R. A. Barton and C. Venditti, Rapid evolution of the cerebellum in humans and other great apes, Curr Biol, vol.24, pp.2440-2444, 2014.

F. Sultan and V. Braitenberg, Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy, J. Hirnforsch, vol.34, pp.79-92, 1993.

R. Cajal, Histologie du système nerveux de l'homme et des vertébrés, Tome II, 1909.

R. Cajal and V. Recuerdos-de-mi, Tomo II, 1917.

R. Apps and M. Garwicz, Anatomical and physiological foundations of cerebellar information processing, Nat Rev Neurosci, vol.6, pp.297-311, 2005.

M. Rahimi-balaei, Embryonic stages in cerebellar afferent development, Cerebellum & ataxias, vol.2, p.7, 2015.

E. D'angelo and S. Casali, Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition, Front Neural Circuits, vol.6, p.116, 2012.

M. Coco and V. Perciavalle, Where did the motor function of the cerebellum come from?, Cerebellum Ataxias, vol.2, p.10, 2015.

E. Buckley, C. Mazzà, and A. Mcneill, A systematic review of the gait characteristics associated with Cerebellar Ataxia, Gait Posture, vol.60, pp.154-163, 2018.

G. Holmes, The symptoms of acute cerebellar injuries due to gunshot injuries, Brain, vol.40, 1917.

M. Manto, J. M. Bower, and M. Gerwig, , vol.11, pp.457-487, 2015.

J. D. Schmahmann and J. C. Sherman, The cerebellar cognitive affective syndrome, Brain, vol.121, pp.561-579, 1998.

F. Yu, Q. J. Jiang, X. Y. Sun, and R. W. Zhang, A new case of complete primary cerebellar agenesis: Clinical and imaging findings in a living patient, Brain, vol.138, p.353, 2015.

C. J. Stoodley, J. P. Macmore, N. Makris, J. C. Sherman, and J. D. Schmahmann, Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke, NeuroImage Clin, vol.12, pp.765-775, 2016.

L. F. Koziol, Consensus paper: the cerebellum's role in movement and cognition, Cerebellum, vol.13, pp.151-77, 2014.

I. Bystron, P. Rakic, Z. Molnár, and C. Blakemore, The first neurons of the human cerebral cortex, Nat. Neurosci, vol.9, pp.880-886, 2006.

V. B. De-graaf-peters and M. Hadders-algra, Ontogeny of the human central nervous system: What is happening when? Early Hum, Dev, vol.82, pp.257-266, 2006.

J. Bernal, Thyroid hormone receptors in brain development and function, Nat. Clin. Pract. Endocrinol. Metab, vol.3, pp.249-259, 2007.

R. L. Friede, Dating the development of human cerebellum, Acta Neuropathol, vol.23, pp.48-58, 1973.

S. Walløe, B. Pakkenberg, and K. Fabricius, Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex, Front. Hum. Neurosci, vol.8, p.508, 2014.

S. S. Wang, .. Kloth, A. D. Badura, and A. , The cerebellum, sensitive periods, and autism, Neuron, vol.83, pp.518-550, 2014.

B. N. Jaeger and S. Jessberger, Unexpected help to repair the cerebellum, Nat. Neurosci, vol.20, pp.1319-1321, 2017.

V. Chizhikov and K. J. Millen, Development and malformations of the cerebellum in mice, Mol. Genet. Metab, vol.80, pp.54-65, 2003.

W. Wurst, B. Auerbach, and . Joyner, Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum, Development, vol.120, pp.2065-2075, 1994.

S. Martinez, A. Andreu, N. Mecklenburg, and D. Echevarria, Cellular and molecular basis of cerebellar development, Front. Neuroanat, vol.7, pp.1-12, 2013.

W. Broccoli-v-wurst and B. E. , The caudal limit of Otx2 expression positions the isthmic organizer, Nature, vol.401, pp.164-168, 1999.

K. A. Aldinger, G. E. Elsen, V. E. Prince, and K. J. Millen, Model organisms inform the search for the 108 genes and developmental pathology underlying malformations of the human hindbrain, Semin Pediatr Neurol, vol.16, pp.155-163, 2009.

A. Chedotal, Should I stay or should I go? Becoming a granule cell, Trends Neurosci, vol.33, pp.163-172, 2010.

Y. Zhu, T. Yu, and Y. Rao, Temporal regulation of cerebellar EGL migration through a switch in cellular responsiveness to the meninges, Dev. Biol, vol.267, pp.153-164, 2004.

C. B. Guan, H. T. Xu, M. Jin, X. B. Yuan, and M. M. Poo, Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by slit-2, Cell, vol.129, pp.385-395, 2007.

V. Marillat, Spatiotemporal expression patterns of slit and robo genes in the rat brain, J. Comp. Neurol, vol.442, pp.130-155, 2002.

J. S. Espinosa and L. Luo, Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells, J. Neurosci, vol.28, pp.2301-2313, 2008.

N. Dahmane and A. Ruiz, Sonic hedgehog and cerebellum development, Development, vol.3100, pp.3089-3100, 1999.

I. Rios, R. Alvarez-rodríguez, E. Martí, and S. Pons, Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling, Development, vol.131, pp.3159-68, 2004.

T. Baeriswyl and E. T. Stoeckli, Axonin-1/TAG-1 is required for pathfinding of granule cell axons in the developing cerebellum, Neural Dev, vol.3, p.7, 2008.

B. Berglund-eo-fredette, G. Sekerková, B. Marturano, L. Weber, E. Mugnaini et al., Ataxia and Abnormal Cerebellar Microorganization in Mice with Ablated Contactin Gene Expression, Neuron, vol.24, pp.739-750, 1999.

K. Kawaji, H. Umeshima, M. Eiraku, T. Hirano, and M. Kengaku, Dual phases of migration of cerebellar granule cells guided by axonal and dendritic leading processes, Mol Cell Neurosci, vol.25, pp.228-240, 2004.

Q. Yue, PTEN deletion in Bergmann glia leads to premature differentiation and affects laminar organization, Development, vol.132, pp.3281-3291, 2005.

D. Jaarsma, A role for Bicaudal-D2 in radial cerebellar granule cell migration, Nat Commun, vol.5, p.3411, 2014.

H. Nguyen, Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins, Acta Neuropathol. Commun, vol.1, p.58, 2013.

K. H. Wu, C. Y. Chen, and E. Y. Shen, The cerebellar development in chinese children-a study by voxelbased volume measurement of reconstructed 3D MRI scan, Pediatr. Res, vol.69, pp.80-83, 2011.

T. Barron, J. Saifetiarova, M. A. Bhat, and J. H. Kim, Myelination of Purkinje axons is critical for resilient synaptic transmission in the deep cerebellar nucleus, Sci. Rep, vol.8, pp.1-12, 2018.

N. Boddaert, Posterior fossa imaging in 158 children with ataxia, J Neuroradiol, vol.37, pp.220-230, 2010.

M. E. Bolduc and C. Limperopoulos, Neurodevelopmental outcomes in children with cerebellar malformations: a systematic review, Dev Med Child Neurol, vol.51, pp.256-267, 2009.

M. S. Salman, Epidemiology of Cerebellar Diseases and Therapeutic Approaches, Cerebellum, 2017.

K. A. Aldinger and D. Doherty, The genetics of cerebellar malformations, Semin. Fetal Neonatal Med, vol.21, pp.321-332, 2016.

D. Doherty, K. J. Millen, and A. J. Barkovich, Midbrain and hindbrain malformations: Advances in clinical diagnosis, imaging, and genetics, Lancet Neurol, vol.12, pp.381-393, 2013.

S. E. Hong, Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations, Nat. Genet, vol.26, pp.93-96, 2000.

T. Honda, K. Kobayashi, K. Mikoshiba, and K. Nakajima, Regulation of cortical neuron migration by the reelin signaling pathway, Neurochem. Res, vol.36, pp.1270-1279, 2011.

M. Huang and D. S. Verbeek, Why do so many genetic insults lead to Purkinje Cell degeneration and spinocerebellar ataxia?, Neurosci. Lett, 2018.

L. Lancella, Acute cerebellitis in children: An eleven year retrospective multicentric study in Italy, Ital. J. Pediatr, vol.43, pp.1-10, 2017.

J. Valk, M. S. Van-der-knaap, and . Toxic, AJNR Am J Neuroradiol, vol.13, pp.747-60, 1992.

A. Al-maawali, S. Blaser, and G. Yoon, Diagnostic Approach to Childhood-Onset Cerebellar Atrophy, J. Child Neurol, vol.27, pp.1121-1132, 2012.

H. Megahed, Utility of whole exome sequencing for the early diagnosis of pediatric-onset cerebellar atrophy associated with developmental delay in an inbred population, Orphanet J. Rare Dis, vol.11, p.57, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01322562

E. S. Lander, Initial sequencing and analysis of the human genome, Nature, vol.409, pp.860-921, 2001.

F. S. Alkuraya, Homozygosity mapping: One more tool in the clinical geneticist's toolbox, Genet. Med, vol.12, pp.236-239, 2010.

B. Rabbani, M. Tekin, and N. Mahdieh, The promise of whole-exome sequencing in medical genetics, J. Hum. Genet, vol.59, pp.5-15, 2014.

S. B. Ng, Targeted capture and massively parallel sequencing of 12 human exomes, Nature, vol.461, pp.272-276, 2009.

P. Katsonis, Single nucleotide variations: Biological impact and theoretical interpretation, Protein Sci, vol.23, pp.1650-1666, 2014.

J. Majewski, A new ocular phenotype associated with an unexpected but known systemic disorder and mutation: novel use of genomic diagnostics and exome sequencing, J. Med. Genet, vol.48, pp.593-596, 2011.

J. Kammermeier, Targeted gene panel sequencing in children with very early onset inflammatory bowel disease-evaluation and prospective analysis, J. Med. Genet, vol.51, pp.748-755, 2014.

C. Knopp, Syndromic ciliopathies: From single gene to multi gene analysis by SNP arrays and next generation sequencing, Mol. Cell. Probes, vol.29, pp.299-307, 2015.

G. I. Rice, Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease, J. Clin. Immunol, vol.37, pp.123-132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01908851

J. Lerat, An Application of NGS for Molecular Investigations in Perrault Syndrome: Study of 14 Families and Review of the Literature, Hum. Mutat, vol.37, pp.1354-1362, 2016.

J. Chemin, K. Siquier-pernet, M. Nicouleau, G. Barcia, A. Ahmad et al., novo mutations screening in childhood-onset cerebellar atrophy identifies gain of function mutations in the calcium channel CACNA1G, Brain, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02017665

K. J. Carss, Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease, Am. J. Hum. Genet, vol.100, pp.75-90, 2017.

J. B. Gurdon, Multiple genetically identical frogs, J. Hered, vol.53, p.9, 1962.

M. Y. Kalani and N. Martirosyan, Direct conversion of fibroblasts to functional neurons, World Neurosurg, vol.77, pp.7-8, 2012.

K. Takahashi, Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors, Cell, vol.131, pp.861-872, 2007.

K. Okita, T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells, Nature, vol.448, pp.313-317, 2007.

K. Hu, All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation, Stem Cells Dev, vol.23, pp.1285-1300, 2014.

H. Ban, Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors, Proc. Natl. Acad. Sci, vol.108, pp.14234-14239, 2011.

M. Wernig, In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state, Nature, vol.448, pp.318-324, 2007.

G. Liang and Y. Zhang, Genetic and Epigenetic Variations in iPSCs: Potential Causes and Implications for Application, Cell Stem Cell, vol.13, pp.149-159, 2013.

L. Broutier, Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation, Nat. Protoc, vol.11, pp.1724-1743, 2016.

S. R. Smukler, S. B. Runciman, S. Xu, and D. Van-der-kooy, Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences, J. Cell Biol, vol.172, pp.79-90, 2006.

S. M. Chambers, Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling, Nat. Biotechnol, vol.27, pp.275-280, 2009.

I. K. Suzuki and P. Vanderhaeghen, Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells, Development, vol.142, pp.3138-3150, 2015.

P. Koch, Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease, Nature, vol.0, issue.5, 2011.

X. Xu and Z. Zhong, Disease modeling and drug screening for neurological diseases using human induced pluripotent stem cells, Acta Pharmacol. Sin, vol.34, pp.755-764, 2013.

T. Gaj and . Zfn, Cas based methods for genome engineering, vol.31, pp.397-405, 2013.

J. Joung, Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening, Nat. Protoc, vol.12, pp.828-863, 2017.

F. J. Mojica, C. Díez-villaseñor, E. Soria, and G. Juez, Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria, Mol. Microbiol, vol.36, pp.244-246, 2000.

F. J. Mojica, C. Díez-villaseñor, J. García-martínez, and E. Soria, Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements, J. Mol. Evol, vol.60, pp.174-182, 2005.

K. S. Makarova, Evolution and classification of the CRISPR-Cas systems, Nat. Rev. Microbiol, vol.9, pp.467-477, 2011.

F. A. Ran, Genome engineering using the CRISPR-Cas9 system, Nat. Protoc, vol.8, pp.2281-2308, 2013.

J. Duan, Genome-wide identification of CRISPR/Cas9 off-targets in human genome, Cell Res, vol.24, pp.1009-1012, 2014.

G. T. Hess, J. Tycko, D. Yao, and M. C. Bassik, Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes, Mol. Cell, vol.68, pp.26-43, 2017.

M. Mann, Resource Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints, Cell, vol.141, pp.897-907, 2010.

R. Apweiler, H. Hermjakob, and N. Sharon, On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database, Biochim. Biophys. Acta -Gen. Subj, vol.1473, pp.4-8, 1999.

G. A. Khoury, R. C. Baliban, and C. A. Floudas, Proteome-wide post-translational modification statistics: Frequency analysis and curation of the swiss-prot database, Sci. Rep, vol.1, pp.1-5, 2014.

C. G. Gahmberg and M. Tolvanen, Why mammalian cell surface proteins are glycoproteins, Trends Biochem. Sci, vol.21, pp.308-311, 1996.

J. E. Nettleship, Analysis of variable N-glycosylation site occupancy in glycoproteins by liquid chromatography electrospray ionization mass spectrometry, Anal. Biochem, vol.361, pp.149-151, 2007.

A. Varki and S. Kornfeld, Historical Background and Overview. Essentials of Glycobiology, 2015.

R. Oriol, I. Martinez-duncker, I. Chantret, R. Mollicone, and P. Codogno, Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate, Mol. Biol. Evol, vol.19, pp.1451-63, 2002.

M. Aebi, N-linked protein glycosylation in the ER, Biochim. Biophys. Acta -Mol. Cell Res, vol.1833, pp.2430-2437, 2013.

S. Shrimal, N. A. Cherepanova, and R. Gilmore, Cotranslational and posttranslocational Nglycosylation of proteins in the endoplasmic reticulum, Semin. Cell Dev. Biol, vol.41, pp.71-78, 2015.

D. N. Hebert, S. C. Garman, and M. Molinari, The glycan code of the endoplasmic reticulum: Asparagine-linked carbohydrates as protein maturation and quality-control tags, Trends Cell Biol, vol.15, pp.364-370, 2005.

E. and J. , , 2012.

A. Varki, R. D. Cummings, and E. J. N-glycans, Essentials of Glycobiology, 2015.

R. Péanne, Congenital disorders of glycosylation (CDG): Quo vadis?, Eur. J. Med. Genet, 2017.

S. E. Sparks and D. M. Krasnewich, Congenital Disorders of N-Linked Glycosylation and Multiple Pathway Overview, GeneReviews(®), 2005.

H. H. Freeze, J. X. Chong, M. J. Bamshad, and B. G. Ng, Solving glycosylation disorders: Fundamental approaches reveal complicated pathways, Am. J. Hum. Genet, vol.94, pp.161-175, 2014.

J. Jaeken, Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome, Clin. Chim. Acta, vol.144, pp.245-252, 1984.

J. Denecke, Biomarkers and diagnosis of congenital disorders of glycosylation, Expert Opin. Med. Diagn, vol.3, pp.395-409, 2009.

S. Supraha-goreta, S. Dabelic, and J. Dumic, Insights into complexity of congenital disorders of glycosylation, Biochem. Medica, vol.22, pp.156-70, 2012.

E. Morava, M. Guillard, D. J. Lefeber, and R. A. Wevers, Autosomal recessive cutis laxa syndrome revisited, Eur J Hum Genet, vol.17, pp.1099-1110, 2009.

S. Vermeer, Cerebellar ataxia and congenital disorder of glycosylation Ia (CDG-Ia) with normal routine CDG screening, J. Neurol, vol.254, pp.1356-1358, 2007.

C. Pérez-cerdá, A Population-Based Study on Congenital Disorders of Protein N-and Combined with O-Glycosylation Experience in Clinical and Genetic Diagnosis, J Pediatr, vol.183, pp.170-177, 2016.

K. Scott, T. Gadomski, T. Kozicz, and E. Morava, Congenital disorders of glycosylation: New defects and still counting, J. Inherit. Metab. Dis, vol.37, pp.609-617, 2014.

M. Monticelli, T. Ferro, J. Jaeken, V. Dos-reis-ferreira, and P. A. Videira, Immunological aspects of congenital disorders of glycosylation (CDG): a review, J. Inherit. Metab. Dis, vol.39, pp.765-780, 2016.

C. Blank, Recurrent infections and immunological dysfunction in congenital disorder of glycosylation Ia (CDG Ia), J. Inherit. Metab. Dis, vol.29, p.592, 2006.

A. Helander, Dolichol kinase deficiency (DOLK-CDG) with a purely neurological presentation caused by a novel mutation, Mol. Genet. Metab, vol.110, pp.342-344, 2013.

F. Molinari, Oligosaccharyltransferase-Subunit Mutations in Nonsyndromic Mental Retardation, Am. J. Hum. Genet, vol.82, pp.1150-1157, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02142197

J. Jaeken, , pp.1737-1743, 2013.

H. H. Freeze, E. A. Eklund, B. G. Ng, and M. C. Patterson, Neurology of inherited glycosylation disorders, Lancet Neurol, vol.11, pp.453-466, 2012.

L. A. Wolfe and D. Krasnewich, Congenital disorders of glycosylation and intellectual disability, Dev. Disabil. Res. Rev, vol.17, pp.211-225, 2013.

S. Kjaergaard, Congenital disorders of glycosylation type Ia and Ib. Genetic, biochemical and clinical studies, Dan. Med. Bull, vol.51, pp.350-63, 2004.

R. Barone, A. Fiumara, and J. Jaeken, Congenital disorders of glycosylation with emphasis on cerebellar involvement, Semin. Neurol, vol.34, pp.357-66, 2014.

M. Serrano, Phosphomannomutase deficiency (PMM2-CDG): ataxia and cerebellar assessment, Orphanet J. Rare Dis, vol.10, p.138, 2015.

V. Peters, Congenital disorder of glycosylation IId (CDG-IId) --a new entity: clinical presentation with Dandy-Walker malformation and myopathy, Neuropediatrics, vol.33, pp.27-32, 2002.

V. De-diego, Erratum to: Longitudinal volumetric and 2D assessment of cerebellar atrophy in a large cohort of children with phosphomannomutase deficiency, J. Inherit. Metab. Dis, vol.40, pp.753-754, 2017.

E. Aronica, Congenital disorder of glycosylation type Ia: A clinicopathological report of a newborn infant with cerebellar pathology, Acta Neuropathol, vol.109, pp.433-442, 2005.

N. L. Serrano, A quantitative assessment of the evolution of cerebellar syndrome in children with phosphomannomutase-deficiency (PMM2-CDG), Orphanet J. Rare Dis, vol.12, p.155, 2017.

A. Helenius, Intracellular Functions of N-Linked Glycans, Science, vol.291, pp.2364-2369, 2001.

C. Xu and D. T. Ng, Glycosylation-directed quality control of protein folding, Nat. Rev. Mol. Cell Biol, vol.16, pp.742-752, 2015.

J. Roth and C. Zuber, Quality control of glycoprotein folding and ERAD : the role of N -glycan handling , EDEM1 and OS-9, Histochem. Cell Biol, vol.147, pp.269-284, 2017.

R. D. Baldridge and T. A. Rapoport, Autoubiquitination of the Hrd1 Ligase Triggers Protein Retrotranslocation in ERAD, Cell, vol.166, pp.394-407, 2016.

D. Pincus, M. W. Chevalier, H. El-samad, and P. Walter, BiP Binding to the ER-Stress Sensor Ire1 Tunes the Homeostatic Behavior of the Unfolded Protein Response, vol.8, 2010.

R. Bravo, Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration, 2013.

R. Sano and J. C. Reed, ER stress-induced cell death mechanisms, BBAMCR, vol.1833, pp.3460-3470, 2013.

H. Li, A. V. Korennykh, S. L. Behrman, and P. Walter, Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering, 2010.

K. D. Karpa, N -linked Glycosylation Is Required for Plasma Membrane Localization of D5 , but Not D1 , Dopamine Receptors in Transfected Mammalian Cells, vol.1078, pp.1071-1078, 1999.

H. Fan, W. Meng, C. Kilian, S. Grams, and W. Reutter, Domain-specific N-glycosylation of the membrane glycoprotein dipeptidylpeptidase IV ( CD26 ) influences its subcellular trafficking , biological stability , enzyme activity and protein folding, vol.251, pp.243-251, 1997.

O. Vagin, J. A. Kraut, and G. Sachs, Role of N-glycosylation in trafficking of apical membrane proteins in epithelia, vol.90073, pp.459-469, 2018.

S. Marada, Functional Divergence in the Role of N-Linked Glycosylation in Smoothened Signaling, pp.1-27, 2015.

D. Zielinska, F. Gnad, J. Wisniewski, and M. M. , Resource Precision Mapping of an In Vivo N-Glycoproteome Reveals Rigid Topological and Sequence Constraints, Cell, vol.141, pp.897-907, 2010.

H. Scott and V. M. Panin, N-glycosylation in Regulation of the Nervous System, pp.367-394, 2015.

C. Hanus, Unconventional secretory processing diversifies neuronal ion channel properties, pp.1-27, 2016.

P. Isope and B. Barbour, Properties of Unitary Granule Cell 3 Purkinje Cell Synapses in Adult Rat Cerebellar Slices, vol.22, pp.9668-9678, 2002.

S. F. Traynelis, Glutamate Receptor Ion Channels : Structure , Regulation , and Function, 2014.

C. Surface, HNK-1 Glyco-epitope Regulates the Stability of the Glutamate Receptor Subunit GluR2 on the Neuronal, vol.284, pp.30209-30217, 2009.

V. K. Ramanathan and Z. W. Hall, Altered Glycosylation Sites of the delta Subunit of the Acetylcholine Receptor ( AChR ) Reduce alphadelta Association and Receptor Assembly *, vol.274, pp.20513-20520, 1999.

C. A. Buck, C. Click, and L. Warren, A Comparative Study of Glycoproteins from the Surface of Control and Rous Sarcoma Virus Transformed Hamster Cells, vol.9, pp.4567-4576, 1970.

L. Warren and J. P. , Surface Glycoproteins of Normal and Transformed Cells: A Difference Determined by Sialic Acid and a Growth-Dependent Sialyl Transferase, vol.516, pp.97-127, 1978.

P. Agrawal, A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis, Cancer Cell, vol.31, pp.804-819, 2017.

A. Magalhaes, H. D. , and C. R. , Aberrant Glycosylation in Cancer : A Novel Molecular Mechanism, pp.733-735, 2017.

J. Stevens and A. Spang, Attenuation of N-glycosylation causes polarity and adhesion defects in the C . elegans embryo, vol.1, pp.1224-1231, 2017.

Y. Hirai-fujita, M. Yamamoto-hino, O. Kanie, and S. Goto, Glycosylation of the Drosophila neural protein Chaoptin is essential for its stability , cell surface transport and adhesive activity, vol.582, pp.2572-2576, 2008.

C. Vogel and C. Chothia, Protein Family Expansions and Biological Complexity, vol.2, 2006.

. Df, F. Zielinska, K. Gnad, J. R. Schropp, and M. M. Wi?niewski, Mapping N-Glycosylation Sites across Seven Evolutionarily Distant Species Reveals a Divergent Substrate Proteome Despite a Common Core Machinery, 2012.

W. Gulisano, A. Bizzoca, G. Gennarini, A. Palmeri, and D. Puzzo, Molecular and Cellular Neuroscience Role of the adhesion molecule F3 / Contactin in synaptic plasticity and memory, Mol. Cell. Neurosci, vol.81, pp.64-71, 2017.

E. Seong, Cadherins and catenins in dendrite and synapse morphogenesis Cadherins and catenins in dendrite and synapse morphogenesis, vol.6918, 2015.

B. T. Jamal, N-glycosylation status of E-cadherin controls cytoskeletal dynamics through the organization of distinct ?-catenin-and ?-catenin-containing AJs, 2009.

S. Tharmalingam and D. R. Hampson, The calcium-sensing receptor and integrins in cellular differentiation and migration, Front. Physiol, vol.7, pp.1-18, 2016.

C. Loss, O. F. Fibronectin, and B. Actmty, Functional Role of N-Glycosylation in a 5 p l Integrin Receptor, 1994.

M. E. Janik, A. Lity, and P. Vereecken, Biochimica et Biophysica Acta Cell migration -The role of integrin glycosylation, vol.1800, pp.545-555, 2010.

X. Cai, A. M. Thinn, Z. Wang, H. Shan, and J. Zhu, The importance of N-glycosylation on ?3integrin ligand binding and conformational regulation, Sci. Rep, vol.7, pp.1-14, 2017.

E. Poche?, Aberrant glycosylation of ?v?3 integrin is associated with melanoma progression, Anticancer Res, vol.35, pp.2093-103, 2015.

A. F. Williams, A year in the life of the immunoglobulin superfamily, 1987.

. Dm and J. M. Halaby, The Immunoglobulin Superfamily : An Insight on Its Tissular , Species , and Functional Diversity, pp.389-400, 1998.

D. Fitzli, A Direct Interaction of Axonin-1 with NgCAM-related Cell Adhesion Molecule ( NrCAM ) Results in Guidance , but not Growth of Commissural Axons, vol.149, pp.951-968, 2000.

C. H. Wei and S. E. Ryu, Homophilic interaction of the L1 family of cell adhesion molecules, vol.44, pp.413-423, 2012.

N. Jiang, W. Chen, P. Jothikumar, J. M. Patel, and J. Lippincott-schwartz, Effects of anchor structure and glycosylation of Fc ? receptor III on ligand binding affinity, vol.27, 2016.

I. Leshchyns and V. Sytnyk, Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons, vol.4, pp.1-10, 2016.

Y. Yoshihara, S. Oka, J. Ikeda, and K. Mori, Immunoglobulin superfamily molecules in the nervous system, vol.10, pp.83-105, 1991.

L. Landmesser, L. Dahm, and K. R. Schultz, Distinct Roles for Adhesion Molecules during Innervation of Embryonic Chick Muscle, vol.670, pp.645-670, 1988.

M. Mu, I. Oltmann-norden, B. Weinhold, and H. Hildebrandt, Brain development needs sugar : the role of polysialic acid in controlling NCAM functions, vol.390, pp.567-574, 2009.

E. T. Stoeckli, Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family, Cell Adhes. Migr, vol.4, pp.523-526, 2010.

T. Sakurai, Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development, vol.154, pp.1259-1273, 2001.

E. Fransen, L1 knockout mice show dilated ventricles , vermis hypoplasia and impaired exploration patterns, vol.7, pp.999-1009, 1998.

A. I. Fogel, N-Glycosylation at the SynCAM (Synaptic Cell Adhesion Molecule) Immunoglobulin Interface Modulates Synaptic Adhesion, vol.285, pp.34864-34874, 2010.

P. Lonlay and . De, The clinical spectrum of phosphomannose isomerase de fi ciency , with an evaluation of mannose treatment for CDG-Ib. BBA -Mol, pp.841-843, 2009.

C. Thiel and C. Körner, Mouse models for congenital disorders of glycosylation, pp.879-889, 2011.

V. Cantagrel, SRD5A3 Is Required for Converting Polyprenol to Dolichol and Is Mutated in a Congenital Glycosylation Disorder, pp.203-217, 2010.

E. Schaftingen and J. Van-&-jaeken, Phosphomannomutase deficiency is a cause of carbohydratedeficient glycoprotein syndrome type I, vol.377, pp.318-320, 1995.

A. Cline, A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrateaccumulation mechanism for N-linked glycosylation deficiency, Mol. Biol. Cell, vol.23, pp.4175-87, 2012.

N. Himmelreich, L. T. Kaufmann, H. Steinbeisser, C. Körner, and C. Thiel, Lack of phosphomannomutase 2 affects Xenopus laevis morphogenesis and the non-canonical Wnt5a / Ror2 signalling, 2015.

W. M. Parkinson, M. Dookwah, M. L. Dear, C. L. Gatto, and K. Aoki, Synaptic roles for phosphomannomutase type 2 in a new Drosophila congenital disorder of glycosylation disease model, pp.513-527, 2016.

G. Matthijs, Mutations in PMM2 That Cause Congenital Disorders of Glycosylation , Type Ia ( CDG-Ia ), vol.394, pp.386-394, 2000.

A. Schneider, Successful prenatal mannose treatment for congenital disorder of glycosylation-Ia in mice, vol.18, 2011.

S. Grünewald, The clinical spectrum of phosphomannomutase 2 deficiency ( CDG-Ia ), vol.1792, pp.827-834, 2009.

B. Chan, A mouse model of a human congenital disorder of glycosylation caused by loss of PMM2, Hum. Mol. Genet, vol.25, pp.2182-2193, 2016.

C. T. Thiesler, Glycomic Characterization of Induced Pluripotent Stem Cells Derived from a Patient Suffering from Phosphomannomutase 2 Congenital Disorder of Glycosylation, pp.1435-1452, 2016.

E. Morava, A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism, vol.3210, 2010.

B. Kara, Ö. Ayhan, G. Gökçay, and N. Ba, Adult phenotype and further phenotypic variability in SRD5A3-CDG, 2014.

R. L. Taylor, Association of steroid 5?-reductase type 3 congenital disorder of glycosylation with early-onset retinal dystrophy, JAMA Ophthalmol, vol.135, pp.339-347, 2017.

A. Buczkowska, E. Swiezewska, and D. J. Lefeber, Genetic defects in dolichol metabolism, pp.157-169, 2015.

D. P. Mcvicker, Transport of a kinesin-cargo pair along microtubules into dendritic spines undergoing synaptic plasticity, Nat. Commun, vol.7, pp.1-13, 2016.

J. R. Lee, De novo mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy, Hum. Mutat, vol.36, pp.69-78, 2015.

M. Coutelier, A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia, Am. J. Hum. Genet, vol.97, pp.726-737, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01223815

F. M. Dreyfus, Selective T-Type Calcium Channel Block in Thalamic Neurons Reveals Channel Redundancy and Physiological Impact of ITwindow, J. Neurosci, vol.30, pp.99-109, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00516642

R. Ly, T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning, Proc. Natl. Acad. Sci, vol.110, pp.20302-20307, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542949

R. F. Irvine and M. J. Schell, Back in the Water: the Return of the Inositol Phosphates, J. Palliat. Med, vol.2, pp.971-972, 2011.

J. D. York, Regulation of nuclear processes by inositol polyphosphates, Biochim. Biophys. Acta -Mol. Cell Biol. Lipids, vol.1761, pp.552-559, 2006.

C. Fu, Inositol Hexakisphosphate Kinase-3 Regulates the Morphology and Synapse Formation of Cerebellar Purkinje Cells via Spectrin/Adducin, J Neurosci, vol.35, pp.11056-67, 2015.

M. L. Dentici, Identification of novel and hotspot mutations in the channel domain of ITPR1 in two patients with Gillespie syndrome, Gene, vol.628, pp.141-145, 2017.

A. W. Yang, A. J. Sachs, and A. M. Nystuen, Deletion of Inpp5a causes ataxia and cerebellar degeneration in mice, Neurogenetics, vol.16, pp.277-285, 2015.

S. K. Sgaier, Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins, Development, vol.134, pp.2325-2335, 2007.

J. Cao, S. Guo, K. Arai, E. H. Lo, and M. Ning, Studying extracellular signaling utilizing a glycoproteomic approach: lectin blot surveys, a first and important step, Methods Mol. Biol, vol.1013, pp.227-260, 2013.

M. A. Rujano, Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects, J. Exp. Med, vol.214, pp.3707-3729, 2017.

N. M. Kretzer, RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells, J. Exp. Med, vol.213, pp.2871-2883, 2016.

V. Matei, Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit, Dev. Dyn, vol.234, pp.633-50, 2005.

D. F. Zielinska, F. Gnad, J. R. Wi?niewski, and M. Mann, Precision mapping of an in vivo Nglycoproteome reveals rigid topological and sequence constraints, Cell, vol.141, pp.897-907, 2010.

A. J. Hülsmeier, P. Paesold-burda, and T. Hennet, N-Glycosylation Site Occupancy in Serum Glycoproteins Using Multiple Reaction Monitoring Liquid Chromatography-Mass Spectrometry, Mol. Cell. Proteomics, vol.6, pp.2132-2138, 2007.

S. N. Thomas, Multiplexed Targeted Mass Spectrometry-Based Assays for the Quantification of N-Linked Glycosite-Containing Peptides in Serum, Anal. Chem, vol.87, pp.10830-10838, 2015.

J. Lipecka, Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP), Proteomics, vol.16, pp.1852-1859, 2016.

J. R. Wi?niewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nat. Methods, vol.6, pp.359-62, 2009.

T. Fujimori, Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation, Genes to Cells, vol.22, pp.684-698, 2017.

L. Zhao, C. Rosales, K. Seburn, D. Ron, and S. L. Ackerman, Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjögren syndrome, Hum. Mol. Genet, vol.19, pp.25-35, 2009.

D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response, Nat. Rev. Mol. Cell Biol, vol.8, pp.519-548, 2007.

A. N. Murray, Enhanced Aromatic Sequons Increase Oligosaccharyltransferase Glycosylation Efficiency and Glycan Homogeneity, Chem. Biol, vol.22, pp.1052-62, 2015.

Y. Gavel and G. Von-heijne, Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering, Protein Eng, vol.3, pp.433-475, 1990.

P. F. Maness and M. Schachner, Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration, Nat. Neurosci, vol.10, pp.19-26, 2007.

E. T. Stoeckli, Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family, Cell Adh. Migr, vol.4, pp.523-529

G. E. Pollerberg, K. Thelen, M. O. Theiss, and B. C. Hochlehnert, The role of cell adhesion molecules for navigating axons: density matters, Mech. Dev, vol.130, pp.359-72

D. Lutz, Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival, J. Biol. Chem, vol.289, pp.13503-13521, 2014.

K. P. Tan, Fucosylation of LAMP-1 and LAMP-2 by FUT1 correlates with lysosomal positioning and autophagic flux of breast cancer cells, Cell Death Dis, vol.7, p.2347, 2016.

D. Hockemeyer and R. Jaenisch, Cell Stem Cell Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, vol.18, pp.573-586, 2016.

H. D. Moulding, R. L. Martuza, and S. D. Rabkin, Clinical mutations in the L1 neural cell adhesion molecule affect cell-surface expression, J. Neurosci, vol.20, pp.5696-702, 2000.

M. Hortsch, Structural and functional evolution of the L1 family: are four adhesion molecules better than one?, Mol. Cell. Neurosci, vol.15, pp.1-10, 2000.

C. H. Wei and S. E. Ryu, Homophilic interaction of the L1 family of cell adhesion molecules, Exp. Mol. Med, vol.44, pp.413-436, 2012.

R. Horstkorte, M. Schachner, J. P. Magyar, T. Vorherr, and B. Schmitz, The fourth immunoglobulinlike domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth, J. Cell Biol, vol.121, pp.1409-1430, 1993.

C. Dequidt, Fast turnover of L1 adhesions in neuronal growth cones involving both surface diffusion and exo/endocytosis of L1 molecules, Mol. Biol. Cell, vol.18, pp.3131-3174, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00152327

M. A. Haeuptle, Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid, J. Biol. Chem, vol.286, pp.6085-6091, 2011.

K. Forbes, Statins inhibit insulin-like growth factor action in first trimester placenta by altering insulin-like growth factor 1 receptor glycosylation, Mol. Hum. Reprod, vol.21, pp.105-119, 2015.

V. Cantagrel, SRD5A3 Is Required for Converting Polyprenol to Dolichol and Is Mutated in a Congenital Glycosylation Disorder, Cell, vol.142, pp.203-217, 2010.

G. Sorrentino, Metabolic control of YAP and TAZ by the mevalonate pathway, Nat. Cell Biol, vol.16, pp.357-366, 2014.

N. Hilaire, R. Salvayre, J. C. Thiers, M. J. Bonnafe, and A. Negre-salvayre, The turnover of cytoplasmic triacylglycerols in human fibroblasts involves two separate acyl chain length-dependent degradation pathways, J. Biol. Chem, vol.270, pp.27027-27034, 1995.

B. Pérez-dueñas, Long-term evolution of eight Spanish patients with CDG type Ia: typical and atypical manifestations, Eur. J. Paediatr. Neurol, vol.13, pp.444-51, 2009.

M. Linssen, M. Mohamed, R. A. Wevers, D. J. Lefeber, and E. Morava, Thrombotic complications in patients with PMM2-CDG, Mol. Genet. Metab, vol.109, pp.107-118, 2013.

M. Coutelier, Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes, JAMA Neurol, pp.1-9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02350804

N. Boddaert, Posterior fossa imaging in 158 children with ataxia, J. Neuroradiol, vol.37, pp.220-230, 2010.

D. Botstein and N. Risch, Discovering genotypes underlying human phenotypes: Past successes for mendelian disease, future approaches for complex disease, Nat. Genet, vol.33, pp.228-237, 2003.

K. M. Boycott, International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases, Am. J. Hum. Genet, vol.100, pp.695-705, 2017.

P. Dunn, Next Generation Sequencing Methods for Diagnosis of Epilepsy Syndromes, Front. Genet, vol.9, pp.1-11, 2018.

B. B. Cummings, Improving genetic diagnosis in Mendelian disease with transcriptome sequencing, vol.5209, p.74153, 2017.

C. Derossi, Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality, J. Biol. Chem, vol.281, pp.5916-5927, 2006.

C. Thiel, T. Lubke, G. Matthijs, K. Von-figura, and C. Korner, Targeted Disruption of the Mouse Phosphomannomutase 2 Gene Causes Early Embryonic Lethality, Mol. Cell. Biol, vol.26, pp.5615-5620, 2006.

B. Chan, A mouse model of a human congenital disorder of glycosylation caused by loss of PMM2, Hum. Mol. Genet, vol.25, pp.2182-2193, 2016.

V. Sharma, Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice, FASEB J, vol.28, pp.1854-1869, 2014.

T. Butts, M. J. Green, and R. J. Wingate, Development of the cerebellum: simple steps to make a 'little brain, Development, vol.141, pp.4031-4041, 2014.

A. Jozwiak, POLYPRENOL REDUCTASE2 Deficiency Is Lethal in Arabidopsis Due to Male Sterility, Plant Cell, vol.27, pp.3336-3353, 2015.

M. Mohamed, Normal glycosylation screening does not rule out SRD5A3-CDG, Eur. J. Hum. Genet, vol.19, p.1019, 2011.

S. N. Galleguillos, What can mathematical modelling say about CHO metabolism and protein glycosylation?, Comput. Struct. Biotechnol. J, vol.15, pp.212-221, 2017.

V. Castillo-acosta, L. M. Ruiz-pérez, E. J. Van-damme, J. Balzarini, and D. González-pacanowska, Exposure of Trypanosoma brucei to an N-acetylglucosamine-Binding Lectin Induces VSG Switching and Glycosylation Defects Resulting in Reduced Infectivity, PLoS Negl. Trop. Dis, vol.9, pp.1-21, 2015.

M. A. Rujano, Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects, J. Exp. Med, vol.214, pp.3707-3729, 2017.

E. J. Park, Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation, Cell Metab, vol.20, pp.448-457, 2014.

P. He, B. G. Ng, M. E. Losfeld, W. Zhu, and H. H. Freeze, Identification of intercellular cell adhesion molecule 1 (ICAM-1) as a hypoglycosylation marker in congenital disorders of glycosylation cells, J. Biol. Chem, vol.287, pp.18210-18217, 2012.

H. Wu, Caveolin-1 Is Critical for Lymphocyte Trafficking into Central Nervous System during Experimental Autoimmune Encephalomyelitis, J. Neurosci, vol.36, pp.5193-5199, 2016.

Y. Zhou, Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation, Sci. Rep, vol.7, pp.1-12, 2017.

T. Fukuda, 1,6-fucosyltransferase-deficient mice exhibit multiple behavioral abnormalities associated with a schizophrenia-like phenotype: Importance of the balance between the dopamine and serotonin systems, J. Biol. Chem, vol.286, pp.18434-18443, 2011.

G. Kerjan, The transmembrane semaphorin Sema6A controls cerebellar granule cell migration, Nat. Neurosci, vol.8, pp.1516-1524, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00088210

A. Driver, C. Shumrick, and R. Stottmann, Ttc21b Is Required in Bergmann Glia for Proper Granule Cell Radial Migration, J. Dev. Biol, vol.5, p.18, 2017.

T. G. Oliver, Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma, Development, vol.132, pp.2425-2439, 2005.

D. Xenaki, F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehoginduced cerebellar granule neuron progenitor proliferation, Development, vol.138, pp.519-529, 2011.

A. Lorenz, Severe Alterations of Cerebellar Cortical Development after Constitutive Activation of Wnt Signaling in Granule Neuron Precursors, Mol. Cell. Biol, vol.31, pp.3326-3338, 2011.

E. M. Mcneill, Nav2 hypomorphic mutant mice are ataxic and exhibit abnormalities in cerebellar development, Dev. Biol, vol.353, pp.331-343, 2011.

Y. Men, LKB1 Regulates Cerebellar Development by Controlling Sonic Hedgehog-mediated Granule Cell Precursor Proliferation and Granule Cell Migration, Sci. Rep, vol.5, pp.1-16, 2015.

T. Takano, S. Akahori, Y. Takeuchi, and M. Ohno, Neuronal apoptosis and gray matter heterotopia in microcephaly produced by cytosine arabinoside in mice, Brain Res, vol.1089, pp.55-66, 2006.

R. H. Donkol, Assessment of gray matter heterotopia by magnetic resonance imaging, World J. Radiol, vol.4, p.90, 2012.

M. Monin, 29 French adult patients with PMM2-congenital disorder of glycosylation: outcome of the classical pediatric phenotype and depiction of a late-onset phenotype, Orphanet J. Rare Dis, vol.9, p.207, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01112338

L. Sun, Insufficient ER-stress response causes selective mouse cerebellar granule cell degeneration resembling that seen in congenital disorders of glycosylation, Mol. Brain, vol.6, pp.2-9, 2013.

H. Wang, Tunicamycin-induced unfolded protein response in the developing mouse brain, Toxicol. Appl. Pharmacol, vol.283, pp.157-167, 2015.

E. Govek, Cdc42 Regulates Neuronal Polarity during Cerebellar Axon Formation and Glial-Guided Migration, vol.1, pp.35-48, 2018.

A. G. Rosenwald and S. S. Krag, Lec9 CHO glycosylation mutants are defective in the synthesis of dolichol, J. Lipid Res, vol.31, pp.523-556, 1990.

P. He, G. Srikrishna, and H. H. Freeze, N-glycosylation deficiency reduces ICAM-1 induction and impairs inflammatory response, Glycobiology, vol.24, pp.392-398, 2014.

C. Blank, Recurrent infections and immunological dysfunction in congenital disorder of glycosylation Ia (CDG Ia), J. Inherit. Metab. Dis, vol.29, pp.592-592, 2006.

S. Shinjo, Y. Mizotani, E. Tashiro, and M. Imoto, Comparative Analysis of the Expression Patterns of UPR-Target Genes Caused by UPR-Inducing Compounds, Biosci. Biotechnol. Biochem, vol.77, pp.729-735, 2013.

J. Shang, C. Körner, H. Freeze, and M. A. Lehrman, Extension of lipid-linked oligosaccharides is a high-priority aspect of the unfolded protein response: Endoplasmic reticulum stress in Type I congenital disorder of glycosylation fibroblasts, Glycobiology, vol.12, pp.307-317, 2002.

M. R. Lecca, U. Wagner, A. Patrignani, E. G. Berger, and T. Hennet, Genome-wide analysis of the unfolded protein response in fibroblasts from congenital disorders of glycosylation type-I patients, FASEB J, vol.19, pp.240-242, 2005.

S. Pan, Large-scale quantitative glycoproteomics analysis of site-specific glycosylation occupancy, Mol. Biosyst, vol.8, p.2850, 2012.

P. Fang, In-depth mapping of the mouse brain N-glycoproteome reveals widespread Nglycosylation of diverse brain proteins, Oncotarget, vol.7, 2016.

K. S. Lau, Complex N-Glycan Number and Degree of Branching Cooperate to Regulate Cell Proliferation and Differentiation, Cell, vol.129, pp.123-134, 2007.

C. Boscher, J. W. Dennis, and I. R. Nabi, Glycosylation, galectins and cellular signaling, Curr. Opin. Cell Biol, vol.23, pp.383-392, 2011.

Y. Gavel, G. Heyne, and . Von, Sequence differences between glycosylated and non-glycosylated Asn-X

, Thr / Ser acceptor sites : implications for protein engineering, vol.3, pp.433-442, 1990.

A. N. Murray, Enhanced Aromatic Sequons Increase Oligosaccharyltransferase Glycosylation Efficiency and Glycan Homogeneity, Chem. Biol, vol.22, pp.1052-1062, 2015.

D. E. Michele, Post-translational disruption of dystroglycan -ligand interactions in congenital muscular dystrophies, vol.418, pp.417-422, 2002.

J. M. Ervasti and K. P. Campbell, Membrane Organization of the Dystrophin-Glycoprotein Complex, Cell, vol.66, 1991.

B. Weinhold, Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule, J. Biol. Chem, vol.280, pp.42971-42978, 2005.

G. E. Pollerberg, K. Thelen, M. O. Theiss, and B. C. Hochlehnert, The role of cell adhesion molecules for navigating axons: Density matters, Mech. Dev, vol.130, pp.359-372, 2013.

V. Schwarz, J. Pan, S. Voltmer-irsch, and H. Hutter, IgCAMs redundantly control axon navigation in Caenorhabditis elegans, vol.15, pp.1-15, 2009.

E. T. Stoeckli, P. Sonderegger, G. E. Pollerberg, and L. T. Landmesser, Interference with Axonin-1 and NrCAM Interactions Unmasks a Floor-Plate Activity Inhibitory for Commissural Axons, vol.18, pp.209-221, 1997.

T. Sakurai, Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development, vol.154, pp.1259-1273, 2001.

E. Chatzopoulou, Structural requirement of TAG-1 for retinal ganglion cell axons and myelin in the mouse optic nerve, J. Neurosci, vol.28, pp.7624-7660, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01936202

T. Pruss, M. Niere, E. U. Kranz, and H. Volkmer, Homophilic interactions of chick neurofascin in trans are important for neurite induction, Eur. J. Neurosci, vol.20, pp.3184-3192, 2004.

Y. Takeuchi, J. Morise, I. Morita, H. Takematsu, and S. Oka, Role of Site-Specific N-Glycans Expressed on GluA2 in the Regulation of Cell Surface Expression of AMPA-Type Glutamate Receptors, PLoS One, vol.10, p.135644, 2015.

M. Yamasaki, Glutamate receptor ?2 is essential for input pathway-dependent regulation of synaptic AMPAR contents in cerebellar Purkinje cells, J. Neurosci, vol.31, pp.3362-74, 2011.

L. Zhou, The Neural Cell Adhesion Molecules L1 and CHL1 Are Cleaved by BACE1 Protease in Vivo, J. Biol. Chem, vol.287, pp.25927-25940, 2012.

J. Katic, G. Loers, J. Tosic, M. Schachner, and R. Kleene, The cell adhesion molecule CHL1 interacts with patched-1 to regulate apoptosis during postnatal cerebellar development, J. Cell Sci, vol.130, pp.2606-2619, 2017.

E. Perlson, Dynein Interacts with the Neural Cell Adhesion Molecule (NCAM180) to Tether Dynamic Microtubules and Maintain Synaptic Density in Cortical Neurons, J. Biol. Chem, vol.288, pp.27812-27824, 2013.

V. Sytnyk, I. Leshchyns'ka, A. G. Nikonenko, and M. Schachner, NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex, J. Cell Biol, vol.174, pp.1071-1085, 2006.

C. Körner, Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase, EMBO J, vol.18, pp.6816-6838, 1999.

C. Hanus, Unconventional secretory processing diversifies neuronal ion channel properties, Elife, vol.5, 2016.

S. Shrimal, B. G. Ng, M. Losfeld, R. Gilmore, and H. H. Freeze, Mutations in STT3A and STT3B cause two congenital disorders of glycosylation, Hum. Mol. Genet, vol.22, pp.4638-4683, 2013.

J. E. Gründahl, Life with too much polyprenol: polyprenol reductase deficiency, Mol. Genet. Metab, vol.105, pp.642-51, 2012.

C. Valtersson, The influence of dolichol, dolichol esters, and dolichyl phosphate on phospholipid polymorphism and fluidity in model membranes, J. Biol. Chem, vol.260, pp.2742-51, 1985.

F. W. Hemming, , pp.261-305, 1985.

J. J. Garcia, Effects of trace elements on membrane fluidity, J. Trace Elem. Med. Biol, vol.19, pp.19-22, 2005.

Y. Taguchi, D. Fujinami, and D. Kohda, Comparative Analysis of Archaeal Lipid-linked Oligosaccharides That Serve as Oligosaccharide Donors for Asn Glycosylation, J. Biol. Chem, vol.291, pp.11042-54, 2016.

A. Szkopi?ska, E. Swiezewska, and T. Chojnacki, On the specificity of dolichol kinase and DolPMan synthase towards isoprenoid alcohols of different chain length in rat liver microsomal membrane, Int. J. Biochem, vol.24, pp.1151-1158, 1992.

R. K. Keller, G. D. Rottler, N. Cafmeyer, and W. L. Adair, Subcellular localization and substrate specificity of dolichol kinase from rat liver, Biochim. Biophys. Acta, vol.719, pp.118-143, 1982.

A. Jakobsson, E. Swiezewska, T. Chojnacki, and G. Dallner, Uptake and modification of dietary polyprenols and dolichols in rat liver, FEBS Lett, vol.255, pp.32-38, 1989.

T. Chojnacki and G. Dallner, The uptake of dietary polyprenols and their modification to active dolichols by the rat liver, J. Biol. Chem, vol.258, pp.916-938, 1983.

J. Dancourt, A new intronic mutation in the DPM1 gene is associated with a milder form of CDG Ie in two French siblings, Pediatr. Res, vol.59, pp.835-844, 2006.

M. A. Haeuptle, Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid, J. Biol. Chem, vol.286, pp.6085-91, 2011.

K. Forbes, Statins inhibit insulin-like growth factor action in first trimester placenta by altering insulin-like growth factor 1 receptor glycosylation, Mol. Hum. Reprod, vol.21, pp.105-119, 2015.

C. N. Sciamanna, Nutrition counseling in the promoting cancer prevention in primary care study, Prev. Med. (Baltim), vol.35, pp.437-483, 2002.

S. Y. Wong and .. , Oral D-galactose supplementation in PGM1-CDG, Genet. Med, vol.19, pp.1226-1235, 2017.

H. H. Freeze, Towards a therapy for phosphomannomutase 2 deficiency, the defect in CDG-Ia patients, Biochim. Biophys. Acta, vol.1792, pp.835-875, 2009.

P. Yuste-checa, Pharmacological Chaperoning: A Potential Treatment for PMM2-CDG, Hum. Mutat, vol.38, pp.160-168, 2017.

S. E. Sparks and D. M. Krasnewich, Congenital Disorders of N-Linked Glycosylation and Multiple Pathway Overview, 1993.

S. E. Williams, A role for Nr-CAM in the patterning of binocular visual pathways, Neuron, vol.50, pp.535-582, 2006.

S. Othumpangat, J. D. Noti, C. M. Mcmillen, and D. H. Beezhold, ICAM-1 regulates the survival of influenza virus in lung epithelial cells during the early stages of infection, Virology, vol.487, pp.85-94, 2016.

S. M. Sugden, T. N. Pham, and É. A. Cohen, HIV-1 Vpu Downmodulates ICAM-1 Expression, Resulting in Decreased Killing of Infected CD4+ T Cells by NK Cells, J. Virol, vol.91, 2017.

A. Poretti, E. Boltshauser, and D. Doherty, Cerebellar hypoplasia: Differential diagnosis and diagnostic approach, Am. J. Med. Genet. Part C Semin. Med. Genet, vol.166, pp.211-226, 2014.

P. L. Pereira, A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome, Hum. Mol. Genet, vol.18, pp.4756-69, 2009.

N. Akizu, AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder, Cell, vol.154, pp.505-522, 2013.

J. Lipecka, Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter aided sample preparation (FASP), Proteomics, vol.16, pp.1852-1859, 2016.

C. Boissart, Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening, Transl. Psychiatry, vol.3, p.294, 2013.

, Christine Bole-Feysot, vol.6, issue.5

C. Igf, I. , and U. Of-montpellier,

, LabEx 'Ion Channel Science and Therapeutics

, Laboratory of developmental brain disorders, INSERM UMR 1163

, INSERM UMR 1163, Imagine Institute

F. Paris,

, Bioinformatics Core Facility, p.75015

. Centre-de-génétique and . Centre-de-référence, Anomalies du Développement et Syndromes Malformatifs

. Service-de-génétique,

, Laboratory of embryology and genetics of congenital malformations

, UMR1163

, Service de neurologie pédiatrique

, APHP

. Image--institut-imagine, 14. Division of Genetics and Genomic Medicine, Department of Pediatrics

S. Blaser and G. Yoon, Diagnostic approach to childhood-onset cerebellar atrophy: a 10-year retrospective study of 300 patients, J Child Neurol, vol.27, issue.9, pp.1121-1153, 2012.

G. Bardai, E. Lemyre, P. Moffatt, T. Palomo, F. H. Glorieux et al., Osteogenesis Imperfecta Type I Caused by COL1A1 Deletions, Calcif Tissue Int, vol.98, issue.1, pp.76-84, 2016.

D. B. Beck, M. T. Cho, F. Millan, C. Yates, M. Hannibal et al., A recurrent de novo CTBP1 mutation is associated with developmental delay, hypotonia, ataxia, and tooth enamel defects, Neurogenetics, 2016.

I. Bidaud and P. Lory, Hallmarks of the channelopathies associated with L-type calcium channels: a focus on the Timothy mutations in Ca(v)1.2 channels, Biochimie, vol.93, issue.12, pp.2080-2086, 2011.

R. Boehme, V. N. Uebele, J. J. Renger, and C. Pedroarena, Rebound excitation triggered by synaptic inhibition in cerebellar nuclear neurons is suppressed by selective T-type calcium channel block, J Neurophysiol, 2011.

A. Bourchany, C. Thauvin-robinet, D. Lehalle, A. L. Bruel, A. Masurel-paulet et al., Reducing diagnostic turnaround times of exome sequencing for families requiring timely diagnoses, Eur J Med Genet, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01626052

K. M. Boycott, M. R. Vanstone, D. E. Bulman, and A. E. Mackenzie, Rare-disease genetics in the era of next-generation sequencing: discovery to translation, Nat Rev Genet, vol.14, issue.10, pp.681-91, 2013.

M. Cavallin, M. A. Rujano, N. Bednarek, D. Medina-cano, B. Gelot et al., WDR81 mutations cause extreme microcephaly and impair mitotic progression in human fibroblasts and Drosophila neural stem cells, Brain, vol.140, issue.10, pp.2597-609, 2017.

W. Choe, R. B. Messinger, E. Leach, V. S. Eckle, A. Obradovic et al., TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent, Mol Pharmacol, vol.80, issue.5, pp.900-910, 2011.

M. Coutelier, I. Blesneac, A. Monteil, M. L. Monin, K. Ando et al., A Recurrent Mutation in CACNA1G Alters Cav3.1 T-Type Calcium-Channel Conduction and Causes Autosomal-Dominant Cerebellar Ataxia, Am J Hum Genet, vol.97, issue.5, pp.726-763, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01223815

M. Coutelier, G. Coarelli, M. L. Monin, J. Konop, C. S. Davoine et al., A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies, Brain, vol.140, issue.6, pp.1579-94, 2017.

G. Daniil, F. L. Fernandes-rosa, J. Chemin, I. Blesneac, J. Beltrand et al., CACNA1H Mutations Are Associated With Different Forms of Primary Aldosteronism, EBioMedicine, vol.13, pp.225-261, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01936768

J. De-ligt, P. M. Boone, R. Pfundt, L. E. Vissers, T. Richmond et al., Detection of clinically relevant copy number variants with whole-exome sequencing, Hum Mutat, vol.34, issue.10, pp.1439-1487, 2013.

, Deciphering Developmental Disorders S. Large-scale discovery of novel genetic causes of developmental disorders, Nature, vol.519, issue.7542, pp.223-231, 2015.

, Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders, Nature, vol.542, issue.7642, pp.433-441, 2017.

R. S. Desikan and A. J. Barkovich, Malformations of cortical development, Annals of neurology, vol.80, issue.6, pp.797-810, 2016.

A. Destexhe, D. Contreras, M. Steriade, T. J. Sejnowski, and J. R. Huguenard, In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons, J Neurosci, vol.16, issue.1, pp.169-85, 1996.

F. M. Dreyfus, A. Tscherter, A. C. Errington, J. J. Renger, H. S. Shin et al., Selective T-type calcium channel block in thalamic neurons reveals channel redundancy and physiological impact of I(T)window. The Journal of neuroscience : the official journal of the Society for, Neuroscience, vol.30, issue.1, pp.99-109, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00516642

C. Fusco, A. Russo, D. Galla, U. Hladnik, D. Frattini et al., New Niemann-Pick type C1 gene mutation associated with very severe disease course and marked early cerebellar vermis atrophy, J Child Neurol, vol.28, issue.12, pp.1694-1701, 2013.

M. R. Geisheker, G. Heymann, T. Wang, B. P. Coe, T. N. Turner et al., Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains, Nat Neurosci, vol.20, issue.8, pp.1043-51, 2017.

S. Gerber, K. J. Alzayady, L. Burglen, D. Bremond-gignac, V. Marchesin et al., Recessive and Dominant De Novo ITPR1 Mutations Cause Gillespie Syndrome, Am J Hum Genet, vol.98, issue.5, pp.971-80, 2016.

A. Gregory, S. K. Westaway, I. E. Holm, P. T. Kotzbauer, P. Hogarth et al., Neurodegeneration associated with genetic defects in phospholipase A(2), Neurology, vol.71, issue.18, pp.1402-1411, 2008.

S. Hayashi, D. T. Uehara, K. Tanimoto, S. Mizuno, Y. Chinen et al., Comprehensive investigation of CASK mutations and other genetic etiologies in 41 patients with intellectual disability and microcephaly with pontine and cerebellar hypoplasia (MICPCH), PloS one, vol.12, issue.8, p.181791, 2017.

M. L. Hines and N. T. Carnevale, The NEURON simulation environment, Neural Comput, vol.9, issue.6, pp.1179-209, 1997.

J. R. Huguenard and D. A. Prince, A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.12, issue.10, pp.3804-3821, 1992.

P. Isope, M. E. Hildebrand, and T. P. Snutch, Contributions of T-type voltage-gated calcium channels to postsynaptic calcium signaling within Purkinje neurons, Cerebellum, vol.11, issue.3, pp.651-65, 2012.

R. Jewell, A. Sarkar, R. Jones, A. Wilkinson, K. Martin et al., Atypical osteogenesis imperfecta caused by a 17q21.33 deletion involving COL1A1, Clin Dysmorphol, vol.26, issue.4, pp.228-258, 2017.

M. Kallberg, H. Wang, S. Wang, J. Peng, Z. Wang et al., Template-based protein structure modeling using the RaptorX web server, Nat Protoc, vol.7, issue.8, pp.1511-1533, 2012.

M. Kurihara, H. Ishiura, T. Sasaki, J. Otsuka, T. Hayashi et al., Novel De Novo KCND3 Mutation in a Japanese Patient with Intellectual Disability, Cerebellar Ataxia, Myoclonus, and Dystonia, 2017.

S. Kury, G. M. Van-woerden, T. Besnard, P. Onori, M. Latypova et al., De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability, Am J Hum Genet, vol.101, issue.5, pp.768-88, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02103973

C. S. Lu, J. J. Hodge, J. Mehren, X. X. Sun, and L. C. Griffith, Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation, Neuron, vol.40, issue.6, pp.1185-97, 2003.

R. Ly, G. Bouvier, M. Schonewille, A. Arabo, L. Rondi-reig et al., T-type channel blockade impairs longterm potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning, Proceedings of the National Academy of Sciences of the United States of America, vol.110, issue.50, pp.20302-20309, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01542949

R. Marksteiner, P. Schurr, S. Berjukow, E. Margreiter, E. Perez-reyes et al., Inactivation determinants in segment IIIS6 of Ca(v)3.1, J Physiol, vol.537, pp.27-34, 2001.

A. Matilla-duenas, T. Ashizawa, A. Brice, S. Magri, K. N. Mcfarland et al., Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias, Cerebellum, 2014.

H. Megahed, M. Nicouleau, G. Barcia, D. Medina-cano, K. Siquier-pernet et al., Utility of whole exome sequencing for the early diagnosis of pediatric-onset cerebellar atrophy associated with developmental delay in an inbred population, Orphanet J Rare Dis, vol.11, issue.1, p.57, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01322562

A. Monteil, J. Chemin, E. Bourinet, G. Mennessier, P. Lory et al., Molecular and functional properties of the human alpha(1G) subunit that forms T-type calcium channels, The Journal of biological chemistry, vol.275, issue.9, pp.6090-100, 2000.

H. Morino, Y. Matsuda, K. Muguruma, R. Miyamoto, R. Ohsawa et al., A mutation in the low voltagegated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia, Mol Brain, vol.8, p.89, 2015.

A. Pinggera, A. Lieb, B. Benedetti, M. Lampert, S. Monteleone et al., CACNA1D de novo mutations in autism spectrum disorders activate Cav1.3 L-type calcium channels, Biol Psychiatry, vol.77, issue.9, pp.816-838, 2015.

A. Poretti, E. Boltshauser, and D. Doherty, Cerebellar hypoplasia: differential diagnosis and diagnostic approach

, Am J Med Genet C Semin Med Genet, vol.166, issue.2, pp.211-237, 2014.

A. Poretti, N. I. Wolf, and E. Boltshauser, Differential diagnosis of cerebellar atrophy in childhood, Eur J Paediatr Neurol, vol.12, issue.3, pp.155-67, 2008.

E. Preiksaitiene, K. Mannik, V. Dirse, A. Utkus, Z. Ciuladaite et al., A novel de novo 1.8 Mb microdeletion of 17q21.33 associated with intellectual disability and dysmorphic features, Eur J Med Genet, vol.55, issue.11, pp.656-665, 2012.

M. Romani, I. Kraoua, A. Micalizzi, H. Klaa, H. Benrhouma et al., Infantile and childhood onset PLA2G6-associated neurodegeneration in a large North African cohort, Eur J Neurol, vol.22, issue.1, pp.178-86, 2015.

K. E. Samocha, E. B. Robinson, S. J. Sanders, C. Stevens, A. Sabo et al., A framework for the interpretation of de novo mutation in human disease, Nature genetics, vol.46, issue.9, pp.944-50, 2014.

S. L. Sawyer, J. Schwartzentruber, C. L. Beaulieu, D. Dyment, A. Smith et al., Exome sequencing as a diagnostic tool for pediatric-onset ataxia, Hum Mutat, vol.35, issue.1, pp.45-54, 2014.

U. I. Scholl, G. Goh, G. Stolting, R. C. De-oliveira, M. Choi et al., Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism, Nature genetics, vol.45, issue.9, pp.1050-1054, 2013.

U. I. Scholl, G. Stolting, C. Nelson-williams, A. A. Vichot, M. Choi et al., Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism, Elife, vol.4, p.6315, 2015.

L. Segalat, Loss-of-function genetic diseases and the concept of pharmaceutical targets, Orphanet J Rare Dis, vol.2, p.30, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00173927

W. D. Shipe, J. C. Barrow, Z. Q. Yang, C. W. Lindsley, F. V. Yang et al., Design, synthesis, and evaluation of a novel 4-aminomethyl-4-fluoropiperidine as a T-type Ca2+ channel antagonist, J Med Chem, 2008.

N. Sobreira, F. Schiettecatte, D. Valle, and A. Hamosh, GeneMatcher: a matching tool for connecting investigators with an interest in the same gene, Hum Mutat, vol.36, issue.10, pp.928-958, 2015.

I. Splawski, K. W. Timothy, N. Decher, P. Kumar, F. B. Sachse et al., Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations, Proceedings of the National Academy of Sciences of the United States of America, vol.102, issue.23, pp.8089-96, 2005.

I. Splawski, K. W. Timothy, L. M. Sharpe, N. Decher, P. Kumar et al., V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism, Cell, vol.119, issue.1, pp.19-31, 2004.

M. Steinlin, Cerebellar disorders in childhood: cognitive problems, Cerebellum, 2008.

V. Steuber, N. W. Schultheiss, R. A. Silver, D. Schutter, E. Jaeger et al., Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells, J Comput Neurosci, vol.30, issue.3, pp.633-58, 2011.

S. K. Sudhakar, B. Torben-nielsen, D. Schutter, and E. , Cerebellar Nuclear Neurons Use Time and Rate Coding to Transmit Purkinje Neuron Pauses, PLoS Comput Biol, vol.11, issue.12, p.1004641, 2015.

M. Tada, M. Nishizawa, and O. Onodera, Roles of inositol 1,4,5-trisphosphate receptors in spinocerebellar ataxias, Neurochem Int, vol.94, pp.1-8, 2016.

K. Talavera and B. Nilius, Evidence for common structural determinants of activation and inactivation in T-type Ca2+ channels, Pflugers Arch, vol.453, issue.2, pp.189-201, 2006.

A. Tavano, R. Grasso, C. Gagliardi, F. Triulzi, N. Bresolin et al., Disorders of cognitive and affective development in cerebellar malformations, Brain : a journal of neurology, vol.130, pp.2646-706, 2007.

S. E. Tomlinson, M. G. Hanna, D. M. Kullmann, S. V. Tan, and D. Burke, Clinical neurophysiology of the episodic ataxias: insights into ion channel dysfunction in vivo, Clin Neurophysiol, vol.120, issue.10, pp.1768-76, 2009.

L. Travaglini, M. Nardella, E. Bellacchio, D. 'amico, A. Capuano et al., Missense mutations of CACNA1A are a frequent cause of autosomal dominant nonprogressive congenital ataxia, Eur J Paediatr Neurol, vol.21, issue.3, pp.450-456, 2017.

L. M. Watson, E. Bamber, R. P. Schnekenberg, J. Williams, C. Bettencourt et al., Dominant Mutations in GRM1 Cause Spinocerebellar Ataxia Type 44, Am J Hum Genet, vol.101, issue.3, pp.451-459, 2017.

J. Wu, Z. Yan, Z. Li, C. Yan, S. Lu et al., Structure of the voltage-gated calcium channel Cav1.1 complex, Science, vol.350, issue.6267, p.2395, 2015.

W. W. Yue, From structural biology to designing therapy for inborn errors of metabolism, J Inherit Metab Dis, vol.39, issue.4, pp.489-98, 2016.

G. W. Zamponi, Targeting voltage-gated calcium channels in neurological and psychiatric diseases, Nat Rev Drug Discov, vol.15, issue.1, pp.19-34, 2016.

, A961T (n=10) and M1531V currents (n=10). (C-D) Recovery from inactivation of WT and mutant Cav3.1 channels. (C) Example of recordings from a cell expressing Cav3, WT (n=5), Cav3.1

, WT (top, black traces) and a cell expressing Cav3.1 A961T (bottom, red traces)

, Note that recovery from inactivation of Cav3.1 A961T mutant channels was best fitted with a two exponential function, contrary to the recovery from inactivation of WT and M1531V channels, WT (black, n=7), Cav3.1

, Laboratory of developmental brain disorders, INSERM UMR 1163

, Proteomics Platform 3P5-Necker

R. Necker, Inserm US24/CNRS UMS3633

S. Key-obs,

. Fonctionnelle,

. Murray, We also detected an extremely significant correlation between N-glycan multiplicity and Nglycopeptide levels (Fig. 4b, Mann-Whitney test, p-value<0.0001). non-aromatic amino-acid (other than Phe, Tyr, His or Trp) at position -2 and a more significant effect of the Serine at position +2 (Fig. 4d), as previously described(Gavel & von Heijne, 1990.

, IgSF-CAM proteins (Calculated based on the reference glycoproteomic dataset, Table S2, Mann Whitney test

, CAMs function derived from sub-optimal Nglycosylation and that defective IgSF-CAMs contributed to our observed histological defect. We confirmed our observed enrichment for IgSF-CAMs found in our over-representation analysis at the N-glycopeptide level (18.4% of the decreased N-glycopeptides belong to an IgSF-CAM protein, Fisher exact test

. Horstkorte, . Schachner, . Magyar, . Vorherr, ;. Schmitz et al., Proper IgSF-CAMs transinteraction is essential for adequate nervous system connectivity for fasciculation and axonal guidance, IgSF-CAMs rely on their glycan charge to interact with each other, 1993.

. Dequidt, Srd5a3 fl/-mouse phenotype, we examined the neurite dynamics of GC re-aggregates on a coating with IgSF-CAM substrate (CNTN2, see method), IgSF-CAMs (i.e. human recombinant L1CAM or NrCAM proteins, 2007.

, For MEFs generation, Srd5a3 fl/-mice were bred with CAGCre mice (B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J

. Cagcre, For Srd5a3 recombination primary MEFs were treated for 4 days with tamoxifen (1µM, H6278, Sigma) prior to immortalization, 2005.

. Pereira, For behavioral analysis, 15 En1Cre; Srd5a3 fl/-and 15 control littermates, gender-matched, 2-3 months old were used. The number of animals per group was chosen as the optimal number likely required for conclusion of statistical significance, established from prior experience using the same behavioral tests

, Prior to the test, the mouse swimming speed was analyzed. No differences in the swimming speed were detected. For MWM, mice were exposed twice to the same hidden platform for a total of eight sessions. The improvement to find the platform on the second trial was evaluated. For motor coordination, Morris water maze (MWM) test was used to assess working memory

. Akizu, Images were taken with confocal Leica SP8 STED and analyzed with ImageJ. Protein extraction and western blotting P7 mouse cerebellum samples and MEFs were isolated in RIPA buffer (1% SDS; 0,1% for cell extracts) supplemented with EDTA-free protease inhibitor (11836170001, Sigma) and phosphatase inhibitor cocktail (4906845001, Sigma), homogenized by sonication (Bioruptor Pico sonication device -8 cycles 30''ON/30''OFF) and centrifuged at 12.000g at 4ºC for 20min. The supernatant was recovered and quantified with BCA (Life technologies). For cell extracts, RIPA was added directly to the flask and the cells were recovered with a cell scrapper followed by the same protocol. Equal amounts of protein were loaded from each sample in polyacrylamide gels. Gel transfer to nitrocellulose membranes was performed with the Trans-Blot Turbo Transfer System for 10min at 1.3A and 25V, The resulting slices were scanned with NanoZoomer-XR (Hamamatsu Photonics, Japan). For IHC, the cerebellum was embedded in OCT. 12µm-thick slices were generated with cryostat. The following antibodies were used for IHC: NeuN (1:200, MAB377; Millipore), 2013.

A. Ab24170, L1CAM (1:2.000; AB24345, Abcam), NrCAM

A. Ab24344,

T. Am4302 and . Fisher, All secondary antibodies were used at 1:10000. For far-western blotting, no blocking step was performed, and the membrane was directly incubated for 1h with biotinylated SNA (1:2.000; B-1305, Vector laboratories) or ConA, vol.2272, p.207, 2000.

. Li-cor), All WB results were replicated at least twice. RNA extraction, RT-PCR, RT-qPCR and transcriptomic analysis RNA was extracted with Trizol reagent (15596-026, Thermo Fisher) according to manufacturer's instructions. For transcriptomic studies, 4 En1Cre;Srda5a3 fl/-P7 mice and 4 control littermates were used. RNA quality was validated with Bioanalyzer 2100 (using Agilent RNA6000 nano chip kit) and 180 ng of total RNA were reverse transcribed using the GeneChip WT Plus Reagent Kit (Affymetrix). The resulting double strand cDNA was used for in vitro transcription with T7 RNA polymerase, posteriorly with IRDye 800CW-streptavidin for 1 extra hour

, After purification according to Affymetrix protocol, 5.5 ug of the cDNA obtained were fragmented and biotinlabelled using Terminal Transferase (WT terminal labelling kit, Affymetrix). cDNA was then hybridized to

, After O/N hybridization, chips were washed on the fluidic station FS450 following specific protocols (Affymetrix) and scanned using the GCS3000 7G. The scanned images were then analyzed with Expression Console software (Affymetrix) to obtain raw data (cel files) and metrics for Quality Controls. The observations of these metrics and the study of the distribution of raw data showed no outlier experiment. Robust multi-array average (RMA) normalization was obtained using R, and normalized data were subjected to statistical tests. For RT-PCR/RT-qPCR 1µg of RNA was retrotranscribed into cDNA with SuperScript II reverse transcriptase (18064014, Thermo Fisher). qPCR was performed with PowerUp SYBR Green Master Mix (A25777, GeneChip Mouse Transcriptome

, and mSrd5a3 (F 5'-CCGGGCTATGGCTGGGTGG-3' and R 5'-CTGTCTCAGTGCCTCTAGGAATGG

. Lipecka, Briefly, samples were applied to 30KDa MWCO centrifugal filter units (UFC503024, Amicon Ultra, Millipore) mixed with 200uL of urea (UA) buffer (8M urea, 100mM Tris-HCl pH 8.8) and centrifuged twice. The samples were incubated for 20min in the dark with UA buffer containing 50mM iodocetamide for alkylation. The filter units were subsequently washed twice with UA buffer and twice more with ABC buffer (50mM ammonium bicarbonate). Peptide digestion was carried by incubation with trypsin (1:50) O/N at 37ºC. The resulting peptides were collected by two washes with ABC buffer, Total proteomics and Glycoproteomics Four P7 En1Cre;Srd5a3 fl/-and four control littermates were used for cerebellar protein extraction as previously described, 2016.

, Briefly, 100ug of trypsinized peptides were recovered in binding buffer (20mM Tris/HCl pH 7.6, 1mM MnCl 2 , 1mM CaCl 2 , 0.5; NaCl) and incubated with a lectin mixture (90ug ConA, 90ug WGA and 71.5 ug RCA 120 ) for 1h. To elute the non-glycosylated peptides, not attached to the lectins, the filter units were washed four times with binding buffer and after with ABC solution in H 2 O 18 (O188P, Eurositop), Glycoproteome analysis was performed by FASP with an additional step of enrichment in N-glycopeptides by lectins, 2010.

T. Lc-ms-;, . Scientific, and M. A. Waltham, Chromatography solvents were (A) 0.1% formic acid in water and (B) 80% acetonitrile, 0.08% formic acid. Peptides were eluted from the column with a linear gradient of 120 minutes from 5% A to 80% B followed by 27 minutes of column re-equilibration in 5% A. Two blanks, each with two 25 min-linear gradient, were run between samples to prevent carryover. Peptides eluting from the column were analyzed by data dependent MS/MS, using top-10 acquisition method. Briefly, the instrument settings were as follows: resolution was set to 70,000 for MS scans and 17,500 for the data dependent MS/MS scans in order to increase speed. The MS AGC target was set to 3.10 6 counts with 200ms for the injection time, while MS/MS AGC target was set to 1.10 5 with 120ms for the injection time. The MS scan range was from 400 to 2000 m/z. Dynamic exclusion was set to 30 sec, MS analysis For each run, estimated 0.5 µg were injected in a nanoRSLC-Q Exactive PLUS (Dionex RSLC Ultimate 3000

, Both FDR and p-value (q-value < 0,05, paired student t-test) was used for total proteomics, whereas the p-value (< 0,05, unpaired student t-test) was used for N-glycopeptides. As a database for N-glycoproteins and number of Nglycosylation sites per protein (qualitative dataset, reference glycoproteomic dataset), the data obtained by glycoproteomics was used: any glycopeptide detected in at least 2 control samples was considered as potentially N-glycosylated (Table S2), The MS files were processed with MaxQuant software version 1.5.8.3 and searched with Andromeda search engine against the mouse subset from the UniProtKB/Swiss-Prot complete proteome database (release 2016_06). group

, Granule cells culture Cerebellar granule cells were extracted from P7 cerebellum following the Manzini and colleagues protocol

M. Greene and . Manzini, Cells were kept at 37ºC in 48-well plates for at least 24h. For surface coating, 48-well plates were incubated at 4ºC O/N with the coating solution, followed by 3 PBS washes, blocking for, 2009.

, min with BSA to inhibit non-specific binding (10mg/mL) and three more PBS washes. The coatings used were: human recombinant L1CAM (10µg/mL; 777-NC, R&D), human recombinant NrCAM (5µg/mL; 2034-NR, R&D) human recombinant CNTN2 (10µg/mL, R&D)

D. Laminin, As long as GCs do not arborize, the neurite branching points parameter provided by the Incucyte software was translated as neurite number. For GCs re-aggregates, cells were isolated and seeded for

, cells/cm 2 ) to promote aggregation. The aggregates were then collected and seeded in the coated surface for 36h. Human induced pluripotent stem cells (hiPSCs) SRD5A3 -/-generation and culture iPSCs were derived from hPBMCs from a control male donor via Cyto-Tune Sendai virus reprogramming. Cells were cultured at 37ºC on vitronectin-coated (10µg/mL; 07180, Stem Cell) dishes with mTeSR media

, SRD5A3 KO hiPSCs clones were generated by CRISPR/Cas9. sgRNA (inserted into a GFP-containing PX458 plasmid, Addgene) targeting the first exon of the gene were generated via the CRISPOR website and validated in T293 HEK cells by Sanger sequencing combined with tides analysis

, data not shown). hiPSCs were transfected by nucleofection (Amaxa 4D, Lonza) and transfected cells (GFP+) were isolated by FACs (BD FACSAria II SORP, BD Biosciences) to generate single-cell-of

, DNA was extracted from a piece of each colony by ZR-Duet DNA MiniPrep (D7003, Zymo) and sequenced. After selection, vol.2, 2000.

M. Ab5603 and . Boissart, Briefly, iPSCs colonies were transferred to a non-coated dish with neural induction media (N2B27 with FGF2 and double SMAD inhibition by SB431542 and LDN193189, Stem Cell) for 6h and were afterwards transferred onto poly-ornithine and laminin coated dishes. Following neural rosette formation (12-15 days), the cells were passaged onto a geltrex-coated (A1413301, Life Tech) flask (LCPs P1) and were further cultured with N2B27, Santa Cruz) immunostaining was used to confirm pluripotency (Fig. S5), vol.5279, p.2, 2013.

, Sigma) staining confirmed LCPs multipotency. Neuroectodermal origin of the emerging neural progenitor-like cells was assessed by HNK1/P75 FACs staining (data not shown), Neuronal identity was assessed with Tuj1, vol.5413, 2000.

, Srd5a3 fl/-(n=1), Atoh1Cre; Srd5a3 fl/-(n=2) and control littermates (n=3) were perfused with 4%

. Pfa-/-2%-glutaraldehyde, The cerebellum was kept in the same solution for at least one week. Sagittal slices, less than 1mm thick, were post-fixed with 1% osmium tetroxide in 0.1 M phosphate buffer and then dehydrated in ethanol. After 10 min in a 1:2 mixture of epoxy propane and epoxy resin and 10 min in epon

P. Agrawal, B. Fontanals-cirera, E. Sokolova, S. Jacob, C. A. Vaiana et al.,

E. Hernando, A Systems Biology Approach Identifies FUT8 as a Driver of Melanoma Metastasis, Cancer Cell, issue.6, p.807, 2017.

N. Akizu, V. Cantagrel, J. Schroth, N. Cai, K. Vaux et al.,

J. G. Gleeson, AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder, Cell, vol.154, issue.3, pp.505-517, 2013.

E. O. Berglund, K. K. Murai, B. Fredette, G. Sekerkova, B. Marturano et al., Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression, Neuron, vol.24, issue.3, pp.739-750, 1999.

C. Blank, L. A. Smith, D. A. Hammer, M. Fehrenbach, H. M. Delisser et al., Recurrent infections and immunological dysfunction in congenital disorder of glycosylation Ia (CDG Ia), J Inherit Metab Dis, vol.29, issue.4, p.592, 2006.

C. Boissart, A. Poulet, P. Georges, H. Darville, E. Julita et al.,

A. Benchoua, Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening, Transl Psychiatry, vol.3, p.294, 2013.

P. Burda and M. Aebi, The dolichol pathway of N-linked glycosylation, Biochim Biophys Acta, vol.1426, issue.2, pp.239-257, 1999.

V. Cantagrel and D. J. Lefeber, From glycosylation disorders to dolichol biosynthesis defects: a new class of metabolic diseases, J Inherit Metab Dis, vol.34, issue.4, pp.859-867, 2011.

V. Cantagrel, D. J. Lefeber, B. G. Ng, Z. Guan, J. L. Silhavy et al.,

J. G. Gleeson, SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder, Cell, vol.142, issue.2, pp.203-217, 2010.

J. Cao, S. Guo, K. Arai, E. H. Lo, and M. Ning, Studying extracellular signaling utilizing a glycoproteomic approach: lectin blot surveys, a first and important step, Methods Mol Biol, vol.1013, pp.227-233, 2013.

B. Chan, M. Clasquin, G. A. Smolen, G. Histen, J. Powe et al.,

S. Jin, A mouse model of a human congenital disorder of glycosylation caused by loss of PMM2, Hum Mol Genet, vol.25, issue.11, pp.2182-2193, 2016.

M. Chavan and W. Lennarz, The molecular basis of coupling of translocation and N-glycosylation, Trends Biochem Sci, vol.31, issue.1, pp.338-343, 2006.

L. Chen and S. Zhou, CRASH"ing with the worm: insights into L1CAM functions and mechanisms, Dev Dyn, vol.239, issue.5, pp.1490-1501, 2010.

N. A. Cherepanova and R. Gilmore, Mammalian cells lacking either the cotranslational or posttranslocational oligosaccharyltransferase complex display substrate-dependent defects in asparagine linked glycosylation, Sci Rep, vol.6, p.20946, 2016.

A. Cline, N. Gao, H. Flanagan-steet, V. Sharma, S. Rosa et al.,

R. Steet, A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency, Mol Biol Cell, vol.23, issue.21, pp.4175-4187, 2012.

G. Colakoglu, U. Bergstrom-tyrberg, E. O. Berglund, and B. Ranscht, Contactin-1 regulates myelination and nodal/paranodal domain organization in the central nervous system, Proc Natl Acad Sci U S A, vol.111, issue.3, pp.394-403, 2014.

N. Dahmane and A. Ruiz-i-altaba, Sonic hedgehog regulates the growth and patterning of the cerebellum, Development, vol.126, issue.14, pp.3089-3100, 1999.

G. P. Demyanenko, T. T. Riday, T. S. Tran, J. Dalal, E. P. Darnell et al.,

P. F. Maness, NrCAM deletion causes topographic mistargeting of thalamocortical axons to the visual cortex and disrupts visual acuity, J Neurosci, vol.31, issue.4, pp.1545-1558, 2011.

G. P. Demyanenko, A. Y. Tsai, and P. F. Maness, Abnormalities in neuronal process extension, hippocampal development, and the ventricular system of L1 knockout mice, J Neurosci, vol.19, issue.12, pp.4907-4920, 1999.

J. W. Dennis, I. R. Nabi, and M. Demetriou, Metabolism, cell surface organization, and disease, Cell, vol.139, issue.7, pp.1229-1241, 2009.

C. Dequidt, L. Danglot, P. Alberts, T. Galli, D. Choquet et al., Fast turnover of L1 adhesions in neuronal growth cones involving both surface diffusion and exo/endocytosis of L1 molecules, Mol Biol Cell, vol.18, issue.8, pp.3131-3143, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00152327

E. Fransen, R. D&apos;hooge, G. Van-camp, M. Verhoye, J. Sijbers et al.,

P. J. Willems, L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns, Hum Mol Genet, vol.7, issue.6, pp.999-1009, 1998.

H. H. Freeze, J. X. Chong, M. J. Bamshad, and B. G. Ng, Solving glycosylation disorders: fundamental approaches reveal complicated pathways, Am J Hum Genet, vol.94, issue.2, pp.161-175, 2014.

H. H. Freeze, E. A. Eklund, B. G. Ng, and M. C. Patterson, Neurological aspects of human glycosylation disorders, Annu Rev Neurosci, vol.38, pp.105-125, 2015.

H. H. Freeze, H. Schachter, T. Kinoshita, A. Rd, R. D. Varki et al., Genetic Disorders of Glycosylation, Essentials of Glycobiology, pp.569-582, 2015.

T. Fujimori, R. Suno, S. I. Iemura, T. Natsume, I. Wada et al., Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation, Genes Cells, vol.22, issue.8, pp.684-698, 2017.

Y. Gavel and G. Von-heijne, Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering, Protein Eng, vol.3, issue.5, pp.433-442, 1990.

J. E. Grundahl, Z. Guan, S. Rust, J. Reunert, B. Muller et al.,

T. Marquardt, Life with too much polyprenol: polyprenol reductase deficiency, Mol Genet Metab, vol.105, issue.4, pp.642-651, 2012.

M. A. Haeuptle, M. Welti, H. Troxler, A. J. Hulsmeier, T. Imbach et al., Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid, J Biol Chem, vol.286, issue.8, pp.6085-6091, 2011.

P. He, B. G. Ng, M. E. Losfeld, W. Zhu, and H. H. Freeze, Identification of intercellular cell adhesion molecule 1 (ICAM-1) as a hypoglycosylation marker in congenital disorders of glycosylation cells, J Biol Chem, vol.287, issue.22, pp.18210-18217, 2012.

P. He, G. Srikrishna, and H. H. Freeze, N-glycosylation deficiency reduces ICAM-1 induction and impairs inflammatory response, Glycobiology, vol.24, issue.4, pp.392-398, 2014.

R. Horstkorte, M. Schachner, J. P. Magyar, T. Vorherr, and B. Schmitz, The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth, J Cell Biol, vol.121, issue.6, pp.1409-1421, 1993.

M. Hortsch, Structural and functional evolution of the L1 family: are four adhesion molecules better than one?, Mol Cell Neurosci, vol.15, issue.1, pp.1-10, 2000.

A. J. Hulsmeier, P. Paesold-burda, and T. Hennet, N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry, Mol Cell Proteomics, vol.6, issue.12, pp.2132-2138, 2007.

J. Jaeken and R. Peanne, What is new in CDG?, J Inherit Metab Dis, vol.40, issue.4, pp.569-586, 2017.

B. Kara, O. Ayhan, G. Gokcay, N. Basbogaoglu, and A. Tolun, Adult phenotype and further phenotypic variability in SRD5A3-CDG, BMC Med Genet, vol.15, p.10, 2014.

H. Kiefel, S. Bondong, J. Hazin, J. Ridinger, U. Schirmer et al., L1CAM: a major driver for tumor cell invasion and motility, Cell Adh Migr, vol.6, issue.4, pp.374-384, 2012.

L. F. Koziol, D. Budding, N. Andreasen, S. D&apos;arrigo, S. Bulgheroni et al., Consensus paper: the cerebellum's role in movement and cognition, Cerebellum, vol.13, issue.1, pp.151-177, 2014.

N. M. Kretzer, D. J. Theisen, R. Tussiwand, C. G. Briseno, G. E. Grajales-reyes et al.,

K. M. Murphy, RAB43 facilitates cross-presentation of cell-associated antigens by CD8alpha+ dendritic cells, J Exp Med, vol.213, issue.13, pp.2871-2883, 2016.

K. S. Lau, E. A. Partridge, A. Grigorian, C. I. Silvescu, V. N. Reinhold et al., Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation, Cell, vol.129, issue.1, pp.315-322, 2007.

H. Y. Lee, L. A. Greene, C. A. Mason, and M. C. Manzini, Isolation and culture of post-natal mouse cerebellar granule neuron progenitor cells and neurons, J Vis Exp, issue.23, 2009.

J. Lipecka, C. Chhuon, M. Bourderioux, M. A. Bessard, P. Van-endert et al., Sensitivity of mass spectrometry analysis depends on the shape of the filtration unit used for filter, 2016.

, Proteomics, vol.16, issue.13, pp.1852-1857

D. Lutz, G. Loers, R. Kleene, I. Oezen, H. Kataria et al.,

M. Schachner, Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival, J Biol Chem, vol.289, issue.19, pp.13503-13518, 2014.

P. F. Maness and M. Schachner, Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration, Nat Neurosci, vol.10, issue.1, pp.19-26, 2007.

V. Matei, S. Pauley, S. Kaing, D. Rowitch, K. W. Beisel et al., Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit, Dev Dyn, vol.234, issue.3, pp.633-650, 2005.

D. Metzger, J. Clifford, H. Chiba, and P. Chambon, Conditional site-specific recombination in mammalian cells using a liganddependent chimeric Cre recombinase, Proc Natl Acad Sci, vol.92, issue.15, pp.6991-6995, 1995.

E. Morava, R. A. Wevers, V. Cantagrel, L. H. Hoefsloot, L. Al-gazali et al., A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism, Brain, vol.133, issue.11, pp.3210-3220, 2010.

E. Morava, H. N. Wosik, J. Sykut-cegielska, M. Adamowicz, M. Guillard et al., Ophthalmological abnormalities in children with congenital disorders of glycosylation type I, Br J Ophthalmol, vol.93, issue.3, pp.350-354, 2009.

A. N. Murray, W. Chen, A. Antonopoulos, S. R. Hanson, R. L. Wiseman et al.,

J. W. Kelly, Enhanced Aromatic Sequons Increase Oligosaccharyltransferase Glycosylation Efficiency and Glycan Homogeneity, Chem Biol, vol.22, issue.8, pp.1052-1062, 2015.

B. G. Ng and H. H. Freeze, Perspectives on Glycosylation and Its Congenital Disorders, Trends Genet, 2018.

H. Nguyen, A. P. Ostendorf, J. S. Satz, S. Westra, S. E. Ross-barta et al., Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins, Acta Neuropathol Commun, vol.1, p.58, 2013.

E. J. Park, K. A. Grabinska, Z. Guan, V. Stranecky, H. Hartmannova et al., Mutation of Nogo-B receptor, a subunit of cis-prenyltransferase, causes a congenital disorder of glycosylation, Cell Metab, vol.20, issue.3, pp.448-457, 2014.

P. L. Pereira, L. Magnol, I. Sahun, V. Brault, A. Duchon et al.,

Y. Herault, A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome, Hum Mol Genet, vol.18, issue.24, pp.4756-4769, 2009.

K. Poljak, N. Selevsek, E. Ngwa, J. Grossmann, M. E. Losfeld et al., Quantitative Profiling of N-linked Glycosylation Machinery in Yeast Saccharomyces cerevisiae, Mol Cell Proteomics, 2017.

G. E. Pollerberg, K. Thelen, M. O. Theiss, and B. C. Hochlehnert, The role of cell adhesion molecules for navigating axons: density matters, Mech Dev, vol.130, issue.6-8, pp.359-372, 2013.

E. Richard, A. I. Vega, B. Perez, C. Roche, R. Velazquez et al., Congenital disorder of glycosylation Ia: new differentially expressed proteins identified by 2-DE, Biochem Biophys Res Commun, vol.379, issue.2, pp.267-271, 2009.

D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response, Nat Rev Mol Cell Biol, vol.8, issue.7, pp.519-529, 2007.

M. A. Rujano, M. Cannata-serio, G. Panasyuk, R. Peanne, J. Reunert et al.,

M. Simons, Mutations in the X-linked ATP6AP2 cause a glycosylation disorder with autophagic defects, J Exp Med, vol.214, issue.12, pp.3707-3729, 2017.

T. Sakurai, M. Lustig, J. Babiarz, A. J. Furley, S. Tait et al.,

M. Grumet, Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development, J Cell Biol, vol.154, issue.6, pp.1259-1273, 2001.

M. Schiff, C. Roda, M. L. Monin, A. Arion, M. Barth et al.,

P. De-lonlay, Clinical, laboratory and molecular findings and long-term follow-up data in 96 French patients with PMM2-CDG (phosphomannomutase 2-congenital disorder of glycosylation) and review of the literature, J Med Genet, vol.54, issue.12, pp.843-851, 2017.

V. Schwarz, J. Pan, S. Voltmer-irsch, and H. Hutter, IgCAMs redundantly control axon navigation in Caenorhabditis elegans, Neural Dev, vol.4, p.13, 2009.

H. Scott and V. M. Panin, N-glycosylation in regulation of the nervous system, Adv Neurobiol, vol.9, pp.367-394, 2014.

H. Scott and V. M. Panin, The role of protein N-glycosylation in neural transmission, Glycobiology, vol.24, issue.5, pp.407-417, 2014.

S. K. Sgaier, Z. Lao, M. P. Villanueva, F. Berenshteyn, D. Stephen et al., Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins, Development, vol.134, issue.12, pp.2325-2335, 2007.

E. T. Stoeckli, Neural circuit formation in the cerebellum is controlled by cell adhesion molecules of the Contactin family, Cell Adh Migr, vol.4, issue.4, pp.523-526, 2010.

E. T. Stoeckli, P. Sonderegger, G. E. Pollerberg, and L. T. Landmesser, Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons, Neuron, vol.18, issue.2, pp.209-221, 1997.

V. Sytnyk, I. Leshchyns&apos;ka, and M. Schachner, Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function, Trends Neurosci, vol.40, issue.5, pp.295-308, 2017.

B. Tuysuz, D. Pehlivan, A. Ozkok, S. Jhangiani, C. Yalcinkaya et al.,

J. Jaeken, Phenotypic Expansion of Congenital Disorder of Glycosylation Due to SRD5A3 Null Mutation, JIMD Rep, vol.26, pp.7-12, 2016.

C. Vogel and C. Chothia, Protein family expansions and biological complexity, PLoS Comput Biol, vol.2, issue.5, p.48, 2006.

C. H. Wei and S. E. Ryu, Homophilic interaction of the L1 family of cell adhesion molecules, Exp Mol Med, vol.44, issue.7, pp.413-423, 2012.

B. Weinhold, R. Seidenfaden, I. Rockle, M. Muhlenhoff, F. Schertzinger et al., Genetic ablation of polysialic acid causes severe neurodevelopmental defects rescued by deletion of the neural cell adhesion molecule, J Biol Chem, vol.280, issue.52, pp.42971-42977, 2005.

M. Welti, Regulation of dolichol-linked glycosylation, Glycoconj J, vol.30, issue.1, pp.51-56, 2013.

P. G. Wheeler, B. G. Ng, L. Sanford, V. R. Sutton, D. W. Bartholomew et al., SRD5A3-CDG: Expanding the phenotype of a congenital disorder of glycosylation with emphasis on adult onset features, Am J Med Genet A, vol.170, issue.12, pp.3165-3171, 2016.

J. R. Wisniewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nat Methods, vol.6, issue.5, pp.359-362, 2009.

D. Xenaki, I. B. Martin, L. Yoshida, K. Ohyama, G. Gennarini et al., F3/contactin and TAG1 play antagonistic roles in the regulation of sonic hedgehog-induced cerebellar granule neuron progenitor proliferation, Development, vol.138, issue.3, pp.519-529, 2011.

J. Xu, Preparation, culture, and immortalization of mouse embryonic fibroblasts, Curr Protoc Mol Biol, vol.28, p.21, 2005.

L. Zhao, C. Rosales, K. Seburn, D. Ron, and S. L. Ackerman, Alteration of the unfolded protein response modifies neurodegeneration in a mouse model of Marinesco-Sjogren syndrome, Hum Mol Genet, vol.19, issue.1, pp.25-35, 2010.

D. F. Zielinska, F. Gnad, J. R. Wisniewski, and M. Mann, Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints, Cell, vol.141, issue.5, pp.897-907, 2010.