
HAL Id: tel-02492637
https://theses.hal.science/tel-02492637

Submitted on 27 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On 2D SLAM for Large Indoor Spaces - A
Polygon-Based Solution

Johann Dichtl

To cite this version:
Johann Dichtl. On 2D SLAM for Large Indoor Spaces - A Polygon-Based Solution. Robotics [cs.RO].
Ecole nationale supérieure Mines-Télécom Lille Douai, 2019. English. �NNT : 2019MTLD0006�. �tel-
02492637�

https://theses.hal.science/tel-02492637
https://hal.archives-ouvertes.fr

Numéro d’ordre : 2019MTLD0006 École doctorale SPI Lille

THÈSE
présentée en vue

d’obtenir le garde de

Docteur

Discipline: Informatique et Applications

par

Johann DICHTL

DOCTORAT DE L’UNIVERSITE DE LILLE
DELIVERE PAR IMT LILLE DOUAI

On 2D SLAM for Large Indoor Spaces

A Polygon-based Solution

Soutenue le 2 juillet 2019 devant le jury d’examen:

Présidente : Prof. Ouiddad Labbani

Rapporteurs : Ouiddad Labbani – Professeur – Université de Limoges

Mikal Ziane – Mâıtre de Conférences HDR – Université Paris Descartes (Paris 5)

Examinateur : Laetitia Matignon – Mâıtre de Conférences – Université Claude Bernard Lyon 1

Directeur : Bouraqadi Noury – Professeur – IMT Lille Douai

Co-Encadrant de thèse : Fabresse Luc – Professeur – IMT Lille

Lozenguez Guillaume – Mâıtre-Assistant – IMT Lille Douai

Département IA, IMT Lille Douai
Ecole Doctorale SPI 072 (Univ. Lille, Univ. Artois, ULCO, Univ. Polyt. Jauts de Fr.,

Centrale Lille, IMT Lille Douai)

Copyright © 2019 by Johann DICHTL

This work is licensed under a Creative Com-
mons “Attribution-NonCommercial-ShareAlike
3.0 Unported” license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor,
Prof. Noury Bouraqadi, as well as to Prof. Luc Fabresse and Dr. Guillaume
Lozenguez for their continuous support of my Ph.D study and related re-
search. From start to finish they were always supportive and helpful and
made this thesis possible. Their comments, insights and feedback were
always welcomed and I learned a lot from all of them.

I would also like to thank my colleagues and friends, in particular Khe-
lifa Baizid, Pablo Tesone, Pau Segnovia, and Xuan Sang Le. They were
equally supportive and altogether pleasant to have around. In this regard,
special thanks to Pablo for his helpful comments whenever I was stuck with
a Pharo-related problems. His experience in that manner was invaluable and
help greatly with the software implementations of my work.

Deep thanks also go to my family for their constant support. They are
one of the reasons why I was able to get as far as I did. With their help and
patience, I had all the support I could dream of.

Lastlymy thanks goes to theCPERDATAproject (supported byRégionHauts
de France, and the French state), and the DataScience project (co-financed by
European Union with the financial support of European Regional Develop-
ment Fund (ERDF), French State and French Region of Hauts-de-France).
Both provided funding that was used for my work at the IMT.

Abstract

Indoor SLAM and exploration is an important topic in robotics. Most solu-
tions today work with a 2D grid representation as map model, both for the
internal data format and for the output of the algorithm. While this is conve-
nient in several ways, it also brings its own limitations, in particular because
of the memory requirements of this map format.

In this thesis we introduce PolyMap, a 2D map format aimed at indoor
mapping, and PolySLAM, a SLAM algorithm that produces PolyMaps. Our
PolyMap format utilizes polygons built from vectors to model the environ-
ment, and as such this is a special case of vector-based SLAMalgorithms. The
PolyMap format leads to approximation of laser scan points with line seg-
ments, effectively reducing sensor noise by averaging over multiple points.
We also provide an algorithm that creates topological graph for Navigation
tasks from the PolyMap.

Our PolySLAM algorithm uses keyframes based on polygons to create a
global map in the PolyMap format. Each keyframe itself is a small PolyMap
that depicts the local environment of the robot. With accurate keyframes,
we are able to create maps of the environment that allow us to localize the
robot with a high accuracy. This in return provides better alignment for our
keyframes, and translates to good results when integrating keyframes into
the map and an accurate pose estimate. In the end, we create maps that are
consistent and usable for navigation and path planning without employing
global optimization techniques.

In experiments, we evaluate the performance of our PolyMap format,
the PolySLAM algorithm, and the topological graph that we create from
PolyMaps. We confirm that our PolyMap format has advantages over the
more popular occupancy grid and feature-basedmap formats.Withmultiple
experiments, based on real world data and simulations, we find that this
SLAM algorithm is showing good results on medium-sized maps despite
the lack of global optimization. Experiments in regard of navigation on
PolyMaps (with the help of topological graphs) also hold positive results.

Keywords: IndoorMapping, VectorMaps, SLAM, PolySLAM,Navigation

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Contributions . 4
1.4 Thesis Outline . 5

2 2D SLAM for autonomous exploration 7
2.1 What is SLAM? . 7
2.2 Map Formats . 9

2.2.1 Occupancy Grids . 10
2.2.2 Feature-based Maps . 12
2.2.3 Parametric Maps . 13
2.2.4 Topological Maps . 15
2.2.5 Hybrid Maps . 17

2.3 Localization . 18
2.3.1 Techniques . 18

2.4 Mapping . 24
2.4.1 Techniques . 25
2.4.2 Creating Occupancy Grids 27
2.4.3 Creating Vector-based maps 28

2.5 Global Error Minimization . 32
2.5.1 Global Optimization with Kalman Filters 32
2.5.2 Global Optimization with Particle Filters 33
2.5.3 Pose Graph based Global Optimization 33

2.6 Navigation . 34
2.6.1 Reactive navigation . 34
2.6.2 Grid-based Navigation 35
2.6.3 Heuristic approaches . 35
2.6.4 Topology-based Navigation 35

2.7 Comparison of 2D SLAM Techniques and Solutions 36
2.7.1 Comparison Criteria . 36
2.7.2 Comparing Techniques and Map Formats 37
2.7.3 Comparing Solutions . 39
2.7.4 Conclusion . 44

2.8 Summary . 44

3 PolySLAM: A 2D Polygon-based SLAM Algorithm 45
3.1 The PolyMap format . 45

3.1.1 Model . 45
3.1.2 Evaluation of PolyMap 47

3.2 Overview of PolySLAM . 48
3.3 Data Acquisition and Alignment 50
3.4 Creating Keyframes from Point Cloud 53
3.5 Polygon Refinement . 53
3.6 Level of Detail & Parameter Tuning 62

vi Contents

3.7 PolyMap Merging . 63
3.8 Summary . 68

4 PolyMap-Based Navigation 69
4.1 Numerical Problems to Consider 69
4.2 Formal Definition of the Topological Graph 71
4.3 Building a Topological Graph from a BSP-Tree 71
4.4 Path Planning on a Topological Graph 72
4.5 Using Grid Partitioning on the PolyMap 72
4.6 Removing Inaccessible Nodes from the Graph 77
4.7 Comparison with Occupancy Grid based Navigation 78
4.8 Summary . 79

5 Experiments 81
5.1 Metrics . 82
5.2 PolyMap Memory Sizes . 83
5.3 Simulation Setup . 84

5.3.1 Loop Environment . 84
5.3.2 Cross Environment . 85
5.3.3 Zigzag Environment . 85
5.3.4 Maze Environment . 85
5.3.5 Willow Garage Environment 86

5.4 Simulation Results . 86
5.5 Backface Culling . 89
5.6 Polygon Simplifier Parameter Tuning 90

5.6.1 Inlier Threshold Parameter 92
5.6.2 Line-Fitter Scoring Parameters 92

5.7 Grid Overlay for Vector Maps 98
5.8 Experiments with data sets from real robots 99

5.8.1 Intel Research Lab . 99
5.8.2 IMT Lille Douai Lab . 99
5.8.3 Inria Lab . 102

5.9 Summary . 103

6 Conclusion 105
6.1 Summary . 105
6.2 Published Papers . 106
6.3 Future work . 107

Bibliography 109

Introduction

Chapter1Contents
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Contributions . 4
1.4 Thesis Outline . 5

1.1 Context

Mobile robots rely heavily on accurate representations of the environment
(often referred to as maps) to fulfill their tasks. Maps are often restricted to
2D as a direct result of the capabilities of the sensors mounted on the robot.
Creating an accurate representation of the environment comes down to the
act of Simultaneous Localization and Mapping (SLAM). Inside buildings, GPS
signals are too weak to be used to localize robots. Hence we face a so-called
Chicken-and-Egg-Problem, as Localization requires a map, and Map Build-
ing requires the current location. This bootstrapping problem has been tack-
led from different directions, which result in a few major techniques to solve
the problem (namely Kalman Filters, Particle Filters andGraph Optimization, all
explained in Chapter 2). The most commonly used 2D map format is the oc-
cupancy grid, where cells in a grid depict a small area as either obstacle, free
space, or unknown space. Another noteworthymap format is the feature-based
map format, which holds only selected key elements of the environments
(e.g. corners, or trees) and their relative spatial relationship in the map for-
mat. Lastly, we also have the vector-basedmap format, where the environment
is represented by line segments (referred to as vectors).

One key area of interest to us is multi-robot autonomous exploration. In
this scenario, two or more robots are exploring an unknown area while si-
multaneously mapping it, ideally creating a complete map that can be used
by humans and robots alike. To keep track which areas are not yet fully ex-
plored, frontiers are employed to define the transitions from explored to un-
explored space. These frontiers are then used to prioritize areas of interest
and in case of multi-robot exploration to assign different areas to different
robots to explore.

While robots are exploring the environment they continuously update
their local map of the environment. The updated map will then be shared
over wireless connection with human operators/supervisors, and in case of

2 Chapter 1. Introduction

multi-robot collaboration it will also be shared between robots. In both cases,
occupancy grids are not a very efficient format because they require a lot of
bandwidth, limiting the frequency of map exchanges.

Robots must be able to autonomously navigate the environment to
achieve tasks such as exploration by computing paths from the current
position to a target location. In general, path computation can be done on a
topological graph which is computed from the map. Ideally we want such
a graph to be sparse, for fast computation, and yet dense enough to have
nearby nodes at all important areas of the environment.

Finally, one aspect to consider is the map quality and in tandemwith that
the precision on localization. Both aspects are intertwined, as a high quality
map enables better localization, and a precise estimate of the robots position
(and therefore travel trajectory) allowsmap updates with well aligned sensor
data.

1.2 Problem Statement

In the context of autonomous exploration, we identify four map format char-
acteristics that are important to for the performance inmapping, localization,
navigation, and map exchange in general.

1. Closed Maps
An important criteria for maps is to allow to distinguish between
explored and unexplored space. Occupancy grids accomplish this by
marking every grid cell that has been explored as free or occupied and
leaving every other cell marked as unexplored. Feature-based maps
don’t support this at all, and are therefore unsuitable for exploration
tasks on their own. Most vector-based maps are open as well, making
it impossible for path planner to distinguish unexplored areas from
already explored space.

2. Frontiers
A frontier defines the transition from free space into unexplored space
in the absence of obstacles. One limitation is the support (or lack of)
frontiers by the map format chosen. Occupancy grids don’t support
frontiers, despite being a closed map format. However the map format
allows (at the cost of additional computations) to extract frontiers. Nat-
urally, if the map is updated, the computations to extract frontiers need
to be repeated as well. The other two map formats mentioned (feature-
based and vector-based) don’t have support for frontiers at all, which
is a major drawback for exploration tasks.

1.2. Problem Statement 3

3. Memory Footprint
Another limitation is the memory footprint of the map. Here the situ-
ation is the opposite, with feature-based maps and vector-based maps
being at advantage by showing small memory footprints, while occu-
pancy grids are large and cumbersome to dealwith. Sincemobile robots
typically can share live data with humans and other robots only via
wireless connections, bandwidth is a rather limited resource.

4. Topological Graphs
To have a robot navigate on a map beyond its field of vision (limited
by the sensor range and obstacles), we need a topological map. This is
achieved by building a topological graph. In such a graph areas in the
map being represented by nodes in the graph. Two nodes are connected
by an edge if there is a direct path (e.g. by unobstructed line of sight)
between the two locations linked to the nodes. The ability to build a
topological graph from the map (or directly use the map as a topolog-
ical graph) is crucial for path planning, the core task of autonomous
exploration. Occupancy grids can be interpreted as high density topo-
logical graphs with implicit edges. As such, they are not particularly
efficient but get the job done at the cost of a relatively high computa-
tion time. Neither feature based map formats nor vector-based maps
support topological graphs on their own.

5. Visualization
The last requirement for map formats is visualization for human use.
Even if the robots are exploring the area autonomously, the resulting
map is typically inspected by humans and used to perform further
tasks. Occupancy grids are easy to understand by humans. Being able
to see the transition from explored to unexplored space is a welcome
feature here as well. Feature-based map formats are in general much
harder to understand by humans due their sparse nature. Last, Vector-
based map formats are also easy to read by humans. However unless
they are closed, it’s not always possible to see where the explored space
ends and unexplored space starts.

Map format Frontiers
Memory
Footprint Closed

Topol.
Graphs Visualization

Grid Maps implicit high yes yes good
Feature-based no low no no limited
Vector-based no low no no good

Table 1.1: Overview of relevant map format properties.

As we can see in Table 1.1, none of the map format presented fulfills all

4 Chapter 1. Introduction

criteria. The closest match is the occupancy grid format, however the high
memory footprint means that this map format doesn’t scale well with in-
crease of map size.

1.3 Contributions

As presented in the previous section, among the current map formats avail-
able none fulfills all criteria required in the context of autonomous explo-
ration. Our main contribution is a full robotic stack of a SLAM (PolySLAM)
and a navigation algorithm, based on a compact polygon-based map format
(PolyMap).

PolyMap satisfies the fivemap format requirements (presented in Section
1.2). PolyMap is inspired by vector-based map formats with the following
additional properties:

1. Directed Vectors
We set the direction of the vectors in such a way, that the “left” side
of the vector is explored/traversable space, and the other side is
unexplored space. This is helpful in merging polygons and allows
PolySLAM to perform backface culling.

2. Simple Polygons
All vectorsmust be part of a simple polygon. This property ensures that
all explored space is always inside a polygon and as a consequence we
have a closed map with well defined transitions between explored and
unexplored space. In addition this also allows us to build topological
graphs as explained later.

3. Vector Types
Defining vector types allows us to use vectors as frontiers. These fron-
tier vectors allowus to differentiate between obstacles in frontierswhen
handling the polygons that make up ourmap. By adding the sector type
as well, we also can split polygons into smaller polygons while main-
taining all the above properties. This is useful when we want to handle
only a part of the map but want to keep the polygon coherent, as is the
case when we build our BSP-tree-based internal map representation.

PolyMap is also suitable for Navigation, thanks to an algorithm that cre-
ates topological graph from a PolyMap. The topological graph is sparsewhen
compared to occupancy-grid-based topological graphs, and performswell in
our experiments.

PolySLAM directly creates PolyMaps out of 2D laser scans. PolySLAM
itself has two aspects that rely on our PolyMap format that sets it apart from
other common SLAM implementations:

1.4. Thesis Outline 5

1. Point-To-Vector ICP
The classic ICP algorithm uses a point-to-point approach to create cor-
responding pairs of points. However since we already have vectors that
approximate the shape of obstacles, we are able to associate points with
vectors. Using the point and its projection point of the closest vector al-
lows us to get good results with high accuracy in terms of localization
as the end result of the ICP algorithm.

2. Backface Culling
Since we have directed vectors, we can conclude that vectors whose
normal vector are pointing away from the sensor center are no possible
matching candidate for the ICP matching algorithm. Discarding such
vectors reduces false positives in the matching process and overall im-
proves the result of the ICP algorithm.

We show in experiments that our map format performs well on its own,
by converting grid-based maps into PolyMaps. The converted maps have a
significantly smaller memory footprint, while providing the same informa-
tion about the environment with the additional benefit of explicit frontiers
build into the maps.

Our implementation of PolySLAM performs well, despite the lack of
global optimization. The localization is precise, and shows remarkable
small drift even on long trajectories. Experiments (both simulated and in
real-world setups) confirm that PolySLAM performs well in a variety of
scenarios.

1.4 Thesis Outline

The rest of this dissertation is structured with the following chapters:

Chapter 2 introduces the state of the art in regard of the thesis topic, in par-
ticular 2D SLAM with vector-based maps.

Chapter 3 highlights our contributions and explains in detail our proposed
map format PolyMap and SLAM algorithm PolySLAM.

Chapter 4 covers robotic navigation in combination with our PolySLAM for-
mat.

Chapter 5 is dedicated to our experiments. It shows the possibilities and
limits of PolySLAM, both in simulations and in experiments with real
robots in realistic environments.

Chapter 6 concludes this dissertation. It sums up the contributions of this
thesis and presents several lines of future work.

2D SLAM for
autonomous
exploration

Chapter2Contents
2.1 What is SLAM? . 7
2.2 Map Formats . 9
2.3 Localization . 18
2.4 Mapping . 24
2.5 Global Error Minimization . 32
2.6 Navigation . 34
2.7 Comparison of 2D SLAM Techniques and Solutions 36
2.8 Summary . 44

This chapter presents an overview of current techniques to achieve Simul-
taneous Localization andMapping (SLAM) in the context of autonomous ex-
ploration. It first presentswhat a SLAMalgorithm is in terms of input, output
and its constitutive logical parts. Each following section then focuses on one
logical part of SLAM and describes variations of current SLAM approaches.
This chapter ends with a comparison of the main existing SLAM solutions.

2.1 What is SLAM?

sensor data

SLAM

pose estimate

INPUT

PROCESSING

OUTPUT global map

Figure 2.1: The basic task of a SLAM algo-
rithm: take sensor input, create amap from
it and provide a pose estimate.

A SLAM algorithm aims at pro-
viding a model of the environ-
ment (a map) and a pose (lo-
cation and orientation) of the
robot within the environment
(see Figure 2.1). The input for
the SLAM algorithm is sensor
data. In case of 2D SLAM, this
typically entails (2D) laser range
finder, odometry (e.g. based on
wheel encoders), and Inertial
Measurement Units (IMU). The sensor data is reduced before further pro-
cessing, often by only considering data of key positions (keyframes). The
process of keyframe creation (i.e. when to collect data and when to ignore

8 Chapter 2. 2D SLAM for autonomous exploration

it) typically is based on heuristics, e.g. by considering the distance traveled,
or the overlap with the previous keyframe. This drastically reduces the com-
putational load by limiting the data that needs to be further processed by the
SLAM algorithm.

sensor data

pose1 & map1

pose estimate global map

INPUT

PROCESSING

OUTPUT

particle evaluation & selection

pose2 & map2 pose3 & map3 ...

Figure 2.2: Simplified Particle Filter based SLAM algorithm.

To give a finer overview of SLAM, we will now present two different
SLAMapproaches. One approach to SLAMrelies on particle filters [SGHB04]
as illustrated in Figure 2.2. Multiple estimates about the pose and map are
computed in parallel and independent from each other. The second process-
ing stage evaluates the estimates and passes the best one to the output layer,
making it available to the user.

sensor data

localization
(scan matching)

pose estimate global map

map update /
merging

global error
minimization

INPUT

PROCESSING

OUTPUT

Figure 2.3: Simplified Pose Graph Optimization based SLAM algorithm.

In contrast to this, the Pose Graph Optimization [SP13a] approach shown
in figure 2.3 first determines the pose estimate. This is achieved by using an
initial guess (e.g. via the robots odometry) and applying scan matching tech-
niques to refine the pose estimate.With this, the data is merged into themap,
updating the global map of the environment. Periodically, the error in the
map is minimized using pose graph optimization.

In this chapter we analyze 2D SLAM algorithms from multiple differ-
ent perspectives. First, we look at the used map format. Second, we focus
on localization of the robot within a map. Third, we explore how the map
is constructed from a set of sensor data. Forth, we discuss how global error
and sensor bias is dealt with via global optimization. Fifth, we discuss how
SLAM algorithms impact navigation. And last, we compare different SLAM

2.2. Map Formats 9

algorithms.
Since our goal is 2D SLAM,we focus on sensors that either provide data in

2D euclidean space, or that can be easily converted into 2D euclidean space.
As such, most 2D SLAM algorithms use laser range finders as their primary
sensor, often supported by the robot’s odometry and related sensors (e.g.
IMU sensors). Whenever an algorithm relies on a specific sensor type, it will
be mentioned in the respective section.

2.2 Map Formats

The purpose of a map varies from use case to use case. While, localization is
always included in the context of SLAM, other popular uses formaps include
visualization (e.g. for tele-operation) and navigation (e.g. for exploration).
Therefore it is of no surprise, that different map formats emerged to satisfy
different use cases. The two major classifications that are of interest to us are
metric and topological map formats. Metric maps contain some form of coor-
dinates that allow to measure distance, topological maps model connectiv-
ity between different locations. As shown in Figure 2.4, metric maps can be
further split into three sub-groups: occupancy grids, feature-based, and ge-
ometric. On top of that, some map formats combine multiple characteristics
(typically topological and one metric format), and are refereed to as hybrid
maps.

map
formats

topological
maps

occupancy grids

feature-based

hybridparametric/
geometric

metric
maps

Figure 2.4: Map formats and their relationships with each other.

A map is modeling geometric information such as obstacles and free
space, typically in coordinates relative to the robots starting position. For
2D maps, there exist three major metric map formats: occupancy grids,
feature-based, and parametric.

Aside from metric data, it is often desirable to have also topological in-
formation embedded into the map. Topological maps provide a model that
allows to efficiently compute which areas of the environment are connected
with each other. This type of information is critical for path planning tasks.

10 Chapter 2. 2D SLAM for autonomous exploration

Topological maps usually rely on a graph structure that can be operated on
with algorithms such as A-star or RRT [Lav98].

Multiple 2D map formats have been standardized in [Gro16], including
occupancy grids, feature-based maps, and topological maps. Feature-based
maps and parametric maps are aggregated under the term Geometric Map
within the standard, and assume that features hold metric information. We
will continue to distinguish between the two because feature-based maps
don’t necessarily model obstacles.

Figure 2.5: A 3-state occupancy grid created from the Intel Research
Lab data set. Image and data set source: http://www2.informatik.

uni-freiburg.de/~stachnis/datasets.html

2.2.1 Occupancy Grids

The dominating 2D map format is the occupancy grid, also called grid map.
The occupancy grid format gained a lot of attention with the work of Grisetti
et al. [SGHB04], which in return builds on Monte Carlo Localization that was
introduced by Fox et al. [FBDT99]. It has since then become a de facto stan-
dard for 2D maps, and turned in 2016 into an official IEEE standard [Gro16].
Figure 2.5 shows an example of an occupancy grid.

http://www2.informatik.uni-freiburg.de/~stachnis/datasets.html
http://www2.informatik.uni-freiburg.de/~stachnis/datasets.html

2.2. Map Formats 11

Figure 2.6: A probabilistic occupancy grid, showing a part of the Deutsches
Museum in Munich. Image source: [HKRA16], data set source: [Goo16]

Formally, the occupancy grid is usually defined in a probabilistic way,
where a grid ofM×N with cells of size δ × δ that hold the estimated prob-
ability that the space represented by the respected cell is traversable or not.
In early work by Moravec and Elfes [ME85], the grid cells hold values in the
range (−1, 1), with negative values depicting (probably) empty/free space
and values greater than zero hinting occupied space. Later, Elfes [E+90]
switches to cell values in the range (0, 1) with a value of 0.5 for unob-
served cells to have a direct correspondence between the cell value and the
probability that the cell is occupied. All cells are initially set to the value
corresponding to unknown/uncertain, meaning they hold no bias towards
a free or occupied state.

In practical solutions, each cell is typically quantized into three possible
states: (1) traversable/free, (2) occupied, and (3) unknown/unexplored. In
this context, traversable only means that the space has been observed (i.e. it is
not unknown space) and is not occupied by an obstacle. It is quite possible
that the space is not reachable by the robot, for example because of nearby
obstacles blocking the path.

Figure 2.5 shows an example of a three-state grid map created with
GMapping [Gera]. The state of a cell can only be traversable (white), oc-
cupied (black), or unknown (gray). This quantization reduces the required
resources to create the map and distribute it in a network.

In contrast to this, figure 2.6 displays a probabilistic grid map. Here the
cells can hold values between 1.0 and 0.0, based on how many laser beams
were detecting an obstacle inside the cell. The figure reflects this by showing
pixels in different shades of gray. However, white represents both traversable

12 Chapter 2. 2D SLAM for autonomous exploration

space and unknown space.
The theoretical maximum accuracy of this map format depends on the

resolution of the map, i.e. the size of the cells. Naturally, a higher resolution
allows for a better approximation of reality, but also increases the required
resources (CPU and memory) to create and use the map. The most common
resolution of todays occupancy grids is 5cm, such as in Figures 2.5 and 2.6,
which is the default grid size in most common implementations.

This format is easy to visualize for human use (as seen in figure 2.5 and
2.6), and can also be used for navigation purposes. This makes the map for-
mat very versatile. It is however relatively expensive in terms of CPU and
memory requirements, which limits the maximum size of the created maps.
The map resolution (i.e. how big is a single cell) influences both resources as
well.

Topological information is embedded only implicitly, by treating the grid
as a big graph. Herewe have edges between two neighboring cells if and only
if both cells are marked as traversable space. This results in a relatively large
graph that is not optimized for navigation tasks. Therefore, occupancy grids
are only used for navigation tasks in relatively small environments, e.g. in an
office building.

2.2.2 Feature-based Maps

Feature- or landmark-based map format stores distinct features or landmarks
of the environment (e.g. corners or artificial beacons) with their relative po-
sition. For example Castellanos et al. [CMNT99] uses line segments as fea-
tures. Unlike the occupancy grid, this is a sparse representation of the environ-
ment. The advantages of this format stem from the sparse nature of the land-
marks, typically translating into significantly smaller memory footprints and
computation power. The disadvantage is that this format does not model the
shape of obstacles, making path planning difficult to achieve. It is also harder
to create visualization for human use, as shown by the example in figure 2.7.
This map format is typically used in conjunction with Kalman-Filter-based
SLAM (detailed in Section 2.4.1).

A way to overcome limitations of feature-based maps is to use them in
conjunction with occupancy grids. For example Wurm et al. [WSG10] use
occupancy grids indoors and feature-based mapping outdoors. This outper-
forms solutions that only use one of the two map formats. One drawback of
this strategy is that the robot needs to be able to choose which map format
to use for localization if the resulting estimates contradict each other. Wurm
et al. use reinforcement learning to train their algorithm to deal with such
contradictions.

2.2. Map Formats 13

Figure 2.7: An example of a landmark-based map from the Victoria Park data
set. The red circles show the detected landmarks, while the robot’s estimated
trajectory is displayed in black (EKF-SLAM) and blue (GPS). Image source:
https://jay.tech.blog/2017/03/26/ekf-slam/

In contrast to this, Castellanos et al. [CMNT99] build a mapwith line seg-
ments, and ise their centers and orientations as landmarks. This allows to
combine a feature-based format with geometric information about the en-
vironment. The landmarks can be used for an EKF-SLAM approach, while
the geometric information provides a good representation of the obstacles
detected by the sensors.

2.2.3 Parametric Maps

The third and currently least usedmap format of the three is a parametric rep-
resentation of the environment. Parametric in this context refers to paramet-
ric curves, such as splines, bezier curves, and line segments. Among these,
line segments are by far the most used. In the context of SLAM line segments
are often also called vectors. In this thesis we treat these two terms as syn-
onyms. Thismap format is classified in the IEEE standard [Gro16] as geometric
map. The standard only supports vector-basedmaps and not themore general
notation of parametric curves.

While curves find application in maps for humans, they don’t find much
use in 2D SLAM. The reason for this is, that curves can be reasonably well

https://jay.tech.blog/2017/03/26/ekf-slam/

14 Chapter 2. 2D SLAM for autonomous exploration

approximated with a series of short line segments, and these line segments
are significantly easier to handle for computations such as collision testing.

Line segment based maps model borders between traversable space and
obstacles via line segments. This representation has been used since early
robotic Localization and Mapping research [CL85, Cro85]. Compared with
occupancy grids, line segment basedmaps are sparse in nature, since only the
boundaries are explicitly modeled. The line segments can either form poly-
gons (e.g. Zhang et al. [ZG00]), defining closed areas, or they can leave space
open (e.g. [BR05,MP00, SBG02]). The former is better suited for navigation
tasks, as one cannot accidentally exit explored space. The later is easier to
create since we don’t need to maintain closed shapes, and also makes it eas-
ier to merge multiple overlapping vector. Another optional feature for vector
maps that wewill make use of later is the explicit presence of frontiers.While
typical grid maps don’t model frontiers explicitly, they can still be detected
by comparing cells with its immediate neighbors – a task that can be done
even after the map has already been created. On vector maps, if frontiers
are needed, they need to be created during the SLAM process. Vector-based
maps are comparable to occupancy grids in terms of accuracy at representing
the environment while the memory footprint is about an order of magnitude
lower [BLFB16]. An example of a SLAM approach using line segments for
mapping can be found at [LLW05].

Examples of vectormaps are shown in figures 2.8. The first figure presents
an open vector map – a map that is not fully enclosed by a boundary.

Vector maps do not contain topological information. However the sparse
nature of the map representation reduces the required resource (in terms of
CPU and memory) to create and maintain a topological map from the vector
map [DLL+19].

The theoretical maximum accuracy of this map format does not depend
on a predefined cell size, like it does with occupancy grids, but on the mini-
mum size of the vectors used, as well as the type of environment and sensor
accuracy. For example, most indoor environments can be well approximated
with line segments, while outdoor environments aremore challenging in this
regard with more irregular shaped obstacles.

Our focus lies on this map format since it combines advantages of occu-
pancy grids and feature-based maps. In particular, it is a lightweight map
format, that allows good approximation of indoor environments and is suit-
able for navigation tasks.

2.2. Map Formats 15

Figure 2.8: A small vector map created with edge-extraction from point
clouds. Red edges are long enough to be used for scan matching, while blue
edges are shorter and added to provide more details when visualizing but
otherwise ignored. Source: [Jel15].

2.2.4 Topological Maps

While metric maps model obstacles and free space, topological maps model
connectivity and reachability of the environment [KW94]. Their task is to
provide a model of the environment that allows to efficiently compute which
areas of the environment are connected with each other, and how to get
from one area to another. Topological maps usually rely on a graph structure
(called topological graph) that can be usedwith algorithms such asA∗ [App66]
or RRT [Lav98]. This is also reflected in the IEEE standard, which defines
topological maps as sets of nodes and edges [Gro16].

In the context of SLAM, topological maps typically also contain metric
information, which technically classifies them as a hybrid representation.We
will still refer to them as topological maps if the focus of the format lies on
the topological aspect.

Since the SLAM process typically works with consecutive robot poses,

16 Chapter 2. 2D SLAM for autonomous exploration

building a pose graph on the fly is relatively easy. Such a pose graph already
is a topological map, albeit in general an incomplete one.

Other ways to create a topological maps use the metric map to compute
connectivity. This is done in a two step fashion: first select nodes, and sec-
ond compute which nodes are connected with each other. Selecting nodes
can be done in many different fashions. Popular methods are random sam-
pling, Voronoi Diagrams [Thr98, BJK05], and map features such as corners.
Determiningwhich nodes are connected can be donewith simple ray tracing.
An underlaying data structure such as Binary Space Partioning Trees (BSP-
Trees) [TN87] help to speed up the computation.

An example of a topological map is displayed in 2.9. The upper image
shows the full graph, the lower image is zoomed in, enabling us to see the
individual nodes and edges. Unlike in a pure trajectory-based graph, this
graph includes loop closures, resulting in nodes with more then two edges.

Figure 2.9: A topological map. The bottom image shows a zoomed-in section
of the gray rectangle in the upper image. Image source: [MW10]

2.2. Map Formats 17

Figure 2.10: A topological-metric hybrid map of an outdoor environment.
Image source: [BFMG08]

2.2.5 Hybrid Maps

Since SLAM tasks often require navigation capabilities in parallel, metric
and topological maps are often created simultaneously. On some cases two
separate maps are created [BGFM09], while in other cases a hybrid map
containing both metric and topological information of the environment
(e.g. [BFMG08]).

For example, [SD98] proposes a hybridmapmodelwhere a set localmaps
are organized in a topological way. The local maps aremetric representations
of the environment with its own local reference frame. Navigation tasks that
don’t exceed the scope of the local map are performed with the local map
only, while those that are beyond the area of the local map rely on the topo-
logical structure that connects the local maps. Interestingly, the relative posi-
tion of the local maps does not need to be very accurate to execute navigation
tasks, and therefore a global optimization step is not necessary.

Similarly, Blanco et al. [BFMG07,BFMG08,BGFM09] create a global topo-
logical map, but the local metric maps overlap, covering the whole area. In
theirwork both themetric and topological formal approach are formulated as
a Bayesian inference problem. The focus does not lie on global optimization
of the metric map as the topological map is used for global task planning. In-
stead only the relative pose of neighboring local maps are optimizedwithout
a global context. As a result, their approach is able to handle large scalemaps,
including a map create from a robot traveling for 2km. Figure 2.10 shows one
such map of an outdoor environment. Each node is linked to a local map, the

18 Chapter 2. 2D SLAM for autonomous exploration

green edges are part of the topological graph.

2.3 Localization

Localization in the context of robotics can be categorized into three type:met-
ric, topological, and semantic.Metric localization is the task to provide a pose
estimate on a metric map of the environment. Topological localization an-
swers the question which vertex of a topological graph is associated with the
current position of the robot. Semantic localization provides us with seman-
tic information about the robots local environment, for example “the robot is
in the kitchen right now”.

The focus of our work lies on metric and topological localization. Obtain-
ing the topological location of a robot is easier once the metric location has
been determined, since topological nodes are generally associated with ar-
eas of the metric map. For example, if we have a hybrid map as described by
Blanco et al. [BFMG08], the topological location follows simply by determin-
ing which local map the robot resides in.

2.3.1 Techniques

The most basic type of metric localization is Dead Reckoning. This tech-
nique takes sensor data such as wheel encoders and concatenates delta
pose changes to provide an estimate of the current position. This works
reasonable well for short distances, but since there is no feedback loop to
take sensor noise and bias into account the estimation error grows quickly
beyond acceptable limits. To overcome this problem, two major techniques
for metric localization have emerged: Particle Filters and Kalman Filters. A
third method, the Pose Graph Optimization, also helps with localization, but
only within the context of SLAM, not in the broader sense of determining
the robot pose on an already finished map.

Part of the difficultieswith localization stems from the non-linearity of the
robots motion model. When a robot moves , we typically have a translation
and a rotation component to deal with. While the translation itself is linear in
nature, when combined with the rotation we end up with a non-linear trans-
formation. Thismeans, thatweno longer candescribe themotion errormodel
via a Gaussian distribution, since the probability distribution has a crescent
shape. Figure 2.11 illustrates this. The top row shows the density of the prob-
ability function while the bottom row shows the pose of random samples. In
the left column both translation and rotation contribute to the pose error, as
wewould expect if the robot motion consists of both translation and rotation.
The center column shows an error that is mostly dominated by translation,

2.3. Localization 19

Figure 2.11: Motion model of a robot and the associated error as probabil-
ity density (top row) and sampling based poses (bottom row). Image source:
[BSBA11]

which occurs when the robot is moving forward or backward without ro-
tating. The column at the right displays an error that is influence mostly by
rotation, typically found when the robot rotates in place. Naturally, the ac-
tual shapes depend heavily on the circumstances (robot hardware, surface
type, acceleration & speed, etc.). These errors add up as the robot traverses
through the environment, as illustrated in 2.13.

Some robots have differentmotionmodels, for example rail-bound robots
or CNC cutter. However this thesis focus on robots with the motion model
mention above.

2.3.1.1 Particle Filters

Particle Filterswork by keepingmultiple pose estimates in parallel. Each pose
estimate is stored in a particle. The particle’s pose estimate is updated as the
robot moves. Periodically all particles have a score computed, based on how
well the sensor data fits the map with respect to the pose estimate. Particles
with a “bad” score a discarded and replaced by new particles with a random
pose. A key element in this technique is, to select the random poses in a way
that the new particles are likely to receive a higher score the next time, for
example via Sampling Importance Resampling (SIR) [GSB05]. That way, the
pose estimates from the particles are expected to cluster around the true pose
of the robot after a few iterations, which in typical applications translates into
a fewmeters of traveling. The pose estimate of the robot can be either adopted
from the particle with the highest score, or computed as a weighted average
over multiple particles.

As a big breakthrough in robot localization, this principle has been intro-

20 Chapter 2. 2D SLAM for autonomous exploration

duced by Fox et al. in [FBDT99] asMonte Carlo Localization (MCL). The concept
of MCL does not require a special map format and works well with metric,
parametric, or feature-based maps alike. Furthermore, the performance of
the particle filter can be modified by increasing or decreasing the number of
particles, making it easy to adjust to the available computational power as
needed.

Fox et al. provided the implementation Adaptive Monte Carlo Localization
(AMCL) that worked on grid maps and could keep track of the robot’s lo-
cation in (soft) real time. AMCL uses the principle of Markov Localization
[SK95] in conjunction with particle filters. The idea is, to track multiple hy-
potheses about the robots motion and update these with the odometry sen-
sor data. Figure 2.12 shows how the estimated robot poses – starting from
the same position – diverge over time as the robot moves in the environment.
Discarding estimates where the pose does not fit well with the laser range
finder data and resampling near poses that remain is the key technique that
makes this approach efficient. AMCL is part of the default ROS navigation
stack [Gerb] and sill in use today.

Figure 2.12: An illustration of sampling-based motion estimation. Image
source: [FBDT99]

Figure 2.13 shows a particle filter in action. The top left image is right
after initialization, and the particles are about equally distributed inside
traversable space. The figure in the top right is a snapshot after the robot
moved for about one meter. There are now two main clusters of particles,
and some random particles around the map. One of the cluster is already
around the robot’s true position, while the second is not discarded yet due
to local similarity of the environment. The third image shows the situation
after the robot moved another two meters. Only one cluster of particles is
left, and the robot’s pose is close to its center.

2.3. Localization 21

Figure 2.13: An example of localization with a particle filter. At first, the es-
timates for the robot pose are distributed all over the place (top left figure).
After the robot moves around a bit, most estimates are discarded, and only
two clusters of pose estimates remain (top right figure). As the robot keeps
moving, only one cluster of pose estimates is left, with the true pose located
near the center of the cluster (bottom figure). Image source: [FBDT99]

22 Chapter 2. 2D SLAM for autonomous exploration

2.3.1.2 Kalman Filters

Kalman filters (KF) are based on the work of Kalman [K+60]. They are filters
that work as least square error optimizer. Localization based on Kalman Fil-
ters assume, that the uncertainty of the robot’s position and the related sen-
sor readings can be represented by a Gaussian distribution. And while these
are clearly not Gaussian distributions, the approximation is good enough for
our needs in regard of localization. To deal with the nonlinearity of the mo-
tion model, Extended Kalman Filters (EKF) [SSC90] and Unscented Kalman
Filters (UKF) [WVDM00] are used to linearizes the motion estimate.

Localization itself relies on landmarks when using Kalman Filters. Ob-
served Landmarks are tracked as the robot moves, and the position estimate
of both the landmarks and the robot pose are updated with the Kalman Fil-
ter to minimize the square error. This method has the disadvantage, that the
robot has to reliably sense and identify landmarks from its sensor data. The
reason for this is, that landmarks from different keyframes are used to cor-
rect both the pose (and trajectory) of the robot as well as the pose of the land-
marks. This method is also less scalable with the size of world in compari-
son to particle filters. Relying on matrix inversions, the KF algorithms have
a computational complexity ofO(n2.4) or worse, with n being the number of
landmarks observed. There are however approaches that manage to reduce
the computational load. For example, Gamage and Drummond [GD13] use
dimension reduction techniques to deal with a high number of landmarks
in their approach. Liu and Thrun [LT03] are using the Information Filter (a
variant of the Kalman Filter, where the inverse of the matrix is used instead)
to allow for matrix updates in constant time instead of O(n2). Cadena and
Neira [CN10] on the other hand are using a combined Kalman-Information
filter to perform updates faster, taking advantage of both representations.

2.3.1.3 Pose Graph Optimization

Yet another technique to determine the robots pose within its environment is
pose graph optimization [GKSB10]. Unlike Particle Filters and Kalman Filters,
this method is only employed during the SLAM process, and not afterwards
on an already constructed map. The concept of pose graph optimization is to
build a graph from the robot’s trajectory, and link nodes in the graph if they
have sufficient sensor overlap. Constraints between connected nodes (in par-
ticular those from loop closures) are used in a least-square error minimiza-
tion process to adjust the pose of the individual nodes and to minimize the
global error imposed by edges of the graph. Edges in the graph denote scan
matches transformations between keyframes that correspond to connected
graph nodes. Libraries like g2o [KGS+11] solve this optimization problem

2.3. Localization 23

iteratively, providing new pose estimates with a lower global square error.
Pose Graph Optimization depends on edges from loop closures to reduce the
global error. Improvements on trajectories without loop closures are rather
limited. This method is sensitive to false positives and outliers, which can
reduce the map quality significantly, even to the point where the map is no
longer usable for its designed task.

g2o: A General Framework for Graph Optimization

Rainer Kümmerle Giorgio Grisetti Hauke Strasdat Kurt Konolige Wolfram Burgard

Abstract—Many popular problems in robotics and computer
vision including various types of simultaneous localization and
mapping (SLAM) or bundle adjustment (BA) can be phrased
as least squares optimization of an error function that can
be represented by a graph. This paper describes the general
structure of such problems and presents g2o, an open-source
C++ framework for optimizing graph-based nonlinear error
functions. Our system has been designed to be easily extensible
to a wide range of problems and a new problem typically can
be specified in a few lines of code. The current implementation
provides solutions to several variants of SLAM and BA. We
provide evaluations on a wide range of real-world and simulated
datasets. The results demonstrate that while being general g2o
offers a performance comparable to implementations of state-
of-the-art approaches for the specific problems.

I. INTRODUCTION

A wide range of problems in robotics as well as

in computer-vision involve the minimization of a non-

linear error function that can be represented as a graph.

Typical instances are simultaneous localization and map-

ping (SLAM) [19], [5], [22], [10], [16], [26] or bundle

adjustment (BA) [27], [15], [18]. The overall goal in these

problems is to find the configuration of parameters or state

variables that maximally explain a set of measurements

affected by Gaussian noise. For instance, in graph-based

SLAM the state variables can be either the positions of the

robot in the environment or the location of the landmarks

in the map that can be observed with the robot’s sensors.

Thereby, a measurement depends only on the relative loca-

tion of two state variables, e.g., an odometry measurement

between two consecutive poses depends only on the con-

nected poses. Similarly, in BA or landmark-based SLAM a

measurement of a 3D point or landmark depends only on the

location of the observed point in the world and the position

of the sensor.

All these problems can be represented as a graph. Whereas

each node of the graph represents a state variable to opti-

mize, each edge between two variables represents a pairwise

observation of the two nodes it connects. In the literature,

many approaches have been proposed to address this class

of problems. A naive implementation using standard meth-

ods like Gauss-Newton, Levenberg-Marquardt (LM), Gauss-

Seidel relaxation, or variants of gradient descent typically

This work has partly been supported by the European Commission under
FP7-231888-EUROPA, FP7-248873-RADHAR, and the European Research
Council Starting Grant 210346.

R. Kümmerle, G. Grisetti, and W. Burgard are with the University
of Freiburg. G. Grisetti is also with Sapienza, University of Rome. H.
Strasdat is with the Department of Computing, Imperial College London.
K. Konolige is with Willow Garage and a Consulting Professor at Stanford
University.

Trajectory
Landmarks

Trajectory
Landmarks

(a)

(b)

Fig. 1. Real-world datasets processed with our system: The first row of
(a) shows the Victoria Park dataset which consists of 2D odometry and 2D
landmark measurements. The second row of (a) depicts a 3D pose graph of
a multi-level parking garage. While the left images shows the initial states,
the right column depicts the respective result of the optimization process.
Full and zoomed view of the Venice bundle adjustment dataset after being
optimized by our system (b). The dataset consists of 871 camera poses and
2,838,740 projections.

provides acceptable results for most applications. However,

to achieve the maximum performance substantial efforts and

domain knowledge are required.

In this paper, we describe a general framework for per-

forming the optimization of nonlinear least squares problems

that can be represented as a graph. We call this framework

g2o (for “general graph optimization”). Figure 1 gives an

overview of the variety of problems that can be solved

by using g2o as an optimization back-end. The proposed

system achieves a performance that is comparable with

implementations of state-of-the-art algorithms, while being

able to accept general forms of nonlinear measurements. We

achieve efficiency by utilizing algorithms that

• exploit the sparse connectivity of the graph,

• take advantage of the special structures of the graph that

often occur in the problems mentioned above,

• use advanced methods to solve sparse linear systems,

• and utilize the features of modern processors like SIMD

instructions and optimize the cache usage.

Despite its efficiency, g2o is highly general and extensible:

Figure 2.14: SLAMwith the victory park data set. The left figure shows land-
marks and the trajectory estimate with dead reckoning only. The right figure
show the same data but after pose graph optimization has been applied. The
optimized trajectory estimate is consistent and matches the actual robot tra-
jectory closely. Image source: [KGS+11]

Figure 2.14 shows the results of pose graph optimization in comparison
to no optimization at all. The results are similar to the trajectory estimate
from EKF-SLAM that are displayed in 2.7, and are using the same data set.
However, unlike EKF-SLAM, graph optimization does not rely on features.

2.3.1.4 Scan Matching

Scan matching is a special case in terms of Localization, as it is by itself not
suitable to locate the robot without a good initial guess of the robot’s pose.
Instead, Scan Matching is used to refine the pose estimate that is provided
by other means (which may be even just dead reckoning). Scan matching de-
scribes the task of aligning sensor data with the local or global map, typically
in a least squared error method. This is realized by using the Iterative Clos-
est Point (ICP) algorithm. It iteratively minimizes the error between points
from the sensor scan and points (or vectors) from the map or keyframe(s).
Multiple versions of the algorithm have been developed to improve certain
characteristics [PCS15,RL01].

ICP works in two steps per iteration. The first step creates data associa-
tions between the two data sets. The second step computes a transformation
that minimizes the square error for the associated data points. Figure 2.15
shows how two set of points are aligned with each other in three iterations

24 Chapter 2. 2D SLAM for autonomous exploration

of the algorithm.

Figure 2.15: IterativeClosest Points algorithm illustrated. Image source: flash-
informatique.epfl.ch/spip.php?article2581

As a non-linear optimizationmethod, ICP can be stuck in local minima. It
therefore requires “good” data associations, which in return is much easier
to achieve if the two data sets already have a decent alignment, i.e. if we have
a good initial guess. When aligning the current local map with the previous,
the robot odometry is often already good enough for this. However for per-
forming loop closures more care needs to be taken. Methods to improve data
association and alignment quality include feature matching [SJH98] point-
to-line matching [Cen08] and multi-resolution matching [JH03].

2.4 Mapping

Mapping in robotics refers to the creation of a digital representation of the
environment that is usable by the robot, or by humans, or both. For this task
we require accurate sensor data, including the position of the sensor(s) at the
time of recording. In the context of this thesis, we focus on map formats that
are usable by both robots and humans.

http://flashinformatique.epfl.ch/spip.php?article2581
http://flashinformatique.epfl.ch/spip.php?article2581

2.4. Mapping 25

2.4.1 Techniques

Mapping typically relies on Localization for accurate pose estimates of the
robot and by extension on the mounted sensors. However, mapping has to
deal with error accumulation. On the one hand, accurate pose estimates are
difficult to provide on incomplete maps. On the other hand, sensor data con-
tains noise. Typically there are two different scopes of errors: local and global.

Local errors occur when estimating the pose delta between the last pose
estimate and the current pose. This error can be reduced by utilizing local-
ization techniques as discussed in 2.4.1, as well as by filtering odometry data
to reduce noise.

Global errors emerge by accumulating local errors as the robot traverses
through the environment. Noise and bias from local errors cannot be com-
pletely eliminated, despite best efforts. Global optimization techniques are
employed to minimize these errors. These will be discussed in detail in sec-
tion 2.5.

It is worth noting that many of the techniques below do not rely on a spe-
cific map format. Still, the most commonmap format in use is the occupancy
grid. Most SLAM solutions provide only occupancy grids as output format,
despite often using a very different internal representation of the environ-
ment.

Particle Filters. Being similar to localization-only particle filters in nature,
this technique stores a separate map estimate in each particle. Due to the
fact that the map and the robots trajectory are linked, the state space does
not explode, and hence the number of particles required remains manage-
able. How this works is explained in more detail by Grisetti et al. [GSB05].
The algorithm uses SIR or similar resampling strategies to discard particles
that score low and creates new particles that are likely to score better. Since
particles that include (correct) loop closure tend to score better than those
without, this technique also implicitly performs loop closures.

Figure 2.16: Loop closures with particle filters. The first loop closure leads to
loss in particle diversity, resulting in failure to perform a second loop closure
a bit later. Image source: [SGB05]

26 Chapter 2. 2D SLAM for autonomous exploration

Potential problems with this technique lie in particle depletion and the
difficulty to perform loop closure on long trajectories [SGB05]. This is illus-
trated in figure 2.16, which shows on an example how loop closures can cause
problems later by discarding particles. In the example the robot starts in the
bottom and moves counter-clockwise. The left image shows multiple trajec-
tories, overlaid on top of the map from the top-scoring particle. The robot
performs a loop in the center of the map, and a loop closure occurs after the
robot re-enters a known part of the map. The center image shows how the
diversity of particles is drastically reduced, leaving only particles that share
the same history up until entering the loop. Upon further traveling, the robot
passes his starting position, as shown in the right image. But due the earlier
loop closure, we now have no particles that are able to match a second loop
closure.

Kalman Filters. SLAM algorithms that are based on Kalman Filters, such as
EKF-SLAM [SSC90] already create a map during localization. The reason for
this is that these maps are feature based, and the localization process not
only estimates the robot pose but also the location of all observed features.
As a result, the position of the landmarks already form the map, and no ex-
tra steps are required. The main challenge for Kalman-Filter-based SLAM is
identifying landmarks and how the required computation power rises as the
map grows.

Composite Maps. The main problem when building large maps is to deal
with accumulated errors that are unavoidable in long robot trajectories. Com-
posite maps deal with this problem by creating many small maps instead of
one single big map. Small maps only require short travel distances, reducing
the possible error accumulation by a big margin. These small maps, often
refereed to as local maps, are linked together in a graph-like structure. The
local maps can overlap and represent a complete metric map, as for example
in Cartographer [HKRA16], or have gaps between them as done in HMT-
SLAM [BFMG08]. Often a global optimization step helps to keep the map
consistent and reduces metric errors in the map.

Pose-Graph Algorithms. Pose-graph-based approaches to the topic record
the trajectory of the robot, and link poses in a graph structure while impos-
ing constraints on the graph. Key to this technique is to link poses when re-
visiting known areas of the environment, a process known as creating loop
closures [SMD10, KGS+11]. An optimization process can then minimize the
global error of the pose graph, and recreate the map with the new pose es-
timates of the robot’s trajectory. There has also been a lot of research about

2.4. Mapping 27

how to deal with outliers, for example [SP13b,LFP13].

2.4.2 Creating Occupancy Grids

GMapping. Grisetti et al. [GSB05,GSB07] introduced a SLAMsolution based
on particle Filters and provided an implementation called GMapping [Gera].
Localization in GMapping works very similar to AMCL, but GMapping is a
complete SLAM application while AMCL only provides Localization. This
adds the challenge to not only handle multiple pose estimates, but also keep-
ing multiple map estimates in parallel.

The algorithm creates one global map per particle, but uses a hierarchi-
cal tree structure to store common parts of map estimates to save memory.
That way, the memory requirements are feasible for the hardware to handle,
even for a relatively high number of particles. The maps all share the same
frame, which is the starting frame of the robot. Like all examples of occu-
pancy grids in this section GMapping uses a fixed grid resolution, by default
cells of 5x5cm. With its standard settings, GMapping works with relatively
few particles: only 30. Modern hardware can handle significantly more how-
ever, shall the need arise.

Each particle has a score attached to it, representing how well (according
to the algorithm) the map represents the environment. The particle with the
currently highest score is chosen as output for services such as navigation
tasks. Since the score of the particles changes over time, the map can change
in significant ways if a new particle has the top score. This happens often
when loop closures occur.

When the mapping process with GMapping is done, the resulting map
can be used in conjunction with AMCL for future localization. While GMap-
ping is running, it provides a pose estimate, eliminating the need for 3rd
party Localization module.

Karto. The graph-based SLAM implementation Karto [Int, SRI10, SLA] cre-
ates an occupancy grid, similar to GMapping. The key feature of Karto is
the graph-optimization process that acts as a global optimizer. Graph opti-
mization is also used to provide the robot pose estimate. By actively closing
loops, the algorithm builds a sparse graph of spacial restrictions between
nearby keyframes. The graph structure is then optimized in an iterative pro-
cess so that the global (square) error is minimized, smoothing out accumu-
lated errors overmultiple keyframes. To do so, the algorithm relies on correct
loop closures, as false positives can cause an increase in the global error in-
stead. According to Santos et al. [SPR13], the createdmaps are better then the
compared SLAM algorithms in their paper (including GMapping and Hec-
torSLAM), indicating that the localization also performs better.

28 Chapter 2. 2D SLAM for autonomous exploration

Cartographer. A recent SLAM solution that uses Occupancy Grids for rela-
tively large maps is Google Cartographer [HKRA16]. Localization with Car-
tographer [HKRA16] is a bit unusual in that it does not use a Particle Filter
despite its popularity. Instead the algorithm uses its local SLAM stack (work-
ing with the local map) for initial pose estimate and periodically runs sparse
pose graph optimization on the pose graph for a pose optimization. The pose
estimate updates between the pose graph optimizations also utilize IMU sen-
sor data when available.

The algorithm creates overlapping localmaps (referred to as submaps) that
are connected with a graph-like structure. Local maps are created from a few
consecutive laser scans.While local maps are stored as occupancy grids, Car-
tographer puts emphasis into treating the grid as a probabilistic grid, in that
it models the probability that a grid cell is occupied by an obstacle.

Global coherence between localmaps is realized via pose graph optimiza-
tion, which is performed regularly. For visualization and other tasks such as
navigation, a single global occupancy grid is exported in regular intervals.
Unlike many other SLAM algorithms, the output is not a three-state map but
a “gray-scaled” map that allows grid cells to express the likelihood that the
space is occupied.

HectorSLAM. HectorSLAM [KMvSK11], developed at the TU Darmstadt, is
a robust SLAM algorithm. It combines multiple sensors (if available), doesn’t
rely on odometry (but uses it if available) and tracks the robots position in
2D and 3D simultaneously. Localization is based on scan matching, and ad-
ditional estimates (e.g. by odometry and IMU sensors) are incorporated if
provided by the robot.

The SLAM algorithm used by HectorSLAM uses multi-resolution scan
matching and Kalman Filters to align keyframes with the global map. The
low-resolution scan matching is more robust, and the resulting alignment is
then used for the next higher resolution scan matching process. The highest-
resolution global map is used as output, providing an occupancy grid for
other modules to use. The multi-resolution approach allows to iteratively re-
fine the pose estimate with the goal to provide optimal alignment when the
new data is added to the highest-resolution map.

2.4.3 Creating Vector-based maps

TvSLAM. Chen et al. [CQW+17] describe a SLAMalgorithm that creates vec-
tor maps. They focus on a home cleaning robot system without a laser range
finder and instead rely on ultrasonic and infrared sensors for obstacle de-
tection, as well as ultra-wide-band (UWB) receiver andwheel-encoder-based
odometry readings for pose estimation. Localization does not rely on themap

2.4. Mapping 29

and instead is based on the UWB receiver and dead reckoning. The robot
utilizes a wall-following exploration strategy and only collects data points
when it turns. Consecutive data points are connected to form vectors, creat-
ing outlines of any obstacles. Unexplored areas remain when there are gaps
in obstacles that are too small for the robot to enter, however they are not
marked as frontiers and instead closed as obstacles. This makes sense for this
use case, since the map is used for navigation only (and not for localization).
This results in relatively long vectors and filters out most noise, but also ig-
nores small details. The SLAM algorithm also adds topological information
that are meant to help with navigation tasks.

VecSLAM. This algorithm by Sohn et al. [SK09] creates a single global map
consisting of vectors. Vectors are not necessarily connected with each other,
and consequently may contain gaps. Therefore the map itself is not closed,
as the borders between explored and unexplored space are not well defined.

The vectors are created from laser scan data, using a sequential algorithm
described in [SK08], building a new local map. This local map is alignedwith
the global map via scan matching, and vectors are merged with existing vec-
tor, using a recursive least square filter. Global map errors are reduced by
utilizing loop closures.

SLAM algorithm by Jelinek. This SLAM algorithm described by Je-
linek [Jel15] provides another open vector map without frontiers between
explored and unknown space. Vectors are created from the sensor data
via edge extraction. Scan matching with the global map is used to align
new vectors. For this, only vectors in the global map that are longer than
a given threshold are used, because shorter vectors are deemed to be not
determined with enough precision. After this step new vectors are added
to the global map. Whenever possible new vectors are merged with existing
ones. New vectors that have no corresponding pair in the global map are
added unchanged. Figure 2.17 shows the map building process. The left
image shows an overlay of all raw data and the robot’s trajectory. Next to
it we can see a single scan what has been segmented into groups that are
considered likely to belong to the same vector. The third image shows the
same scan as the previous image, but now the points have been replaced
by vectors. The last image shows the complete map, with red vectors being
considered long enough for scan matching.

BS-SLAM. Pedraza et al. introduce BS-SLAM [PDM+07], an EKF-based
SLAM algorithm that models obstacle shapes with B-Splines and utilizes
the control points of the splines as features for the Kalman Filter. B-splines

30 Chapter 2. 2D SLAM for autonomous exploration

Figure 2.17: Stages of the vector map building in the SLAM algorithm
by Jelinek. From left to right: raw data, segmentation (showing a single
keyframe), line extraction (showing a single keyframe), and complete map.
Image source: [Jel15]

in this context are similar to vectors in that both are parametrized curves
and are used to model the shape of the environment (i.e. the obstacles).
However the splines are not necessarily connected with each other, resulting
in general in open shapes. With no frontiers and no clear transition between
explored and unexplored space, BS-SLAM is lacking a critical feature. An
example map can be seen in Figure 2.18.

Figure 2.18: Vector map constructed with BS-SLAM. Image source:
[PDM+07]

2.4. Mapping 31

SLAM algorithm by Lakaemper et al. Lakaemper et al. [LLW05] use a
vector-based map format for merging maps which may be created by dif-
ferent robots (including different laser scanners). Line segments are built
to approximate the laser scan points, but details about this process are not
mentioned in the paper. Instead the focus lies onmapmerging and detecting
loop closures via shape similarity measure. Their approach does not rely
on odometry. An example of their vector-based map can be seen in Figure
2.19 However like other examples, their map format does not include fron-
tiers, and the shapes don’t defined clear transitions between explored and
unexplored space.

Figure 2.19: A vector map constructed with the algorithm introduced by
Lakaemper et al. The left image contains line segments created from 400 laser
scans. The right image is aftermerging of the lines. The unit size in the figures
is cm. Image source: [LLW05]

SLAM algorithm by Elseberg et al.. Elseberg et al. [ECL10] are building the
map from keyframes. Their keyframes are constructed from vectors without
disclosing which line extraction method is used. Potential keyframes are
rejected if they show too much overlap with previous keyframes, to reduce
the computational load. Alignment between keyframes is computed by
global pose graph optimization, utilizing the relative pose of overlapping
keyframes obtained by scan matching. Once a global map has been created,
clustered vectors (based on their similaritymeasure) aremerged into average
line segments that represent the replaced vectors. Finally inconsistent vectors
(e.g. introduced by people walking nearby while the robot was recording)
are removed from the global map. The map does not contain any frontiers,

32 Chapter 2. 2D SLAM for autonomous exploration

and their approach does not scale well on larger data sets (large being 500+
keyframes according to the paper).

VectorAMCL. Hanten et al. [HBOZ] show that the principle of Adaptive
Monte Carlo Localization (AMCL) can be used in conjunction with vector
maps. They use a beam and likelihood field model as described by Thrun et
al. [TBF05]. In simulations they outperform grid-based AMCL solutions in
terms of Absolute Trajectory Error and Relative Pose Error (both translational
and rotational errors). Experiments with real robots (utilizing CAD floor
plans to create maps) also show improvements over conventional AMCL ap-
plications. In particular, they achieved higher accuracy, requires lessmemory
& computation time, and expect to scale well in large scale environments.
Strictly speaking, this is not a SLAM algorithm, as only the pose is provided
as output.

2.5 Global Error Minimization

One of the biggest problems in early SLAM solutions was how to deal with
error accumulation as the trajectory gets longer and the maps grow larger.
The main source of error comes from sensor noise (including sensor bias), in
particular the laser range finder, odometry, and (if present) the IMU. Other
sources of error include dynamic elements in the environment (e.g. pedestri-
ans, doors, other robots, etc.), approximations in mathematical models (e.g.
linearization via extended/unscented kalman filters), limits of robot hard-
ware (e.g. uneven robot wheels), discretization of sensor data, and many
more.

Overall, there are two steps to minimize the global error. The first step is
to reduce the local error. This comes down to estimate the robots pose as ac-
curately as possible. Techniques involved in this step have been discussed in
2.3. In doing this, we reduce the global error bounds by a significant margin.

The second step is to reduce the global error by means of loop closures.
Loop closures occur when a robot re-visits a place that is already part of the
map. A successful loop closure introduces a restriction that links to poses
in relation to each other. This ensures that (the affected part of) the map is
coherent and reduces the global error. Loop closures can happen implicitly
(for example in Particle Filters) or explicitly as in Kalman Filters and Graph
Optimization.

2.5.1 Global Optimization with Kalman Filters

Global Optimization is a direct byproduct from the algorithm, as it mini-
mizes the mean square error along all features and the robot pose. One chal-

2.5. Global Error Minimization 33

lengewith this algorithm lies in feature association, in particular to recognize
whether or not a feature is new or has already been observed in the past. In
other words, the algorithm relies on loop closures.

Research in regard of global optimization with KF-based SLAM is less fo-
cused on further reducing the global error and more on increasing the com-
putation speed by reducing the algorithms complexity class. While doing so
(typically) increase the global error, this trade of is acceptable in exchange to
allow the robot to work in larger environments.

2.5.2 Global Optimization with Particle Filters

As mentioned above, loop closing in particle filters happens implicitly by
having particles that accidentally close a loop to score higher than those that
fail to do so. On the one hand, this is convenient, because no further action
is required by the algorithm. But the lack of actively finding loop closures is
also limiting the ability to perform loop closures in the first place. The general
problem in this regard is described by Stachniss et al. [SGB05]. The longer the
trajectory before the robot revisits a location, the less likely it is for the particle
filter to successfully perform a loop closure. This behavior can be reduced to
some degree by parameter tuning, in particular by increasing the number of
particles and reducing the threshold that causes premature particle rejection.
Overall, particle filters can performwell, especially when loops can be closed
early. But they perform badly when they fail to close loops after traveling for
long distances.

2.5.3 Pose Graph based Global Optimization

In (pose) graph optimization, localmaps (e.g. keyframes) are treated as nodes
of a graph. Neighboring maps with a decent overlap are connected via edges
in the graph. These edges contain the transformation from one local map to
the other. As the graph grows (especially after loop closures) the transfor-
mations between local maps become increasingly contradictory in the global
context. An iterative optimization algorithm (see [KGS+11] for examples) re-
duces the overall error by evening out transformation errors between multi-
ple nodes and edges. The resulting graph (and corresponding map) is more
consistent than before and the global error is minimized. Figure 2.20 shows
this process. Subfigure (b) shows the pose estimate without graph optimiza-
tion. In (c) the loop closure between pose 4 and pose 1 is detected and added
to the pose graph. Finally in (d) the pose graph optimization has minimized
the global error, resulting in an pose estimate close to the ground truth from
(a).

Like other active loop closing algorithms, this technique is sensitive to

34 Chapter 2. 2D SLAM for autonomous exploration

Figure 2.20: Pose graph optimization illustrated on a toy example. Figure (a)
shows the ground truth of the robot trajectory. Figure (b) shows the pose es-
timate which includes a rotational bias. Figure (c) illustrates a detected loop
closure between pose 4 and pose 1. Figure (d) is the result of graph optimiza-
tion with the loop closure in effect.

false positives. Edges in the graph that add false restrictions can cause the
algorithm to fail completely and greatly increase the global error. As a re-
sult some research focuses on dealing with outliers in the graph structure,
for example Sünderhauf and Protzel [SP12]. Other research on Pose Graph
Optimization works on reducing the computational load to deal with larger
environments, e.g. by sparcification of the graph [HKL13].

2.6 Navigation

Navigation in the context of this thesis refers to the task of path finding a valid
trajectory that leads the robot from position A to position B, with both posi-
tions provided via coordinates in the frame of a globalmap. Several strategies
have been developed to deal with this, typically revolving around the capa-
bilities of the robot, in particular the range, accuracy, and sensor resolution.

2.6.1 Reactive navigation

Reactive navigation computes the robot movement very quickly based on its
current perception. Global knowledge beyond the robots sensor range (such
as provided by a global map) is not used. Bug algorithms [MdCT18] for in-
stance, guarantee to reach the target (in a static environment), assuming that
the target is reachable at all. They rely only on short-range sensors such as
tactile sensors or ultrasound sensors. The strategy involves “wall hugging”,
that is moving along obstacles that are encountered on the robot’s trajectory.
These strategies are fairly simple,whichmakes them suitable for autonomous
robots that have minimal computation power. Furthermore, they don’t re-
quire neither extensive sensor setups nor any sort of mapping or localization.
However the lack of global insight often leads to sub-optimal trajectories.

2.6. Navigation 35

2.6.2 Grid-based Navigation

Several approaches are based on a regular decomposition of the environment
into cells such as Occupancy Grid Maps to compute an efficient trajectory
from the robot’s position to a target area. For example, an approach based on
potential field [BLL92] guides the robot with repulsive forces spread from
the obstacles and an attractive force directed toward the target. Like other
regular-cells-navigation approaches (as based on Markov Decision Process
[FT07]), the action performed in a cell depends on an evaluation of neighbor-
ing cells. The trajectory planning requires several iterations on the complete
map to converge to a stable configuration, driving a robot towards one and
only one target. The resulting trajectory could be classified as optimal regard-
ing the cell dimension.However, it requires computation that rapidly become
unpractical in large environment or in multi-task and multi-robot scenario.

2.6.3 Heuristic approaches

To speed up computation, heuristic approaches compute paths on a graph
(adjacent traversable cells) that is built fromOccupancyGridMaps produced
bymost SLAM algorithms. A textbook case is providedwith the Robot Oper-
ating System (ROS) module move_base1 [MEBF+10]. Some well-known path
planning algorithms such asDijistra,A∗, Navfn, etc. algorithms are employed
on a graph generated from a Grid Map where obstacle shapes are inflated.
This way, the approach returns the shortest path to a target position while
the robot keep safe distances to obstacles.

These approaches based on converting Grid Maps usually lead to gener-
ate large and hard to process graphsmaking path planning slow.Approaches
based on Rapidly exploring Random Tree [KL00] tackle this problem by per-
forming the A∗ algorithm while iteratively building a tree (instead of a
graph). At each iteration, random movements toward the target position
generate new reachable positions from the most promising ones. In case of
a dead end (all random movements fail because of obstacles in the map), a
backtrack mechanism is activated. The algorithm ends when the target is
reached or when no more position in the tree can be extended.

2.6.4 Topology-based Navigation

In general, topology-based navigation (as proposed in [LAB+12]) relies on an
hybrid approach based on a reactive and a deliberative architecture.

Deliberative modules control the local behavior on a high level, e.g. by
activating or deactivating specific local behaviors, based on the current sit-

1https://wiki.ros.org/move_base - Author: Eitan Marder-Eppstein

https://wiki.ros.org/move_base

36 Chapter 2. 2D SLAM for autonomous exploration

uation. They are also responsible for representing the position of the robot
and the path to the goal. As such, there task is to path planning on the level
of the topological map itself Reactive modules are more focused on the local
environment of the robot, and reaching nearby topological nodes. They are
dealing with dynamic elements in the immediate area around the robot and
how to avoid collisions with obstacles.

Ideally, the topological map has nodes in all key areas, while also min-
imizing the total amount of nodes for fast and efficient computation when
performing path planning. In this context, nodes represent areas in the envi-
ronment that are traversable by the robot, and edges in the graph connect two
nodes if, and only if, they are reachable. The meaning of “reachable” varies
from case to case, but typically encompasses, that a node can be reached (e.g.
by a robot) by only providing the two nodes in question without relying on
any other topological nodes. In some cases, this means that the two nodes
must have a direct line of sight, in other cases there may be less restrictive
demands to be satisfied.

Topological maps can be generated from metric maps such as occupancy
grids as a Voronoi [Thr98] or a Visibility Graph [Wel85]. They can also be
directly created without such intermediate formats and used for navigation,
as shown for example by p [Kui00].

2.7 Comparison of 2D SLAM Techniques and Solu-
tions

In the previous sections we took a closer look at the various SLAM tech-
niques and algorithms. In this section, we compare the general techniques
or selected algorithms against each other. There are some cases where we
only compare the general techniques, because individual algorithms that are
based on the respective technique all share the same characteristics in regard
of the comparison criteria.

2.7.1 Comparison Criteria

When comparing different SLAM solutions for exploration, there are a num-
ber of criteria that we are interested in.

• Localization Accuracy:How accurate is the pose estimation within the
created map. This depends on the map quality, the sensors, and the
localization algorithm itself.

• MappingAccuracy:Consistency and accuracy of the createdmap. This
is also influenced by the map format, for example occupancy grids are
bound to a fixed resolution.

2.7. Comparison of 2D SLAM Techniques and Solutions 37

• Frontiers: Whether or not the map contains frontiers that can be used
for (autonomous) exploration. Frontiers can be included in the map in
an explicit manner, or implied in an implicit way, or be completely ab-
sent.

• Well Defined Borders: Whether the the transition from traversable
space into obstacles / unexplored space are well defined (closed map)
or the borders between explored and unexplored space are not always
clear. Occupancy grids are always closed, feature-basedmaps are never
closed, some vector maps are closed.

• Usable for Precise Human Navigation: This is mostly about how well
the map can be visualized for human use. In particular how well the
shape of the environment is presented to human users.

• Suitable for Autonomous Navigation To satisfy this criteria we need
to be able to create a topological graph from the map. Without such a
graph we are unable to perform efficient global-scale path planning or
determine if a target location is reachable at all from the robots current
position.

2.7.2 Comparing Techniques and Map Formats

In this section, we compare the basic techniques and map formats with re-
spect to the comparison criteria mentioned above.

2.7.2.1 Localization Accuracy

The following paragraphs evaluate the impact of different map formats and
algorithms on the localization accuracy. Factors such as sensor quality and
external influences are ignored, unless they have a significantly different im-
pact between the compared approaches.

Occupancy Grids. While the quality of the map itself has a very big impact
on the localization accuracy, modern SLAM algorithms can create fairly ac-
curate occupancy grids of moderate size environments, for example inside
buildings. This map format imposes a uniform and predefined resolution on
the whole map. Theoretically the map resolution limits the possible accuracy
for localization. However themost common resolution for gridmaps (5x5cm)
seems to be good enough for most real world scenarios. Ultimately the ac-
curacy also highly depends on the localization method used. Kümmerle et
al. [KSD+09] and Vincent et al. [VLE10] show that among the tested algo-
rithms, pose-graph-based localization provides the highest accuracy. How-
ever, Röwekämper et al. [RST+12] show that Particle Filters can deliver good

38 Chapter 2. 2D SLAM for autonomous exploration

results, even in dynamic environments. All tests in the cited papers were per-
formed on occupancy grids with a 5x5cm resolution.

Feature-based Maps. Similar to other map formats, the quality of the map
has a big impact. Hand placed beacons with known location are even used
to provide a quasi-ground-truth source, as the error boundaries are typically
not only known, but also fairly small and not subject to bias or drift. The same
cannot be said about feature based maps that were built in a SLAM fashion.

The issue with feature-based maps is, that the higher the accuracy (of
the map and the pose estimate) is, the more observable (and identifiable)
landmarks arewithin range of the robot’s sensors at any given time. However
increasing the feature density shrinks the possiblemaximumarea of themap,
since the computational load largely depends on the total number of features
in the map. As a result, there is a trade-off between map size, accuracy, and
computational load that needs to be adjusted the robot’s capabilities and the
general scenario. The work of Paz et al. [PJTN07] shows how different EKF-
based algorithms balance between the number of features and accuracy.

Vector Maps. While vector maps have the potential for high accuracy local-
ization, there are only few modern implementations that create them. Over-
all, the quality of vector maps of reasonable large environments is inferior to
occupancy grids or feature-basedmaps among vectormaps introduced in pa-
pers that we found on the subject, such as [CQW+17,Jel15,SK09] and others.
Though at least part of the reason for this is the lack of global optimization
in many of the vector-based SLAM implementations.

However, given an accurate vector map of the environment, the expected
accuracy of the pose estimate is higher than in other map formats, assuming
that the environment can be reasonably well be approximated by vectors.
The reason for this is, that the vectors are not bound to a fixed grid, allow-
ing the vectors to approximate the environment better than occupancy grids.
Compared to feature-basedmaps, vectors cover a larger area than landmarks,
allowing the robot to use more sensor data for the localization process. This
however is only an advantage if the environment can indeed be well approx-
imated with vectors.

Topological Maps. Comparing topological maps to the other formats is dif-
ficult, because localization in topological maps often doesn’t aim for precise
pose estimates and ismore about linking a graph node to a general area of the
map. Therefore we will not look deeper into this map format in the context
of localization or accuracy.

2.7. Comparison of 2D SLAM Techniques and Solutions 39

2.7.2.2 Frontiers

Map formats may specify frontiers to model the boundary between
traversable space and unexplored space. Unlike borders, frontiers are not
obstacles, but may be treated as such during navigation tasks, depending on
the scenario and environment. Exploration greatly benefits from the pres-
ence of borders in the map, as it allows better planning and prioritization of
different areas in the environment.

Occupancy Grids. The classic occupancy grid is initialized as unknown
space. Cells are marked as free/occupied space as the robot traverses in
the environment and provides sensor data. In maps like this frontiers are
built implicitly and don’t need to be formally added to the map format. The
reason for this is, that frontiers exist whenever an unexplored cell in the
grid is neighboring a free cell. Still, for the sake of faster computation during
exploration tasks, frontiers may be explicitly added to the map and updated
along with the normal SLAM process [Yam97].

Feature-based Maps. The nature of feature based maps leads to a complete
absence of frontiers in the map format, and therefore in the maps itself. As a
result, if frontiers are required, we need either a hybrid map format or a sec-
ond map that includes frontiers. For example Tao et al. [THSW07] are using
EKF-SLAM (witch uses a feature-based map) for the Mapping and Localiza-
tion, but maintain an occupancy grid to compute frontiers.

Vector Maps. As mentioned earlier, most vector map formats that we found
are open maps with no support for frontiers. And the only implementation
that creates a closed vectormap (Chen et al. [CQW+17]) uses awall-following
strategy for exploration and assumes that there are no unexplored areas left
when finished, hence lacking any need to implement frontiers. Aside from
special cases as above, a vector map that is closed (and doesn’t assume that
everything has been explored) should require frontiers to maintain its closed
shape.We did not find any priorworkwhere a vector-based SLAMalgorithm
creates maps with embedded frontiers.

2.7.3 Comparing Solutions

In this section, we discuss the different solutions that can provide very dif-
ferent map results as shown in Figure 2.21 depending on the techniques they
use.

40 Chapter 2. 2D SLAM for autonomous exploration

GMapping. One of the older and yet also one of themost popular SLAM im-
plementation to this date is GMapping [Gera, GSB07]. It combines the idea
of AMCL localization (as described in [FHL+03]) with mapping techniques
and is one of the first demonstrations of effective loop closing in realistic sce-
narios.

To achieve this, GMapping employs several techniques. It adapts the use
of particle filters from AMCL. In addition to a pose estimate, each particle
also holds it own estimate of the environment, i.e. its own occupancy grid. By
sharing commonhistory betweenparticles, thememory footprint per particle
is reduced,which in return allows formore simultaneous particles to be used.
The particles also perform loop closing, which results in consistent maps of
the robots environment. The map itself is a three-state grid map, an example
of a map created with GMapping is shown in figure 2.5.

Karto. The open source SLAM implementation Karto creates occupancy
grids, similar to GMapping. While GMapping is using a Particle Filter for
global optimization, Karto applies a pose graph optimization instead. Ac-
cording to Santos et al. [SPR13], Karto tends to produce better maps than
GMapping. The resulting map is a three-state grid map, same as GMapping.

Cartographer. The newest SLAM algorithm in this list that produces oc-
cupancy grids is Cartographer [HKRA16]. It uses pose graph optimization
to create consistent maps. While the results can be of high quality, even in
large-scale environments, it relies heavily on its parameters being adjusted to
the environment [LFBL18]. Internally, the algorithm handles multiple small
maps instead of one single large global map. The maps are linked together
in a graph structure. The map output of the algorithm is still a single large
occupancy grid. However unlike GMapping and Karto, the maps produced
by Cartographer are not three-state grid maps. Instead the cells contain
values in the range of [0, 1] (quantized into a byte with the range [0, 255] for
compatibility) with the value depicting the probability whether the cell is
free or occupied. An example map from Cartographer is shown in Figure 2.6

VecSLAM. Sohn and Kim [SK09] introduced a vector-based solution called
VecSLAM. They use a sequential segmentation algorithmdescribed in [SK08]
to create line segments from the point clouds. The keyframes are aligned
with the map, and similar line segments are merged using a recursive least
square filter for robustness. For the purpose of global optimization, a topo-
logical map (based on the robot’s pose graph) is maintained parallel to the
vector map. On detected loop closures a Weighted Error Distribution (WED)
is used to minimize the error in the affected part of the topological map, and

2.7. Comparison of 2D SLAM Techniques and Solutions 41

the map is rebuild.The algorithm provides overall good results both in sim-
ulations and in an experiment with a real robots. However, the created map
does not contain any frontiers, making it unsuitable for exploration tasks and
of limited use for general navigation tasks.

SLAMalgorithmby Elseberg et al. Elseberg et al. [ECL10] describe a vector-
based SLAM algorithm that utilizes global optimization via pose-graph op-
timization. The algorithm first reduces the input data to keyframes, reject-
ing data that has to much overlap with the previous keyframe. In the next
step global optimization improves the alignment of keyframes. Keyframes
are then merged into the global map, and clusters of overlapping vectors are
merged into fewer larger vectors. A final cleanup step removes inconsistent
vectors. The resulting vector map (Figure 2.21 has a clean look to it, but con-
tains small yet visible errors. The map does not support frontiers and conse-
quently is not closed either.

SLAM algorithm by Jelinek. Another recent development comes from Je-
linek [Jel15]. He describes a 2D SLAM solution with a focus on providing a
good approximation of the environment, using a vector-based map format.
The map is build up from keyframes. A keyframe holds a point cloud, on
which an edge extraction algorithm is used to create a set of vectors that re-
flect the geometric structure of the environment. The first keyframe is used
as the initial map, consecutive keyframes are merged to expand the map.
In the process, overlapping and nearby vectors with similar alignment are
merged, vectors that are shorter than a preset length are removed. Localiza-
tion is based on dead reckoning (via inertial sensors) as initial guess and line
fitting between the keyframe and the map afterwards. This approach is com-
parable simple since the edge extraction algorithm just looks for clusters of
points that lie on a line. In return the whole process is relatively fast, and
the implicit noise filtering from the line extraction is dealing with the sen-
sor noise. A disadvantage is, that there is no distinction between traversable
space and unexplored space, since only observed borders are stored in the
map. As a result the map does not model frontiers, which would be required
exploration tasks. However the map can still be used for localization since it
contains metric information in the vectors. Navigation would be limited to
paths already traveled, but was not considered in the paper. Another disad-
vantage is, that the line extraction algorithm needs sufficiently large straight
surfaces, having it fail to approximate surfaces with a strong curvature. This
work lacks global optimization. Examples can be seen in Figures 2.8 and 2.17.

42 Chapter 2. 2D SLAM for autonomous exploration

Fig. 4. Segment merging. Clusters of segments (left) are replaced by single
representative segments (right). The figure shows a magnified view of the
center of Figure 5 b) and c).

VII. POST-PROCESSING: SEGMENT EXTRACTION BASED

ON VISUAL CONFIDENCE USING SIGHT TRIANGLES

After performing scan selection and scan alignment, the

global map still consists of all segments which are present

in the selected scans Si ∈ S−. This includes erroneous

segments, originating from different sources (‘ground-scans’

from strong tilt, moving objects, ghost objects etc.). To

eliminate these segments, we post-process the global map.

Using the corrected poses and the segments of single scans,

we eliminate segments in the global map which are in-

consistent in the sense of occlusion using the approach of

sight triangles, which is straightforward due to segment

representation of the data.

A. Sight Triangles

Given the robot’s position Pi (in the global coordinate

system) of a single scan Si ∈ S−, and a segment uj ∈
Sj with endpoints aj , bj , a sight triangle Tij is spanned

by (Pi, aj , bj). We create sight triangles for all scans and

their segments (these triangles are defined in the global

coordinate system). Each segment ui of the global map

which is significantly inside of a sight triangle is defined

as inconsistent (it occludes the segment which was observed

in the scan); such a segment is a candidate for removal from

the global map. We define a soft confidence measure C(ui)
for each segment. During the merging process (section VI),

each segment ui is assigned a weight wi which is correlated

to the number of scans it appears in. Using sight triangles,

we define µi, the number of times the segment has been seen

incorrectly. The confidence measure is defined as

C(ui) =
µi

wi

(7)

with C(ui) = 0 representing the highest confidence. Seg-

ments ui with C(ui) > TD exceeding a certain threshold

TD are removed. An additional test is needed due to small

computational errors and alignment errors: a segment only

qualifies as a candidate for removal, if it is not similar to the

segment defining the sight triangle.

In the current implementation, we reduce the complexity

K of O(n2) of the map cleaning process to O(n) ≤ K ≤
O(n2), n=number of segments in the global map, using

a bounding box approach (axis aligned bounding boxes

containing all segments of a single scan). As can be seen

in Figures 5, 7, 8, map cleaning significantly reduces the

noise in the global map.

Note: Figure 5 d) shows a certain ‘over-cleaning’, tables

(which exist in the original environment) are removed, see

rightmost wall in Figure 5 d). Since in certain scans these

features could not be seen (scanning on different height

than the table), they were classified as inconsistent and were

removed. This can happen when objects with small vertical

extent are present in the scans. Even if the removal of

such features is not necessarily beneficial in certain cases,

the cleanup module can help to detect them. The level of

cleanup is steerable using the threshold TD. Its influence is,

however, minimal, since inconsistent segments tend to have

high values of C(ui), lacking smooth transitional values.

VIII. EXPERIMENTS

We show results of our mapping system on three different

data sets. For each experiment we show the selected scans

(output from the selection module), the result of the global

alignment, the merged globally aligned map and the result

of map cleaning.

A. Data Set ‘Freiburg082’

a b

c d

Fig. 5. Data set Freiburg082. a) 74 selected scans, pre-aligned by a point
based algorithm. b) improvement of global segment based alignment c)
merged map d) cleaned map

3929

Figure 2.21: Example of a map created from the public data set Freiburg 082,
using the SLAM algorithm by Elseberg et al. (a) shows aligned keyframes
before global optimization, (b) after global optimization. In (c) we have the
merged map and (d) shows the finished map. Image source: [ECL10].

2.7. Comparison of 2D SLAM Techniques and Solutions 43

TvSLAM. Arecent example of vector-basedmaps can be found at [CQW+17].
Chen et al. are studying a home-cleaning-robot platformwith very limit sen-
sor range of 3m. The robot is equipped with 8 infrared range finders and a
single ultrasound range finder. To compensate for the limited sensor range,
they also use a UWB (ultra-wide-band) radio receiver. The robot also has
wheel encoders and an IMU, which allow for dead reckoning localization.
The combined use of dead reckoning and absolute position estimate via ra-
dio beacons allows the algorithm to determine its current pose well enough
that global optimization is not needed. The exploration strategy is a simple
wall following algorithm witch is not hindered by the short range of its
infrared sensors. Intermediate map results are not discussed in the paper,
and the finished result is assumed to cover the whole area, meaning that
the map has no need for frontiers. Figure 2.22 shows a map created in a
simulation.

Figure 2.22: A vector map created with TvSLAM. Image source: [CQW+17]

2Map accuracy and Localization accuracy combined, since the two depend on each other.
3Frontiers are implicit in this map format and can be computed if needed.
4Results depend heavily on parameter tuning. We assume good parameters in this table.
5Not comparable to other results because no implementation is available to us test the

algorithm on a common data set.
6Localization accuracy is great, but requires pre-installed radio beacons in the environ-

ment.

44 Chapter 2. 2D SLAM for autonomous exploration

Map
format Accuracy2 Frontiers Closed Visualiz.

Navi-
gation

GMapping grid good no3 yes good yes
Karto grid good no3 yes good yes

Cartographer grid great4 no3 yes good yes
VecSLAM vector n/A5 no no good no
Elseberg vector n/A5 no no good no
Jelinek vector n/A5 no no good no

TvSLAM vector n/A5,6 no yes good no

Table 2.1: Overview of the discussed SLAM algorithms and their features or
lack thereof.

2.7.4 Conclusion

Based on the comparison criteria in Section 2.7.1, summarized in Table 2.1,
we have found no existing SLAM algorithm that satisfies all desired fea-
tures. Occupancy grids, while widespread, quickly grow in size to a level
where sharing them over a wireless connection becomes problematic. Their
lack of explicit frontiers makes exploration harder and requires periodic re-
computation of explicit frontiers necessary.

Feature-based maps are lightweight in comparison, but don’t necessarily
model the shape of obstacles well. Indeed, obstacles are often modeled as
shapeless points in space. The feature-based map format also fails to mark
transitions between explored and unexplored space, which is a major draw-
back for navigation and path planning.

The vector-based map formats are lightweight in nature, but none of the
proposed formats we found were supporting frontiers. Furthermore, most
implementations produce open maps. Only TvSLAM creates a closed map,
but still does not support any frontiers.

2.8 Summary

The current state-of-the-art map formats and SLAM algorithms are not par-
ticularly well suited for multi-robot exploration as no map format ticks all
marks on the requirements outlined by us.While among the threemajormap
formats that we examined, each had its strong points, every single one also
had aspects that were undesirable. Consequently, we did not find a SLAM al-
gorithm that we consider well suited for multi-robot exploration tasks. This
justifies our work on developing a new map format and SLAM algorithm
with Navigation support, which we will introduce in the following chapters.

PolySLAM: A 2D
Polygon-based
SLAM Algorithm

Chapter3Contents
3.1 The PolyMap format . 45
3.2 Overview of PolySLAM . 48
3.3 Data Acquisition and Alignment . 50
3.4 Creating Keyframes from Point Cloud 53
3.5 Polygon Refinement . 53
3.6 Level of Detail & Parameter Tuning . 62
3.7 PolyMap Merging . 63
3.8 Summary . 68

Introduction

Vector-based SLAM provides a lightweight map format like feature-based
SLAM, but also models the shape of obstacles like grid-based SLAM ap-
proaches. Modeling the world with vectors also allows to reduce the impact
of sensor noise by averaging over a subset of sensor data. As we have estab-
lished in Chapter 2, vector-based map format are not common, and none of
the formats known to us fulfill our requirements. In this chapter, we intro-
duce PolySLAM, a novel vector-based SLAM that meats our requirements
for our SLAM algorithm as outlined in Chapter 2.

PolySLAM relies on PolyMap, a polygon-based map format. In the fol-
lowing, we first introduce PolyMap, before discussing building blocks of the
PolySLAM algorithm.

3.1 The PolyMap format

3.1.1 Model

PolyMap represents the environment using simple polygons. Simple poly-
gons are non-self-intersecting closed polygons [Grü13]. Our polygons model
only explored space, i.e. the inside of all polygons is traversable space. This

46 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

happens naturally in the PolySLAM algorithm, as the map is built up from
keyframes that all share this characteristic by construction, and carries on as
merging keyframes preserves this feature. All the space that is not modeled
in PolyMap is unknown/unexplored space. Obstacles are created by (multi-
ple) polygons enclosing the obstacle.

With this, a PolyMapM is defined as:

type : T = {obstacle, frontier, sector} (3.1)

vector : V = {(a, b, t)|a, b ∈ R2; a 6= b; t ∈ T} (3.2)

polygon : P = {vi|i ≥ 3; vi ∈ V } (3.3)

PolyMap : M = {pi|1 ≤ i ≤ n; pi ∈ P} (3.4)

with pi being a simple polygon, and n being the number of polygons forming
the map.

We define three types of line segments :

Obstacles: they represent the outline of obstacles.

Frontiers: they model the transition from free/traversable space to un-
known/unexplored space.

Sectors: they delimit a traversable transition between the polygon the vector
belongs to and another adjacent polygon.

Every line segment has exactly one type, but a polygon can contain line
segments of different types. The direction of line segments is chosen, so
that clockwise oriented polygons contain traversable space inside. Figure 3.1
shows an example of map containing two different types of line segments:
red line segments represent obstacles and yellow line segments represent
sectors.

Using directed line segment like this, has the advantage that it is easy to
determine whether a given point is inside free or unexplored space; a prop-
erty that feature-based and vector-based map formats are missing. For this,
we only need to find the closest line segment to the point and look at which
side of the polygon the point is located. Figure 3.3 illustrates this with two
points: one is inside the explored area and the other is outside. This not only
helps for visualization, but also allows localization with particle filters to dis-
card particles that are inside obstacles or otherwise in unexplored space.

One characteristic of the PolyMap format is, that it only models explored
space, i.e. the inside of all polygons is traversable space. This happens natu-
rally in the PolySLAM algorithm, as the map is built up from keyframes that
all share this characteristic by construction. Moreover, merging keyframes
preserves this property. Being able to break up a polygon into smaller parts
also has the advantage that partial maps of the environment (e.g. parts that

3.1. The PolyMap format 47

changed recently) are supported in this map format. This is advantages in
situations where we need to share map updates with other robots or human
operators, but have limited bandwidth available to do so.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7Figure 3.1: A PolyMap example. The left figure shows themap itself, the right
figure has the polygons moved apart to show the four individual polygons
that make up this map.

3.1.2 Evaluation of PolyMap

PolyMap does address all the requirements presented in Chapter 2. Being
based on vectors grouped into polygons, a PolyMap has by definition the
advantages of vector-based map formats. It is lightweight and can be eas-
ily visualized by humans. The remaining of this section first discusses how
PolyMap meets the two other requirements and then how to build polygon-
based maps.

Explicit Exploration Frontiers. The types of line segments of a polygon are
either obstacles, frontiers, or sectors. Outside a polygon is unexplored space,
while inside represents the explored space. Potentially traversable transitions
from explored to unexplored space are represented by vectors of type fron-
tier.

Support for Path Planning. PolyMaps are suitable for navigation because
polygons separate traversable areas and unexplored ones. The sparse nature
of this map format makes it easy to create a topological graph (explained in
more detail in Chapter 4), for example by using visibility graphs, or random
sampling points in traversable space [LaV06]. Such topological graphs are
then suitable for navigation and path planning.

48 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

How tobuild a PolyMap. Tovalidate our PolyMap format before implement-
ing a compatible SLAM algorithm we had to build actual PolyMaps out of
occupancy grids. Doing so can be achieved in several ways, for example by
extending the approach of Baizid et al. [BLFB16] to form closed polygons.
Another possibility would be to utilize a wall-following strategy to outline
the borders of traversable space, creating closed polygons in the process.
Yet another method is to create a vector for every transition from free space
into non-free space, and build polygons from the collected vectors. We used
this idea in our implementation () to build PolyMaps from grid maps. The
pseudo-code for this is shown in Algorithm 1.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6

Figure 3.2: A map consisting of only
simple polygons. Obstacles are black
and frontiers are green.

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5

A

B

Figure 3.3: Two points (marked in
blue), one inside free space, the other
in unexplored space.

3.2 Overview of PolySLAM

In this section,we introduce our PolyMap-based SLAMalgorithmPolySLAM.
The algorithm, as depicted in Figure 3.4 can be split into 5 modules/stages:
data acquisition, data alignment, keyframe creation, refinement, and merging. The
Data Acquisition module creates and pre-aligns a pointcloud from laser scan,
odometry. In Data Alignment, the pre-aligned pointcloud is aligned with the
previously built global map. The alignment is performed via point-to-vector
ICP and additionally provides an update to the robot pose estimate. The
now aligned point cloud is converted into a polygon in the Keyframe Creation
module, and then refined in the Refinement module to reduce the number of
vectors. This polygon can now be merged into the global map in theMerging
module, extending the robot’s knowledge about its environment.

3.2. Overview of PolySLAM 49

Algorithm 1: Creating a PolyMap from an Occupancy Grid
Data: occupancy grid map G
Result: PolyMapM
begin

create dictionary D
/* create vectors */

foreach cell c ∈ G where c is free space do
foreach neighbor n of c where n is not free space do

/* vector orientation is CCW with respect to

c */

if n is obstacle then
create vector v at border of c and n of type obstacle

else if n is unexplored then
create vector v at border of c and n of type frontier

end
add vector v to dictionary D with v start point as key
in case of two vectors sharing the same start point, both are
stored alongside

end
end
/* create polygons */

while D is not empty do
create empty polygon P
take random vector v from D

remove v from D

w := v
while w end point 6= v start point do

P add w
w := D at key w end point
remove w from D

end
M add P

end
/* aggregate vectors */

foreach polygon P ∈M do
foreach vector v ∈ P do

w := vector in P where w start point = v end point
if w orientation = v orientation and w type = v type then

set v end point to w end point
remove w from P

end
end

end
end

50 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

PolyMap Merging

Polygon Refinement

Keyframe Creation

Data Alignment

Data Acquisition
pointcloud pose estimate

pointcloud

polygon

polygon/PolyMap

PolyMappose estimate

laser scan odometry

map

Figure 3.4: Overview of the PolySLAM algorithm pipeline. The input of the
algorithm is at the top (laser scan & odometry), the output at the bottom
(pose estimate & map). The different stages are highlighted in gray, with the
arrows showing the data flow and the data types involved.

3.3 Data Acquisition and Alignment

We use a single laser sweep of the robot’s laser range finder and the odom-
etry reading associated with that time instance in the process of creating a
keyframe. As an intermediate step, the algorithm produces a pre-aligned
point cloud by converting the range readings from the laser scanner into a
point cloud and transforming the pointcloud from the robots (or rather the
sensor’s) local frame into the global frame byutilizing the pose estimate of the
last keyframe and the delta odometry since the last keyframe. In the next step
we align the resulting pointcloudwith the previously recorded obstacles (not
frontiers) that are placed in the globalmapbyusing a point-to-vector Iterative
Closest Point (ICP) algorithm.We only consider vectors that are of type obsta-
cle and are facing towards the sensor center, practically performing backface
culling1. That way our ICP algorithmwont try to align the points with for ex-
ample the other side of a wall. While point-to-vector ICP (and point-to-plane

1Backface culling is a a term used in 3D rendering where graphical elements are not ren-
dered if the normal vector is pointing away.

3.3. Data Acquisition and Alignment 51

ICP in 3D) by itself is not new [RL01, Cen08], we have not found previous
work of ICP that uses backface culling with 2D points/vectors.

The impact of backface culling is illustrate in Figure 3.5. The top left image
show the original (pre-)alignment of the point cloud. In the top right image
the point cloud is stuck in a local minima, and unable to get closer to the true
pose of the sensor/robot. When backface culling is active, obstacles whose’s
normal is pointing away from the robot are no longer considered for match-
ing (bottom left image). The bottom right image shows the alignment with
backface culling, and has a much better alignment as a result. The pseudo
code showing this is displayed in Algorithm 2.

 0

 0.5

 1

 1.5

 2

 2.5

 1 1.5 2 2.5 3 3.5 4

ICP example - laser scan

robot

(a) initial setup

 0

 0.5

 1

 1.5

 2

 2.5

 1 1.5 2 2.5 3 3.5 4

ICP example - without backface culling

robot

(b) result without backface culling

 0

 0.5

 1

 1.5

 2

 2.5

 1 1.5 2 2.5 3 3.5 4

ICP example - with backface culling

robot

(c) setup with backface culling

 0

 0.5

 1

 1.5

 2

 2.5

 1 1.5 2 2.5 3 3.5 4

ICP example - with backface culling

robot

(d) result with backface culling

Figure 3.5: Alignment of a laser scanwith the global map. Image a) shows the
initial pose of the robot (blue) and the laser scan end points (red). Image b)
shows laser end points matched to the wrong side of the wall, caused by the
ICP algorithmbeing stuck in a localminimum. Image c) shows the setupwith
backface culling active. Obstacles that are no longer considered for matching
are colored gray. Image d) shows the point cloud aligned correctly.

52 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

Algorithm 2: Computing the transformation matrix TF that aligns the
pointcloud pcwith the map
Data: PolyMap:map; pointcloud: pc; sensor center S
Result: Transformation TF
begin

3x3 transformation matrix: TF := identity

/* outer loop: icp iterations */

for i := 1→maxIterations do
Create Collections A1, A2

/* inner loop: determine inliers and compute

∆TF */

foreach point p ∈ pc do
p′ := TF · p
/* point-to-vector nearest neighbor search

with backface culling */

find nearest obstacle v ∈ map for point p′ so that:
corresponding point: c for {v, p′} and
angle between −→S, c and v is ≤ 90◦

if distance c to p′ ≤ outlierThreshold then
add c to A1, add p′ to A2

end
end
compute centroid C1 as average of A1

compute centroid C2 as average of A2

A′1 := A1 − C1; A′2 := A2 − C2

compute 2x2 matrix H := [
∑
A′1,

∑
A′2]

compute singular value decomposition: U · S · V := H

rotation matrix: R := V · UT

translation vector t := (R · C1) + C2

ICP transformation step: ∆TF :=

[
R t

0 0 0

]
update TF: TF := TF · |DeltaTF

end
end

3.4. Creating Keyframes from Point Cloud 53

3.4 Creating Keyframes from Point Cloud

Keyframes represent the local environment of a robot at a single point in time
(in practice a very short time interval) and each aremodeled as a simple poly-
gon. Creating the polygon for a keyframe is straightforward, with the three
major steps shown in Figure 3.6. We compute the points of the aligned point
cloud and use these to create the vectors that build the polygon. The last
point from the aligned cloud is connected with the sensor center, and from
there to the first point, forming a closed polygon. The vector types are de-
termined by the length of the vector: those that are shorter than a predeter-
mined threshold are considered obstacles, longer ones are frontiers. Vectors
that are connected with the sensor center are always of type frontier. Invalid
laser readings (e.g. NaN) are treated as close range readings (e.g. the robot
radius) and result in frontiers as well. We do this, because we can safely as-
sume that the space occupied by the robot is traversable, and this waywe can
mark more space as explored.

The resulting polygon is always simple and closed, its vectors model either
frontiers or obstacles. This ensures that our starting map (the first keyframe)
is also closed.

3.5 Polygon Refinement

Creating a raw keyframe results in a polygon with an unnecessary high
amount of vectors. In particular in indoor environments, a lot of obstacles
such as walls can be described by only a few yet relatively long vectors. To
make use of this, we reduce the number of vectors in the polygons whenever
possible. This is done by aggregating vectors that (1) all share the same type,
(2) approximately lie on the same line, and (3) are connected with each other.
The resulting polygon typically contains about an order of magnitude less
vectors while still providing a good approximation of the environment, as
shown in Figure 3.6. A side effect of this procedure is, that sensor noise is
reduced as the newly created vectors average over the noise.

The simplification process can be split into three major steps:

1. Split the polygon’s vectors into subsets called vector (sub-)chains.

2. Extract fitting lines from vector chains.

3. Replace every vector chain by a single vector based on fitting lines.

Step 1: Building the initial vector chains. A vector chain is a collection
of vectors (at least one), where each vector (except the first) is connected to a
single preceding and (except the last vector) a single following vector, i.e. the

54 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

robot

(a) environment with the robot and its
laser scan data

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

robot

(b) the unrefined keyframe

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

robot

(c) final keyframe after refinement

Figure 3.6: Creation of a keyframe. Image a) shows the robot in the test envi-
ronment. The laser scan data is indicated with red dots. Image b) shows the
aligned but unrefined keyframe, drawn on top of the environment. Image c)
shows the final keyframe after the refinement step.

3.5. Polygon Refinement 55

end point of one vector is the starting point of the next vector. All vectors in
a vector chain share the same type.

To create vector chains from a polygon we create an empty vector chain
and add a random vector from the polygon. We then add all vectors from
the polygon that don’t violate the definition of vector chains. If there are still
vectors left in the polygon, we start a new vector chain with the vector that
follows the last element in the previous vector chain and repeat the process
until all vectors of the polygon are part of one and only one vector chain.

Step 2: Extracting fitting lines. The line fitting algorithm uses linear re-
gression on vector chains to compute the line with the minimal square error
in terms of sum over point-to-line square distance, with the start/end points
of the vectors in the vector chain providing the points. We refer to the line
that we compute this way as original line. Next we compute which vectors
of the full-length vector chain are considered inliers in regard of the fitting
line that we just created. For a vector to be considered as inlier, the distance
of both its start and end point to the line must lie below a given threshold,
otherwise we will treat the vector as an outlier. We then take the first vector
of our vector chain and build a vector chain that only contains inliers and the
first vector (even if the first vector would otherwise not an inlier). With this
new vector chain we repeat the linear regression step, providing us with a
new line that we call refined line.

We remove the last vector from the input vector chain and repeat the
whole process of computing an original line and a refined line. This is done
iteratively until our chain no longer contains any vectors. Each fitting re-
sult receives a score, computed according to the formula 3.9. The vector-
chain/fitting line pair with the highest score is chosen. The vectors from the
vector chain are removed from the input vector chain, which is then used as
input for the next iteration, repeating the process until we have no vectors
left.

Our scoring function is defined as:

inlier points : P := {pi ∈ R2; pi is inlier} (3.5)

inlier count : n := |P | (3.6)

average square error : e :=
1

n

i≤n∑
i=1

d2i (3.7)

count weight : w := (
n

n+ a
)b (3.8)

score : s :=
w

e+ c
(3.9)

where d2i is the square distance from point pi to the refined line. Note, that
the set of points P in 3.5 by the definition of sets does not contain any dupli-

56 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

cate points, which otherwise would typically be present, as the end point of
one vector is also the starting point of the next vector in the chain.

There are three tuning parameters present: a, b, and c. The original scor-
ing function had the tuning parameters set to a = 3, b = 1, and c = 0, which
simplifies the formula. However we found during tests that the results could
be improved when utilizing the current formula. The idea of the tuning pa-
rameters a and b are, to control how much we encourage a high inlier count
even if it comes at an increase of the fitting error. Both are used to compute the
count weight factor w, as defined in formula 3.8. All variants favor a higher
inlier count, but some do so very quickly, and don’t change much after the
first ten or twenty inliers. Others don’t change so drastically early on, and
keep a flatter but more steady increase for a higher inliers count. Parameter
b makes this trend even more drastic. This allows us to tune the algorithm to
either favor a lower approximation error or a lower final vector count.

Parameter c has two tasks. First, it allows us to handle the case of zero
error (which we always encounter when we have only a single inlier vector).
And second it influences theweight that the average square error itself holds.
The larger parameter c is set, the less influence the error has on the score, and
consequently the number of inliers have a higher overall weight.

All the while our inlier threshold sets a hard boundary which vectors
(and their respective points) can be considered inliers, so that even overly
optimistic parameters for the scoring function don’t lead to catastrophic sim-
plifications of the environment. However as shown later in Chapter 5, a bad
choice of parameters can lead to unsatisfying results non the less.

The impact of the scoring function and its parameters can be seen in Fig-
ure 3.7 and Figure 3.8. The figures show two test cases of noise-free toy exam-
ples that are refined with a variety of parameters. The top row in Figure 3.7
shows the unrefined input data of vectors, with the start/end points high-
lighted as blue dots. Right below in the following row we have the refined
vector collection, utilizing our default parameter set for the scoring function.
The remainder of the sub figures (including all sub figures in Figure 3.8) each
use two of the default parameters andmodify the third one. The inlier thresh-
old has been set to a high value as to not interfere with the scoring itself for
the sake of highlighting the scoring function.

The input data in the left columns resembles a corner case, that should be
simplified to two perpendicular vectors. And indeed, all selected parameter
sets lead to two vectors in the resulting refined vector chain.

The second input data, shown in the right columns, is a circle segment,
representing a curved surface. Arguably the more interesting case, we now
can see how the different parameters define a trade off between the number
of resulting vectors and accuracy in approximating the original shape. In our

3.5. Polygon Refinement 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

40 vectors (raw data)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-1.5 -1 -0.5 0 0.5 1 1.5

45 vectors (raw data)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

2 vectors (a=1, b=4, c=0.001)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-1.5 -1 -0.5 0 0.5 1 1.5

5 vectors (a=1, b=4, c=0.001)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

2 vectors (a=0.5, b=4, c=0.001)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-1.5 -1 -0.5 0 0.5 1 1.5

6 vectors (a=0.5, b=4, c=0.001)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

2 vectors (a=4, b=4, c=0.001)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-1.5 -1 -0.5 0 0.5 1 1.5

4 vectors (a=4, b=4, c=0.001)

Figure 3.7: Corner & curve test case, part 1. The original data is shown in the
top left row, consisting of 40 vectors (corner) and 45 vectors (curve). Each row
shows the effect of a parameter set on the respective test case.

58 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

2 vectors (a=1, b=1, c=0.001)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-1.5 -1 -0.5 0 0.5 1 1.5

8 vectors (a=1, b=1, c=0.001)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

2 vectors (a=1, b=8, c=0.001)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-1.5 -1 -0.5 0 0.5 1 1.5

5 vectors (a=1, b=8, c=0.001)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

2 vectors (a=1, b=4, c=0.1)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-1.5 -1 -0.5 0 0.5 1 1.5

2 vectors (a=1, b=4, c=0.1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.5 1 1.5

2 vectors (a=1, b=4, c=1.0e-5)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

-1.5 -1 -0.5 0 0.5 1 1.5

15 vectors (a=1, b=4, c=1.0e-5)

Figure 3.8: Corner & curve test case, part 2.

3.5. Polygon Refinement 59

example, the original 45 vectors are reduced to 2 – 15 vectors.
Figures 3.9 shows the score for the first vector chain (with the very first

vector being the right-most vector in both examples), in relation to the num-
ber of inliers. Formost parameter sets of the example, the corner case data set
has a distinct point where the score drops significantly. This point is reached
when the inlier chain contains points that belong to the vertical line. In clear
cases like this, a wide variety of parameters deliver good results and find the
correct cut-off length for the inlier chain. In fact, only the second to last pa-
rameter set overshoots and includes a single point that does not lie on the
horizontal line.

Figure 3.10 shows the same parameter sets, applied to the curve data set.
The rise and fall of the score over the number of inliers is in general more
smooth and now shows clearly how some parameters emphasize either a
higher accuracy or larger inlier count.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

s
c
o
re

 (
n

o
rm

a
li
z
e
d

)

length of vector chain

normalized line tting scores

a=1, b=4, c=0.001
a=0.5, b=4, c=0.001

a=4, b=4, c=0.001
a=1, b=1, c=0.001
a=1, b=8, c=0.001

a=1, b=4, c=0.1
a=1, b=4, c=1.0e-5

Figure 3.9: Line Fitter score in relation to the number of inliers for the corner
example. The first parameter set (marked in black dots) holds our recom-
mended default parameters

The process is visualized in Figure 3.11. The top image shows a set of vec-
tors, startingwith a frontier on the right, followed by ten obstacle-vectors and
finally another frontier. The line-fitting algorithm starts with aggregating the
vectors into vector chains (three chains In the example: a single vector fron-
tier, one chain of ten obstacle-typed vectors and another single frontier vector
chain). First, a line is computed from a linear regression over the start/end
points of the chain (original line in the second image). Next the algorithm
builds a sub-chain (which must include the first vector) of inliers and repeats
the line fitting process once, creating the refined line. The process of creating
original/refined lines is repeated, recursively using a half-length vector chain
(the result visualized in the third image). The algorithm is applied on all vec-
tor chains of the original raw keyframe and ends with a collection of (sub-

60 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

Algorithm 3: Line Fitting for Vector Chains
Data: vector chain C; outlier threshold T
Result: line fitting result R := {score, line}
begin

create empty collection of fitting results: AllResults
while C size ≥ 1 do

create point collection P1 from start/end points of vectors in C
compute linear regression line L1 for points P1

create empty vector chain C1, add first vector from C

for i← 2 to C size do
v := C at: i
if v distance to L1 ≥ threshold T then

break
end
add v to C1

end
create point collection P2 from start/end points of vectors in C1

compute linear regression line L2 for points P2

create empty vector chain C2, add first vector from C1

for i← 2 to C1 size do
v := C1 at: i
if v distance to L2 ≥ threshold T then

break
end
add v to C2

end
create empty vector chain C3, add first vector from C2

compute fitting score S for L2 and C2

add {S,L2} to AllResults
remove last vector from C

end
select highest scoring result R from AllResults

return R
end

3.5. Polygon Refinement 61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

s
c
o
re

 (
n

o
rm

a
li
z
e
d

)

length of vector chain

normalized line tting scores

a=1, b=4, c=0.001
a=0.5, b=4, c=0.001

a=4, b=4, c=0.001
a=1, b=1, c=0.001
a=1, b=8, c=0.001

a=1, b=4, c=0.1
a=1, b=4, c=1.0e-5

Figure 3.10: Line Fitter score in relation to the number of inliers for the curve
example. The first parameter set (marked in black dots) holds our recom-
mended default parameters

)vector-chains and their fitting lines (fourth image). The next step consists in
defining the new vectors aggregating each vector-chain as shown in the last
image. The pseudo-code is summarized in Algorithm 3.

Step 3: Building newvectors for a simplified polygon.Oncewe have sets
of vector chains (the highest scoring vector sub-chains) linked with approx-
imating lines, we need to create actual vectors to replace each vector chain
with a single new vector. To compute the start/end points of a new vector,
we determine the intersection points between the line for the current vector
chain, and the lines for the previous/next vector chain. However, if the lines
meet at a flat angle then the intersection point is not numerical stable. An
example where the intersection point is placed significantly off from the ex-
pected locatiom is illustrated in Figure 3.12. This appearsmostlywith consec-
utive vector chains from different types which could theoretically be parallel
or collinear.

Therefore, whenever the lines meet at an angle of less then 15 degrees, we
instead compute the projection points of the start point of the first vector and
the end point of the last vector with the two lines involved. If the two points
are closer than a given threshold (1cm in our implementation) then we use
the average of the two points instead of the intersection point. If the distance
is equal or greater than the threshold, then we use the projection points in-
stead of the intersection point, and add an additional vector that connects
the two projection points. When all vectors have been created, they form a
new polygon that approximates the old polygon, but typically contains sig-
nificantly less vectors. This process may remove small details in the map, but
also averages over the noise from the laser sensor.

62 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

(a) Starting condition with three vector
chains

(b) Line fitting on full-length chain

(c) Line fitting on half-length chain (d) Best-scoring lines from the line fitting
process

(e) Resulting simplified vectors

Figure 3.11: Stages of the line-fitting process. The vector chain that is refined
is colored red. The two neighboring chains are colored green.

3.6 Level of Detail & Parameter Tuning

During the polygon simplification process, we have the inlier threshold pa-
rameter that determines which points/vectors are considered an inlier when
fitting a line with a vector chain. Vectors whose starting or end points have
a distance greater than the inlier threshold are considered outliers. One way
to chose this parameter is to look at the accuracy of the sensor and choose a
threshold thatwill include for example 99%of the samples. For the laser scan-
ner used in our simulations, we have a Gaussian error model with zero mean
and a standard deviation of 0.01m. Thatmeans thatwe can expect 99.7% of all
samples to lie within +/- 0.03m of the true position (approximately 2 outliers
out of the 720 samples per laser sweep). If the environment does not include
any challengingly shaped obstacles, this generally leads to good results and
a low vector count.

However, if the environment contains curved obstacles or fine details
need to be preserved, looking at the sensor specifications might not be
enough. A looser threshold leads to a more aggressive aggregation of vec-
tors and therefor a polygon with less vectors at the cost of a potential loss of

3.7. PolyMap Merging 63

Figure 3.12: Example of two lines intersecting on a flat angle with an inap-
propriate intersection point.

details in the map and a worse approximation of curved obstacles. A tighter
threshold on the other hand preserves more details but leads to a higher
vector count in the simplified polygon. This is illustrated in Figure 3.13,
where a starting polygon of 721 vectors has been simplified with different
inlier thresholds.

3.7 PolyMap Merging

An important task in a SLAM algorithm is to integrate new data into the
global map. In our case, this means to merge an aligned keyframe with the
global map. In order to improve the speed of the merging process, we store
the map in a Binary Space Partitioning Tree (BSP-Tree). A BSP-Tree is a data
structure, where each node holds a hyperplane (i.e. a line in 2D) that parti-
tions the space in half, while the leaves hold objects (e.g. polygons). The left
child is associated with one side of the hyperplane, the right child with the
other side. Objects (e.g. polygons) that are inserted into the tree are handed
down, depending on which side of the hyperplane they are located. If an ob-
ject intersects with a hyperplane then it is cut into pieces so that each piece
lies on only one side of the hyperplane. In our implementation the leaves hold
at most one polygon each.

When a new keyframe is merged with the map, the polygon that repre-
sents the keyframe is added to the BSP-tree. There it is split into convex poly-
gons, which eventually end up in a leaf of the tree. If the leaf in not empty, we
now only have to merge two convex polygons. If this results in a non-convex
shape, the new polygon is split into convex shapes and the tree grows appro-
priately.

An empty BSP-Tree is represented by an empty leaf. If a polygon is in-
serted into an empty leaf, we first check if the polygon is convex. If so, the
polygon is added to the leaf. If the polygon is concave, we need to create a line
to split the polygon into smaller pieces. The hyperplane/line must be chosen

64 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

Figure 3.13: The same keyframewith different inlier threshold for the simpli-
fication process. The last image shows the ground truth map.

3.7. PolyMap Merging 65

Figure 3.14: The angle between vector A and vector B. Angles over 180◦ cause
a polygon to be concave. Note, that intersecting vectors have angles from 0◦

to 360◦, while lines only intersect at angles in the range of 0◦ to 180◦.

Figure 3.15: Two possible splitting-lines for the polygon. Line A has a sharper
angle against the normal of the blue vector, and hence is chosen as the line to
split the polygon.

in a way that, by repeating the strategy, we will eventually end up with con-
vex polygons. A trivial way to do this is to split the polygon into triangles,
since they are convex by construction. However this increases the number of
polygons unnecessarily. We instead first select all vectors whose angle αwith
the previous vector is greater then 180◦ (see Figure 3.14). These vectors are
causing the polygon to be non-convex, since in convex polygons all angles are
less than or equal to 180◦. From the selected vectors we take the starting point
and create a temporary line for each other point in the polygon (except the
two direct neighbors), by connecting themwith the starting point. This is dis-
played in Figure 3.15, where the vector in blue has an angle greater than 180◦

with its predecessor. We then check which of the temporary lines has most
points one the “wrong” side and select this one as our new hyperplane/line.
This will create two or more polygons that contain less line segments with
an angle α greater than 180 degree, guaranteeing us that we eventually end
up with only convex polygons after finite repetition. The new line is used to
create a node that replaces the leaf. Two new leaves are created for the node,
one for each side of the line. The polygons are then handed down to the new
leaves, where the process repeats until all polygons are convex and stored in
a leaf.

If a polygon is inserted into a non-empty leaf, we need to create a hy-
perplane/line. However, the algorithm to find a line that we used for empty

66 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

Figure 3.16: Map stored in a BSP-tree. The hyperplanes are displayed as black
dashed lines.

leaves can fail in this scenario, since both polygons could already be convex.
Therefor we instead start by treating every vector of the original polygon (the
one already stored in the leaf) as a line and check how many corners of the
other polygon lie on the “wrong” side of the line (the side where the orig-
inal polygon is not located). We chose the line with the most points on the
“wrong” side. If there are no lines that have any points on the “wrong” side,
than the polygon is fully enclosed by the original polygon. If the polygon con-
tains no obstacle-typed vectors, then we discard the polygon immediately.
Otherwise we repeat the process with the role of the two polygons reversed.
If this still bears no result, we can ignore the polygon. Otherwise we chose
the line with the most points on the “wrong” side. We replace the leaf with
a new node, split the polygons on the new line, and hand down the pieces to
the node’s children.

The merging process can be seen in Figure 3.17, where the top row shows
the keyframes and the bottom row the corresponding global map. The map
at t=1 contains more vectors than keyframe #1, because it is already stored
in the BSP-tree and therefor partitioned into convex polygons (sector borders
are not shown in the figure). Figure 3.16 shows the map at t=1 with the hy-
perplanes of the BSP-tree visible.

3.7. PolyMap Merging 67

Figure 3.17: Mapmerging of aligned keyframes. The left column shows three
keyframes, the right column shows the map as it grows with each keyframe
incorporated.

68 Chapter 3. PolySLAM: A 2D Polygon-based SLAM Algorithm

3.8 Summary

Our PolySLAM algorithm creates PolyMaps from laser scans. This chapter
presented the challenges of creating accurate PolyMaps. In particular, we
modified the ICP algorithm to support point-to-vector matching, and made
use of backface culling to reduce the chance to get stuck in local minima.
Furthermore, our polygon refinement technique reduces the impact of mea-
surement noise by averaging over multiple points. The refinement process
also reduces the number of vectors per keyframe, reducing the overall size
of the global map. With the scoring function and its parameters, we are able
to control the trade off between the detail that we want to preserve and how
much sensor noise we have to deal with. These techniques allow us to create
consistent maps despite the lack of global optimization.

In following chapter will present how to realize navigation on the
PolyMap format. For this we will build a topological graph which allows for
efficient path planning within the explored space.

PolyMap-Based
Navigation

Chapter4Contents
4.1 Numerical Problems to Consider . 69
4.2 Formal Definition of the Topological Graph 71
4.3 Building a Topological Graph from a BSP-Tree 71
4.4 Path Planning on a Topological Graph 72
4.5 Using Grid Partitioning on the PolyMap 72
4.6 Removing Inaccessible Nodes from the Graph 77
4.7 Comparison with Occupancy Grid based Navigation 78
4.8 Summary . 79

Introduction

Having a map of the environment, even if incomplete, enables us to plan fur-
ther movement of the robot. This can be done fully autonomously, i.e. with-
out any human interaction, or with the assistance of a human operator who
marks a target area on the map. In both cases we are provided with the task
to find a viable path from the robots current position to a target area. This
task is commonly referred to as Navigation in robotics.

Navigation in this context typically focuses on two scales: local and global.
Global navigation is based on the global map of the environment, and relies
on a topological graph to compute a path from the robot’s current position
to a target area. Local navigation on the other hand primarily relies on the
live data from the robot’s sensors to compute a viable path in the presence
of obstacles that are not necessarily part of the map (e.g. dynamic obstacles
such as pedestrians). Our focus in this section lies on global navigation, in
particular the computation of a topological graph from a PolyMap. In such
a graph, each polygon of the map is represented as a single vertex of the
graph, while edges model neighboring polygons that are reachable via an
overlapping sector-typed vector from both polygons.

4.1 Numerical Problems to Consider

When faced with the task to build a topological graph, we start of with a
PolyMap, which is essentially a set of polygons. From there, we need to de-

70 Chapter 4. PolyMap-Based Navigation

termine which polygons share overlapping vectors of type sector as these are
the only (explored) places where the robot can traverse through. While this
looks like an easy task at first glance, there are a few details that make this
more tricky than expected. The first problem is, thatwe cannot just look for an
identical vector with start and end points reversed, since vectors may overlap
without sharing any common start or end points. This is illustrated in Figure
4.1 in which the opposing horizontal vectors either share the start or end
point, but never both. Note, that in this example the vertical sector borders
do share both start and end points.

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

Figure 4.1: An example of sector borders partial overlapping with vectors on
the other side of the hyperplane. The left figure shows the map embedded
into a BSP tree with three hyperplanes splitting up the map. The right figure
highlights the overlapping vectors in question.

The second problem is, that computing whether two given lines (extend-
ing two vector that we want to test) are collinear is numerically challenging.
For example, the nature of how computers store float point numbersmakes it
highly likely, that two lines/vectors that should be considered collinear have
a slightly different orientation. And for similar reasons, it is possible that for
example the start or end point of a vector does not exactly lie on a line that
is collinear to the vector. Adding a tolerance to similarity tests on the other
hand provides us with the problem, that we may encounter false positives
when testing for overlapping vectors. We circumvent this problem by using
the BSP-tree structure that created the sector-typed vectors in the first place,
as explained in the next section.

4.2. Formal Definition of the Topological Graph 71

4.2 Formal Definition of the Topological Graph

We formally define a topological graph as follows:

node : N = {(p, n1, ..., nk)|p ∈ P ;ni ∈ N} (4.1)

top. graph : G = {ni|1 ≥ i ≥ S; vi ∈ N} (4.2)

A node N represents a polygon P (as defined in Definition 3.3) in the
graph, as well as a list of all neighboring nodes that are connected to this
node. That means, that we don’t have to explicitly define edges between
nodes, since this information is already embedded in the node itself. The
topological graph itself is defined a set of nodes.

This notation is carried over in our Pharo implementation, where we use
a Dictionary to store the nodes. The dictionary utilizes the polygon as a key
when storing the node. This allows us fast access to the node when we have
the corresponding polygon.

4.3 Building a Topological Graph from a BSP-Tree

When building a PolyMap live, a BSP-Tree is used to store the polygons of the
map, as explained in 3.7. By construction, every sector-typed vector is adja-
cent to a hyperplane (i.e. a line) in the BSP-Tree. Therefore, instead of con-
sidering all vectors of the map, we can narrow down potentially overlapping
vectors to those that lie on the same hyperplane. The structure of the BSP-Tree
makes this convenient and relatively fast, assuming that the tree itself is bal-
anced. Once we have collected all vectors that lie on the same hyperplane, we
computewhich ones overlap by a simple one-dimensional search, comparing
the position of the start/end points of the vectors expressed by their position
on the hyperplane by the signed distance to a reference point on the hyper-
plane. Nowwe can add edges to the graph for each polygon that is sharing an
overlapping vector with a polygon on the other side of the hyperplane. This
is done by adding the corresponding neighbors to the node that represents
the polygon in the graph (and creating new nodes if the respective polygons
are not already represented in the graph). This process creates a topological
graph based on the PolyMap,which is considerablymore sparse than a graph
based on a conventional grid map.

Algorithm 4 shows the whole process with pseudo code. The first outer
loop is collecting all vector-polygon pairs, where a sector-typed vector of
the polygon is touching a hyperplane. These pairs are stored in a dictio-
nary, where each hyperplane is acting as a key, referring to a collection of
vector-polygon pairs. The second outer loop iterates over all entries (i.e. col-
lections) in the dictionary. Each collection holds all polygons that share the

72 Chapter 4. PolyMap-Based Navigation

same hyperplane, together with the vector that is collinear with that hyper-
plane. Finding overlapping vectors within each collection provides us with
all (paired) polygons that are connected by a sector border and hence con-
nected in the topological graph as well.

4.4 Path Planning on a Topological Graph

Once a topological graph has been built it can be used to compute the path to
a target location in the environment. The first step is to determine the current
location of the robot in the topological graph. For this we select the polygon
that contains the center of the robot. This can be done efficiently since we
have the map stored in a BSP-Tree which allows us to just walk down the
tree on whichever side of the hyperplanes the robot’s center is located. The
polygon can then be used to identify the corresponding node in the topolog-
ical graph. This will act as our starting node for a conventionalA? orD?light

graph search. For the final result of our graph search, we add a temporary
node that connects the robot’s current location with the first node from our
graph search result. Similar, another temporary node is added at the end to
connect the last node from the search result to the actual goal.

A simple example is illustrated in Figure 4.2, which shows navigation on
a smallmap. The robot is located at the bottompart of themap, labeled ’start’.
The target area is in the top right corner of the map, labeled ’goal’. With the
map’s BSP-Tree, it is partitioned into smaller polygons, indicated by the yel-
low lines. Each leaf in the BSP-Tree is linked to a node in the graph via the
polygon that both share. In this example the topological graph (colored pink)
contains eleven nodes. With an A? graph search we are able to find a valid
path from the robot’s position to the target area, as shown in the right figure.

4.5 Using Grid Partitioning on the PolyMap

By construction, a PolyMap tends to have a lot of long and narrow polygons
that are a result of incremental map updates as the robot moves in the envi-
ronment. However for navigation purposes we would prefer polygons that
are not to large in size, since we want the center of the polygon to be rep-
resentative for the area that is covered by the polygon. Our solution is to
impose a grid structure on the map. All polygons that span over a grid line
are split on the respective line, and the new polygons are treated separately.
This breaks up all large polygons into smaller polygons and provides a more
even distribution of nodes in the topological graph as a result. Compared to
conventional grid maps, our cell dimension is relatively large: 1 by 1 meter
by default. Each occupied cell contains a BSP-Tree, like the original PolyMap

4.5. Using Grid Partitioning on the PolyMap 73

Algorithm 4: Building a topological graph from a BSP Tree
Data: BSP-Tree bspTree
Result: top. graph graph
begin

Dictionary dict := {hyperplane→
(collection of (vector, polygon))}
foreach leaf in bspTree do

bsp− node := leaf

polygon := leaf polygon

while bsp− node has parent do
bsp− node := bsp− node parent
line := bsp− node hyperplane
foreach vector v in polygon do

if v is collinear with line then
add line→ {v; polygon} to dict

end
end

end
end
foreach (hyperplane→ (collection of (vector, polygon))) in dict do

foreach entry {v; p} in (collection of (vector, polygon)) do
foreach entry {v2; p2} in (collection of (vector, polygon))

do
if v direction = −1 ∗ v2 direction then

if v overlaps with v2 then
find or create node N for polygon p
find or create node N2 for polygon p2
add neighbor N2 to node N
add neighbor N to node N2

end
end

end
end

end
end

74 Chapter 4. PolyMap-Based Navigation

Figure 4.2: Navigation example on a small map. The left figure shows the
map portioned into smaller areas, with the topological graph overlayed. The
right figure shows the computed path that leads from the start location to the
target area.

format, but now limited in its dimension to the size of the grid cell. This setup
allows us to quickly access polygons, first by determining which grid cell we
need, and then by searching within the BSP tree of the cell. Lookup of the
cell typically is done in O(1) time complexity (like a 2D table lookup), and
finding elements in the BSP tree (if balanced) takes log(N) time, with N be-
ing the number of elements in the tree. It also removes any worries about
unbalanced BSP-Trees, since the individual trees are now much smaller, so
that even a degenerated tree will not pose a problem performance-wise. In
Figure 4.3 we can see the effect of the grid overlay in a section of the Zigzag
map, which acts as a long and wide corridor.

With a mapM as defined in 3.4, we formally define the GridPolyMap as
follows:

cell : C = {(r, s)|r ∈M ; s ∈ R2
>0} (4.3)

GridPolyMap : G = {mi,j |i, j ∈ N;mi,j ∈ C} (4.4)

The GridPolyMapG is a two dimensional grid where each entry contains
a cell C. A cell in return contains a mapM , stored in a BSP-Tree, and its two
dimensional size s. The cells are typically quadratic, but any rectangular size
can be used. Similar, the cells are not required to all share the same size (but
have to share the same size on the borders that they share). For convenience
sake however,we assume that all cells share the same size in both dimensions.
The GridPolyMap enables very fast spacial lookup since addressing a cell in
a grid can be done in constant time, and finding an element in a BSP-Tree
in linear time in respect to its depth, which in logarithmic to the number of
entries (if balanced).

4.5. Using Grid Partitioning on the PolyMap 75

An example of a grid overlay with a topological graph can be seen in Fig-
ure 4.4. There we have a cell size of 1m by 1m. Close to the walls we have the
typical structure ofmany small polygons that result frommerging keyframes
that contain some noise. The cells that don’t contain any obstacles or fron-
tiers on the other hand contain fewer but larger polygons. By separating parts
of the maps into individual cells we prevent the larger polygons to be split
into smaller ones when the merging process introduces new hyperplanes,
because the hyperplanes in one cell do not affect any other cells.

Figure 4.3: Adirect comparison between a PolyMap and aGridPolyMap. Both
maps have been created from the same keyframes. The grid overlay on the
right map reduces the maximum size of the polygons, and restricts hyper-
planes from the obstacles to their respective grid cells.

SimplifyingCell Content. If a grid cell contains only polygons that aremade
up entirely of section-type vectors, then by construction the cell is completely
filled by the polygons and contains neither frontiers nor obstacles. Hence in
that case we replace all polygons by a simple square polygon with the di-
mensions of the cell. In our experiments this reduced the total number of
polygons by about 10%. Figure 4.5 shows an example of this on small section
of the Zigzag map. Note, that grid cells that contain frontiers or obstacles re-

76 Chapter 4. PolyMap-Based Navigation

Figure 4.4: A map section and its topological graph. The grid structure leads
to an even distribution of nodes in the large open areas of themap. The graph
in this example contains 1385 nodes.

4.6. Removing Inaccessible Nodes from the Graph 77

main unchanged with this algorithm.

 0

 5

 10

 15

 20

-2 0 2 4 6

 0

 5

 10

 15

 20

-2 0 2 4 6

Figure 4.5: The Zigzagmapwith a grid overlay. The left figure shows themap
before the simplification process, the right one afterwards. Cells that contain
obstacles are not modified by the algorithm, and hence still contain multiple
polygons that contain only sector-type vectors.

4.6 Removing Inaccessible Nodes from the Graph

When the size of the robot is known, we can take the robot footprint into
account to remove nodes from the graph that are not accessible by the robot.
As a quick heuristic we remove all nodes from the graph where the polygons
center point is closer to an obstacle than the radius of the robot. Since we
typically experience a lot of small polygons around obstacles, this reduces the
size of the graph by a significant amount. In fact, the number of nodes and
edges is reduced by about two orders of magnitude in our tests. An example
can be seen in Figure 4.6, where the number of nodes in the graph drops from

78 Chapter 4. PolyMap-Based Navigation

Map Format full graph pruned
PolyMap 60786 676

G
rid

Po
ly
M
ap

(g
rid

si
ze

in
m
et
er
)

0.5 78972 1837
1.0 63279 885
2.0 62427 688
4.0 62289 670

Table 4.1: Size of the topological graph (node count) for various map config-
urations.

62427 to 688. The robot radius used in this example was 0.25m.

Figure 4.6: The left figure shows the full topological graph of the map, drawn
on top of the actual map. The right figure shows the pruned graph with all
inaccessible nodes removed.

To test the impact of our optimizations, we created a topological graph
for a few of maps. The map has been created with our PolySLAM algorithm,
using data collected from a simulated environment (the office environment).
Table 4.1 shows the results with and without pruning the topological graph.
We can see a significant reduction of the graph size in all cases. We also no-
tice, that the grid overlay increases the number of nodes by only a moderate
amount.

4.7 Comparison with Occupancy Grid based Naviga-
tion

It is natural to compare the performance of our navigation approach with a
similar implementation based on occupancy grid maps. To accomplish this,
we are creating a topological graph by treating every free cell in the occu-

4.8. Summary 79

pancy grid like a square polygon and build a topological map based on this.
When creating the graph for the occupancy grid, we consider the 8 closest
neighbors for each cell, allowing for horizontal, vertical, and diagonal edges.

In our example we created a topological graph from an occupancy grid
representing an office environment (16m by 16m in size) and compared the
performance. The occupancy grid has been inflated by 0.25m to make the
results comparable to our pruned graph of the GridPolyMap, which also re-
moved nodes that are closer than 0.25m to any obstacle. Table 4.2 and Figure
4.7 are showing the results of our experiment. With 72475 nodes, the graph
computed from the occupancy grid is relatively large with respect of the en-
vironment. In comparison, the graph for the GridPolyMap only contains 688
nodes – two orders ofmagnitude less. Similarly, theA∗ search requires signif-
icantly less iterations to reach the target on our GridPolyMap-derived topo-
logical graph. However, while the path for the occupancy grid contains more
nodes, the actual distance is shorter. The reason for this is that the path for the
GridPolyMap is not as close to the obstacles, and contains more zigzag-like
movements.

Figure 4.7: Navigation on an Occupancy Grid in comparison to a Grid-
PolyMap. The left image shows the resulting path on the occupancy grid,
the right image on a GridPolyMap. The pink background in the left image
visualizes the traversable area after inflating all obstacles. The pink lines in
the right image represent the edges of the topological graph.

4.8 Summary

This chapter presented one of our key contributions: Navigation on
PolyMaps.We showed how to construct a topological graph from a PolyMap,
and how to prune it to reduce the total number of nodes in the graph.We also
introduced a grid overlay to avoid overly long polygons, and an optimization

80 Chapter 4. PolyMap-Based Navigation

Graph source node count path node count path length
Occupancy Grid 72475 344 19.45m

GridPolyMap 688 39 25.06m

Table 4.2: Comparison of the topological graph created from an occupancy
grid and created from a GridPolyMap. The computed path in visualized in
Figure 4.7.

to reduce the number of polygons in the map. In direct comparison to topo-
logical graphs from occupancy grids, our topological graph has significantly
less nodes.

In the next chapter we will evaluate our algorithms in a series of experi-
ments. There wewill test both the SLAM algorithm and our Navigation stack
on data obtains from simulations, from public data sets, and from robots in
our own labs.

Experiments

Chapter5Contents
5.1 Metrics . 82
5.2 PolyMap Memory Sizes . 83
5.3 Simulation Setup . 84
5.4 Simulation Results . 86
5.5 Backface Culling . 89
5.6 Polygon Simplifier Parameter Tuning 90
5.7 Grid Overlay for Vector Maps . 98
5.8 Experiments with data sets from real robots 99
5.9 Summary . 103

Introduction

We performed experiments to evaluate the performance of our PolyMap for-
mat and PolySLAM algorithm. We used multiple sources of data sets for the
experiments to cover a wide array of environments and setups. One source is
a collection of public data sets that is available at [ODS]. These data sets have
been widely used to evaluate state-of-the-art SLAM algorithms.

Another source of data for our experience comes from the Gazebo sim-
ulator. We used a set of benchmark maps used in previous work by Le et
al. [LFBL18]. In addition a few more maps were used to test specific cases,
such as the maps from Section 5.6, since the original benchmark maps had
no curved surfaces. Using the simulator has the advantage that we have ac-
cess to ground truth (both the robots trajectory and the environment’s geom-
etry). However a simulator never perfectly represents reality, so results have
to always been seen in the corresponding context and taken with a grain of
salt. Still, simulations are a relatively quick and cheap way and they allow
us to run the experiments in a very controlled manner repeatedly and repro-
ducibly.

The final data source was created by using our own robot, shown in
Figure 5.1. We tele-operated the robot in our building, recording all sensor
readings for later processing. The robot, a Turtlebot21, was equipped with
a Hokuyo’s UTM-30LX laser range finder. The sensor has an opening arc of
270◦, with a resolution of 0.15◦ angular resolution, a range from 100mm to
and a range of 3000mm with a resolution of ±30mm and performs 40 scan

1https://www.turtlebot.com/turtlebot2/

82 Chapter 5. Experiments

sweeps per second. The trajectory was chosen so that there is an overlap
in the explored area towards the end of traveling, allowing us to roughly
estimate the pose error by looking at the resulting map. The environment
had its own challenges such as corridors that exceed the maximum range of
the laser range finder, and a curved wall section. All data sources used can
be found at our website [Pds] or at [ODS].

Figure 5.1: The Turtlebot2 used in our experiments. The laser range finder is
mounted in the center of the top plate, a small laptop computer is located
between the plates.

5.1 Metrics

The results from our experiments were evaluated using different criteria and
metrics. The first step is visual confirmation that themap is consistent andde-
picts the environment correctly. Since this is difficult to put into numbers, we
also used themap quality metrics normalized error [SPR13] (NE) and Structure
Similarity [WBSS04] (SSIM) index. NE is computed from the sum of the dis-
tance between occupied cell of the ground-truth to the nearest one in the built
map. Lower NE indicates better results, identical maps reaching a value of
zero. SSIM evaluates local similarity bymeasuring cell intensities in a floating
window, higher values indicating a better match with 1.0 being the highest
possible score.

For the experiments from the simulator (where ground truth is available)
we also computed the length of the trajectory and the maximum transla-
tion/angular errors of the pose estimates. Lastly, for the polygon simplifi-

5.2. PolyMap Memory Sizes 83

cation process, we counted the number of vectors in test keyframes and once
again performed visual inspection of the results to evaluate the quality of the
results.

5.2 PolyMap Memory Sizes

Our first experiment was designed to test thememory footprint performance
of the PolyMap format itself without relying on PolySLAM. For this, we took
occupancy grids and converted them into PolyMaps by applying Algorithm
1 from Chapter 3 which creates a PolyMap in three steps:

1. create a vector (frontier or obstacle) for every transition from free space
to non-free space,

2. connect neighboring vectors, creating polygons

3. simplify the polygons bymerging connected collinear vectors of the the
same type

It is noteworthy, that the conversion algorithmdoes not try to optimize the
output with diagonal vectors, and only creates vectors that are parallel to the
x- and y-axis. Still, the converted map contains all the details of the original
map, and it is possible to recreate the original map from the PolyMap. As a
post-processing step we also removed isolated areas, i.e. polygons that consist
of only frontiers.

Figure 5.2: Occupancy grid (left), full converted PolyMap (middle) and zoom
in the PolyMap (right)

Figure 5.2 shows the result on applying our algorithm to convert a grid
map of the Intel Research Lab data set2 to a PolyMap. Obstacles are shown
with red vectors and frontiers with green vectors. The resulting PolyMap
in this example consists of 829 polygons, with a total of 18054 vectors. The
right-most figure is a zoomed-in section of the PolyMap, displaying individ-
ual vectors. Interestingly, the size of the full PolyMap is approximately the

2http://ais.informatik.uni-freiburg.de/slamevaluation/datasets.php

84 Chapter 5. Experiments

size of the compressed grid map. In this particular example, the grid map (in
PNG format) takes about 100kB, and the uncompressed PolyMap requires
about 160kB. Compressed, the PolyMap shrinks even more to approximately
44kB (ZIP3) and 20kB (7z4). Nevertheless, this algorithm only creates either
horizontal or vertical vectors. Further optimization that allows vectors of any
direction could result in even smaller memory footprints of the maps. Such
optimizations will be considered in future work, though our PolySLAM im-
plementation is not affected by this limit in the first place.

5.3 Simulation Setup

We report on a lot of different simulations in the following sections to as-
sess our contributions. This section presents our common setup to all of our
experiments unless mentioned otherwise. Simulations where conducted by
using the Gazebo simulator [Gaz]. The simulated robot was equipped with a
laser range finder (30m range, 270◦ opening angle, 720 scan points per sweep)
with zero-meanGaussian noisemodeled after ourHokuyo laser range finder.
Furthermore the robot odometry is published with noise (zero-mean Gaus-
sian noise with default parameters) and as ground truth without noise. The
odometry reading with noise was used by the SLAM algorithm, the ground
truth reading were used to compute the pose errors.

The maps used are Loop, Cross, Zigzag, Maze, and Willow garage (W. G) as
found in Le et al. [LFBL18]. The maps are about 80 × 80 meters (except for
WillowGarage which is 55×45). PolySLAMwas used offline on the collected
data sets.

5.3.1 Loop Environment

Figure 5.3: The Loop map
(80x80m)

The Loop environment is designed to test the
loop closure capability after a long trajectorywith
a relatively feature-less surrounding. With the
overall lack of features and the length of the hall-
ways exceeding the maximum range of the laser
range finders by about a factor of two, relying
on odometry readings is mandatory here. At the
same time, odometry alone is not enough for an
accurate construction of the map, as drift accu-
mulates over time. Start position for the experi-
ments was the bottom left corner of the map.

3ISO/IEC 21320-1:2015, https://www.iso.org/standard/60101.html
4https://www.7-zip.org/

5.3. Simulation Setup 85

5.3.2 Cross Environment

Figure 5.4: TheCrossmap
(80x80m)

The Cross environment naturally creates several
loops that need to be traversed if the whole map
has to be explored. Algorithms that support loop
closures have ample opportunities to reduce the
global error as the robot creates one loop after an-
other. Despite being of the same size as the Loop
map, the traversable area is larger by about 50%.
The hallways are still longer than the maximum
laser range, but less dramatically so than in the
Loop environment. In our experiments we had the
robot start in the center of the map, at the 4-way
crossway.

5.3.3 Zigzag Environment

Figure 5.5: The Zigzag
map (80x80m)

The Zigzag environment is challenging for its
long corridors that makes it difficult to estimate
the distance traveled. Furthermore, the hallways
are relatively close together, so that it is possible
to accidentally align point clouds with the wrong
side of the wall. The length of the hallways ex-
ceeds the laser maximum range, similar to the
Loop environment. This is the only map in our
simulation setup that does not promote loop clo-
sures. The robot starts in the bottom left corner
and ends in the top right corner.

5.3.4 Maze Environment

Figure 5.6: TheMazemap
(80x80m)

The Maze environment is cluttered with
walls and requires a relatively long trajec-
tory to cover the whole area. Similar to the
Zigzag map, the relatively thin walls can
cause misalignments between keyframes.
While there are still sections that exceed the
laser’s range, we almost always have some
structure nearby to compensate for odometry
drift. The start position of the robot is close
to the center of the map, slightly to the right.

86 Chapter 5. Experiments

5.3.5 Willow Garage Environment

Figure 5.7: The Willow Garage
map (55x45m)

TheWillow Garage environment is the small-
est and yet most complex of our test en-
vironments. It depicts a classic indoor en-
vironment of an office with multiple small
room of similar size and shape. This is also
the only map that has an open environment
with no outer map borders. However we
limited our exploration to indoor only and
did not leave the building. The robot’s start
position is in the bottom left, close to the en-
trance of the building.

5.4 Simulation Results

Afirst visual inspection shows that allmaps createdwith PolySLAM (see Fig-
ure 5.8) are consistent and usable for navigation and path planning. On closer
look we can find small misalignments in every map, but not on a level that
would impair our ability to use the map with autonomous or tele-operated
robots. Table 5.1 shows the total distance traveled by the robot for each map,
as well as the maximum errors in translation and rotation. The last column
shows the maximum error as percentage of the total distance traveled by the
robot. We notice, that the highest errors (relative to the distance traveled) are
found on the Loop and Cross maps. The most likely reason for this is the
fact that both maps have corridors that exceed the maximum sensor range,
leaving only the left and right walls for localization corrections.

Table 5.2 shows an overview of normalized error (NE) and Structure Similar-
ity (SSIM) index. For this, the constructed PolyMaps were converted to grid
maps (with a 5x5cm grid size) and aligned to the ground truth by hand to
compute the metrics. Figure 5.8 shows the resulting PolyMaps, including the
estimated trajectory of the robot.

With PolySLAM currently not having any active loop closure techniques
employed, we rely on our accurate pose estimate to reduce drift to a mini-
mum. As such some maps are more challenging for PolySLAM than others.

The PolyMap of the Loop environment, as show in Figure 5.8a, we have
a visible misalignment around the starting/end point of the trajectory (bot-
tom left), but still a relatively good overlap. However we notice that there is
very little angular drift present, a testament PolySLAM’s capabilities. Navi-
gation is certainly possible with this result, both autonomous and with tele-
operation. The NE value is worse for PolySLAM than the results from gmap-

5.4. Simulation Results 87

(a) The Loop map. (b) The Cross map.

(c) The Zigzag map. (d) The Maze map.

(e) The Willow Garage map.

Figure 5.8: PolyMaps of the five environments/maps that were used in the
Gazebo simulations.

88 Chapter 5. Experiments

Map
size

(meter)
distance
traveled

max. error
(transl. / rot.)

max trans. error
by total distance

Loop 80x80 294m 1.25m / 0.031◦ 0.43%
Cross 80x80 576m 0.91m / 0.038◦ 0.16%

Zigzag 80x80 729m 0.54m / 0.019◦ 0.074%
Maze 80x80 946m 0.59m / 0.049◦ 0.062%

Willow Garage 55x45 951m 0.18m / 0.022◦ 0.019%

Table 5.1: Simulation results: distance traveled and maximum pose error for
each map.

Map
NE

PolyMap
NE

gmapping
NE
karto

SSIM
PolyMap

SSIM
gmapping

SSIM
karto

Loop 131.9 73.7 20.4 0.92 0.92 0.94
Cross 72.6 33.8 41.6 0.89 0.90 0.90

Zigzag 20 87.2 18.3 0.88 0.89 0.89
Maze 5.9 6.9 8.2 0.89 0.90 0.90
W. G. 11.7 4.2 5.3 0.77 0.88 0.82

Table 5.2: Simulation results: normalized error (NE, smaller is better) and
structure similarity (SSIM, larger is better).

ping and Karto, but the SSIM metric places all three very close together.
TheCrossmap (Figure 5.8b) shows significant lessmisalignments than the

Loopmap. We attribute this to the shorter hallway segments, which in return
result in less drift accumulation before we can revisit already explored areas.
Overall, PolySLAM shows again good results and a consistent mapwith only
small alignment errors, despite the long trajectory of 576m.

The Zigzag PolyMap map, shown in Figure 5.8c holds no surprises.
PolySLAM created a consistent map with a visible but overall not significant
drift in the trajectory. We also once again notice that the map contains very
little angular drift.

The Maze environment is more complex than the previous three maps.
Among all maps tested in our simulations, PolySLAM experienced the high-
est angular error (0.049◦) on this map. While there are some misalignments
in the lower right part of the map, the result is still a consistent map that is
suitable for navigation, as seen in Figure 5.8d.

The last of the benchmark maps is the Willow Garage environment. De-
spite having the longest trajectory in our simulations, we achieved very good
results with a maximum translation error of 0.18m over a distance of 951m,
all without any global optimization. Themaximumangular error is also quite

5.5. Backface Culling 89

low with 0.022◦, the second lowest result among the five PolyMaps. The full
map and trajectory can be seen in Figure 5.8e.

5.5 Backface Culling

One of our key elements in our SLAM algorithm is backface culling, a tech-
nique explained in Section 3.3. The impact of backface culling largely de-
pends on the parameters for ICP (e.g. the outlier threshold) and the charac-
teristics of the environment. In particular walls that are explored from both
sides (e.g. the wall between two offices) are easy to confuse without backface
culling. In environments likeZigzag andMazewithmultiple thinwall, SLAM
algorithms are prone to mismatching, while this is not the case with the Loop
or Crossmaps.

We run PolySLAM with backface culling active/inactive for a variety of
ICP outlier start thresholds. Table 5.3 shows themaximumpose errors for the
maps Zigzag and Maze. In all cases the results with backface culling active
are better. In some cases the differences are significant.

max. error for ICP outlier threshold:
Map: Zigzag 0.2 0.6 1.0

w/ backface culling 0.50m / 0.034◦ 1.25m / 0.033◦ 1.58m / 0.034◦

w/o backface culling 0.55m / 0.033◦ 1.40m / 0.034◦ 1.58m / 0.035◦

max. error for ICP outlier threshold:
Map: Maze 0.2 0.6 1.0

w/ backface culling 0.69m / 0.049◦ 1.40m / 0.055◦ 1.63m / 0.062◦

w/o backface culling 0.70m / 0.049◦ 1.45m / 0.056◦ 1.84m / 0.060◦

Table 5.3: Impact of backface culling on pose error, tested with three different
ICP outlier thresholds.

The general pattern is, that backface culling has a bigger impact when
our ICP outlier start threshold is larger. This is no surprise, since a larger
threshold means, that larger distances between points from the point cloud
and vectors in the map are still acceptable for matching. However, the outlier
threshold cannot simply be set to a small valuewithout consequences. In par-
ticular, if the odometry provided by the robot is not very reliable, we depend
on a relatively large outlier threshold during the initial iterations of ICP to
align the point cloud correctly. Hence, the ability to deliver good matching
even with large outlier thresholds is certainly a positive characteristic that
increases the robustness of our algorithm.

We also tested the impact of backface culling on our self-recorded real-
world data set. Not having ground truth available, we have to resort to visual

90 Chapter 5. Experiments

inspection to evaluate the results. In this experiment we created PolyMaps
with a set of different ICP outlier thresholds, ranging from 0.2 to 1.0. The
results with backface culling active are either equal or better than the maps
creates without backface culling. Figure 5.9 shows a zoomed-in part of the
PolyMap, createdwith the exact same settings, only with backface culling ac-
tive in the left image and disabled for the right. The difference inmap quality
is most prominent around the connecting corridor, where the misalignments
cause the corridor to stick partially into the wall.

Figure 5.9: A comparison between running PolySLAM with (top) and with-
out backface culling (bottom) on a data set of our office floor. The figures are
zoomed in to the connecting hallway, where we can see the biggest difference
between the two maps. Two red rectangles highlight spots where the errors
are easy to see.

5.6 Polygon Simplifier Parameter Tuning

As explained in Chapter 3, the polygon simplification algorithm has a few
parameter that can be adjusted to enhance the result quality. In this regard,
there are two aspects that we want to optimize for. First, we want to approx-
imate the environment as precisely as we can, and second we want to do so
with as few polygons as possible. All the while we have to deal with sensor

5.6. Polygon Simplifier Parameter Tuning 91

noise which makes this task more difficult.
In total we have four parameters that influence the polygon simplification

algorithm. The first parameter is the inlier threshold, which specifies which
vectors are considered inliers when an approximating line is provided. This
parameter must be chosen in accordance to the sensor noise that we have to
expect.

The other three parameters (named a, b, and c) are used for computing a
line fitting score. They influence on whether we prefer longer vectors at the
potential loss of detail, or shorter vectors that may overfit the sensor data. All
three parameters do so in a different way, which we look into in following
experiments.

As test setup we have created a small 8x8 meters test environment for the
simulator that contains a mix of flat and curved surfaces, shown in Figure
5.10a. The robot was equipped with a laser range finder that provided a 350◦

opening angle (to provide a wide field of view while leaving a blind spot be-
hind the robot) and angular resolution of 0.25◦, giving us a total of 1401 mea-
sured points per keyframe. The sensor noise model is the same zero-mean
Gaussian noise as in all simulations in this chapter. We did chose a keyframe
that has the robot slightly off-center, and includes all curved surfaces as well
as plenty of flat surfaces. Figure 5.10b shows the keyframe as a polygon before
the simplification process. Since the keyframe has a very high resolution in
terms of measurement points, we additionally repeat the tests with reduced
point density.

(a) The test map used for the experi-
ments. The grid shown has a 1m spac-
ing, the map itself is 8x8 meters in
size.

(b) The original keyframe before
simplification. The polygon contains
1702 vectors. Each measured point is
drawn in a different color.

Figure 5.10: PolyMaps of the five environments/maps that were used in the
Gazebo simulations.

92 Chapter 5. Experiments

5.6.1 Inlier Threshold Parameter

The inlier threshold is a parameter that allows us to reject points/vectors if
they are located too far away from the line approximation. This is a com-
mon technique for outlier rejection used in a wide variety of fields. In this
experiment we look at how the parameter influences the vector count and
the approximation quality of the polygon simplification process. We found,
that values larger then 0.4m don’t improve the result and (depending on the
other parameters) can worsen the result. In our experiments, we fixed the pa-
rameters a = 1.0, b = 4, and c = 0.0001, because they provided good results
in average. We experimentally determined those values on different maps,
both in simulations and with real robots.

Figures 5.11 and 5.12 show zoomed-in sections of the map (Figure 5.10)
for four different values of the threshold in the range of 0.01m to 0.04m. The
scan points that form the edges of the original polygon are overlayed to give
a better impression how well the vectors approximate the original scan data.

Visual inspection of the resulting polygons shows that a tight value for
the threshold causes trouble with the sensor noise. While the vector count is
still noticeable reduced, the quality of the approximation leaves room for im-
provement. This can be observed in Figure 5.11 where we have a lot of zigzag
patterns caused by the approximations sticking too close to noisy measure-
ments.

A more moderate threshold delivers presentable results, but may occa-
sionally fail to deal with the noise, causing small “bumps” in the approxi-
mations. A large threshold simply means that we don’t reject vectors easily
and that the algorithm relies largely on the scoring parameters. The problem
with that is, that the algorithm relies on outlier rejection for the refinement
steps, and without this, we test and score less line approximations. A large
threshold also increases the risk to ignore finer details that would otherwise
be preserved in the process.

In Table 5.4 we can see the sizes (i.e. vector count) of the resulting poly-
gons with respect to the inlier threshold. The original polygon in this experi-
ment had 1402 vectors. Again, the results also depend on the scoring param-
eters, which remain unchanged during this experiment. Based on both visual
inspection and the vector count, we find that an inlier threshold in the range
of 0.03m to 0.04m delivers good result in combination with the sensor (and
its noise model) from our data set.

5.6.2 Line-Fitter Scoring Parameters

The scoring of the line fitting algorithm relies on three parameters (referred
to as a, b, and c), as described in Chapter 3. We conducted a series of exper-

5.6. Polygon Simplifier Parameter Tuning 93

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.01, a=1, b=4, c=0.001
vector count=411

-0.5

 0

 0.5

 1

 1.5

 2

 3 3.5 4 4.5

new algorithm; threshold=0.01, a=1, b=4, c=0.001
vector count=411

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.02, a=1, b=4, c=0.001
vector count=114

-0.5

 0

 0.5

 1

 1.5

 2

 3 3.5 4 4.5

new algorithm; threshold=0.02, a=1, b=4, c=0.001
vector count=114

Figure 5.11: Polygon simplification with an inlier threshold of 0.01m (top)
and 0.02 (bottom). Despite a noticeable reduction in vectors, we still have a
significantly jagged border.

94 Chapter 5. Experiments

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.03, a=1, b=4, c=0.001
vector count=58

-0.5

 0

 0.5

 1

 1.5

 2

 3 3.5 4 4.5

new algorithm; threshold=0.03, a=1, b=4, c=0.001
vector count=58

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.04, a=1, b=4, c=0.001
vector count=54

-0.5

 0

 0.5

 1

 1.5

 2

 3 3.5 4 4.5

new algorithm; threshold=0.04, a=1, b=4, c=0.001
vector count=54

Figure 5.12: Polygon simplification with an inlier threshold of 0.03m (top)
and 0.04 (bottom). We no longer have jagged vectors and the surfaces are
well approximated.

5.6. Polygon Simplifier Parameter Tuning 95

Threshold 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.08
Vector count 791 411 205 114 72 58 54 54 58

Table 5.4: Vector count after the simplification process in relation to the inlier
threshold

iments to deduct what set of parameters delivers a good approximation of
the environment while keeping the total vector count low. The experiments
show, that a good set of parameters for our data sets is a = 1, b = 4, and
c = 0.001. In the following we present results that show the influence of the
individual parameters by varying a single parameter while leaving the other
parameters unchanged. Same as with the inlier threshold, we look in partic-
ular at the vector count and the approximation quality.

Table 5.5 shows the vector count for different values of parameter a. The
table shows, that the trend is for higher values of a to result in a lower vector
count. This is not surprising, as the scoring value with respect to the inlier
count approaches 1 much slower, meaning that a higher inlier count is re-
wardedmore thatwhen comparedwith lower values of parameter a. Overall,
this parameter can be used to influence the level of detail (i.e. the resulting
number of vectors), but only to some extend. Increasingly large value cause
less and less change in the result. A value of a = 1 appears to be a good mid-
dle ground and works reasonable well for a variety of values for parameters
b and c.

Parameter a 0.2 0.5 1.0 2.0 4.0 8.0
Vector count 75 61 58 54 53 51

Table 5.5: Vector count after the simplification process in relation to the scor-
ing parameter a. The remaining scoring parameters were set as b = 4 and
c = 0.001, the inlier threshold was set to 0.03.

Parameter b also allows us to influence howmuch value we put in higher
inlier counts. We can put the emphasis more on lower inlier counter, for ex-
ample with a = 0.1 and b = 8 or encourage longer vectors with more inliers
with a = 10 and b = 1. In Figure 5.14 we can see two examples.

Parameter b 0.5 1.0 2.0 4.0 8.0 16.0
Vector count 100 71 62 58 54 52

Table 5.6: Vector count after the simplification process in relation to the scor-
ing parameter b. The remaining scoring parameters were set as a = 1 and
c = 0.001, the inlier threshold was set to 0.03

96 Chapter 5. Experiments

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.03, a=0.2, b=4, c=0.001
vector count=75

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.03, a=8, b=4, c=0.001
vector count=51

Figure 5.13: Polygon simplification with a = 0.2 (left) and a = 8 (right). The
result on the left requires more vectors, but also provides a slightly better
approximation. The remaining scoring parameters were set as b = 4 and c =

0.001, the inlier threshold was set to 0.03.

5.6. Polygon Simplifier Parameter Tuning 97

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.03, a=1, b=0.5, c=0.001
vector count=100

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.03, a=1, b=16, c=0.001
vector count=52

Figure 5.14: Polygon simplification with b = 0.5 (left) and b = 16 (right). The
result on the left is overfitting in some areas, causing a jagged line instead
of a smooth curvature. The right polygon has no signs of overfitting, but the
approximations are a bit crude due to the low number of vectors available.

98 Chapter 5. Experiments

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.03, a=1, b=4, c=1.0e-6
vector count=893

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-2 -1.5 -1 -0.5 0

new algorithm; threshold=0.03, a=1, b=4, c=1
vector count=52

Figure 5.15: Polygon simplification with c = 0.000001 (left) and c = 1 (right).

Scoring parameter c only modifies the average square error of the inliers.
The importance of this parameter becomes quickly apparent when we test
values close to zero (zero itself being not an option due possible division by
zero that can result then). The algorithm cannot deal with noise well and
overfits in many places, causing a distinct zigzag pattern. A large value with
respect to the average square error on the other hand results in the error itself
to be mostly ignored, and the line fitting process relies heavily on the inlier
threshold instead. Figure 5.15 shows two examples, with the zigzag pattern
clearly visible in the left part.

Parameter c 0.000001 0.00001 0.0001 0.001 0.01 0.1 1.0
Vector count 893 257 77 58 51 52 52

Table 5.7: Vector count after the simplification process in relation to the scor-
ing parameter c The remaining scoring parameters were set as a = 1 and
b = 4, the inlier threshold was set to 0.03

5.7 Grid Overlay for Vector Maps

Enforcing a grid structure limits the size of the polygons, making it easier
to handle them. We tested this grid overlay on a couple of maps from the

5.8. Experiments with data sets from real robots 99

simulation data sets. For this we created maps with PolySLAM with three
settings: a) without the grid overlay, b) with a 1x1m grid overlay, and c) with
a 2x2 grid overlay. Table 5.8 shows the results of the experiment. We note,
that applying the grid overlay does not change the number of polygons in a
map in a significant way.

Map no overlay 1mx1m overlay 2mx2m overlay
Loop 209585 225216 214121
Cross 429876 449331 320989

Zigzag 469110 481840 470333

Table 5.8: Impact of grid overlay on polygon count.

5.8 Experiments with data sets from real robots

While simulations have their advantages, in particular regarding ground
truth and repeatability, we ultimately want to be able to work in real en-
vironments with actual hardware. To this end, we need to evaluate the
performance of PolyMap and PolySLAM with data that has been collected
with real robots. Given that we are targeting indoor SLAM, we limit ourself
to data sets that depict indoor settings, in particular office buildings. We also
have some diversity in robot hardware, both in the robots themselves and
the laser range finders used.

5.8.1 Intel Research Lab

Wedecided to perform part of our experiments with public data sets. For this
we used PolySLAMon the Intel Research Labpublic data set [ODS]. Figure 5.16
shows the resulting PolyMap and the trajectory of the robot. The trajectory
contains multiple loops, including two big loops around the building. The
laser range finder only has an arc of 180◦, making the task more challenging
then the other experiments in this paper. The algorithm was applied to the
first 2000 keyframes, as soon after misalignments would build up beyond
acceptable limits. Still we achieved a consistent map usable by both human
and robot localization and navigation.

5.8.2 IMT Lille Douai Lab

Our first own experiments with a real robot was utilizing a Turtlebot2 [Tur]
that had a Hokuyo utm-30LX laser range finder [Fin] mounted (30m range,
270◦ with 0.25◦ resolution, 1081 samples per sweep). The robot was tele-
operated in the building of our department. The recorded data was used to

100 Chapter 5. Experiments

-20

-15

-10

-5

 0

 5

-10 -5 0 5 10 15

otf=0.4, ost=1.2, mi=50, st=0.0009, od=0.3
distance traveled=339.7, time spent=28m 45.27s

Figure 5.16: PolyMap of the Intel Research Lab. The estimated robot trajectory
is rainbow colored for better visibility of overlapping parts of the trajectory.

5.8. Experiments with data sets from real robots 101

create a grid-map with Karto [SLA] and a PolyMap with PolySLAM. The
robot’s trajectory was u-shaped. There is a connecting corridor visible that
provides us with a rough estimate about how large the pose estimation drift
is by looking for misalignments. By this criteria, our computed map shows
no significant errors.

(a) grid-map, created with karto. (b) grid-map, created with PolySLAM.

Figure 5.17: Two grid-maps created from the same data set. Figure b) also
shows the robot’s trajectory.

Figure 5.17 shows the map from Karto in comparison to the PolyMap
that has been converted to a grid-map. Both maps are consistent and show
a good approximation of the environment. The robot traveled an estimated
distance of 69m, and was able to line up the connecting hallway with almost
no visual misalignment. The PolyMap consists of 66296 polygons, build from
265434 vectors. The PolyMap in the figure shows the estimated trajectory of
the robot, with the starting position in a room in the bottom right.

102 Chapter 5. Experiments

5.8.3 Inria Lab

The second experiment uses data collected by Xuan Sang Le using the same
robot as in 5.8.2. The experiment was conducted at the Inria research labo-
ratory in Lille. The robot was tele-operated and explored most of the floor,
resulting in a longer and more complex trajectory than the previous experi-
ment. The trajectory is shown in Figure 5.18, where every dot corresponds to
a keyframe. The thick “knots” along the trajectory are places where the robot
was rotating in place to get a better view into rooms adjacent to the hallway.
The robot’s start and end position are about the same. They are located in
the lower left area of the map. The estimated total length of the trajectory is
222m. Themap shows somemisalignment when the robots re-enters already
explored areas, in particular in the lower left area. The misalignment is es-
timated to be less than 0.5 meters by looking at the generated map. Ground
truth for a better error estimate is unfortunately not available. Overall this
PolyMap is consistent and usable by both humans and robots alike and shows
considerable good alignment when taking the length of the trajectory into ac-
count.

Figure 5.18: PolyMap created from a data set that has been created with a
Turtlebot2 at the Inria research laboratory by Xuan Sang Le. The robot started
in the lower left corner and move counter-clock-wise in one big loop around
the floor, with small detours to explore rooms and other details.

5.9. Summary 103

5.9 Summary

In this chapter we conducted several experiments to test the performance
of different aspects of our PolySLAM algorithm. We confirmed, that the
PolyMap map format is able to produce maps with a smaller memory foot-
print. We run the PolySLAM algorithm on a variety of environments, from
simulation to real world data. The PolyMaps create with PolySLAM are
consistent and in terms of the provided NE and SSIM metrics comparable to
other state-of-the-art algorithms. The lack of global optimization restricts the
capabilities of PolySLAM, but much less so than would be expected. We also
test our Navigation stack and find that the topological graph from PolyMaps
is in general sparser and thous more lightweight than counterparts created
from occupancy grids. Overall, we are satisfied with the results from the
experiments.

In the next chapter we will summarize this thesis and the related work,
including papers that have been published as result of our progress. We will
also take an outlook on potential future work on PolyMap and PolySLAM.

Conclusion

Chapter6Contents
6.1 Summary . 105
6.2 Published Papers . 106
6.3 Future work . 107

6.1 Summary

In this thesis we explore a bottleneck in multi-robot exploration – the high
network bandwidth requirements for the required map exchanges. We first
take a close look at the current state-of-the-art in regards of 2D SLAM and
2D map formats and find that no existing approach completely satisfies our
needs in regard of memory footprint, usability for navigation, and visualiza-
tion for human use.

To fill this gap we introduce PolyMap, a new vector-based 2D map for-
mat, and show that it meets all criteria outlined by us. Key features of our
PolyMap format are that the explored/traversable space is fully enclosed by
vectors (a useful property for navigation), and the presence of explicit fron-
tiers bymeans of defining different types of vectors. One type (the sector bor-
der) is used to split up polygons, allowing us to partion the map into smaller
sections.

Localization is based on dead reckoning with a correction step utilizing
an ICP variant. Our ICP implementation makes us of the vector orientation
to discard vectors with a normal vector that is pointing away from the sensor
center – a technique that we refer to as backface culling.

With the PolyMap map format and a Localization technique, we intro-
duce our PolySLAM algorithm that produces PolyMaps. The SLAM algo-
rithm creates keyframes from the sensor data. Special care is taken to reduce
the size of keyframes by simplifying polygons to approximate the obstacles
in the environment. This simplification process also reduces the influence of
sensor noise by use of line fitting techniques on the point cloud delivered by
the robots laser range finder. The different tunable parameters of the polygon
simplification process are also explained. Experiments on a benchmark map
highlight the effect of different parameter values on the vector count of the
simplified polygon.

The global map is constructed by the aggregation of local PolyMaps (i.e.
keyframes) which are previously aligned by our Localization algorithm. To

106 Chapter 6. Conclusion

accelerate merging process, the global PolyMap is structured with a BSP-tree
of convex polygons paving the navigable space. Such maps are compact and
suitable for navigation since traversable area is known. Our experiments on
different types of maps both in simulation and on real data sets show very
consistent maps despite PolyMap does not use any global optimization tech-
niques yet such as loop closure. Pose estimates also show little drift if the
environment is structured enough to allow the algorithm to compensate any
measurement errors from odometry readings. This is achieved by our point-
to-vector approach in pose alignment in combination with our line-fitting
technique in the polygon simplification process.

We finally show that the PolyMap format is suitable for navigation. For
this, we create a topological graph from the PolyMap while it is embedded
in a BSP-tree. We cull any nodes from our topological graph that are not
reachable and end upwith a relatively sparse graph that allows typical graph
search algorithms to performmuch faster than on a graph based on a regular
grid map.

6.2 Published Papers

Our work lead to several papers, focusing on the topicsMapping, SLAM, and
Navigation. By the time of thiswriting, two of the papers have been presented,
while the third has been accepted for presentation in September 2019.

ICIRA 2018. Johann Dichtl, Luc Fabresse, Guillaume Lozenguez, and
Noury Bouraqadi; PolyMap: A 2D Polygon-based Map format for Multi-
Robot Autonomous Indoor Localization and Mapping; International Confer-
ence on Intelligent Robotics and Applications; 2018; Springer
This paper introduces our PolyMap format, and compares it to other state-of-
the-art map formats. It shows, that the PolyMap format allows to accurately
model the environment, while being considerably more lightweight than oc-
cupancy grids. At the same time PolyMaps allow tomodel frontiers explicitly,
which is another advantage in the context of multi-robot exploration.

ICARSC 2019. Johann Dichtl, Xuan Sang Le, Luc Fabresse, Guillaume
Lozenguez, and Noury Bouraqadi; PolySLAM: A 2D Polygon-based SLAM
Algorithm; International Conference on Autonomous Robot Systems and Compe-
titions; 2019; IEEE
In this paper we introduces the PolySLAM algorithm. It shows, that the
PolyMap format can be utilized in SLAM directly, without creating an occu-
pancy grid as an intermediate step. Furthermore, the paper highlights that
the SLAM algorithm experiences very little drift, both in translation and

6.3. Future work 107

rotation. As a result, PolySLAM creates consistent maps, despite the lack of
global optimization in its current implementation. The paper was awarded
with a Best Paper Award in the category Industrial Robot.

IntelliSys 2019. Johann Dichtl, Xuan Sang Le, Luc Fabresse, Guillaume
Lozenguez, and Noury Bouraqadi; Robot Navigation With PolyMap, a
Polygon-based Map Format; Intelligent Systems Conference; Proceedings of SAI
Intelligent Systems Conference; 2019; Springer
This paper focuses on Navigation with PolyMaps. By creating a sparse topo-
logical graph from a PolyMap, we have a lightweight and fast way to perform
path planning in large environments. When compared to occupancy grids,
we see a clear advantage in using the PolyMap format for Navigation tasks.

6.3 Future work

While the PolySLAM implementation shows good result, there are several
limitations that leave room for improvement. The most obvious missing fea-
ture at the moment is global optimization. Weather a pose-graph-based ap-
proach, or a Rao-Blackwellized Particle Filter (RBPF), adding global opti-
mization should further improve the map quality, especially on large maps
with opportunities for loop closures.

Hand-in-hand with this is the topic of cross-keyframe polygon simplifi-
cation which is a different kind of global optimization. This would greatly
reduce the number of polygons/vectors and help speed up the computation
as the map grows. It would also open the door to preserve fine details in the
map that would otherwise be hard to notice due the sensor noise.

The polygon simplification process could also benefit from a dynamic
outlier threshold and adaptive parameter tuning, for example by taking the
point density into account. This would also eliminate the risk of choosing un-
fitting parameters by unexperienced robot operators and enables the robot to
operate optimal in environments that otherwise would ask for different pa-
rameters in different areas, such as an environment that combines indoor and
outdoor sections.

Similar, our ICP algorithm could improve in performance if an adaptive
outlier threshold would be implemented. And a better pose estimate would
improve the overall map quality as well.

Last but not least, looking back at our original motivation, autonomous
multi-robot exploration is another future goal. While having a single robot
creating PolyMaps is a good result, our aim is to have a fleet of collaborating
robots perform efficient autonomous indoor exploration, creating a shared
map of the whole environment.

Bibliography

[App66] JMathAnalAppi. A formal basis for the heuristic determination
of minimum cost paths. 1966. 15

[BFMG07] Jose-Luis Blanco, Juan-Antonio Fernández-Madrigal, and Javier
Gonzalez. A new approach for large-scale localization and
mapping: Hybrid metric-topological slam. In Robotics and Au-
tomation, 2007 IEEE International Conference on, pages 2061–2067.
IEEE, 2007. 17

[BFMG08] Jose-Luis Blanco, Juan-Antonio Fernández-Madrigal, and Javier
Gonzalez. Toward aunified bayesian approach to hybridmetric–
topological slam. IEEE Transactions on Robotics, 24(2):259–270,
2008. 17, 18, 26

[BGFM09] José-Luis Blanco, Javier González, and J-A Fernández-Madrigal.
Subjective local maps for hybrid metric-topological slam.
Robotics and Autonomous Systems, 57(1):64–74, 2009. 17

[BJK05] Patrick Beeson, Nicholas K Jong, and Benjamin Kuipers. To-
wards autonomous topological place detection using the ex-
tended voronoi graph. In Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on,
pages 4373–4379. IEEE, 2005. 16

[BLFB16] Khelifa Baizid, Guillaume Lozenguez, Luc Fabresse, and Noury
Bouraqadi. Vector Maps: A Lightweight and Accurate Map For-
mat for Multi-robot Systems. In Intelligent Robotics and Appli-
cations: 9th International Conference, ICIRA 2016, pages 418–429.
Springer International Publishing, 2016. 14, 48

[BLL92] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical poten-
tial field techniques for robot path planning. IEEE Transactions
on Systems, Man and Cybernetics, 22:224–241, 1992. 35

[BR05] Emma Brunskill and Nicholas Roy. Slam using incremental
probabilistic pca and dimensionality reduction. In Robotics and
Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE Inter-
national Conference on, pages 342–347. IEEE, 2005. 14

[BSBA11] Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, and Kai
Arras, 2011. 19

[Cen08] Andrea Censi. An icp variant using a point-to-line metric. In
Robotics and Automation, 2008. ICRA 2008. IEEE International Con-
ference on, pages 19–25. IEEE, 2008. 24, 51

110 Bibliography

[CL85] Raja Chatila and Jean-Paul Laumond. Position referencing and
consistent worldmodeling for mobile robots. In Robotics and Au-
tomation. Proceedings. 1985 IEEE International Conference on, vol-
ume 2, pages 138–145. IEEE, 1985. 14

[CMNT99] Jose ACastellanos, JMMMontiel, JoséNeira, and JuanDTardós.
The spmap: A probabilistic framework for simultaneous local-
ization and map building. IEEE Transactions on Robotics and Au-
tomation, 15(5):948–952, 1999. 12, 13

[CN10] César Cadena and José Neira. Slam in o (logn) with the com-
bined kalman-information filter. Robotics and Autonomous Sys-
tems, 58(11):1207–1219, 2010. 22

[CQW+17] Yongfu Chen, Chunlei Qu, Qifu Wang, Zhiyong Jin, Mengzhu
Shen, and Jiaqi Shen. Tvslam: An efficient topological-vector
based slam algorithm for home cleaning robots. In International
Conference on Intelligent Robotics and Applications, pages 166–178.
Springer, 2017. 28, 38, 39, 43

[Cro85] J Crowley. Navigation for an intelligent mobile robot. IEEE Jour-
nal on Robotics and Automation, 1(1):31–41, 1985. 14

[DLL+19] Johann Dichtl, Xuan Sang Le, Guillaume Lozenguez, Luc Fab-
resse, and Noury Bouraqadi. Robot navigation with polymap, a
polygon-based map format. In Proceedings of SAI Intelligent Sys-
tems Conference. Springer, 2019. 14

[E+90] Alberto Elfes et al. Occupancy grids: A stochastic spatial repre-
sentation for active robot perception. In Proceedings of the Sixth
Conference on Uncertainty in AI, volume 2929, page 6, 1990. 11

[ECL10] Jan Elseberg, Ross T Creed, and Rolf Lakaemper. A line seg-
ment based system for 2d global mapping. In 2010 IEEE Inter-
national Conference on Robotics and Automation, pages 3924–3931.
IEEE, 2010. 31, 41, 42

[FBDT99] Dieter Fox, Wolfram Burgard, Frank Dellaert, and Sebastian
Thrun. Monte carlo localization: Efficient position estimation
for mobile robots. In Proc. of the National Conference on Artificial
Intelligence, volume 1999, pages 2–2, 1999. 10, 20, 21

[FHL+03] Dieter Fox, Jeffrey Hightower, Lin Liao, Dirk Schulz, and Gae-
tano Borriello. Bayesian filtering for location estimation. IEEE
pervasive computing, 2(3):24–33, 2003. 40

[Fin] Hokuyo Laser Range Finder. https://www.hokuyo-
aut.jp/search/single.php?serial=169. 99

Bibliography 111

[FT07] Amalia F. Foka and Panos E. Trahanias. Real-time hierarchical
POMDPs for autonomous robot navigation. Robotics and Au-
tonomous Systems, 55(7):561–571, 2007. 35

[Gaz] Gazebo. http://gazebosim.org/. 84

[GD13] Dinesh Gamage and TomDrummond. Reduced dimensionality
extended kalman filter for slam. In BMVC, 2013. 22

[Gera] Brian Gerkey. Ros gmapping node. 11, 27, 40

[Gerb] Brian P. Gerkey. 20

[GKSB10] Giorgio Grisetti, Rainer Kummerle, Cyrill Stachniss, and Wol-
fram Burgard. A tutorial on graph-based SLAM. IEEE Intelligent
Transportation Systems Magazine, 2(4):31–43, 2010. 22

[Goo16] Google, 2016. 11

[Gro16] IEEE RAS Map Data Representation Working Group. Ieee stan-
dard for robot map data representation for navigation, sponsor:
Ieee robotics and automation society. June 2016. 10, 13, 15

[Grü13] Branko Grünbaum. Convex Polytopes, volume 221. Springer Sci-
ence & Business Media, 2013. 45

[GSB05] G. Grisetti, C. Stachniss, andW. Burgard. Improving Grid-based
SLAM with Rao-Blackwellized Particle Filters by Adaptive Pro-
posals and Selective Resampling. InProc. of the IEEE International
Conference on Robotics and Automation (ICRA), pages 2443–2448,
2005. 19, 25, 27

[GSB07] G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques
for Grid MappingWith Rao-Blackwellized Particle Filters. IEEE
Transactions on Robotics, 23(1):34–46, Feb. 2007. 27, 40

[HBOZ] Richard Hanten, Sebastian Buck, Sebastian Otte, and Andreas
Zell. Vector-AMCL: Vector based Adaptive Monte Carlo Local-
ization for Indoor Maps. 32

[HKL13] GuoquanHuang,Michael Kaess, and John J Leonard. Consistent
sparsification for graph optimization. In Mobile Robots (ECMR),
2013 European Conference on, pages 150–157. IEEE, 2013. 34

[HKRA16] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel An-
dor. Real-time loop closure in 2d lidar slam. In 2016 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pages
1271–1278, 2016. 11, 26, 28, 40

[Int] SRI International. 27

[Jel15] Ales Jelinek. Vector maps in mobile robotics. Acta Polytechnica
CTU Proceedings, 2(2):22–28, 2015. 15, 29, 30, 38, 41

112 Bibliography

[JH03] Timothée Jost and Heinz Hugli. A multi-resolution icp with
heuristic closest point search for fast and robust 3d registration
of range images. In 3-DDigital Imaging andModeling, 2003. 3DIM
2003. Proceedings. Fourth International Conference on, pages 427–
433. IEEE, 2003. 24

[K+60] Rudolph Emil Kalman et al. A new approach to linear filtering
and prediction problems. Journal of basic Engineering, 82(1):35–
45, 1960. 22

[KGS+11] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt Kono-
lige, andWolframBurgard. g 2 o: A general framework for graph
optimization. In Robotics and Automation (ICRA), 2011 IEEE In-
ternational Conference on, pages 3607–3613. IEEE, 2011. 22, 23, 26,
33

[KL00] J.J. Kuffner and S.M. LaValle. RRT-connect: An efficient ap-
proach to single-query path planning. In International Conference
on Robotics and Automation, volume 2, pages 995–1001, 2000. 35

[KMvSK11] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf. A flexi-
ble and scalable slam system with full 3d motion estimation. In
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). IEEE, November 2011. 28

[KSD+09] Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael
Ruhnke, Giorgio Grisetti, Cyrill Stachniss, and Alexander
Kleiner. On measuring the accuracy of slam algorithms. Au-
tonomous Robots, 27(4):387, 2009. 37

[Kui00] Benjamin Kuipers. The spatial semantic hierarchy. Artificial in-
telligence, 119(1-2):191–233, 2000. 36

[KW94] David Kortenkamp and TerryWeymouth. Topological mapping
for mobile robots using a combination of sonar and vision sens-
ing. In AAAI, volume 94, pages 979–984, 1994. 15

[LAB+12] G. Lozenguez, L. Adouane, A. Beynier, P. Martinet, and A.-
I. Mouaddib. Interleaving Planning and Control of Mobiles
Robots inUrbanEnvironmentsUsingRoad-Map. In International
Conference on Intelligent Autonomous Systems, 2012. 35

[Lav98] Steven M. Lavalle. Rapidly-exploring random trees: A new tool
for path planning. Technical report, 1998. 10, 15

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University
Press, New York, NY, USA, 2006. 47

[LFBL18] Xuan Sang Le, Luc Fabresse, Noury Bouraqadi, and Guillaume
Lozenguez. Evaluation of out-of-the-box ros 2d slams for au-

Bibliography 113

tonomous exploration of unknown indoor environments. In
International Conference on Intelligent Robotics and Applications,
pages 283–296. Springer, 2018. 40, 81, 84

[LFP13] Gim Hee Lee, Friedrich Fraundorfer, and Marc Pollefeys. Ro-
bust pose-graph loop-closures with expectation-maximization.
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ Interna-
tional Conference on, pages 556–563. IEEE, 2013. 27

[LLW05] Rolf Lakaemper, Longin Jan Latecki, andDiedrichWolter. Incre-
mentalmulti-robotmapping. In 2005 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3846–3851. IEEE,
2005. 14, 31

[LT03] Yufeng Liu and Sebastian Thrun. Results for outdoor-slamusing
sparse extended information filters. In 2003 IEEE International
Conference on Robotics and Automation (Cat. No. 03CH37422), vol-
ume 1, pages 1227–1233. IEEE, 2003. 22

[MdCT18] Kimberly McGuire, Guido de Croon, and Karl Tuyls. A com-
parative study of bug algorithms for robot navigation. CoRR,
abs/1808.05050, 2018. 34

[ME85] Hans Moravec and Alberto Elfes. High resolution maps from
wide angle sonar. In Proceedings. 1985 IEEE international confer-
ence on robotics and automation, volume 2, pages 116–121. IEEE,
1985. 11

[MEBF+10] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey,
and Kurt Konolige. The office marathon: Robust navigation in
an indoor office environment. InRobotics and Automation (ICRA),
2010 IEEE International Conference on, pages 300–307. IEEE, 2010.
35

[MP00] RomanMazl and Libor Preucil. Building a 2d environment map
from laser range-finder data. In Intelligent Vehicles Symposium,
2000. IV 2000. Proceedings of the IEEE, pages 290–295. IEEE, 2000.
14

[MW10] Michael Milford and Gordon Wyeth. Hybrid robot control and
slam for persistent navigation and mapping. Robotics and Au-
tonomous Systems, 58(9):1096–1104, 2010. 16

[ODS] Uni Bonn Online Data Sets. http://www.ipb.uni-
bonn.de/datasets/. 81, 82, 99

[PCS15] François Pomerleau, Francis Colas, and Roland Siegwart. A
Review of Point Cloud Registration Algorithms for Mobile
Robotics. Found. Trends Robot, 4(1):1–104, May 2015. 23

114 Bibliography

[PDM+07] Luis Pedraza, Gamini Dissanayake, Jaime Valls Miro, Diego
Rodriguez-Losada, and Fernando Matia. Bs-slam: Shaping the
world. In Robotics: Science and Systems, 2007. 29, 30

[Pds] Johann Dichtl PolySLAM data sets. http://car.imt-lille-
douai.fr/polyslam/. 82

[PJTN07] Lina María Paz, Patric Jensfelt, Juan D Tardós, and José Neira.
Ekf slam updates in o(n) with divide and conquer slam. In Pro-
ceedings 2007 IEEE International Conference on Robotics and Au-
tomation, pages 1657–1663. IEEE, 2007. 38

[RL01] Szymon Rusinkiewicz and Marc Levoy. Efficient variants of the
icp algorithm. In 3-DDigital Imaging andModeling, 2001. Proceed-
ings. Third International Conference on, pages 145–152. IEEE, 2001.
23, 51

[RST+12] Jörg Röwekämper, Christoph Sprunk, Gian Diego Tipaldi, Cyrill
Stachniss, Patrick Pfaff, and Wolfram Burgard. On the posi-
tion accuracy of mobile robot localization based on particle fil-
ters combined with scan matching. In 2012 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 3158–
3164. IEEE, 2012. 37

[SBG02] D. Schroter, M. Beetz, and J. S. Gutmann. RGmapping: learning
compact and structured 2D line maps of indoor environments.
In Robot and Human Interactive Communication, 2002. Proceedings.
11th IEEE International Workshop on, pages 282–287, 2002. 14

[SD98] S. Simhon and G. Dudek. A global topological map formed by
local metric maps. In International Conference on Intelligent Robots
and Systems, volume 3, pages 1708–1714, 1998. 17

[SGB05] Cyrill Stachniss, Giorgio Grisetti, and Wolfram Burgard. Re-
covering particle diversity in a rao-blackwellized particle filter
for slam after actively closing loops. In Robotics and Automation,
2005. ICRA 2005. Proceedings of the 2005 IEEE International Con-
ference on, pages 655–660. IEEE, 2005. 25, 26, 33

[SGHB04] Cyrill Stachniss, Giorgio Grisetti, Dirk Hähnel, and Wolfram
Burgard. Improved rao-blackwellized mapping by adaptive
sampling and active loop-closure. In In Proc. of the Workshop on
Self-Organization of AdaptiVE behavior (SOAVE), 2004. 8, 10

[SJH98] C Schutz, Timothée Jost, and H Hugli. Multi-feature match-
ing algorithm for free-form 3d surface registration. In Pattern
Recognition, 1998. Proceedings. Fourteenth International Conference
on, volume 2, pages 982–984. IEEE, 1998. 24

Bibliography 115

[SK95] Reid Simmons and Sven Koenig. Probabilistic robot navigation
in partially observable environments. In IJCAI, volume 95, pages
1080–1087, 1995. 20

[SK08] Hee Jin Sohn and Byung Kook Kim. An efficient localization al-
gorithm based on vector matching for mobile robots using laser
range finders. Journal of Intelligent and Robotic Systems, 51(4):461–
488, 2008. 29, 40

[SK09] Hee Jin Sohn and Byung Kook Kim. VecSLAM: An Efficient
Vector-Based SLAM Algorithm for Indoor Environments. Jour-
nal of Intelligent and Robotic Systems, 56(3):301–318, 2009. 29, 38,
40

[SLA] Karto SLAM. http://wiki.ros.org/slam_karto. 27, 101

[SMD10] Hauke Strasdat, JMM Montiel, and Andrew J Davison. Scale
drift-aware large scalemonocular slam. Robotics: Science and Sys-
tems VI, 2, 2010. 26

[SP12] Niko Sünderhauf and Peter Protzel. Switchable constraints for
robust pose graph slam. In Intelligent Robots and Systems (IROS),
2012 IEEE/RSJ International Conference on, pages 1879–1884. IEEE,
2012. 34

[SP13a] Niko Sünderhauf and Peter Protzel. Switchable constraints vs.
max-mixturemodels vs. rrr-a comparison of three approaches to
robust pose graph slam. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 5198–5203. IEEE, 2013. 8

[SP13b] Niko Sünderhauf and Peter Protzel. Switchable constraints vs.
max-mixturemodels vs. rrr-a comparison of three approaches to
robust pose graph slam. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 5198–5203. IEEE, 2013. 27

[SPR13] JoaoMachado Santos,David Portugal, andRui PRocha. An eval-
uation of 2d slam techniques available in robot operating sys-
tem. In Safety, Security, and Rescue Robotics (SSRR), 2013 IEEE
International Symposium on, pages 1–6. IEEE, 2013. 27, 40, 82

[SRI10] SRI International. Karto slam
(http://www.ros.org/wiki/karto), 2010. 27

[SSC90] Randall Smith, Matthew Self, and Peter Cheeseman. Estimating
uncertain spatial relationships in robotics. In Autonomous robot
vehicles, pages 167–193. Springer, 1990. 22, 26

[TBF05] Sebastian Thrun,WolframBurgard, andDieter Fox. Probabilistic
robotics (intelligent robotics and autonomous agents). 01 2005.
32

116 Bibliography

[Thr98] Sebastian Thrun. Learning metric-topological maps for indoor
mobile robot navigation. Artificial Intelligence, 99(1):21–71, 1998.
16, 36

[THSW07] Tong Tao, Yalou Huang, Fengchi Sun, and Tingting Wang. Mo-
tion planning for slam based on frontier exploration. In 2007
International Conference on Mechatronics and Automation, pages
2120–2125. IEEE, 2007. 39

[TN87] WilliamC. Thibault and Bruce F. Naylor. Set operations on poly-
hedra using binary space partitioning trees. SIGGRAPHComput.
Graph., 21(4):153–162, August 1987. 16

[Tur] Turtlebot2. https://www.turtlebot.com/turtlebot2/. 99

[VLE10] Regis Vincent, Benson Limketkai, and Michael Eriksen. Com-
parison of indoor robot localization techniques in the absence
of gps. In Detection and Sensing of Mines, Explosive Objects, and
Obscured Targets XV, volume 7664, page 76641Z. International
Society for Optics and Photonics, 2010. 37

[WBSS04] ZhouWang, Alan C Bovik, Hamid R Sheikh, and Eero P Simon-
celli. Image quality assessment: fromerror visibility to structural
similarity. IEEE transactions on image processing, 13(4):600–612,
2004. 82

[Wel85] EmoWelzl. Constructing the visibility graph for n-line segments
in o (n2) time. Information Processing Letters, 20(4):167–171, 1985.
36

[WSG10] K.M. Wurm, C. Stachniss, and G. Grisetti. Bridging the Gap Be-
tween Feature- and Grid-based SLAM. Robotics and Autonomous
Systems, 58(2):140–148, 2010. 12

[WVDM00] Eric A Wan and Rudolph Van Der Merwe. The unscented
kalman filter for nonlinear estimation. In Adaptive Systems for
Signal Processing, Communications, and Control Symposium 2000.
AS-SPCC. The IEEE 2000, pages 153–158. Ieee, 2000. 22

[Yam97] Brian Yamauchi. A frontier-based approach for autonomous ex-
ploration. In cira, page 146. IEEE, 1997. 39

[ZG00] L. Zhang and B. K. Ghosh. Line segment based map building
and localization using 2D laser rangefinder. In Robotics and Au-
tomation, 2000. Proceedings. ICRA ’00. IEEE International Confer-
ence on, volume 3, pages 2538–2543 vol.3, 2000. 14

SLAM 2d à base de polygones pour de grands espaces intérieur
Une solution à base de polygones

Le SLAM d’espaces intérieurs est un sujet important en robotique. La
majorité des solutions actuelles se basent sur une carte sous forme de grille
2D. Bien que permettant de réaliser des cartographies satisfaisantes, cette
solution admet des limites liées à la quantité importante de mémoire qu’elle
requiert. Dans cette thèse, nous introduisons PolySLAM un algorithme de
SLAMqui permet de produire des cartes vectorielles 2D à base de polygones.

Mots-clés: SLAM,Navigation,Exploration multi-robot,Robotique

On 2D SLAM for Large Indoor Spaces
A Polygon-based Solution

Indoor SLAM and exploration is an important topic in robotics. Most
solutions today work with a 2D grid representation as map model, both for
the internal data format and for the output of the algorithm. While this is
convenient in several ways, it also brings its own limitations, in particular
because of the memory requirements of this map format. In this thesis
we introduce PolyMap, a 2D map format aimed at indoor mapping, and
PolySLAM, a SLAM algorithm that produces PolyMaps.

Keywords: SLAM, Navigation, Multi-Robot Exploration, Robotics

	Introduction
	Context
	Problem Statement
	Contributions
	Thesis Outline

	2D SLAM for autonomous exploration
	What is SLAM?
	Map Formats
	Occupancy Grids
	Feature-based Maps
	Parametric Maps
	Topological Maps
	Hybrid Maps

	Localization
	Techniques

	Mapping
	Techniques
	Creating Occupancy Grids
	Creating Vector-based maps

	Global Error Minimization
	Global Optimization with Kalman Filters
	Global Optimization with Particle Filters
	Pose Graph based Global Optimization

	Navigation
	Reactive navigation
	Grid-based Navigation
	Heuristic approaches
	Topology-based Navigation

	Comparison of 2D SLAM Techniques and Solutions
	Comparison Criteria
	Comparing Techniques and Map Formats
	Comparing Solutions
	Conclusion

	Summary

	PolySLAM: A 2D Polygon-based SLAM Algorithm
	The PolyMap format
	Model
	Evaluation of PolyMap

	Overview of PolySLAM
	Data Acquisition and Alignment
	Creating Keyframes from Point Cloud
	Polygon Refinement
	Level of Detail & Parameter Tuning
	PolyMap Merging
	Summary

	PolyMap-Based Navigation
	Numerical Problems to Consider
	Formal Definition of the Topological Graph
	Building a Topological Graph from a BSP-Tree
	Path Planning on a Topological Graph
	Using Grid Partitioning on the PolyMap
	Removing Inaccessible Nodes from the Graph
	Comparison with Occupancy Grid based Navigation
	Summary

	Experiments
	Metrics
	PolyMap Memory Sizes
	Simulation Setup
	Loop Environment
	Cross Environment
	Zigzag Environment
	Maze Environment
	Willow Garage Environment

	Simulation Results
	Backface Culling
	Polygon Simplifier Parameter Tuning
	Inlier Threshold Parameter
	Line-Fitter Scoring Parameters

	Grid Overlay for Vector Maps
	Experiments with data sets from real robots
	Intel Research Lab
	IMT Lille Douai Lab
	Inria Lab

	Summary

	Conclusion
	Summary
	Published Papers
	Future work

	Bibliography

