P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy harvesting from human and machine motion for wireless electronic devices, Proceedings of the IEEE, vol.96, pp.1457-1486, 2008.

,

S. Roundy, Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion, 2003.

F. G. Dell'anna, T. Dong, P. Li, Y. Wen, Z. Yang et al., State-of-the-art power management circuits for piezoelectric energy harvesters, IEEE Circuits and Systems Magazine, vol.18, pp.27-48, 2018.

Z. L. Wang, L. Lin, J. Chen, S. Niu, and Y. Zi, Triboelectric nanogenerators, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02070928

S. Boisseau, G. Despesse, and B. A. Seddik, Electrostatic conversion for vibration energy harvesting, Small-scale energy harvesting, 2012.

S. Cao and J. Li, A survey on ambient energy sources and harvesting methods for structural health monitoring applications, Advances in Mechanical Engineering, vol.9, p.1687814017696210, 2017.

E. C. Jordan and K. G. Balmain, Electromagnetic waves and radiating systems, 1968.

O. Brand, G. K. Fedder, C. Hierold, J. G. Korvink, and O. Tabata, Micro energy harvesting, 2015.

D. Zhu, S. Roberts, T. Mouille, M. J. Tudor, and S. P. Beeby, General model with experimental validation of electrical resonant frequency tuning of electromagnetic vibration energy harvesters, Smart Materials and Structures, vol.21, p.105039, 2012.

I. Sari, T. Balkan, and H. Kulah, An electromagnetic micro power generator for wideband environmental vibrations, Sensors and Actuators A: Physical, pp.405-413, 2008.

M. A. Halim, H. Cho, and J. Y. Park, Design and experiment of a human-limb driven, frequency up-converted electromagnetic energy harvester, Energy Conversion and Management, vol.106, pp.393-404, 2015.

,

B. J. Bowers and D. P. Arnold, Spherical, rolling magnet generators for passive energy harvesting from human motion, Journal of Micromechanics and Microengineering, vol.19, p.94008, 2009.

H. Liu, Y. Qian, and C. Lee, A multi-frequency vibration-based MEMS electromagnetic energy harvesting device, Sensors and Actuators A: Physical, vol.204, pp.37-43, 2013.

H. C. Liu, J. W. Zhong, C. Lee, S. W. Lee, and L. W. Lin, A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications, vol.5, p.41306, 2018.

,

G. Hwang, V. Annapureddy, J. H. Han, D. J. Joe, C. Baek et al., Self-powered wireless sensor node enabled by an aerosol-deposited pzt flexible energy harvester, Advanced Energy Materials, vol.6, p.1600237, 2016.

M. Geisler, Human mechanical energy harvesting systems for smart clothes, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01730865

N. S. Shenck and J. A. Paradiso, Energy scavenging with shoe-mounted piezoelectrics, IEEE Micro, vol.21, pp.30-42, 2001.

H. Liu, C. Lee, T. Kobayashi, C. J. Tay, and C. Quan, Piezoelectric mems-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper, Sensors and Actuators A: Physical, vol.186, pp.242-248, 2012.

Z. L. Wang and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science, pp.242-246, 2006.

Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder et al., Self-powered system with wireless data transmission, Nano Letters, vol.11, pp.2572-2577, 2011.

C. Chang, V. H. Tran, J. Wang, Y. Fuh, and L. Lin, Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency, Nano Letters, vol.10, pp.726-731, 2010.

X. Wang, J. Song, J. Liu, and Z. L. Wang, Direct-current nanogenerator driven by ultrasonic waves, Science, pp.102-105, 2007.

,

P. D. Mitcheson, T. Sterken, C. He, M. Kiziroglou, E. M. Yeatman et al., Electrostatic microgenerators, Measurement and Control, vol.41, pp.114-119, 2008.

S. Meninger, J. O. Mur-miranda, R. Amirtharajah, A. Chandrakasan, and J. H. Lang, Vibration-to-electric energy conversion, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.9, pp.64-76, 2001.

,

D. Galayko, A. Dudka, A. Karami, E. O. Riordan, E. Blokhina et al., Capacitive energy conversion with circuits implementing a rectangular charge-voltage cycle-part 1: Analysis of the electrical domain, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.62, pp.2652-2663, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01240996

S. Roundy, P. Wright, and K. Pister, Micro-electrostatic vibration-to-electricity converters, Proceedings of ASME IMECE, pp.487-496, 2002.

L. Xu, T. Z. Bu, X. D. Yang, C. Zhang, and Z. L. Wang, Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators, Nano Energy, vol.49, pp.625-633, 2018.

,

A. Karami, D. Galayko, and P. Basset, Series-parallel charge pump conditioning circuits for electrostatic kinetic energy harvesting, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.64, pp.227-240, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01380378

A. Ghaffarinejad, Y. Lu, R. Hinchet, D. Galayko, J. Y. Hasani et al., Bennet's charge doubler boosting triboelectric kinetic energy harvesters, Journal of Physics: Conference Series, vol.1052, p.12027, 2018.

,

M. A. Ouanes, Y. Lu, H. Samaali, P. Basset, and F. Najar, Design and test of a bennet's doubler device with mechanical switches for vibrational energy harvesting, Journal of Physics: Conference Series, vol.773, 2016.

E. Lefeuvre, S. Risquez, J. Wei, M. Woytasik, and F. Parrain, Self-biased inductorless interface circuit for electret-free electrostatic energy harvesters, Journal of Physics: Conference Series, vol.557, p.12052, 2014.

J. Wei, S. Risquez, H. Mathias, E. Lefeuvre, and F. Costa, Simple and efficient interface circuit for vibration electrostatic energy harvesters, Proceedings of 2015 IEEE SENSORS, pp.1-4, 2015.

,

R. Hinchet, A. Ghaffarinejad, Y. Lu, J. Y. Hasani, S. Kim et al., Understanding and modeling of triboelectric-electret nanogenerator, Nano Energy, vol.47, pp.401-409, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01763592

H. Zhang, S. Feng, D. He, P. Molinié, and J. Bai, Amplitude-variable output characteristics of triboelectric-electret nanogenerators during multiple working cycles, Nano Energy, p.103856, 2019.

,

P. Basset, D. Galayko, A. M. Paracha, F. Marty, A. Dudka et al., A batch-fabricated and electret-free silicon electrostatic vibration energy harvester, Journal of Micromechanics and Microengineering, vol.19, p.115025, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01653633

P. Basset, D. Galayko, F. Cottone, R. Guillemet, E. Blokhina et al., Electrostatic vibration energy harvester with combined effect of electrical nonlinearities and mechanical impact, Journal of Micromechanics and Microengineering, vol.24, p.35001, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01521581

V. Bogdan, A. Denis, G. Philippe, R. X. Le, P. Fabien et al., Nonlinear electrostatic energy harvester using compensational springs in gravity field, Journal of Micromechanics and Microengineering, vol.28, p.74004, 2018.

S. Chiba, M. Waki, R. Kornbluh, and R. Pelrine, Innovative power generators for energy harvesting using electroactive polymer artificial muscles, Proceedings of The 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, pp.692715-692715, 2008.

R. Tashiro, N. Kabei, K. Katayama, E. Tsuboi, and K. Tsuchiya, Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion, Journal of Artificial Organs, vol.5, pp.239-0245, 2002.

T. Vu-cong, C. Jean-mistral, and A. Sylvestre, Autonomous dielectric elastomer generator using electret, Electroactive Polymer Actuators And Devices (Eapad), vol.2013, p.8687, 2013.

R. Pelrine, R. D. Kornbluh, J. Eckerle, P. Jeuck, S. Oh et al., Dielectric elastomers: Generator mode fundamentals and applications, Proceedings of SPIE, vol.4329, pp.148-156, 2001.

T. Vu-cong, C. Jean-mistral, and A. Sylvestre, Electrets substituting external bias voltage in dielectric elastomer generators: Application to human motion, Smart Materials and Structures, vol.22, p.25012, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00798565

C. Jean-mistral, T. Vu-cong, and A. Sylvestre, On the power management and electret hybridization of dielectric elastomer generators, Smart Materials and Structures, vol.22, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00925040

G. M. Sessler and E. , , 1987.

H. Oliver, Electrical papers, vol.1, p.1892

M. Eguchi, On dielectric polarisation, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, vol.1, pp.326-331, 1919.

,

H. S. Nalwa, Ferroelectric polymers: Chemistry, physics, and applications, 1995.

K. C. Kao, Dielectric phenomena in solids, pp.283-326, 2004.

S. S. Bamji, Superior electrets of polychlorotrifluoroethylene (aclar), Journal of Physics D: Applied Physics, vol.15, p.911, 1982.

M. É. Borisova and S. N. Koikov, Electret effect in dielectrics, Soviet Physics Journal, vol.22, pp.58-69, 1979.

Z. L. Wang and A. C. Wang, On the origin of contact-electrification, Materials Today, p.30, 2019.

K. C. Kao, Dielectric phenomena in solids, pp.1-39, 2004.

L. S. Mccarty, A. Winkleman, and G. M. Whitesides, Electrostatic self-assembly of polystyrene microspheres by using chemically directed contact electrification, Angewandte Chemie International Edition, vol.46, pp.206-209, 2007.

H. Zou, Y. Zhang, L. Guo, P. Wang, X. He et al., Quantifying the triboelectric series, Nature Communications, vol.10, p.1427, 2019.

G. M. Sessler and J. E. West, Electret transducers: A review, The Journal of the Acoustical Society of America, vol.53, pp.1589-1600, 1973.

,

G. M. Sessler and J. E. West, Self -biased condenser microphone with high capacitance, The Journal of the Acoustical Society of America, vol.34, pp.1787-1788, 1962.

G. M. Sessler, Electrostatic microphones with electret foil, The Journal of the Acoustical Society of America, vol.35, pp.1354-1357, 1963.

,

G. M. Sessler and J. E. West, Electrostatic microphones with foil electret, Proceedings of the 5th International Congresses on Acoustics, 1965.

R. B. Basham, Flexible force responsive transducer, 1976.

O. D. Jefimenko and D. K. Walker, Electrostatic current generator having a disk electret as an active element, IEEE Transactions on Industry Applications, pp.537-540, 1978.

Y. Tada, Experimental characteristics of electret generator, using polymer film electrets, Japanese Journal Of Applied Physics, pp.846-851, 1992.

S. Boisseau, G. Despesse, and A. Sylvestre, Optimization of an electret-based energy harvester, Smart Materials and Structures, vol.19, p.75015, 2010.

Y. Tada, Theoretical characteristics of generalized electret generator, using polymer film electrets, IEEE Transactions on Electrical Insulation, pp.457-464, 1986.

Y. Arakawa, Y. Suzuki, and N. Kasagi, Micro seismic power generator using electret polymer film, Proc. PowerMEMS, pp.187-190, 2004.

,

H. Lo and Y. Tai, Parylene-based electret power generators, Journal of Micromechanics and Microengineering, vol.18, p.104006, 2008.

,

J. Boland and Y. Tai, Electret generator apparatus and method, 2004.

F. R. Fan, Z. Q. Tian, and Z. L. Wang, Flexible triboelectric generator!, Nano Energy, pp.328-334, 2012.

G. M. Sessler and J. Hillenbrand, Electromechanical response of cellular electret films, Applied Physics Letters, vol.75, pp.3405-3407, 1999.

,

J. S. Boland, J. D. Messenger, K. W. Lo, and Y. C. Tai, Arrayed liquid rotor electret power generator systems, Proceedings of 18th IEEE International Conference on Micro Electro Mechanical Systems, pp.618-621, 2005.

T. Gray, Projected capacitive touch: A practical guide for engineers, 2018.

P. Basset, E. Blokhina, and D. Galayko, Electrostatic kinetic energy harvesting, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01504088

S. Bauer, R. Gerhard-multhaupt, and G. M. Sessler, Ferroelectrets: Soft electroactive foams for transducers, Physics Today, vol.57, pp.37-43, 2004.

R. Gerhard-multhaupt, Less can be more -holes in polymers lead to a new paradigm of piezoelectric materials for electret transducers, Ieee Transactions on Dielectrics And Electrical Insulation, vol.9, pp.850-859, 2002.

R. Altafim, H. Basso, R. Altafim, L. Lima, C. Aquino et al., Piezoelectrets from thermo-formed bubble structures of fluoropolymer-electret films, Ieee Transactions on Dielectrics And Electrical Insulation, vol.13, pp.979-985, 2006.

N. Wu, X. Cheng, Q. Zhong, J. Zhong, W. Li et al., Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring, Advanced Functional Materials, vol.25, pp.4788-4794, 2015.

A. Kachroudi, S. Basrour, L. Rufer, A. Sylvestre, and F. Jomni, Micro-structured pdms piezoelectric enhancement through charging conditions, Smart Materials and Structures, p.25, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01526845

J. Wang, H. Liang, W. Fang, and Y. Su, Composite rubber electret with piezoelectric 31 and 33 modes for elastically electromechanical sensors, Proceedings of SENSORS, pp.1-4, 2015.

A. Mohebbi, F. Mighri, A. Ajji, and D. Rodrigue, Cellular polymer ferroelectret: A review on their development and their piezoelectric properties, Advances in Polymer Technology, vol.37, pp.468-483, 2018.

F. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang et al., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films, Nano Letters, vol.12, pp.3109-3114, 2012.

Z. L. Wang, Triboelectric nanogenerators as new energy technology for selfpowered systems and as active mechanical and chemical sensors, ACS Nano, vol.7, pp.9533-9557, 2013.

T. Cheng, Q. Gao, and Z. L. Wang, The current development and future outlook of triboelectric nanogenerators: A survey of literature, Advanced Materials Technologies, vol.4, 2019.

B. D. Chen, W. Tang, C. Zhang, L. Xu, L. P. Zhu et al., Au nanocomposite enhanced electret film for triboelectric nanogenerator, Nano Research, 2017.

,

Y. Yang, H. Zhang, X. Zhong, F. Yi, R. Yu et al., Electret film-enhanced triboelectric nanogenerator matrix for self-powered instantaneous tactile imaging, ACS Applied Materials & Interfaces, vol.6, pp.3680-3688, 2014.

H. Zhang, S. Feng, D. He, Y. Xu, M. Yang et al., An electret film-based triboelectric nanogenerator with largely improved performance via a tapepeeling charging method, Nano Energy, vol.48, pp.256-265, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01841854

T. Zhou, L. Zhang, F. Xue, W. Tang, C. Zhang et al., Multilayered electret films based triboelectric nanogenerator, Nano Research, vol.9, pp.1442-1451, 2016.

L. M. Zhang, C. B. Han, T. Jiang, T. Zhou, X. H. Li et al., Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy, Nano Energy, vol.22, pp.87-94, 2016.

,

S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu et al., Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding, Advanced Materials, vol.26, pp.6720-6728, 2014.

Y. Zi, S. Niu, J. Wang, Z. Wen, W. Tang et al., Standards and figure-ofmerits for quantifying the performance of triboelectric nanogenerators, Nature Communications, vol.6, p.8376, 2015.

Z. L. Wang, Triboelectric nanogenerators as new energy technology and selfpowered sensors-principles, problems and perspectives, Faraday Discussions, vol.176, pp.447-458, 2015.

Y. Yang, Y. S. Zhou, H. Zhang, Y. Liu, S. Lee et al., A single-electrode based triboelectric nanogenerator as self-powered tracking system, Advanced Materials, vol.25, pp.6594-6601, 2013.

H. Zhang, Y. Yang, X. Zhong, Y. Su, Y. Zhou et al., Singleelectrode-based rotating triboelectric nanogenerator for harvesting energy from tires, ACS Nano, vol.8, 2014.

G. Zhu, J. Chen, T. Zhang, Q. Jing, and Z. L. Wang, Radial-arrayed rotary electrification for high performance triboelectric generator, Nature Communications, vol.5, p.3426, 2014.

P. Matthias, B. Sebastien, G. Matthias, D. Ghislain, and R. J. Luc, Triboelectretbased aeroelastic flutter energy harvesters, Journal of Physics: Conference Series, vol.773, p.12021, 2016.

J. Bae, J. Lee, S. Kim, J. Ha, B. Lee et al., Flutter-driven triboelectrification for harvesting wind energy, Nature Communications, p.5, 2014.

,

Y. Yang, G. Zhu, H. L. Zhang, J. Chen, X. D. Zhong et al., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system, ACS Nano, vol.7, pp.9461-9468, 2013.

X. Zhang, M. Han, B. Kim, J. Bao, J. Brugger et al., All-in-one selfpowered flexible microsystems based on triboelectric nanogenerators, Nano Energy, vol.47, pp.410-426, 2018.

X. Wang, Y. Zhang, X. Zhang, Z. Huo, X. Li et al., A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics, Advanced Materials, vol.30, p.1706738, 2018.

Y. Chen, X. Pu, M. Liu, S. Kuang, P. Zhang et al., Shape-adaptive, self-healable triboelectric nanogenerator with enhanced performances by soft solid-solid contact electrification, ACS Nano, vol.13, pp.8936-8945, 2019.

G. Zhu, Y. S. Zhou, P. Bai, X. S. Meng, Q. Jing et al., A shapeadaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification, Advanced Materials, vol.26, pp.3788-3796, 2014.

J. Zhong, Y. Zhang, Q. Zhong, Q. Hu, B. Hu et al., Fiber-based generator for wearable electronics and mobile medication, ACS Nano, vol.8, pp.6273-6280, 2014.

A. Ahmed, Z. Saadatnia, I. Hassan, Y. Zi, Y. Xi et al., Selfpowered wireless sensor node enabled by a duck-shaped triboelectric nanogenerator for harvesting water wave energy, Advanced Energy Materials, vol.7, p.1601705, 2017.

M. Han, X. Zhang, B. Meng, W. Liu, W. Tang et al., R-shaped hybrid nanogenerator with enhanced piezoelectricity, ACS Nano, vol.7, pp.8554-8560, 2013.

S. H. Wang, L. Lin, and Z. L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics, Nano Letters, vol.12, pp.6339-6346, 2012.

P. Bai, G. Zhu, Y. Liu, J. Chen, Q. Jing et al., Cylindrical rotating triboelectric nanogenerator, vol.7, pp.6361-6366, 2013.

D. Choi, S. Lee, S. M. Park, H. Cho, W. Hwang et al., Energy harvesting model of moving water inside a tubular system and its application of a sticktype compact triboelectric nanogenerator, Nano Research, vol.8, pp.2481-2491, 2015.

L. Pan, J. Wang, P. Wang, R. Gao, Y. Wang et al., Liquid-fep-based u-tube triboelectric nanogenerator for harvesting water-wave energy, Nano Research, vol.11, pp.4062-4073, 2018.

,

Y. Su, G. Zhu, W. Yang, J. Yang, J. Chen et al., Triboelectric sensor for self-powered tracking of object motion inside tubing, ACS Nano, vol.8, pp.3843-3850, 2014.

X. Wang, S. Niu, Y. Yin, F. Yi, Z. You et al., Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy, Advanced Energy Materials, vol.5, p.1501467, 2015.

L. Xu, T. Jiang, P. Lin, J. J. Shao, C. He et al., Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting, ACS Nano, vol.12, pp.1849-1858, 2018.

,

J. Chen, J. Yang, Z. Li, X. Fan, Y. Zi et al., Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy, ACS Nano, vol.9, pp.3324-3331, 2015.

Z. L. Wang, T. Jiang, and L. Xu, Toward the blue energy dream by triboelectric nanogenerator networks, Nano Energy, pp.9-23, 2017.

,

X. Li, J. Tao, X. Wang, J. Zhu, C. Pan et al., Networks of high performance triboelectric nanogenerators based on liquid-solid interface contact electrification for harvesting low-frequency blue energy, Advanced Energy Materials, vol.8, p.1800705, 2018.

Z. L. Wang, Catch wave power in floating nets, Nature, vol.542, pp.159-160, 2017.

M. L. Seol, J. H. Woo, S. B. Jeon, D. Kim, S. J. Park et al., Vertically stacked thin triboelectric nanogenerator for wind energy harvesting, Nano Energy, vol.14, pp.201-208, 2015.

W. Du, X. Han, L. Lin, M. Chen, X. Li et al., A three dimensional multi-layered sliding triboelectric nanogenerator, Advanced Energy Materials, vol.4, p.1301592, 2014.

P. Bai, G. Zhu, Z. Lin, Q. Jing, J. Chen et al., Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions, ACS Nano, vol.7, pp.3713-3719, 2013.

W. Tang, T. Jiang, F. R. Fan, A. F. Yu, C. Zhang et al., Liquidmetal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70, Advanced Functional Materials, vol.6, pp.3718-3725, 2015.

J. Chun, J. W. Kim, W. Jung, C. Kang, S. Kim et al., Mesoporous pores impregnated with au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments, Energy & Environmental Science, vol.8, pp.3006-3012, 2015.

,

B. Yang, W. Zeng, Z. H. Peng, S. R. Liu, K. Chen et al., A fully verified theoretical analysis of contact -mode triboelectric nanogenerators as a wearable power source, Advanced Energy Materials, vol.6, p.1600505, 2016.

G. Zhu, C. Pan, W. Guo, C. Chen, Y. Zhou et al., Triboelectric-generator-driven pulse electrodeposition for micropatterning, Nano Letters, vol.12, pp.4960-4965, 2012.

G. Cheng, L. Zheng, Z. Lin, J. Yang, Z. Du et al., Multilayeredelectrode-based triboelectric nanogenerators with managed output voltage and multifold enhanced charge transport, Advanced Energy Materials, p.5, 2015.

G. Zhu, Z. Lin, Q. Jing, P. Bai, C. Pan et al., Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator, Nano Letters, vol.13, pp.847-853, 2013.

,

C. Park, G. Song, S. M. Cho, J. Chung, Y. Lee et al., Supramolecular-assembled nanoporous film with switchable metal salts for a triboelectric nanogenerator, Advanced Functional Materials, vol.27, p.1701367, 2017.

Z. Saadatnia, S. G. Mosanenzadeh, E. Esmailzadeh, and H. E. Naguib, A high performance triboelectric nanogenerator using porous polyimide aerogel film, Scientific Reports, vol.9, p.1370, 2019.

X. Li, G. Xu, X. Xia, J. Fu, L. Huang et al., Standardization of triboelectric nanogenerators: Progress and perspectives, Nano Energy, vol.56, pp.40-55, 2019.

A. Ahmed, I. Hassan, M. F. El-kady, A. Radhi, C. K. Jeong et al., Advanced Science, 1802230.

Y. N. Xie, S. H. Wang, L. Lin, Q. S. Jing, Z. H. Lin et al., Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy, ACS Nano, vol.7, pp.7119-7125, 2013.

,

T. Sterken, K. Baert, R. Puers, and G. Borghs, Power extraction from ambient vibration, Proceedings of SAFE-ProRISC-SeSens, 2001.

Y. Lu, E. O'riordan, F. Cottone, S. Boisseau, D. Galayko et al., A batch-fabricated electret-biased wideband mems vibration energy harvester with frequency-up conversion behavior powering a uhf wireless sensor node, Journal of Micromechanics and Microengineering, vol.26, p.124004, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01504353

Y. Zi, H. Guo, Z. Wen, M. Yeh, C. Hu et al., Harvesting lowfrequency (<5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator, ACS Nano, vol.10, pp.4797-4805, 2016.

F. Xing, Y. Jie, X. Cao, T. Li, and N. Wang, Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy, Nano Energy, vol.42, pp.138-142, 2017.

X. Zhang, M. Han, R. Wang, F. Zhu, Z. Li et al.,

. Zhang, Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems, Nano Letters, vol.13, pp.1168-1172, 2013.

T. Sterken, K. Baert, R. Puers, G. Borghs, and R. Mertens, A new power mems component with variable capacitance, Proceedings of Pan Pacific Microelectronics symposium, pp.27-34, 2003.

H. Kloub, D. Hoffmann, B. Folkmer, and Y. Manoli, A micro capacitive vibration energy harvester for low power electronics, Proceedings of PowerMEMS, pp.165-168, 2009.

S. Niu, Y. Liu, X. Chen, S. Wang, Y. S. Zhou et al., Theory of freestanding triboelectric-layer-based nanogenerators, vol.12, pp.760-774, 2015.

E. Blokhina, A. E. Aroudi, E. Alarcon, and D. Galayko, Nonlinearity in energy harvesting systems, 2016.

C. B. Williams and R. B. Yates, Analysis of a micro-electric generator for microsystems, Proceedings of the International Solid-State Sensors and Actuators Conference -TRANSDUCERS '95, vol.1, pp.369-372, 1995.

,

C. B. Williams and R. B. Yates, Analysis of a micro-electric generator for microsystems, Sensors and Actuators A: Physical, vol.52, pp.8-11, 1996.

P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes, Architectures for vibration-driven micropower generators, Journal Of Microelectromechanical Systems, vol.13, pp.429-440, 2004.

W. J. Li, T. C. Ho, G. M. Chan, P. H. Leong, and W. Yung, Infrared signal transmission by a laser-micromachined, vibration-induced power generator, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol.1, pp.236-239, 2000.

,

C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T. S. Birch et al., Development of an electromagnetic micro-generator, IEE Proceedings -Circuits, Devices and Systems, vol.148, pp.337-342, 2001.

R. Amirtharajah and A. P. Chandrakasan, Self-powered signal processing using vibration-based power generation, IEEE Journal of Solid-State Circuits, vol.33, pp.687-695, 1998.

S. Boisseau, G. Despesse, T. Ricart, E. Defay, and A. Sylvestre, Cantilever-based electret energy harvesters, Smart Materials and Structures, vol.20, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00992158

J. Boland, C. Yuan-heng, Y. Suzuki, and Y. C. Tai, Micro electret power generator, Proceedings of The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, pp.538-541, 2003.

Y. Sakane, Y. Suzuki, and N. Kasagi, The development of a high-performance perfluorinated polymer electret and its application to micro power generation, Journal of Micromechanics and Microengineering, vol.18, p.104011, 2008.

G. K. Fedder, Simulation of microelectromechanical systems, 1994.

H. A. Tilmans, Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems, Journal of Micromechanics and Microengineering, vol.6, pp.157-176, 1996.

H. A. Tilmans, Erratum: Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems, Journal of Micromechanics and Microengineering, vol.6, pp.359-359, 1996.

,

D. Galayko and P. Basset, A general analytical tool for the design of vibration energy harvesters (VEHs) based on the mechanical impedance concept, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.58, pp.299-311, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00692917

S. Niu, Y. Liu, S. Wang, L. Lin, Y. S. Zhou et al., Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators, Advanced Functional Materials, vol.24, pp.3332-3340, 2014.

R. D. Dharmasena, K. D. Jayawardena, C. A. Mills, J. H. Deane, J. V. Anguita et al., Triboelectric nanogenerators: Providing a fundamental framework, Energy & Environmental Science, vol.10, pp.1801-1811, 2017.

S. Niu, S. Wang, L. Lin, Y. Liu, Y. S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy & Environmental Science, vol.6, pp.3576-3583, 2013.

,

S. Niu and Z. L. Wang, Theoretical systems of triboelectric nanogenerators, Nano Energy, vol.14, pp.161-192, 2015.

J. Shao, M. Willatzen, Y. Shi, and Z. L. Wang, 3D mathematical model of contactseparation and single-electrode mode triboelectric nanogenerators, Nano Energy, vol.60, pp.630-640, 2019.

D. Galayko, E. Blokhina, P. Basset, F. Cottone, A. Dudka et al., Tools for analytical and numerical analysis of electrostatic vibration energy harvesters: Application to a continuous mode conditioning circuit, Journal of Physics: Conference Series, vol.476, p.12076, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01522179

S. Ebnesajjad and F. , Melt processible fluoropolymers-the definitive user's guide and data book, vol.2, 2015.

J. Wang, C. Wu, Y. Dai, Z. Zhao, A. Wang et al., Achieving ultrahigh triboelectric charge density for efficient energy harvesting, Nature Communications, vol.8, p.88, 2017.

X. Xia, J. Fu, and Y. Zi, A universal standardized method for output capability assessment of nanogenerators, Nature Communications, vol.10, p.4428, 2019.

D. Liu, X. Yin, H. Guo, L. Zhou, X. Li et al., A constant current triboelectric nanogenerator arising from electrostatic breakdown, Science Advances, vol.5, p.6437, 2019.

,

K. Dai, X. Wang, S. Niu, F. Yi, Y. Yin et al., Simulation and structure optimization of triboelectric nanogenerators considering the effects of parasitic capacitance, Nano Research, vol.10, pp.157-171, 2017.

D. M. Fang, F. J. Zheng, B. Chen, Y. Wang, Y. G. Fang et al., Computation of capacitance and electrostatic forces for the electrostatically driving actuators considering fringe effects, Microsystem Technologies-Micro-And Nanosystems-Information Storage And Processing Systems, vol.21, pp.2089-2096, 2015.

K. Shah, J. Singh, and A. Zayegh, Modelling and analysis of fringing and metal thickness effects in mems parallel plate capacitors, Proceedings of SPIE, p.6035, 2006.

Y. Feng, B. H. Shao, X. S. Tang, Y. H. Han, T. Z. Wu et al., Improved capacitance model involving fringing effects for electret-based rotational energy harvesting devices, IEEE Transactions on Electron Devices, vol.65, pp.1597-1603, 2018.

C. Zhang, W. Tang, C. Han, F. Fan, and Z. L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy, Advanced Materials, vol.26, pp.3580-3591, 2014.

,

H. Y. Li, L. Su, S. Y. Kuang, C. F. Pan, G. Zhu et al., Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy, Advanced Functional Materials, vol.25, pp.5691-5697, 2015.

T. Sterken, P. Fiorini, G. Altena, C. Van-hoof, R. Puers et al., Harvesting energy from vibrations by a micromachined electret generator, Proceedings of 14th International on Solid-State Sensors, Actuators and Microsystems Conference, pp.129-132, 2007.

,

M. Suzuki, T. Takahashi, and S. Aoyagi, Development of a high-performance fluorpolymer electret mixed with nano-particles and its application to vibration energy harvesting, Journal of Physics: Conference Series, vol.557, p.12062, 2014.

H. M. Xiao, G. J. Chen, X. M. Chen, and Z. Chen, A flexible electret membrane with persistent electrostatic effect and resistance to harsh environment for energy harvesting, Scientific Reports, vol.7, p.8443, 2017.

G. J. Chen, Y. F. Li, H. M. Xiao, and X. Zhu, A micro-oscillation-driven energy harvester based on a flexible bipolar electret membrane with high output power, Journal Of Materials Chemistry A, vol.5, pp.4150-4155, 2017.

,

X. Zhang, G. M. Sessler, Y. Xue, and X. Ma, Audio and ultrasonic responses of laminated fluoroethylenepropylene and porous polytetrafluoroethylene films with different charge distributions, Journal of Physics D: Applied Physics, vol.49, p.205502, 2016.

H. T. Baytekin, A. Z. Patashinski, M. Branicki, B. Baytekin, S. Soh et al., The mosaic of surface charge in contact electrification, Science, vol.333, pp.308-312, 2011.

X. Li, J. Tao, J. Zhu, and C. Pan, A nanowire based triboelectric nanogenerator for harvesting water wave energy and its applications, APL Materials, vol.5, p.74104, 2017.

R. Budakian, K. Weninger, R. A. Hiller, and S. J. Putterman, Picosecond discharges and stick-slip friction at a moving meniscus of mercury on glass, Nature, vol.391, pp.266-268, 1998.

X. Y. Wei, G. Zhu, and Z. L. Wang, Surface-charge engineering for highperformance triboelectric nanogenerator based on identical electrification materials, Nano Energy, vol.10, pp.83-89, 2014.

,

M. R. Jung, F. D. Horgen, S. V. Orski, V. Rodriguez, C. et al., Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms, Marine Pollution Bulletin, vol.127, pp.704-716, 2018.

S. Kostromina, N. Kozlova, Y. A. Zubov, S. Chvalun, Y. A. Fedorovich et al., X-ray study of structural parameters of some tetrafluoroethylene copolymers, Polymer Science USSR, vol.28, pp.992-998, 1986.

, , p.90242

C. G. Camara, J. V. Escobar, J. R. Hird, and S. J. Putterman, Correlation between nanosecond x-ray flashes and stick-slip friction in peeling tape, Nature, vol.455, pp.1089-1092, 2008.

C. Gay and L. Leibler, Theory of tackiness, Physical Review Letters, vol.82, pp.936-939, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00515440

K. Byun, M. Lee, Y. Cho, S. Nam, H. Shin et al., Potential role of motion for enhancing maximum output energy of triboelectric nanogenerator, APL Materials, vol.5, p.74107, 2017.

S. Niu, Y. S. Zhou, S. Wang, Y. Liu, L. Lin et al., Simulation method for optimizing the performance of an integrated triboelectric 132

, nanogenerator energy harvesting system, Nano Energy, vol.8, pp.150-156, 2014.

Y. Lu, M. Capo-chichi, Y. Leprince-wang, and P. Basset, A flexible electrostatic kinetic energy harvester based on electret films of electrospun nanofibers, Smart Materials and Structures, vol.27, p.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01721132

S. Niu, Y. Liu, Y. S. Zhou, S. Wang, L. Lin et al., Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage, IEEE Transactions on Electron Devices, vol.62, pp.641-647, 2015.

S. Niu, X. Wang, F. Yi, Y. S. Zhou, and Z. L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics, Nature Communications, vol.6, p.8975, 2015.

,

L. Jin, W. Deng, Y. Su, Z. Xu, H. Meng et al., Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system, Nano Energy, vol.38, pp.185-192, 2017.

A. Ghaffarinejad, J. Hasani, D. Galayko, and P. Basset, Superior performance of half-wave to full-wave rectifier as a power conditioning circuit for triboelectric nanogenerators: Application to contact-separation and sliding mode teng, Nano Energy, vol.66, p.104137, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02318788

,

A. Ghaffarinejad, J. Y. Hasani, R. Hinchet, Y. Lu, H. Zhang et al., A conditioning circuit with exponential enhancement of output energy for triboelectric nanogenerator, Nano Energy, vol.51, pp.173-184, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826249

X. Cheng, L. Miao, Y. Song, Z. Su, H. Chen et al., High efficiency power management and charge boosting strategy for a triboelectric nanogenerator, Nano Energy, vol.38, pp.438-446, 2017.

F. Xi, Y. Pang, W. Li, T. Jiang, L. Zhang et al., Universal power management strategy for triboelectric nanogenerator, Nano Energy, vol.37, pp.168-176, 2017.

F. Chen, Y. Wu, Z. Ding, X. Xia, S. Li et al., A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing, Nano Energy, vol.56, pp.241-251, 2019.

,

A. Ahmed, I. Hassan, T. Ibn-mohammed, H. Mostafa, I. M. Reaney et al., Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators, Energy & Environmental Science, vol.10, pp.653-671, 2017.