L. Huang, Micromechanical simulation and experimental investigation of the creep damage of stainless austenitic steels. Theses, Université Pierre et Marie Curie -Paris VI, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01823909

P. Liao and E. A. Carter, Ab initio dft + u predictions of tensile properties of iron oxides, J. Mater. Chem, vol.20, pp.6703-6719, 2010.

J. Menzel, W. Kirschner, and G. Stein, High nitrogen containing ni-free austenitic steels for medical applications, ISIJ International, vol.36, issue.7, pp.893-900, 1996.

B. Weiss and R. Stickler, Phase instabilities during high temperature exposure of 316 austenitic stainless steel, Metallurgical Transactions, vol.3, issue.4, pp.851-866, 1972.

H. U. Hong, B. S. Rho, and S. W. Nam, Correlation of the m23c6 precipitation morphology with grain boundary characteristics in austenitic stainless steel, Materials Science and Engineering : A, vol.318, issue.1-2, pp.285-292, 2001.

G. A. Young, T. E. Capobianco, M. A. Penik, M. Bw, and J. J. Mcgee, The mechanism of ductility dip cracking in nickelchromium alloys : Subsolidus cracking results from global stresses produced during fusion welding and local stresses generated when coherent or partially coherent second phases form, Welding journal, vol.87, issue.2, 2008.

R. Hu, G. Bai, J. Li, J. Zhang, T. Zhang et al., Precipitation behavior of grain boundary m23c6 and its effect on tensile properties of ni-cr-w based superalloy, Materials Science and Engineering : A, vol.548, pp.83-88, 2012.

X. Z. Qin, J. T. Guo, C. Yuan, J. S. Hou, and H. Q. Ye, Precipitation and thermal instability of m23c6 carbide in cast ni-base superalloy k452, Materials Letters, vol.62, issue.2, pp.258-261, 2008.

A. Davidson and D. Regener, A comparison of aluminium-based metal-matrix composites reinforced with coated and uncoated particulate silicon carbide, Composites Science and Technology, vol.60, issue.6, pp.865-869, 2000.

M. Ureña, L. Escalera, and . Gil, Influence of interface reactions on fracture mechanisms in tig arc-welded aluminium matrix composites, Composites Science and Technology, vol.60, issue.4, pp.613-622, 2000.

. Ch, E. Just, J. Badisch, and . Wosik, Influence of welding current on carbide/matrix interface properties in mmcs, Journal of Materials Processing Technology, vol.210, issue.2, pp.408-414, 2010.

B. F. Dyson and D. Mclean, A new method of predicting creep life, Metal Science Journal, vol.6, issue.1, pp.220-223, 1972.

R. Lim, Numerical and experimental study of creep of Grade 91 steel at high temperature. Theses,École Nationale Supérieure des Mines de Paris, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00687235

Y. Cui, M. Sauzay, C. Caes, P. Bonnaillie, and B. , Modeling and experimental study of long term creep damage in austenitic stainless steels, Procedia Materials Science, vol.3, pp.122-128, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02385876

J. Pokluda, M. Cerný, M. Sob, and Y. Umeno, Ab initio calculations of mechanical properties : Methods and applications, Progress in Materials Science, vol.73, pp.127-158, 2015.

A. Raúl, A. Enrique, and . Van-der-ven, Solute embrittlement of sic, Journal of Applied Physics, vol.116, issue.11, p.113504, 2014.

J. R. Rice and J. Wang, Poceedings of the symposium on interfacial phenomena in composites : Processing characterization and mechanical properties embrittlement of interfaces by solute segregation, Materials Science and Engineering : A, vol.107, pp.23-40, 1989.

J. H. Rose, J. Ferrante, and J. R. Smith, Universal binding energy curves for metals and bimetallic interfaces, Phys. Rev. Lett, vol.47, pp.675-678, 1981.

W. Håkan, P. Hugosson, U. Korzhavyi, B. Jansson, O. Johansson et al., Phase stabilities and structural relaxations in substoichiometric tic 1?x, Phys. Rev. B, vol.63, p.165116, 2001.

J. B. Holt and Z. A. Munir, Combustion synthesis of titanium carbide : Theory and experiment, Journal of Materials Science, vol.21, issue.1, pp.251-259, 1986.

V. Richter and M. Ruthendorf, On hardness and toughness of ultrafine and nanocrystalline hard materials, International Journal of Refractory Metals and Hard Materials, vol.17, issue.1, pp.141-152, 1999.

H. C. Lee and J. Gurland, Hardness and deformation of cemented tungsten carbide, Materials Science and Engineering, vol.33, issue.1, pp.125-133, 1978.

C. Fan, M. Chen, C. Chang, and W. Wu, Microstructure change caused by (cr,fe)23c6 carbides in high chromium fe-cr-c hardfacing alloys, Surface and Coatings Technology, vol.201, issue.3, pp.908-912, 2006.

C. C. Tseng, Y. Shen, S. W. Thompson, M. C. Mataya, and G. Krauss, Fracture and the formation of sigma phase, m23c6, and austenite from delta-ferrite in an alsl 304l stainless steel, Metallurgical and Materials Transactions A, vol.25, issue.6, pp.1147-1158, 1994.

K. Shibanuma, S. Aihara, and K. Suzuki, Prediction model on cleavage fracture initiation in steels having ferrite-cementite microstructures -part i : Model presentation, Engineering Fracture Mechanics, vol.151, pp.161-180, 2016.

A. Inoue, T. Ogura, and T. Masumoto, Microstructures of deformation and fracture of cementite in pearlitic carbon steels strained at various temperatures, Metallurgical Transactions A, vol.8, issue.11, pp.1689-1695, 1977.

C. Mcmahon and M. Cohen, Initiation of cleavage in polycrystalline iron, Acta Metallurgica, vol.13, issue.6, pp.591-604, 1965.

M. Lewis and B. Hattersley, Precipitation of m23c6 in austenitic steels, Acta Metallurgica, vol.13, issue.11, pp.1159-1168, 1965.

F. Beckitt and B. Clark, The shape and mechanism of formation of m23c6 carbide in austenite, Acta Metallurgica, vol.15, issue.1, pp.113-129, 1967.

R. A. Carolan and R. G. Faulkner, Grain boundary precipitation of m23c6 in an austenitic steel, Acta Metallurgica, vol.36, issue.2, pp.257-266, 1988.

H. Riedel, Fracture Mechanisms, pp.1-150, 2006.

R. Raj, Nucleation of cavities at second phase particles in grain boundaries, Acta Metallurgica, vol.26, issue.6, pp.995-1006, 1978.

B. F. Dyson, Continuous cavity nucleation and creep fracture, Scripta Metallurgica, vol.17, issue.1, pp.31-37, 1983.

B. A. Senior, F. W. Noble, and B. L. Eyre, The nucleation and growth of voids at carbides in 9 cr-1 mo steel, Acta Metallurgica, vol.34, issue.7, pp.1321-1327, 1986.

D. François, A. Pineau, and A. Zaoui, Mechanical behaviour of materials, Solid Mechanics and Its Applications, vol.2, 2013.

M. Kikuchi, K. Shiozawa, and J. R. Weertman, Void nucleation in astroloy : theory and experiments, Acta Metallurgica, vol.29, issue.10, pp.1747-1758, 1981.

Q. Z. Chen, C. N. Jones, and D. M. Knowles, The grain boundary microstructures of the base and modified rr 2072 bicrystal superalloys and their effects on the creep properties, Materials Science and Engineering : A, vol.385, issue.1, pp.402-418, 2004.

. Hy-bor, C. Y. Chao, and . Ma, The influence of magnesium on carbide characteristics and creep behavior of the mar-m247 superalloy, Scripta materialia, vol.38, issue.2, pp.329-335, 1997.

E. T. Wessel, State of the art of the wol specimen for kic fracture toughness testing, Engineering Fracture Mechanics, vol.1, issue.1, pp.77-103, 1968.

, Wikipedia. Ki fracture, 2018.

A. P. Kfouri and K. J. Miller, Crack separation energy rates in elasticplastic fracture mechanics, Proceedings of the Institution of Mechanical Engineers, vol.190, issue.1, pp.571-584, 1976.

N. Nagasako, M. Jahnátek, R. Asahi, and J. Hafner, Anomalies in the response of v, nb, and ta to tensile and shear loading : Ab initio density functional theory calculations, Phys. Rev. B, vol.81, p.94108, 2010.

D. Clatterbuck, D. Chrzan, and J. Morris, The ideal strength of iron in tension and shear, Acta Materialia, vol.51, issue.8, pp.2271-2283, 2003.

Y. Liu, Y. Zhang, H. Zhou, G. Lu, and M. Kohyama, Theoretical strength and charge redistribution of fcc ni in tension and shear, Journal of Physics : Condensed Matter, vol.20, issue.33, p.335216, 2008.

M. Cerny and . Pokluda, Ab initio calculations of ideal tensile strength and mechanical stability in copper, Journal of Physics : Condensed Matter, vol.16, issue.7, p.1045, 2004.

Y. Wang and C. Wang, Influence of the alloying element re on the ideal tensile and shear strength of ni3al, Scripta Materialia, vol.61, issue.2, pp.197-200, 2009.

H. Z. Zhang, L. M. Liu, and S. Q. Wang, First-principles study of the tensile and fracture of the al/tin interface, Computational Materials Science, vol.38, issue.4, pp.800-806, 2007.

Z. Bao, X. Guo, and F. Shang, An atomistic investigation into the nature of fracture of ni/al2o3 interface with yttrium dopant under tension, Engineering Fracture Mechanics, vol.150, pp.239-247, 2015.

G. Lu, S. Deng, T. Wang, M. Kohyama, and R. Yamamoto, Theoretical tensile strength of an al grain boundary, Phys. Rev. B, vol.69, p.134106, 2004.

X. Guo and F. Shang, Reinvestigation of the tensile strength and fracture property of ni(111)/al2o3(0001) interfaces by firstprinciple calculations, Computational Materials Science, vol.50, issue.5, pp.1711-1716, 2011.

M. Forti, P. Alonso, P. Gargano, and G. Rubiolo, Adhesion energy of the fe(bcc)/magnetite interface within the dft approach, Procedia Materials Science, vol.8, pp.1066-1072, 2015.

V. Sergey, N. Dmitriev, M. Yoshikawa, S. Kohyama, R. Tanaka et al., Modeling interatomic interactions across cu/al2o3 interface, Computational Materials Science, vol.36, issue.3, pp.281-291, 2006.

R. A-m-tahir, A. Janisch, and . Hartmaier, Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated c impurites. Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.7, p.75005, 2013.

S. Tanaka, R. Yang, and M. Kohyama, First-principles study of the adhesive and mechanical properties of the o-terminated al2o3(0001)/cu(111) interfaces, Philosophical Magazine, vol.86, issue.32, pp.5123-5135, 2006.

A. Raúl, A. Enrique, and . Van-der-ven, Traction curves for the decohesion of covalent crystals, Applied Physics Letters, vol.110, issue.2, p.21910, 2017.

A. Raúl, A. Enrique, and . Van-der-ven, Decohesion models informed by first-principles calculations : The ab initio tensile test, Journal of the Mechanics and Physics of Solids, vol.107, pp.494-508, 2017.

A. Van-der-ven and G. Ceder, The thermodynamics of decohesion, Acta Materialia, vol.52, issue.5, pp.1223-1235, 2004.

R. L. Hayes, M. Ortiz, and E. A. Carter, Universal bindingenergy relation for crystals that accounts for surface relaxation, Phys. Rev. B, vol.69, p.172104, 2004.

A. T. Pär, M. Olsson, M. Mrovec, and . Kroon, First principles characterisation of brittle transgranular fracture of titanium hydrides, Acta Materialia, vol.118, pp.362-373, 2016.

A. Srirangarajan, A. Datta, A. Naidu-gandi, U. Ramamurty, and U. Waghmare, Universal binding energy relation for cleaved and structurally relaxed surfaces, Journal of Physics : Condensed Matter, vol.26, issue.5, p.55006, 2014.

A. Banerjea and J. R. Smith, Origins of the universal bindingenergy relation, Phys. Rev. B, vol.37, pp.6632-6645, 1988.

P. Lazar and R. Podloucky, Cleavage fracture of a crystal : Density functional theory calculations based on a model which includes structural relaxations, Phys. Rev. B, vol.78, p.104114, 2008.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, pp.864-871, 1964.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, pp.1133-1138, 1965.

P. John, Y. Perdew, and . Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B, vol.45, pp.13244-13249, 1992.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, pp.17953-17979, 1994.

D. R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett, vol.43, pp.1494-1497, 1979.

D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, vol.41, pp.7892-7895, 1990.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, vol.47, pp.558-561, 1993.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

M. Methfessel and A. T. Paxton, High-precision sampling for brillouinzone integration in metals, Phys. Rev. B, vol.40, pp.3616-3621, 1989.

H. J. Monkhorst and J. D. Pack, Special points for brillouinzone integrations, Phys. Rev. B, vol.13, pp.5188-5192, 1976.

J. Ferrante and J. R. Smith, Theory of the bimetallic interface, Phys. Rev. B, vol.31, pp.3427-3434, 1985.

T. Hong, J. R. Smith, and D. J. Srolovitz, Theory of metal-ceramic adhesion, Acta Metallurgica et Materialia, vol.43, issue.7, pp.2721-2730, 1995.

K. Rapcewicz, B. Chen, B. Yakobson, and J. Bernholc, Consistent methodology for calculating surface and interface energies, Phys. Rev. B, vol.57, pp.7281-7291, 1998.

J. Donald, . Siegel, G. Louis, J. B. Hector, and . Adams, Adhesion, stability, and bonding at metal/metal-carbide interfaces : Al/wc. Surface Science, vol.498, pp.321-336, 2002.

A. Dannenberg, M. E. Gruner, A. Hucht, and P. Entel, Surface energies of stoichiometric fept and copt alloys and their implications for nanoparticle morphologies, Phys. Rev. B, vol.80, p.245438, 2009.

K. K. Eric, J. Abavare, A. Iwata, A. Yaya, and . Oshiyama, Surface energy of si(110)-and 3c-sic(111)-terminated surfaces, physica status solidi, issue.7, pp.1408-1415, 2014.

J. Andersson, Thermodynamic properties of cr-c. Calphad, vol.11, pp.271-276, 1987.

J. Daniel, F. Rasky, and . Milstein, Pseudopotential theoretical study of the alkali metals under arbitrary pressure : Density, bulk modulus, and shear moduli, Phys. Rev. B, vol.33, pp.2765-2780, 1986.

, CEA. Logiciel cast3m, 2018.

L. Huang, Private communication, CEA/DEN/DMN/SRMA/LC2M

N. Sandberg, Z. Chang, L. Messina, P. Olsson, and P. Korzhavyi, Modeling of the magnetic free energy of self-diffusion in bcc fe, Phys. Rev. B, vol.92, p.184102, 2015.

G. Y. Guo and H. H. Wang, Gradient-corrected density functional calculation of elastic constants of fe, co and ni in bcc, fcc and hcp structures, Chinese Journal of Physics, vol.38, issue.5, pp.949-961, 2000.

H. C. Herper, E. Hoffmann, and P. Entel, Ab initio, Phys. Rev. B, vol.60, pp.3839-3848, 1999.
URL : https://hal.archives-ouvertes.fr/jpa-00255608

T. P. Klaver, D. J. Hepburn, and G. J. Ackland, Defect and solute properties in dilute fe-cr-ni austenitic alloys from first principles, Phys. Rev. B, vol.85, p.174111, 2012.

H. Zhang, B. Johansson, and L. Vitos, Density-functional study of paramagnetic iron, Phys. Rev. B, vol.84, p.140411, 2011.

K. Harste, T. Suzuki, and K. Schwerdtfeger, Thermomechanical properties of steel : viscoplasticity of gamma iron and ga fe-c alloys, Materials Science and Technology, vol.8, issue.1, pp.23-33, 1992.

S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang et al., First-principles calculations of pure elements : Equations of state and elastic stiffness constants, Computational Materials Science, vol.48, issue.4, pp.813-826, 2010.

E. E-a-owen, A. Yates, and . Sully, An x-ray investigation of pure iron-nickel alloys. part 4 : the variation of lattice-parameter with composition, Proceedings of the Physical Society, vol.49, issue.3, p.315, 1937.

J. Crangle and M. J. Martin, Magnetic moments and electron transfer in nickel-rich binary alloys, Philosophical Magazine, vol.4, issue.45, pp.1006-1012, 1959.

K. Honda and Y. Shirakawa, On young's modulus of elasticity of single crystals of nickel and cobalt, Science reports of the Research Institutes, Tohoku University. Ser. A, Physics, chemistry and metallurgy, vol.1, pp.9-15, 1949.

G. A. Alers, J. R. Neighbours, and H. Sato, Temperature dependent magnetic contributions to the high field elastic constants of nickel and an fe-ni alloy, Journal of Physics and Chemistry of Solids, vol.13, issue.1, pp.40-55, 1960.

J. P. Hirth and J. Lothe, Theory of Dislocations, 1982.

J. Yu, X. Lin, J. Wang, J. Chen, and W. Huang, Firstprinciples study of the relaxation and energy of bcc-fe, fcc-fe and aisi-304 stainless steel surfaces, Applied Surface Science, vol.255, issue.22, pp.9032-9039, 2009.

D. Kandaskalov, D. Monceau, C. Mijoule, and D. Connétable, First-principles study of sulfur multi-absorption in nickel and its segregation to the ni(100) and ni(111) surfaces, Surface Science, vol.617, pp.15-21, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01170366

L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, The surface energy of metals, Surface Science, vol.411, issue.1-2, pp.186-202, 1998.

J. A. Francis, W. Mazur, and H. K. Bhadeshia, Review type iv cracking in ferritic power plant steels, Materials Science and Technology, vol.22, issue.12, pp.1387-1395, 2006.

T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Materials Science and Technology, vol.17, issue.1, pp.1-14, 2001.

K. O. Henriksson, N. Sandberg, and J. Wallenius, Carbides in stainless steels : Results from ab initio investigations, Applied Physics Letters, vol.93, issue.19, 2008.

Z. Q. Lv, F. Dong, Z. A. Zhou, G. F. Jin, S. H. Sun et al., Structural properties, phase stability and theoretical hardness of cr23(1 ? x)mxc6 (m = mo, w ; x = 0-3), Journal of Alloys and Compounds, vol.607, pp.207-214, 2014.

J. Han, C. Wang, X. Liu, Y. Wang, and Z. Liu, First-principles calculation of structural, mechanical, magnetic and thermodynamic properties for gamma m23c6 (m = fe, cr) compounds, Journal of Physics : Condensed Matter, vol.24, issue.50, p.505503, 2012.

A. Westgren, Crystal structure and composition of cubic chromium carbide, Jernkontorets Annaler, vol.117, pp.501-512, 1933.

J. Xie, L. Teng, N. Chen, and S. Seetharaman, Atomistic simulation on the structural properties and phase stability for cr23c6 and mn23c6, Journal of Alloys and Compounds, vol.420, issue.1-2, pp.269-272, 2006.

Y. Soo-lim, J. S. Kim, H. P. Kim, and H. D. Cho, The effect of grain boundary misorientation on the intergranular m23c6 carbide precipitation in thermally treated alloy 690, Journal of Nuclear Materials, vol.335, issue.1, pp.108-114, 2004.

C. Fu and F. Willaime, Ab initio, Phys. Rev. B, vol.72, p.64117, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01828115

D. Leguillon, Strength or toughness ? a criterion for crack onset at a notch, European Journal of Mechanics -A/Solids, vol.21, issue.1, pp.61-72, 2002.

T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Materials Science and Technology, vol.17, issue.1, pp.1-14, 2001.

P. Hofer, M. K. Miller, S. S. Babu, S. A. David, and H. Cerjak, Atom probe field ion microscopy investigation of boron containing martensitic 9 pct chromium steel, Metallurgical and Materials Transactions A, vol.31, issue.3, pp.975-984, 2000.

N. Zhu, Y. He, W. Liu, L. Li, and S. Huang, Jef Vleugels, and Omer Van der Biest. Modeling of nucleation and growth of m23c6 carbide in multi-component fe-based alloy, Journal of Materials Science and Technology, vol.27, issue.8, pp.725-728, 2011.

A. Bjärbo and . Hättestrand, Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel-an experimental and theoretical study, Metallurgical and Materials Transactions A, vol.32, issue.1, pp.19-27, 2001.

R. A-m-tahir, A. Janisch, and . Hartmaier, Ab initio calculation of traction separation laws for a grain boundary in molybdenum with segregated c impurites. Modelling and Simulation in, Materials Science and Engineering, vol.21, issue.7, p.75005, 2013.

A. Yaojun, L. Du, J. Ismer, T. Rogal, and . Hickel, Jörg Neugebauer, and Ralf Drautz. First-principles study on the interaction of h interstitials with grain boundaries in ?-and ?-fe, Phys. Rev. B, vol.84, p.144121, 2011.

A. M. Tahir, R. Janisch, and A. Hartmaier, Hydrogen embrittlement of a carbon segregated ?5(310)[001] symmetrical tilt grain boundary in ?-fe, Materials Science and Engineering : A, vol.612, pp.462-467, 2014.

H. Zhou, S. Jin, Y. Zhang, and G. Lu, Firstprinciples study of carbon effects in a tungsten grain boundary : site preference, segregation and strengthening, Science China Physics, Mechanics and Astronomy, vol.54, issue.12, pp.2164-2169, 2011.

J. Wang, R. Janisch, G. K. Madsen, and R. Drautz, First-principles study of carbon segregation in bcc iron symmetrical tilt grain boundaries, Acta Materialia, vol.115, pp.259-268, 2016.

C. J. Mcmahon, Brittle fracture of grain boundaries, Interface Science, vol.12, issue.2, pp.141-146, 2004.

M. Vardavoulias, G. Papadimitriou, and D. Pantelis, Effect of m7c3 m23c6 transformation on fracture behaviour of cast ferritic stainless steels, Materials Science and Technology, vol.9, issue.8, pp.711-717, 1993.

V. Knezevic, G. Sauthoff, J. Vilk, G. Inden, A. Schneider et al., Martensitic, ferritic super heat-resistant 650?; c steels -design and testing of model alloys, ISIJ International, vol.42, issue.12, pp.1505-1514, 2002.

. Pr-howell, R. Bee, and . Honeycombe, The crystallography of the austenite-ferrite/carbide transformation in fe-cr-c alloys, Metallurgical Transactions A, vol.10, issue.9, pp.1213-1222, 1979.

Y. Xu, X. Zhang, Y. Tian, C. Chen, Y. Nan et al., Study on the nucleation and growth of m23c6 carbides in a 10martensite ferritic steel after long-term aging, Materials Characterization, vol.111, pp.122-127, 2016.

E. Hristova, R. Janisch, R. Drautz, and A. Hartmaier, Solubility of carbon in ?-iron under volumetric strain and close to the ?5(310)[001] grain boundary : Comparison of dft and empirical potential methods, Computational Materials Science, vol.50, issue.3, pp.1088-1096, 2011.

A. Yaojun, L. Du, J. Ismer, T. Rogal, and . Hickel, Jörg Neugebauer, and Ralf Drautz. First-principles study on the interaction of h interstitials with grain boundaries in ?-and ?-fe, Phys. Rev. B, vol.84, p.144121, 2011.

I. Hao-jin, M. Elfimov, and . Militzer, Study of the interaction of solutes with ?5 (013) tilt grain boundaries in iron using densityfunctional theory, Journal of Applied Physics, vol.115, issue.9, p.93506, 2014.

N. J. Petch, The orientation relationships between cementite and ?iron, Acta Crystallographica, vol.6, issue.1, p.96, 1953.

M. R. Daymond and H. G. Priesmeyer, Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and selfconsistent modelling, Acta Materialia, vol.50, issue.6, pp.1613-1626, 2002.

C. H. Toh, P. R. Munroe, and D. J. Young, The role of cementite in the metal dusting of fe-cr and fe-ni-cr alloys, Materials at High Temperatures, vol.20, pp.527-534, 2003.

M. Guy, Aciers. généralités. Techniques de l'ingénieur Propriétés et usages des aciers et des fontes, base documentaire : TIB349DUO.(ref. article : m300), 1993.

C. Wun, E. A. Chiou, and . Carter, Structure and stability of fe3c-cementite surfaces from first principles, Surface Science, vol.530, issue.1, pp.88-100, 2003.

E. J. Fasiska and G. A. Jeffrey, On the cementite structure, Acta Crystallographica, vol.19, issue.3, pp.463-471, 1965.

J. Eunan, T. Mceniry, J. Hickel, and . Neugebauer, Ab initio simulation of hydrogen-induced decohesion in cementite-containing microstructures, Acta Materialia, vol.150, pp.53-58, 2018.

G. Robert and . Lee, Titanium carbide alloy, US Patent, vol.7, p.23, 2010.

M. Sireesha, . Shankar, K. Shaju, S. Albert, and . Sundaresan, Microstructural features of dissimilar welds between 316ln austenitic stainless steel and alloy 800, Materials Science and Engineering : A, vol.292, issue.1, pp.74-82, 2000.

R. Dehmolaei, M. Shamanian, and A. Kermanpur, Microstructural characterization of dissimilar welds between alloy 800 and hp heatresistant steel, Materials Characterization, vol.59, issue.10, pp.1447-1454, 2008.

. Le-toth, Transition metal carbides and nitrides (academic, Google Scholar, p.188, 1971.

W. G. Ralph and . Wyckoff, Crystal structures (interscience, new york, vol.1, pp.796-797, 1963.

O. Sydney and . Hara, The metastable solid-liquid phase boundary, Journal of Applied Physics, vol.37, issue.10, pp.3783-3786, 1966.

R. Ahuja, . Eriksson, B. Wills, and . Johansson, Structural, elastic, and high-pressure properties of cubic tic, tin, and tio, Physical review B, vol.53, issue.6, p.3072, 1996.

D. L. Price, B. R. Cooper, and J. M. Wills, Full-potential linear-muffin-tin-orbital study of brittle fracture in titanium carbide, Phys. Rev. B, vol.46, pp.11368-11375, 1992.

. Ag-akopyan, I. P. Sk-dolukhanyan, and . Borovinskaya, Interaction of titanium, boron, and carbon in the combustion regime. Combustion, Explosion and Shock Waves, vol.14, pp.327-331, 1978.

D. B. Miracle and H. A. Lipsitt, Mechanical properties of fine-grained substoichiomebic titanium carbide, Journal of the American Ceramic Society, vol.66, issue.8, pp.592-597

G. Henkelman, P. Blas, H. Uberuaga, and . Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, The Journal of Chemical Physics, vol.113, issue.22, pp.9901-9904, 2000.

G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, The Journal of Chemical Physics, vol.113, issue.22, pp.9978-9985, 2000.

D. Sheppard, P. Xiao, W. Chemelewski, D. D. Johnson, and G. Henkelman, A generalized solid-state nudged elastic band method, The Journal of Chemical Physics, vol.136, issue.7, p.74103, 2012.

D. Sheppard and G. Henkelman, Paths to which the nudged elastic band converges, Journal of Computational Chemistry, vol.32, issue.8, pp.1769-1771

D. Sheppard, R. Terrell, and G. Henkelman, Optimization methods for finding minimum energy paths, The Journal of Chemical Physics, vol.128, issue.13, p.134106, 2008.

P. A. Korzhavyi, L. V. Pourovskii, H. W. Hugosson, A. V. Ruban, and B. Johansson, Ab initio study of phase equilibria in tic x, Phys. Rev. Lett, vol.88, p.15505, 2001.

I. Vsevolod, A. V. Razumovskiy, J. Ruban, P. A. Odqvist, and . Korzhavyi, Vacancy-cluster mechanism of metal-atom diffusion in substoichiometric carbides, Phys. Rev. B, vol.87, p.54203, 2013.

P. F. Giroux, F. Dalle, M. Sauzay, C. Caës, B. Fournier et al., Gourgues-Lorenzon. Influence of strain rate on p92 microstructural stability during fatigue tests at high temperature, Procedia Engineering, vol.2, pp.2141-2150, 2010.

Y. Liu, Y. Jiang, J. Xing, R. Zhou, and J. Feng, Mechanical properties and electronic structures of m23c6 (m = fe, cr, mn)-type multicomponent carbides, Journal of Alloys and Compounds, vol.648, pp.874-880, 2015.

J. B. Wachtman and D. G. Lam, Young's modulus of various refractory materials as a function of temperature, Journal of the American Ceramic Society, vol.42, issue.5, pp.254-260

P. Sautet, M. Valero, M. Digne, and P. Raybaud, Dft study of the interaction of a single palladium atom with gamma-alumina surfaces : the role of hydroxylation, Oil & Gas Science and Technology -Rev. IFP, vol.61, pp.535-545, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02005850

F. Taherkhani, H. Akbarzadeh, and H. Rezania, Chemical ordering effect on melting temperature, surface energy of copper-gold bimetallic nanocluster, Journal of Alloys and Compounds, vol.617, pp.746-750, 2014.

P. M. Oliver, G. W. Watson, and S. C. Parker, Molecular-dynamics simulations of nickel oxide surfaces, Phys. Rev. B, vol.52, pp.5323-5329, 1995.

R. Lim, Numerical and experimental study of creep of Grade 91 steel at high temperature, Maxime et Gourgues-Lorenzon, Anne-Françoise Sciences et génie des matériaux Paris, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00687235

J. Turley and G. Sines, The anisotropy of young's modulus, shear modulus and poisson's ratio in cubic materials, Journal of Physics D : Applied Physics, vol.4, issue.2, p.264, 1971.

F. C. Nix and D. Macnair, The thermal expansion of pure metals : Copper, gold, aluminum, nickel, and iron, Phys. Rev, vol.60, pp.597-605, 1941.

J. Crangle-an and G. M. Goodman, The magnetization of pure iron and nickel, Proceedings of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.321, pp.477-491, 1547.

S. Siegel and S. L. Quimby, The variation of young's modulus with magnetization and temperature in nickel, Phys. Rev, vol.49, pp.663-670, 1936.

R. B. Farraro and R. Mclellan, Temperature dependence of the young's modulus and shear modulus of pure nickel, platinum, and molybdenum, Metallurgical Transactions A, vol.8, issue.10, pp.1563-1565, 1977.

D. H. Chung and W. R. Buessem, The voigt reuss hill approximation and elastic moduli of polycrystalline mgo, caf2, zns, znse, and cdte, Journal of Applied Physics, vol.38, issue.6, pp.2535-2540, 1967.

J. A. Francis, W. Mazur, and H. K. Bhadeshia, Mater. Sci. Technol, vol.22, p.1387, 2006.

T. Sourmail, Mater. Sci. Technol, vol.17, p.1, 2001.

N. Lopez, M. Cid, and M. Puiggali, Corros. Sci, vol.41, p.1615, 1999.

A. S. Argon, J. Im, and R. Safoglu, Metall. Trans. A, vol.6, p.825, 1975.

A. S. Argon and J. Im, Metall. Trans. A, vol.6, p.839, 1975.

S. Goods and L. Brown, Acta. Metall, vol.27, p.1, 1979.

J. Fischer and J. Gurland, Metal Sci. J, vol.6, p.211, 1981.

G. Young, T. Capobianco, M. Penik, B. Morris, J. Mcgee et al., , vol.87, p.31, 2008.

L. Babout, E. Maire, and R. Fougres, Acta Mater, vol.52, p.2475, 2004.

S. Deyber, F. Alexandre, J. Vaissaud, and A. Pineau, Superalloys 718, 625, 706 and Derivatives, p.14, 2005.

M. N. Shabrov, E. Sylven, S. Kim, and D. H. Sherman, Metall. Mater. Trans. A, vol.35, p.1745, 2004.

A. Asserin-lebert, J. Besson, and A. Gourgues, Mater. Sci. Eng., A, vol.395, p.186, 2005.

T. Lindley, G. Oates, and C. Richards, Acta. Metall, vol.18, p.1127, 1970.

J. Gammage, D. Wilkinson, Y. Brechet, and D. Embury, Acta Mater, vol.52, p.5255, 2004.

R. Raj, Acta. Metall, vol.26, p.995, 1978.

R. Lim, Numerical and experimental study of creep of Grade 91 steel at high temperature, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00687235

Y. Cui, M. Sauzay, C. Caes, P. Bonnaillie, and B. , Procedia Mater. Sci, vol.3, p.122, 2014.

B. Dyson, Scr. Metall, vol.17, p.31, 1983.

H. Riedel, Fracture mechanisms, Materials Science and Technology, pp.1-150, 2006.

J. H. Rose, J. Ferrante, and J. R. Smith, Phys. Rev. Lett, vol.47, p.675, 1981.

A. Banerjea and J. R. Smith, Phys. Rev. B, vol.37, p.6632, 1988.

P. A. Olsson, M. Mrovec, and M. Kroon, Acta Mater, vol.118, p.362, 2016.

A. M. Tahir, R. Janisch, and A. Hartmaier, Modell. Simul. Mater. Sci. Eng, vol.21, p.75005, 2013.

N. J. Mosey and E. A. Carter, J. Mech. Phys. Solids, vol.57, p.287, 2009.

A. Srirangarajan, A. Datta, A. N. Gandi, U. Ramamurty, and U. V. Waghmare, J. Phys.: Condens. Matter, vol.26, p.55006, 2014.

R. A. Enrique and A. V. Der-ven, J. Appl. Phys, vol.116, p.113504, 2014.

R. Janisch, N. Ahmed, and A. Hartmaier, Phys. Rev. B, vol.81, p.184108, 2010.

R. , Y. S. Tanaka, and M. Kohyama, Philos. Mag, vol.85, p.2961, 2005.

M. Forti, P. Alonso, P. Gargano, and G. Rubiolo, Procedia Mater. Sci, vol.8, p.1066, 2015.

S. V. Dmitriev, N. Yoshikawa, M. Kohyama, S. Tanaka, R. Yang et al., Comput. Mater. Sci, vol.36, p.281, 2006.

S. Tanaka, R. Yang, and M. Kohyama, Philos. Mag, vol.86, p.5123, 2006.

R. A. Enrique and A. V. Der-ven, J. Mech. Phys. Solids, vol.107, p.494, 2017.

P. Hohenberg and W. Kohn, Phys. Rev, vol.136, p.864, 1964.

W. Kohn and L. J. Sham, Phys. Rev, vol.140, p.1133, 1965.

G. Kresse and J. Furthmüller, Phys. Rev. B, vol.54, p.11169, 1996.

G. Kresse and J. Hafner, Phys. Rev. B, vol.47, p.558, 1993.

J. P. Perdew and Y. Wang, Phys. Rev. B, vol.45, p.13244, 1992.

J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett, vol.77, p.3865, 1996.

M. Methfessel and A. T. Paxton, Phys. Rev. B, vol.40, p.3616, 1989.

H. J. Monkhorst and J. D. Pack, Phys. Rev. B, vol.13, p.5188, 1976.

K. Rapcewicz, B. Chen, B. Yakobson, and J. Bernholc, Phys. Rev. B, vol.57, p.7281, 1998.

D. J. Siegel, L. G. Hector, and J. B. Adams, Surf. Sci, vol.498, p.321, 2002.

A. Dannenberg, M. E. Gruner, A. Hucht, and P. Entel, Phys. Rev. B, vol.80, p.245438, 2009.

E. K. Abavare, J. Iwata, A. Yaya, and A. Oshiyama, Phys. Status Solidi B, vol.251, p.1408, 2014.

J. Andersson, CALPHAD: Comput. Coupling Phase Diagrams Thermochem, vol.11, p.271, 1987.

J. R. Rice and J. Wang, Mater. Sci. Eng., A, vol.107, p.23, 1989.

H. C. Herper, E. Hoffmann, and P. Entel, Phys. Rev. B, vol.60, p.3839, 1999.

S. Shang, A. Saengdeejing, Z. Mei, D. Kim, H. Zhang et al., Comput. Mater. Sci, vol.48, p.813, 2010.

J. Crangle and M. J. Martin, Philos. Mag, vol.4, p.1006, 1959.

G. Alers, J. Neighbours, and H. Sato, J. Phys. Chem. Solids, vol.13, p.40, 1960.

N. Sandberg, Z. Chang, L. Messina, P. Olsson, and P. Korzhavyi, Phys. Rev. B, vol.92, p.184102, 2015.

M. Levesque, E. Martínez, C. Fu, M. Nastar, and F. Soisson, Phys. Rev. B, vol.84, p.184205, 2011.

G. Y. Guo, H. H. Wang, and C. , J. Phys, vol.38, p.949, 2000.

T. P. Klaver, D. J. Hepburn, and G. J. Ackland, Phys. Rev. B, vol.85, p.174111, 2012.

H. Zhang, B. Johansson, and L. Vitos, Phys. Rev. B, vol.84, p.140411, 2011.

K. Harste, T. Suzuki, and K. Schwerdtfeger, Mater. Sci. Technol, vol.8, p.23, 1992.

E. A. Owen, E. L. Yates, and A. H. Sully, Proc. Phys. Soc, vol.49, p.315, 1937.

K. Honda and Y. Shirikawa, Science Reports of the Research Institutes, Tohoku University. Ser. A, vol.1, p.9, 1949.

Y. S. Lim, J. S. Kim, H. P. Kim, and H. D. Cho, J. Nucl. Mater, vol.335, p.108, 2004.

S. T. Purcell, W. Folkerts, M. T. Johnson, N. W. Mcgee, K. Jager et al., Phys. Rev. Lett, vol.67, p.903, 1991.

J. P. Hirth and J. Lothe, Theory of Dislocations, 1982.

J. Yu, X. Lin, J. Wang, J. Chen, and W. Huang, Appl. Surf. Sci, vol.255, p.9032, 2009.

D. Kandaskalov, D. Monceau, C. Mijoule, and D. Connétable, Surf. Sci, vol.617, p.15, 2013.

L. Vitos, A. Ruban, H. Skriver, and J. Kollár, Surf. Sci, vol.411, p.186, 1998.

M. Aldén, H. L. Skriver, S. Mirbt, and B. Johansson, Phys. Rev. Lett, vol.69, p.2296, 1992.

K. O. Henriksson, N. Sandberg, and J. Wallenius, Appl. Phys. Lett, vol.93, p.191912, 2008.

Z. Lv, F. Dong, Z. Zhou, G. Jin, S. Sun et al., J. Alloys Compd, vol.607, p.207, 2014.

J. J. Han, C. P. Wang, X. J. Liu, Y. Wang, and Z. Liu, J. Phys.: Condens. Matter, vol.24, p.505503, 2012.

J. Xie, L. Teng, N. Chen, and S. Seetharaman, J. Alloys Compd, vol.420, p.269, 2006.

J. Soler, E. Artacho, J. Gale, A. Garcia, J. Junquera et al., J. Phys.: Condens. Matter, vol.14, p.2745, 2002.

D. Leguillon, Eur. J. Mech., A, vol.21, p.61, 2002.

H. S. Kim, Mater. Sci. Eng., A, vol.289, p.30, 2000.

D. J. Rasky and F. Milstein, Phys. Rev. B, vol.33, p.2765, 1986.

H. Hong, B. Rho, and S. Nam, Mater. Sci. Eng., A, vol.318, p.285, 2001.

L. Huang, DEN-Service de Recherches Métallurgiques Appliquées, CEA, Université Paris-Saclay, F-91191

J. Pokluda, M. Cerný, M. Sob, and Y. Umeno, Prog. Mater. Sci, vol.73, p.127, 2015.