

a total of nm parameters. On the other hand, a (R; K)-KS matrix of the same size is

determined by the smaller matricesD r
k 2 Rnk �m k . The total number of parameters is now

preciselyR(
P K

k=1 nkmk). Once again, products are exchanged against sums, which leads

to considerable reductions in memory requirements as long asR remains relatively small.

Sample complexity

Similarly, recent studies on the minimax risk for the dictionary identi�ability problem

showed that the necessary number of samples for reliable reconstruction, up to a given

mean squared error, of aK -KS dictionary within its local neighborhood scales with

(m
P K

k=1 nkmk) [Shakeri et al. 2016, Shakeriet al. 2017a, Shakeriet al. 2018] compared

to (m
Q K

k=1 nkmk) for unstructured dictionaries of the same size [Junget al. 2016].

In parallel to these lower bounds on the minimax risk, similar results have been ob-

tained on upper bounds for the sample complexity. In particular, [Shakeriet al. 2017b]
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[Shakeri et al. 2017c] show that the su�cient number of samples to recover an under-

lying K -KS dictionary with high probability up to a given estimation error scales with

maxk2f1;:::K g(nkm3
k), compared to(

Q K
k=1 nkm3

k) for an unstructured dictionary [Gribonval

et al. 2015a]. A comprehensive overview of sample complexity in Kronecker-structured dic-

tionaries compared to their unstructured counterparts is provided in [Shakeriet al. 2019].

4.1.2 Related Work

Kronecker-structured transforms are somewhat standard in the signal processing com-

munity [Mallat 2008, section 7.7], and particularly in the Dictionary Learning literature,

though typically only the rank one (separable) case is considered. The Kronecker struc-

ture was introduced in Dictionary Learning by [Haweet al. 2013,Roemeret al. 2014] both

addressing only 2-dimensional data (i.e. 2-KS dictionaries). The model was extended to

the 3rd-order (3-KS dictionaries) [Zubair & Wang 2013, Penget al. 2014] and even for

an arbitrary tensor order [Caiafa & Cichocki 2013, Ghassemiet al. 2017] based on the

Tucker decomposition, a model coined as Tucker Dictionary Learning. However, none of

these works include a sum of Kronecker terms. Even though the formulation in [Ghassemi

et al. 2017] would allow it, they restrict their analysis to the rank-one (R = 1) case.

The sum of Kronecker products model was initially explored in the covariance esti-

mation community [Tsiligkaridis & Hero 2013, Bijma et al. 2005] and was recently used

in [Dantas et al. 2017] as an extension of the existing Kronecker-structured dictionaries.

Once again, these works addressed only the 2nd-order case (K = 2). In this thesis we

extend this model to an arbitrary tensor order, thus allowing for bothR � 1 and K � 2.

An advantage of our approach w.r.t [Dantaset al. 2017] and [Ghassemiet al. 2017] is that

here we can choose the desired number of summing terms beforehand without needing to

empirically adjust a regularization parameter.

Finally, similarly to what is introduced in this manuscript, [Batselier & Wong 2017]

have recently discussed factorizations strategies for (R,K)-KS matrices, but with addi-

tional orthogonality constraints which are not considered here.

Notation reminder We denote � the Kronecker Product and � the outer product.

Matrices (resp. tensors) are represented by bold uppercase (resp. caligraphic) letters and

the (i; j )th entry of a matrix D is denotedd(i; j ). The vectorization operation, denoted

vec(�), consists in stacking the columns of a matrix andunvecn;m (�) stands for the converse

operation, for a resulting(n � m) matrix.
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Figure 4.2 � Rearrangement operation

4.2 Rearrangement: from Kronecker to low-rank

This section introduces a rearrangement from a matrix to a multidimensional array that

links the inference of the Kronecker structure for matrices to the low-rank approximation

problem for multidimensional arraysi.e. higher-order tensors.

4.2.1 The second order case

Consider a matrix D 2 Rn1n2 �m 1m2 such that D = D 1 � D 2, where D 1 2 Rn1 �m 1 and

D 2 2 Rn2 �m 2 . Then one can de�ne an operatorR 2 : Rn1n2 �m 1m2 ! Rn2m2 �n 1m1 which

rearranges the elements ofD in such way that the output D � = R 2(D) is a rank-1

matrix [Van Loan & Pitsianis 1993] given by

D � = R 2(D) = vec(D 2) vec(D1)T = vec(D 2) � vec(D1) (4.4)

The rearrangement consists in vectorizing thej th-block of size (n2 � m2) in D to

form the j th-column of R(D), running through the blocks column-wise. This process is

illustrated in Figure 4.2 and Example 4.

Example 4 (Rearrangement). We illustrate this result with a simple example, with

n1 = n2 = m1 = m2 = 2. Consider the(2 � 2) matrices

D 1 =

2

4
1 3

2 4

3

5 ; D 2 =

2

4
a c

b d

3

5 :
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The resulting Kronecker product is given by

D = D 1 � D 2 =

2

4
d1;1D 2 d1;2D 2

d2;1D 2 d2;2D 2

3

5 =

2

6
6
6
6
6
6
4

1a 1c 3a 3c

1b 1d 3b 3d

2a 2c 4a 4c

2b 2d 4b 4d

3

7
7
7
7
7
7
5

and its rearranged version becomes

R(D) =

2

6
6
6
6
6
6
4

1a 2a 3a 4a

1b 2b 3b 4b

1c 2c 3c 4c

1d 2d 3d 4d

3

7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
4

a

b

c

d

3

7
7
7
7
7
7
5

h
1 2 3 4

i
;

which is a rank-1 matrix.

Since the isomorphismR 2 is linear, when applied to a (R;2)-KS matrix, it outputs a

matrix D � =
P R

r =1 vec(Dr
2) � vec(Dr

1) which is of rank at mostR.

D � = R 2

 RX

r =1

D r
1 � D r

2

!

=
RX

r =1

R 2 (D r
1 � D r

2) =
RX

r =1

vec(Dr
2) � vec(Dr

1)

4.2.2 Generalizing to higher order

Now, consider aK -KS matrix D 2 Rn1n2 :::n K �m 1m2 :::m K given by

D = D 1 � � � � � D K =
K

�
k=1

D k (4.5)

with D k 2 Rnk �m k for k 2 f 1; : : : ; K g.

We can generalize the rearrangement operatorR 2 (for 2-KS matrices) to an operator

R K : Rn1n2 :::n K �m 1m2 :::m K ! RnK mK �����n 1m1 (for K -KS matrices) in a recursive manner.

For this, let us considerR K �1 known, such that

D =
K

�
k=2

D k ) D � = R K �1 (D) = vec(D K ) � � � � � vec(D2); (4.6)

which outputs a (K � 1)th-order rank-1 tensor for an input(K � 1)-KS matrix, and try to

de�ne R K from it.

Note that we can rewriteD = D 1 � (D 2 � � � � � D K ) which means thatD is composed

101



Part II, Chapter 4 � Approximation by Kronecker-structured matrices

Figure 4.3 � Rearrangement operationR K for K =3.

of n1 by m1 blocks given byd1(i; j ) (D 2 � � � � � D K ) in which we can directly applyR K �1 .

If we again run through all these blocks columnwise applyingR K �1 and stacking the

resulting (K � 1)th-order tensors along dimensionK , we will obtain a (K )th-order rank-1

tensor given by:

D � = R K (D) = (vec( D K ) � � � � � vec(D2)) � vec(D1)

Therefore, we can de�ne a recursive algorithm to calculateR K which hasR 2 de�ned in

section 4.2.1 as a base case. Actually, we can go even further and decomposeR 2 recursively

in the exact same way, in which case the base caseR 1 becomes a simple vectorization

operation, leading to Algorithm 7 below. We denotecat(A; B; K ) the concatenation of

A and B along the dimensionK and if one of the entries is emptycat([ ]; B; K ) simply

gives the remaining entryB.

The described procedure is illustrated in Figure 4.3 for the particular case ofK =3.

Algorithm 7 R K (D) = Rearrange(D;n = [ n1; : : : ; nK ]; m = [ m1; : : : ; mK ])

1: K = length( n)
2: if K = 1 then . Base case
3: return vec(D)
4: else
5: R K (D) = [ ] ; . Initialize as an empty object
6: nrows =

Q K
k=2 nk

7: mcols =
Q K

k=2 mk . Size of the blocks
8: for i = 1 : m1 do . Go over all blocks on the matrix.
9: for j = 1 : n1 do

10: D block = D((i � 1)nrows + (1 : nrows); (j � 1)mcols + (1 : mcols))
11: R K (D) = cat(R K (D); Rearrange(Dblock ; n(2 : K ); m(2 : K )); K )
12: end for
13: end for
14: return R K (D)
15: end if

102



4.3. From SVD to CPD

Just like in section 4.2.1, note that for an input (R; K )-KS matrix, the rearrangement

outputs a sum ofR rank-1 tensors with factorsvec(Di ) sorted in the reverse lexicographic

order:

D =
RX

r =1

K

�
k=1

D r
k ) D � =

RX

r =1

vec(Dr
K ) � � � � � vec(Dr

1): (4.7)

4.2.3 Inverse rearrangement

The inverse rearrangementR �1
K consists simply in switching the input and output indexes

of the previous operator so to yieldD = R �1
K (D � ). In practical terms, the resulting

recursive algorithm consists in progressively reconstructing the blocks ofD from their

vectorized versions inD � . The base case is now a matricization (unvec) operation.

4.3 From SVD to CPD

ConsiderD 2 Rn�m and the following constrained approximation problem:

min
D̂2C R

K

kD̂ � Dk 2
F (4.8)

whereD 2 Rn�m and CR
K denotes the set of all (R; K )-KS matrices of size(n � m).

With the help of the rearrangement operators de�ned in section 4.2 and forfn k ; mkgK
k=1

known1, the task of approximating any given matrix D comes down to a low-rank ap-

proximation of the K th-order rearranged tensorD � = R K (D).

When the targeted structure is a (sum of) 2-Kronecker product(s), i.e.K =2, we are

interested in the low-rank approximation ofD � = R 2(D) which is still a matrix (2nd-order

tensor). This is easily achieved � and also optimally, from Eckart-Young theorem [Eckart

& Young 1936] � via the SVD.

The task gets harder if we want to generalize to a (sum of)K -Kronecker product(s),

since a low-rank approximation of an order-K tensorD � = R K (D) is required. In this

work, we propose to use a Canonical Polyadic Decomposition (CPD) [Kolda & Bader 2009]

1. Otherwise, it would necessary to also optimize wit respect to the dimensions of the factors (nk ; mk ).
This is an interesting perspective that we did not explore in this thesis.
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to approximate the tensorD � with a sum of R rank-one tensors.

f d̂
r
kgr =f1;:::;R g

k=f1;:::;K g = CPD( D � ; R) such that D̂
�

=
RX

r =1

d̂
r
K � � � � � d̂

r
1 (4.9)

By comparing equations (4.9) and (4.7), we can see that each composing factorD̂ r
k

can be obtained from the corresponding vector̂d
r
k through a simple matricization opera-

tion: D̂ r
k = unvecnk ;m k (d̂

r
k). The resulting approximation is thus a (R; K)-KS matrix with

factors D̂ r
k .

The proposed procedure to obtain̂D and its factorsD̂ r
k is summarized in Algorithm 8,

which we call HO-SuKro (HigherOrder Sum of Kroneckers) Approximation algorithm.

It is parametrized by the targeted rankR and two vectors n = [ n1; : : : ; nK ] and m =

[m1; : : : ; mK ] with (nk � mk) being the dimensions of thek-th factor D̂ r
k (8r 2 f 1; : : : ; Rg),

such that n =
Q K

k=1 nk and m =
Q K

k=1 mk .

Algorithm 8
h
D̂ ; f D̂ r

kgr =f1;:::;R g
k=f1;:::;K g

i
= HO-SuKroApprox(D; R; n; m)

1: D � = R K (D) = Rearrange(D;n; m) . Rearranging input matrix
2: f d̂

r
kgr =f1;:::;R g

k=f1;:::;K g = CPD(D � ; R) . CPD on rearranged tensor

3: f D̂ r
kgr =f1;:::;R g

k=f1;:::;K g = unvecnk ;m k (d̂
r
k) . Recovering factorsD̂ r

k

4: return
h
D̂ =

P R
r =1 D̂ r

1 � � � � � D̂ r
K ; f D̂ r

kgr =f1;:::;R g
k=f1;:::;K g

i

For the computation of the CPD we use a standard implementation available in the

Tensorlab 3.0 toolbox [Vervlietet al. 2016]. It is important to emphasize that the rank

approximation problem is ill-posed on tensors [de Silva & Lim 2008] and has no direct

solution. One thus needs to resort to iterative approaches (as mentioned in section 3.3.2).

4.4 Proof of concept: simulations

In these experiments, we evaluate the approximation capabilities of the proposed technique

(Algorithm 8), by applying it to synthetically generated matrices. We generate (R; K)-

Kronecker-structured matrices and add some random Gaussian noise as follows:

D noisy =
RX

r =1

 �r D r
1 � � � � � D r

K + � N = D + � N (4.10)
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4.4. Proof of concept: simulations

where the composing submatricesfD r
kgr =f1;:::;R g

k=f1;:::;K g as well as the noise matrixN are gener-

ated with random gaussian entriesN (0; 1) and the parameter� controls the signal-to-noise

ratio. We then run Algorithm 8 to obtain an approximation D̂ 2 CR
K of D noisy .

We establish an exponential decay for the Kronecker summing terms, determined by

the decay constant � 1. If we set = 1, then every summing term has the same power.

The block dimensions are set ton = [5; 4;3] and m = [6; 5;4]. We also setK = 3.

As a performance measure, we use the input and output signal-to-noise ratio (SNR):

SNRin =
kDk 2

F

kD noisy � Dk 2
F

; SNRout =
kDk 2

F

kD̂ � Dk 2
F

:

Informed approximation rank

Table 4.1 shows the output SNR (SNRout ) for di�erent decay values. The rank used in

the approximation D̂ corresponds to the true rank, which is set toR = 3. The results are

averaged over 10 independent runs.

Table 4.1 � Output SNR (in dB) for di�erent decay factors.

Input SNR [dB]

-10 -5 0 5 10 15 20 25 30

Decay  = 1 5.20 10.82 16.04 21.08 25.97 31.07 36.14 40.81 45.97

Decay  = 2 3.63 9.10 15.90 21.00 25.94 31.05 36.13 40.81 45.97

Decay  = 10 3.17 7.92 13.39 19.03 24.32 28.98 34.17 40.59 45.85

We observe an improvement of about 15dB with respect to the input SNR (i.e.

SNRout ' SNRout + 15dB), which proves the e�ectiveness of proposed approach. When

the energy of the terms decays quickly (i.e. for big decay constants ), the factors with

less energy become harder to retrieve, especially under higher noises. At some point, the

noise can surpass the energy of some terms. When there is no decay ( = 1), there is

no such problem. In this case, however, the factors might be recovered in any permuted

ordering by the CPD.

An example of recovered factors is given in Figure 4.4. We set smaller factor dimensions

(n = [2; 2;3], m = [3; 4;4]) and R = 2 for better visualization. While the factors in the

�rst summing term ( r = 1) are recovered with quite good precision, some di�erences are

easy to spot in the remaining terms (second column).
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Figure 4.4 � Example of recovered factors with SNRin = 10dB.
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4.4. Proof of concept: simulations

Figure 4.5 � SNR of the recovered factors as a function of the input SNR (left) and the
reconstruction rank (right).

Unknown approximation rank

We now set = 2 and R = 3, but we do not supposeR to be known.

Figure 4.5 shows the output SNR as a function of the input SNR (left plot) and as a

function of the approximation rank (right plot). Note that the best reconstruction occurs

at the true rank R̂ = R = 3, except in very severe noise scenarios where the noise might

mask some of the factors. Similar results are obtained for di�erent block dimensions.

The results obtained in these simple experiments are reassuring, in that they provide

encouraging initial evidence on the e�ectiveness of the proposed matrix approximation

approach. In the following chapters, we will push further the ideas here introduced.
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Chapter 5

Kronecker-structured Dictionary

Learning

In this chapter we apply the proposed Sum-of-Kronecker model to the Dictionary Learn-

ing task. We show how the proposed HO-SuKro structure, can be used to obtain more

compact and readily-applicable dictionaries than the completely unstructured ones when

the targeted data is a collection of multiway arrays.

After formulating the Structured Dictionary Learning problem in a suitable way for

multidimensional input data (section 5.1), we introduce two di�erent algorithms for learn-

ing dictionaries constrained to the proposed HO-SuKro structure (sections 5.2 and 5.3).

This chapter contains contributions published in the following conference

papers: [Dantaset al. 2018] (�rst algorithm, section 5.2) and [Dantas

et al. 2019b] (second algorithm, section 5.3).

The algorithm presented in section 5.2 is the natural extension to the dictionary learn-

ing problem of the tools developed in chapter 4 for matrix approximation. The algorithm

presented in section 5.3 on the other hand, uses a di�erent line of reasoning but leads to

a considerably more e�cient algorithm than the previous one.

Later, in section 5.4, we discuss the computational complexity of the proposed algo-

rithms as well as some implementation details that have a considerable impact on both

algorithmic complexity and actual speed. This leads to a discussion on how the theoretical

speedups provided by the structured dictionaries translate to actual speedups in practice

and which are the main bottlenecks in this regard.

5.1 Problem Statement

Let Y be a collection ofN tensor datafY 1; : : : ;Y N g all of the same size. For the sake of

simplicity let us supposeY i are three-mode arrays inRn1 �n 2 �n 3 stacked along the fourth
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Figure 5.1 � Each input data sampleY i is a tensor (in this case, a three-mode array). To
conform with the classical Dictionary Learning model, each vectorized sample corresponds
to a column of the input data matrix Y .

mode to formY 2 Rn1 �n 2 �n 3 �N �generalization to higher-order tensors is straightforward.

We are interested in the Dictionary Learning problem, which consists in representing the

input data as a linear combination of a few atoms from a certain (synthesis) dictionaryD

while simultaneously �nding the dictionary itself. This problem is usually formulated for

vector input data (cf. (1.9)). We recall it below along with an equivalent entrywise form:

argmin
D2S D ;X

kY � DXk 2
F +

NX

i=1

g(x i ) () argmin
D2S D ;x i

NX

i=1

ky i � Dx i k2
2 + g(x i ) (5.1)

In the case of multi-dimensional data, a vectorized version of data samples is considered:

argmin
D2S D ;x i

NX

i=1

k vec(Y i ) � Dx i k2
2 + g(x i ) (5.2)

where D 2 Rn1n2n3 �m is the dictionary which is often overcomplete (m � n1n2n3) and

belongs to a constraint setSD . Function g is a sparsity inducing penalty andx i is the

sparse vector of coe�cients describing the vectorized tensorY i in the set of atomsD.

Most often, SD is the set of matrices with unit Euclidean norm columns. The equivalence

between (5.2) and the previously presented formulation (5.1) is illustrated in Figure 5.1.

Each column of the input data matrix Y is given by a vectorized sampley i = vec(Y i ).

Y = [vec(Y 1); vec(Y2); : : : ; vec(YN )] (5.3)

When tensor data is considered, two main drawbacks emerge in this formulation: i) it

is completely agnostic to the original multidimensional structure of the data; ii) data sizes

nk may be relatively large (even more so the productn1n2n3) and both the storage of

matrix D and the computation of products such asDx i may be cumbersome.
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5.1. Problem Statement

One way to tackle the second issue is to restrict the classSD of dictionaries that are

sought in problem (5.2). To also tackle the �rst mentioned issue, we make use of the

proposed Higher-Order Sum of Kronecker model (HO-SuKro), which we have argued to

be particularly suited to tensorial input data. This suitability comes primarily from the

fact that the Kronecker product allows to create separable operators acting in vectorized

multiway data. We recall the HO-SuKro structure:

D =
RX

r =1

D r
1 � D r

2 � D r
3 (5.4)

where � is the Kronecker product,D r
k are matrices inRnk �m k and m1m2m3 = m. The

unit-norm constraint in D is handled as a post-processing step (see sections 5.2 and 5.3).

To summarize, we tackle the structured dictionary learning problem in which we con-

strain the learned dictionary to be(R; K )-Kronecker-structured. So, the constraint setSD

is hereby given by the setCR
K of all (R; K )-KS matrices of size(n � m) and with unit-norm

columns.

To provide some extra intuition, for a �xed r we can see the termsD r
k as linear

operators acting independently in thek-th mode of a targeted tensorial data. ForR =1, it

boils down to the classic separable operators, which include for instance the 3-dimensional

discrete cosine transform (3D-DCT).

An obvious remark about HO-SuKro is that the number of parameters to representD

using (5.4), which isR(n1m1 + n2m2 + n3m3), is much smaller than the number of entries

n1n2n3m1m2m3 as long asR is small. This entails several advantages w.r.t. unstructured

dictionaries (as detailed in section 4.1.1): 1) matrix products with the dictionary can be

computed markedly faster; 2) storage cost is signi�cantly reduced; 3) learning process

demands fewer training data � in other words, a reduced sample complexity.

By increasing the rankR, the set of attainable linear operators grows. However, the

computational costs associated to the resulting dictionary also increase (the same applies

to the storage cost and sample complexity). Therefore, rank value in the proposed ap-

proach may be understood as a trade-o� between precision and complexity, storage cost

and robustness to small training sets.

A tensor formulation

Let the coe�cient vector x i be rewritten as a tensorX i =tensm1 ;m 2 ;m 3 (x i ) 2 Rm1 �m 2 �m 3

and D : Rm1�m 2�m 3 ! Rn1 �n 2 �n 3 as an operator such that elementwise,Dx i =vec(DX i ),
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and m1m2m3 = m. Equation (5.2) may be rewritten as follows:

argmin
D 2S D ;X i

NX

i=1

kY i � DX i k2
F + g(X i ) (5.5)

Let us denote
 a tensor product mapping tuples of linear operatorsD r
k to separable

operators. It is such that, for any matricesD 1 and D 2 of legitimate sizes,(D 1 
 D 2)X =

D 1XD T
2 . A generalization to the third order, and further, is given by the n-mode product,

(D 1 
 D 2 
 D 3)X = X � 1 D T
1 � 2 D T

2 � 3 D T
3 (5.6)

Note that this tensor product is deeply connected to the Kronecker product, which

also maps tuples of linear operatorsD r
k to separable operators. The di�erence is that the

resulting operator D now applies directly to the data in its original tensor form, thus

skipping the vectorization step required by the Kronecker product (cf. (3.1)).

The HO-SuKro model now translates as

D =
RX

r =1

D r
1 
 D r

2 
 D r
3: (5.7)

Applying the usual tensor rank de�nition (see section 3.3) w.r.t. the tensor product


de�ned above, we denoterank 
 (D ) the smallest number of productsD 1 
 D 2 
 D 3 that

sum up exactly toD . In that sense, the HO-SuKro model (5.7) comes down to imposing

rank 
 (D ) = R. Therefore, the dictionaryD is in fact an unfolded version of the operator

D , which is supposed to be low-rank. Similarly, separable dictionaries such as DCT are

nothing more than rank-one operators. Given the relative success of separable dictionaries

(for instance, in image processing applications), it seems reasonable to restrain the set

of admissible dictionariesSD to low-rank operators, that are even more general than

separable ones.

Interestingly, equation (5.7) de�nes an operator version of the well-known CP decom-

position for multiway arrays (recall that the CPD can be de�ned for a generic tensor

product instead of the outer product, as mentioned in section 3.3). Indeed, we have seen

in chapter 4 that the HO-SuKro termsD r
k may be computed by performing the CPD of

a transformed versionR(D) of D.
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General optimization framework

Following the literature, we employ a sub-optimal alternating minimization strategy to

tackle problem (5.1), which is not jointly convex (as discussed in section 1.5). Its non-

convexity also implies that there are no optimality guarantees for this classical alternating

approach. At each step, respectively calleddictionary update and sparse coding, we opti-

mize with respect to one variable, resp.D and X, while �xing the other. In practice, each

sub-problem is usually not exactly solved. The procedure is repeatedN it times, as shown

in Algorithm 9.

Algorithm 9 [D; X] = HO-SuKroDL(Y ; R; n; m)

for it = f1; 2; : : : ; Nit g do
Sparse Coding: X it ' argmin

X
kY � D it X k2

F + g(X )

Dictionary Update: D it ' argmin
D2C R

K

kY � DX it k2
F

end for

The sparse codingstep is unchanged by the Kronecker structure constraint since the

dictionary is �xed, and can be performed by any existing sparse regression algorithm. One

may use, for instance, greedy heuristics such as Orthogonal Matching Pursuit (OMP) [Pati

et al. 1993] or convex relaxations based algorithms such as FISTA [Beck & Teboulle 2009].

The Kronecker structure can be exploited to positively impact the running time and

complexity of these methods, see section 5.4 for more details.

The dictionary update step is tackled di�erently in each of the two proposed ap-

proaches, detailed in sections 5.2 and 5.3.

5.2 A Projected Gradient Approach

The di�culty in the dictionary update step lies in the (R,K)-KS structure constraint on

D. In fact, in chapter 4 we have shown that this constraint is equivalent to imposing a

Canonical Polyadic Decomposition model on a rearranged tensorR K (D) obtained from

dictionary D. Therefore, for this step, we propose a projected gradient algorithm, where

the projection onto the set ofCR
K (set of matrices written as a sum ofR K -Kronecker

products) is given by the CPD algorithm applied to the rearranged tensorR K (D) as

shown in Algorithm 10. The projection step was previously presented in Algorithm 8.
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Algorithm 10 D = DictionaryUpdate(Y ; X; R; n; m; D 0)

1: Set t = 0
2: while kD t+1 � D tkF > tol do
3: D t+1 = D t �  t (D tX � Y )X T . Gradient step
4: D t+1 = HO-SuKroApprox(D t+1 ; R; n; m) . Projection onto CR

K (see Alg. 8)
5: end while
6: Normalize columns ofD

The step-size t is determined with a backtracking line search. For acceleration pur-

poses, the CPD can be initialized with the results of the previous iteration. Finally, note

that the column normalization (line 5) can break the imposed structure. This is not a

real concern, since the normalization coe�cients can be stored separately, implying only

m additional products in a matrix-vector operation. Put di�erently, it is equivalent to

storing a dictionary in the form D� where� is a diagonal matrix containing the inverse

norm of each column ofD.

5.3 An Alternate Least Squares approach

In what follows, we show that a rather simple algorithm can be designed to estimate

matricesD r
k in the HO-SuKro Dictionary Learning model. This contrasts with sometimes

intricate optimization schemes employed in the literature (see references mentioned in

section 4.1.2). In particular, it is more e�cient than the projected alternating algorithm

proposed in section 5.2. The �nal gains in parameter size and memory requirements are

the same for both algorithms, once the dictionary is learned. However, the time spent in

the learning process can be signi�cantly di�erent between both algorithms.

The main distinction between the two proposed algorithms, which mostly explains the

e�ciency discrepancy, is that in the previous algorithm weleavethe constraint space at

each step and then project back into it. This means that we mainly deal withunstructured

dictionaries during the learning process. In this new algorithm, on the other hand, we

re�ne directly the factors D r
k within the HO-SuKro structure.

Just as before, we employ the described alternate optimization strategy and thesparse

coding step remains unchanged. Let us now concentrate on thedictionary update step,

which is a�ected by the HO-SuKro constraint. In this algorithm, we exploit the following

insight: the minimization with respect to a single blockD r
k , with X and all other blocks

fD r 0

k0gr 06=r
k06=k �xed, is a quadratic problem which has a closed-form solution. Let us detail this
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point by tacking K = 3 for simplicity. The extension to a higher order is straightforward.

The partial cost function with respect to the blocksfD r
kgr =1;:::;R

k=1;:::;3 may be written as

follows:

f (fD r
kgk;r ) =

NX

i=1

k vec(Y i ) �
RX

r =1

(D r
1 � D r

2 � D r
3) x i k2

2 (5.8)

Of course, one may think of multiple techniques to minimize (5.8), for instance gradient-

based approaches, second order methods, or block-coordinate descent. In fact, because of

the similarity of (5.8) with the Tucker Decomposition problem (de�ned in section 3.4.1)1,

a �rst approach we tried (but that revealed to be slower than the �nal retained solution)

was to minimize (5.8) in an alternating fashion, �xing all parameters but one elementary

block D r
k . This leads to a quadratic problem, which can be solved in closed form.

However, in the spirit of Alternating Least Squares algorithms (ALS), it is possible to

gather all elementary blocksD r
k for a �xed modek and rather alternate between only three

macro-blocks (one per mode)� k = fD r
kgr 2[1;R ], 1 � k � 3, and still have a closed-form

solution. Figure 5.2 illustrates the macro-blocks� k .

Figure 5.2 � All terms D r
k in a same macro-block� k are updated simultaneously.

5.3.1 Quadratic partial cost function explained

Using, for instance, the �rst-mode unfolding denotedY (1) 2 Rn1�n 2n3N for Y and X (1) 2

Rm1�m 2m3N for X , and identity (3.2) which allows to isolate a single blockD r
1 from the

Kronecker product, one can rewrite (5.8) as

f (fD r
kgk;r ) = kY (1) �

RX

r =1

D r
1X (1) (D r

2 � D r
3 � I N )T k2

F (5.9)

1. We refer the interested reader to Appendix B.1 for a more detailed parallel between this problem
and the Tucker decomposition.
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The identity matrix I N that appears in the Kronecker structure is an implicit way to

apply the dictionary to X i simultaneously for all i 2 f 1; : : : ; Ng. Equation (5.9), in turn,

can be seen as a matrix factorization problem

f (fD r
kgk;r ) = kY (1) � � 1U 1k2

F (5.10)

where � 1 =
h
D 1

1; : : : ;D R
1

i
2 Rn1 �Rm 1 contains the horizontally-stacked matricesD r

1

with 1 � r � R, and U 1 =
h
U 1

1; : : : ; U R
1

i
2 RRm 1 �n 2n3N the vertically-stacked right-

hand terms with U r
1 = X (1) (D r

2 � D r
3 � I N )T .

Note that f is quadratic with respect to� 1, and an optimal solution for �xed U 1 is

given in closed form by

d� 1 = argmin
�

kY (1) � � 1U 1k2
F = Y (1) U

y
1: (5.11)

whereU y
1 = U T

1

�
U 1U T

1

� �1
is the right pseudo-inverse ofU 1. A similar reasoning applies

to the other modes with the adapted de�nition ofU k .

5.3.2 ALS for training

Since we have shown thatf is quadratic with respect to blocks� k , let us now derive

formally an algorithm to estimate these blocks� k using Alternating Least Squares, as

well asX . ALS is reported as a baseline algorithm for unconstrained PARAFAC [Kolda &

Bader 2009]. It is also a well studied algorithm for computing the Tucker decomposition, a

decomposition to which our training problem reduces whenR =1 [Caiafa & Cichocki 2013].

The proposed ALS is summarized in Algorithm 11, for the spacial case ofK = 3.

Note that in this con�guration, the training data in its matrix form Y 2 Rn1n2n3 �N (cf.

equation (5.3)) is obtained from the tensorY 2 Rn1 �n 2 �n 3 �N by unfolding it w.r.t. the

fourth mode Y T
(4) . Factors � k are estimated in an alternating fashion using (5.11), while

X is computed using any sparse coding method. Little can be said about convergence

of Algorithm 11, since ALS for the training problem does not have a local convergence

guarantee [Kolda & Bader 2009], and the sparse coding step is not even guaranteed to

decrease the cost function. Yet, no convergence problems have been observed in practice.

Extension of Algorithm 11 to K > 3 (and evenK = 2) is straightforward.

Special attention has to be devoted to satisfy the unit-norm constraint. Like most

dictionary learning algorithms, we normalize the estimatedD =
P

r D r
1 � D r

2 � D r
3 at
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each iteration. However, at line 17 of Algorithm 11, we store both the blocksfD r
kgr =1;:::;R

k=1;:::;3

and the norms� = diag (1=kD(:; j )k2) separately to make use of the Kronecker structure

in the sparse coding step. Even if this ad-hoc normalization step may marginally increase

the cost function, it was not observed to decisively impact the algorithm's performance.

Algorithm 11 Alternating Least Squares for HO-SuKro
1: INPUTS: Data Y , initial D r

k (k 2 [1; 2;3]; r 2 [1; : : : ; R])
2: Write D r

4 = I N for all r � R
3: while stopping criterion is not met do
4: . Sparse Coding
5: X (4) ' argminX kY T

(4) � DX kF + g(X ) using any sparse coding algorithm.
6: . Dictionary Update
7: while update on fD r

kgk;r is signi�cant do
8: for k from 1 to 3 do
9: Set U r = X (k ) (� l6=kD r

l )
T for all r � R

10: Set U = [ U 1; : : : ; U R ] stacked vertically

11: � k = Y (k )U T
�
UU T

� �1

12: Set [D 1
k ; : : : ;D R

k ] = � k stacked horizontally
13: end for
14: end while
15: . Dictionary Column Normalization
16: � = diag (1=kD(:; j )k2), with j 2 f 1; : : : ; mg
17: D = (

P R
r =1 D r

1 � D r
2 � D r

3)�
18: end while
19: OUTPUTS: Estimated blocksD r

k , norms �, sparse X

5.4 Complexity analysis and practical speedups

In this section we analyze the complexity costs associated to the HO-SuKro dictionaries.

It is important to distinguish two scenarios in this discussion: 1) the complexity of the

learning algorithm; 2) the complexity associated to HO-SuKro dictionaryonce learned.

When it comes to the second point, the advantages of HO-SuKro have been scrutinized

in section 4.1.1. As a brief recall, they are threefold: i) reduced computational complexity

in matrix-vector operations; ii) reduced storage cost; iii) reduced sample complexity.

Naturally, these advantages can also positively impact the learning algorithm. The

third advantage (reduced sample complexity) can be very useful in practice by allowing

the learning to be carried over with less training data, making it proportionally lighter
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and faster. The second advantage contributes in reducing space complexity during the

training process whenever the dictionary is structured2. Finally, in terms of computa-

tional complexity, the learning algorithms are impacted in both steps of the alternate

minimization: 1) dictionary update and 2) sparse coding (detailed respectively in sections

5.4.1 and 5.4.2).

Basically, as already mentioned, every time a product betweenD and any collection

of vectorsV = [ v1; : : : ; vN ] 2 Rm�N is computed, one may use the following result:

DV =

 RX

r =1

D r
1 � D r

2 � D r
3

!

V =
RX

r =1

V � 1 D r
1 � 2 D r

2 � 3 D r
3 (5.12)

where V 2 Rm1 �m 2 �m 3 �N is a tensorized version ofV and � i is the mode-wise prod-

uct that veri�es A � i V := AV (i) . So, it comes down to a sequence of mode products with

the smaller matricesD r
k which involves approximatelyR(

P
k nk)(

Q
k mk)N term to term

products instead of(
Q

k nkmk)N for a full matrix product DV .

The same reasoning applies to the adjoint operator, by using the simple observation

that D T =
RP

r =1
(D r

1)T � (D r
2)T � (D r

3)T .

When computing a sequence of mode-product as in (5.12), the mode ordering can

be chosen wisely to minimize the total complexity. Since the mode dimensionsmk are

progressively replaced bynk (< m k), an e�cient strategy consists in choosing modes

with higher ratio mk=nk �rst, to maximize the dimensionality reduction at each step.

For simplicity, we will use an upper bound for the complexity of (5.12), given by the

compact expressionR(
P

k nk)(
Q

k mk)N . In this simpli�cation, the tensor dimensions are

always considered to bemk 8k, even though in practice such dimensions are progressively

reduced tonk � mk as the corresponding mode products are performed.

Additionally, some parallelization is possible with respect tor , since the di�erent terms

in the summation can be computed independently. This point is not considered in the

complexity analysis below.

2. Note that in the projected gradient algorithm, the dictionary becomes unstructured at every it-
eration, before the projection step. Nevertheless, during the entire sparse coding step, the HO-SuKro
structure can still be harnessed.
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5.4.1 Dictionary update step

Algorithm 10

In the projected gradient algorithm, the dictionary update consists of two major steps: a

gradient update (a) and a projection step (b).

(a) D t+1 = D t �  t (D tX � Y )X T , whereD t is structured but not D t+1 .

(b) D t+1 = HO-SuKroApprox(D t+1 ; R; n; m), where D t+1 becomes structured again.

During the gradient step, the dictionary is structured, which accelerates the matrix prod-

uct D tX. After this, the dictionary is no longer structured until the projection step is

�nished. The computational cost of the latter step is dominated by the CPD computa-

tion. The computational complexities in each of these steps are detailed in Table 5.1. We

denotennz(X) the number of non-zero entries inX. 3

For the CPD, we considered the standard ALS algorithm discussed in section 3.3.2.

Its cost is dominated by matrix-matrix products, repeated fork 2 f 1; : : : ; K g, between

the unfoldings of the rearranged dictionary and a matrix grouping all other �xed factors,

respectively of sizes(nkmk �
Q

l6=knlml ) and (
Q

l6=knlml � R).

Rearrangement cost Note that the rearrangement operation is apparently transparent

in terms of computational complexity, since it does not involve any sum or multiplication

operation, only some memory reallocation. In practice, however, such operation does have

a time cost. A similar discussion emerges when implementing the successive mode products

in the HO-SuKro matrix-vector operation. This point is further developed in section 5.4.3.

Table 5.1 � Algorithm 10 computational complexity: dictionary update.

Operation Complexity

Gradient step
� = DX � Y R(

P
k nk)(

Q
k mk)N + (

Q
k nk)N

�X T (
Q

k nk) nnz(X)

Projection step CPD O(KR (
Q

k nkmk))

3. So, if �s is the average sparsity of its columns, we have thatnnz(X) = � sN .
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Algorithm 11

In the ALS algorithm, the HO-SuKro structure is particularly useful when calculatingU r

for all r � R (line 9). Table 5.2 lists the computational complexities for one iteration of

the inner loop in the dictionary update step (lines 8-13 in Algo. 11). The listed operations

are performed for each of the modes and repeated a certain number of times (outer loop,

lines 7-14). Our experiments indicate that very few outer iterations su�ce to provide good

convergence (typically less than �ve).

Computational complexities for an alternative calculation ordering are detailed in

Appendix B.2. Although leading to comparable theoretical complexities, this alternative

implementation was empirically observed to be slower in practice.

Table 5.2 � Algorithm 11 computational complexity: dictionary update

Operation Complexity

U r ; 8r � R R(
P

l6=knl )(
Q

l ml )N

Y (k )U T R(
Q

l nl )mkN

UU T R2(
Q

l6=knl )m2
kN

(UU T )�1 (Rm l )3

Discussion

Considering that typically N �
Q

k mk >
Q

k nk � R, the �rst line in both Tables

5.1 5.2, scaling with(
P

l nl )(
Q

l ml )N , are among the most costly � alongside with the

CPD, which, although not scaling with N , requires several iterations of the reported

complexity. Thanks to the tensor structure we manage to completely avoid complexities

scaling with (
Q

l nl )(
Q

l ml )N as it would be the case for a single productDX or D T Y

with an unstructured dictionary.4

In practice, the projected gradient algorithm takes signi�cantly more iterations to

converge (about an order of magnitude) than the ALS algorithm. In addition, in the

former algorithm, the CPD adds an extra inner loop, which also takes a considerable

number of iterations. The result in practice is a gap of about an order of magnitude in

4. In Algorithm 10, we still manipulate an unstructured dictionary during the CPD step. However,
no operation involving Y or X (which bring the dimension N ) is performed during this step.
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execution time. Obviously, the gap depends on several parameters, especially the stopping

criteria. A more detailed comparison is provided in the experiments chapter (section 6.3.2).

Note that we neglected the sparsity ofX when multiplying with a HO-SuKro dic-

tionary. Nonetheless, the �nal complexity is not drastically a�ected by this simpli�ca-

tion, since the sparsity is lost as soon as the �rst mode-product is performed. The en-

suing mode-products are not a�ected. The �rst mode-product (say, modek) would cost

nk nnz(X) instead of nk(
Q

k mk)N , but the �nal complexity remains of the same order:

R(
P

k nk)(
Q

k mk)N .

In terms of space complexity, the structured dictionary is more compact since only

the factorsD r
k (and norms�) need to be stored. However, in the projected gradient algo-

rithm, the dictionary repeatedly becomes unstructured, which invalidates this particular

advantage. Since the coe�cient matrixX is sparse � and therefore also compact to store �,

the training data matrix Y ends up dominating the space complexity. To e�ectively over-

come this bottleneck and achieve actual scalability, one should consider, associated to the

proposed structured dictionaries, an online leaning algorithm, for instance, inspired by

the approaches proposed in [Mairalet al. 2009] and [Sulamet al. 2016].

5.4.2 Structured sparse coding

Sparse coding algorithms, either greedy (like OMP and its variants) or convex-relaxation-

based (like Iterative Soft-Thresholding algorithm � ISTA � and its variants), can also

bene�t from the proposed structure in the dictionary. Basically, any product with the

dictionary or its adjoint can be replaced by a mode-product with the smaller factorsD r
k

as shown in eq. (5.12).

In OMP-like algorithms, the complexity of an iteration is dominated by the calculation

of the inner product between the dictionary and the current residual inO(
Q

k nkmk). See

Table 5.3 for some empirical evidence of this fact, which was previously pointed out in

section 2.1.1. For an HO-SuKro dictionary, this operation can be accelerated using (5.12)

to a complexity of O(R(
P

k nk)(
Q

k mk)). This operation is followed by a normalization

using � with a minor computation cost of
Q

k mk multiplications.

The same reasoning applies to ISTA-like algorithms (see section 2.2.1). The itera-

tion complexity is dominated by the gradient steprf (D) = D T (Y � DX ). The matrix

products DX and D T (Y � DX), or (D T D)X and D T Y , can be replaced by structured

products.

The mentioned accelerations can be used to speedup the learning process (sparse
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Part II, Chapter 5 � Kronecker-structured Dictionary Learning

Table 5.3 � Time spent in operationD T � for 10 iterations

n [ 6; 6; 6] [ 8; 8; 8] [10; 10;10]

m [12;12;12] [16;16;16] [20;20;20]

OMP Cholesky 46 % 83 % 93 %

coding step) and also after it, once the dictionary is learned and applied repeatedly to

some targeted data. In the patch-based denoising applications considered in chapter 6, the

latter corresponds to the reconstruction of all image patches using the learned dictionary.

Table 5.3 shows the percentage of time spent in the matrix-vector productD T � t be-

tween the dictionary and the current residual,� t = y� Dx t given the estimated coe�cient

vector x t at iteration t, for a standard implementation of OMP with an unstructured

dictionary. A higher time percentage implies a higher potential of speedup with the struc-

tured dictionary. Note that the percentage grows with the problem's dimensions.

Other more intricate implementations of OMP, such as Batch-OMP (see Algorithm 4

in chapter 2), which assumes the precomputation of bothD T Y and the Gram matrix

(D T D), still admit some acceleration with the proposed structure. This, however, requires

a more involved discussion, which we put aside for future works.

5.4.3 From theoretical to practical speedups

The proposed accelerations, in both dictionary update and sparse coding steps, rely on

the theoretical complexity of tensor mode-products. In this section, we evaluate to which

extent such theoretical gains translate into actual speedups.

As explained, a product with the HO-SuKro dictionary becomes a sequence of mode-

products. In the way such operations are conventionally implemented, the data tensor is

repeatedly unfolded along each of its modes. Given a tensorX 2 Rm1 �m 2 �m 3 �N , the mode-

k unfolding is obtained by cascading two operations: (i) a permutation of the indexes of

X so that modek becomes the �rst dimension of the permuted tensor, and (ii) a reshape

operation that unfolds all modes but the �rst along the second dimension. Although such

operations are neglected in theory (consideredO(1)), this is not the case in practice as a

reorganization of the tensor entries in memory might be required.

This seemingly harmless overhead actually creates a considerable gap between theoret-

ical and empirical speedups, especially for smaller dimensions, as exempli�ed in Table 5.4.
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Table 5.4 � Speedups in matrix-vector products

Dimensions Theoretical speedupj Empirical speedup

n m R =1 R =3 R =5

[ 6; 6; 6] [12; 12;12] 20.3 0.8 6.8 0.4 4.9 0.3

[ 8; 8; 8] [16; 16;16] 36.6 4.5 12.2 2.0 7.3 1.4

[10;10;10] [20;20;20] 57.1 13.2 19.1 5.7 11.4 3.5

Nevertheless, some considerable acceleration is still achieved in practice, in higher dimen-

sions. A lower-level implementation [Liet al. 2015] [Matthews 2018] can be considered to

try and tighten this gap, which would be of great interest since there is still a large acceler-

ation potential to be exploited. The approach proposed in [Vannieuwenhovenet al. 2013]

that aims at eliminating explicit data reordering is also worth-considering.

123





Chapter 6

Experiments

In this chapter we evaluate the dictionary learning algorithms that were proposed in

chapter 5 on some image denoising applications.

This chapter gathers results presented in the following papers:

[Dantas et al. 2018] (color image denoising), [Dantaset al. 2019b] and

[Dantas et al. 2019a] (hyperspectral image denoising).

After brie�y discussing the sparsity-based denoising framework (section 6.1), we de-

scribe the patch-based approach employed in all experiments (section 6.2). Then, in sec-

tions 6.3 and 6.4 we show some results respectively on color image [Dantaset al. 2018]

and hyperspectral image [Dantaset al. 2019b] data. Finally, in section 6.5 we introduce

a more advanced hyperspectral image denoising approach [Dantaset al. 2019a] inspired

by some prior-art techniques, using a low-rank image model.

6.1 Sparsity and denoising

Removing noise from a certain targeted data is a classical problem in signal processing.

Being the simplest possible inverse problem, it provides a convenient platform over which

signal processing ideas and techniques can be tested and perfected. In this chapter, we

will be interested on the image denoising task. There is, of course, an immense variety

of techniques using di�erent paradigms to tackle this problem, each accompanied by a

vast literature. We thus have no pretension to provide a complete survey of the area. But

before describing the proposed algorithms and simulation set-ups we dedicate this section

to brie�y overview a particular family of techniques: those using sparse and redundant

representation modeling. For a more detailed survey, we refer the reader for instance

to [Elad 2010, Chapter 14].

The sparse model supposes the existence of a suitable representation domain (a dic-

tionary) in which the image can be sparsely approximated [Mairalet al. 2008].
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Initial attempts to design dictionaries that ful�ll the above model assumption in-

cluded wavelets of various sorts [Mallat 2008], wedgelets [Donoho 1999], curvelets [Starck

et al. 2002], contourlets [Do & Vetterli 2005], bandelets [Pennec & Mallat 2005], shear-

lets [Labate et al. 2005] and steerable wavelets [Simoncelliet al. 1992]. These analytical

transforms have had great success in the image denoising task [Portillaet al. 2003,Eslami

& Radha 2006].

All the above-mentioned methods employ a global model on the image, which requires

a dictionary that sparsi�es images as a whole. An appealing alternative to this global

approach is a local processing of the image by operating on small patches. This led to

the introduction of trained dictionaries [Elad & Aharon 2006, Mairalet al. 2008], which

exploit the non-local self-similarity in natural images (i.e. the existence of self-repeating

patterns across the image). Another related technique that exploits this same property is

the Non-Local Means (NLM) algorithm [Buadeset al. 2005] and related works [Kervrann

& Boulanger 2006,Mahmoudi & Sapiro 2005].

Patch-based dictionary learning (to be detailed in section 6.2 below) has been �rst

applied to black and white images in [Elad & Aharon 2006] and then extended to color

images in [Mairal et al. 2008] by employing 3D-patches to also capture the correlation

between the di�erent color channels. The application of this type of approach to hyper-

spectral images (HSI) is still in its early stages, some examples are [Xinget al. 2012, Fu

et al. 2015,Zhao & Yang 2015]. The high correlation and redundancy in the spectral do-

main is known to considerably enhance the denoising performance [Lamet al. 2012,Rasti

et al. 2018], which motivates the use of 3D-modeling approaches. However, it remains

unclear if �and how� such correlations can be duly exploited via local processing with

patches. While in [Xinget al. 2012] and [Fuet al. 2015] the patches range over the entire

spectral dimension, in [Zhao & Yang 2015] the patches are extracted from a reshaped

version image obtained by vectorizing the spatial dimensions. Here, we adopt a straight-

forward extension of the approaches in [Elad & Aharon 2006] and [Mairalet al. 2008], by

taking 3D-patches distributed all over the HSI data cube.

6.2 Patch-based denoising procedure

A common approach for dictionary-based image denoising consists in handling small image

patches [Elad & Aharon 2006]. It allows to collect enough training data to learn the

dictionary even if only the noisy image is used. An alternative scenario would be to
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Figure 6.1 � Construction of the training data matrix Y by extracting 3D-patches from
the noisy image.

learn the dictionary on a corpus of patches taken from a set of noiseless images. In the

following experiments, we place ourselves in the formersingle-imagedenoising scenario.

The adopted simulation set-up follows the one proposed in [Elad & Aharon 2006].

The test images are corrupted by white Gaussian noise with standard deviation� .

Learning

The training data consists ofN patches which are extracted from the noisy image. The

patches are taken uniformly spaced and might partially overlap with each other, depending

on N . As a pre-treatment, each patch is re-centralized to have a zero mean along its pixel

values. Then, each patch is vectorized to form the columns of the training data matrixY .

The construction of the training data matrix is illustrated in Figure 6.1. In our exper-

iments, we deal with 3D-data from which we extract 3D-patches of size(n1 � n2 � n3).

We denote(Npx1 � Npx2 � Npx3) the dimensions of the input image. Note that for the

color image experiments (section 6.3), the third dimension is only of sizeNpx3 = 3. In this

case, the patches take the entire range of pixels in this dimension (i.e.n3 = Npx3 = 3) and

the patch extraction consists in sweeping only through the two spatial dimensions. This

is di�erent from the hyperspectral case (section 6.4) in whichn3 < N px3 and the patch

extraction phase also includes sweeping through the third (spectral) dimension.

A dictionary is learned from this data with N it iterations of alternating optimization

(dictionary update and sparse coding). Sparse coding is performed by OMP with an error

threshold � proportional to the noise level� , i.e.: � = �
p Q

k nk .

Although in sections 6.3 and 6.4 te noise level is supposed known, in section 6.5 we

propose a way to estimate it.
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Denoising

The learned dictionary is then used to reconstruct all possible overlapping patches in the

image, with a one-pixel translation from its neighbors. Therefore, the total number of

patches to be reconstructed is given byNpatches = ( Npx1 � n1 + 1)(N px2 � n2 + 1)(N px3 �

n3 + 1). The reconstruction is performed via sparse coding with the OMP algorithm, just

like in the learning phase, but on a considerably larger amount of data (Npatches � N ).

Signal, as opposed to noise, is expected to be well approximated by few atoms. Thus, the

reconstruction upon the learned dictionary is expected to reject the noise to some extent.

As soon as the reconstruction error reaches the noise threshold� , it stops. Each pixel in

the �nal denoised image is then calculated as the weighted average of all reconstructed

patches covering that pixel (each with weight one) and the pixel value in the noisy image

(with weight inversely proportional to the noise level� = �=� ).1 See [Elad & Aharon 2006]

for details on why, in some sense, this is an optimal recovering procedure.

6.2.1 Visualizing the atoms

In �gure 6.2 we show some examples of dictionaries learned from noisy color images. We

compare a �xed DCT dictionary with some learned ones: the unstructure KSVD and the

structured HO-SuKro dictionaries. The ODCT atoms, similarly to HO-SuKro of rank 1,

are limited to purely vertical or horizontal patterns, due to their separable nature. The

KSVD atoms, in turn, manage to capture richer patterns such as diagonal stripes in

di�erent angles. Note that HO-SuKro atoms also manages to represent such diagonal (as

well as circular) patterns whenR is increased.

We draw attention to the fact that such color atoms can be multiplied by negative

coe�cients when reconstructing an input signal, which inverts its colors. So, black turns

into white (and vice versa), red becomes cyan, green becomes magenta and blue becomes

yellow (basically switching from RGB to CMY colors).

In �gure 6.3 and 6.4 we compare structured (HO-SuKro) and unstructured (KSVD)

dictionaries in higher noise scenarios. Note that the KSVD atoms look considerably more

noisy than the HO-SuKro ones, which indicates that the structure constraint may serve as

a regularization which avoids over�tting (i.e. ��tting the noise�). This observation leads

us to expect the structured dictionaries to achieve better results under higher noise.

1. Unless stated otherwise, we set the proportionality constant to� = 0:1 maxpx , following [Elad &
Aharon 2006], wheremaxpx denotes the maximum pixel value.

128



6.2. Patch-based denoising procedure

(a) 3D-ODCT (b) KSVD

(c) HO-SuKro ( R = 1) (d) HO-SuKro (R = 10)

Figure 6.2 � Examples of dictionaries learned on Lena color image, input PSNR 22.11dB

129



Part II, Chapter 6 � Experiments

(a) HO-SuKro ( R = 3 ) (b) KSVD

Figure 6.3 � Examples of dictionaries learned on Lena color image, input PSNR 10.65dB

(a) HO-SuKro ( R = 3 ) (b) KSVD

Figure 6.4 � Examples of dictionaries learned on Lena color image, input PSNR 8.13dB
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(a) Lena (b) Mandrill (c) Oakland (d) Ti�any (e) Tree

Figure 6.5 � Test color images from the USC-SIPI Image Database (available online at:
http://sipi.usc.edu/database/)

6.3 Color image denoising

To evaluate and compare the proposed dictionary learning algorithms, we have performed

some color image denoising experiments following the set-up described in section 6.2

(similar to the one introduced by [Elad & Aharon 2006]). The test images, listed in

Figure 6.5, are color images of size(Npx1 � Npx2 � Npx3) = (512�512�3), except for the

Tree image which has (256�256�3) pixels. In these experiments we thus have K = 3.

Table 6.1 summarizes the default simulation parameters. The dictionary is trained

from a set of vectorized (6�6�3)-pixel patches. Note that a patch covers the entire third

dimension of the image �which only contains three layers (red, green and blue). This means

that the di�erent patches are obtained by sliding only over the two �rst dimensions.

Table 6.1 � Simulation parameters

Sample dimension (n) n1 � n2 � n3 =6 � 6� 3=108

Number of atoms (m) m1 � m2 � m3 =12� 12� 6=864

Training samples (N) 40000

Convergence tolerance (tol) kDk F � 10�4

Iterations (N it ) 20

Dictionary initialization ( D 0) 3D-ODCT2

The sparse coding step is performed by the OMP algorithm. The peak signal-to-noise

2. The 1-D n� m overcomplete DCT dictionary, as de�ned in [Rubinstein et al. 2010b], is a cropped
version of the orthogonalm� m DCT matrix. The K -dimensional ODCT is the Kronecker product of K
1-D ODCT.
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ratio (PSNR) of the reconstructed images is calculated as follows:

PSNR =
2552Npx� P Npx

i=1 (pi � bpi )2
�

where255is the maximum pixel value,Npx = Npx1Npx2Npx3 is the total number of pixels

on the input image, pi and p̂i are respectively thei-th pixel value on the noiseless and

reconstructed image. All results are averaged over �ve noise realizations.

In the presented results the dictionary is initialized with a 3D-ODCT, but a random

initialization was tested and the denoising performance was practically equivalent.

6.3.1 Denoising performance

Impact of the separation rank ( R)

Figures 6.6 to 6.9 show the denoised image PSNR (in dB) as a function of the number

of Kronecker summing terms in the dictionary (i.e. the rankR of the rearranged tensor).

We compare our results to an unstructured dictionary with the same size learned by the

K-SVD [Aharon et al. 2006] algorithm and to the 3D-ODCT analytic dictionary, which is

actually a 3-Kronecker dictionary as well (although not trained from the data). Compared

to the �xed 3D-ODCT dictionary, our algorithm achieves considerably better denoising

results, even for one single separable term (R = 1) which is the exact same structure

as the 3D-ODCT. It also manages to overcome the unstructured K-SVD dictionary in

many cases, especially under higher noise and asR grows. HO-SuKro has, in addition, the

advantage of the reduced application complexity due to the Kronecker structure (see Table

6.3) when compared to K-SVD. The chosen structure proved well suited to this kind of

application, since its introduction compromised very little the performance. The addition

of separable terms tends to improve the performance until a certain point after which it

saturates � or even deteriorates at higher noise, indicating the onset of over�tting. A bigger

separable rank also implies higher learning and application complexities. Comparing both

proposed algorithms for HO-SuKro, Algorithm 10 (denoted PGD for Projected Gradient

Descent) and Algorithm 11 (denoted ALS), the latter shows a consistent performance

superiority w.r.t. to the former, not to mention its signi�cantly lower learning times as

detailed in section 6.3.2.
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6.3. Color image denoising

Figure 6.6 � PSNR vs. Separable rank (R) for all tested images (input PSNR = 22.11dB).

Figure 6.7 � PSNR vs. Separable rank (R) for the tree image.

Figure 6.8 � PSNR for all tested images (input PSNR = 14.15dB) with bigger patches.

Figure 6.9 � PSNR vs. Separable rank (R) for the okland image with bigger patches.
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Varying the noise level

Figures 6.7 and 6.9 show the denoising performances, respectively for images Tree and

Oakland, under di�erent noise standard deviations� = f20; 50;75;100g in pixel value

(which corresponds to an input PSNR =f22:11;14:15;10:63;8:13g in decibel). These

are standard noise values for benchmark in the literature [Elad & Aharon 2006]. The

performance of the structured dictionaries are signi�cantly enhanced as the noise level

grows � not only HO-SuKro, but also ODCT. In the highest tested noise scenarios, HO-

SuKro overcomes both ODCT and KSVD with as few as two separable terms. We attribute

this superiority to an over�tting prevention brought by the structure constraint.

Impact of the patch size

In Table 6.2, we evaluate the impact of increasing the patch size. Besides the usual size

(n1 � n2 � n3) = (6 � 6� 3), we test a bigger patch con�guration(12� 12� 3). We show

the results on Lena and Mandrill images. Similar results were obtained for the other test

images (see Appendix B.3). Given the observed superiority of the ALS approach for HO-

SuKro dictionaries, we report only its results in the table. We also restrict ourselves to a

separable rank ofR = 3, which represents a good complexity-performance compromise.

This alternative con�guration tends to increase the denoising performance, especially un-

der higher noise: from 0.5dB to 3.5db on Lena image and from 0.1db to 1.5dB on Mandrill

and Oakland. But on the down-side, using bigger patches comes with an additional cost

in learning and denoising times for all the compared methods. This overhead can be alle-

viated by the structured dictionaries � in fact, we will see in section 6.3.2 that for bigger

patches the practical speedups provided by HO-SuKro structure are more compelling.

Robustness to a reduction in the number training samples

In Figure 6.10 we evaluate the robustness of the learning algorithms to a reduction on

the training set size. It shows the�PSNR, de�ned as the di�erence with respect to

the PSNR obtained by ODCT. Note that the Kronecker-structured dictionaries become

more competitive as the size of the training set decreases, to the point of consistently

outperforming K-SVD for small enough training sets. This result goes in line with the

theoretical results in [Shakeriet al. 2017a] suggesting a smaller sample complexity for KS

dictionaries.
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6.3. Color image denoising

Table 6.2 � Output PSNR varying the patch size � Lena

Algorithm Patch size Input SNR

n m 22.11 14.15 10.63 8.13

Le
na

ODCT
[ 6, 6, 3] [12,12, 6] 31.12 26.82 23.68 20.82

[12,12, 3] [24,24, 6] 32.05 27.93 26.16 24.52

K-SVD
[ 6, 6, 3] [12,12, 6] 32.04 27.02 23.46 20.77

[12,12, 6] [24,24, 6] 32.45 28.57 26.52 24.49

HO-SuKro
ALS (R =3)

[ 6, 6, 3] [12,12, 6] 31.76 27.03 23.41 21.07

[12,12, 3] [24,24, 6] 32.33 28.69 26.75 24.90

M
an

dr
ill

ODCT
[ 6, 6, 3] [12,12, 6] 26.61 22.07 20.26 19.04

[12,12, 3] [24,24, 6] 26.83 22.62 20.93 19.84

K-SVD
[ 6, 6, 3] [12,12, 6] 27.07 22.71 20.68 19.28

[12,12, 6] [24,24, 6] 27.16 22.80 21.00 19.85

HO-SuKro
ALS (R =3)

[ 6, 6, 3] [12,12, 6] 26.89 22.50 20.56 19.31

[12,12, 3] [24,24, 6] 27.00 23.00 21.36 20.32

O
ak

la
nd

ODCT
[ 6, 6, 3] [12,12, 6] 27.46 23.27 21.35 19.87

[12,12, 3] [24,24, 6] 27.63 23.78 22.46 21.47

K-SVD
[ 6, 6, 3] [12,12, 6] 28.92 24.29 22.10 20.45

[12,12, 6] [24,24, 6] 28.90 24.41 22.87 21.82

HO-SuKro
ALS (R =3)

[ 6, 6, 3] [12,12, 6] 28.79 24.22 22.20 20.58

[12,12, 3] [24,24, 6] 29.01 24.89 23.30 22.15
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Figure 6.10 � PSNR vs. Number of training samples for the mandrill image.

Examples of denoised images

In Figure 6.11, we show some examples of denoised Lena images. It illustrates both a

low noise (second row) and high noise (third row) case. Note that in the former case,

the KSVD performs slightly better, while in the latter case HO-SuKro has an advantage.

In both cases, the di�erence is very subtle visually, which testi�es that the structure

constraint, at least, doesn't harm the denoising.

6.3.2 Execution times

Before proceeding to actual execution times, let us �rst brie�y examine the potential gains

in this particular experimental setup. Table 6.3 shows the theoretical complexity savings

provided by the Kronecker structure for matrix vector operations as well as its storage

cost compared to an unstructured dictionary. The gains are around one and two orders of

magnitude in this case. Obviously, there are multiple obstacles for the complexity gains

to be translated into practice speedups, as discussed in section 5.4.3.

Table 6.3 � Complexity costs (for matrix-vector multiplications) and storage costs3

HO-SuKro Unstructured
Ratio

(Unstructured/HO-SuKro)

Complexity (# operations) 12960� R 186624 14:4=R

Storage (# parameters) 162� R 93312 576=R

3. Complexity cost for HO-SuKro is obtained considering eq. (4.3). Storage cost is the total number
of parameters in all factors:R(

P
k nk mk ).
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6.3. Color image denoising

Original

Noisy (22.11dB) KSVD (32.04dB) HO-SuKro (31.72dB)

Noisy (8.13dB) KSVD (20.70dB) HO-SuKro (21.16dB)

Figure 6.11 � Examples of denoised images for input PSNR of 22.11dB and 8.13dB
respectively at second and third rows.
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Table 6.4 shows the execution times for the HO-SuKro and KSVD4 dictionary learning

algorithm. The running times are divided into two categories: training and learning times.

ODCT is not included in the table because its training time is zero and its denoising time

is basically equal to that of KSVD. The denoising times basically correspond to a series

of runs of a sparse coding algorithm � in this case, OMP.

Note that the execution times are much higher when bigger patches are used. In this

scenario, HO-SuKro structure manages to accelerate the denoising times by a factor of 2

to 4. This is not the case for smaller patches, because of the practical overheads discussed

in section 5.4.3 which create a gap between the expected and the observed speedups

in matrix-vector operation. As discussed then, these overheads are attenuated when the

involved dimensions grow. In the reported denoising times, we used a pure Matlab im-

plementation of OMP Cholesky � for both structured and unstructured dictionaries � in

order to draw a fair comparison. Obviously, reported times can be reduced if a lower-level

OMP implementation is used (for instance, a C implementation, as the one provided in

the KSVD package, which manages to reduce the reported times in about one order of

magnitude).

The training times, to the contrary, are not a fair comparison, since the KSVD algo-

rithm has its core function e�ciently implemented in C while both HO-SuKro learning

algorithms are fully implemented in Matlab. Nevertheless, we still manages to remain

roughly in the same order of magnitude as KSVD when using the ALS algorithm, which

is by the way much faster than the PGD algorithm.

4. For the KSVD algorithm, we use the Matlab package provided by the authors. Available online at:
http://www.cs.technion.ac.il/~ronrubin/software.html

138



6.4. Hyperspectral image denoising

Table 6.4 � Execution times for Lena image denoising with� = 20.

Dimensions
Algorithm Training time Denoising time

n m

[6; 6;3] [12;12;6]

KSVD 36 s 35 s

HO-SuKro (R =1)
1500 s (PGD)

38 s
55 s (ALS)

HO-SuKro (R =3)
1900 s (PGD)

70 s
180 s (ALS)

[12;12;3] [24;24;6]

KSVD 290 s 460 s

HO-SuKro (R =1)
� 2 h (PGD)

105 s
245 s (ALS)

HO-SuKro (R =3)
� 3 h (PGD)

190 s
750 s (ALS)

6.4 Hyperspectral image denoising

Hyperspectral imaging has become a major image modality over the last years, largely

thanks to the development of spectral sensors. Hyperspectral images collect re�ectance

spectra with signi�cant spectral resolution (�200 wavelengths) for a large number of pixels

(�1000�1000 pixels). These images contain a lot of information regarding the composition

of the scene, and can therefore be used in remote sensing for monitoring forest or coastal

regions, or in chemometrics to study the composition of chemical compounds [Ghamisi

et al. 2017].

However, Hyperspectral Images (HSI) are very often corrupted by various types of

noise. In particular, for remotely acquired HSI, at least two kinds of noise are of impor-

tance: noise due to the spectral sensor sensitivity, and noise due to the swiping pattern of

the sensors which yields stripes. Moreover, in the presence of clouds or other atmospheric

perturbation, missing data may be present as well [Rastiet al. 2018]. In this work, we will

suppose that HSI are only corrupted with anisotropic Gaussian noise in order to simplify

the analysis of our denoising method, but other types of noise as well as missing data can

be tackled with similar tools.

Removing noise in HSI is an important pre-processing step for any learning task such as

segmentation, detection or spectral unmixing, and has therefore been studied extensively

in the literature. The correlation along spectral bands in HSI have been found very useful
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to improve HSI denoising, as opposed to conventional denoising techniques based solely

on 2D modeling. As a result, modern HSI denoising techniques have evolved to incorpo-

rate spectral information. Our structured dictionary framework allows us to manipulated

directly the 3D data and properly exploit its original structure. Patch-based approaches,

like ours, have rarely been explored in the literature so far. For a more extensive survey

of this domain, we refer the reader to [Rastiet al. 2018].

We now evaluate the proposed HO-SuKro dictionary learning approach in a Hyper-

spectral image (HSI) denoising task. In this section, we restrict ourselves to Algorithm 11

(ALS approach), which was demonstrated in section 6.3 to be more e�cient than the pro-

jected gradient approach. We will initially compare our method to other techniques based

on the sparse modeling assumption: �xed sparsifying transforms (2D and 3D [Basuhail &

Kozaitis 1998] Wavelet) and patch-based unstructured learned dictionaries (K-SVD [Ru-

binstein et al. 2008]). We will see that we manage to outperform both of them. In the

Hyperspectral imaging literature, another assumption besides sparsity proved to be very

useful: the low-rankness of the image itself. Since, at �rst, we don't take this assump-

tion into account, we don't manage to match the performance of state-of-the-art methods

which combine both sparsity and low-rank assumptions. We still manage, nevertheless, to

approach their performance, which is quite encouraging. The integration of the low-rank

assumption in our model is done in section 6.5.

6.4.1 Simulation setup

The considered test hyperspectral images, shown in Figure 6.12, are listed below, along

with their dimensions in number of pixels:

ˆ San Diego(400� 400� 158),

ˆ Houston (349� 1905� 144),

ˆ Washington DC (1280� 256� 191),

ˆ Urban (307� 307� 162).

In this section, we use a cropped version ofSan Diego and Houston images with

256� 256� 100pixels, as shown in Figure 6.13. The full images are used in section 6.5.

Given a hyperspectral imageH of size (Npx1 � Npx2 � Npx3) corrupted with random

Gaussian noise with standard deviation� uniform over all spectral modes, we collectN

3D-patches with dimensionsfn 1; n2; n3g from the noisy image to form our training data
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6.4. Hyperspectral image denoising

(a) San Diego (b) Urban

(c) Washington DC

(d) Houston

Figure 6.12 � Test hyperspectral images (single spectral band visualization).

(a) San Diego (b) Urban

Figure 6.13 � Cropped version of the test hyperspectral images.

141



Part II, Chapter 6 � Experiments

Y 2 Rn1n2n3 �N . A dictionary is learned from this data with N it = 20 iterations of alter-

nating optimization. The learning and denoising process follows the work�ow described

in section 6.2.

Reported results were obtained using 100000 training samples, which corresponds

roughly to a 4-pixel step between adjacent patches. Although some performance improve-

ment was observed when increasing this number, it does not compensate for the resulting

raise in training time. Dictionaries were initialized with a 3D-ODCT. In HO-SuKro's

R > 1 case, the remaining terms were initialized with unit-norm Gaussian random ma-

trices, and revealed to be quite robust to the initialization. The ALS loop (line 7 in Alg.

11) was carried over until the update on the blocksD r
k fell below a threshold empirically

set to 10�1 , i.e.: 1
R

p
m

P
r k(D r

k)old � (D r
k)newkF < 10�1 ; 8k.

6.4.2 Denoising performance

In all experiments with HSI data we use the conventional signal-to-noise ratio (SNR) as

a performance measure (instead of the PSNR used in the color image experiments) to

comply with the usual practice in the HSI community. DenotingH the noiseless image

and Ĥ the denoised one, the SNR is calculated as follows:

SNR =
kHk 2

F

kH � Ĥk 2
F

Table 6.5 shows the denoising performance of the proposed structured dictionaries

compared to K-SVD as an unstructured counterpart. In order not to overburden the

analysis, we report only the HO-SuKro results with rankR = 3, which we judged to

represent a good performance-complexity compromise.

Increasing the patch size improves signi�cantly the performance of HO-SuKro, while

that of K-SVD doesn't bene�t as much and may even deteriorate. This can be attributed

to the growing number of parameters to estimate (as the dictionary size grows) making

the number of available training data insu�cient. HO-SuKro, thanks to its structured

nature, avoids this issue.

More than simply increasing the patch size, what was empirically observed to drasti-

cally improve performance was increasing the patch dimension in the spectral mode, as

shown in the last line of Table 6.5. Naturally, bigger patches also imply higher learning

and denoising times. It is, thus, a compromise to be considered according to the available

resources.

142



6.4. Hyperspectral image denoising

Table 6.5 � Output SNR (in dB) for various patch sizes � San Diego

Algorithm Patch size Input SNR [dB]

n m 10 15 20 25

[ 6, 6, 6] [12,12,12] 21.77 25.31 29.09 32.68

K-SVD [ 8, 8, 8] [16,16,16] 21.51 25.19 29.2 32.95

[10,10,10] [20,20,20] 21.52 25.34 29.42 33.24

[ 6, 6,20] [12,12,20] 22.49 26.06 29.91 33.21

[ 6, 6, 6] [12,12,12] 22.05 25.35 28.9 32.3

HO-SuKro [ 8, 8, 8] [16,16,16] 22.73 25.82 29.22 32.64

(R = 3) [10,10,10] [20,20,20] 23.08 26.35 29.7333.27

[ 6, 6,20] [12,12,20] 24.10 27.07 30.09 33.22

Table 6.6 compares HO-SuKro's performance to that of other techniques from the

literature. By directly applying the proposed structured dictionary learning algorithm to

Hyperspectral data, without any further domain-speci�c adaptation, we already obtain

results comparable to the literature. Both HO-SuKro and K-SVD outperform the wavelet-

based approaches (2D and 3D [Basuhail & Kozaitis 1998]), corroborating the interest of

learning the sparsifying dictionary from data. HO-SuKro also consistently outperforms

FORPDN [Rasti et al. 2014] which exploits the correlation within spectral bands. Natu-

rally, we don't manage to reach state-of-the-art performance (HyRes [Rastiet al. 2017])

for this task, which makes use of a meaningful low-rank prior on the HSI. The performance

gap is around 1.5dB and 3dB forSan Diegoand Houston images respectively. An example

of denoised image is provided in Figure 6.14. A closer look reveals that our approach may

over-smooth some details.
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(a) Original (b) Noisy (SNR=10.2dB)

(c) HyRes (25.4dB) (d) HO-SuKro (24dB)

Figure 6.14 � Example of denoised images (100th spectral band)
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6.4. Hyperspectral image denoising

Table 6.6 � Output SNR [dB] comparison with literature

Image Algorithm Input SNR [dB]

10 15 20 25

Wavelet 2D 14.75 18.00 21.70 25.92

Wavelet 3D 23.11 26.04 28.91 31.68

San Diego FORPDN 22.23 24.17 26.42 29.00

HyRes 25.38 28.60 31.75 34.70

HO-SuKro 24.10 27.07 30.09 33.22

Wavelet 2D 14.22 17.67 21.43 25.80

Wavelet 3D 22.35 25.54 28.65 31.86

Houston FORPDN 22.80 25.46 28.09 30.74

HyRes 26.00 29.35 33.24 37.05

HO-SuKro 23.29 26.63 29.93 33.20
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6.5 Improved Hyperspectral denoising

In this section, we propose to more e�ciently denoise hyperspectral images under two

assumptions:

(i) noiseless hyperspectral images in matrix form (i.e. vectorized in the spatial dimen-

sions) are low-rank;

(ii) image patches are sparse in a proper representation domain de�ned by a dictionary.

These two assumptions have already led to state-of-the-art denoising methods using

�xed Wavelet transforms [Rasti et al. 2018]. We propose to rather learn the dictionary

from hyperspectral images, as done in the previous sections. We show that the dictionary

learning approach is more e�cient to denoise hyperspectral images than state-of-the-art

methods with �xed dictionaries, at the cost of a larger computation time.

The di�erence with respect to the dictionary-based denoising approaches formerly

presented is precisely the �rst assumption. We now incorporate this low-rank assumption

which is a well-established prior for hyperspectral data processing [Manolakiset al. 2001]

[Bioucas-Dias & Nascimento 2008], with proven e�ciency in the denoising task [Rasti

et al. 2017].

Although the HO-SuKro model is itself a form of low-rank constraint on the dictionary

operator, the low-rank prior that we bring up here appliesdirectly to the data.

Relation to prior art Dictionary Learning (DL) is well established in HSI applications

such as unmixing [Castrodadet al. 2011] and classi�cation [Chenet al. 2011]. It has also

been previously applied to HSI denoising in several occasions (see [Xinget al. 2012] and

references therein) but rarely coupled with a low-rank decomposition. Although the low-

rankness of the HSI is enforced via nuclear norm in [Zhao & Yang 2015], the dimensionality

reduction promoted by an explicit low-rank factorization is not exploited at all as the full-

size HSI is manipulated. Moreover, in [Zhao & Yang 2015], like in most DL methods for

traditional image denoising [Elad & Aharon 2006], the noise variance is supposed known,

while here we use an e�cient heuristic to estimate it.

In what follows, we �rst formalize the denoising task and the low-rank and image

sparsity assumptions in section 6.5.1. In section 6.5.2 we present our generic DL-based

algorithm for HSI, and instantiate it with two DL algorithms, K-SVD [Aharon et al. 2006]
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6.5. Improved Hyperspectral denoising

and SuKro [Dantaset al. 2017]. Finally, in section 6.5.3, we show on arti�cially noised

HSIs that the proposed approach outperforms state-of-the-art methods for HSI denoising

at the cost of increased computation time that is reasonable for o�ine applications.

6.5.1 Sparse and Low-rank Modeling

A hyperspetral image is composed of two spatial dimensions (image space) and one spec-

tral dimension, and thus naturally represented as a 3 dimensional cube of data, say

H 2 Rh1 �h 2 �p , whereh1 and h2 correspond to the spatial dimensions andp is the number

of spectral bands.

Nevertheless, a hyperspectral image is also often represented in its matrix (2 dimen-

sional) form by vectorizing its spatial dimensions at each spectral band. In an additive

noise model, this leads to:

H = Z + N (6.1)

where H 2 Rh�p (with h = h1h2) containing as its j -th column the vectorized observed

image at bandj . Z and N are respectively the noise-free unknown signal, and the noise

matrix, both (h � p) matrices.

Low-rank assumption

An HSI Z is commonly modeled as a low-rank matrix in the literature [Golbabaee &

Vandergheynst 2012, Rastiet al. 2017]. The classical linear mixture model [Manolakis

et al. 2001] is itself a low-rank modelZ= AS T , in which the image is decomposed into

a few subregions called source images (as the columns ofA) each containing a certain

material with distinct spectral signature (in the columns ofS). The HSI rank R in this

case is the number of materials present in the image.

The singular value decomposition (SVD) is a way of obtaining an analogous low-rank

decomposition ofZ, even though it does not, in principle, promote spectral unmixing. It

leads to the noisy low-rank model

H = U�V T + N (6.2)

where the columns ofU; V 2 Rh�R are respectively a set of vectorizedeigen-imagesand

the associated spectral components, and� 2 RR�R is a diagonal singular value matrix.
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Figure 6.15 � Hyperspectral image modeling: 3D data cube (left), 2D representation with
vectorized spatial dimensions (center) and low-rank factorization model (right).

Figure 6.15 illustrates the described models and notations.

Sparsity assumption

The eigen-imagesU r =unvech1 ;h2 (u r ) (with u r the r -th column ofU) can, then, be sparsely

represented in a well-suited base �or, more generally, representation domain. In the noisy

case, sparse reconstruction thus works as a form of denoising. Indeed, sparse modeling for

images has been used for decades now [Brucksteinet al. 2009,Elad & Aharon 2006], with

very good performance in denoising tasks.

State-of-the art techniques in Hyperspectral image restauration [Rastiet al. 2017] use

a 2-D (Kronecker) orthogonal wavelet basisB in which the vectorized eigen-imagesu r

are represented as a sparse set of wavelet coe�cientsw r (r -th column of sparse coe�cient

matrix W ): U = BW . The full model becomes:

H = BW�V T + N (6.3)

A typical processing pipeline

In view of model (6.3), a usual denoising approach given the corrupted signalH �which is

no longer low-rank due to the noise� consists in estimatinĝU, �̂ and V̂ via SVD truncation

and futher denoisingÛ via 2D-Wavelet shrinkage. The spectral component of the low-

rank model V̂ can also be denoised (for instance, [Chen & Qian 2011] uses a 1D-Wavelet

shrinkage).

148



6.5. Improved Hyperspectral denoising

6.5.2 Proposed Approach

A �rst part of our contribution consists in replacing the classic orthogonal Wavelet basis

in the described pipeline by a dictionary both 1) overcomplete and 2) learned from data.

Overcomplete learned dictionary

Both the overcompleteness and the fact of learning a dictionary from a targeted type of

data has been shown to improve the performance of natural image denoising tasks [Elad

& Aharon 2006] when compared to the classical orthogonal Wavelet-based approach. Any

existing dictionary learning approach could be used for our purpose here. We propose to

use two methods: K-SVD as a standard (baseline) algorithm for learning unstructured

dictionaries and the proposed Kronecker-structured dictionaries. The usual Wavelet ap-

proaches (e.g. in the state-of-the-art HyRes [Rastiet al. 2017]) are themselves Kronecker-

structured, although not learned from data.

An important drawback of the overcompleteness (and consequently, non-orthogonality)

of the dictionary can be pointed out: it signi�cantly complicates the estimation of the

sparse coe�cients when compared to the orthogonal case (for instance, in HyRes [Rasti

et al. 2017], this step comes down to a simple thresholding operation). Here, we will need

to resort to the mentioned sparse coding algorithms as a sub-optimal way of solving this

�now ill-posed� problem.

Consequently, computational complexity (and running time) is signi�cantly bigger for

the proposed method when compared to the literature. However, we will see in section 6.5.3

that a performance gain is obtained. Therefore, except in very constrained cases, the

proposed technique is worthy.

A (slightly di�erent) patch-based denoising approach

In order to avoid having a prohibitively large dictionary D 2 Rh�m (with m > h ), which

would be very hard to train, we rely on a patch-based approach like before. An important

di�erence, however, is that the patches are no longer extracted from the HSI in its original

3D-form (H) but rather from the eigen-imagesU r . Therefore, strictly speaking, we are

now denoising a set of 2D-images.

Remark 2. Now, di�erently from section 6.4, we are dealing with 2D-data patches, i.e.

K = 2. The HO-SuKro model boils down to what we call the SuKro model [Dantas

et al. 2017], which consists of sums of Kronecker products between two matrices.
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Figure 6.16 � N patches(
p

n �
p

n) are extracted from a eigen-imageU r to form the
training data matrix Y , which is used to learn a dictionaryD and a sparse reconstruction
matrix X.

Given an eigen-imagêU r 2 Rh1�h 2 we (sub)sampleN equally-spaced training patches

with dimensions (
p

n �
p

n). The patches are vectorized and stacked as the columns of a

training matrix Y 2 Rn�N ., from which the dictionary is learned.

The proposed denoising approach is described in Algorithm 12. Note that a new dic-

tionary is learned for each eigen-imageU r . To fully characterize the algorithm, some

elements are still to be de�ned: the rank and noise estimation, sparse coding, dictionary

update and denoising functions (respectively in lines 4, 5, 13, 14 and 16) are further de-

tailed below. Some of these steps are very similar to what have been done Although some

of these steps are very similar to what has been done in the previous sections, we still go

through each of them while highlighting the main di�erences.

Dictionary Learning Algorithms

The customary alternating minimization DL framework is used. Thesparse codingand

dictionary updateare brie�y speci�ed below.

Sparse coding Like previously, we use the OMP algorithm with a stopping criterion

based on the energy of the residual. The error threshold� is proportional to the noise

standard deviation � . An important di�erence is that, here, we estimate the noise level

from the data at hand.

Dictionary update This is the step which distinguishes one DL algorithm from an-

other. The two adopted dictionary learning approaches are:

1. K-SVD: as described in section 1.5.1.

2. SuKro: to learn structured dictionaries which can be written as a sum of a few
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6.5. Improved Hyperspectral denoising

Algorithm 12 Dictionary-based HSI denoising approach
1: INPUT: Noisy hyperspectral imageH
2: . Low-rank step
3: [U; � ; V ] = SVD( H)
4: R = EstimateRank(� )
5: [� 1; : : : ; � R ] = EstimateNoise(�)
6: Û = U(:; 1 : R) , V̂ = V (:; 1 : R)� (1 : R; 1 : R)
7: . Sparse step
8: for r = [1; : : : ; R] do
9: Extract N patches fromÛ r to form Y

10: . Dictionary learning
11: Initialize D 0

12: for i = [1; : : : ; Nit ] do
13: X i = SparseCoding(Y; D i�1 ; � r )
14: D i = DictionaryUpdate(Y ; X i )
15: end for
16: Û r = Denoise(̂U r ; D N it ; � r )
17: end for
18: Û = [ Û 1; : : : ; Û R ]
19: OUTPUT: Recovered imagêZ = Û V̂ T

Kronecker products of smaller matricesD r
k 2 R

p
n�

p
m .

D =
RX

r =1

D r
1 � D r

2: (6.4)

For the SuKro dictionary update step we use the Alternating Least-Squares (ALS)

approach proposed in Algorithm 11. It was originally proposed for a higher-order

generalization of SuKro, i.e. for sums of Kronecker products of any number of blocks,

but here we apply it for the particular case of two blocks only (i.e.K = 2).

Computation of the denoised eigen-image Once the learning process is �nished,

the denoised version of the eigen-imagêU r is computed by following the procedure de-

scribed in section 6.2 (same as before)5. Note that this learning-then-denoising procedure

is repeated for each of theR eigen-images,U r ; 8r 2 f 1; : : : ; Rg.

5. A small modi�cation comes from the fact that the eigen-images are no ordinary images, as they
stem from the low-rank decomposition of the matricized HSI. As such, they do not have a �xed range
for its entries (i.e. �pixel values�). Recall that in the patch-averaging process for calculating the �nal
denoised image, we considered the maximum pixel value with a weight� proportional to the maximum
pixel value (see section 6.2). Instead, we now set� = �=� with � = 1=

p
h .

151



Part II, Chapter 6 � Experiments

Figure 6.17 � Singular values of the San Diego HSI before (dotted green line) and after
the noise addition (full blue line), as well as the noise singular values (dashed red) in
logarithmic scale. Note that the noise singular values are very close to a constant�

p
h

(= 912 � 400 = 3:648� 105) as predicted by the theory.

Noise and Rank Estimation

In this subsection we show how the noise level can be e�ciently estimated in practice

under the assumption that the original image is low-rank and for a Gaussian distribution

on the entries of the noise matrixN.

First of all, as h
p � 1, the singular values of the noise matrixN are very close to a

constant. Indeed, using the limit case of the Mar£enko-Pastur distribution [Mar£enko &

Pastur 1967] when the column dimension is large in front of the row dimension, we get

that all singular values ofN are close to�
p

h.

Moreover, as both the noiseless matrixZ and the noiseN are tall matrices generated

by a priori independent processes, they are likely to be almost orthogonal to each other.

Then,

H T H � ZT Z + N T N � ZT Z + � 2hI (6.5)

and we get that the eigenvalues ofH T H are the sum of those ofZT Z and a constant term

� 2n.

Finally, since Z is (approximately) a rank R matrix, any singular value ofH after the

R-th index is (approximately) equal to �
p

h. Therefore, the noise level can be estimated

by looking at the tail value &tail of the singular values ofH. Figure 6.17 shows that we

indeed observe such a singular value pro�le in practice when adding Gaussian noise to a
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6.5. Improved Hyperspectral denoising

real hyperspectral image.

While �̂ = &tail =
p

h estimates the noise level inH, we are rather interested in the noise

level � r at an eigen-imageU r . Considering that each columnu r of U is scaled to unit-

norm regardless of the associated singular value (denoted&r for the r -th largest singular

value), we observed that� r is inversely proportional to&r and can be estimated as follows:

�̂ r = �=&r = &tail =(&r

p
h) (6.6)

The rank estimation is based on this same observation: the singular values saturate

as the noise dominates. A suitable approximate rankR is obtained by detecting this

saturation. We setR̂ equals to the �rst singular value&r such that (&r � &tail )=&tail < �.

EstimateRank(� ) = min fr j (&r � &tail )=&tail < �g (6.7)

where� is a threshold empirically calibrated to� = 3 � 10�2 .

6.5.3 Experimental results

Four hyperspectral images were used in the experiments with (h1 � h2 � p) pixels: San

Diego (400� 400� 158),Houston (349� 1905� 144),Washington DC (1280� 256� 191),

Urban (307� 307� 162). The images were corrupted with additive white Gaussian noise

with standard deviation � uniform over all spectral modes and adjusted to give the desired

input signal-to-noise ratio (SNR).

For each eigen-image (columns ofU r ), we collect N = 20000 patches with (6 � 6)

pixels from the noisy image to form the training data. A dictionary is learned from this

data with N it = 20 iterations of alternating optimization. Dictionaries are initialized with

a 2D-ODCT. In the case of SuKro, the remaining terms are initialized with unit-norm

Gaussian random matrices, with no relevant impact on its performance.

The results reported in Table 6.7 are averaged over 10 runs with independent noise real-

izations. Standard deviations are usually around0:005dB (and never bigger than0:02dB).

Three variations of the proposed method are tested, with three di�erent types of dictio-

nary: K-SVD unstructured learned dictionary, SuKro learned structured dictionary with

R = 3 terms and an overcomplete but �xed ODCT dictionary (i.e. the learning process

is skipped). The proposed methods are compared to: a Wavelet 3D approach [Basuhail &

Kozaitis 1998] which uses only the sparsity prior by applying a 3D-wavelet basis directly in
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(a) Original (b) Noisy: 10dB (c) SuKro (d) HyRes

Figure 6.18 � Zoom in Washington image (100th spectral band).

the data cubeH; and the HyRes [Rasti et al. 2017] method, which combines both sparse

and low-rank assumptions. The latter is a state-of-the-art approach (see [Rastiet al. 2017]

for a detailed comparison of this method with other methods in the literature).

The proposed methods with K-SVD and SuKro dictionaries consistently outperform

the state-of-the-art HyRes approach by about1:5dB. A performance gain of about1:3dB

is already obtained by replacing the orthogonal Wavelet basis in HyRes by a �xed over-

complete DCT dictionary allied to the patch-based procedure. The learning process then

brings an additional 0:2dB in denoising performance. A visual comparison is provided in

Figure 6.18.

Execution times

Execution times are reported in Table 6.8. The literature methods HyRes and Wavelet

3D take about one and two minutes respectively, independently of the noise level. The

running times for the proposed method, on the other hand, increase as the noise level

decreases. That's because the OMP reconstruction threshold gets smaller, requiring more

iterations. The execution times range from 120 to 760s in the ODCT case and from 260

to 1600s with a learned dictionary (SuKro being slightly faster than K-SVD). Therefore,

the proposed technique with dictionary learning takes around 5 to 30 times longer than

HyRes. We point out that, for the proposed dictionary-based approaches, the reported

times include both learning and denoising phases.
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6.5. Improved Hyperspectral denoising

Fewer training samples

A possible way to reduce the execution times of the proposed method consists in reducing

the number of training samplesN used in the dictionary learning process, at the expense

of some denoising performance. In Table 6.9 we show the time and performance variation

when reducing from 20000 to 5000 the number of training samples. A total time reduc-

tion of around 40 to 50% is obtained, while the denoising performance is not severely

a�ected. Note that SuKro is more robust to the reduction in the training set size due to

its structured nature (less parameters to estimate) as already previously observed in the

color image experiments.
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Table 6.7 � Output SNR [dB] comparison with literature

Method Input SNR [dB]

5 10 15 20 25 30

S
an

D
ie

go

Wav. 3D 20.19 23.36 26.51 29.48 32.33 35.08

HyRes 23.26 26.37 29.63 32.61 35.44 37.92

ODCT 24.79 27.77 30.79 33.77 36.57 38.88

K-SVD 24.92 27.86 30.89 33.88 36.68 39.00

SuKro 24.95 27.93 30.94 33.89 36.69 38.99

H
ou

st
on

Wav. 3D 18.28 21.59 24.90 28.19 31.45 34.64

HyRes 22.86 26.45 29.76 33.00 36.08 39.49

ODCT 24.18 27.49 30.87 34.13 37.30 39.85

K-SVD 24.38 27.64 31.01 34.27 37.45 39.99

SuKro 24.39 27.63 30.98 34.23 37.42 39.97

W
as

hi
ng

to
n

Wav. 3D 18.87 21.92 25.03 28.25 31.51 34.77

HyRes 23.25 26.54 29.78 33.30 36.35 38.76

ODCT 24.58 27.92 31.27 34.57 37.47 39.80

K-SVD 24.74 28.04 31.37 34.68 37.59 39.89

SuKro 24.76 28.05 31.38 34.69 37.59 39.88

U
rb

an

Wav. 3D 18.37 21.58 24.78 27.85 30.82 33.68

HyRes 22.02 25.38 28.45 31.29 33.95 36.01

ODCT 23.34 26.52 29.54 32.34 34.76 36.54

K-SVD 23.45 26.63 29.65 32.44 34.86 36.61

SuKro 23.45 26.63 29.65 32.43 34.83 36.58



Table 6.8 � Execution times (in seconds) for Washington image

Method Input SNR [dB]

5 10 15 20 25 30

W
as

hi
ng

to
n

Wav. 3D 125 120 125 125 120 124

HyRes 55 50 50 49 48 50

ODCT 128 201 296 408 533 761

K-SVD 273 445 677 980 1315 1650

SuKro 262 394 592 857 1143 1433

Table 6.9 � SNR variation (in dB) and execution time variation (in %) w.r.t. the ones
displayed in Tables 6.7 and 6.8 respectively, for 5000 training samples instead of 20000.

� Method Input SNR [dB]

5 10 15 20 25 30

W
as

hi
ng

to
n

T
im

e K-SVD -49% -50% -50% -49% -50% -46%

SuKro -45% -42% -42% -43% -44% -44%

S
N

R K-SVD -0.06 -0.05 -0.04 -0.03 -0.05 -0.04

SuKro -0.01 -0.02 -0.01 -0.01 -0.04 -0.02
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Chapter 7

Accelerating `1-minimization

Sparsity-constrained linear regression has found numerous applications in signal process-

ing and machine learning, tackling under-determined inverse problems. These appear

in many forms such as image or audio inpainting [Adleret al. 2012], source localiza-

tion [Malioutov et al. 2005], spike deconvolution [Dossal & Mallat 2005], or sparse variable

selection for gene expression [Gui & Li 2005], to cite only a few.

As reviewed in chapter 2, there are many computational approaches to estimate the

sparse coe�cient vector in such settings with two main families: greedy algorithms [Mallat

& Zhang 1993] [Patiet al. 1993], and convex optimization approaches relying on`1-norm

minimization, where the regression problem is expressed as an`1 regularized optimization

problem �known as basis pursuit [Chenet al. 1998] or lasso [Tibshirani 1996]� which

solution is computed using iterative convex optimization algorithms such as ISTA or its

variants [Daubechieset al. 2004,Beck & Teboulle 2009,Bioucas-Dias & Figueiredo 2007,

Wright et al. 2009,Chambolle & Pock 2011].

For very high-dimensional problems, however, iterative algorithms to solvè1 min-

imization problems can become computationally prohibitive, which is why accelerating

techniques are still an intense research topic. This part of this thesis demonstrates how

to combine two such techniques:

1. Fast structured operators, which provide faster matrix-vector products (see section

1.5.2 and chapter 5);

2. Safe screening tests, which safely eliminate unused dictionary atoms (see chapter 8).

The following chapters (from 8 to 11) are based on the journal paper

[Dantas & Gribonval 2019a], which synthesizes and extends the results

in [Dantas & Gribonval 2017] and [Dantas & Gribonval 2018].

In [Dantas & Gribonval 2017] we introduced a safe screening sphere test that manip-

ulates an approximate dictionary and in [Dantas & Gribonval 2018] the GAP Safe sphere
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Part III, Chapter 7 � Accelerating `1-minimization

test [Fercoqet al. 2015] was extended to this new setting. In [Dantas & Gribonval 2019a],

we revisited the previous results under a broader formalism (presented in chapter 9) and

proposed a fast algorithm for`1-minimization which combines safe screening and (po-

tentially multiple) fast approximate dictionaries (described in chapter 10). Experimental

results are given in chapter 11.

7.1 Sparsity constrained regularization

Let n and m be respectively the dimension of the observed vector and that of the unknown

coe�cient vector. The observed vector is denotedy 2 Rn and modeled asy � Dx 0 where

x0 2 Rm is sparse andD = [ d1; : : : ; dm ] 2 Rn�m . In the context of linear inverse problems,

D is the so-called measurement matrix [Foucart & Rauhut 2013], while for sparse signal

representationsD would be the dictionary matrix [Chen et al. 1998], and in statistics

the design matrix [Tibshirani 1996]. Here, we adopt the terminology of sparse signal

representations henceD is called a dictionary and its columns, denotedd j 2 Rn , are

called atoms.

The `1-regularized least squares, referred to as lasso or basis pursuit, consists in �nding

a sparse coe�cient vectorx 2 Rm , solution of the following optimization problem:

L(�; D; y) : x? = argmin
x

1
2

kDx � yk2
2 + �kx k1

| {z }
P (xjD)

(7.1)

whereP(x jD) is called the primal objective and the parameter�> 0 controls the trade-o�

between data �delity and sparsity of the solution. We suppose that

� � � max := kD T yk1 (7.2)

since otherwisex? = 0 2 Rm is the unique solution (see section 2.3.4).

7.2 Iterative algorithms

First-order iterative algorithms, especially proximal-gradient methods (ISTA [Daubechies

et al. 2004], FISTA [Beck & Teboulle 2009], TwIST [Bioucas-Dias & Figueiredo 2007],

SpaRSA [Wright et al. 2009], Chambolle-Pock [Chambolle & Pock 2011]), are popular

approaches for solving (7.1).
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7.3. Computational bottlenecks

One can use an abstract notation to represent the update step for a generic iterative

algorithm for the problem L(�; D; y): fx t+1 ; � t+1 g  p(x t ; D; � t ) wherex t is the current

estimate of the primal variable and� t is a list of updated auxiliary scalars (e.g. the

gradient step-size, and possibly a few previous estimates of the primal variable). For

instance, the ISTA algorithm is given by

x t+1  p(x t ; D; L t )=ST  t �

�
x t + � tD T (y � Dx t )

�
(7.3)

where  t denotes the gradient step size andSTu(z) = sign(z)(jz j � u)+ denotes the soft-

thresholding operation with thresholdu, which is the proximal operator associated to

(scaled versions of) thè 1-norm.

7.3 Computational bottlenecks

The main bottleneck of existing iterative algorithms in terms of computational complexity

is the cost of the required matrix-vector products involving the dictionary matrix, which

dominate the overall iteration cost. For example, ISTA requires two matrix-vector mul-

tiplications at each iteration (or at least one if the Gram matrix D T D is pre-computed

and stored).

7.4 Addressing the computational bottlenecks

A popular way to address this limitation is to constrain the dictionary matrix to a certain

type of structure which would allow for fast matrix-vector products. Another approach

is to use the so-calledscreening rulesto identify a set indexing zero components of the

solution x? before even computing it.

7.4.1 Acceleration with structured dictionaries

Di�erent types of structure, more or less suited to a given application, can be imagined. In

this kind of work, there is always a compromise between the �exibility (generality) of the

structure and the provided speedup. We refer the reader to section 1.5.2 for a literature

review of this area.

In practical applications, the dictionary matrix D is not necessarily structured. A pos-

sible strategy is to replace certain iterationsx t+1 = p(x t ; D; � t ) with x t+1 = p(x t ; ~D; � t )
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where ~D is a structured approximation ofD, i.e.,

D = ~D + E (7.4)

with controlled approximation error E =[ e1; : : : ; em ]2 Rn�m .

7.4.2 Acceleration with screening rules

For a given instanceL(�; D; y) of (7.1), characterized by a regularization parameter�, a

dictionary D, and an input vector y, the safe screening approach, introduced by [El Ghaoui

et al. 2010], consists in identifying and removing from the dictionary a subset of atoms

which are guaranteed to have zero weight in any solutionx?, before solving the problem.

By removing these so-calledinactive atoms, a more compact and readily solved problem

is obtained, with decreased matrix-vector multiplication cost, while not a�ecting at all

the original solution which can be obtained by simply zero-padding its restricted version.

Put di�erently, safe screening is a feature selection technique for a given instance of

(7.1). However, unlike other previous feature selection heuristics [Fan & Lv 2008, Tib-

shirani et al. 2011] based on correlation measures between the atomsd j and the input

signal y, safe screening has zero risk of false rejections. Moreover, screening techniques

are transparent to the underlying`1 solver and can be readily combined with almost any

existing solver.

Basically, three classes of screening rules can be distinguished: 1) Static; 2) Dynamic;

3) Sequential. The two �rst categories being mutually exclusive, but not the third one.

The earliest safe screening techniques [El Ghaouiet al. 2010] [Xianget al. 2011] [Xiang

& Ramadge 2012], currently classi�ed asstatic rules, where designed to be applied once

and for all before starting the optimization. In contrast, the more recentdynamic rules,

introduced in [Bonnefoyet al. 2015] and followed by [Fercoqet al. 2015], are repeatedly

applied during the iterative optimization algorithm leveraging its current solution estimate

and gradually increasing the set of rejected atoms.

Sequential rules[Wanget al. 2015,Malti & Herzet 2016,Xianget al. 2011,Liuet al. 2014]

exploit the fact that (7.1) is commonly solved over a grid of regularization parameters� i

and reuse the results from a previous con�guration� i�1 to improve the screening perfor-

mance on further con�gurations.
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7.5 Contributions

First, we introduce a formalism for de�ning safe screening tests which arerobust to ap-

proximation errors on the dictionary matrix given that an error bound is provided. The

resulting tests are calledstable screeningtests. The stable tests proposed here are general

and apply to any context in which the atoms are known up to a certain error margin. The

source of this error can be manifold, but we will focus on the case where it is a side e�ect

of manipulating structured approximations of the true dictionary matrix. The proposed

framework is also general with respect to the form of the safe region (be it a sphere, dome,

etc) as well as to that of the error bound. Here, again, we stick tòp-balls, which allows

us to exemplify the stable tests on some existing̀2-sphere tests �one of which being the

state-of-the-art GAP Safe [Fercoqet al. 2015]� for a general`q-ball error bound. Exten-

sion to dome tests is not particularly di�cult within the proposed formalism, but is left

for future work.

In a second moment (chapter 10), we exploit the proposed stable screening in a fast

algorithm for `1-minimization problems, by making use of fast structured approximations

of the problem's dictionary matrix. It consists in starting the iterative optimization by

using a coarser (but faster) version of the true dictionary and, as approaching convergence,

�ner approximations are progressively adopted until eventually the original dictionary

takes over. Choosing an appropriate moment to switch to a more precise dictionary is

crucial in the proposed algorithm. A robust switching criterion based on both the duality

gap saturation and the screening ratio is proposed.

7.6 Related Work

Apart from the aforementioned structured dictionaries and safe screening tests �as well

as other preceding correlation-based feature selection heuristics [Fan & Lv 2008, Tibshi-

rani et al. 2011]� some related acceleration strategies for sparsity-inducing optimization

problems (or more speci�cally for problem (7.1)) are worth citing.

Instead of starting from the full problem and pruning the feature set, working set tech-

niques [Kim & Park 2010,Johnson & Guestrin 2015] start with small restricted problems

and progressively include more promising features. In [M. Massias & Salmon 2017], the au-

thors combine a working set strategy with safe screening and in [Massiaset al. 2018] they

incorporate a dual extrapolation technique to further enhance the screening performance
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and accelerate convergence. This idea is conceivably complementary to the techniques

proposed here.

Joint screening [Herzet & Drémeau 2018] [Herzetet al. 2019] allows to screen many

atoms which lie close together in one single test, reducing the number of required tests

for a given dictionary. Interestingly, the resulting tests share many similarities and math-

ematical connections to the stable screening tests introduced here, despite arising from

an essentially di�erent premise.

A less closely related acceleration for̀1-regularized problems is the Learned ISTA

(LISTA) algorithm [Gregor & LeCun 2010] which consists in training a recurrent neural

network for solving (7.1). However, the learned solver remains quite limited in scope,

since: 1) the number of iterations has to be �xed beforehand, thus losing �exibility on the

desired convergence precision; 2) the trained solver specializes to the speci�c type of data

it was trained on. The techniques proposed in this paper, on the other hand, apply a wide

range of general-purpose optimization algorithms for the considered problem, whatever

the type of aimed data, convergence precision and regularization level.
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Chapter 8

Reminders on Safe Screening

In this chapter, we brie�y introduce the concept of safe screening along with some of the

main screening methods proposed in the literature.

Given a set A of non-repeating integers,D [A] := [ d i ]i2A denotes a sub-matrix ofD

composed of the columns indexed by the elements inA . The notation extends to vectors:

x [A ] := [ x(i)] i2A , where x(i) denotes thei-th component of x. Screening rules allow to

identify such sets of reduced cardinalityjAj < m , so that the complexity of applying

D [A ] or its transpose is reduced compared to that of applyingD, while ensuring that A

contains the support of the solutionfi : x?(i) 6= 0g. This is achieved using the dual of

(7.1) (cf. section 2.3.3):

� ? = argmax
� 2� D

1
2

kyk2
2 �

� 2

2




 � �

y
�






2

2| {z }
D (� )

(8.1)

where

� D = f� 2 Rn : kD T � k1 � 1g (8.2)

is the dual feasible setand D(� ) is the dual objective. The dual and primal solutions (� ?

and x?) are linked through the relation1 y = Dx ? + �� ?. Optimality conditions (KKT)

at the dual solution � ? read (see for instance [Xianget al. 2017] for more details)

dT
j � ? =

8
<

:
sign(x?(j )) if x?(j ) 6= 0

 j 2 [�1; 1] if x?(j ) = 0
; 8j 2 f 1; : : : ; mg: (8.3)

Hence, every dictionary atom for whichjd T
j � ?j < 1 is inactive.

1. The product Dx ? is always unique, even when the primal solutionx? is not [Tibshirani 2013].
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Figure 8.1 � Example of safe regionR (in green), for n = 2 and m = 3. The dual solution
� ? is the projection ofy=� over the dual feasible set� D . Atoms d2 and d3 are active.

8.1 Notion of safe region

Since the optimal solution� ? of the dual problem (8.1) is not known beforehand, the

inner products dT
j � ? cannot be evaluated. Fortunately, given onlyD and y, it is possible

to identify at a moderate computational cost a regionR � Rn , called safe region, which

is guaranteed to contain the optimal� ?.

De�nition 24 (Safe region).A region R � Rn is safe (with respect to the dual problem

(8.1)) if and only if it contains the dual solution� ?, i.e. � ? 2 R .

Figure 8.1 illustrates the concept of safe region. We consider the simple case ofn = 2

(i.e. input data y lies in a plane) andm = 3 (i.e. the dictionary D has three atoms).

8.2 Screening an atom given a safe region

Consider an atomd j . If the inequality jd T
j � j < 1 holds for all � 2 R where R is a safe

region, then the above analysis ensures thatd j is inactive. This gives rise to ascreening

test.

De�nition 25 (Screening test for an atom). Given a regionR, a screening test for the

atom d 2 Rn is given by:

�(djR) = sup
� 2R

jd T � j (8.4)
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A su�cient condition for an atom d j to be inactive can be expressed as follows: ifR

is safe then

�(d j jR) < 1 =) x?(j ) = 0:

In practice, for each atomd j , computing the test �(d j jR) allows to eliminate or not the

atom.

Formally, given a safe region, the atoms can be partitioned into a preserved setA and

its complement, the rejection setA c, that gathers the indices of inactive atoms:

A = fj 2 f 1; : : : ; mg : �(d j jR) � 1g;

A c = fj 2 f 1; : : : ; mg : �(d j jR) < 1g: (8.5)

In practice, safe regions have simple parameterized shapes which parameters need to

be identi�ed with moderate computations from the only knowledge ofD, y, and possibly

the current iterate x t of an iterative algorithm addressing (7.1).

The two most common shapes of safe regions in the literature are spheres and domes

(i.e. intersection between a sphere and one or more half-planes).

Let us focus on sphere tests. Assume we are given a safe regionR which is a closed

`p-ball with center c and radiusR, denotedBp(c; R) = fz : kz � ckp � Rg. The screening

test for this region has a closed form (a proof is given in Appendix C.1)

�(djB p(c; R)) = jd T cj + Rkdkp� (8.6)

where k � kp� denotes the dual norm associated to thep-norm, with 1
p + 1

p� = 1. For

simplicity, we omit subscripts for the`2-ball (p = p� = 2) denotedB(c; R).

8.3 Construction of safe spherical regions

A safe region should be as small as possible (to maximize the screening e�ect) while

requiring as little computational overhead as possible. In light of (8.6), askdkp� can

be precomputed for each atom, the computational overhead of a screening test with a

spherical region is governed by the cost of computing the radiusR and the inner products

dT c for all atoms that have not been screened out yet. This calls for techniques where

the choice ofR and c allows to reuse either quantities that have already been computed

169



Part III, Chapter 8 � Reminders on Safe Screening

along previous iterations of the optimization algorithm.

The construction of the �rst (static) safe region, obtained in [El Ghaouiet al. 2010],

follows from the simple observation that the solution� ? of the dual problem (8.1) is the

Euclidean projection ofy=� on the feasible set� D . As a result, if some feasible point

� F 2 � D is known, then � ? can't be further away from y=� than � F in the `2 sense, i.e.

k� ? � y=�k 2 � k� F � y=�k 2 8� F 2 � D .

This leads to an`2-spherical safe region (p= p� =2),

R = B(c = y=�; R = k� F � y=�k 2); (8.7)

which full speci�cation requires a feasible point� F 2 � D .

To generate a feasible point� F 2 � D , one could compute the Euclidean projection

of any given point z 2 Rn over the closed convex set� D . As this is too computationally

demanding, simpler scaling approaches are preferred: givenz 2 Rn we determine a scaling

factor � so that �(zjD) := � z 2 � D .

By de�nition of � D , if kD T zk1 � 1 no scaling is needed (�= 1 works), otherwise one

only needs to dividez by kD T zk1 . This yields

�(zjD) :=
z

max (1;kD T zk1 )
: (8.8)

While the scaling in (8.8) selects a feasible point to build a safe sphere (8.7) given an

arbitrary z, it neglects the fact that one would like to minimize theradius of this sphere

to maximize the e�ect of screening. This leads to thedual scaling[El Ghaoui et al. 2010]

formalized as follows (a proof is given in [Bonnefoyet al. 2015, Lemma 8])

Proposition 2. Denoting projz
y
�

=
yT z

�kzk 2
2
z the Euclidean projection ofy=� onto the

direction of z, we have

�
�

projz
y
�

j D
�

= argmin
z0=�z

kz0 � y=�k 2 s.t. kD T z0k1 � 1

i.e. among all points which are both dual feasible and proportional toz, �
�

projz
y
�

j D
�

is the one closest toy=�.
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8.3. Construction of safe spherical regions

Figure 8.2 � Examples of dual feasible points
calculated as in equation (8.9). The dual point
� t is obtained by projecting y=� over the di-
rection of the current residual � t and then, if
necessary, scaling the result. Note that� 1 is
obtained by scaling the residual� 1, since the
projection of y=� is not feasible; while� 2 cor-
responds directly to projection ofy=�, which is
already feasible.

To obtain dynamic spherical regions, we need dual feasible points that change over

iterations (� F = � t at iteration t) and leverage the current state of the optimization algo-

rithm. Following [Bonnefoy et al. 2015], this can be achieved by de�ning� t proportional to

the current residual� t := y � Dx t , since the dual solution� ? is proportional to y � Dx ?.

Taking z = � t and � t = �
�

proj� t

y
�

j D
�

yields

� t =

"
yT � t

�k� tk
2
2

# � t

�� t

� t ; with � t = ( kD T � tk1 )�1 (8.9)

where[z]ba := min(max(z; a); b) denotes the projection of the scalarz onto segment[a; b].

An illustration of the procedure described in equation (8.9) is given in Figure 8.2.

The above principles yield existing safe spherical regions, some of which we list below.

8.3.1 Static Safe sphere [El Ghaoui et al. 2010]

By setting z = y=� in (8.8) one obtains � F = �(y =�jD) = y=� max , and (8.7) reads

R = B(c; R) with

Static Safe: c = y=�; R = j 1
� max

� 1
� j � ky k2 (8.10)

where we recall that� max := kD T yk1 is de�ned in (7.2).
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Figure 8.3 � Examples of safe spherical re-
gions. The static sphere is centered aty=�
and extends until reaching the dual feasible
point y=� max . The dynamic sphere is also
centered at y=� but extends until reaching
the dual feasible point� t � updated at each
iteration t using, for instance, equation (8.9).
The GAP Safe sphere, on the other hand, is
centered at� t and has a radius proportional
to the duality gap at the current iteration.

8.3.2 Dynamic Safe sphere [Bonnefoy et al. 2015]

With the dual feasible point de�ned in (8.9), safe region (8.7) yieldsR = B(c; R) with

Dynamic Safe: c = y=�; R = k� t � y=�k 2: (8.11)

8.3.3 GAP Safe sphere [Fercoq et al. 2015]

Given any primal-dual feasible pair(x t ; � t ) 2 Rm � � D (say the solution estimations at

iteration t) and denoting

G(x t ; � t jD) := P(x t jD) � D(� t ) (8.12)

the corresponding duality gap (section 2.3.2), the GAP Safe sphere isR = B(c; R) with

GAP Safe: c = � t ; R =
1
�

q
2G(x t ; � t jD): (8.13)

This region is provably safe for any dual feasible point� t 2 � D [Fercoqet al. 2015, Theorem

2]. The authors, following [Bonnefoyet al. 2015], propose to use� t de�ned by (8.9).

Figure 8.3 exempli�es the three described safe regions (subsections 8.3.1 to 8.3.3).

Note that the cited safe regions reuse quantities computed along the iterations of classical

proximal algorithms such as the residual� t , the inner productsD T � t , or the duality gap

(which typically serves as a stopping criterion). This will be detailed in chapter 10.
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8.4. Supplementary discussion

8.4 Supplementary discussion

Let us use this section to draw the relation between some remarkable subsets of the set

of all atoms of the dictionary. We �rst recall some de�nitions.

Solution support An important set is the support of a primal solutionx?, given by

supp(x?) := fj 2 f 1; : : : ; mg : x?(j ) 6= 0g:

Equicorrelation set Another related (but distinct) subset of atoms is the equicorrela-

tion set, denotedE, which can be de�ned as follows (cf. de�nition 3)

E :=
n
j 2 f 1; : : : ; mg : jd T

j � ?j = 1
o

:

It contains the support of all possible primal solutions [Tibshirani 2013].

Inactive atoms We also de�ne the set of inactive atoms as follows:

n
j 2 f 1; : : : ; mg : jd T

j � ?j < 1
o

:

Note that our de�nition of inactive atomscorresponds precisely to the complement of the

equicorrelation set, since from the optimality condition in (8.3) we know thatjd T
j � ?j � 1.

Preserved set we denoteA t the preserved set determined by a safe dynamic screening

rule at iteration t, and its complementA c
t the rejection set (cf. equation (8.5), and note

that in a dynamic rule we take into account the previous preserved setA t�1 , which gives

a nested structure to the sequence of preserved setsA t ).

A t = fj 2 A t�1 : �(d j jR) � 1g: (8.14)

From the de�nition of the screening test (cf. de�nition 25), one can see that, as the radius

of the safe region vanishes (R! 0), we have that �(d j jR) ! jd T
j � ?j and the preserved

set tends to the equicorrelation set (not the support!), i.e.A ! E .

The relations between the mentioned sets is illustrated in Figure 8.4 and summarized

in the property below.
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Figure 8.4 � Links between some remarkable sets, see Property 13.

Property 13. For a given lasso instanceL(�; D; y) with D 2 Rn�m , denotingx? a primal

solution, A t a safe preserved set at iterationt and E the equicorrelation set, we have:

supp(x?) � E � A t � [1; : : : ; m]:

Also, when using a dynamic screening rule, we have:

supp(xt+1 ) � A t

with x t+1 being a solution estimate at iterationt +1, when the setA t is taken into account.

Proof. The �rst inclusion is a direct consequence of the de�nition ofE and the optimality

condition in (8.3). Indeed, jd T
j � ?j = 1 is a necessary (but not su�cient) condition for

x?(j ) 6= 0.

Since the screening tests identify a subset of the inactive atoms (which, in turn, is equiv-

alent to Ec), we obtain A c
t � E c which implies the second inclusion.

The third inclusion is trivial.

The inclusion in the second expression is a direct consequence of using a screening rule,

as the entries in the rejection set are de�nitively set to zero.

A dynamic safe rule is said to beconverging[Ndiaye et al. 2017, De�nition 12] if it

de�nes a sequence of safe regions with diameter converging to zero. A converging safe

rule eventually recovers the equicorrelation set. The GAP Safe rule can be shown to be

converging [Ndiayeet al. 2017, Section 4.5] when paired with a converging lasso solver.

This result is actually easy to grasp by observing that the radius of the GAP Safe sphere

is proportional to the duality gap, which vanishes as the optimization algorithm converges

(as explained in section 2.3.2). Figure 8.5 illustrates a typical behavior of the preserved
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8.4. Supplementary discussion

Figure 8.5 � Evolution of the preserved set and current support over the iterations.

set and the current support over the iterations of a lasso solver. In this example, the active

set converged to the equicorrelation set (rightmost diagram in Figure 8.5).

As discussed in Section 1.4.3 the primal solution might not be unique. However, the

very mild assumption that the the entries ofD can take continuous values is su�cient

to guarantee uniqueness, which is actually the case in most practical scenarios �and,

in particular, in all the performed experiments. It is important to emphasize that the

screening rules remain safe in the non-unique case, since the rejected atoms are those

not belonging to the equicorrelation set and, thus, those that will never appear inany

solution.
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Chapter 9

Stable Safe Screening

To further accelerate the `1-minimization, our idea is to combine the screening rules

described in the previous chapter with the use of fast structured dictionaries. To do so,

we propose to perform the initial iterations using a fast but approximate version~D of the

dictionary D. We would like, however, to perform safe screening, despite manipulating an

approximate version of the dictionary.

When iterating with ~D instead of D, the computational overhead of accessing inner

products dT c is no longer moderate, hence the screening techniques reviewed in chapter 8

cannot be directly applied in this context. A possibility would of course be to recompute

residuals / inner products / duality gaps associated toD (instead of ~D) to implement

the above screening tests, but the whole purpose of re-using quantities already computed

with a structured (computationally e�cient) matrix ~D would be lost. Also, in some cases,

D might not even be accessible, which eliminates the previously evoked possibility.

In this chapter, we propose an alternative solution by deriving screening rules which

remain safe w.r.t the original problem (7.1)even when manipulating an approximate ver-

sion of the dictionary. Thesestablescreening rules only require some knowledge on the

magnitude of certain approximation errors between~D and D.

9.1 Screening a zone given a safe region

In conventional screening tests (De�nition 25) the dual solution� ? is assumed to belong

to a known safe regionR. This allows to screen (or not) an atomd that is perfectly

known, (re)using computations of inner productswith this atom.

When iterating with ~D, e�cient screening tests are only entitled to reuse inner prod-

ucts with approximated atoms, ~D T c. Yet, they should be able to screen certain atoms

d, using the only knowledge that these are �close� to the corresponding approximate

atoms ~d.
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Part III, Chapter 9 � Stable Safe Screening

Figure 9.1 � Example of safe regionR and stability zonesSj in a plane (n = 2).

One way to capture this knowledge is to considerS � Rn some neighborhood ofd,

assumed to be known. We will callS a zone. This gives rise to screening tests for zones.

De�nition 26 (Screening test for a zone). Given a safe regionR, a screening test for

the zoneS � Rn is given by:

�(SjR) := sup
d2S

�(djR) = sup
d2S

sup
� 2R

jd T � j (9.1)

A su�cient condition for an atom d to be inactive can be expressed as follows: ifR is

safe and ifd 2 S, then

�(SjR) < 1 =) x?(j ) = 0 :

Figure 9.1 illustrates the relation between the introduced concepts: the safe regionR

and the stability zones (a zoneSj for each atomd j ).

9.1.1 Stable screening tests

Given an approximate dictionary ~D, error bounds� j such that k~d j � d j kq � � j , 1 � j � m,

can be pre-computed for some choice ofq 2 [1; 1], yielding spherical zonesSj := Bq(~d j ; � j )

known to contain the atoms:d j 2 S j . Using (8.6), a spherical zone

S := Bq(~d; �) (9.2)
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gives rise to the following test (see proof in Appendix C.2.):

�(Sj Bp(c; R)) = j~d
T
cj + �kck q� + Rk~dkp� + CR�: (9.3)

whereC = Cp;q := n(1� 1
p � 1

q )
+ and q� 2 [1; 1] is such that 1

q + 1
q� = 1.

In practice, the norms aj = kd j kp� can be pre-computed and stored with negligible

overhead. This motivates the use of restricted spherical zones which take into account

this new information (i.e. the knowledge of the atoms' norms)

S0 := S \ fd : kdkp� = ag: (9.4)

For such zones we get (see Appendix C.2)

�(S 0jB p(c; R)) = j~d
T
cj + �kck q� + Ra: (9.5)

Lemma 5. Consider a dictionary D and R = Bp(c; R) a safe region with respect to

the dual problem(8.1). Let ~D be an approximate dictionary,1 � j � m, and Sj , S0
j

�(S j jB p(c; R)), �(S 0
j jB p(c; R)) be de�ned by(9.2)-(9.5) with ~d = ~d j , � � k ~d j � d j kq, and

a = kd j kp� .

ˆ If �(S j jB p(c; R)) < 1 then x?
j = 0;

ˆ If �(S 0
j jB p(c; R)) < 1 then x?

j = 0.

Remark 3. In [Herzet et al. 2019], De�nition 26 is used in a di�erent context. No

approximate atoms are considered and the idea is rather to simultaneously test multiple

atoms which eventually lie within a same zoneS, reducing the total number of tests

performed.

9.2 Construction of safe regions using approximate

dictionaries

As in classical screening, we have all ingredients to screen provided we can build a safe

region using moderate computational overhead. The object of this section is precisely to

adapt the constructions of safe regions from Section 8.3, which depend onD, to de�ne

new safe regions reusing computations done during the iterationswith ~D instead ofD.
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Remark 4. Let us emphasize that a safe region is a regionR containing the dual solution

� ? of the original dual problem(8.1) and not necessarilythe dual solution of its approxi-

mate version (i.e. with � ~D instead of � D ). Indeed, althoughD is approximated to speed

up computations, variable elimination needs to be guaranteed with respect to theoriginal

problem (7.1).

The safe regions from Section 8.3 are built by determining a feasible dual point� t 2 � D .

Given an arbitrary z 2 Rn , the function �(zjD) from (8.8) would provide such a feasible

point, however it cannot be used as its computation requires multiplication byD T . A

naive alternative could be to compute�(zj ~D), however while this always belongs to� ~D

(the feasible set for~D) it does not necessarily belong to the desired feasible set� D . This

can be �xed using a modi�ed dual scaling approach that we propose to callstabledual

scaling.

Considering error bounds� = ( � j )m
j =1 2 Rm

+ such that k~d j � d j kq � � j , we de�ne

� 0(zj ~D; �) :=
z

max
�

1;max1�j �m (j ~d
T
j zj + � j kzkq� )

� (9.6)

For � = 0 we recover�(zjD) = � 0(zjD; 0).

Lemma 6. Assume thatd j 2 S j = Bq(~d j ; � j ) for 1 � j � m. Then, for any z 2 Rn ,

� 0(zj ~D; �) 2 � D \ � ~D is a feasible point w.r.t. both the original dual problem(8.1) and

its modi�ed version with ~D instead ofD.

The proof is in Appendix C.3. Analogously to (8.9), we can now de�ne a dual feasible

point proportional to the residual ~� t := y � ~Dx t at iteration t, � 0
t = � 0

�

proj~� t

y
�

j ~D; �
�

,

that is to say more explicitly

� 0
t =

"
yT ~� t

�k ~� tk
2
2

# � 0
t

�� 0
t

~� t ;

with � 0
t =

�

max
1�j �m

�

j ~d
T
j ~� t j + � j k~� tkq�

�� �1

: (9.7)

Recalling that [z]ba := min(max(z; a); b) is the projection of a scalarz onto segment[a; b].

These principles yield newstablesafe`2-spherical regions.
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9.2.1 Stable Static Safe sphere

The static safe sphere (8.10) depends on� max = max j jd T
j yj. To perform only computa-

tions with ~D, we can reuse (8.10) with

� 0
max := max

j

�

j ~d
T
j yj + � j kykq�

�

� � max ; (9.8)

leading to R = B(c0; R0) with

Stable Static Safe: c0 = y=�; R 0 = j 1
� 0

max
� 1

� j � ky k2: (9.9)

9.2.2 Stable Dynamic Safe sphere

We adapt the Dynamic Safe sphere in (8.11) to our approximate setting by replacing the

dual feasible point� t (8.9) by � 0
t (9.7), leading toR = B(c0; R0) with

Stable Dynamic Safe: c0 = y=�; R 0 = k� 0
t � y=�k 2: (9.10)

The fact that � 0
t 2 � D directly implies that this sphere is safe by de�nition of the basic

`2-spherical bound (8.7).

9.2.3 Stable GAP Safe sphere

To build a safe sphereB(c0; R0) with center c0 = � 0
t (9.7) instead of c = � t (8.9) we

need to determine a safe radiusR0 depending only on~D. For this reason, instead of using

the (inaccessible) duality gapG(x t ; � 0
t jD) = P(x t jD) � D(� 0

t ) we will useG(x t ; � 0
t j ~D) =

P(x t j ~D) � D(� 0
t ) and add a security margin ensuring thatB(� 0

t ; R0) is safe. Recall the

standard notation kMk p! q := supkuk p �1 kMu kq.

Theorem 10 (Stable GAP Safe sphere). Consider

E � kD � ~Dk r ! 2
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where1 � r � 1. For any 1 (x ; � ) 2 Rm � � D , we have

� ? 2 B
�

c0 = � ; R0 =
1
�

q
2G(x; � j ~D) + 2 � (x )

�

(9.11)

with � (x ) := ky � ~Dx k2Ekxkr +
1
2

E 2kxk2
r (9.12)

In other words B(� ; R0) is safe.

Proof. The proof, which was �rst derived in [Dantas & Gribonval 2018], is provided in

Appendix C.4.

By applying Theorem (10) to x t and � 0
t in (9.7) we obtain a stable safe region

R = B(c0; R0) with

Stable GAP Safe: c0= � 0
t ; R0=

1
�

q
2G(x t ; � 0

t j ~D) + 2 � (x t ): (9.13)

The �rst columns of Table 9.1 summarize the obtained safe regions alongside with

their previously existing analogue.

Combining stable safe sphere regions with stable safe screening tests (cf Section 9.1.1)

yields screening rules which remain safe despite manipulating an approximate dictionary

(last column of Table 9.1). As before, these new rules also reuse the calculations performed

by the optimization algorithm with the approximate dictionary ~D, which is crucial to make

them suitable in practice. This point will be detailed in chapter 10.

1. In this theorem, � 2 � D can be arbitrary. In particular it is not necessarily expressed as in (9.7),
hence it does not need to belong to� ~D .

2. Since the centerc = y=� is independent of the iteration count t, the resulting test can be simpli�ed
provided that D T y can be pre-computed.
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Chapter 10

A Fast Algorithm for `1

regularization

Having de�ned in chapter 9 safe screening rules which are robust to approximation errors

on the dictionary matrix, we now have the tools to de�ne an algorithm combining safe

screening and the use of fast (but approximate) structured dictionaries.

10.1 Proposed Algorithm

The proposed Algorithm 13 consists in incorporating a stable dynamic screening rule

to the iterations of a proximal algorithm. Besides the vectory and the regularization

parameter �, the input of the algorithm consists in a sequencef ~D i gI
i=0 of approximate

dictionaries with ~D I = D, and a corresponding sequence of error boundsf� i gI
i=0 , where

� i = (� i
j )

m
j =1 2 Rm

+ contains `2 error bounds on the atoms of thei-th dictionary ~D i , and

of course� I = 0.

In general terms, the proposed strategy consists in gradually switching to more ac-

curate dictionary approximations as the optimization algorithm approaches the solution.

Note that any speci�c iterative optimization technique can be used by replacing the generic

update function p(x t ; D; � t ) by the corresponding speci�c update step, for instance equa-

tion (7.3) for ISTA. A possible variation consists in performing the screening at regular

intervals instead of every iteration.

To fully describe this algorithm we need to specify the stopping and switching criteria,

which involve a parameter�. In the following section, we present a switching criterion

which assumes the approximationsf ~Dg I
i=0 to be arranged in increasing order of precision.

A classical stopping criterion is to stop when the duality gap falls below a threshold,

recalling that strong duality holds for problem (7.1), i.e.G(x ?; � ?jD)=0 (see Property 7

in chapter 2). The simplest way of computing the duality gap is to wait until the algo-

rithm reaches ~D = ~D I = D. Alternatively one could upper bound the duality gap using
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Part III, Chapter 10 � A Fast Algorithm for `1 regularization

Algorithm 13 x? = FastL1(f ~D i gI
i=0 ; f� i gI

i=0 ; y; �; �)

1: Initialize: t = 0, x0 = 0, i = 0, A 0 = f1; : : : ; mg,
2: � 0 according to the considered proximal algorithm
3: while stopping criterion not met do
4: �� Restrict to preserved set ��
5: ~D  ~D i

[A t ], x t  (x t )[A t ]

6: �� Update preserved coe�cients ��
7: fx t+1 ; � t+1 g  p(x t ; ~D; � t )
8: �� Dynamic Screening ��
9: Set � 0

t using (9.7) andc0, R0 according to Table 9.1
10: A t+1  fj 2A t : �(S 0

j jB (c0; R0)) � 1g
11: t  t + 1
12: �� Switching criterion ��
13: Compute  t (cf. (10.1)) and K t (cf. (10.11))
14: i = SwitchDictionary (i; I;  t ; �; K t )
15: end while
16: Return: x?  x t zero-padded inA c

t .

approximate dictionaries:G(x ; � j ~D) + � (x ) � G(x ; � jD) with � (x ) de�ned as in (9.12)

(this bound is obtained as part of our proof of Theorem 10 concerning the stable GAP

Safe sphere and given in Appendix C.4).

10.2 Switching criterion

If an approximate dictionary ~D was kept until convergence, the solution of a di�erent

problem (the one de�ned by ~D) would be obtained. It is, therefore, necessary to switch

back to the original dictionary at some point.

In general, a switching criterion has two main motivations:

ˆ Convergence: to avoid diverging from the solution of the original problem (7.1).

The higher the error bounds� i , the further away we move from the true solution,

therefore the need to switch earlier in such cases.

ˆ Speed: once screened enough, the original dictionary can become faster to apply

than the approximate ones. This is crucial at high regularization regimes (�=� max � 1)

in which screening typically occurs very quickly.
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10.2. Switching criterion

10.2.1 Convergence criterion

Given a solution estimatex t at iteration t, a natural convergence measure for the problem

L(�; D; y) is the duality gap G(x t ; � t jD) (8.12) with � t calculated as in (8.9). However,

when manipulating approximate dictionaries, this quantity is not accessible without un-

wanted additional computations.

As a surrogate, we propose to use a ratio

 t =
G(x t ; ~� t j ~D)
G(x t ; � 0

t j ~D)
(10.1)

between two computable gaps arising from two di�erent dual points� 0
t and ~� t that are

respectively feasible for problemsL(�; D; y) and L(�; ~D; y):

� 0
t 2 � D \ � ~D �! G(x t ; � 0

t j ~D) = P(x t j ~D) � D(� 0
t ) (10.2)

~� t 2 � ~D �! G(x t ; ~� t j ~D) = P(x t j ~D) � D(~� t ) (10.3)

where � 0
t 2 � D \ � ~D has been previously calculated for the stable screening with (9.7),

while ~� t 2 � ~D is the conventional dual point (8.9) but calculated with ~D. Then again,

apart from minor extra memory requirements, the computation of the quantities in (10.3)

reuses most of the calculations1 in (10.2).

If ~D = ~D i was kept until convergence, we would have

~x t ! ~x? and ~� t ! ~�
?
: (10.4)

with ~x? a solution of L(�; ~D; y) and ~�
?

a solution of the corresponding dual problem.

Then, as illustrated in Fig. 10.1 (left plot), the second quantityG(x t ; ~� t j ~D) �which is

precisely the duality gap w.r.t. the problemL(�; ~D; y)� would tend to zero, while the

�rst quantity G(x t ; � 0
t j ~D) would typically saturate at a nonzero value since� 0

t 9 ~�
?
. As a

result, the ratio  t would shrink with the iterations as illustrated in Fig. 10.1 (right plot).

With that in mind, we propose to switch dictionaries when

 t � � (10.5)

where the higher� 2 [0; 1], the greater the sensibility to the gap saturation.

1. Only n extra products for computing k~� k and jA t j comparisons fork ~D T � t k1 are required.
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Part III, Chapter 10 � A Fast Algorithm for `1 regularization

Figure 10.1 � Typical behaviour of duality gaps (left) and ratio  t (right) as a function of
the iteration number and error bounds.

10.2.2 Speed criterion

In terms of speed, the general idea is to exploit tradeo�s between approximation and

computational e�ciency.

Denoting C(D; A) the computational cost of multiplying matrix D [A ] by a vector, it

is reasonable to assume thatC(D; A) � C (D; A 0) if A � A 0. As a result, given the nested

structure of the sequence of preserved setsA t (by construction, see line 10 in Alg. 13),

the sequenceC(D; A t ), t � 0 is non-increasing.

Consider two approximate dictionaries~D i and ~D j and assume the initial �unscreened�

computational costs satisfyC( ~D i ; A 0) < C( ~D j ; A 0). Denote E i , E j the corresponding

approximation errors (cf (7.4)), and assume thatE i is �larger� than E j (let us denote

this E i � E j ) in the sense that for each column the approximation error is larger. An

irrevocable switching point would be an iterationT in which the coarser approximation
~D i becomes more complex than~D j

8t > T; C( ~D i ; A t ) � C ( ~D j ; A t ): (10.6)

Note that this only happens if C( ~D i ; A t ) decreases faster thanC( ~D j ; A t ) as screening

progresses (i.e. asjA t j gets smaller).

To use the general idea just described, one needs to specify a complexity model

C(D; A t ) depending on the structure of the corresponding matrix. For a generic unstruc-
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10.2. Switching criterion

tured dictionary matrix D 2 Rn�m , a simple model is:

C(D; A t ) = njA t j (10.7)

To quantify the complexity reduction on matrix-vector products entailed by an ap-

proximate dictionary we will use the concept ofRelative Complexity(RC) [Magoarou &

Gribonval 2016], such that

C( ~D; A 0) = RC( ~D) � nm: (10.8)

In a worst-case scenario, screening does not further reduce the cost andC( ~D; A t ) =

RC( ~D) � nm. In more optimistic scenarios, some fast approximate dictionary structures

might still bene�t from speedups upon column removal.

Consider approximate dictionariesf ~D 0; : : : ; ~D I g, with ~D I = D, of increasing precision

and decreasing complexity

E1 � : : : � E I = 0 and RC( ~D 0) < : : : < RC( ~D I )=1 : (10.9)

The above observations suggest to switch from~D i to D if C( ~D i ; A t ) � C (D; A t ), i.e.

RC( ~D i ) � nm � njA t j, that is to say if

jA t j � RC( ~D i ) m: (10.10)

Also, as a consequence of the complexity model (10.8) adopted for the approximate dic-

tionaries ~D, this criterion never causes a switching from~D i to ~D j with i < j 6=I . In

other words, this criterion triggers a switching directly to the true dictionaryD.

We will see, however, that this criterion is not directly applicable in practice, which

leads to the heuristic de�ned below.

10.2.3 Heuristic look-ahead speed criterion

The preserved set sizejA t j used in (10.10) should ideally be the one associated to the

dictionary after switching (D in this case), while in practice only the screening rate

associated to thecurrent approximation ~D i is available. This motivates the introduction

of a heuristic (that preserves the safety of screening) to anticipate the potentially smaller

size of the preserved setjA t j as soon as we switch to a more precise approximation (or to
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Part III, Chapter 10 � A Fast Algorithm for `1 regularization

Figure 10.2 � Number of preserved atomsjAj using oracle conventional screening (x-axis)
vs stable screening (y-axis, left plot), orvs proposed heuristic (y-axis, right plot). .

the original dictionary).

Indeed, stable screening generally leads to less atom eliminations due to the extra

security margins (and more so for higher approximation errors). This is illustrated in

Figure 10.2 (left) with a scatterplot in which the x-axis correspond to the �oracle� number

of preserved atomsjAj obtained with a conventional Dynamic Safe screening mechanism

having access toD. This is the quantity we are interested in estimating for the speed

criterion (10.10). The y-axis corresponds to the number of preserved atoms obtained by

the corresponding stable test for a given approximation~D. Each plotted point compares

the two mentioned screening ratios at a given iteration. The procedure was repeated a

large number of times in order to give a full picture of how the two quantities correlate

to one another. The main observation is that all points lie above the identity line which

means that the stable test always overestimates (sometimes signi�cantly) the value that

jA t j will reach after switching. This phenomenon is intensi�ed for higher approximation

errors.

As a heuristic, we propose to estimatejA t j using theconventional test on the approx-

imate atoms, i.e.�( ~d j jR).

K t = jfj 2 f 1; : : : ; mg : �( ~d j jR) � 1gj (10.11)

As shown in Fig. 10.2 (right graph), this correlates much better with the oracle value of

jA t j, since it doesn't have the additional security margins used in the stable test. Even
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10.2. Switching criterion

though the test used to computeK t is unsafe with respect to the original problem (7.1),

it has no impact on the safety of screening itself, which is still performed with the stable

test. Moreover, the additional test is virtually costless since the calculations of the �rst

test are reused.

10.2.4 Summary and example

The resulting switching strategy, shown in Algorithm 14, plays two roles:

(I) Decide when to stop using the current dictionary.

(II) Choose the next dictionary.

Algorithm 14 j = SwitchDictionary (i; I;  t ; �; K t )

1: if K t � RC( ~D i ) m then . Speed criterion
2: j  I
3: else if  t � � then . Convergence criterion
4: j  i + 1
5: else
6: j  i
7: end if

The speed criterion (section 10.2.2) triggers a switching directly to the original dictio-

nary ~D I = D. We suppose the Relative Complexity associated to the i-th approximation

RC( ~D i ) (cf. (10.8)) to be known and stored in memory. The convergence criterion (sec-

tion 10.2.1) switches to the next available approximation~D i+1 . Note that if D is already

adopted, i.e. input i = I , then D is kept for all remaining iterations.

Example Figure 10.3 shows an example of the proposed algorithm, given a list of ap-

proximations f ~D i gI
i=0 with I = 4, decreasing approximation error� i and increasing rela-

tive complexity RC( ~D i )=0 :15(i+1), 0� i< I . As usual, ~D I = D.

Figure 10.3a shows the duality gap evolution over the iterations with� = 0 :2. As soon

as the gapG(x t ; � 0
t j ~D i ) saturates, a more precise approximation is adopted (the next on

the list), avoiding to excessively delay the convergence compared to the conventional case

where screening is performed withD from the beginning (dotted curve). Although some

delay is introduced in terms of iterations until convergence, it is largely compensated by
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(a) (b)

(c) (d)

Figure 10.3 � Application example of the proposed algorithm. (a) and (b) Duality gap
over the iterations and time respectively. (c) Gap ratio t (cf. (10.1)) for the convergence
switching criterion, with threshold � = 0 :2. (d) Computational complexity per iteration
(worst-case theoretical number of �ops, cf. section 10.2.2). Parameters:n = 2500, m =
10000,�=� max = 0:2, convergence threshold on duality gaptol = 10�4 .

the fact that the initial iterations with the approximate dictionaries are much faster. This

is illustrated in Fig. 10.3b in which the duality gap is plotted as a function of the execution

time.

The theoretical complexity per iteration is shown in Fig. 10.3d. As better approxi-

mations are adopted, the iteration complexity rises proportionally to the corresponding

RC. Note that as soon as the conventional dictionary becomes faster than the current

approximation, it is promptly adopted (by the speed criterion). In this example, the last

approximation ~D i=3 was never used, since we switched directly from~D i=2 to D.
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10.3 Complexity Analysis

Existing screening tests introduce only a minor computational overhead because they

primarily reuse matrix-vector multiplications either already performed in the optimization

algorithm update p(x t ; D; � t ) (typically the product D T �) or that can be precalculated

once for all (D T y). The same holds for the stable tests proposed in this article. We now

derive the involved number of �oating point operations (�ops). Since static screening rules

represent only a �xed computational overhead, we concentrate on dynamic rules which

could potentially (if not properly designed) lead to a signi�cant overhead.

10.3.1 Screening cost

The most expensive computations associated to a dynamic screening rule � the ones

potentially of the order of a matrix vector product O(nm) � are:

ˆ Computation of a dual feasible point� t in (8.9) (resp.� 0
t (9.7)): requires the product

D T � (resp. ~D T ~�) reused from the optimization algorithm.

ˆ Sphere test�(djR) (resp. �(S 0
j jR)): requires the product dT

j c (resp. ~d
T
j c) for all

preserved atomsj 2 A , which comes down to the matrix-vector productD T c (resp.
~D T c). Practical sphere regions have been designed to limit this potential overhead.

While in the Dynamic Safe sphere it reduces to the precalculated productD T y, in

the GAP Safe sphere it reduces toD T � (resp. ~D T ~�) calculated in the optimization

iteration.

The other required calculations are detailed in Appendix C.5. In short, the screening

represents a rather low overheadO(n + jAj) �even its stable version� compared to the

optimization update: O(njAj) with screening orO(nm) without it, due to matrix-vector

products.

10.3.2 Full iteration cost

Table 11.2 shows the number of operations of a complete iteration in Algorithm 13 (ISTA

update + screening), following [Bonnefoyet al. 2015] and adopting the complexity models

in equations (10.7) and (10.8) for matrix vector multiplications. We denote �opsD (t) the

cost of iteration t with the conventional screening and �ops~D (t) with the stable screening.
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As a benchmark, we use the complexity of an ISTA iteration without screening, denoted

�opsN (t).

�opsN (t) (m + kx tk0)n + 4m + n

�opsD (t) (jAj + kx tk0)n + 6jAj + 5n

�ops ~D (t) (RC � m + kx tk0)n + 8jAj + 7n

Table 10.1 � Complete iteration complexity

To obtain the total complexity of the algorithm, simply add up all iteration costs

calculated with the corresponding active set sizejA t j and sparsity of the solution estimate

kx tk0 at iteration t.
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Chapter 11

Experiments

In this chapter we demonstrate the potential of the proposed Algorithm 13 in terms of

complexity reduction and time saving for`1-minimization problems. This is done in a

wide set of simulation scenarios, summarized in Table 11.1, to evaluate the in�uence of

the main parameters involved.

Source code for reproducible research is available online [Dantas & Gribonval 2019b].

Problem parameters Values

Regularization �=� max [10�2 ; 1] (logarithmically-spaced)

Convergence tolerance G(x t ; � t jD) < tol 2 [10�6 ; 10�3 ]

Data distribution y Dx with x Bernoulli-Gaussian

Algorithm parameters Values

Optimization algorithm ISTA, FISTA

Screening Test (stable) Dynamic, (stable) GAP Safe

Switching threshold� [0 :01;0:8] (logarithmically-spaced)

Speedup-Error tradeo� ~D i 3 scenarios (see Section 11.1)

Table 11.1 � Pool of parameters explored in the simulations.

The dimension of the observed vectory is n = 2500 and that of the coe�cient vector x

(or, equivalently, the number of atoms in the dictionary) ism = 10000. Unit-norm input

data samplesy = Dx are generated from a sparse vectorx with support determined

by a Bernoulli distribution with probability p = 0:02 and zero-mean standard Gaussian

entries. The reported results are the average on 25 independent and identically distributed

realizations of the input y. The dictionary matrix D 2 Rn�m is generated in such a way

that it is more or less e�ciently approximated by a fast structured matrix according to

three representative scenarios (more details are given in Section 11.1).

Although other problem dimensions (nand m) and data distributions were explored,
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we decided to keep these parameters �xed on the reported experiments since they were

observed not to decisively in�uence the analyzed results.

In all �gures, the GAP Safe and Dynamic Safe tests are denoted respectively by the

acronymsGAP and DST.

11.1 Specifying the Fast Structured dictionaries

The performance of the proposed algorithm is directly associated to thequality of the

available approximations ~D i . A good approximation would have both a small application

complexity (RC) and small approximation error (�). There is a compromise, however,

since each of these features usually come to the price of the other.

In the experiments, we use a particular kind of fast structured dictionaries: the SuKro

dictionaries discussed in part II of this thesis,which can be written as a sum of Kronecker

products ~D =
P nkron

r =1 B r � C r . Its reduced multiplication cost comes from the fact that

the sub-matricesB r , C r 2 R
p

n�
p

m are much smaller thanD 2 Rn�m . The choice of the

SuKro structure is justi�ed by the fact that it directly provides a range of speedup-error

compromises by tweaking the number of Kronecker terms (nkron ) in the sum. A higher

nkron provides a more precise approximation although implying a higher RC.

We de�ne three representative simulation scenarios � hard, moderate and easy scenar-

ios � in which the dictionary matrix is poorly, moderately and e�ciently approximated

by the structured dictionary respectively. In practical terms, this translates to di�erent

approximation error decay pro�les as a function of the number of Kronecker terms (nkron )

on the SuKro structure, as shown in Figure 11.1. The easier the scenario, the faster the

approximation error decays as a function ofnkron .

Although computational complexity associated to a certain SuKro operator can be

calculated analytically, we measured the actual time speedup obtained in practice in

order to have a more realistic value. Interestingly, the measured RC is lower than the

theoretical prediction.1

1. Note that we do not observe the same overhead as in Table 5.3, section 5.4.2. This is because here
we use a 2D-SuKro (i.e. with2 blocks in the Kronecker product) and in this scenario the mode-products
translate directly to usual matrix-matrix products: (B � C)v = vec(V � 1 C � 2 B) = vec( CVB T ), with
v = vec(V ). Therefore, the successive rearrangement of the data in memory are no longer required. Now,
the superiority w.r.t. the theoretical predictions can be explained by the fact that some parallelization is
introduced (in the summing terms) and matrix-matrix products are faster than the naive cubic complexity.
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Figure 11.1 � Simulated scenarios: di�erent trade-o�s between approximation error and
speedup of the structured dictionaries.

nkron 5 10 15 20

Measured RC 0.08 0.15 0.21 0.28

Theoretical RC 0.15 0.30 0.45 0.60

Table 11.2 � Relative Complexities (RC)

11.2 Computational complexity and Time results

Let us denoteFN , FD and F ~D respectively the total computational complexity (in number

of �ops) of the optimization algorithm without screening, with the conventional screening

and with the proposed approach, such that

FX =
n itX

t=1

�opsX (t); X 2 f N; D; ~Dg (11.1)

wherenit is the number of iterations. When calculatingF ~D , the current approximation

at iteration t must be used in the expression of �ops~D (t). Likewise, we denoteTN , TD and

T~D the measured running times.

As a main �gure of merit, we evaluate the normalized number of �ops (FD =FN and

F ~D =FN ) and normalized running times (TD =TN and T~D =TN ).2

In all simulated scenarios, the observed time reductions match closely the theoret-

2. Time results were obtained in an Intel® Core— i7-5600U CPU @ 2.60GHz, 16GB RAM. But since
mostly time ratios are reported, the results here should be relatively consistent with other machine
speci�cations.
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Figure 11.2 � Normalized number of �ops vs. normalized running times for ISTA (tol=
10�5 , � = 0 :5). Each point on the graph corresponds to an independent run at a given
regularization �=� max 2 [10�2 ; 1]. Results for the usual GAP Safe test are shown in black
and those using its stable version (as in Algorithm 13) are shown in colors � the red dots
correspond to the multiple approximations case. The closer the dots lie to the identity
line, the better the theoretical speedups are met in practice.

ical speedups predicted in terms of computational complexity, as illustrated in Figure

11.2 for the GAP Safe rule. It shows the correlation between theoretical complexities and

measured running times in multiple independent runs. The fact that the points are well

concentrated around the identity line is an empirical evidence that the predicted speedups

really translate into practical accelerations. Similar results are obtained for the Dynamic

Safe rule, for other convergence tolerances and switching thresholds. Given this observa-

tion, in the remainder of the chapter we report only running time results, which are more

relevant in practice.

11.3 Choosing the switching threshold

The convergence-based switching criterion proposed in Section 10.2.1 relies on a hyper-

parameter: the threshold�. As discussed then, this parameter determines how long the

approximate dictionaries are kept.

We empirically observed that the choice of� is mostly dependent on the quality of the

approximations ~D i (represented here by the three simulation scenarios de�ned in Section

11.1). In Figure 11.3 we show the normalized times as a function of� 2 [10�2 ; 0:8] for

each one of the three scenarios. Each line corresponds to a di�erent regularization level�.
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11.3. Choosing the switching threshold

Figure 11.3 � Impact of the switching threshold� (x-axis) on the time results (y-axis)
of Algorithm 13 using FISTA and GAP Safe. Each line corresponds to a regularization
�=� max 2 [10�2 ; 1].

For each of these lines, we are interested in the� value that minimizes the running times.

We can see that the low regularization con�gurations (dark blue curves) are more sensitive

to the choice of�, especially in the Hard scenario (left plot) in which a bad choice of�

can even lead to normalized running times greater than one �so, actually, a slowdown.

This happens when a too small� is used, which means that the approximate dictionaries

are kept longer than they should, causing an important detour in the convergence path

and thus delaying convergence.

There is no reason for the optimal� to be the same for every regularization level.

However, a common behavior is observed regardless of the regularization and, for a given

simulation scenario, a single� value can be chosen to obtain close to optimal execution

times for any�=� max in the tested range. Slightly di�erent � values can be chosen to better

adapt to each simulation scenario:� = 0 :5;0:25;0:2 (indicated by the dotted vertical lines

in the �gure) respectively on the hard, moderate and easy scenarios. In general terms, the

worsethe available approximations are (i.e. the harder the scenario) the higher the� to

be chosen. This is intuitive, since it implies being more conservative in switching earlier

when the available approximations are of lower quality.

If the aimed speedup-error compromise is not �xed, a good general compromise is

picking � = 0 :5, for instance.
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Figure 11.4 � Running times normalized w.r.t.TN (ISTA or FISTA algorithms without
screening) as a function of the regularization level. Simulations are done independently for
each�. Conventional and Stable screening results respectively in black and colored lines.
Left: ISTA. Right: FISTA. Top: Dynamic Safe screening. Bottom: GAP Safe. Moderate
scenario,tol =10�5 , �=0 :5.

11.4 Single vs. Multiple Approximations

In our experiments, using multiple dictionary approximations proved to be always ad-

vantageous when compared to using a single approximation, as soon as the switching

parameter � is well-tuned (see Section 11.3).

Figure 11.4 shows the normalized running times for an entire range of regularizations

and corroborates the previous statement for both GAP and Dynamic Safe tests as well

as for both ISTA and FISTA algorithms. The medians among 25 runs are plotted and

the shaded area contains the 25%-to-75% percentiles. Although the single-approximation

version of the proposed algorithm (as introduced in [Dantas & Gribonval 2017, Dantas
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11.5. Varying speedup-error compromises

& Gribonval 2018]) already provides noticeable speedups to the tested gradient-based

solvers, even with respect to their screening-based implementation (black curves), the

use of multiple approximations (red curves) consistently leads to even better speedups.

This rati�es the relevance of the generalization to multiple dictionaries introduced in

[Dantas & Gribonval 2019a]. Similar results, which are omitted here, were obtained for

other convergence tolerances and speedup-error compromise (these parameters are further

explored in Sections 11.5 and 11.6).

A smaller speedup is provided to the FISTA algorithm when compared to ISTA, which

is expected since the former is already faster than the latter3. A similar argument applies

to the GAP Safe rule, which has stronger screening capabilities than Dynamic Safe: our

method still manages to provide some additional acceleration when combined to these

already quite e�cient techniques, especially in low-regularized scenarios.

For simplicity, only the results concerning multiple dictionary approximations will be

reported from this point on.

11.5 Varying speedup-error compromises

It is reasonable to expect the quality of the approximations~D i to be decisive on the

performance of the proposed algorithm. Its success depends on the possibility of providing

fast yet precise approximations of the dictionaryD. Let us now evaluate the in�uence of

this speedup-error compromise on the simulation time results.

Figure 11.5 shows the same type of normalized running times as in Figure 11.4, but

it now compares the results of the proposed algorithm under three di�erent scenarios in

terms of speedup-error pro�les (see Figure 11.1 for details on the approximation errors in

each scenario). The impact on the running times is indeed signi�cant. However, even on

the Hard scenario, the proposed approach manages to provide non-negligible acceleration.

11.6 Varying convergence tolerances

As previously highlighted, screening is known to work better on highly-regularized scenar-

ios (�=� max � 1). The speedup provided by the screening is also more pronounced when

a more precise convergence is required, because the �nal iterations are often less costly

3. The results reported in the right graphs are already normalized w.r.t the FISTA time results, which
are typically smaller than those of ISTA.
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Part III, Chapter 11 � Experiments

Figure 11.5 � Normalized running times in 3 di�erent scenarios of speedup-error tradeo�s.
tol =10�5 , �=0 :5.
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11.6. Varying convergence tolerances

(a) ISTA

(b) FISTA

Figure 11.6 � Normalized execution times in grayscale (darker means slower) to reach
a certain duality gap for a range of regularizations. Left: proposed technique (w/ stable
screening). Right: Conventional screening.

as most atoms have been screened out. These two aspects create the triangular pro�les

observed in Figure 11.6 (right plots). This �gure shows the normalized execution times

in grayscale (the darker, the slower) as a function of both the regularization (x-axis) and

the convergence precision in terms of the duality gap (y-axis).

Note that the proposed method (left plots) e�ciently complements the screening tests

in its main weaknesses, namely: low regularizations and reduced convergence requirements.

In weakly regularized scenarios, while screening tests struggle to eliminate atoms especially

in initial iterations, the fast approximate dictionaries come at rescue by making those

iterations faster. Besides that, when higher duality gaps are targeted, less iterations using

the slow dictionary D are necessary. Thus, proportionally, the accelerated part of the

algorithm (with fast dictionaries) is more signi�cant.
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Part III, Chapter 11 � Experiments

Figure 11.7 � Source localization using an MEG forward operator. Duality gap as a func-
tion of time for �=� max = 10�1 .

11.7 Behavior on MEG source localization

In this experiment, we consider an MEG (magnetoencephalography) source localization

problem, which consists in retrieving a limited set of active brain foci associated to a given

MEG measured signal. A common way to achieve such a task is to solve a convex sparse

inverse problem [Matsuura & Okabe 1995,Gramfortet al. 2012].

We consider an MEG gain matrix (forward operator)D 2 R204� 8193 obtained with

the MNE software [Gramfort et al. 2014]. This operator can be e�ciently approximated

as a product of a few sparse matrices, as proposed in [Magoarou & Gribonval 2016].

The speedups and corresponding approximation errors achieved by the so-calledFA�ST

dictionaries adopted here are summarized in Table 11.3. The obtained speedup-error com-

promise corresponds to a hard scenario.

The experiment consists in picking (uniformly) at random eight active sources with

standard gaussian weights giving 8-sparse coe�cient vectorsx 2 R8193 to be recovered

from the input signalsy = Dx 2 R204 by solving problem (7.1).

Mean � j 2:1�10�1 1:2�10�1 6:6�10�2 5:9�10�2

Measured RC 0.22 0.33 0.45 0.63

Table 11.3 � Approximation errors and Relative Complexities for the FAuST approxima-
tions of the MEG matrix.

Figure 11.7 shows the required time to reach a certain duality gap precision (averaged

over 50 independent runs) for a �xed regularization�=� max = 10�1 , around which the
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11.7. Behavior on MEG source localization

correct number of sources is recovered. The proposed method is consistently advantageous,

providing some speedup with respect to both the FISTA algorithm (grey dotted line) and

its enhanced version with GAP Safe screening (black line). Although somewhat modest

when compared to the latter, the provided gain is proportionally more pronounced at

lower precision requirements in the duality gap. More signi�cant speedups would require

better approximations of MEG gain matrix (in the sense of speedup-error compromise).

It is also important to emphasize that neither of the two considered acceleration tech-

niques a�ects the algorithms results in terms of source localization accuracy, since they

solve the exact same problem at the same convergence precision. That is why task-speci�c

performance measures are not discussed (see [Gramfortet al. 2012] for more details on

the performance of̀ 1-minimization techniques for brain source localization).
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Conclusion and perspectives

In this thesis, we explored techniques for accelerating sparsity-

constrained inverse problems. The two main lines of work can be brie�y

summarized as follows: 1) Kronecker-structured dictionaries for tensor

data; 2) Safe screening techniques robust to approximation error.

This last chapter summarizes the central contributions and presents some

possible future research directions.

Conclusion

After reviewing some useful tools and related literature, the contributions of this thesis

were presented in parts II and III.

Part II discussed e�cient structured dictionaries. To improve on storage, robustness to

sample size and computational complexity, a new dictionary model was introduced where

the dictionary is constrained as a sum ofR Kronecker products ofK terms, the so-called

HO-SuKro model. In chapter 4, we argued how such a constraint arises naturally when the

targeted data are given byK th-order tensors, such as collections of color or hyperspectral

images. We have drawn a parallel between this sum-of-Kroneckers constraint and the

tensor Canonical Polyadic Decomposition, the latter being used as a projection algorithm

for imposing the structure constraint to a generic �nite-dimensional linear operator.

In chapter 5 two novel dictionary learning algorithms were proposed. First, the tools

developed in the preceding chapter for matrix approximation were extended to the dictio-

nary learning problem, leading to a projected gradient approach for learning HO-SuKro

dictionaries. Later, a considerably more e�cient algorithm for learning the same class of

dictionaries was derived. It alternatively updates the Kronecker blocks within the pro-

posed structure, implying that the dictionary never leaves the constraint space. We also

analyzed the computational complexity of both learning algorithms, discussed how the

proposed structure can be exploited to accelerate traditional sparse coding algorithms

and made some considerations on the actual speedups that can be attained in practice. A
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considerable gap was observed between the theoretical and practical speedups, but some

acceleration can still be achieved in practice and several possibilities exist to try and

tighten this gap (detailed in the Perspectives section below).

Experimental results in color image and hyperspectral image denoising were reported

in chapter 6. Encouraging results were obtained in both applications. The tensor structure

constraint on the dictionary proved to be bene�cial in terms of denoising performance com-

pared to a completely unstructured dictionary, especially in higher noise scenarios. Besides

serving as a regularization to avoid over�tting in such noisy scenarios, the structure con-

straint was also observed to improve robustness to smaller training datasets. Speci�cally

for the Hyperspectral data, an improved denoising approach was proposed by integrating

a low-rank prior on the images, which led to state-of-the-art denoising performance.

Part III was dedicated to safe screening techniques. Aiming to combine safe screening

tests and fast structured operators in an e�ort to accelerate the solution of`1-minimization

problems, we proposed a methodology for de�ning safe screening tests despite an inaccu-

rate knowledge of the dictionary atoms.

The proposed methodology was exempli�ed on some existing screening tests (static and

dynamic) in chapter 9. The resultingstable screening testswere then employed in a fast

algorithm in chapter 10, which exploits a series of fast approximations of the dictionary

matrix and can be combined to almost any existing �rst-order̀ 1-solver. The proposed

switching criterion consistently prevents the proposed method from leading to an overhead

in terms of convergence time.

Simulation results in chapter 11 demonstrated the two combined strategies to be quite

complementary, justifying the e�ort to conciliate them. The structured dictionaries con-

tribute to accelerate the initial phase of the optimization process, which is precisely the

main weakness of the screening techniques especially in weakly regularized scenarios � in

such cases, screening may take several iterations to start eliminating atoms.

Perspectives

In this �nal section, we elaborate on some research possibilities that arise as natural

follow-ups to the topics discussed in this thesis.
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Kronecker-structured dictionaries

Envisioned further works range from improvements on the proposed algorithms to the

extension of the proposed HO-SuKro model to other problems and applications.

Hyperparameter tuning The proposed methods rely on several hyperparameters:

those related to the algorithms' �ow (step-sizes and convergence tolerances for the CPD,

the ALS loop or the sparse coding, for instance); and those related to the model speci�ca-

tion (separable rankR, number of Kronecker blocksK and factor dimensionsfn k ; mkg).

More in-depth studies on the �rst group of parameters may lead to improvements on the

performance and convergence speed of the proposed algorithms. Although some heuristic

or empirically-inspired criteria have been proposed to set decent values, as for now, the

in�uence of these parameters is not fully characterized as well as the robustness of the

proposed algorithms to their choice.

Some of the model-related parameters may be �xed by the aimed application. For

instance, in the patch-based denoising applications explored in chapter 6, the number of

Kronecker blocksK corresponds to the number of modes of the tensor input data and the

dimensionsfn kg correspond to the patch dimensions. However, the choice of the separable

rank R remains arbitrary (although restricted to small values for complexity reasons) as

well as the choice offm kg which de�nes the number of atoms. One could also consider

the case where the factor sizesfn k ; mkg are not known. Their estimation thus becomes an

interesting problem that comes down to identifying the underlying structure of the data.

Further theoretical studies Some particular points on the thesis still lack a more

rigorous investigation, of which the following two can be highlighted:

1. Study the convergence properties of the proposed algorithms to provide further the-

oretical convergence guarantees. The non-convex nature of the dictionary learning

problem considerably complicates this task. However, several works exist on provid-

ing dictionary learning algorithms with provable guarantees [Spielmanet al. 2012,

Agarwal et al. 2016,Schwabet al. 2019] and they could be a starting point.

2. Analyze the e�ects of the dictionary columns normalization, both in terms of the al-

gorithm's convergence and the quality of the obtained dictionary. This study could

lead to more rigorous ways to integrate this unit-norm constraint into the opti-

mization process, as opposed to the current arbitrary choice of handling it as a

post-processing step.
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Bridging the performance gap Even if the proposed structure led to interesting ac-

celerations w.r.t. to unstructured dictionaries in matrix-vector operations, a considerable

gap was observed between the theoretical complexities and the practical speedups. This

gap is mainly due to ine�ciencies on the computation of tensor operations (more precisely,

sequences of mode products) when compared to conventional matrix algebra. Neverthe-

less, there is active research addressing this issue in di�erent ways, for instance through

lower-level optimization in cache reuse and vectorization [Matthews 2018] or by avoiding

excessive data reordering [Vannieuwenhovenet al. 2013,Li et al. 2015].

In a related topic, still aiming at practically e�cient algorithms, we envision developing

online (or batch-based) versions of the proposed algorithms to achieve real scalability in

terms of memory complexities.

Extension to other problems and applications HO-SuKro dictionaries are not re-

stricted to denoising applications and can be straightforwardly applied to other dictionary-

based applications such as inpainting, deblurring and image fusion, or even to other types

of data like medical, seismic, audio and video. In a broader sense, the proposed structure

need not be restricted to the dictionary learning domain. It can, for example, be used

for covariance matrix approximation, extending the work in [Tsiligkaridis & Hero 2013].

Another potential application is in the graph signal processing domain, to obtain e�cient

approximations of the graph Laplacian matrix, as an alternative to the recent approach

in [Le Magoarouet al. 2018].

Several perspectives exist in the hyperspectral denoising application, to cite some:

learning the dictionary on clean data extracted from a corpus of similar images; replacing

the SVD by a more meaningful decomposition using NMF or more advanced unmix-

ing approaches; or using the proposed denoising technique as a pre-processing for other

downstream applications such as classi�cation and segmentation.

Stable safe screening

The proposed screening framework also leads to several promising perspectives, detailed

in the following.

Other sources of approximation error In a broader sense, the proposed stable tests

can be seen as a robust screening tool for inaccurately-de�ned`1-minimization problems
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in which the imprecision need not be due to the use of fast approximations �for instance,

due to intrinsic imprecisions on the measurement matrix of a given inverse problem.

Providing better criteria for structured approximations The proposed method-

ology retrospectively provides a better understanding on which atom approximation error

measures are more signi�cant to the stable screening tests, potentially leading to more

suited data �delity criteria in structured dictionary approximation techniques. It could

also provide information on how critical each atom is (statistically, for a certain class of

input signals) to adjust the approximation precision accordingly.

Variations and extensions In principle, the proposed framework can also be applied

to other types of safe regions and error bounds than the ones explored in this thesis, such as

dome regions [Xianget al. 2017]. The proposed framework could also be extended to other

sparsity-inducing inverse problems such as the Group-Lasso or the regularized logistic

regression. Finally, an interesting perspective is to extend these zone-based screening tests

to o�-the-grid generalizations of`1-regularized problems [Bredies & Pikkarainen 2013]. In

such problems, the ability to screen individual atoms is completely useless, since there

is an in�nite number of them. The proposed stable screening, which allows to screen an

entire zone, appears to be the appropriate tool to overcome this technical di�culty.

Connections to neural networks Iterative proximal gradient algorithms for the lasso

problem can be reinterpreted in the context of neural network: the gradient step is seen as

the linear layer and the proximal step (soft-thresholding operation) as the non-linearity. In

the LISTA (Learned ISTA) method [Gregor & LeCun 2010], the classical ISTA algorithm

is mapped into a recurrent neural network which is then trained via backpropagation

through time. An interesting perspective is to incorporate a screening procedure to this

kind of approach to provide further acceleration. Although the linear layer in the network

is initialized as the conventional gradient operation, it is modi�ed during the training

phase. This provides evidence that ideas similar to the ones behind stable screening could

be useful in making this adaptation possible.
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Appendix A

Complements to Part I

A.1 Derivation of the lasso dual function

Notice that the lasso dual function in (2.33) can be rewritten as two separate minimization

problems (with respect toz and x)

D(� ) = min
z2R n

�
1
2ky � zk2

2 + � T z
�

| {z }
(II )

+ min
x2R m

�kx k1 � � T Dx
| {z }

(I )

(A.1)

Let us tackle each minimization problem (I) and (II) separately.

Solving problem (I)

Problem (I) can be rewritten as

min
x

�

 

kxk1 � xT D T �
�

!

(A.2)

At this stage, let us introduce the de�nition of the dual norm.

De�nition 27. The dual norm k � k� associated tok � k is de�ned as

kvk� = sup
kuk�1

u T v (A.3)

This is useful since we know the dual norm of thek � k1 norm.

Property 14. The dual norm of the`1-norm k � k1 is the `1 -norm.

Let us distinguish two cases.

First case If kD T �
� k1 > 1, then 9u 2 Rm with kuk 1 � 1 and u T D T �

� > 1.
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Proof. by taking v = D T �
� in (A.3) we havekD T �

� k1 = supkuk�1 u T D T �
� > 1.

So, we can takex = � u in (A.2), which yields

kxk1 � xT D T �
� = �

�
kuk 1 � u T D T �

�

�

| {z }
<0

: (A.4)

Since� can be made as large as desired, and the second term is negative, we can make

(I) as small as desired. So, (I) has solution�1 in this case.

Second case If kD T �
� k1 � 1, then xT D T �

� � kx k1.

Proof. xT D T �
� = kxk1

x T

kxk 1

D T �
� � kx k1 supkuk�1 u T D T �

� = kxk1 kD T �
� k1

| {z }
�1

� kx k1.

Therefore
�
kxk1 � xT D T �

�

�
� 0 and, sincex = 0m reaches the lower bound, we have that

(I ) = min x �
�
kxk1 � xT D T �

�

�
= 0, in this case.

Partial conclusion We deduce that

D(� ) =

8
>>>><

>>>>:

(II ) = min z2R n
1
2ky � zk2

2 + � T z
| {z }

, �(z)

if kD T �
� k1 � 1

�1 otherwise:

(A.5)

Solving problem (II)

Let us denote� the function associated with problem (II). As a convex smooth function,

it can be minimized by setting the gradient to zero:

r z� (z) = �y + z + � = 0: (A.6)

Therefore, replacingz by y � � in � , we obtain

min
z

� (z) = � 1
2k� k2

2 + � T y = 1
2

�
kyk2

2 � ky � � k2
2

�
: (A.7)
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Finally, the closed form solution is obtained for the Dual function:

D(� ) =

8
><

>:

1
2 (ky k2

2 � ky � � k2
2) if kD T �

� k1 � 1

�1
(A.8)
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Appendix B

Complements to Part II

B.1 Tucker Dictionary Learning

Here we discuss how the Dictionary Learning problem with a(R; K )-Kronecker-structure

constraint relates to the Tucker decomposition. More precisely, we show that, in the par-

ticular case ofR = 1, the dictionary update step is equivalent to a Tucker decomposition

with a sparse core given byX.

A (1; K )-KS dictionary is given by

D = D K � � � � � D 1;

and the dictionary update cost function considering the desired structure becomes:

f (D j ) = kY � (D K � � � � � D 1)X k2
F

Now, this type of structure becomes interesting when the targeted data is multidi-

mensional. So, let us consider that each data sample is a tensorY i such that Y =

[y1; : : : ; yN ] = [vec(Y 1); : : : ; vec(YN )]. Similarly, we suppose a tensor structure for the

sparse coe�cients X = [ x1; : : : ; xN ] = [vec(X 1); : : : ; vec(X N )]. By stacking samplesY i

(resp. X i ) in the (K + 1)-th mode, we obtain the analogue to the matrixY (resp. X)

without vectorization pre-processing step: the data tensorY (resp. X ). The dictionary

update can be now written as follows:

f (D j ) =
NX

i=1

k vec(Y i ) � (D K � � � � � D 1) vec(X i )k2
2
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By applying the well-known Kronecker product identity (3.1), we obtain:

f (D j ) =
NX

i=1

kY i � X i � 1 D 1 � � � � K D K k2
F

A simple trick allows us to absorb the summation: adding an identity operator acting on

modeK + 1, along which the di�erent samples are stacked.

f (D j ) = kY � X � 1 D 1 � � � � K D K � K +1 I N k2
F (B.1)

In (B.1) we are trying to approximate a tensorY as a series of mode products on

a core tensorX . This is precisely the Tucker decomposition (de�ned in equation (3.8)),

with one of the factors �xed (an identity matrix in the mode K + 1).

B.2 Other computational complexities

Table B.1 shows the computational complexity for an alternative calculation ordering in

the ALS algorithm 11.

1. For Y (j )U T
q = Y (j ) (� l6=jD l;q) X T

(j ) : calculating �rst M q = Y (j ) (� l6=jD l;q) as a struc-

tured product, then M qX T
(j ) (instead of structured productU q = X (j ) (� l6=jD l;q)T ,

then Y (j )U T
q ). This is more costly, sincemj � nj 8j .

2. For UU T : calculate Gq;s =
�
� l6=jD T

l;qD l;s

�
8q � r; s � r (since Gq;s = GT

s;q, only

(r + 1)r=2 such products are necessary) concatenate into matrixG, followed by the

structured product X (j )G (or GX T
(j )) and a dense product withX T

(j ) (or X (j ) ).

Table B.1 � Dictionary update complexities in ALS Alg. 11 (alternative calculation order)

Operation Complexity Considering sparsity

M q = Y (j ) (� l6=jD l;q) ; 8q � r r (
P

l6=j ml )(
Q

l ml )N �

M qX T
(j ) rn j (

Q
l ml )N rn j nnz(X)

Gq;s =
�
� l6=jD T

l;qD l;s

�
8q� r; s � r r 2(

Q
l6=j nlm2

l ) �

X (j )GX T
(j ) r 2(

P
l ml )(

Q
l ml )N r 2(

P
l ml ) nnz(X)

(X (j )GX T
(j ))

�1 (rm l )3 �
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Overall, the resulting complexities are more or less of the same order of the ones

presented in Table 5.2. If on the one hand somenj are replaced by the bigger dimension

mj here, on the other hand the sparsity ofX is better exploited.1 In theory, there is

no clear hierarchy between the two implementations, the comparison depending on the

parameter's relative values. In practice, however, the implementation considered in Table

5.2 was faster in the considered scenarios. One of the reasons is that, in practice, sparse

data, similarly to the tensor operations, does not fully achieve the theoretical speedups

in practice.

B.3 Color image denoising

Results for images Oakland, Ti�any and Tree are shown in Tables B.2.

1. In this alternative calculation order, the Kronecker terms are never multiplied directly to X. This
type of operation suboptimally exploits the sparsity of X because the sparsity is lost after �rst mode
product and does not intervene in the ensuing mode products.
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Table B.2 � Output PSNR varying the patch size � Ti�any

Algorithm Patch size Input SNR

n m 22.11 14.15 10.63 8.13

T
i�a

n
y

ODCT
[ 6, 6, 3] [12,12, 6] 31.43 26.80 23.50 20.82

[12,12, 3] [24,24, 6] 32.01 28.21 26.38 24.48

K-SVD
[ 6, 6, 3] [12,12, 6] 31.96 26.45 23.14 20.85

[12,12, 6] [24,24, 6] 32.15 27.92 25.84 24.01

HO-SuKro
ALS (R =3)

[ 6, 6, 3] [12,12, 6] 31.98 26.48 23.51 21.26

[12,12, 3] [24,24, 6] 32.49 28.68 26.59 24.56

T
re

e

ODCT
[ 6, 6, 3] [12,12, 6] 28.89 24.02 21.72 20.29

[12,12, 3] [24,24, 6] 28.97 24.70 22.66 21.14

K-SVD
[ 6, 6, 3] [12,12, 6] 29.68 24.74 22.20 20.45

[12,12, 6] [24,24, 6] 29.44 24.90 22.70 20.95

HO-SuKro
ALS (R =3)

[ 6, 6, 3] [12,12, 6] 29.36 24.58 22.32 20.69

[12,12, 3] [24,24, 6] 29.35 25.41 23.45 21.98
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Appendix C

Complements to Part III

C.1 Proof of Equation (8.6)

Screening test for à p-ball, i.e. R = Bp(c; R):

sup
� 2B p (c;R )

jd T � j = sup
u2B p (0 ;1)

jd T (c + Ru)j

= jd T cj + R sup
u2B p (0 ;1)

jd T uj

= jd T cj + Rkdkp� (C.1)

using the de�nition of dual norm kdkp� :=supu2B p (0;1) jd T uj.

C.2 Proof of Equations (9.3) and (9.5)

From De�nition 26 and the conventional sphere test in eq. (8.6), the stable sphere test is

given by

�(Sj Bp(c; R)) = sup
d2S

�
jd T cj + Rkdkp�

�

= sup
d2S

jd T cj + R sup
d2S

kdkp� : (C.2)

The second equality comes from the fact thatc is arbitrary here. Therefore, we can always

assumec to be aligned with thed that maximizes the second term, which makes the �rst

term to be also maximized for the samed.

Taking S = Bq(~d; �), the �rst term gives (similarly to (C.1))

sup
d2S

jd T cj = sup
u2B q (0;1)

j( ~d + �u )T cj = j~d
T
cj + �kck q� (C.3)
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and the last term gives

sup
d2B q ( ~d;�)

kdkp� = sup
u2B q (0 ;1)

k(~d + �u )kp�

= k~dkp� + C� (C.4)

with a constant C = supu2B q (0;1) kukp� = n( 1
p� � 1

q )
+ , which results from the Holder's

inequality. Substituting (C.4) and (C.3) in (C.2) gives the bound in equation (9.3).

Now, supposingkdkp� = a to be known, the last term in (C.2) simpli�es to Ra and

the same derivation in (C.3) applies to the �rst term, which gives equation (9.5).

�(S 0jB p(c; R)) = sup
d2S 0

�
jd T cj + Ra

�
= j~d

T
cj + �kck q� + Ra (C.5)

C.3 Proof of Lemma 6

By de�nition we have � F := � 0(zj ~D; �) = � z where

0 � � �
1

maxj

�

j ~d
T
j ~zj + � j kzkq�

�

As a result for any1 � j � m we have

jd T
j � F j = j( ~d j + ej )T � zj � j� j

�

j ~d
T
j zj + � j kzkq�

�

� 1:

This implies that the dual point � F is feasible, i.e.� F 2 � D . The fact that � F 2 � ~D

follows similarly (since� j kzkq� > 0).

C.4 Proof of Theorem 10

[Fercoqet al. 2015, Theorem 2] implies, for any(x ; � ) 2 Rm �� D , that B
�
� ; 1

�

q
2G(x; � jD)

�

is safe. Therefore, a su�cient condition forB
�

� ; 1
�

q
2G(x; � j ~D) + 2 �

�

to be safe is to

show that:

G(x ; � j ~D) + � � G(x ; � jD) (C.6)
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Substituting (7.4) in the primal objective (7.1) and denoting~� = y � ~Dx and E =

D � ~D yields

P(x jD) = 1
2k( ~D + E)x � yk2

2 + �kx k1

= P(x j ~D) + 1
2kEx k2

2 � ~� T (Ex );

which implies that

G(x ; � jD) = G(x ; � j ~D) +
1
2

kEx k2
2 � ~� T (Ex )

| {z }
� 0

: (C.7)

In a way � 0 is a security margin which, when added to theG(x ; � j ~D), makes it equal to

G(x ; � jD) and, thus, safe.

In practice, however, the calculation of� 0, if even possible, is too computationally

demanding since it requires to recalculate the matrix-vector productEx at every iteration.

To avoid it, we adopt the following margin instead:

� = k~�k 2Ekxkr +
1
2

E2kxk2
r � � 0 (C.8)

for any E � kEk r ! 2 and using the fact that kEx k2 � kEk r ! 2kxkr � Ekx kr (by the

de�nition of E) and E can be precalculated once for all.

Since� � � 0, then G(x ; � j ~D) + � � G(x ; � jD).

C.5 Detailed complexities

We suppose that thep� -norms of the atomskd j kp� and q-norms of the atom approximation

error kej kq are precalculated and stored and memory. The total screening complexity is

summarized in Table 11.2 and detailed in the following.

Feasible point ��� t

A total of at most 3N + jA t j operations for the point in eq. (8.9), distributed as follows:

n dot product yT � t .

n norm k� tk
2
2 (if primal objective not calculated as a convergence criterion).
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Screening � t R Test Total

Dynamic Safe 3n + jAj n jAj 4n + 2jAj

Stable Dynamic Safe 4n + 2jAj n jAj 5n + 3jAj

GAP Safe 3n + jAj n jAj 4n + 2jAj

Stable GAP Safe 4n + 2jAj n n + 2jAj 6n + 4jAj

Table C.1 � Screening: number of �oating-point operations.

n product � � t .

jA t j comparisons for the in�nity norm kD T �k 1 .

At most n+ jA t j extra operations for the point in eq. (9.7):

n norm k~� tkq� (only if q� 6= 2).

jA t j products � j k~� tkq� on the calculation of� 0
t .

Safe region R

At most n operations for computingk� t � y=�k 2 (if the dual objective D(� t ) is not already

calculated as a convergence criterion) for the radius of either Dynamic Safe or GAP Safe

sphere.

Screening test

Other operations (aside from the mentionedD T c) sum up to jA t j operations for the

product Rkd j kp� 8 j 2 A t . The proposed stable screening tests require at most an extra

n + jA t j operations:

n norm kckq� (if q� 6= 2and c varies with t).

jA t j products � j kckq� 8 j 2 A t (if c varies with t).
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Titre: Approximations structurées pour l'accélération de problèmes inverses

parcimonieux

Mot clés : Optimisation convexe, Apprentissage automatique, Problèmes inverses,

Représentation parcimonieuse, Algèbre tensorielle

Resumé : En raison de la vertig-

ineuse croissance des données disponibles,

la complexité computationnelle des algo-

rithmes traitant les problèmes inverses

parcimonieux peut vite devenir un goulot

d'étranglement. Dans cette thèse, nous ex-

plorons deux stratégies principales pour ac-

célérer de tels algorithmes. D'abord, nous

étudions l'utilisation de dictionnaires struc-

turés rapides à manipuler. Une famille de

dictionnaires écrits comme une somme de

produits Kronecker est proposée. Ensuite,

nous développons des tests d'élagage sûrs,

capables d'identi�er et éliminer des atomes

inutiles (colonnes de la matrice dictionnaire

ne correspondant pas au support de la so-

lution), malgré l'utilisation de dictionnaires

approchés.

Title: Accelerating sparse inverse problems using structured approximations

Keywords : Convex optimization, Machine learning, Inverse problems, Sparse represen-

tations, Tensor algebra

Abstract : As the quantity and size of

available data grow, the existing algorithms

for solving sparse inverse problems can be-

come computationally intractable. In this

work, we explore two main strategies for ac-

celerating such algorithms. First, we study

the use of structured dictionaries which are

fast to operate with. A particular family of

dictionaries, written as a sum of Kronecker

products, is proposed. Then, we developsta-

blescreening tests, which can safely identify

and discard useless atoms (columns of the

dictionary matrix which do not correspond

to the solution support), despite manipulat-

ing approximate dictionaries.
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