J. Lehn, Perspectives in supramolecular chemistry -from molecular recognition towards molecular information-processing and self-organization, Angew. Chem., Int. Ed, p.1304, 1990.

G. Whitesides, Molecular self-assembly and nanochemistry -a chemical strategy for the synthesis of nanostructures, Science, 1312.

P. Luisi, Chemistry constraints on the origin of life, Isr. J. Chem, p.906, 2015.

L. Estroff, H. , and A. , Water gelation by small organic molecules, Chem. Rev, vol.104, p.1201, 2004.

P. Terech and R. Weiss, Low molecular mass gelators of organic liquids and the properties of their gels, Chem. Rev, p.3133, 1997.

Z. Yang and B. Xu, Using enzymes to control molecular hydrogelation, Adv. Mater, vol.18, p.3043, 2006.

. Z. Brenzinger, Physiol. Chem, vol.1892, p.537

R. Cortner and W. Hoffman, An interesting colloid gel, J. Am. Chem. Soc, p.2199, 1921.

F. Menger and K. Caran, Amino acid derivatives that rigidify water at submillimolar concentrations, J. Am. Chem. Soc, p.11679, 2000.

J. Shi, Exceptionally small supramolecular hydrogelators based on aromatic-aromatic interactions, Beilstein J. Org. Chem, 2011.

Y. Zhang, Supramolecular hydrogels respond to ligand-receptor interaction, J. Am. Chem. Soc, vol.125, p.13680, 2003.

M. Ma, Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels, J. Am. Chem. Soc, p.2719, 2010.

S. Burley and G. Petsko, Aromatic-aromatic interaction -a mechanism of protein-structure stabilization, Science, p.23, 1985.

Y. Zhang, Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels, Langmuir, 2011.

Z. Yang, Enzymatic formation of supramolecular hydrogels, Adv. Mater, p.1440, 2004.

A. Kreutzer and P. Salveson, Standard practices for Fmoc-based solid-phase peptide synthesis in the Nowick laboratory, 2018.

G. Sauerbrey, Verwendung von schwingquartzen zur wägung dünner schichten und zur mikrowägung, Z. Phys, p.206, 1959.

G. Billig, Atomic Force Microscope, Phys. Rev. Lett, p.930, 1986.

M. Dalibart and L. Servant, Spectroscopie dans l'infrarouge, In techniques de l'ingénieur, p.1, 2000.

N. Harricks, Internal reflection spectroscopy, 1967.

U. Fringeli, IR membrane spectroscopy, 1981.

D. Stokes, Principles and practice of variable pressure environmental scanning electron microscopy (VP-ESEM), pp.978-0470758748, 2008.

M. Knoll, Aufladepotentiel und sekundäremission elektronenbestrahlter Körper, Zeitschrift für Technische Physik, p.467, 1935.

, Introduction to HPLC-agilent technologies

, HPLC instrumentation-agilent technologies

K. Wilson and J. Walter, Principles and technique of biochemistry and molecular biology, vol.13, pp.978-0521731676, 2010.

B. Berne and R. Pecora, Dynamic Light Scattering, Courier, 2000.

B. Chu, Laser light scattering, Annual Review of Physical Chemistry, vol.21, p.145, 1970.

R. Pecora, Doppler shifts in light scattering from pure liquids and polymer solutions, The Journal of Chemical Physics, p.40, 1604.

J. Goodman, Some fundamental properties of speckle, J. Opt. Soc. Am, p.1145, 1976.

A. Einstein, Investigations on the theory of the brownian movement, Dover Books on Physics Series, 1956.

S. Kelly, How to study proteins by circular dichroism, Biochim. Biophys. Acta, p.119, 2005.

S. Martin and M. Schilstra, Circular dichroism and its application to the study of biomolecules, Methods Cell Biol, vol.84, p.263, 2008.

N. Greenfield, Using circular dichroism spectra to estimate protein secondary structure, Nature Protocol, 2006.

D. Chen, Rheology of soft materials, Annual Review of Condensed Matter Physics, p.301, 2010.

A. Ait-kadi, Quantitative analysis of mixer-type rheometers using the coquette analogy, Perspectives in chemistryaspects of adaptive chemistry and materials, vol.80, p.3276, 1995.

S. Mann, Life as a nanoscale phenomenon, Angew. Chem., Int. Ed, vol.47, 2008.

J. Barral, H. Epstein, R. Li, A. , and D. , The road to maturation: somatic cell interaction and self-organization of the mammalian oocyte, Nat. Rev. Mol. Cell Biol, vol.21, p.141, 1999.

R. Williams, Spatial and directional control over self-assembly using catalytic micropatterned surfaces, Angew. Chem., Int. Ed, vol.32, p.11349, 2009.

X. Du, Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials, Chem. Rev, p.13165, 2015.

Z. Yang, Using enzymes to control molecular hydrogelation, Adv. Mater, vol.16, p.3043, 1440.

S. Toledano, Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation, Biochem. Soc. Trans, vol.128, p.107, 2006.

X. Qin, Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels, J. Agric. Food Chem, vol.49, p.8963, 1691.

C. Pappas, Discovery of energy transfer nanostructures using gelation-driven dynamic combinatorial libraries, Nat. Nanotechnol, vol.11, p.1529, 2013.

J. Plas, Dynamic combinatorial evolution within self-replicating supramolecular assemblies, Chem. Commun, p.13096, 2015.

C. Yang, Molecular hydrogels with esterase-like activity, Chin. J. Chem, p.494, 2013.

A. Smith, Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on ?-? interlocked ß-sheets, Adv. Mater, p.37, 2008.

R. Marti-centelles and B. Escuder, b) Draper, Protein-induced low molecular weight hydrogelator self-assembly through a self-sustaining process, Chem. Nano Mat, 2018.

E. , Opening a can of worm (-like micelle): the effect of temperature of solutions of functionalized dipeptides, Angew. Chem., Int. Ed, vol.129, p.927, 1174.

N. Javid, Cooperative self-assembly of peptide gelators and proteins, Biomacromolecules, issue.14, p.4368, 2013.

A. Martin, Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups, Sci. Rep, p.43947, 2017.

M. Reches, E. Gazit, and K. Ariga, Surface-mediated supramolecular self-assembly of protein, peptide, and nucleoside derivatives: from surface design to the underlying mechanism and tailored functions, Nanoarchitectonics: a new materials horizon for nanotechnology, vol.2, p.15109, 2006.

G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, 1232.

A. Martin, Controlling self-assembly of diphenylalanine peptides at high pH using heterocyclic capping groups, p.43947, 2017.

G. Sauerbrey and M. Voinova, Variation in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study, Anal. Chem, vol.155, p.5796, 1959.

, Résonance magnétique nucléaire. Cours théorique de RMN

, Olivier Lequin, cours sur la Résonance magnétique nucléaire

A. Kreutzer, P. Salveson, and G. Rydzek, Standard practices for Fmoc-based solid-phase peptide synthesis in the Nowick laboratory, Morphogen-driven self-construction of covalent films built from polyelectrolytes and homobifunctional spacers: buildup and pH response, vol.50, p.10336, 2010.

C. Maerten, Morphogenelectrochemically triggered self-construction of polymeric films based on mussel-inspired chemistry, Chem. Mater, vol.31, p.9668, 2015.

J. Lehn, G. Whitesides, B. Grzybowski, and T. Aida, Self-assembly at all scales, Supramolecular chemistry: concepts and perspectives, vol.335, p.813, 1995.

C. Stuart and M. , Emerging applications of stimuli-responsive polymer materials, Nanoarchitectonics: a new materials horizon for nanotechnology, vol.9, p.406, 2010.

M. Komiyama, Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics, Bull. Chem. Soc. Jpn, vol.90, p.981, 2017.

A. Dochter, Film self-assembly of oppositely charged macromolecules triggered by electrochemistry through a morphogenic approach, Langmuir, p.10208, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02323551

C. Vigier-carrière, Bioactive seed layer for surface-confined self-assembly of peptides, Angew. Chem., Int. Ed, p.10336, 2015.

R. Capito, Self-assembly of large and small molecules into hierarchically ordered sacs and membranes, Science, p.1812, 2008.

S. Soh, Nature-inspired design of smart biomaterials using the chemical biology of nucleic acids, Angew. Chem., Int. Ed, vol.4170, p.843, 2010.

E. Johnson, D. Adams, C. , and P. , Directed self-assembly of dipeptides to form ultrathin hydrogel membranes, J. Am. Chem. Soc, p.5130, 2010.

P. Kubiak, Polymerization of low molecular weight hydrogelators to form electrochromic polymers, Chem. Commun, p.51, 2015.

E. Liu, Reversible electroaddressing of self-assembling amino-acid conjugates, Adv. Funct. Mater, 1575.

J. Raeburn, Electrochemically-triggered spatially and temporally resolved multicomponent gels, 2014.

Y. Liu, Biofabrication multifunctional soft matter with enzymes and stimuli-responsive materials, Adv. Funct. Mater, p.3004, 2012.

A. Olive, Spatial and directional control over self-assembly using catalytic micropatterned surfaces, Angew. Chem. ,Int. Ed, p.4132, 2014.

X. Mu, Nanostructured hydrogels for three-deimensional cell culture through self-assembly of fluorenylmethoxycarbonyl-dipeptides, Relationship between molecular structure, gelation behavior and gel properties of Fmocdipeptides, vol.13, p.6, 1971.

W. Cheng, L. , and Y. , Peptide hydrogelation triggered by enzymatic induced pH switch, Sci. China-Phys. Mech. Astron, p.678711, 2016.

G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites, Science, 1232.

M. Onda, Sequential reaction and product separation on molecular films of glucoamylase and glucose oxidase assembled on an ultrafilter, J. Fermentation Bioeng, vol.51, p.2382, 1996.

N. Yamada, Regulation of ß-sheet structures within amyloid ß-sheet assemblage from tripeptide derivatives, J. Am. Chem. Soc, p.12192, 1998.

J. Hernandez-ruiz, Catalase-like activity of horseradish peroxidase: relationship to enzyme inactivation by H2O2, Biochem. J, p.107, 2001.

L. Xin, Regulation of an enzyme cascade reaction by a DNA machine, Small, issue.9, p.3088, 2013.

G. Sauerbrey, Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung, Z. Phys, p.206, 1959.

M. Voinova, Variation in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study, Anal. Chem, vol.59, p.5796, 1999.

S. Khattab, Cyanoacetamide-based oxime carbonates: an efficient, simple alternative for the introduction of Fmoc with minimal dipeptide formation, J. Am. Chem. Soc, vol.68, p.3919, 2012.

. Fmoc-gffpyghy, . Fmoc-gffyghpy, and . .. Fmoc-gffpyghpy, 2.4. Multilayer film preparation and localized hydrogel formation at the liquid-solid interface .. 211 5.3.2.5. Quartz crystal microbalance with dissipation monitoring (QCM-D), Synthesis and characterization of Fmoc-GFFYGHY

. .. References,

J. Lehn, Perspectives in chemistry -Aspects of adaptative chemistry and materials, Angew. Chem., Int. Ed, p.3276, 2015.

G. Whitesides and B. Grzybowski, Self-assembly at all scales, Science, 2002.

M. Guler and S. Stupp, A self-assembled nanofiber catalyst for ester hydrolysis, J. Am. Chem. Soc, p.12082, 2007.

F. Rodriguez-llansola, Switchable performance of an L-proline-derived basic catalyst controlled by supramolecular gelation, J. Am. Chem. Soc, p.11478, 2009.

R. Weiss, The past, present, and future of molecular gels. What is the status of the field, and where is it going?, J. Am. Chem. Soc, p.7519, 2014.

N. Teramoto, Polymer foam-reinforced hydrogels inspired by plant body frameworks as high-performance soft matter, Polymer J, vol.46, p.592, 2014.

A. Olive, Spatial and directional control over self-assembly using catalytic micropatterned surfaces, Angew. Chem., Int. Ed, p.4132, 2014.

X. Du, Supramolecular hydrogelators and hydrogels: From soft matter to molecular biomaterials, Chem. Rev, p.13165, 2015.

C. Vigier-carrière, Surface-assisted self-assembly strategies leading to supramolecular hydrogels, Angew. Chem., Int. Ed, p.1448, 2018.

B. Yang, Surface-mediated supramolecular self-assembly of protein, peptide, and nucleoside derivatives: From surface design to the underlying mechanism and tailored functions, Langmuir, vol.34, p.15109, 2018.

Z. Yang, Enzymatic formation of supramolecular hydrogels, Adv. Mater, p.1440, 2004.

R. Williams, Enzyme-assisted self-assembly under thermodynamic control, Nat. Nanotech, 2009.

C. Vigier-carrière, Bioactive seed layer for surface-confined self-assembly of peptides, Angew. Chem., Int. Ed, p.10198, 2015.

R. Fores and J. , Localized supramolecular peptides self-assembly directed by enzymeinduced proton gradients, Angew. Chem., Int. Ed, p.15984, 2017.

O. Zozulia, Catalytic peptide assemblies, Chem. Soc. Rev, p.3621, 2018.

C. Yang, Molecular hydrogels with esterase-like activity, Chin. J. Chem, p.494, 2013.

K. Tao, Fmoc-modified amino acids and short peptides: simple, bio-inspired building blocks for the fabrication of functional materials, Chem. Soc. Rev, p.3935, 2016.

A. Smith, Fmoc-diphenylalanine self-assembles to a hydrogel via a novel architecture based on ?-? Interlocked ?-Sheets, Adv. Mater, p.37, 2008.

M. Reches and E. Gazit, Controlled patterning of aligned self-assembled peptide nanotubes, Nat. Nanotech, 2006.

M. Bender and B. Turnquest, The imidazole-catalyzed hydrolysis of p-nitrophenyl acetate, J. Am. Chem. Soc, p.1652, 1957.

Y. Moroz, New tricks for old proteins: single mutations in a non-enzymatic protein give rise to various enzymatic activities, J. Am. Chem. Soc, p.14905, 2015.

J. Li, Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells, Angew. Chem., Int. Ed, p.13307, 2015.

N. Singh, Synthesis of a double-network supramolecular hydrogel by having one network catalyse the formation of the second, Chem. Eur. J, p.23, 2017.

N. Singh, Insight into the esterase like activity demonstrated by an imidazole appended self-assembling hydrogelator, Chem. Commun, p.13213, 2015.

L. Krystyna and R. Ulijn, Short peptides in minimalistic biocatalyst design, Biocatalysis, 2015.

F. Rodriguez-llansola, Supramolecular hydrogel as a reusable heteregeneous catalyst for the direct aldol reaction, Chem. Commun, p.7303, 2009.

N. Singh, Tandem reactions in self-sorted catalytic molecular hydrogels, Chem. Sci, vol.7, p.5568, 2016.

A. Som and S. Matile, Rigid-rod ?-barrel ion channels with internal "cascade blue" cofactorscatalysis of amide, carbonate, and ester hydrolysis, Eur. J. Org. Chem, p.3874, 2002.

N. Yamada, Regulation of ß-sheet structures within amyloid-like ß-sheet assemblage from tripeptide derivatives, J. Am. Chem. Soc, p.12192, 1998.

C. Vigier-carrière, Bioactive seed layer for surface-confined self-assembly of peptides, Angew. Chem., Int. Ed, p.10198, 2015.

H. Fogler, Elements of chemical reaction engineering, 1999.

R. Li, Facile control over the supramolecular ordering of self-assembled peptide scaffolds by simultaneous assembly with a polysacharride, Scientific Report, vol.7, p.4797, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01691870

A. Kreutzer and P. Salveson, Standard practices for Fmoc-based solid-phase peptide synthesis in the Nowick laboratory, 2018.

G. Sauerbrey, Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung, Z. Phys, p.206, 1959.

M. Voinova, Variation in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study, Anal. Chem, vol.59, p.5796, 1999.

D. Pearlman, A package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Comp. Phys. Commun, p.1, 1995.

J. Maier, Improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput, vol.14, p.3696, 2015.

S. Joung and T. Cheatham, Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations, J. Phys. Chem. B, vol.112, p.9020, 2008.

W. Jorgensen, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, p.926, 1983.

C. Bayly, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model, J. Phys. Chem, p.10269, 1993.

H. Berendsen, Molecular dynamics with coupling to an external bath, J. Chem. Phys, p.3684, 1984.

W. Humphrey, VMD -Visual Molecular Dynamics, J. Molec. Graphics, vol.14, p.33, 1996.

R. Li, 233 6.3.4. Molecular study of the interactions between HA and the self-assembly of Fmoc-FFY, Facile control over the supramolecular ordering of self-assembled peptide scaffolds by simultaneous assembly with a polysacharride, Scientific Report, vol.7, p.4797, 2017.

. .. -sem, Multilayer film preparation and hydrogel self-assembly, vol.4

. .. Annexes,

. .. References,

V. Jayawarna, Nanostructured hydrogels for three-dimensional cell culture through selfassembly of fluorenylmethoxycarbonyl-dipeptides, Ad. Mater, vol.18, p.611, 2006.

Z. Yang, Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels, Soft Matter, vol.3, p.515, 2007.

V. Jayawarna, Three-dimensional cell culture of chondrocytes on modified diphenylalanine scaffolds, Biochem. Soc. Trans, p.535, 2007.

W. T. Truong, Dissolution and degradation of Fmoc-diphenylalanine self-assembled gels results in necrosis at high concentrations in vitro, Biomater. Sci, p.298, 2015.

Y. Zhang, Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels, Langmuir, 2011.

T. Liebmann, Self-assembling Fmoc dipeptide hydrogel for in situ 3d cell culturing, BMC Biotechnol, issue.7, p.88, 2007.

V. Jayawarna, Introducing chemical functionality in Fmoc-peptide gels for cell culture, Acta Biomater, vol.5, p.934, 2009.

V. Jayawarna, Self-assembling peptide hydrogels: directing cells behaviour by chemical composition, Tissue Eng. A, vol.14, p.908, 2008.

J. Zhou, Molecular hydrogel-stabilized enzyme with facilitated electron transfer for determination of H2O2 released from live cells, Anal. Chem, p.4395, 2014.

M. Zhou, Self-assembled peptide-based hydrogels as scaffolds for anchoragedependent cells, Biomaterials, 2009.

G. Cheng, Hydrogelation of self-assembling RGD-based peptides, Soft Matter, 1326.

H. Yokoi, Dynamic reassembly of peptide Rada16 nanofiber scaffold, Proc. Natl. Acad. Sci. U. S. A, p.8414, 2005.

M. Owczarz, Sol-Gel transition of charged fibrils composed of a model amphiphilic peptide, J. Colloid Interface Sci, p.244, 2015.

C. Soler-botija, Engineered 3D bioimplants using elastomeric scaffold, self-assembling peptide hydrogel, and adipose tissue-derived progenitor cells for cardiac regeneration, Am. J. Transl. Res, 2014.

Z. Zou, Biocompatibility of functionalized designer self-assembling nanofiber scaffolds containing FRM motif for neural stem cells, J. Biomed. Mater. Res., Part A, vol.102, p.1286, 2014.

P. Liang, Recombinant self-assembling 16-residue peptide nanofiber scaffolds for neuronal axonal outgrowth, Eng. Life Sci, p.152, 2015.

J. Wang, FGL-Functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells, Mater. Sci. Eng. C, vol.46, p.140, 2015.

K. Hamada, Spatial distribution of mineralized bone matrix produced by marrow mesenchymal stem cells in self-assembling peptide hydrogel scaffold, J. Biomed. Mater. Res., Part A, vol.84, p.128, 2008.

Z. Li, Bone marrow enriched graft, modified by self-assembly peptide, repairs criticallysized femur defects in goats, Int. Orthop, p.2391, 2014.

Y. Kakiuchi, The macroscopic structure of Rada16 peptide hydrogel stimulates monocyte/macrophage differentiation in Hl60 cells via cholesterol synthesis, Biochem. Biophys. Res. Commun, p.298, 2013.

M. Mie, Hydrogel scaffolds composed of genetically synthesized self-assembling peptides for three-dimensional cell culture, Polym. J, p.504, 2013.

X. Liu, Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro, Acta Biomater, issue.9, p.6798, 2013.

K. Mi, Self-assembling peptide Rada16 nanofibre scaffold for a cancer cell threedimensional culture, Iran, Polym. J, vol.18, p.801, 2009.

J. P. Jung, Co-assembling peptides as defined matrices for endothelial cells, Biomaterials, 2009.

Y. Tian, Fibrillized peptide microgels for cell encapsulation and 3d cell culture, Soft Matter, 2011.

G. Silva, Selective differentiation of neural progenitor cells by high-epitope density nanofibers, Science, p.1352, 2004.

E. Beniash, Self-assembling peptide amphiphile nanofiber matrices for cell entrapment, Acta Biomater, 2005.

V. Tysseling-mattiace, Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury, J. Neurosci, p.3814, 2008.

J. Matson and S. Stupp, Self-assembling peptide scaffolds for regenerative medicine, Chem. Commun, p.26, 2012.

T. Muraoka, Light-triggered bioactivity in three dimensions, Angew. Chem., Int. Ed, p.5946, 2009.

S. Sur, Photodynamic control of bioactivity in a nanofiber matrix, ACS Nano, vol.6, p.10776, 2012.

Y. Song, Neural progenitor cells survival and neuronal differentiation in peptide-based hydrogels, J. Biomater. Sci., Polym. Ed, p.475, 2011.

Y. Song, Two-dimensional effects of hydrogel self-organized from IKVAV-containing peptides on growth and differentiation of NSCS, J. Wuhan Univ. Technol., Mater. Sci. Ed, p.186, 2009.

Y. Song, Cytocompatibility of self-assembled hydrogel from IKVAV-containing peptide amphiphile with neural stem cells, J. Wuhan Univ. Technol., Mater. Sci. Ed, p.753, 2009.

R. Capito, Self-assembly of large and small molecules into hierarchically ordered sacs and membranes, Science, p.1812, 2008.

A. Mata, Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix, Biomaterials, p.6004, 2010.

A. Mendes, Co-assembled and microfabricated bioactive membranes, Adv. Funct. Mater, p.430, 2013.

S. Ribeiro, Nanostructured interfacial self-assembled peptide-polymer membranes for enhanced mineralization and cell adhesion, Nanoscale, vol.9, p.13670, 2017.

M. Aviv, Improving the mechanical rigidity of hyaluronic acid by integration of a supramolecular peptide matrix, ACS Appl. Mat. Interf, p.41883, 2018.

C. Vigier-carrière, Bioactive seed layer for surface-confined self-assembly of peptides, Angew. Chem., Int. Ed, p.10198, 2015.

C. Highley, Recent Advances in Hyaluronic Acid Hydrogels for Biomedical Applications, p.35, 2016.

J. Burdick, Hyaluronic Acid Hydrogels for Biomedical Applications, 2011.

B. Slaughter, Hydrogels in Regenerative Medicine, vol.21, p.3307, 2009.

D. Ryan, The influence of side-chain halogenation on the self-assembly and hydrogelation of Fmoc-phenylalanine derivatives, Soft Matter, vol.6, p.3220, 2010.

Z. Yang, Enzymatic formation of supramolecular hydrogels, Adv. Mater, p.1440, 2004.

D. Ryan, Self-assembly and hydrogelation promoted by F5-phenylalanine, Soft Matter, vol.6, p.475, 2010.

A. Smith, Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on ?-? Interlocked ?-sheets, Adv. Mater, p.37, 2008.

C. Guilbaud-chéreau, Protected amino acid-based hydrogels incorporating carbon nanomaterials for near-infrared irradiation-triggered drug release, ACS Appl. Mater. Interfaces, 2019.

V. Parsegian, Lessons from the direct measurement of forces between biomolecules, Physics of Complex and Supermolecular Fluids, p.115, 1987.

D. Bhattacharya, Impact of structurally modifying hyaluronic acid on CD44 interaction, J. Mater. Chem. B, vol.5, p.8183, 2017.

S. Khattab, Cyanoacetamide-based oxime carbonates: an efficient, simple alternative for the introduction of Fmoc with minimal dipeptide formation, J. Am. Chem. Soc, vol.68, p.3919, 2012.

T. Lindl and . Zell-und-gewebekultur, Sigma-Aldrich. RPMI-1640 Media Formulation, vol.53, 2002.

. Sigma-aldrich, Dulbecco's Modified Eagle's Medium (DME) Formulation

. Microbiologie-medical and . Mueller-hinton,

G. Sauerbrey, Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung, Z. Phys, p.206, 1959.

M. Voinova, Variation in coupled water, viscoelastic properties, and film thickness of a mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study, Anal. Chem, vol.59, p.5796, 1999.

D. Axelrod, Mobility measurement by analysis of fluorescence photobleaching recovery kinetics, Biophys. J, p.1055, 1976.

A. Schneider, Polyelectrolyte multilayers with a tunable young's modulus: influence of film stiffness on cell adhesion, Langmuir, 1193.

, Biomedical Applications of Hydrogels Handbook, 2010.

N. M. Sangeetha and U. Maitra, Chem. Soc. Rev, vol.34, pp.821-836, 2005.

J. H. Wen, L. G. Vincent, A. Fuhrmann, Y. S. Choi, K. C. Hribar et al., Nat. Mater, vol.13, pp.979-987, 2014.

A. Seidi, M. Ramalingam, I. Elloumi-hannachi, S. Ostrovidov, and A. Khademhosseini, Acta Biomater, vol.4, pp.1441-1451, 2011.

E. R. Draper, E. G. Eden, T. O. Mcdonald, and D. J. Adams, Nat. Chem, vol.7, pp.848-852, 2015.

J. Wang, Z. Wang, J. Gao, L. Wang, Z. Yang et al., J. Mater. Chem, vol.19, pp.7892-7896, 2009.

J. Wang, X. Miao, Q. Fengzhao, C. Ren, Z. Yang et al., , vol.3, pp.16739-16746, 2013.

D. J. Cornwell, D. K. Smith, . Mater, and . Horiz, , vol.2, pp.279-293, 2015.

W. X. Sun, B. Xue, Y. Li, M. Qin, J. Y. Wu et al., Adv. Funct. Mater, vol.26, pp.9044-9052, 2016.

K. Powell, Nature, vol.563, pp.172-175, 2018.

S. Kondo and T. Miura, Science, vol.329, pp.1616-1620, 2010.

S. Soh, M. Byrska, K. Kandere-grzybowska, and B. Grzybowski, Angew. Chem., Int. Ed, vol.49, pp.4170-4198, 2010.

I. Ziemecka, G. J. Koper, A. G. Olive, and J. H. Van-esch, Soft Matter, issue.9, pp.1556-1561, 2013.

T. S. Shim, S. M. Yang, and S. H. Kim, Nat. Commun, vol.6, p.6584, 2015.

M. Lovrak, W. E. Hendriksen, C. Maity, S. Mytnyk, V. Van-steijn et al., Nat. Commun, 2017.

Z. Yang, H. Gu, D. Fu, P. Gao, J. K. Lam et al., Adv. Mater, vol.16, pp.1440-1444, 2004.

R. J. Williams, A. M. Smith, R. Collins, N. Hodson, A. K. Das et al., Nat. Nanotechnol, vol.4, pp.19-24, 2008.

J. R. Fores, M. L. Mendez, X. Y. Mao, D. Wagner, M. Schmutz et al., Angew. Chem., Int. Ed, vol.56, pp.572-578, 2009.

S. C. Bremmer, J. Chen, A. J. Mcneil, M. B. Soellner-;-g)-x.-qin, W. Xie et al., J. Agric. Food Chem, vol.48, pp.1502-1507, 2010.

J. Yu, X. Xu, F. Yao, Z. Luo, L. Jin et al., Int. J. Pharm, vol.470, pp.151-157, 2014.

N. Yamada, K. Ariga, M. Naito, K. Matsubara, and E. Koyama, J. Am. Chem. Soc, vol.120, pp.12192-12199, 1998.

A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins et al., Adv. Mater, vol.20, pp.37-41, 2008.

M. A. Meyers and K. K. Chawla, Mechanical Behavior of Materials, vol.3, pp.3447-3454, 1998.

B. A. Grzybowski and W. T. Huck, The Nanotechnology of Life-Inspired Systems, Nat. Nanotechnol, vol.11, pp.585-592, 2016.

J. Leira-iglesias, A. Tassoni, T. Adachi, M. Stich, and T. Hermans,

M. Oscillations, Travelling Fronts and Patterns in a Supramolecular System, Nat. Nanotechnol, vol.13, pp.1021-1027, 2018.

M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost et al., Hydrodynamics of Soft Active Matter, Rev. Mod. Phys, vol.85, pp.1143-1189, 2013.

J. Boekhoven, W. E. Hendriksen, G. J. Koper, R. Eelkema, and J. H. Van-esch, Transient Assembly of Active Materials Fueled by a Chemical Reaction, Science, vol.349, pp.1075-1079, 2015.

S. Mann, Life as a Nanoscale Phenomenon, Angew. Chem., Int. Ed. Engl, vol.47, pp.5306-5320, 2008.

M. Komiyama, K. Yoshimoto, M. Sisido, and K. Ariga, Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics, Bull. Chem. Soc. Jpn, vol.90, pp.967-1004, 2017.

K. Ariga, D. T. Leong, and T. Mori, Nanoarchitectonics for Hybrid and Related Materials for Bio-Oriented Applications, Adv. Funct. Mater, vol.28, p.1702905, 2018.

M. A. Stuart, W. T. Huck, J. Genzer, M. Muller, C. Ober et al., Emerging Applications of Stimuli-Responsive Polymer Materials, Nat. Mater, vol.9, pp.101-113, 2010.

I. Ziemecka, G. J. Koper, A. G. Olive, and J. H. Van-esch, Chemical-Gradient Directed Self-Assembly of Hydrogel Fibers, Soft Matter, vol.9, pp.1556-1561, 2013.

M. Valignat, O. Theodoly, J. C. Crocker, W. B. Russel, and P. M. Chaikin, Reversible Self-Assembly and Directed Assembly of DNA-Linked Micrometer-Sized Colloids, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.4225-4229, 2005.

R. M. Capito, H. S. Azevedo, Y. S. Velichko, A. Mata, and S. I. Stupp, Self-Assembly of Large and Small Molecules into Hierarchically Ordered Sacs and Membranes, Science, vol.319, pp.1812-1816, 2008.

A. Winkleman, B. D. Gates, L. S. Mccarty, and G. M. Whitesides, Directed Self-Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field, Adv. Mater, vol.17, pp.1507-1511, 2005.

E. D. Sone, E. R. Zubarev, and S. I. Stupp, Semiconductor Nanohelices Templated by Supramolecular Ribbons, Angew. Chem., Int. Ed. Engl, vol.41, pp.1705-1709, 2002.

G. Qing, H. Xiong, F. Seela, and T. Sun, Spatially Controlled DNA Nanopatterns by "Click" Chemistry Using Oligonucleotides with Different Anchoring Sites, J. Am. Chem. Soc, vol.132, pp.15228-15232, 2010.

X. Du, J. Zhou, J. Shi, and B. Xu, Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials, Chem. Rev, vol.115, pp.13165-13307, 2015.

C. Vigier-carriere, F. Boulmedais, P. Schaaf, and L. Jierry, Surface-Assisted Self-Assembly Strategies Leading to Supramolecular Hydrogels, Angew. Chem., Int. Ed. Engl, vol.57, pp.1448-1456, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02323450

B. Yang, D. J. Adams, M. Marlow, and M. Zelzer, Surface-Mediated Supramolecular Self-Assembly of Protein, Peptide, and Nucleoside Derivatives: From Surface Design to the Underlying Mechanism and Tailored Functions, Langmuir, vol.34, pp.15109-15125, 2018.

A. G. Olive, N. H. Abdullah, I. Ziemecka, E. Mendes, R. Eelkema et al., Spatial and Directional Control over Self-Assembly Using Catalytic Micropatterned Surfaces, Angew. Chem., Int. Ed. Engl, vol.53, pp.4132-4136, 2014.

M. Criado-gonzalez, J. Rodon-fores, D. Wagner, A. P. Schroder, A. Carvalho et al., Enzyme-Assisted Self-Assembly within a Hydrogel Induced by Peptide Diffusion, Chem. Commun, vol.55, pp.1156-1159, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346590

R. J. Williams, A. M. Smith, R. Collins, N. Hodson, A. K. Das et al., Enzyme-Assisted Self-Assembly under Thermodynamic Control, Nat. Nanotechnol, 2008.

R. J. Williams, T. E. Hall, V. Glattauer, J. White, P. J. Pasic et al., The in Vivo Performance of an Enzyme-Assisted Self-Assembled Peptide/Protein Hydrogel, Biomaterials, pp.32-5304, 2011.

C. Vigier-carriere, D. Wagner, A. Chaumont, B. Durr, P. Lupattelli et al., Control of Surface-Localized, Enzyme-Assisted Self-Assembly of Peptides through Catalyzed Oligomerization, vol.33, pp.8267-8276, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02323480

C. Vigier-carriere, T. Garnier, D. Wagner, P. Lavalle, M. Rabineau et al., Bioactive Seed Layer for Surface-Confined Self-Assembly of Peptides, Angew. Chem., Int. Ed. Engl, vol.54, pp.10198-10201, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01409676

R. Fores, J. Mendez, M. L. Mao, X. Wagner, D. Schmutz et al., Localized Supramolecular Peptide Self-Assembly Directed by Enzyme-Induced Proton Gradients, Angew. Chem., Int. Ed. Engl, vol.56, pp.15984-15988, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02323436

Y. Wang, F. Versluis, S. Oldenhof, V. Lakshminarayanan, K. Zhang et al., Directed Nanoscale Self-Assembly of Low Molecular Weight Hydrogelators Using Catalytic Nanoparticles, Adv. Mater, 2018.

C. Wu, W. Hu, Q. Wei, L. Qiao, Y. Gao et al., Controllable Growth of Core-Shell Nanogels Via Esterase-Induced Self-Assembly of Peptides for Drug Delivery, J. Biomed. Nanotechnol, vol.14, pp.354-361, 2018.

M. P. Conte, J. K. Sahoo, Y. M. Abul-haija, K. H. Lau, and R. V. Ulijn, Biocatalytic Self-Assembly on Magnetic Nanoparticles

, ACS Appl. Mater. Interfaces, vol.10, pp.3069-3075, 2018.

S. M. Chang, M. Lee, and W. Kim, Preparation of Large Monodispersed Spherical Silica Particles Using Seed Particle Growth, J. Colloid Interface Sci, vol.286, pp.536-542, 2005.

Y. Wu, C. Chen, and S. Liu, Enzyme-Functionalized Silica Nanoparticles as Sensitive Labels in Biosensing, Anal. Chem, vol.81, pp.1600-1607, 2009.

A. M. Smith, R. J. Williams, C. Tang, P. Coppo, R. F. Collins et al., Fmoc-Diphenylalanine Self Assembles to a Hydrogel Via a Novel Architecture Based on ??? Interlocked ?-Sheets, Adv. Mater, vol.20, pp.37-41, 2008.

S. Fleming, P. W. Frederix, I. Ramos-sasselli, N. T. Hunt, R. V. Ulijn et al., Assessing the Utility of Infrared Spectroscopy as a Structural Diagnostic Tool for ?-Sheets in Self-Assembling Aromatic Peptide Amphiphiles, Langmuir, vol.29, pp.9510-9515, 2013.

C. Tang, A. M. Smith, R. F. Collins, R. V. Ulijn, and A. Saiani, Fmoc-Diphenylalanine Self-Assembly Mechanism Induces Apparent Pka Shifts, Langmuir, vol.25, pp.9447-9453, 2009.

A. M. Castilla, M. Wallace, L. L. Mears, E. R. Draper, J. Doutch et al., On the Syneresis of an Opv Functionalised Dipeptide Hydrogel, Soft Matter, vol.12, pp.7848-7854, 2016.

D. J. Adams, L. M. Mullen, M. Berta, L. Chen, and W. J. Frith, Relationship between Molecular Structure, Gelation Behaviour and Gel Properties of Fmoc-Dipeptides, Soft Matter, vol.6, 1971.

M. P. Conte, N. Singh, I. R. Sasselli, B. Escuder, and R. V. Ulijn,

, Metastable Hydrogels from Aromatic Dipeptides, Chem. Commun, vol.52, pp.13889-13892, 2016.

D. M. Ryan, S. B. Anderson, F. T. Senguen, R. E. Youngman, and B. L. Nilsson, Self-Assembly and Hydrogelation Promoted by F5-Phenylalanine, Soft Matter, vol.6, pp.475-479, 2010.

A. Chakrabarti and M. K. Chaudhury, Surface Folding-Induced Attraction and Motion of Particles in a Soft Elastic Gel: Cooperative Effects of Surface Tension, Elasticity, and Gravity. Langmuir, vol.29, pp.15543-15550, 2013.

J. R. Fores, M. Criado-gonzalez, M. Schmutz, C. Blanck, P. Schaaf et al., Protein-Induced Low Molecular Weight Hydrogelator Self-Assembly through a Self-Sustaining Process, Chem. Sci, vol.10, pp.4761-4766, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02346571

, Langmuir Article, Langmuir, vol.35, pp.10838-10845, 2019.