L. Csanády, P. Vergani, and D. C. Gadsby, Structure, Gating, and Regulation of the CFTR Anion Channel, Physiological Reviews, vol.99, issue.1, pp.707-738, 2019.

J. R. Riordan, CFTR function and prospects for therapy, Annu. Rev. Biochem, vol.77, pp.701-726, 2008.

A. Billet, Y. Jia, T. Jensen, J. R. Riordan, and J. W. Hanrahan, Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation, FASEB J, vol.29, issue.9, pp.3945-3953, 2015.

D. Dahan, Regulation of the CFTR channel by phosphorylation, Pflugers Arch, vol.443, pp.92-96, 2001.

D. C. Gadsby and A. C. Nairn, Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis, Physiol. Rev, vol.79, issue.1, pp.77-107, 1999.

Y. Jia, C. J. Mathews, and J. W. Hanrahan, Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A, J. Biol. Chem, vol.272, issue.8, pp.4978-4984, 1997.

G. Seavilleklein, PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR, Am. J. Physiol, vol.295, issue.5, pp.1366-1375, 2008.

A. Billet and J. W. Hanrahan, The secret life of CFTR as a calcium-activated chloride channel, J. Physiol. (Lond.), vol.591, issue.21, pp.5273-5278, 2013.

Z. Bozoky, Synergy of cAMP and calcium signaling pathways in CFTR regulation, Proc. Natl. Acad. Sci. U.S.A, vol.114, issue.11, p.2017

Y. Nakamura and K. Fukami, Regulation and physiological functions of mammalian phospholipase C, J. Biochem, 2017.

G. Kadamur and E. M. Ross, Mammalian phospholipase C', Annu. Rev. Physiol, vol.75, pp.127-154, 2013.

M. Schmidt, A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase, Nat. Cell Biol, vol.3, issue.11, pp.1020-1024, 2001.

J. Lérias, Compartmentalized crosstalk of CFTR and TMEM16A (ANO1) through EPAC1 and ADCY1, Cell. Signal, vol.44, pp.10-19, 2018.

P. Ivonnet, M. Salathe, and G. E. Conner, Hydrogen peroxide stimulation of CFTR reveals an Epacmediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling, Br. J. Pharmacol, vol.172, issue.1, pp.173-184, 2015.

J. C. Domingue, M. Ao, J. Sarathy, and M. C. Rao, Chenodeoxycholic acid requires activation of EGFR, EPAC, and Ca2+ to stimulate CFTR-dependent Cl-secretion in human colonic T84 cells, Am. J. Physiol, vol.311, issue.5, pp.777-792, 2016.

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith et al., Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive, Nature, vol.358, issue.6389, pp.761-764, 1992.

L. Froux, C. Coraux, E. Sage, and F. Becq, Short-term consequences of F508del-CFTR thermal instability on CFTR-dependent transepithelial curents in human airway epithelial cells

S. Ramachandran, Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro, Am. J. Physiol. Lung Cell Mol. Physiol, vol.305, issue.1, pp.23-32, 2013.

L. Vachel, C. Norez, C. Jayle, F. Becq, and C. Vandebrouck, The low PLC-?1 expression in cystic fibrosis bronchial epithelial cells induces upregulation of TRPV6 channel activity, Cell Calcium, vol.57, issue.1, pp.38-48, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134274

R. Xu, Q. Li, X. Zhou, J. M. Perelman, and V. P. Kolosov, Oxidative stress mediates the disruption of airway epithelial tight junctions through a TRPM2-PLC?1-PKC? signaling pathway, Int J Mol Sci, vol.14, issue.5, pp.9475-9486, 2013.

V. Bezzerri, Phospholipase C-?3 is a key modulator of IL-8 expression in cystic fibrosis bronchial epithelial cells, J. Immunol, vol.186, issue.8, pp.4946-4958, 2011.

B. Aravamudan and K. Broadie, Synaptic Drosophila UNC-13 is regulated by antagonistic G-protein pathways via a proteasome-dependent degradation mechanism, J. Neurobiol, vol.54, issue.3, pp.417-438, 2003.

T. Jaunet-lahary, A. Goupille, D. Jacquemin, F. Fleury, J. Graton et al., A Joint Theoretical and Experimental Study of the Behavior of the DIDS Inhibitor and its Derivatives, Chemphyschem, vol.17, issue.15, pp.2434-2445, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01388999

A. H. Rossi, W. C. Salmon, M. Chua, and C. W. Davis, Calcium signaling in human airway goblet cells following purinergic activation, Am. J. Physiol. Lung Cell Mol. Physiol, vol.292, issue.1, pp.92-98, 2007.

M. Rafehi and C. E. Müller, Tools and drugs for uracil nucleotide-activated P2Y receptors, Pharmacol. Ther, vol.190, pp.24-80, 2018.

G. Burnstock, Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future, Bioessays, vol.34, issue.3, pp.218-225, 2012.

G. Magni and S. Ceruti, P2Y purinergic receptors: new targets for analgesic and antimigraine drugs, Biochem. Pharmacol, vol.85, issue.4, pp.466-477, 2013.

K. M. Hoque, Epac1 mediates protein kinase A-independent mechanism of forskolin-activated intestinal chloride secretion, J. Gen. Physiol, vol.135, issue.1, pp.43-58, 2010.

W. Namkung, W. E. Finkbeiner, and A. S. Verkman, CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures, Mol. Biol. Cell, vol.21, issue.15, pp.2639-2648, 2010.

A. J. Szkotak, S. F. Man, and M. Duszyk, The role of the basolateral outwardly rectifying chloride channel in human airway epithelial anion secretion, Am. J. Respir. Cell Mol. Biol, vol.29, issue.6, pp.710-720, 2003.

C. A. Bertrand, R. Zhang, J. M. Pilewski, and R. A. Frizzell, SLC26A9 is a constitutively active, CFTRregulated anion conductance in human bronchial epithelia, J. Gen. Physiol, vol.133, issue.4, pp.421-438, 2009.

J. J. Salomon, S. Spahn, X. Wang, J. Füllekrug, C. A. Bertrand et al., Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl-channels, Am. J. Physiol. Lung Cell Mol. Physiol, vol.310, issue.7, pp.593-602, 2016.

Y. D. Yang, TMEM16A confers receptor-activated calcium-dependent chloride conductance, Nature, vol.455, issue.7217, pp.1210-1215, 2008.

P. Scudieri, Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia, J. Physiol. (Lond.), vol.590, issue.23, pp.6141-6155, 2012.

R. Toczy?owska-mami?ska and K. Do?owy, Ion transporting proteins of human bronchial epithelium, Journal of Cellular Biochemistry, vol.113, issue.2, pp.426-432, 2012.

C. A. Bertrand, The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9, Am. J. Physiol. Lung Cell Mol. Physiol, vol.312, issue.6, pp.912-925, 2017.

L. Cocco, M. Y. Follo, L. Manzoli, and P. Suh, Phosphoinositide-specific phospholipase C in health and disease, J. Lipid Res, vol.56, issue.10, pp.1853-1860, 2015.

A. Gresset, J. Sondek, and T. K. Harden, The phospholipase C isozymes and their regulation, Subcell. Biochem, vol.58, pp.61-94, 2012.

A. V. Smrcka, J. H. Brown, and G. G. Holz, Role of phospholipase C? in physiological phosphoinositide signaling networks, Cell. Signal, vol.24, issue.6, pp.1333-1343, 2012.

J. K. Kim, Subtype-specific roles of phospholipase C-? via differential interactions with PDZ domain proteins, Adv. Enzyme Regul, vol.51, issue.1, pp.138-151, 2011.

V. Raghuram, D. O. Mak, and J. K. Foskett, Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction, Proc. Natl. Acad. Sci. U.S.A, vol.98, issue.3, pp.1300-1305, 2001.

Y. Jiang, Crystallographic analysis of NHERF1-PLC?3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer, Biochem. Biophys. Res. Commun, vol.446, issue.2, pp.638-643, 2014.

Y. Oh, NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3 activation, Mol. Cell. Biol, vol.24, issue.11, pp.5069-5079, 2004.

K. Arora, Stabilizing rescued surface-localized ?f508 CFTR by potentiation of its interaction with Na(+)/H(+) exchanger regulatory factor 1, Biochemistry, vol.53, issue.25, pp.4169-4179, 2014.

W. Zhang, Z. Zhang, Y. Zhang, and A. P. Naren, CFTR-NHERF2-LPA? Complex in the Airway and Gut Epithelia, Int J Mol Sci, vol.18, issue.9, 2017.

N. Sharma, A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction, Am. J. Physiol. Lung Cell Mol. Physiol, vol.311, issue.6, pp.1170-1182, 2016.

D. Broadbent, Roles of NHERF Family of PDZ-Binding Proteins in Regulating GPCR Functions, Adv. Immunol, vol.136, pp.353-385, 2017.

J. Y. Kim, Inhibitory regulation of cystic fibrosis transmembrane conductance regulator aniontransporting activities by Shank2, J. Biol. Chem, vol.279, issue.11, pp.10389-10396, 2004.

J. H. Lee, Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors, J. Biol. Chem, vol.282, issue.14, pp.10414-10422, 2007.

S. Yamamoto, K. Ichishima, and T. Ehara, Regulation of extracellular UTP-activated Cl-current by P2Y-PLC-PKC signaling and ATP hydrolysis in mouse ventricular myocytes, J Physiol Sci, vol.57, issue.2, pp.85-94, 2007.

S. G. Rhee, Regulation of phosphoinositide-specific phospholipase C', Annu. Rev. Biochem, vol.70, pp.281-312, 2001.

H. Zhu, Rescue of defective pancreatic secretion in cystic-fibrosis cells by suppression of a novel isoform of phospholipase C, Lancet, vol.362, issue.9401, pp.2059-2065, 2003.

A. Rimessi, PLCB3 Loss of Function Reduces Pseudomonas aeruginosa-Dependent IL-8 Release in Cystic Fibrosis, Am. J. Respir. Cell Mol. Biol, vol.59, issue.4, pp.428-436, 2018.

J. I. Hwang, Regulation of phospholipase C-beta 3 activity by Na+/H+ exchanger regulatory factor 2, J. Biol. Chem, vol.275, issue.22, pp.16632-16637, 2000.

D. Reczek and A. Bretscher, Identification of EPI64, a TBC/rabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP, J. Cell Biol, vol.153, issue.1, pp.191-206, 2001.

C. Wu, Systematic identification of SH3 domain-mediated human protein-protein interactions by peptide array target screening, Proteomics, vol.7, issue.11, pp.1775-1785, 2007.

J. Hwang, H. S. Kim, J. R. Lee, E. Kim, S. H. Ryu et al., The interaction of phospholipase C-beta3 with Shank2 regulates mGluR-mediated calcium signal, J. Biol. Chem, vol.280, issue.13, pp.12467-12473, 2005.

R. A. Hall, A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins, Proc. Natl. Acad. Sci. U.S.A, vol.95, issue.15, pp.8496-8501, 1998.

J. Holcomb, Structural insights into PDZ-mediated interaction of NHERF2 and LPA(2), a cellular event implicated in CFTR channel regulation, Biochem. Biophys. Res. Commun, vol.446, issue.1, pp.399-403, 2014.

M. J. Lobo, M. D. Amaral, M. Zaccolo, and C. M. Farinha, EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1, J. Cell. Sci, vol.129, issue.13, pp.2599-2612, 2016.

A. C. Abbattiscianni, M. Favia, M. T. Mancini, R. A. Cardone, L. Guerra et al., Correctors of mutant CFTR enhance subcortical cAMP-PKA signaling through modulating ezrin phosphorylation and cytoskeleton organization, J. Cell. Sci, vol.129, pp.1128-1140, 2016.

F. M. Adamski, K. M. Timms, and B. H. Shieh, A unique isoform of phospholipase Cbeta4 highly expressed in the cerebellum and eye, Biochim. Biophys. Acta, vol.1444, pp.55-60, 1999.

N. Alcolado, D. J. Conrad, S. Rafferty, F. G. Chappe, and V. M. Chappe, VIP-dependent increase in F508del-CFTR membrane localization is mediated by PKC?, Am. J. Physiol, vol.301, pp.53-65, 2011.

V. Allen, P. Swigart, R. Cheung, S. Cockcroft, and M. Katan, Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations, Biochem. J, vol.327, pp.545-552, 1997.

W. Alshafie, F. G. Chappe, M. Li, Y. Anini, and V. M. Chappe, VIP regulates CFTR membrane expression and function in Calu-3 cells by increasing its interaction with NHERF1 and P-ERM in a VPAC1-and PKC?-dependent manner, Am. J. Physiol, vol.307, pp.107-119, 2014.

D. Ambort, M. E. Johansson, J. K. Gustafsson, H. E. Nilsson, A. Ermund et al., Calcium and pH-dependent packing and release of the gelforming MUC2 mucin, Proc. Natl. Acad. Sci. U.S.A, vol.109, pp.5645-5650, 2012.

D. H. Andersen, CYSTIC FIBROSIS OF THE PANCREAS AND ITS RELATION TO CELIAC DISEASE: A CLINICAL AND PATHOLOGIC STUDY, American Journal of Diseases of Children, vol.56, pp.344-399, 1938.

D. H. Andersen and R. G. Hodges, Celiac syndrome; genetics of cystic fibrosis of the pancreas, with a consideration of etiology, Am J Dis Child, vol.72, pp.62-80, 1946.

M. P. Anderson, H. A. Berger, D. P. Rich, R. J. Gregory, A. E. Smith et al., Nucleoside triphosphates are required to open the CFTR chloride channel, Cell, vol.67, pp.775-784, 1991.

T. Ando, W. Xiao, P. Gao, S. Namiranian, K. Matsumoto et al., Critical role for mast cell Stat5 activity in skin inflammation, Cell Rep, vol.6, pp.366-376, 2014.

G. André-grégoire, F. Dilasser, J. Chesné, F. Braza, A. Magnan et al., Targeting of Rac1 prevents bronchoconstriction and airway hyperresponsiveness, J. Allergy Clin. Immunol, 2017.

E. Anguita and A. Villalobo, Ca2+ signaling and Src-kinases-controlled cellular functions, Arch. Biochem. Biophys, vol.650, pp.59-74, 2018.

F. Antigny, C. Norez, A. Cantereau, F. Becq, and C. Vandebrouck, Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells, Respir. Res, vol.9, p.70, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00389746

F. Antigny, C. Norez, F. Becq, and C. Vandebrouck, Calcium homeostasis is abnormal in cystic fibrosis airway epithelial cells but is normalized after rescue of F508del-CFTR, Cell Calcium, vol.43, pp.175-183, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00389764

F. Antigny, N. Girardin, D. Raveau, M. Frieden, F. Becq et al., Dysfunction of mitochondria Ca2+ uptake in cystic fibrosis airway epithelial cells, Mitochondrion, vol.9, pp.232-241, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00391081

F. Antigny, C. Norez, L. Dannhoffer, J. Bertrand, D. Raveau et al., Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis, Am. J. Respir. Cell Mol. Biol, vol.44, pp.83-90, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00559252

F. Antigny, C. Norez, F. Becq, and C. Vandebrouck, CFTR and Ca Signaling in Cystic Fibrosis, Front Pharmacol, vol.2, p.67, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00664651

F. A. Antoni, M. Palkovits, J. Simpson, S. M. Smith, A. L. Leitch et al.,

, Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory, J. Neurosci, vol.18, pp.9650-9661

M. Ao, J. Sarathy, J. Domingue, W. A. Alrefai, and M. C. Rao, Chenodeoxycholic acid stimulates Cl(-) secretion via cAMP signaling and increases cystic fibrosis transmembrane conductance regulator phosphorylation in T84 cells, Am. J. Physiol, vol.305, pp.447-456, 2013.

N. Arispe, E. Rojas, B. R. Genge, L. N. Wu, and R. E. Wuthier, Similarity in calcium channel activity of annexin V and matrix vesicles in planar lipid bilayers, Biophys. J, vol.71, pp.1764-1775, 1996.

K. Arora, C. Moon, W. Zhang, S. Yarlagadda, H. Penmatsa et al., Stabilizing rescued surface-localized ?f508 CFTR by potentiation of its interaction with Na(+)/H(+) exchanger regulatory factor 1, Biochemistry, vol.53, pp.4169-4179, 2014.

M. Avella, C. Loriol, K. Boulukos, F. Borgese, and J. Ehrenfeld, SLC26A9 stimulates CFTR expression and function in human bronchial cell lines, J. Cell. Physiol, vol.226, pp.212-223, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00506171

Y. S. Bae, L. G. Cantley, C. S. Chen, S. R. Kim, K. S. Kwon et al., Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-trisphosphate, J. Biol. Chem, vol.273, pp.4465-4469, 1998.

V. Bala, S. Rajagopal, D. P. Kumar, A. D. Nalli, S. Mahavadi et al., Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-? pathway and modulated by endogenous H2S, Front Physiol, vol.5, p.420, 2014.

A. Balázs and M. A. Mall, Role of the SLC26A9 Chloride Channel as Disease Modifier and Potential Therapeutic Target in Cystic Fibrosis, Front Pharmacol, vol.9, p.1112, 2018.

S. Bale, P. Venkatesh, M. Sunkoju, and C. Godugu, An Adaptogen: Withaferin A Ameliorates in Vitro and in Vivo Pulmonary Fibrosis by Modulating the Interplay of Fibrotic, Matricelluar Proteins, and Cytokines, Front Pharmacol, vol.9, p.248, 2018.

H. Balghi, R. Robert, B. Rappaz, X. Zhang, A. Wohlhuter-haddad et al., Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways, FASEB J, vol.25, pp.4274-4291, 2011.

J. Bandorowicz-piku?a and A. K. Seliga, Annexin A6 as a cholesterol and nucleotide binding protein involved in membrane repair and in controlling membrane transport during endo-and exocytosis, Postepy Biochem, vol.64, pp.190-195, 2018.

C. Barret, C. Roy, P. Montcourrier, P. Mangeat, and V. Niggli, Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP(2)) binding site in the NH(2)-terminal domain of ezrin correlates with its altered cellular distribution, J. Cell Biol, vol.151, pp.1067-1080, 2000.

G. Bellis, C. Dehillotte, and L. Lemonnier, Registre Français de la mucoviscidose, 2017.

R. Benedetto, J. Ousingsawat, P. Wanitchakool, Y. Zhang, M. J. Holtzman et al., Epithelial Chloride Transport by CFTR Requires TMEM16A. Sci Rep, vol.7, p.12397, 2017.

R. Benedetto, J. Ousingsawat, I. Cabrita, M. Pinto, J. R. Lérias et al., Plasma membrane-localized TMEM16 proteins are indispensable for expression of CFTR, J. Mol. Med, vol.97, pp.711-722, 2019.

H. A. Berger, S. M. Travis, and M. J. Welsh, Regulation of the cystic fibrosis transmembrane conductance regulator Cl-channel by specific protein kinases and protein phosphatases, J. Biol. Chem, vol.268, pp.2037-2047, 1993.

C. A. Bertrand, R. Zhang, J. M. Pilewski, and R. A. Frizzell, SLC26A9 is a constitutively active, CFTR-regulated anion conductance in human bronchial epithelia, J. Gen. Physiol, vol.133, pp.421-438, 2009.

C. A. Bertrand, S. Mitra, S. K. Mishra, X. Wang, Y. Zhao et al., The CFTR trafficking mutation F508del inhibits the constitutive activity of SLC26A9, Am. J. Physiol. Lung Cell Mol. Physiol, vol.312, pp.912-925, 2017.

J. Bertrand, L. Dannhoffer, F. Antigny, L. Vachel, C. Jayle et al., A functional tandem between transient receptor potential canonical channels 6 and calciumdependent chloride channels in human epithelial cells, Eur. J. Pharmacol, vol.765, pp.337-345, 2015.

V. Bezzerri, P. Adamo, A. Rimessi, C. Lanzara, S. Crovella et al., Phospholipase C-?3 is a key modulator of IL-8 expression in cystic fibrosis bronchial epithelial cells, J. Immunol, vol.186, pp.4946-4958, 2011.

K. M. Bijli, F. Fazal, S. A. Slavin, A. Leonard, V. Grose et al., Phospholipase C-? signaling mediates endothelial cell inflammation and barrier disruption in acute lung injury, Am. J. Physiol. Lung Cell Mol. Physiol, vol.311, pp.517-524, 2016.

A. Billet and J. W. Hanrahan, The secret life of CFTR as a calcium-activated chloride channel, J. Physiol, vol.591, pp.5273-5278, 2013.

A. Billet, Y. Luo, H. Balghi, and J. W. Hanrahan, Role of tyrosine phosphorylation in the muscarinic activation of the cystic fibrosis transmembrane conductance regulator (CFTR), J. Biol. Chem, vol.288, pp.21815-21823, 2013.

A. Billet, Y. Jia, T. Jensen, J. R. Riordan, and J. W. Hanrahan, Regulation of the cystic fibrosis transmembrane conductance regulator anion channel by tyrosine phosphorylation, FASEB J, vol.29, pp.3945-3953, 2015.

L. A. Borthwick, J. Mcgaw, G. Conner, C. J. Taylor, V. Gerke et al., The formation of the cAMP/protein kinase A-dependent annexin 2-S100A10 complex with cystic fibrosis conductance regulator protein (CFTR) regulates CFTR channel function, Mol. Biol. Cell, vol.18, pp.3388-3397, 2007.

L. A. Borthwick, C. Riemen, C. Goddard, W. H. Colledge, A. Mehta et al., Defective formation of PKA/CnA-dependent annexin 2-S100A10/CFTR complex in DeltaF508 cystic fibrosis cells, Cell. Signal, vol.20, pp.1073-1083, 2008.

L. A. Borthwick, A. Neal, L. Hobson, V. Gerke, L. Robson et al., The annexin 2-S100A10 complex and its association with TRPV6 is regulated by cAMP/PKA/CnA in airway and gut epithelia, Cell Calcium, vol.44, pp.147-157, 2008.

R. C. Boucher, An overview of the pathogenesis of cystic fibrosis lung disease, Adv. Drug Deliv. Rev, vol.54, pp.1359-1371, 2002.

J. L. Boyer, G. L. Waldo, and T. K. Harden, Beta gamma-subunit activation of G-proteinregulated phospholipase C, J. Biol. Chem, vol.267, pp.25451-25456, 1992.

Z. Bozoky, S. Ahmadi, T. Milman, T. H. Kim, K. Du et al., Synergy of cAMP and calcium signaling pathways in CFTR regulation, Proc. Natl. Acad. Sci. U.S.A, vol.114, pp.2086-2095, 2017.

A. Bretscher, K. Edwards, and R. G. Fehon, ERM proteins and merlin: integrators at the cell cortex, Nat. Rev. Mol. Cell Biol, vol.3, pp.586-599, 2002.

A. Brisson, G. Mosser, and R. Huber, Structure of soluble and membrane-bound human annexin V, J. Mol. Biol, vol.220, pp.199-203, 1991.

D. Broadbent, M. M. Ahmadzai, A. K. Kammala, C. Yang, C. Occhiuto et al., Roles of NHERF Family of PDZ-Binding Proteins in Regulating GPCR Functions, Adv. Immunol, vol.136, pp.353-385, 2017.

N. Broere, J. Hillesheim, B. Tuo, H. Jorna, A. B. Houtsmuller et al., Cystic fibrosis transmembrane conductance regulator activation is reduced in the small intestine of Na+/H+ exchanger 3 regulatory factor 1 (NHERF-1)-but Not NHERF-2-deficient mice, J. Biol. Chem, vol.282, pp.37575-37584, 2007.

A. Brown, J. Danielsson, E. A. Townsend, Y. Zhang, J. F. Perez-zoghbi et al., Attenuation of airway smooth muscle contractility via flavonol-mediated inhibition of phospholipase-C?, Am. J. Physiol. Lung Cell Mol. Physiol, vol.310, pp.747-758, 2016.

T. Bryn, M. Mahic, J. M. Enserink, F. Schwede, E. M. Aandahl et al., The cyclic AMP-Epac1-Rap1 pathway is dissociated from regulation of effector functions in monocytes but acquires immunoregulatory function in mature macrophages, J. Immunol, vol.176, pp.7361-7370, 2006.

T. D. Bunney, R. Harris, N. L. Gandarillas, M. B. Josephs, S. M. Roe et al., Structural and mechanistic insights into ras association domains of phospholipase C epsilon, Mol. Cell, vol.21, pp.495-507, 2006.

R. D. Burgoyne, Calpactin in exocytosis, Nature, vol.331, p.20, 1988.

G. Burnstock, Purinergic signalling: Its unpopular beginning, its acceptance and its exciting future, Bioessays, vol.34, pp.218-225, 2012.

J. M. Buyck, V. Verriere, R. Benmahdi, G. Higgins, B. Guery et al., P. aeruginosa LPS stimulates calcium signaling and chloride secretion via CFTR in human bronchial epithelial cells, J. Cyst. Fibros, vol.12, pp.60-67, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02490481

J. J. Cali, J. C. Zwaagstra, N. Mons, D. M. Cooper, and J. Krupinski, Type VIII adenylyl cyclase. A Ca2+/calmodulin-stimulated enzyme expressed in discrete regions of rat brain, J. Biol. Chem, vol.269, pp.12190-12195, 1994.

M. Camps, A. Carozzi, P. Schnabel, A. Scheer, P. J. Parker et al., Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits, Nature, vol.360, pp.684-686, 1992.

H. Chap, J. Fauvel, A. Gassama-diagne, J. Ragab-thomas, and M. Simon, Une homologie frappante entre le CFTR et les annexines, Med.Sci, vol.7, pp.8-9, 1991.

F. Chappe, M. E. Loewen, J. W. Hanrahan, C. , and V. , Vasoactive intestinal peptide increases cystic fibrosis transmembrane conductance regulator levels in the apical membrane of Calu-3 cells through a protein kinase C-dependent mechanism, J. Pharmacol. Exp. Ther, vol.327, pp.226-238, 2008.

V. Chappe, D. A. Hinkson, T. Zhu, X. Chang, J. R. Riordan et al., , 2003.

, Phosphorylation of protein kinase C sites in NBD1 and the R domain control CFTR channel activation by PKA, J. Physiol. (Lond.), vol.548, pp.39-52

V. Chappe, D. A. Hinkson, L. D. Howell, A. Evagelidis, J. Liao et al., Stimulatory and inhibitory protein kinase C consensus sequences regulate the cystic fibrosis transmembrane conductance regulator, Proc. Natl. Acad. Sci. U.S.A, vol.101, pp.390-395, 2004.

A. Chattopadhyay, M. Vecchi, Q. Ji, R. Mernaugh, and G. Carpenter, The role of individual SH2 domains in mediating association of phospholipase C-gamma1 with the activated EGF receptor, J. Biol. Chem, vol.274, pp.26091-26097, 1999.

C. C. Chen, Y. T. Sun, J. J. Chen, and K. T. Chiu, TNF-alpha-induced cyclooxygenase-2 expression in human lung epithelial cells: involvement of the phospholipase C-gamma 2, protein kinase C-alpha, tyrosine kinase, NF-kappa B-inducing kinase, and I-kappa B kinase 1/2 pathway, J. Immunol, vol.165, pp.2719-2728, 2000.

X. Chen, X. Li, W. Gu, D. Wang, Y. Chen et al., LAT alleviates Th2/Treg imbalance in an OVA-induced allergic asthma mouse model through LAT-PLC-?1 interaction, Int. Immunopharmacol, vol.44, pp.9-15, 2017.

Y. Chen, X. Wang, L. Di, G. Fu, Y. Chen et al., Phospholipase Cgamma2 mediates RANKL-stimulated lymph node organogenesis and osteoclastogenesis, J. Biol. Chem, vol.283, pp.29593-29601, 2008.

D. Chin and A. R. Means, Calmodulin: a prototypical calcium sensor, Trends Cell Biol, vol.10, pp.322-328, 2000.

J. P. Clancy, R. D. Szczesniak, M. A. Ashlock, S. E. Ernst, L. Fan et al., Multicenter intestinal current measurements in rectal biopsies from CF and non-CF subjects to monitor CFTR function, PLoS ONE, vol.8, p.73905, 2013.

R. C. Cohn, L. Poncz, R. L. Waller, and D. G. Dearborn, Phosphoinositide content of erythrocyte membranes in cystic fibrosis, J. Lab. Clin. Med, vol.111, pp.336-340, 1988.

G. E. Conner, P. Ivonnet, M. Gelin, P. Whitney, and M. Salathe, H2O2 stimulates cystic fibrosis transmembrane conductance regulator through an autocrine prostaglandin pathway, using multidrugresistant protein-4, Am. J. Respir. Cell Mol. Biol, vol.49, pp.672-679, 2013.

A. L. Cozens, M. J. Yezzi, K. Kunzelmann, T. Ohrui, L. Chin et al., CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells, Am. J. Respir. Cell Mol. Biol, vol.10, pp.38-47, 1994.

X. Cullere, S. K. Shaw, L. Andersson, J. Hirahashi, F. W. Luscinskas et al., Regulation of vascular endothelial barrier function by Epac, a cAMP-activated exchange factor for Rap GTPase, Blood, vol.105, pp.1950-1955, 2005.

M. G. Cumbay and V. J. Watts, Galphaq potentiation of adenylate cyclase type 9 activity through a Ca2+/calmodulin-dependent pathway, Biochem. Pharmacol, vol.69, pp.1247-1256, 2005.

D. Dahan, A. Evagelidis, J. W. Hanrahan, D. A. Hinkson, Y. Jia et al., Regulation of the CFTR channel by phosphorylation, Pflugers Arch, vol.443, pp.92-96, 2001.

R. L. Daniels, Y. Takashima, and D. D. Mckemy, Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate, J. Biol. Chem, vol.284, pp.1570-1582, 2009.

J. C. Davies, Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence, Paediatr Respir Rev, vol.3, pp.128-134, 2002.

P. B. Davis, Cystic fibrosis since 1938, Am. J. Respir. Crit. Care Med, vol.173, pp.475-482, 2006.

D. Boeck, K. Zolin, A. Cuppens, H. Olesen, H. V. Viviani et al., The relative frequency of CFTR mutation classes in European patients with cystic fibrosis, J. Cyst. Fibros, vol.13, pp.403-409, 2014.

G. M. Denning, M. P. Anderson, J. F. Amara, J. Marshall, A. E. Smith et al., Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive, Nature, vol.358, pp.761-764, 1992.

D. Paolo, G. , D. Camilli, and P. , Phosphoinositides in cell regulation and membrane dynamics, Nature, vol.443, pp.651-657, 2006.

J. C. Domingue, M. Ao, J. Sarathy, and M. C. Rao, Chenodeoxycholic acid requires activation of EGFR, EPAC, and Ca2+ to stimulate CFTR-dependent Cl-secretion in human colonic T84 cells, Am. J. Physiol, vol.311, pp.777-792, 2016.

J. G. Donaldson, Immunofluorescence Staining, vol.69, 2015.

S. H. Donaldson and R. C. Boucher, Sodium channels and cystic fibrosis, Chest, vol.132, pp.1631-1636, 2007.

F. Vom-dorp, A. Y. Sari, H. Sanders, M. Keiper, P. A. Oude-weernink et al., Inhibition of phospholipase C-epsilon by Gi-coupled receptors, Cell. Signal, vol.16, pp.921-928, 2004.

H. A. Dunn and S. S. Ferguson, PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways, Mol. Pharmacol, vol.88, pp.624-639, 2015.

S. S. Dusaban, N. H. Purcell, E. Rockenstein, E. Masliah, M. K. Cho et al.,

, Phospholipase C epsilon links G protein-coupled receptor activation to inflammatory astrocytic responses, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.3609-3614

S. S. Dusaban, M. T. Kunkel, A. V. Smrcka, and J. H. Brown, Thrombin promotes sustained signaling and inflammatory gene expression through the CDC25 and Ras-associating domains of phospholipase C?, J. Biol. Chem, vol.290, pp.26776-26783, 2015.

A. K. Dutta, K. Woo, R. B. Doctor, J. G. Fitz, and A. P. Feranchak, Extracellular nucleotides stimulate Cl-currents in biliary epithelia through receptor-mediated IP3 and Ca2+ release, Am. J. Physiol. Gastrointest. Liver Physiol, vol.295, pp.1004-1015, 2008.

C. Ehrhardt, E. Collnot, C. Baldes, U. Becker, M. Laue et al., Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o, Cell and Tissue Research, vol.323, pp.405-415, 2006.

J. S. Elborn, Cystic fibrosis, Lancet, vol.388, pp.2519-2531, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02299268

L. O. Essen, O. Perisic, R. Cheung, M. Katan, and R. L. Williams, Crystal structure of a mammalian phosphoinositide-specific phospholipase C delta, Nature, vol.380, pp.595-602, 1996.

S. Evellin, J. Nolte, K. Tysack, F. Vom-dorp, M. Thiel et al., Stimulation of phospholipase C-epsilon by the M3 muscarinic acetylcholine receptor mediated by cyclic AMP and the GTPase Rap2B, J. Biol. Chem, vol.277, pp.16805-16813, 2002.

J. H. Exton, Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins, Annu. Rev. Pharmacol. Toxicol, vol.36, pp.481-509, 1996.

J. N. Fain and M. J. Berridge, Relationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland, Biochem. J, vol.178, pp.45-58, 1979.

M. Falasca, S. K. Logan, V. P. Lehto, G. Baccante, M. A. Lemmon et al., Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting, EMBO J, vol.17, pp.414-422, 1998.

M. Favia, L. Guerra, T. Fanelli, R. A. Cardone, S. Monterisi et al., Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o-cells, Mol. Biol. Cell, vol.21, pp.73-86, 2010.

A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, vol.391, pp.806-811, 1998.

H. Fischer and T. E. Machen, The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel, Biophys. J, vol.71, pp.3073-3082, 1996.

A. Fleet, R. Ashworth, H. Kubista, H. Edwards, S. Bolsover et al., Inhibition of EGF-dependent calcium influx by annexin VI is splice form-specific, Biochem. Biophys. Res. Commun, vol.260, pp.540-546, 1999.

J. F. Forstner and G. G. Forstner, Calcium binding to intestinal goblet cell mucin, Biochim. Biophys. Acta, vol.386, pp.283-292, 1975.

L. Froux, A. Billet, and F. Becq, Modulating the cystic fibrosis transmembrane regulator and the development of new precision drugs, Expert Review of Precision Medicine and Drug Development, vol.3, pp.357-370, 2018.

L. Froux, C. Coraux, E. Sage, and F. Becq, Short-term consequences of F508del-CFTR thermal instability on CFTR-dependent transepithelial currents in human airway epithelial cells, Sci Rep, vol.9, p.13729, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02448604

G. Fu, Y. Chen, M. Yu, A. Podd, J. Schuman et al.,

, Phospholipase C{gamma}1 is essential for T cell development, activation, and tolerance, J. Exp. Med, vol.207, pp.309-318

K. Fukami, M. Yoshida, T. Inoue, M. Kurokawa, R. A. Fissore et al., Phospholipase Cdelta4 is required for Ca2+ mobilization essential for acrosome reaction in sperm, J. Cell Biol, vol.161, pp.79-88, 2003.

M. Gabel, F. Delavoie, V. Demais, C. Royer, Y. Bailly et al., Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis, J. Cell Biol, vol.210, pp.785-800, 2015.

D. C. Gadsby and A. C. Nairn, Control of CFTR channel gating by phosphorylation and nucleotide hydrolysis, Physiol. Rev, vol.79, pp.77-107, 1999.

M. Gees, B. Colsoul, and B. Nilius, The role of transient receptor potential cation channels in Ca2+ signaling, Cold Spring Harb Perspect Biol, vol.2, p.3962, 2010.

V. Gerke and S. E. Moss, Annexins: from structure to function, Physiol. Rev, vol.82, pp.331-371, 2002.

M. Golczak, A. Kicinska, J. Bandorowicz-pikula, R. Buchet, A. Szewczyk et al., Acidic pH-induced folding of annexin VI is a prerequisite for its insertion into lipid bilayers and formation of ion channels by the protein molecules, FASEB J, vol.15, pp.1083-1085, 2001.

S. F. Van-de-graaf, J. G. Hoenderop, D. Gkika, D. Lamers, J. Prenen et al., Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex, EMBO J, vol.22, pp.1478-1487, 2003.

C. Grebert, F. Becq, and C. Vandebrouck, Focus on TRP channels in cystic fibrosis, Cell Calcium, vol.81, pp.29-37, 2019.

A. Gresset, S. N. Hicks, T. K. Harden, and J. Sondek, Mechanism of phosphorylation-induced activation of phospholipase C-gamma isozymes, J. Biol. Chem, vol.285, pp.35836-35847, 2010.

A. Gresset, J. Sondek, and T. K. Harden, The phospholipase C isozymes and their regulation, Subcell. Biochem, vol.58, pp.61-94, 2012.

J. A. Grobler and J. H. Hurley, Catalysis by phospholipase C delta1 requires that Ca2+ bind to the catalytic domain, but not the C2 domain, Biochemistry, vol.37, pp.5020-5028, 1998.

C. Gu and D. M. Cooper, Calmodulin-binding sites on adenylyl cyclase type VIII, J. Biol. Chem, vol.274, pp.8012-8021, 1999.

W. B. Guggino and B. A. Stanton, New insights into cystic fibrosis: molecular switches that regulate CFTR, Nat. Rev. Mol. Cell Biol, vol.7, pp.426-436, 2006.

J. K. Gustafsson, A. Ermund, D. Ambort, M. E. Johansson, H. E. Nilsson et al., Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype, J. Exp. Med, vol.209, pp.1263-1272, 2012.

R. A. Hall, L. S. Ostedgaard, R. T. Premont, J. T. Blitzer, N. Rahman et al.,

, A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins, Proc. Natl. Acad. Sci. U.S.A, vol.95, pp.8496-8501

K. R. Hallows, V. Raghuram, B. E. Kemp, L. A. Witters, and J. K. Foskett, Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMPactivated protein kinase, J. Clin. Invest, vol.105, pp.1711-1721, 2000.

K. R. Hallows, G. P. Kobinger, J. M. Wilson, L. A. Witters, and J. K. Foskett, Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells, Am. J. Physiol, vol.284, pp.1297-1308, 2003.

M. L. Halls and D. M. Cooper, Regulation by Ca2+-signaling pathways of adenylyl cyclases, Cold Spring Harb Perspect Biol, vol.3, p.4143, 2011.

J. Hao, Y. Liu, M. Kruhlak, K. E. Debell, B. L. Rellahan et al., Phospholipase Cmediated hydrolysis of PIP2 releases ERM proteins from lymphocyte membrane, J. Cell Biol, vol.184, pp.451-462, 2009.

A. Hashimoto, K. Takeda, M. Inaba, M. Sekimata, T. Kaisho et al., Cutting edge: essential role of phospholipase C-gamma 2 in B cell development and function, J. Immunol, vol.165, pp.1738-1742, 2000.

M. N. Helms, X. Chen, S. Ramosevac, D. C. Eaton, and L. Jain, Dopamine regulation of amiloride-sensitive sodium channels in lung cells, Am. J. Physiol. Lung Cell Mol. Physiol, vol.290, pp.710-722, 2006.

A. G. Henderson, C. Ehre, B. Button, L. H. Abdullah, L. Cai et al., Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure, J. Clin. Invest, vol.124, pp.3047-3060, 2014.

C. O. Henry, E. Dalloneau, M. Pérez-berezo, C. Plata, Y. Wu et al., In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: Potential involvement in cystic fibrosis, Am. J. Physiol. Lung Cell Mol. Physiol, vol.311, pp.664-675, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02448649

S. N. Hicks, M. R. Jezyk, S. Gershburg, J. P. Seifert, T. K. Harden et al., General and versatile autoinhibition of PLC isozymes, Mol. Cell, vol.31, pp.383-394, 2008.

D. W. Hilgemann and R. Ball, Regulation of Cardiac Na+,Ca2+ Exchange and KATP Potassium Channels by PIP2, Science, vol.273, pp.956-959, 1996.

B. Himmel and G. Nagel, Protein kinase-independent activation of CFTR by phosphatidylinositol phosphates, EMBO Reports, vol.5, pp.85-90, 2004.

S. L. Hofmann and P. W. Majerus, Identification and properties of two distinct phosphatidylinositol-specific phospholipase C enzymes from sheep seminal vesicular glands, J. Biol. Chem, vol.257, pp.6461-6469, 1982.

J. Holcomb, Y. Jiang, G. Lu, L. Trescott, J. Brunzelle et al., Structural insights into PDZ-mediated interaction of NHERF2 and LPA(2), a cellular event implicated in CFTR channel regulation, Biochem. Biophys. Res. Commun, vol.446, pp.399-403, 2014.

S. T. Holgate, Innate and adaptive immune responses in asthma, Nat. Med, vol.18, pp.673-683, 2012.

Y. Homma, T. Takenawa, Y. Emori, H. Sorimachi, and K. Suzuki, Tissue-and cell type-specific expression of mRNAs for four types of inositol phospholipid-specific phospholipase C, Biochem. Biophys. Res. Commun, vol.164, pp.406-412, 1989.

K. M. Hoque, O. M. Woodward, D. B. Van-rossum, N. C. Zachos, L. Chen et al., Epac1 mediates protein kinase A-independent mechanism of forskolin-activated intestinal chloride secretion, J. Gen. Physiol, vol.135, pp.43-58, 2010.

L. Hu, H. Edamatsu, N. Takenaka, S. Ikuta, and T. Kataoka, Crucial role of phospholipase Cepsilon in induction of local skin inflammatory reactions in the elicitation stage of allergic contact hypersensitivity, J. Immunol, vol.184, pp.993-1002, 2010.

N. Hu, J. Bradshaw, H. Lauter, J. Buckingham, E. Solito et al., Membraneinduced folding and structure of membrane-bound annexin A1 N-terminal peptides: implications for annexin-induced membrane aggregation, Biophys. J, vol.94, pp.1773-1781, 2008.

C. L. Huang, S. Feng, and D. W. Hilgemann, Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma, Nature, vol.391, pp.803-806, 1998.

W. Huang, M. Li, M. Xia, and J. Shao, Fisetin-treatment alleviates airway inflammation through inhbition of MyD88/NF-?B signaling pathway, Int. J. Mol. Med, vol.42, pp.208-218, 2018.

W. Huang, J. Zeng, Z. Liu, M. Su, Q. Li et al., Acetylshikonin stimulates glucose uptake in L6 myotubes via a PLC-?3/PKC?-dependent pathway, Biomed. Pharmacother, vol.112, p.108588, 2019.

F. Huguet, M. L. Calvez, N. Benz, S. Le-hir, O. Mignen et al., Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing ?F508-CFTR and G551D-CFTR, Cell. Mol. Life Sci, vol.73, pp.3351-3373, 2016.

J. I. Hwang, K. Heo, K. J. Shin, E. Kim, C. Yun et al., Regulation of phospholipase C-beta 3 activity by Na+/H+ exchanger regulatory factor 2, J. Biol. Chem, vol.275, pp.16632-16637, 2000.

J. Hwang, Y. Oh, K. Shin, H. Kim, S. H. Ryu et al., Molecular cloning and characterization of a novel phospholipase C, PLC-eta, Biochem. J, vol.389, pp.181-186, 2005.

J. Hwang, H. S. Kim, J. R. Lee, E. Kim, S. H. Ryu et al., The interaction of phospholipase C-beta3 with Shank2 regulates mGluR-mediated calcium signal, J. Biol. Chem, vol.280, pp.12467-12473, 2005.

T. H. Hwang, H. J. Lee, N. K. Lee, and Y. C. Choi, Evidence for basolateral but not apical membrane localization of outwardly rectifying depolarization-induced Cl(-) channel in airway epithelia, J. Membr. Biol, vol.176, pp.217-221, 2000.

D. Illenberger, F. Schwald, D. Pimmer, W. Binder, G. Maier et al., Stimulation of phospholipase C-beta2 by the Rho GTPases Cdc42Hs and Rac1, EMBO J, vol.17, pp.6241-6249, 1998.

J. M. Isas, J. P. Cartailler, Y. Sokolov, D. R. Patel, R. Langen et al.,

, Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels, Biochemistry, vol.39, pp.3015-3022

P. Ivonnet, M. Salathe, and G. E. Conner, Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling, Br. J. Pharmacol, vol.172, pp.173-184, 2015.

S. Jayaraman, N. S. Joo, B. Reitz, J. J. Wine, and A. S. Verkman, Submucosal gland secretions in airways from cystic fibrosis patients have normal [Na(+)] and pH but elevated viscosity, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.8119-8123, 2001.

D. Y. Jhon, H. H. Lee, D. Park, C. W. Lee, K. H. Lee et al., Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-beta 3, J. Biol. Chem, vol.268, pp.6654-6661, 1993.

Y. Jia, C. J. Mathews, and J. W. Hanrahan, Phosphorylation by protein kinase C is required for acute activation of cystic fibrosis transmembrane conductance regulator by protein kinase A, J. Biol. Chem, vol.272, pp.4978-4984, 1997.

H. Jiang, Y. Kuang, Y. Wu, W. Xie, M. I. Simon et al., Roles of phospholipase C beta2 in chemoattractant-elicited responses, Proc. Natl. Acad. Sci. U.S.A, vol.94, pp.7971-7975, 1997.

Y. Jiang, S. Wang, J. Holcomb, L. Trescott, X. Guan et al., Crystallographic analysis of NHERF1-PLC?3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer, Biochem. Biophys. Res. Commun, vol.446, pp.638-643, 2014.

T. G. Jin, T. Satoh, Y. Liao, C. Song, X. Gao et al., Role of the CDC25 homology domain of phospholipase Cepsilon in amplification of Rap1-dependent signaling, J. Biol. Chem, vol.276, pp.30301-30307, 2001.

B. Jovov, I. I. Ismailov, and D. J. Benos, Cystic fibrosis transmembrane conductance regulator is required for protein kinase A activation of an outwardly rectified anion channel purified from bovine tracheal epithelia, J. Biol. Chem, vol.270, pp.1521-1528, 1995.

B. Jovov, I. I. Ismailov, B. K. Berdiev, C. M. Fuller, E. J. Sorscher et al., Interaction between cystic fibrosis transmembrane conductance regulator and outwardly rectified chloride channels, J. Biol. Chem, vol.270, pp.29194-29200, 1995.

K. Kanemaru, M. Nakahara, Y. Nakamura, Y. Hashiguchi, Z. Kouchi et al., Phospholipase C-eta2 is highly expressed in the habenula and retina, Gene Expr. Patterns, vol.10, pp.119-126, 2010.

K. Kanemaru, Y. Nakamura, K. Sato, R. Kojima, S. Takahashi et al., Epidermal phospholipase C?1 regulates granulocyte counts and systemic interleukin-17 levels in mice, Nat Commun, vol.3, p.963, 2012.

G. Kang, O. G. Chepurny, B. Malester, M. J. Rindler, H. Rehmann et al., cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells, J. Physiol. (Lond.), vol.573, pp.595-609, 2006.

H. Kawasaki, G. M. Springett, N. Mochizuki, S. Toki, M. Nakaya et al., A family of cAMP-binding proteins that directly activate Rap1, Science, vol.282, pp.2275-2279, 1998.

G. G. Kelley, S. E. Reks, J. M. Ondrako, and A. V. Smrcka, Phospholipase C(epsilon): a novel Ras effector, EMBO J, vol.20, pp.743-754, 2001.

G. G. Kelley, S. E. Reks, and A. V. Smrcka, Hormonal regulation of phospholipase Cepsilon through distinct and overlapping pathways involving G12 and Ras family G-proteins, Biochem. J, vol.378, pp.129-139, 2004.

J. K. Kim, J. W. Choi, S. Lim, O. Kwon, J. K. Seo et al., Phospholipase C-?1 is activated by intracellular Ca(2+) mobilization and enhances GPCRs/PLC/Ca(2+) signaling, Cell. Signal, vol.23, pp.1022-1029, 2011.

J. K. Kim, S. Lim, J. Kim, S. Kim, J. H. Kim et al., Subtype-specific roles of phospholipase C-? via differential interactions with PDZ domain proteins, Adv. Enzyme Regul, vol.51, pp.138-151, 2011.

J. Y. Kim, W. Han, W. Namkung, J. H. Lee, K. H. Kim et al., Inhibitory regulation of cystic fibrosis transmembrane conductance regulator anion-transporting activities by Shank2, J. Biol. Chem, vol.279, pp.10389-10396, 2004.

M. J. Kim, F. Si, S. J. Kim, S. B. Hong, J. I. Hwang et al., The SH2-SH2-SH3 domain of phospholipase C-gamma1 directly binds to translational elongation factor-1alpha, Mol. Cells, vol.9, pp.631-637, 1999.

Y. H. Kim, T. J. Park, Y. H. Lee, K. J. Baek, P. G. Suh et al., Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation, J. Biol. Chem, vol.274, pp.26127-26134, 1999.

M. Kiuru, M. Kurban, M. Itoh, L. Petukhova, Y. Shimomura et al., Hereditary leukonychia, or porcelain nails, resulting from mutations in PLCD1, Am. J. Hum. Genet, vol.88, pp.839-844, 2011.

J. König and V. Gerke, Modes of annexin-membrane interactions analyzed by employing chimeric annexin proteins, Biochim. Biophys. Acta, vol.1498, pp.174-180, 2000.

A. Konstas, J. Koch, S. J. Tucker, and C. Korbmacher, Cystic fibrosis transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K+ channels by the epithelial sodium channel, J. Biol. Chem, vol.277, pp.25377-25384, 2002.

Z. Kouchi, K. Fukami, T. Shikano, S. Oda, Y. Nakamura et al., , 2004.

, Recombinant phospholipase Czeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs, J. Biol. Chem, vol.279, pp.10408-10412

S. M. Kreda, C. W. Davis, and M. C. Rose, CFTR, mucins, and mucus obstruction in cystic fibrosis. Cold Spring Harb Perspect Med 2, p.9589, 2012.

K. Kunzelmann and A. Mehta, CFTR: a hub for kinases and crosstalk of cAMP and Ca2+, FEBS J, vol.280, pp.4417-4429, 2013.

K. Kunzelmann, M. Mall, M. Briel, A. Hipper, R. Nitschke et al., The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Clconductance of Xenopus oocytes, Pflugers Arch, vol.435, pp.178-181, 1997.

K. Kunzelmann, J. Ousingsawat, I. Cabrita, T. Dou?ová, A. Bähr et al., TMEM16A in Cystic Fibrosis: Activating or Inhibiting, vol.10, p.3, 2019.

,. Le-drévo, N. Benz, M. Kerbiriou, M. Giroux-metges, J. Pennec et al.,

, Annexin A5 increases the cell surface expression and the chloride channel function of the DeltaF508-cystic fibrosis transmembrane regulator, Biochim. Biophys. Acta, vol.1782, pp.605-614

K. Lee and S. S. Yoon, Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness, J. Microbiol. Biotechnol, vol.27, pp.1053-1064, 2017.

R. J. Lee and J. K. Foskett, Mechanisms of Ca2+-stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells, Am. J. Physiol. Lung Cell Mol. Physiol, vol.298, pp.210-231, 2010.

R. J. Lee and J. K. Foskett, Ca 2+ signaling and fluid secretion by secretory cells of the airway epithelium, Cell Calcium, vol.55, pp.325-336, 2014.

C. W. Lee, K. H. Lee, S. B. Lee, D. Park, and S. G. Rhee, Regulation of phospholipase C-beta 4 by ribonucleotides and the alpha subunit of Gq, J. Biol. Chem, vol.269, pp.25335-25338, 1994.

J. H. Lee, W. Richter, W. Namkung, K. H. Kim, E. Kim et al., Dynamic regulation of cystic fibrosis transmembrane conductance regulator by competitive interactions of molecular adaptors, J. Biol. Chem, vol.282, pp.10414-10422, 2007.

R. J. Lee, M. P. Limberis, M. F. Hennessy, J. M. Wilson, and J. K. Foskett, Optical imaging of Ca2+-evoked fluid secretion by murine nasal submucosal gland serous acinar cells, J. Physiol, vol.582, pp.1099-1124, 2007.

L. Lemonnier, M. Trebak, and J. W. Putney, Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate, Cell Calcium, vol.43, pp.506-514, 2008.

H. Lennernäs, Animal data: the contributions of the Ussing Chamber and perfusion systems to predicting human oral drug delivery in vivo, Adv. Drug Deliv. Rev, vol.59, pp.1103-1120, 2007.

J. Lérias, M. Pinto, R. Benedetto, R. Schreiber, M. Amaral et al., , 2018.

, Compartmentalized crosstalk of CFTR and TMEM16A (ANO1) through EPAC1 and ADCY1, Cell. Signal, vol.44, pp.10-19

M. Lévêque, S. Le-trionnaire, P. Del-porto, and C. Martin-chouly, The impact of impaired macrophage functions in cystic fibrosis disease progression, J. Cyst. Fibros, vol.16, pp.443-453, 2017.

M. Lévêque, A. Penna, S. Le-trionnaire, C. Belleguic, B. Desrues et al., Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macrophages from patients with cystic fibrosis, p.4310, 2018.

M. Li, Q. Li, G. Yang, V. P. Kolosov, J. M. Perelman et al., Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism, J. Allergy Clin. Immunol, vol.128, pp.1-5, 2011.

Z. Li, H. Jiang, W. Xie, Z. Zhang, A. V. Smrcka et al., Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction, Science, vol.287, pp.1046-1049, 2000.

H. Liao, T. Kume, C. Mckay, M. Xu, J. N. Ihle et al., Absence of erythrogenesis and vasculogenesis in Plcg1-deficient mice, J. Biol. Chem, vol.277, pp.9335-9341, 2002.

C. M. Liedtke, C. , and T. S. , Antisense oligonucleotide to PKC-epsilon alters cAMP-dependent stimulation of CFTR in Calu-3 cells, Am. J. Physiol, vol.275, pp.1357-1364, 1998.

C. M. Liedtke, C. , and T. S. , PKC signaling in CF/T43 cell line: regulation of NKCC1 by PKC-delta isotype, Biochim. Biophys. Acta, vol.1495, pp.24-33, 2000.

C. M. Liedtke, D. Cody, C. , and T. S. , Differential regulation of Cl-transport proteins by PKC in Calu-3 cells, Am. J. Physiol. Lung Cell Mol. Physiol, vol.280, pp.739-747, 2001.

W. G. Lim, B. J. Tan, Y. Zhu, S. Zhou, J. S. Armstrong et al., The very C-terminus of PRK1/PKN is essential for its activation by RhoA and downstream signaling, Cell. Signal, vol.18, pp.1473-1481, 2006.

F. G. Lin, H. F. Cheng, I. F. Lee, H. J. Kao, S. H. Loh et al., Downregulation of phospholipase C delta3 by cAMP and calcium, Biochem. Biophys. Res. Commun, vol.286, pp.274-280, 2001.

P. V. Lishko, E. Procko, X. Jin, C. B. Phelps, and R. Gaudet, The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity, Neuron, vol.54, pp.905-918, 2007.

I. Litosch, Novel mechanisms for feedback regulation of phospholipase C-beta activity, IUBMB Life, vol.54, pp.253-260, 2002.

V. Litvak, D. Tian, Y. D. Shaul, L. , and S. , Targeting of PYK2 to focal adhesions as a cellular mechanism for convergence between integrins and G protein-coupled receptor signaling cascades, J. Biol. Chem, vol.275, pp.32736-32746, 2000.

F. Liu, Z. Zhang, L. Csanády, D. C. Gadsby, C. et al., Molecular Structure of the Human CFTR Ion Channel, Cell, vol.169, pp.85-95, 2017.

Y. Liu, H. K. Myrvang, and L. V. Dekker, Annexin A2 complexes with S100 proteins: structure, function and pharmacological manipulation: Annexin A2-S100 complexes, British Journal of Pharmacology, vol.172, pp.1664-1676, 2015.

Y. Liu, W. Zha, Y. Ma, F. Chen, W. Zhu et al., Galangin attenuates airway remodelling by inhibiting TGF-?1-mediated ROS generation and MAPK/Akt phosphorylation in asthma, Sci Rep, vol.5, 2015.

M. J. Lobo, M. D. Amaral, M. Zaccolo, and C. M. Farinha, EPAC1 activation by cAMP stabilizes CFTR at the membrane by promoting its interaction with NHERF1, J. Cell. Sci, vol.129, pp.2599-2612, 2016.

K. P. Locher, Mechanistic diversity in ATP-binding cassette (ABC) transporters, Nat. Struct. Mol. Biol, vol.23, pp.487-493, 2016.

H. Lohi, M. Kujala, S. Makela, E. Lehtonen, M. Kestila et al., Functional characterization of three novel tissue-specific anion exchangers SLC26A7, -A8, and -A9, J. Biol. Chem, vol.277, pp.14246-14254, 2002.

I. Lopez, E. C. Mak, J. Ding, H. E. Hamm, and J. W. Lomasney, A novel bifunctional phospholipase c that is regulated by Galpha 12 and stimulates the Ras/mitogen-activated protein kinase pathway, J. Biol. Chem, vol.276, pp.2758-2765, 2001.

J. C. López-rodríguez, F. J. Martínez-carmona, I. Rodríguez-crespo, M. A. Lizarbe, and J. Turnay, Molecular dissection of the membrane aggregation mechanisms induced by monomeric annexin A2, Biochim Biophys Acta Mol Cell Res, vol.1865, pp.863-873, 2018.

P. Lu, S. Boros, Q. Chang, R. J. Bindels, and J. G. Hoenderop, The beta-glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6, Nephrol. Dial. Transplant, vol.23, pp.3397-3402, 2008.

V. Lukacs, B. Thyagarajan, P. Varnai, A. Balla, T. Balla et al., Dual regulation of TRPV1 by phosphoinositides, J. Neurosci, vol.27, pp.7070-7080, 2007.

V. Lukacs, Y. Yudin, G. R. Hammond, E. Sharma, K. Fukami et al., Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons, J. Neurosci, vol.33, pp.11451-11463, 2013.

J. Luo, M. D. Pato, J. R. Riordan, and J. W. Hanrahan, Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases, Am. J. Physiol, vol.274, pp.1397-1410, 1998.

D. K. Luttrell and L. M. Luttrell, Not so strange bedfellows: G-protein-coupled receptors and Src family kinases, Oncogene, vol.23, pp.7969-7978, 2004.

L. Maganti, M. Ghosh, and J. Chakrabarti, Molecular dynamics studies on conformational thermodynamics of Orai1-calmodulin complex, Journal of Biomolecular Structure and Dynamics, vol.36, pp.3411-3419, 2018.

G. Magni and S. Ceruti, P2Y purinergic receptors: new targets for analgesic and antimigraine drugs, Biochem. Pharmacol, vol.85, pp.466-477, 2013.

M. A. Mall and L. J. Galietta, Targeting ion channels in cystic fibrosis, J. Cyst. Fibros, vol.14, pp.561-570, 2015.

M. Mall, A. Hipper, R. Greger, and K. Kunzelmann, Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes, FEBS Lett, vol.381, pp.47-52, 1996.

M. Mall, S. Hirtz, T. Gonska, and K. Kunzelmann, Assessment of CFTR function in rectal biopsies for the diagnosis of cystic fibrosis, J. Cyst. Fibros, vol.3, issue.2, pp.165-169, 2004.

B. Margolis, A. Zilberstein, C. Franks, S. Felder, S. Kremer et al., Effect of phospholipase C-gamma overexpression on PDGF-induced second messengers and mitogenesis, Science, vol.248, pp.607-610, 1990.

C. Martin, J. S. Jacobi, G. Nava, M. C. Jeziorski, C. Clapp et al., GABA inhibition of cyclic AMP production in immortalized GnRH neurons is mediated by calcineurindependent dephosphorylation of adenylyl cyclase 9, Neuroendocrinology, vol.85, pp.257-266, 2007.

S. L. Martin, V. Saint-criq, T. Hwang, and L. Csanády, Ion channels as targets to treat cystic fibrosis lung disease, J. Cyst. Fibros, vol.17, pp.22-27, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02385564

A. Masson, E. K. Schneider-futschik, N. Baatallah, T. Nguyen-khoa, E. Girodon et al., Predictive factors for lumacaftor/ivacaftor clinical response, J. Cyst. Fibros, vol.18, pp.368-374, 2019.

T. Matsu-ura, H. Shirakawa, K. G. Suzuki, A. Miyamoto, K. Sugiura et al., Dual-FRET imaging of IP3 and Ca2+ revealed Ca2+-induced IP3 production maintains long lasting Ca2+ oscillations in fertilized mouse eggs, p.4829, 2019.

M. J. May and S. Ghosh, Signal transduction through NF-kappa B, Immunol. Today, vol.19, pp.80-88, 1998.

J. Meisenhelder, P. G. Suh, S. G. Rhee, and T. Hunter, Phospholipase C-gamma is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro, Cell, vol.57, pp.1109-1122, 1989.

H. Mellor and P. J. Parker, The extended protein kinase C superfamily, Biochem. J, vol.332, issue.2, pp.281-292, 1998.

J. Mercado, A. Gordon-shaag, W. N. Zagotta, G. , and S. E. , Ca2+-dependent desensitization of TRPV2 channels is mediated by hydrolysis of phosphatidylinositol 4,5-bisphosphate, J. Neurosci, vol.30, pp.13338-13347, 2010.

J. Q. Van-der-merwe, F. Moreau, and W. K. Macnaughton, Protease-activated receptor-2 stimulates intestinal epithelial chloride transport through activation of PLC and selective PKC isoforms, Am. J. Physiol. Gastrointest. Liver Physiol, vol.296, pp.1258-1266, 2009.

R. H. Michell, Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta, vol.415, pp.81-128, 1975.

U. K. Misra and S. V. Pizzo, Upregulation of mTORC2 activation by the selective agonist of EPAC, 8-CPT-2Me-cAMP, in prostate cancer cells: assembly of a multiprotein signaling complex, J. Cell. Biochem, vol.113, pp.1488-1500, 2012.

S. Mongiorgi, M. Y. Follo, C. Clissa, R. Giardino, M. Fini et al., Nuclear PI-PLC ?1 and Myelodysplastic syndromes: from bench to clinics, Curr. Top. Microbiol. Immunol, vol.362, pp.235-245, 2012.

R. Muimo, Regulation of CFTR function by annexin A2-S100A10 complex in health and disease, Gen. Physiol. Biophys. 28 Spec No Focus, pp.14-19, 2009.

H. Mukai and Y. Ono, A novel protein kinase with leucine zipper-like sequences: its catalytic domain is highly homologous to that of protein kinase C, Biochem. Biophys. Res. Commun, vol.199, pp.897-904, 1994.

L. R. Mulcahy, V. M. Isabella, L. , and K. , Pseudomonas aeruginosa biofilms in disease, Microb. Ecol, vol.68, pp.1-12, 2014.

J. M. Naciff, M. M. Behbehani, M. A. Kaetzel, and J. R. Dedman, Annexin VI modulates Ca2+ and K+ conductances of spinal cord and dorsal root ganglion neurons, Am. J. Physiol, vol.271, pp.2004-2015, 1996.

T. Nagano, H. Edamatsu, K. Kobayashi, N. Takenaka, M. Yamamoto et al., Phospholipase c?, an effector of ras and rap small GTPases, is required for airway inflammatory response in a mouse model of bronchial asthma, PLoS ONE, vol.9, 2014.

M. Nakahara, M. Shimozawa, Y. Nakamura, Y. Irino, M. Morita et al., A novel phospholipase C, PLC(eta)2, is a neuron-specific isozyme, J. Biol. Chem, vol.280, pp.29128-29134, 2005.

Y. Nakamura and K. Fukami, Regulation and physiological functions of mammalian phospholipase C, J. Biochem, 2017.

Y. Nakamura, K. Fukami, H. Yu, K. Takenaka, Y. Kataoka et al., Phospholipase Cdelta1 is required for skin stem cell lineage commitment, EMBO J, vol.22, pp.2981-2991, 2003.

Y. Nakamura, Y. Hamada, T. Fujiwara, H. Enomoto, T. Hiroe et al., Phospholipase C-delta1 and -delta3 are essential in the trophoblast for placental development, Mol. Cell. Biol, vol.25, pp.10979-10988, 2005.

Y. Nakamura, M. Ichinohe, M. Hirata, H. Matsuura, T. Fujiwara et al., Phospholipase C-delta1 is an essential molecule downstream of Foxn1, the gene responsible for the nude mutation, in normal hair development, FASEB J, vol.22, pp.841-849, 2008.

Y. Nakamura, K. Kanemaru, R. Kojima, Y. Hashimoto, T. Marunouchi et al., Simultaneous loss of phospholipase C?1 and phospholipase C?3 causes cardiomyocyte apoptosis and cardiomyopathy, Cell Death Dis, vol.5, 1215.

V. E. Nambudiri and H. R. Widlund, Small interfering RNA, J. Invest. Dermatol, vol.133, pp.1-4, 2013.

W. Namkung, W. E. Finkbeiner, and A. S. Verkman, CFTR-adenylyl cyclase I association responsible for UTP activation of CFTR in well-differentiated primary human bronchial cell cultures, Mol. Biol. Cell, vol.21, pp.2639-2648, 2010.

M. S. Nash, K. W. Young, G. B. Willars, R. A. Challiss, and S. R. Nahorski, Single-cell imaging of graded Ins(1,4,5)P3 production following G-protein-coupled-receptor activation, Biochem. J, vol.356, pp.137-142, 2001.

R. I. Neuman, J. A. Van-kalmthout, D. J. Pfau, D. M. Menendez, L. H. Young et al., , 2018.

, AMP-activated protein kinase and adenosine are both metabolic modulators that regulate chloride secretion in the shark rectal gland ( Squalus acanthias), Am. J. Physiol, vol.314, pp.473-482

N. T. Nguyen, W. Han, W. Cao, Y. Wang, S. Wen et al., , 2018.

, Store-Operated Calcium Entry Mediated by ORAI and STIM, Compr Physiol, vol.8, pp.981-1002

M. Nomikos, J. Kashir, and F. A. Lai, The role and mechanism of action of sperm PLC-zeta in mammalian fertilisation, Biochem. J, vol.474, pp.3659-3673, 2017.

M. Nomikos, P. Stamatiadis, J. R. Sanders, K. Beck, B. L. Calver et al., Male infertility-linked point mutation reveals a vital binding role for the C2 domain of sperm PLC?, Biochem. J, vol.474, pp.1003-1016, 2017.

M. Novara, P. Baldelli, D. Cavallari, V. Carabelli, A. Giancippoli et al., Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins, J. Physiol, vol.558, pp.433-449, 2004.

E. A. Oestreich, S. Malik, S. A. Goonasekera, B. C. Blaxall, G. G. Kelley et al., Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II, J. Biol. Chem, vol.284, pp.1514-1522, 2009.

Y. Oh, N. W. Jo, J. W. Choi, H. S. Kim, S. Seo et al., NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3 activation, Mol. Cell. Biol, vol.24, pp.5069-5079, 2004.

Y. Ono, T. Fujii, K. Ogita, U. Kikkawa, K. Igarashi et al., Identification of three additional members of rat protein kinase C family: delta-, epsilon-and zeta-subspecies, FEBS Lett, vol.226, pp.125-128, 1987.

S. Osada, K. Mizuno, T. C. Saido, Y. Akita, K. Suzuki et al., A phorbol ester receptor/protein kinase, nPKC eta, a new member of the protein kinase C family predominantly expressed in lung and skin, J. Biol. Chem, vol.265, pp.22434-22440, 1990.

S. Osada, K. Mizuno, T. C. Saido, K. Suzuki, T. Kuroki et al., A new member of the protein kinase C family, nPKC theta, predominantly expressed in skeletal muscle, Mol. Cell. Biol, vol.12, pp.3930-3938, 1992.

J. Ousingsawat, P. Kongsuphol, R. Schreiber, and K. Kunzelmann, CFTR and TMEM16A are separate but functionally related Cl-channels, Cell. Physiol. Biochem, vol.28, pp.715-724, 2011.

R. H. Palmer, J. Ridden, and P. J. Parker, Cloning and expression patterns of two members of a novel protein-kinase-C-related kinase family, Eur. J. Biochem, vol.227, pp.344-351, 1995.

W. Patel, P. J. Moore, M. F. Sassano, M. Lopes-pacheco, A. A. Aleksandrov et al., Increases in cytosolic Ca2+ induce dynamin-and calcineurin-dependent internalisation of CFTR, Cell. Mol. Life Sci, 2018.

H. F. Paterson, J. W. Savopoulos, O. Perisic, R. Cheung, M. V. Ellis et al., , 1995.

, Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane, Biochem. J, vol.312, pp.661-666

C. J. Pears, G. Kour, C. House, B. E. Kemp, and P. J. Parker, Mutagenesis of the pseudosubstrate site of protein kinase C leads to activation, Eur. J. Biochem, vol.194, pp.89-94, 1990.

R. Philippe, F. Antigny, P. Buscaglia, C. Norez, F. Becq et al., SERCA and PMCA pumps contribute to the deregulation of Ca2+ homeostasis in human CF epithelial cells, Biochim. Biophys. Acta, vol.1853, pp.892-903, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134260

M. R. Picciotto, J. A. Cohn, G. Bertuzzi, P. Greengard, and A. C. Nairn, Phosphorylation of the cystic fibrosis transmembrane conductance regulator, J. Biol. Chem, vol.267, pp.12742-12752, 1992.

T. Piechulek, T. Rehlen, C. Walliser, P. Vatter, B. Moepps et al., Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases, J. Biol. Chem, vol.280, pp.38923-38931, 2005.

P. Popovics and A. J. Stewart, Putative roles for phospholipase C? enzymes in neuronal Ca2+ signal modulation, Biochem. Soc. Trans, vol.40, pp.282-286, 2012.

P. Popovics, W. Beswick, S. B. Guild, G. Cramb, K. Morgan et al., , 2011.

, Phospholipase C-?2 is activated by elevated intracellular Ca(2+) levels, Cell. Signal, vol.23, pp.1777-1784

P. Prandini, F. De-logu, C. Fusi, L. Provezza, R. Nassini et al., Transient Receptor Potential Ankyrin 1 Channels Modulate Inflammatory Response in Respiratory Cells from Patients with Cystic Fibrosis, Am. J. Respir. Cell Mol. Biol, vol.55, pp.645-656, 2016.

M. M. Rafeeq and H. A. Murad, Cystic fibrosis: current therapeutic targets and future approaches, J Transl Med, vol.15, p.84, 2017.

M. Rafehi and C. E. Müller, Tools and drugs for uracil nucleotide-activated P2Y receptors, Pharmacol. Ther, vol.190, pp.24-80, 2018.

V. Raghuram, D. O. Mak, and J. K. Foskett, Regulation of cystic fibrosis transmembrane conductance regulator single-channel gating by bivalent PDZ-domain-mediated interaction, Proc. Natl. Acad. Sci. U.S.A, vol.98, pp.1300-1305, 2001.

S. Ramachandran, S. Krishnamurthy, A. M. Jacobi, C. Wohlford-lenane, M. A. Behlke et al., Efficient delivery of RNA interference oligonucleotides to polarized airway epithelia in vitro, Am. J. Physiol. Lung Cell Mol. Physiol, vol.305, pp.23-32, 2013.

S. M. Ramadurai, W. Chen, G. B. Yerozolimsky, M. Zagami, C. E. Dammann et al., Cell-specific and developmental expression of phospholipase C-gamma and diacylglycerol in fetal lung, Am. J. Physiol. Lung Cell Mol. Physiol, vol.284, pp.808-816, 2003.

J. E. Rasmussen, J. T. Sheridan, W. Polk, C. M. Davies, and R. Tarran, Cigarette smoke-induced Ca2+ release leads to cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction, J. Biol. Chem, vol.289, pp.7671-7681, 2014.

B. D. Raynal, T. E. Hardingham, J. K. Sheehan, and D. J. Thornton, Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus, J. Biol. Chem, vol.278, pp.28703-28710, 2003.

D. Reczek and A. Bretscher, Identification of EPI64, a TBC/rabGAP domain-containing microvillar protein that binds to the first PDZ domain of EBP50 and E3KARP, J. Cell Biol, vol.153, pp.191-206, 2001.

C. Rentero, P. Blanco-muñoz, E. Meneses-salas, T. Grewal, and C. Enrich, Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways, Int J Mol Sci, 2018.

S. Réty, J. Sopkova, M. Renouard, D. Osterloh, V. Gerke et al., The crystal structure of a complex of p11 with the annexin II N-terminal peptide, Nat. Struct. Biol, vol.6, pp.89-95, 1999.

S. G. Rhee, Regulation of phosphoinositide-specific phospholipase C, Annu. Rev. Biochem, vol.70, pp.281-312, 2001.

S. G. Rhee, Reflections on the days of phospholipase C, Adv Biol Regul, vol.53, pp.223-231, 2013.

C. M. Ribeiro, The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia, Drugs R D, vol.7, pp.17-31, 2006.

C. Ridley, N. Kouvatsos, B. D. Raynal, M. Howard, R. F. Collins et al., Assembly of the respiratory mucin MUC5B: a new model for a gel-forming mucin, J. Biol. Chem, vol.289, pp.16409-16420, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02178621

A. Rimessi, V. Bezzerri, F. Salvatori, A. Tamanini, F. Nigro et al., PLCB3 Loss-of-function Reduces P. aeruginosa-dependent IL-8 Release in Cystic Fibrosis, Am. J. Respir. Cell Mol. Biol, 2018.

J. R. Riordan, J. M. Rommens, B. Kerem, N. Alon, R. Rozmahel et al., Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA, Science, vol.245, pp.1066-1073, 1989.

F. H. Robledo-avila, J. Ruiz-rosado, D. De, K. L. Brockman, B. T. Kopp et al., Dysregulated Calcium Homeostasis in Cystic Fibrosis Neutrophils Leads to Deficient Antimicrobial Responses, J. Immunol, vol.201, pp.2016-2027, 2018.

N. T. Rogers, E. Hobson, S. Pickering, F. A. Lai, P. Braude et al., Phospholipase Czeta causes Ca2+ oscillations and parthenogenetic activation of human oocytes, Reproduction, vol.128, pp.697-702, 2004.

T. Rohacs, Phosphoinositide regulation of TRPV1 revisited, Pflugers Arch, vol.467, pp.1851-1869, 2015.

T. Rohács, C. M. Lopes, I. Michailidis, and D. E. Logothetis, PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain, Nat. Neurosci, vol.8, pp.626-634, 2005.

J. De-rooij, F. J. Zwartkruis, M. H. Verheijen, R. H. Cool, S. M. Nijman et al., Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP, Nature, vol.396, pp.474-477, 1998.

J. De-rooij, H. Rehmann, M. Van-triest, R. H. Cool, A. Wittinghofer et al., Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs, J. Biol. Chem, vol.275, pp.20829-20836, 2000.

C. Rosse, M. Linch, S. Kermorgant, A. J. Cameron, K. Boeckeler et al., PKC and the control of localized signal dynamics, Nat. Rev. Mol. Cell Biol, vol.11, pp.103-112, 2010.

N. J. Rowbotham, S. C. Palser, S. J. Smith, and A. R. Smyth, Infection prevention and control in cystic fibrosis: a systematic review of interventions, Expert Rev Respir Med, vol.13, pp.425-434, 2019.

S. M. Rowe, C. Daines, F. C. Ringshausen, E. Kerem, J. Wilson et al., Tezacaftor-Ivacaftor in Residual-Function Heterozygotes with Cystic Fibrosis, N. Engl. J. Med, vol.377, pp.2024-2035, 2017.

R. C. Rubenstein, S. R. Lockwood, E. Lide, R. Bauer, L. Suaud et al., Regulation of endogenous ENaC functional expression by CFTR and ?F508-CFTR in airway epithelial cells, Am. J. Physiol. Lung Cell Mol. Physiol, vol.300, pp.88-101, 2011.

M. Ruffin, M. Voland, S. Marie, M. Bonora, E. Blanchard et al., Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis, Biochim. Biophys. Acta, vol.1832, pp.2340-2351, 2013.

A. Ruknudin, D. H. Schulze, S. K. Sullivan, W. J. Lederer, and P. A. Welling, Novel subunit composition of a renal epithelial KATP channel, J. Biol. Chem, vol.273, pp.14165-14171, 1998.

S. H. Ryu, K. S. Cho, K. Y. Lee, P. G. Suh, and S. G. Rhee, Two forms of phosphatidylinositolspecific phospholipase C from bovine brain, Biochem. Biophys. Res. Commun, vol.141, pp.137-144, 1986.

S. H. Ryu, P. G. Suh, K. S. Cho, K. Y. Lee, and S. G. Rhee, Bovine brain cytosol contains three immunologically distinct forms of inositolphospholipid-specific phospholipase C, Proc. Natl. Acad. Sci. U.S.A, vol.84, pp.6649-6653, 1987.

D. Sachyani, M. Dvir, R. Strulovich, G. Tria, W. Tobelaim et al., Structural Basis of a Kv7.1 Potassium Channel Gating Module: Studies of the Intracellular C-Terminal Domain in Complex with Calmodulin, Structure, vol.22, pp.1582-1594, 2014.

V. Saint-criq and M. A. Gray, Role of CFTR in epithelial physiology, Cell. Mol. Life Sci, vol.74, pp.93-115, 2017.

J. J. Salomon, S. Spahn, X. Wang, J. Füllekrug, C. A. Bertrand et al., Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl-channels, Am. J. Physiol. Lung Cell Mol. Physiol, vol.310, pp.593-602, 2016.

S. K. Sasse, V. Kadiyala, T. Danhorn, R. A. Panettieri, T. L. Phang et al., , 2017.

, Glucocorticoid Receptor ChIP-Seq Identifies PLCD1 as a KLF15 Target that Represses Airway Smooth Muscle Hypertrophy, Am. J. Respir. Cell Mol. Biol, vol.57, pp.226-237

T. Satoh, H. Edamatsu, and T. Kataoka, Phospholipase Cepsilon guanine nucleotide exchange factor activity and activation of Rap1, Meth. Enzymol, vol.407, pp.281-290, 2006.

C. M. Saunders, M. G. Larman, J. Parrington, L. J. Cox, J. Royse et al., PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development, Development, vol.129, pp.3533-3544, 2002.

M. Schmidt, S. Evellin, P. A. Weernink, F. Von-dorp, H. Rehmann et al., A new phospholipase-C-calcium signalling pathway mediated by cyclic AMP and a Rap GTPase, Nat. Cell Biol, vol.3, pp.1020-1024, 2001.

M. Schmidt, F. J. Dekker, and H. Maarsingh, Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions, Pharmacol. Rev, vol.65, pp.670-709, 2013.

G. Seavilleklein, N. Amer, A. Evagelidis, F. Chappe, T. Irvine et al., , 2008.

, PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR, Am. J. Physiol, vol.295, pp.1366-1375

J. Seemann, K. Weber, and V. Gerke, Annexin I targets S100C to early endosomes, FEBS Lett, vol.413, pp.185-190, 1997.

L. A. Selbie, C. Schmitz-peiffer, Y. Sheng, and T. J. Biden, Molecular cloning and characterization of PKC iota, an atypical isoform of protein kinase C derived from insulin-secreting cells, J. Biol. Chem, vol.268, pp.24296-24302, 1993.

N. Sharma, J. Larusch, P. R. Sosnay, L. B. Gottschalk, A. P. Lopez et al., A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction, Am. J. Physiol. Lung Cell Mol. Physiol, vol.311, pp.1170-1182, 2016.

G. Shi, H. Rehmann, A. , and D. A. , A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation, Mol. Cell. Biol, vol.26, pp.9136-9147, 2006.

H. Shibata, H. Mukai, Y. Inagaki, Y. Homma, K. Kimura et al., Characterization of the interaction between RhoA and the amino-terminal region of PKN, FEBS Lett, vol.385, pp.221-224, 1996.

A. V. Smrcka and P. C. Sternweis, Regulation of purified subtypes of phosphatidylinositolspecific phospholipase C beta by G protein alpha and beta gamma subunits, J. Biol. Chem, vol.268, pp.9667-9674, 1993.

S. Somekawa, S. Fukuhara, Y. Nakaoka, H. Fujita, Y. Saito et al., Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes, Circ. Res, vol.97, pp.655-662, 2005.

C. Song, C. D. Hu, M. Masago, K. Kariyai, Y. Yamawaki-kataoka et al., Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras, J. Biol. Chem, vol.276, pp.2752-2757, 2001.

C. Song, T. Satoh, H. Edamatsu, D. Wu, M. Tadano et al., Differential roles of Ras and Rap1 in growth factor-dependent activation of phospholipase C epsilon, Oncogene, vol.21, pp.8105-8113, 2002.

P. R. Sosnay, K. R. Siklosi, F. Van-goor, K. Kaniecki, H. Yu et al., Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene, Nat. Genet, vol.45, pp.1160-1167, 2013.

E. Southern, The early days of blotting, Methods Mol. Biol, vol.1312, pp.1-3, 2015.

P. B. Stathopulos, R. Schindl, M. Fahrner, L. Zheng, G. M. Gasmi-seabrook et al., STIM1/Orai1 coiled-coil interplay in the regulation of store-operated calcium entry, Nat Commun, vol.4, p.2963, 2013.

J. Ster, F. De-bock, N. C. Guérineau, A. Janossy, S. Barrère-lemaire et al., Exchange protein activated by cAMP (Epac) mediates cAMP activation of p38 MAPK and modulation of Ca2+-dependent K+ channels in cerebellar neurons, Proc. Natl. Acad. Sci. U.S.A, vol.104, pp.2519-2524, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02484623

H. Streb, R. F. Irvine, M. J. Berridge, and I. Schulz, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate, Nature, vol.306, pp.67-69, 1983.

K. M. Strickland, G. Stock, G. Cui, H. Hwang, D. T. Infield et al., ATP-Dependent Signaling in Simulations of a Revised Model of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), J Phys Chem B, vol.123, pp.3177-3188, 2019.

M. J. Stutts, C. M. Canessa, J. C. Olsen, M. Hamrick, J. A. Cohn et al., CFTR as a cAMP-dependent regulator of sodium channels, Science, vol.269, pp.847-850, 1995.

S. Suetsugu, S. Kurisu, and T. Takenawa, Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins, Physiol. Rev, vol.94, pp.1219-1248, 2014.

P. Suh, J. Park, L. Manzoli, L. Cocco, J. C. Peak et al., Multiple roles of phosphoinositide-specific phospholipase C isozymes, BMB Rep, vol.41, pp.415-434, 2008.

A. Suzuki, T. Yamanaka, T. Hirose, N. Manabe, K. Mizuno et al., Atypical protein kinase C is involved in the evolutionarily conserved par protein complex and plays a critical role in establishing epithelia-specific junctional structures, J. Cell Biol, vol.152, pp.1183-1196, 2001.

M. A. Swairjo, N. O. Concha, M. A. Kaetzel, J. R. Dedman, and B. A. Seaton, Ca(2+)-bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V, Nat. Struct. Biol, vol.2, pp.968-974, 1995.

A. J. Szkotak, S. F. Man, and M. Duszyk, The role of the basolateral outwardly rectifying chloride channel in human airway epithelial anion secretion, Am. J. Respir. Cell Mol. Biol, vol.29, pp.710-720, 2003.

O. Tabary, E. Boncoeur, R. De-martin, R. Pepperkok, A. Clément et al., , 2006.

, Calcium-dependent regulation of NF-(kappa)B activation in cystic fibrosis airway epithelial cells, Cell. Signal, vol.18, pp.652-660

J. A. Tabcharani, X. B. Chang, J. R. Riordan, and J. W. Hanrahan, Phosphorylation-regulated Clchannel in CHO cells stably expressing the cystic fibrosis gene, Nature, vol.352, pp.628-631, 1991.

M. Tadano, H. Edamatsu, S. Minamisawa, U. Yokoyama, Y. Ishikawa et al., Congenital semilunar valvulogenesis defect in mice deficient in phospholipase C epsilon, Mol. Cell. Biol, vol.25, pp.2191-2199, 2005.

Y. Takai, A. Kishimoto, M. Inoue, and Y. Nishizuka, Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. I. Purification and characterization of an active enzyme from bovine cerebellum, J. Biol. Chem, vol.252, pp.7603-7609, 1977.

Y. Takai, A. Kishimoto, U. Kikkawa, T. Mori, and Y. Nishizuka, Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system, Biochemical and Biophysical Research Communications, vol.91, pp.1218-1224, 1979.

N. Takenaka, H. Edamatsu, N. Suzuki, H. Saito, Y. Inoue et al., , 2011.

, Overexpression of phospholipase C? in keratinocytes upregulates cytokine expression and causes dermatitis with acanthosis and T-cell infiltration, Eur. J. Immunol, vol.41, pp.202-213

T. Takenawa and Y. Nagai, Purification of phosphatidylinositol-specific phospholipase C from rat liver, J. Biol. Chem, vol.256, pp.6769-6775, 1981.

M. Takumida, T. Ishibashi, T. Hamamoto, K. Hirakawa, A. et al., Age-dependent changes in the expression of klotho protein, TRPV5 and TRPV6 in mouse inner ear, Acta Otolaryngol, vol.129, pp.1340-1350, 2009.

W. J. Tang, J. Krupinski, and A. G. Gilman, Expression and characterization of calmodulinactivated (type I) adenylylcyclase, J. Biol. Chem, vol.266, pp.8595-8603, 1991.

X. X. Tang, L. S. Ostedgaard, M. J. Hoegger, T. O. Moninger, P. H. Karp et al., Acidic pH increases airway surface liquid viscosity in cystic fibrosis, J. Clin. Invest, vol.126, pp.879-891, 2016.

J. L. Taylor-cousar, A. Munck, E. F. Mckone, C. K. Van-der-ent, A. Moeller et al., Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del, N. Engl. J. Med, vol.377, pp.2013-2023, 2017.

D. P. Thakur, J. Tian, J. Jeon, J. Xiong, Y. Huang et al., Critical roles of Gi/o proteins and phospholipase C-?1 in the activation of receptor-operated TRPC4 channels, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.1092-1097, 2016.

W. R. Thelin, M. Kesimer, R. Tarran, S. M. Kreda, B. R. Grubb et al., The cystic fibrosis transmembrane conductance regulator is regulated by a direct interaction with the protein phosphatase 2A, J. Biol. Chem, vol.280, pp.41512-41520, 2005.

F. Van-goor, S. Hadida, P. D. Grootenhuis, B. Burton, D. Cao et al., Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770, Proc. Natl. Acad. Sci. U.S.A, vol.106, pp.18825-18830, 2009.

F. Van-goor, S. Hadida, P. D. Grootenhuis, B. Burton, J. H. Stack et al., Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809, Proc. Natl. Acad. Sci. U.S.A, vol.108, pp.18843-18848, 2011.

P. Velisetty, I. Borbiro, M. A. Kasimova, L. Liu, D. Badheka et al., A molecular determinant of phosphoinositide affinity in mammalian, TRPV channels. Sci Rep, vol.6, p.27652, 2016.

A. Villalobo, H. Ishida, H. J. Vogel, and M. W. Berchtold, Calmodulin as a protein linker and a regulator of adaptor/scaffold proteins, Biochim Biophys Acta Mol Cell Res, vol.1865, pp.507-521, 2018.

T. Vorherr, L. Knöpfel, F. Hofmann, S. Mollner, T. Pfeuffer et al., The calmodulin binding domain of nitric oxide synthase and adenylyl cyclase, Biochemistry, vol.32, pp.6081-6088, 1993.

G. L. Waldo, T. K. Ricks, S. N. Hicks, M. L. Cheever, T. Kawano et al., Kinetic scaffolding mediated by a phospholipase C-beta and Gq signaling complex, Science, vol.330, pp.974-980, 2010.

C. Walliser, M. Retlich, R. Harris, K. L. Everett, M. B. Josephs et al., rac regulates its effector phospholipase Cgamma2 through interaction with a split pleckstrin homology domain, J. Biol. Chem, vol.283, pp.30351-30362, 2008.

C. K. Wang, L. Pan, J. Chen, and M. Zhang, Extensions of PDZ domains as important structural and functional elements, Protein Cell, vol.1, pp.737-751, 2010.

D. Wang, Y. Sun, W. Zhang, and P. Huang, Apical adenosine regulates basolateral Ca2+-activated potassium channels in human airway Calu-3 epithelial cells, Am. J. Physiol, vol.294, pp.1443-1453, 2008.

L. P. Wang, C. Lim, Y. Kuan, C. L. Chen, H. F. Chen et al., Positive charge at position 549 is essential for phosphatidylinositol 4,5-bisphosphate-hydrolyzing but not phosphatidylinositolhydrolyzing activities of human phospholipase C delta1, J. Biol. Chem, vol.271, pp.24505-24516, 1996.

S. Wang, R. W. Raab, P. J. Schatz, W. B. Guggino, L. et al., Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR), FEBS Lett, vol.427, pp.103-108, 1998.

T. Wang, L. Dowal, M. R. El-maghrabi, M. Rebecchi, and S. Scarlata, The pleckstrin homology domain of phospholipase C-beta(2) links the binding of gbetagamma to activation of the catalytic core, J. Biol. Chem, vol.275, pp.7466-7469, 2000.

Z. Wang, B. Liu, P. Wang, X. Dong, C. Fernandez-hernando et al., Phospholipase C beta3 deficiency leads to macrophage hypersensitivity to apoptotic induction and reduction of atherosclerosis in mice, J. Clin. Invest, vol.118, pp.195-204, 2008.

P. Watcharasit, J. Tucholski, and R. S. Jope, Src family kinase involvement in muscarinic receptor-induced tyrosine phosphorylation in differentiated SH-SY5Y cells, Neurochem. Res, vol.26, pp.809-816, 2001.

G. A. Wayman, J. Wei, S. Wong, and D. R. Storm, Regulation of type I adenylyl cyclase by calmodulin kinase IV in vivo, Mol. Cell. Biol, vol.16, pp.6075-6082, 1996.

J. Wei, G. Wayman, and D. R. Storm, Phosphorylation and inhibition of type III adenylyl cyclase by calmodulin-dependent protein kinase II in vivo, J. Biol. Chem, vol.271, pp.24231-24235, 1996.

J. Wei, A. Z. Zhao, G. C. Chan, L. P. Baker, S. Impey et al., , 1998.

, Phosphorylation and inhibition of olfactory adenylyl cyclase by CaM kinase II in Neurons: a mechanism for attenuation of olfactory signals, Neuron, vol.21, pp.495-504

L. Wei, A. Vankeerberghen, H. Cuppens, J. Eggermont, J. J. Cassiman et al., Interaction between calcium-activated chloride channels and the cystic fibrosis transmembrane conductance regulator, Pflugers Arch, vol.438, pp.635-641, 1999.

N. Wettschureck and S. Offermanns, Mammalian G Proteins and Their Cell Type Specific Functions, Physiological Reviews, vol.85, pp.1159-1204, 2005.

C. Wu, M. H. Ma, K. R. Brown, M. Geisler, L. Li et al., Systematic identification of SH3 domain-mediated human protein-protein interactions by peptide array target screening, Proteomics, vol.7, pp.1775-1785, 2007.

S. S. Wu, R. O. Jácamo, S. K. Vong, and E. Rozengurt, Differential regulation of Pyk2 phosphorylation at Tyr-402 and Tyr-580 in intestinal epithelial cells: roles of calcium, Src, Rho kinase, and the cytoskeleton, Cell. Signal, vol.18, pp.1932-1940, 2006.

Z. Wu, S. T. Wong, and D. R. Storms, Modification of the calcium and calmodulin sensitivity of the type I adenylyl cyclase by mutagenesis of its calmodulin binding domain, J. Biol. Chem, vol.268, pp.23766-23768, 1993.

D. Xia, L. Qu, G. Li, B. Hongdu, C. Xu et al., MARCH2 regulates autophagy by promoting CFTR ubiquitination and degradation and PIK3CA-AKT-MTOR signaling, Autophagy, vol.12, pp.1614-1630, 2016.

W. Xiao, H. Hong, Y. Kawakami, Y. Kato, D. Wu et al., Tumor suppression by phospholipase C-beta3 via SHP-1-mediated dephosphorylation of Stat5, Cancer Cell, vol.16, pp.161-171, 2009.

W. Xiao, J. Kashiwakura, H. Hong, H. Yasudo, T. Ando et al., Phospholipase C-?3 regulates Fc?RI-mediated mast cell activation by recruiting the protein phosphatase SHP-1, Immunity, vol.34, pp.893-904, 2011.

R. Xu, Q. Li, X. Zhou, J. M. Perelman, and V. P. Kolosov, Oxidative stress mediates the disruption of airway epithelial tight junctions through a TRPM2-PLC?1-PKC? signaling pathway, Int J Mol Sci, vol.14, pp.9475-9486, 2013.

D. Yablonski, T. Kadlecek, and A. Weiss, Identification of a phospholipase C-gamma1 (PLC-gamma1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-gamma1 and NFAT, Mol. Cell. Biol, vol.21, pp.4208-4218, 2001.

S. Yamamoto, K. Ichishima, and T. Ehara, Regulation of extracellular UTP-activated Cl-current by P2Y-PLC-PKC signaling and ATP hydrolysis in mouse ventricular myocytes, J Physiol Sci, vol.57, pp.85-94, 2007.

T. Yamamoto, H. Takeuchi, T. Kanematsu, V. Allen, H. Yagisawa et al., Involvement of EF hand motifs in the Ca(2+)-dependent binding of the pleckstrin homology domain to phosphoinositides, Eur. J. Biochem, vol.265, pp.481-490, 1999.

S. Yonemura, T. Matsui, S. Tsukita, and S. Tsukita, Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo, J. Cell. Sci, vol.115, pp.2569-2580, 2002.

P. Yu, R. Constien, N. Dear, M. Katan, P. Hanke et al., Autoimmunity and inflammation due to a gain-of-function mutation in phospholipase C gamma 2 that specifically increases external Ca2+ entry, Immunity, vol.22, pp.451-465, 2005.

Y. Yudin, V. Lukacs, C. Cao, and T. Rohacs, Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels, J. Physiol, vol.589, pp.6007-6027, 2011.

G. Yue, B. Malik, G. Yue, and D. C. Eaton, Phosphatidylinositol 4,5-bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells, J. Biol. Chem, vol.277, pp.11965-11969, 2002.

E. Zakharian, C. Cao, and T. Rohacs, Intracellular ATP supports TRPV6 activity via lipid kinases and the generation of PtdIns(4,5) P?, FASEB J, vol.25, pp.3915-3928, 2011.

W. Zha, Y. Qian, Y. Shen, Q. Du, F. Chen et al., Galangin Abrogates Ovalbumin-Induced Airway Inflammation via Negative Regulation of NF-?B, Evid Based Complement Alternat Med, p.767689, 2013.

L. Zhang, S. Malik, G. G. Kelley, M. S. Kapiloff, and A. V. Smrcka, Phospholipase C epsilon scaffolds to muscle-specific A kinase anchoring protein (mAKAPbeta) and integrates multiple hypertrophic stimuli in cardiac myocytes, J. Biol. Chem, vol.286, pp.23012-23021, 2011.

L. Zhang, S. Malik, J. Pang, H. Wang, K. M. Park et al., , 2013.

, Phospholipase C? hydrolyzes perinuclear phosphatidylinositol 4-phosphate to regulate cardiac hypertrophy, Cell, vol.153, pp.216-227

W. Zhang, Z. Zhang, Y. Zhang, and A. P. Naren, CFTR-NHERF2-LPA? Complex in the Airway and Gut Epithelia, Int J Mol Sci, vol.18, 2017.

Y. Zhou, J. Sondek, and T. K. Harden, Activation of human phospholipase C-eta2 by Gbetagamma, Biochemistry, vol.47, pp.4410-4417, 2008.

J. X. Zhu, G. H. Zhang, N. Yang, D. K. Rowlands, H. Y. Wong et al., Activation of apical CFTR and basolateral Ca(2+)-activated K+ channels by tetramethylpyrazine in Caco-2 cell line, Annexes Annexes Article scientifique : Focus on TRP channels in cystic fibrosis Chloé Grébert, Fréderic Becq, Clarisse Vandebrouck Laboratoire signalisation et transports ioniques membranaires, vol.510, pp.187-195, 2005.

,

, Cystic fibrosis (CF) is a genetic disease, due to CF Transmembrane conductance Regulator (CFTR) gene mutations, which is characterized by abnormal ion transport across the apical plasma membrane (PM) of epithelial tissues, including the airways [1]. CFTR is a plasma mem-brane protein that belongs to ATP binding cassette superfamily. It is a cAMP-and ATP-regulated channel which ensures, among others, Cl ? and bicarbonate transports. The most common CF mutation F508del-CFTR is the deletion of phenylalanine at position 508 leading to chloride impermeability in many exocrine glands

, E-mail address: clarisse.vandebrouck@univ-poitiers.fr (C. Vandebrouck). antimicrobial response [8]. An increased inflammatory response mediated by a rise in intracellular [Ca 2+ ] signaling has also been re-ported in primary cells exposed to luminal inflammatory mediators, vol.9

, Last, it has recently been shown that the increased [Ca 2+ ]i is involved in CFTR internalization, vol.10

, Plasma membrane calcium channels are regulated by membrane voltage or by ligands, and in some cases by both. Not sur-prisingly, voltage-activated channels are generally encountered in cells that depend largely on excitable behavior, for example, muscle and nerve. Calcium channels that are activated by ligands are more broadly distributed but are the exclusive mediators of transmembrane calcium flux in non-excitable cells, for example, blood cells and epithelial cells. Among all the cationic channels involved in the physiology of non-ex-citable cells, the family of TRP (Transient Receptor Potential) channels is an important player in calcium homeostasis. TRP channels were discovered in the eye of the Drosophila melanogaster fly and named for their transient response to bright light, Virtually every eukaryotic cell expresses at least some type of cal-cium channel, in the plasma membrane, in intracellular organelles, or typically both

, TRP ion channels are widely expressed throughout the body and can respond to an important diversity of

/. , All rights reserved, 2019.

J. R. Riordan, The cystic fibrosis transmembrane conductance regulator, Annu. Rev. Physiol, vol.55, pp.609-630, 1993.

B. Kerem, J. M. Rommens, and J. A. Buchanan, Identification of the cystic fibrosis gene: genetic analysis, Science, vol.245, pp.1073-1080, 1989.

P. M. Quinton, Cystic fibrosis: a disease in electrolyte transport, FASEB J, vol.4, pp.2709-2717, 1990.

J. M. Rommens, M. C. Iannuzzi, and B. Kerem, Identification of the cystic fibrosis gene: chromosome walking and jumping, Science, vol.245, pp.1059-1065, 1989.

F. Antigny, C. Norez, F. Becq, and C. Vandebrouck, CFTR and Ca signaling in cystic fibrosis, Front. Pharmacol, vol.2, p.67, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00664651

C. M. Ribeiro, The role of intracellular calcium signals in inflammatory responses of polarised cystic fibrosis human airway epithelia, Drugs R&D, vol.7, pp.17-31, 2006.

J. Bargon, B. C. Trapnell, and C. S. Chu, Down-regulation of cystic fibrosis transmembrane conductance regulator gene expression by agents that modulate in-tracellular divalent cations, Mol. Cell. Biol, vol.12, pp.1872-1878, 1992.

F. H. Robledo-avila, J. D. Ruiz-rosado, and K. L. Brockman, Dysregulated calcium homeostasis in cystic fibrosis neutrophils leads to deficient antimicrobial responses, J. Immunol, vol.201, pp.2016-2027, 2018.

C. M. Ribeiro, A. M. Paradiso, and U. Schwab, Chronic airway infection/inflammation induces a Ca2+i-dependent hyperinflammatory response in human cystic fibrosis airway epithelia, J. Biol. Chem, vol.280, pp.17798-17806, 2005.

W. Patel, P. J. Moore, and M. F. Sassano, Increases in cytosolic Ca(2+) induce dynamin-and calcineurin-dependent internalisation of CFTR, Cell. Mol. Life Sci, 2018.

D. E. Clapham, TRP channels as cellular sensors, Nature, vol.426, pp.517-524, 2003.

H. Wallace, Airway Pathogenesis is Linked to TRP Channels, pp.251-264, 2017.

D. Jaquemar, T. Schenker, and B. Trueb, An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts, J. Biol. Chem, vol.274, pp.7325-7333, 1999.

D. Julius, TRP channels and pain, Annu. Rev. Cell Dev. Biol, vol.29, pp.355-384, 2013.

P. Prandini, L. F. De, and C. Fusi, Transient receptor potential ankyrin 1 channels modulate inflammatory response in respiratory cells from patients with cystic fi-brosis, Am. J. Respir. Cell Mol. Biol, vol.55, pp.645-656, 2016.

R. Nassini, P. Pedretti, and N. Moretto, Transient receptor potential ankyrin 1 channel localized to non-neuronal airway cells promotes non-neurogenic inflammation, PLoS One, vol.7, p.42454, 2012.

I. Mukhopadhyay, A. Kulkarni, and N. Khairatkar-joshi, Blocking TRPA1 in respiratory disorders: does it hold a promise? Pharmaceuticals (Basel), p.9, 2016.

G. Boulay, X. Zhu, and M. Peyton, Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein, J. Biol. Chem, vol.272, pp.29672-29680, 1997.

C. , The TRP superfamily of cation channels, Sci. STKE, p.3, 2005.

S. Li, J. Westwick, and C. Poll, Transient receptor potential (TRP) channels as potential drug targets in respiratory disease, Cell Calcium, vol.33, pp.551-558, 2003.

R. L. Corteling, S. Li, J. Giddings, J. Westwick, C. Poll et al., Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue, Am. J. Respir. Cell Mol. Biol, vol.30, pp.145-154, 2004.

F. Antigny, C. Norez, and L. Dannhoffer, Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis, Am. J. Respir. Cell Mol. Biol, vol.44, pp.83-90, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00559252

L. Vachel, C. Norez, F. Becq, and C. Vandebrouck, Effect of VX-770 (ivacaftor) and OAG on Ca2+ influx and CFTR activity in G551D and F508del-CFTR expressing cells, J. Cyst. Fibros, vol.12, pp.584-591, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00990531

C. Norez, C. Vandebrouck, F. Antigny, L. Dannhoffer, M. Blondel et al., Guanabenz, an alpha2-selective adrenergic agonist, activates Ca2+-dependent chloride currents in cystic fibrosis human airway epithelial cells, Eur. J. Pharmacol, vol.592, pp.33-40, 2008.

J. Bertrand, L. Dannhoffer, and F. Antigny, A functional tandem between transient receptor potential canonical channels 6 and calcium-dependent chloride channels in human epithelial cells, Eur. J. Pharmacol, vol.765, pp.337-345, 2015.

V. Riazanski, A. G. Gabdoulkhakova, and L. S. Boynton, TRPC6 channel translocation into phagosomal membrane augments phagosomal function, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.6486-6495, 2015.

D. Bodnar, W. Y. Chung, D. Yang, J. H. Hong, A. Jha et al., STIM-TRP pathways and microdomain organization: Ca(2+) influx channels: the Orai-STIM1-TRPC complexes, Adv. Exp. Med. Biol, vol.993, pp.139-157, 2017.

H. Balghi, R. Robert, and B. Rappaz, Enhanced Ca2+ entry due to Orai1 plasma membrane insertion increases IL-8 secretion by cystic fibrosis airways, FASEB J, vol.25, pp.4274-4291, 2011.

D. Visser, J. Middelbeek, F. N. Van-leeuwen, and K. Jalink, Function and regulation of the channel-kinase TRPM7 in health and disease, Eur. J. Cell Biol, vol.93, pp.455-465, 2014.

E. Fonfria, P. R. Murdock, F. S. Cusdin, C. D. Benham, R. E. Kelsell et al., Tissue distribution profiles of the human TRPM cation channel family, J. Recept. Signal Transduct. Res, vol.26, pp.159-178, 2006.

R. Penner and A. Fleig, The Mg2+ and Mg(2+)-nucleotide-regulated channel-kinase TRPM7, Handb. Exp. Pharmacol, pp.313-328, 2007.

F. Huguet, M. L. Calvez, and N. Benz, Function and regulation of TRPM7, as well as intracellular magnesium content, are altered in cells expressing DeltaF508-CFTR and G551D-CFTR, Cell. Mol. Life Sci, vol.73, pp.3351-3373, 2016.

W. Liedtke, Y. Choe, and M. A. Marti-renom, Vanilloid receptor-related osmoti-cally activated channel (VR-OAC), a candidate vertebrate osmoreceptor, Cell, vol.103, pp.525-535, 2000.

D. F. Alvarez, J. A. King, D. Weber, E. Addison, W. Liedtke et al., Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury, Circ. Res, vol.99, pp.988-995, 2006.

A. Dietrich, V. Chubanov, H. Kalwa, B. R. Rost, and T. Gudermann, Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells, Pharmacol. Ther, vol.112, pp.744-760, 2006.

Y. Jia, X. Wang, and L. Varty, Functional TRPV4 channels are expressed in human airway smooth muscle cells, Am. J. Physiol. Lung Cell Mol. Physiol, vol.287, pp.272-278, 2004.

X. R. Yang, M. J. Lin, L. S. Mcintosh, and J. S. Sham, Functional expression of transient receptor potential melastatin-and vanilloid-related channels in pulmonary arterial and aortic smooth muscle, Am. J. Physiol. Lung Cell Mol. Physiol, vol.290, pp.1267-1276, 2006.

J. M. Fernandez-fernandez, Y. N. Andrade, and M. Arniges, Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines, Pflugers Arch, vol.457, pp.149-159, 2008.

R. N. Willette, W. Bao, and S. Nerurkar, Systemic activation of the transient re-ceptor potential vanilloid subtype 4 channel causes endothelial failure and circu-latory collapse: part 2, J. Pharmacol. Exp. Ther, vol.326, pp.443-452, 2008.

G. Cantero-recasens, J. R. Gonzalez, and C. Fandos, Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma, J. Biol. Chem, vol.285, pp.27532-27535, 2010.

J. M. Fernandez-fernandez, M. Nobles, A. Currid, E. Vazquez, and M. A. Valverde, Maxi K + channel mediates regulatory volume decrease response in a human bronchial epithelial cell line, Am. J. Physiol. Cell Physiol, vol.283, pp.1705-1714, 2002.

E. Vazquez, M. Nobles, and M. A. Valverde, Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.5329-5334, 2001.

R. Belfodil, H. Barriere, and I. Rubera, CFTR-dependent and -independent swel-lingactivated K+ currents in primary cultures of mouse nephron, Am. J. Physiol. Renal Physiol, vol.284, pp.812-828, 2003.

M. A. Valverde, J. A. O'brien, F. V. Sepulveda, R. A. Ratcliff, M. J. Evans et al., Impaired cell volume regulation in intestinal crypt epithelia of cystic fibrosis mice, Proc. Natl. Acad. Sci. U. S. A, vol.92, pp.9038-9041, 1995.

M. A. Valverde, E. Vazquez, and F. J. Munoz, Murine CFTR channel and its role in regulatory volume decrease of small intestine crypts, Cell. Physiol. Biochem, vol.10, pp.321-328, 2000.

H. Barriere, R. Belfodil, and I. Rubera, CFTR null mutation altered cAMP-sensitive and swelling-activated Cl-currents in primary cultures of mouse nephron, Am. J. Physiol. Renal Physiol, vol.284, pp.796-811, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00320822

M. Arniges, E. Vazquez, J. M. Fernandez-fernandez, and M. A. Valverde, Swelling-acti-vated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia, J. Biol. Chem, vol.279, pp.54062-54068, 2004.

R. C. Boucher, M. J. Stutts, M. R. Knowles, L. Cantley, and J. T. Gatzy, Na+ transport in cystic fibrosis respiratory epithelia. Abnormal basal rate and response to adenylate cyclase activation, J. Clin. Invest, vol.78, pp.1245-1252, 1986.

M. Mall, A. Wissner, and H. H. Seydewitz, Defective cholinergic Cl(-) secretion and detection of K(+) secretion in rectal biopsies from cystic fibrosis patients, Am. J. Physiol. Gastrointest. Liver Physiol, vol.278, pp.617-624, 2000.

C. O. Henry, E. Dalloneau, and M. T. Perez-berezo, In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: potential involvement in cystic fibrosis, Am. J. Physiol. Lung Cell Mol. Physiol, vol.311, pp.664-675, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02448649

D. Hirnet, J. Olausson, and C. Fecher-trost, The TRPV6 gene, cDNA and protein, Cell Calcium, vol.33, pp.509-518, 2003.

D. Muller, J. G. Hoenderop, and I. C. Meij, Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel (ECAC1), Genomics, vol.67, pp.48-53, 2000.

J. B. Peng, X. Z. Chen, and U. V. Berger, Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption, J. Biol. Chem, vol.274, pp.22739-22746, 1999.

E. Dekkers, J. G. Hoenderop, B. Nilius, and R. J. Bindels, The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation, Cell Calcium, vol.33, pp.497-507, 2003.

T. E. Woudenberg-vrenken, A. L. Lameris, and P. Weissgerber, Functional TRPV6 channels are crucial for transepithelial Ca2+ absorption, Am. J. Physiol. Gastrointest. Liver Physiol, vol.303, pp.879-885, 2012.

P. Weissgerber, U. Kriebs, and V. Tsvilovskyy, Male fertility depends on Ca(2)+ Cell Calcium 81 (2019) 29-37 absorption by TRPV6 in epididymal epithelia, Sci. Signal, vol.4, p.27, 2011.

C. Fecher-trost, P. Weissgerber, and U. Wissenbach, TRPV6 channels, vol.222, pp.359-384, 2014.

V. Lehen'kyi, M. Raphael, and N. Prevarskaya, The role of the TRPV6 channel in cancer, J. Physiol, vol.590, pp.1369-1376, 2012.

L. Vachel, C. Norez, C. Jayle, F. Becq, and C. Vandebrouck, The low PLC-delta1 ex-pression in cystic fibrosis bronchial epithelial cells induces upregulation of TRPV6 channel activity, Cell Calcium, vol.57, pp.38-48, 2015.

A. V. Zholos, TRP channels in respiratory pathophysiology: the role of oxidative, chemical irritant and temperature stimuli, vol.13, pp.279-291, 2015.

H. Abdullah, L. G. Heaney, S. L. Cosby, and L. P. Mcgarvey, Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: implications for respiratory virus-induced cough reflex sensitivity, Thorax, vol.69, pp.46-54, 2014.

L. A. Smit, M. Kogevinas, and J. M. Anto, Transient receptor potential genes, smoking, occupational exposures and cough in adults, Respir. Res, vol.13, p.26, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00693483

S. E. Jordt, D. M. Bautista, and H. H. Chuang, Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1, Nature, vol.427, pp.260-265, 2004.

A. I. Caceres, M. Brackmann, and M. D. Elia, A sensory neuronal ion channel es-sential for airway inflammation and hyperreactivity in asthma, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.9099-9104, 2009.

C. E. Deering-rice, E. G. Romero, and D. Shapiro, Electrophilic components of diesel exhaust particles (DEP) activate transient receptor potential ankyrin-1 (TRPA1): a probable mechanism of acute pulmonary toxicity for DEP, Chem. Res. Toxicol, vol.24, pp.950-959, 2011.

M. S. Grace, M. Baxter, E. Dubuis, M. A. Birrell, and M. G. Belvisi, Transient receptor potential (TRP) channels in the airway: role in airway disease, Br. J. Pharmacol, vol.171, pp.2593-2607, 2014.

D. Preti, A. Szallasi, and R. Patacchini, TRP channels as therapeutic targets in airway disorders: a patent review, Expert Opin. Ther. Pat, vol.22, pp.663-695, 2012.

D. M. Bautista, S. E. Jordt, and T. Nikai, TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents, Cell, vol.124, pp.1269-1282, 2006.

T. Buday, M. Brozmanova, and Z. Biringerova, Modulation of cough response by sensory inputs from the nose -role of trigeminal TRPA1 versus TRPM8 channels, Cough, vol.8, p.11, 2012.

S. J. Bonvini, M. A. Birrell, and M. S. Grace, Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: Role of adenosine triphosphate, J. Allergy Clin. Immunol, vol.138, pp.249-261, 2016.

M. M. Moran, M. A. Mcalexander, T. Biro, and A. Szallasi, Transient receptor potential channels as therapeutic targets, Nat. Rev. Drug Discov, vol.10, pp.601-620, 2011.

R. Nassini, S. Materazzi, S. G. De, C. F. De, and P. Geppetti, Transient receptor potential channels as novel drug targets in respiratory diseases, Curr. Opin. Investig. Drugs, vol.11, pp.535-542, 2010.

G. A. Fontana, F. Lavorini, and M. Pistolesi, Water aerosols and cough, Pulm. Pharmacol. Ther, vol.15, pp.205-211, 2002.

G. L. Piacentini, D. Peroni, and E. Crestani, Exhaled air temperature in asthma: methods and relationship with markers of disease, Clin. Exp. Allergy, vol.37, pp.415-419, 2007.

P. M. Zygmunt, A. Ermund, and P. Movahed, Monoacylglycerols activate TRPV1-a link between phospholipase C and TRPV1, PLoS One, vol.8, p.81618, 2013.

D. C. Bolser, S. M. Aziz, and R. W. Chapman, Ruthenium red decreases capsaicin and citric acid-induced cough in guinea pigs, Neurosci. Lett, vol.126, pp.131-133, 1991.

S. Kikuno, K. Taguchi, and N. Iwamoto, 2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to con-traction of guinea pig trachea, Toxicol. Appl. Pharmacol, vol.1, pp.47-54, 2006.

F. L. Ricciardolo, Mechanisms of citric acid-induced bronchoconstriction, Am. J. Med, vol.111, pp.18-24, 2001.

M. A. Mcalexander, M. A. Luttmann, G. E. Hunsberger, and B. J. Undem, Transient re-ceptor potential vanilloid 4 activation constricts the human bronchus via the release of cysteinyl leukotrienes, J. Pharmacol. Exp. Ther, vol.349, pp.118-125, 2014.

E. Y. Cheah, P. C. Burcham, T. S. Mann, and P. J. Henry, Acrolein relaxes mouse isolated tracheal smooth muscle via a TRPA1-dependent mechanism, Biochem. Pharmacol, vol.89, pp.148-156, 2014.

E. Y. Cheah, T. S. Mann, P. C. Burcham, and P. J. Henry, Influenza A infection attenuates relaxation responses of mouse tracheal smooth muscle evoked by acrolein, Biochem. Pharmacol, vol.93, pp.519-526, 2015.

E. D'aldebert, N. Cenac, and P. Rousset, Transient receptor potential vanilloid 4 activated inflammatory signals by intestinal epithelial cells and colitis in mice, Gastroenterology, vol.140, pp.275-285, 2011.

M. Khalil, K. Alliger, and C. Weidinger, Functional role of transient receptor potential channels in immune cells and epithelia, Front. Immunol, vol.9, p.174, 2018.

M. Leveque, A. Penna, and S. L. Trionnaire, Phagocytosis depends on TRPV2-mediated calcium influx and requires TRPV2 in lipids rafts: alteration in macro-phages from patients with cystic fibrosis, Sci. Rep, vol.8, p.4310, 2018.

I. Heiner, N. Radukina, J. Eisfeld, F. Kuhn, and A. Luckhoff, Regulation of TRPM2 channels in neutrophil granulocytes by ADP-ribose: a promising pharmacological target, Naunyn Schmiedebergs Arch. Pharmacol, vol.371, pp.325-333, 2005.

H. S. Park, C. Hong, B. J. Kim, and I. So, The pathophysiologic roles of TRPM7 channel, Korean J. Physiol. Pharmacol, vol.18, pp.15-23, 2014.

S. H. Donaldson, E. G. Poligone, and M. J. Stutts, CFTR regulation of ENaC, vol.70, pp.343-364, 2002.

M. Mall, M. Bleich, R. Greger, R. Schreiber, and K. Kunzelmann, The amiloride-in-hibitable Na+ conductance is reduced by the cystic fibrosis transmembrane con-ductance regulator in normal but not in cystic fibrosis airways, J. Clin. Invest, vol.102, pp.15-21, 1998.

M. Mall, B. R. Grubb, J. R. Harkema, W. K. O'neal, and R. C. Boucher, Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice, Nat. Med, vol.10, pp.487-493, 2004.

K. Kunzelmann, M. Mall, and M. Briel, The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl-conductance of Xenopus oocytes, Pflugers Arch, vol.435, pp.178-181, 1997.

J. Ousingsawat, P. Kongsuphol, R. Schreiber, and K. Kunzelmann, CFTR and TMEM16A are separate but functionally related Cl-channels, Cell. Physiol. Biochem, vol.28, pp.715-724, 2011.

M. Lu, Q. Leng, and M. E. Egan, CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney, J. Clin. Invest, vol.116, pp.797-807, 2006.

E. M. Schwiebert, M. E. Egan, and T. H. Hwang, CFTR regulates outwardly recti-fying chloride channels through an autocrine mechanism involving ATP, Cell, vol.81, pp.1063-1073, 1995.

, Cell Calcium, vol.81, pp.29-37, 2019.

R. Planells-cases and A. Ferrer-montiel, TRP Channel Trafficking, 2007.

R. Jahn, T. Lang, and T. C. Sudhof, Membrane fusion, Cell, vol.112, pp.519-533, 2003.

H. Y. Gee, J. Kim, and M. G. Lee, Unconventional secretion of transmembrane proteins, Semin. Cell Dev. Biol, vol.83, pp.59-66, 2018.

J. Kim, H. Y. Gee, and M. G. Lee, Unconventional protein secretion -new insights into the pathogenesis and therapeutic targets of human diseases, J. Cell. Sci, vol.131, 2018.

X. Hou, K. T. Lewis, and Q. Wu, Proteome of the porosome complex in human airway epithelia: interaction with the cystic fibrosis transmembrane conductance regulator (CFTR), J. Proteomics, vol.96, pp.82-91, 2014.

S. H. Lim, E. A. Legere, J. Snider, and I. Stagljar, Recent progress in CFTR interactome mapping and its importance for cystic fibrosis, Front. Pharmacol, vol.8, p.997, 2017.