?. J. Ferreira, E. Avignon-meseldzija, P. M. Ferreira, and P. Bénabès, Design and synthesis of arbitrary group delay filters for integrated analog signal processing, Proc. 25th IEEE Int. Conf. Electron., Circuits and Syst, pp.613-616, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01898793

?. J. Ferreira, E. Avignon-meseldzija, P. M. Ferreira, J. Sarrazin, and P. Bénabès, Design of integrated all-pass filters with linear group delay for analog signal processing applications, Int. J. Circ. Theor. Appl

?. E. Avignon-meseldzija, J. A. Ferreira, P. M. Ferreira, and P. Bénabès, A compact active phaser with enhanced linearity of group delay for analog signal processing
URL : https://hal.archives-ouvertes.fr/hal-02290328

, Int. Conf. Advanced Technol., Syst. and Services in Telecommun, 2019.

R. Withers and R. Ralston, Superconductive analog signal processing devices, Proc. IEEE, vol.77, pp.1247-1263, 1989.

C. Caloz, S. Gupta, Q. Zhang, and B. Nikfal, Analog signal processing: A possible alternative or complement to dominantly digital radio schemes, IEEE Microw. Mag, vol.14, issue.6, pp.87-103, 2013.

D. Gangopadhyay, A. Y. Chen, and D. J. Allstot, Analog chirp Fourier transform for highresolution real-time wideband RF spectrum analysis, 2011 IEEE Int. Symp. Circuits and Syst, pp.2441-2444, 2011.

B. Nikfal, D. Badiere, M. Repeta, B. Deforge, S. Gupta et al., Distortion-less realtime spectrum sniffing based on a stepped group-delay phaser

, Lett, vol.22, issue.11, pp.601-603, 2012.

M. A. Jack, P. M. Grant, and J. H. Collins, The theory, design, and applications of surface acoustic wave Fourier-transform processors, Proc. IEEE, vol.68, pp.450-468, 1980.

, ISSCC & VLSI Symposium), 1997.

D. Lancaster, Chirp"a new radar technique, Electronics World, vol.59, pp.42-43, 1965.

J. L. Hicks, Naval Education, Training Professional Development, and Technology Center, Navy Electricity and Electronics Training Series, Module 18 -Radar Principles, 1998.

J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, The theory and design of chirp radars, Bell Syst. Tech. J, vol.39, issue.4, pp.745-808, 1960.

O. W. Otto, Real-time Fourier transform with a surface-wave convolver, Electronics Letters, vol.8, issue.25, pp.623-624, 1972.

S. Krishnamurthy, Wireless passive surface acoustic wave (SAW) sensing system, 2007.

O. W. Otto, The chirp transform signal processor, 1976 Ultrasonics Symp, pp.365-370, 1976.

M. A. Jack, G. F. Manes, P. M. Grant, C. Atzeni, L. Masotti et al., Real time network analysers based on SAW chirp transform processors, 1976 Ultrasonics Symp. Proc, pp.376-381, 1976.

G. R. Nudd and O. W. Otto, Real-time Fourier analysis of spread spectrum signals using surface-wave-implemented chirp-Z transformation, IEEE Trans. Microw. Theory Techn, vol.24, issue.1, pp.54-56, 1976.

L. Mertz, Transformations in Optics, 1965.

C. Atzeni, G. Manes, and L. Masotti, Programmable signal processing by analog chirptransformation using SAW devices, 1975 Ultrasonics Symp. Proc, pp.371-376, 1975.

K. W. Martin, Complex signal processing is not complex, IEEE Trans. Circuits Syst. I, Reg. Papers, vol.51, issue.9, pp.1823-1836, 2004.

J. M. Alsup, Surface acoustic wave CZT processors, 1974 Ultrasonics Symp. Proc, pp.378-381, 1974.

M. A. Jack, P. M. Grant, and J. H. Collins, Real time network analyser employing surface acoustic wave chirp filters, 1975 Ultrasonics Symp. Proc, pp.359-362, 1975.

P. M. Grant, M. A. Jack, and J. H. Collins, Network analyser employing surface-acousticwave discrete Fourier-transform processor, Electronics Letters, vol.11, issue.19, pp.468-469, 1975.

C. Atzeni, G. F. Manes, and L. Masotti, Real-time network analyser using dual analogue chirp transform, Electronics Letters, vol.12, issue.10, pp.248-249, 1976.

K. Eng and O. Yue, Time compression multiplexing of multiple television signals in satellite channels using chirp transform processors, IEEE Trans. Commun, vol.29, issue.12, pp.1832-1840, 1981.

K. Y. Eng and B. G. Haskell, Study of a time-compression technique for TV transmission using a chirp filter and envelope detection, Bell Syst. Tech. J, vol.60, issue.10, pp.2373-2395, 1981.

L. R. D'addario, Chirp transform spectrometers for millimeter spectroscopy, National Radio Astronomy Observatory, p.10, 1988.

M. D. Shaw, N. D. Miller, A. P. Malarky, and D. H. Warne, SAW chirp filter technology for satellite on-board processing applications, Int. J. Satell. Commun, vol.7, issue.4, pp.263-282, 1989.

P. M. Bakken and A. Rønnekleiv, SAW-based chirp Fourier transform and its application to analogue on-board signal processing, Int. J. Satell. Commun, vol.7, issue.4, pp.283-293, 1989.

J. C. Sethares, Magnetostatic wave devices and applications (invited), J. Appl. Phys, vol.53, issue.3, pp.2646-2651, 1982.

W. S. Ishak, Magnetostatic wave technology: A review, Proc. IEEE, vol.76, pp.171-187, 1988.

R. Withers, A. Anderson, J. Green, and S. Reible, Superconductive delay-line technology and applications, IEEE Trans. Magn, vol.21, issue.2, pp.186-192, 1985.

R. S. Withers and S. A. Reible, Superconductive chirp-transform spectrum analyzer, IEEE Electron Device Lett, vol.6, issue.6, pp.261-263, 1985.

W. G. Lyons, D. R. Arsenault, A. C. Anderson, T. C. Sollner, P. G. Murphy et al., High temperature superconductive wideband compressive receivers, IEEE Trans. Microw. Theory Techn, vol.44, issue.7, pp.1258-1278, 1996.

W. G. Lyons, D. R. Arsenault, C. L. Keast, D. C. Shaver, R. Berger et al., Wideband compressive receiver based on advanced superconductor and semiconductor circuits, IEEE Trans. Appl. Supercond, vol.7, issue.2, pp.2462-2467, 1997.

S. Abielmona, S. Gupta, and C. Caloz, Compressive receiver using a CRLH-based dispersive delay line for analog signal processing, IEEE Trans. Microw. Theory Techn, vol.57, issue.11, pp.2617-2626, 2009.

A. Salvucci, S. Colangeli, M. Palomba, G. Polli, and E. Limiti, An active dispersive delay line in GaN MMIC technology for X-band applications

W. Microwave, . Commun, and P. Krakow, , pp.1-4, 2016.

S. Gupta and C. Caloz, Analog real-time Fourier transformer using a group delay engineered C-section all-pass network, IEEE Antennas and Propagation Soc. Int. Symp, pp.1-4, 2010.

, Analog inverse Fourier transformer using group delay engineered C-section all-pass network, Conf. Proc. 40th Eur. Microwave Conf, pp.389-392, 2010.

B. Xiang, A. Kopa, and A. B. , A novel on-chip active dispersive delay line (DDL) for analog signal processing, IEEE Microw. Compon. Lett, vol.20, issue.10, pp.584-586, 2010.

B. Xiang, A. Kopa, Z. Fu, and A. B. , An integrated Ku-band nanosecond timestretching system using improved dispersive delay line (DDL), Paper Dig. 2012 IEEE 12th Topical Meeting Silicon Monolithic Integrated Circuits in RF Syst, pp.151-154, 2012.

, Theoretical analysis and practical considerations for the integrated time-stretching system using dispersive delay line (DDL), IEEE Trans. Microw. Theory Techn, vol.60, issue.11, pp.3449-3457, 2012.

M. A. Laso, T. Lopetegi, M. J. Erro, M. Castillo, D. Benito et al., Real-time spectrum analysis in microstrip technology, 2001 31st Eur. Microwave Conf, pp.1-4, 2001.

M. A. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde et al., Real-time spectrum analysis in microstrip technology

. Microw, Theory Techn, vol.51, issue.3, pp.705-717, 2003.

J. D. Schwartz, J. Azaña, and D. V. Plant, A fully electronic system for the time magnification of ultra-wideband signals, IEEE Trans. Microw. Theory Techn, vol.55, issue.2, pp.327-334, 2007.

L. Ma, Y. Wu, Z. Zhuang, and Y. Liu, A novel real-time Fourier and inverse Fourier transforming system based on non-uniform coupled-line phaser, Int. J. Electron. Commun. (AEÜ), vol.94, pp.102-108, 2018.

B. Xiang, X. Wang, and A. B. , On-chip demonstration of real time spectrum analysis (RTSA) using integrated dispersive delay line (IDDL), 2013 IEEE MTT-S Int. Microwave Symp. Dig, pp.1-4, 2013.

, A reconfigurable integrated dispersive delay line (RI-DDL) in 0.13-µm CMOS process, IEEE Trans. Microw. Theory Techn, vol.61, issue.7, pp.2610-2619, 2013.

J. Azaña and M. A. Muriel, Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings, IEEE J. Quantum Electron, vol.36, issue.5, pp.517-526, 2000.

J. Zhang and J. Yao, Broadband and precise microwave time reversal using a single linearly chirped fiber Bragg grating, Proc. 2014 Int. Topical Meeting Microwave Photonics and the 2014 9th Asia-Pacific Microwave Photonics Conf, pp.57-60, 2014.

J. Zhang and J. Yao, Broadband and precise microwave time reversal using a single linearly chirped fiber Bragg grating, IEEE Trans. Microw. Theory Techn, vol.63, issue.7, pp.2166-2172, 2015.

H. Linget, T. Chaneliere, J. Gouet, A. Louchet-chauvet, and L. Morvan, Timereversal of µs-long radiofrequency signals based on approximate temporal imaging, 2013 IEEE Int. Topical Meeting Microwave Photonics Proc, pp.29-32, 2013.

P. Berger, M. Schwarz, S. Molin, D. Dolfi, L. Morvan et al., 20 GHz instantaneous bandwidth RF spectrum analyzer with high time-resolution, Proc. 2014 Int. Topical Meeting Microwave Photonics and 9th Asia-Pacific Microwave Photonics Conf, pp.331-334, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02108553

P. J. Hall, A radio polarimeter-spectrometer, Doctoral thesis, 1985.

P. Hartogh, Present and future chirp transform spectrometers for microwave remote sensing, International Society for Optics and Photonics, vol.3221, pp.328-339, 1997.

G. Chin, D. Buhl, and J. M. Florez, Acousto-optic spectrometer for radio astronomy, NASA Conf. Publication 2138 -Heterodyne Syst. and Technol. -Part II, pp.385-397, 1980.

P. Hartogh and G. K. Hartmann, A high-resolution chirp transform spectrometer for microwave measurements, Meas. Sci. Technol, vol.1, issue.7, pp.592-595, 1990.

K. Osterschek and P. Hartogh, A fast, high resolution chirp transform spectrometer for atmospheric remote sensing from space, Int. Geosci. and Remote Sensing Symp, vol.2, pp.979-982, 1991.

X. Li, Development of RAC devices fabricated using e-beam lithography for Chirp Transform Spectrometers, 2010.

P. Hartogh and C. Jarchow, Millimeter wave detection of mesospheric ozone using a high resolution chirp transform spectrometer backend, Int. Geosci. and Remote Sensing Symp, vol.1, pp.3-5, 1994.

G. Villanueva and P. Hartogh, The high resolution chirp transform spectrometer for the SOFIA-GREAT instrument, Exp. Astron, vol.18, issue.1-3, pp.77-91, 2004.

G. L. Villanueva-sozzi, The high resolution spectrometer for SOFIA-GREAT instrumentation, atmospheric modeling and observations, 2004.

G. L. Villanueva, P. Hartogh, and L. M. , A digital dispersive matching network for SAW devices in chirp transform spectrometers, IEEE Trans. Microw. Theory Techn, vol.54, issue.4, pp.1415-1424, 2006.

S. Gulkis, M. Frerking, J. Crovisier, G. Beaudin, P. Hartogh et al., MIRO: Microwave Instrument for Rosetta Orbiter, Space Sci. Rev, vol.128, issue.1-4, pp.561-597, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00129733

L. Paganini, Power spectral density accuracy in chirp transform spectrometers, 2008.

F. Rivet, Y. Deval, J. Begueret, D. Dallet, and D. Belot, A disruptive software-defined radio receiver architecture based on sampled analog signal processing, Proc. 2007 IEEE Radio Frequency Integrated Circuits Symp, pp.197-200, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00161318

F. Rivet, Y. Deval, J. Begueret, D. Dallet, P. Cathelin et al., A disruptive receiver architecture dedicated to software-defined radio, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.55, issue.4, pp.344-348, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00274011

, The experimental demonstration of a SASP-based full software radio receiver, IEEE J. Solid-State Circuits, vol.45, issue.5, pp.979-988, 2010.

B. Sadhu, M. Sturm, B. M. Sadler, and R. Harjani, A 5gs/s 12.2 pJ/conv. analog chargedomain FFT for a software defined radio receiver front-end in 65nm CMOS, 2012 IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig. Papers, pp.39-42, 2012.

, Analysis and design of a 5 GS/s analog charge-domain FFT for an SDR front-end in 65 nm CMOS, IEEE J. Solid-State Circuits, vol.48, issue.5, pp.1199-1211, 2013.

H. Shin, R. K. Palani, A. Saha, F. Yuan, D. Markovic et al., An eight channel analog-FFT based 450ms/s hybrid filter bank ADC with improved SNDR for multi-band signals in 40nm CMOS, 2015 IEEE Custom Integrated Circuits Conf, pp.1-4, 2015.

H. Shin and R. Harjani, Low-power wideband analog channelization filter bank using passive polyphase-FFT techniques, IEEE J. Solid-State Circuits, vol.52, issue.7, pp.1753-1767, 2017.

D. Sundararajan, Digital Signal Processing: Theory and Practice, vol.isbn, pp.981-238, 2003.

E. A. Morelli, High accuracy evaluation of the finite Fourier transform using sampled data, Technical Memorandum NASA TM-110340, p.38, 1997.

P. Challener, Design and realisation of practical wideband quadrature networks with linear phase-shift characteristics, IEE Journal on Electronic Circuits and Systems, vol.2, issue.3, p.65, 1978.

B. Nikfal, S. Gupta, and C. Caloz, Increased group-delay slope loop system for enhancedresolution analog signal processing, IEEE Trans. Microw. Theory Techn, vol.59, issue.6, pp.1622-1628, 2011.

W. J. Caputi, Stretch: A time-transformation technique, IEEE Trans. Aerosp. Electron. Syst, vol.7, issue.2, pp.269-278, 1971.

C. E. Cook, Pulse compression -key to more efficient radar transmission, Proc. IRE, vol.48, pp.310-316, 1960.

S. Gupta, B. Nikfal, and C. Caloz, RFID system based on pulse-position modulation using group delay engineered microwave C-sections, 2010 Asia-Pacific Microwave Conf

. Proc and J. Yokohama, , pp.978-979, 2010.

S. Abielmona, S. Gupta, C. Caloz, and . Microw, Experimental demonstration and characterization of a tunable CRLH delay line system for impulse/continuous wave

, Compon. Lett, vol.17, issue.12, pp.864-866, 2007.

S. Gupta, Q. Zhang, L. Zou, L. J. Jiang, and C. Caloz, Generalized coupled-line all-pass phasers, IEEE Trans. Microw. Theory Techn, vol.63, issue.3, pp.1007-1018, 2015.

H. M. Gerard, W. R. Smith, W. R. Jones, and J. B. Harrington, The design and applications of highly dispersive acoustic surface-wave filters, IEEE Trans. Microw. Theory Techn, vol.21, issue.4, pp.176-186, 1973.

Q. Zhang, D. L. Sounas, and C. Caloz, Synthesis of cross-coupled reduced-order dispersive delay structures (DDSs) with arbitrary group delay and controlled magnitude

, Trans. Microw. Theory Techn, vol.61, issue.3, pp.1043-1052, 2013.

S. Gupta, A. Parsa, E. Perret, R. V. Snyder, R. J. Wenzel et al., Group-delay engineered noncommensurate transmission line all-pass network for analog signal processing, en, IEEE Trans. Microw. Theory Techn, vol.58, issue.9, pp.2392-2407, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01023127

R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, 2007.

T. J. Rivlin, The Chebyshev Polynomials, p.9780471724704, 1974.

P. Jarry and J. Beneat, Advanced Design Techniques and Realizations of Microwave and RF Filters, pp.978-982, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00338399

L. Wanhammar, Analog Filters Using MATLAB, 2009.

J. Bechhoefer, Kramers-Kronig, Bode, and the meaning of zero, Am. J. Phys, vol.79, issue.10, pp.1053-1059, 2011.

S. Cohn, Direct-coupled-resonator filters, Proc. IRE, vol.45, pp.187-196, 1957.

H. Blinchikoff, Derivative of group delay at band center, IEEE Transactions on Circuit Theory, vol.17, issue.4, pp.636-637, 1970.

F. Xiao, Some notes on group delay in bandpass filter synthesis, 2012 Asia-Pacific Microwave Conf. Proc, pp.220-222, 2012.

T. Henk, The generation of arbitrary-phase polynomials by recurrence formulae, Int. J. Circ. Theor. Appl, vol.9, issue.4, pp.461-478, 1981.

A. I. Zverev, Handbook of Filter Synthesis, 1967.

H. Matthes, Designing high-grade delay equalizers, NTZ-CJ, issue.4, pp.177-185, 1965.

K. Hajek, Z. Sedlacek, and B. Sviezeny, New circuits for realization of the 1st and 2nd order all-pass LC filters with a better technological feasibility, Proc. 2002 IEEE Int

, Symp. Circuits and Syst, vol.3, 2002.

, Advanced Design System (ADS) | Keysight (formerly Agilent's Electronic Measurement)

, Coilsys Demo for ADS 2017 -YouTube

, Virtuoso layout suite, 2019.

H. C. Luong and J. Yin, Transformer Design and Characterization in CMOS Process, Transformer-Based Design Techniques for Oscillators and Frequency Dividers, pp.7-19, 2016.

S. S. Mohan, The design modeling and optimization of on-chip inductor and transformer circuits, 1999.

B. Leite, Design and modeling of mm-wave integrated transformers in CMOS and BiC-MOS technologies, 2011.

B. Leite, E. Kerherve, J. Begueret, and D. Belot, Design and characterization of CMOS millimeter-wave transformers, 2009 SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf, pp.402-406, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00422638

T. T. Wong, Fundamentals of Distributed Amplification, pp.0-89006, 1993.

S. Amari and J. Bornemann, Using frequency-dependent coupling to generate finite attenuation poles in direct-coupled resonator bandpass filters, IEEE Microw. Guided Wave Lett, vol.9, issue.10, pp.404-406, 1999.

N. Yildirim, O. A. Sen, Y. Sen, M. Karaaslan, and D. Pelz, A revision of cascade synthesis theory covering cross-coupled filters, IEEE Trans. Microw. Theory Techn, vol.50, issue.6, pp.1536-1543, 2002.

M. Zukocinski and A. Abramowicz, Center frequency of wideband direct-coupled resonator filters, 2012 19th Int. Conf. Microwaves, Radar Wireless Commun, vol.2, pp.726-728, 2012.

, Wideband and UWB filters with complementary couplings, 2012 Asia-Pacific Microwave Conf. Proc, pp.253-255, 2012.

M. Zukocinski and A. Abramowicz, Lossy inverters and their influence on coupled resonator filter characteristics, 2013 IEEE Int. Conf. Microwaves, Commun., Antennas and Electron. Syst, pp.1-5, 2013.

M. Zukocinski, A. Golaszewski, and A. Abramowicz, Shaping frequency characteristics of wideband direct-coupled resonator filters by means of electric and magnetic couplings, 2014 20th Int. Conf. Microwaves, Radar and Wireless Commun, pp.1-4, 2014.

M. Zukocinski and A. Abramowicz, Design method for wideband direct-coupled resonator filters with electric or magnetic couplings, 2015 IEEE Int. Conf. Microwaves, Commun., Antennas and Electron. Syst, pp.1-4, 2015.

W. Meng, H. Lee, K. A. Zaki, and A. E. Atia, Synthesis of multi-coupled resonator filters with frequency-dependent couplings, 2010 IEEE MTT-S Int. Microwave Symp. Dig, pp.1716-1719, 2010.

, Synthesis of wideband multicoupled resonators filters, IEEE Trans. Microw. Theory Techn, vol.59, issue.3, pp.593-603, 2011.

W. Meng, K. A. Zaki, and A. E. Atia, Prototype network synthesis for wideband microwave filters, 2011 IEEE MTT-S Int. Microwave Symp. Dig, pp.1-4, 2011.

W. Meng, Synthesis and design of microwave wideband filters and components, 2014.

S. Tamiazzo and G. Macchiarella, Synthesis of cross-coupled filters with frequencydependent couplings, IEEE Trans. Microw. Theory Techn, vol.65, issue.3, pp.775-782, 2017.

K. Whiting, The effect of increased design bandwidth upon direct-coupled-resonator filters (correspondence), IEEE Trans. Microw. Theory Techn, vol.11, issue.6, pp.557-560, 1963.

Q. Zhang, C. Caloz-;-en, and . Microw, Alternative construction of the coupling matrix of filters with non-paraconjugate transmission zeros, Compon. Lett, vol.23, issue.10, pp.509-511, 2013.

P. J. Burke, Ultra-linear chirp generation via VCO tuning predistortion, IEEE MTT-S Int. Microwave Symp. Dig, pp.957-960, 1994.

A. Samarah, A novel approach for generating digital chirp signals using fpga technology for synthetic aperture radar applications, 2012.

M. L. Sanders and J. H. Ashton, Chirp source with rolling frequency lock for generating linear frequency chirps, vol.356, 2000.

A. E. Siegman, . Lasers, . Sausalito, . Ca, and . Usa, , p.717, 1986.

, Convolve-wolfram language documentation

J. D. Cook, Fourier transform definition conventions and formulas, 2017.

B. Osgood, Lecture notes for EE 261: The Fourier transform and its applications, 2007.

E. W. Weisstein, Fourier Transform, Text, 2017.

J. L. Gonzalez, X. Aragonés, M. Molina, B. Martineau, and D. Belot, A comparison between grounded and floating shield inductors for mmW VCOs, Proc. 33rd Eur

. Solid-state-circuits-conf, . Sevilla, and . Spain, , pp.250-253, 2010.

N. Derrier, C. Deglise, C. Durand, T. Quemerais, and D. Gloria, Bicmos9mw modeling training v2.0, STMicroelectronics, 2015.