B. P. Bewlay, S. Nag, A. Suzuki, and M. J. Weimer, TiAl alloys in commercial aircraft engines, Mater. High Temp, vol.33, issue.4-5, pp.549-559, 2016.

T. Voisin, Exploration de la voie SPS pour la fabrication d'aubes de turbine pour l'aéronautique : Développement d'un alliage TiAl performant et densification de préformes, Université Paul Sabatier, 2014.

C. Leyens and M. Peters, Titanium and Titanium alloys: fundamentals and applications, 2005.

J. ,

E. Singh, I. Tuval, R. Weiss, and . Srinivasan, , pp.547-554, 1995.

B. ,

M. Bewlay, T. Weimer, A. Kelly, P. Suzuki, and . Subramanian, The Science, Technology, and Implementation of TiAl Alloys in Commercial Aircraft Engines, Symp. JJ -Intermet. Alloy. Technol. Appl, vol.1516, pp.49-58, 2013.

F. Appel, Recent progress in the development of gamma titanium aluminide alloys, Adv. Eng. Mater, vol.2, issue.11, pp.699-720, 2000.

A. Fritz, O. Michael, and J. D. Paul, Gamma Titanium Aluminide Alloys: Science and Technology, 2011.

B. W. Choi, Y. G. Deng, C. Mccullough, B. Paden, and R. Mehrabian, Densification of rapidly solidified titanium aluminide powders-I. Comparison of experiments to hiping models, Acta Metall. Mater, vol.38, issue.11, pp.2225-2243, 1990.

R. Gerling, H. Clemens, and F. Schimansky, Powder metallurgical processing of rhenium, Adv. Mater. Process, vol.6, pp.23-26, 2004.

R. Gerling, A. Bartels, H. Clemens, H. Kestler, and F. P. Schimansky, Structural characterization and tensile properties of a high niobium containing gamma TiAl sheet obtained by powder metallurgical processing, Intermetallics, vol.12, issue.3, pp.275-280, 2004.

L. E. Murr, Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting, Acta Mater, vol.58, issue.5, pp.1887-1894, 2010.

S. Biamino, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation, Intermetallics, vol.19, issue.6, pp.776-781, 2011.

G. Baudana, Electron Beam Melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility investigation, Intermetallics, vol.73, pp.43-49, 2016.

S. ,

. Huang, S. C. Huang, and . Struct, Intermet. R. Dorolia coll, pp.299-307, 1993.

S. , Contribution à l'étude de la microstructure et de la déformation plastique des alliages TiAl lamellaires, 1997.

. Verstraete, No Title, 1998.

J. Malaplate, Etude du fluage à 750°C d'alliages Ti48AL48Cr2Nb2 obtenus par les voies métallurgies des poudres, 2002.

H. Jabbar, Développement d'alliages TiAl pour l'aéronautique par Spark Plasma Sintering, p.184

P. Sabatier, , 2010.

T. Voisin, Temperature control during Spark Plasma Sintering and application to upscaling and complex shaping, J. Mater. Process. Technol, vol.213, issue.2, pp.269-278, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00789844

S. Zghal, S. Naka, and A. Couret, A quantitative TEM analysis of the lamellar microstructure in TiAl based alloys, Acta Mater, vol.45, issue.7, pp.3005-3015, 1997.

H. Inui, M. H. Oh, A. Nakamura, and M. Yamaguchi, Ordered domains in tial coexisting with Ti3Al in the lamellar structure of ti-rich TiAl compounds, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.66, issue.4, pp.539-555, 1992.

S. Zghal, M. Thomas, and A. Couret, ?-allotriomorphs precipitation and lamellar transformation in a TiAl-based alloy, Intermetallics, vol.19, issue.10, pp.1627-1629, 2011.

S. R. Dey, A. Hazotte, and E. Bouzy, Crystallography and phase transformation mechanisms in TiAl-based alloys -A synthesis, Intermetallics, vol.17, issue.12, pp.1052-1064, 2009.

Y. W. (y-w and . Kim, Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy, Acta Metall. Mater, vol.40, issue.6, pp.1121-1134, 1992.

H. Oikawa and K. Maruyama, No Title, Gamma Titan. Alum. TMS, p.919, 1995.

Y. Umakoshi and T. Nakano, The role of ordered domains and slip mode of ?2 phase in the plastic behaviour of TiAl crystals containing oriented lamellae, Acta Metall. Mater, vol.41, issue.4, pp.1155-1161, 1993.

M. Yamaguchi, D. R. Johnson, H. N. Lee, and H. Inui, Directional solidification of TiAl-base alloys, Intermetallics, vol.8, pp.511-517, 2000.

Y. Kim, Strength and ductility in TiAl alloys, Intermetallics, vol.6, issue.7-8, pp.623-628, 1998.

J. Tang, B. Huang, Y. He, W. Liu, K. Zhou et al., Hall-Petch relationship in two-phase TiAl alloys with fully lamellar microstructures, Mater. Res. Bull, vol.37, issue.7, pp.1315-1321, 2002.

S. François, Essais mécaniques sur les métaux et les alliages, 1995.

C. Herzig, T. Przeorski, and Y. Mishin, Self-diffusion in ?-TiAl: an experimental study and atomistic calculations, Intermetallics, vol.7, issue.3, pp.389-404, 1999.

G. Hug, Dislocations in TiAl To cite this version : HAL Id : jpa-00245823, Rev. Phys. Appliquée, vol.23, issue.4, pp.673-674, 1988.

F. Kroupa, Dislocation Dipoles and Dislocation Loops, Le J. Phys, vol.27, issue.C3, pp.3-154, 1966.
URL : https://hal.archives-ouvertes.fr/jpa-00213130

D. Caillard, M. Legros, and A. Couret, Extrinsic obstacles and loop formation in deformed metals and alloys, Philos. Mag, vol.93, issue.1-3, pp.203-221, 2013.

B. Viguier, K. J. Hemker, J. Bonneville, F. Louchet, and J. L. Martin, Modelling the flow stress anomaly in ?-TiAl I. Experimental observations of dislocation mechanisms, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.71, issue.6, pp.1295-1312, 1995.

F. Appel, U. Lorenz, M. Oehring, U. Sparka, and R. Wagner, Thermally activated deformation mechanisms in micro-alloyed two-phase titanium amminide alloys, Mater. Sci. Eng. A, vol.233, pp.1-14, 1997.

B. K. Kad and H. L. Fraser, On the contribution of climb to high-temperature deformation in single phase ?-TiAl, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.69, issue.4, pp.689-699, 1994.

F. Louchet and B. Viguier, Modelling the flow stress anomaly in gamma-TiAl. II. The local pinning-unzipping model: statistical analysis and consequences, Philos. Mag. A (Physics Condens. Matter, Defects Mech. Prop, vol.71, issue.6, pp.1313-1333, 1995.

S. Sriram, D. M. Dimiduk, P. M. Hazzledine, and V. K. Vasudevan, The geometry and nature of pinning points of ½?110] unit dislocations in binary TiAl alloys, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.76, issue.5, pp.965-993, 1997.

S. Zghal, A. Menand, and A. Couret, Pinning points anchoring ordinary and Shockley dislocations in TiAl alloys, Acta Mater, vol.46, issue.16, pp.5899-5905, 1998.

D. Häussler, M. Bartsch, M. Aindow, I. P. Jones, and U. Messerschmidt, Dislocation processes during the plastic deformation of ?-tial, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.79, issue.5, pp.1045-1071, 1999.

M. A. Morris, Dislocation mobility, ductility and anomalous strengthening of two-phase TiAl alloys: Effects of oxygen and composition, Intermetallics, vol.4, issue.5, pp.417-426, 1996.

F. Grégori, Université Paris 6, 1999.

I. H. Katzarov and A. T. Paxton, Is the pinning of ordinary dislocations in ?-TiAl intrinsic or extrinsic in nature? A combined atomistic and kinetic Monte Carlo approach, Acta Mater, vol.59, issue.3, pp.1281-1290, 2011.

H. Inui and M. Matsumuro, Temperature dependence of yield stress, deformation mode and deformation structure in single crystals of TiAl (Ti 56 at.% Al), Philos. Mag. ?, vol.75, issue.2, pp.395-423, 1997.

S. A. Court, V. K. Vasudevan, H. L. Fraser, S. A. Court, V. K. Vasudevan et al., Deformation mechanisms in the intermetallic compound TiAl, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.61, issue.1, pp.141-158, 1990.

A. Couret, S. Farenc, D. Caillard, and A. Coujou, Twinning in advanced materials, TMS, 1993.

S. Farenc, A. Coujou, and A. Couret, An in situ study of twin propagation in TiAl, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.67, issue.1, pp.127-142, 1993.

S. Zghal, M. Thomas, S. Naka, and A. Couret, Migration of ordered domain boundaries and its effect on the lamellar interfaces in Ti-Al-based alloys, Philos. Mag. Lett, vol.81, issue.8, pp.537-546, 2001.

S. Zghal, A. Coujou, and A. Couret, Transmission of the deformation through ?-? interfaces in a polysynthetically twinned TiAl alloy I. Ordered domain interfaces (120° rotational)

. Mag, Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.81, issue.2, pp.345-364, 2001.

S. Farenc, A. Coujou, and A. Couret, Twin propagation in TiAl, Mater. Sci. Eng. A, vol.164, issue.1-2, pp.438-442, 1993.

Y. Q. Sun, P. M. Hazzledine, and J. W. Christian, Intersections of deformation twins in TiAl, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.68, issue.3, pp.471-494, 1993.

Y. G. Zhang and M. C. Chaturvedi, Deformation twinning intersections in a ?-TiAl-based Ti-50 at.% Al-2 at.% Mn-1 at.% Nb alloy deformed at room temperature, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.68, issue.5, pp.915-937, 1993.

S. Farenc, , 1992.

F. Grégori and P. Veyssière, A microstructural analysis of Al-rich ?-TiAl deformed by <0 1 1] dislocations, Mater. Sci. Eng. A, vol.309, issue.310, pp.87-91, 2001.

G. Hug, I. Phan-courson, and G. Blanche, Some unique aspects of transmission electron microscopy and spectrometry for present and future study of intermetallic compounds, Mater. Sci. Eng. A, issue.2, pp.673-684, 1995.

M. Legros, D. Caillard, and A. Couret, An in situ study at room temperature of deformation processes in a Ti-23.7Al-9.4Nb alloy, Intermetallics, vol.4, issue.5, pp.387-401, 1996.

S. A. Court, No Title, J. Met, vol.39, 1987.

M. Legros, , 1994.

M. A. Morris, Dislocation configurations in two phase TiAl alloys. II.Structures after compression, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.68, issue.2, pp.259-278, 1993.

S. Zghal and A. Couret, A study of the transmission of the deformation at the ordered domain interfaces in a TiAl lamellar alloy, Mater. Sci. Eng. a-Structural Mater. Prop. Microstruct. Process, vol.234, pp.668-671, 1997.

D. Hu and M. H. Loretto, Slip transfer between lamellae in fully lamellar TiAl alloys, Intermetallics, vol.7, issue.11, pp.1299-1306, 1999.

C. T. Forwood and M. A. Gibson, Slip transfer of deformation twins in duplex ?-based Ti-Al alloys. Part I. Transfer across ?-? coherent twin interfaces, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.80, issue.12, pp.2785-2811, 2000.

T. Voisin, J. Monchoux, M. Perrut, and A. Couret, Obtaining of a fine near-lamellar microstructure in TiAl alloys by Spark Plasma Sintering, Intermetallics, vol.71, pp.88-97, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01726305

D. ,

L. Larsen and S. Christodoulou,

P. Kampe and . Sadler, No Title, Mater. Sci. Eng, vol.144, pp.45-49, 1991.

D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht, Solidification and grain refinement in Ti-45Al-2Mn-2Nb-1B, Intermetallics, vol.22, pp.68-76, 2012.

D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht, Grain refinement in beta-solidifying Ti44Al8Nb1B, Intermetallics, vol.23, pp.49-56, 2012.

W. D. Wang, Y. C. Ma, B. Chen, M. Gao, K. Liu et al., Effects of Boron Addition on Grain Refinement in TiAl-based Alloys, J. Mater. Sci. Technol, vol.26, issue.7, pp.639-647, 2010.

J. S. Luo, T. Voisin, J. P. Monchoux, and A. Couret, Refinement of lamellar microstructures by boron incorporation in GE-TiAl alloys processed by Spark Plasma Sintering, Intermetallics, vol.36, pp.12-20, 2013.

H. Jabbar, J. P. Monchoux, M. Thomas, F. Pyczak, and A. Couret, Improvement of the creep properties of TiAl alloys densified by Spark Plasma Sintering, Intermetallics, vol.46, pp.1-3, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01726312

A. Couret, J. P. Monchoux, M. Thomas, and T. Voisin, Procédé de fabrication d'une pièce en alliage en titane-aluminium

G. Hénaff and F. Morel, Fatigue des structures, Ellipses, 2005.

A. L. Gloanec, Mécanismes gouvernant le comportement cyclique et la résistance à la fissuration par fatigue des alliages TiAl, 2003.

F. Appel, T. K. Heckel, and H. J. Christ, Electron microscope characterization of low cycle fatigue in a high-strength multiphase titanium aluminide alloy, Int. J. Fatigue, vol.32, issue.5, pp.792-798, 2010.

T. K. Heckel and H. Christ, Procedia Engineering Isothermal and thermomechanical fatigue of titanium alloys, Procedia Eng, vol.2, issue.1, pp.845-854, 2010.

Y. S. Park, S. W. Nam, S. K. Hwang, and N. J. Kim, The effect of the applied strain range on fatigue cracking in lamellar TiAl alloy, J. Alloys Compd, vol.335, pp.216-223, 2002.

G. Hénaff, A. Gloanec, and G. He, Fatigue properties of TiAl alloys Fatigue properties of TiAl alloys, Intermetallics, vol.13, pp.543-558, 2005.

V. Recina, High temperature low cycle fatigue properties of two cast gamma titanium aluminide alloys with refined microstructure High temperature low cycle fatigue properties of two cast gamma titanium aluminide alloys with refined microstructure, Mater. Sci. Technol, vol.16, p.333, 2000.

V. Recina and B. Karlsson, High temperature low cycle fatigue properties of Ti-48Al-2W-0 . 5Si gamma titanium aluminide, Mater. Sci. Eng. A, vol.262, pp.70-81, 1999.

J. Ding, Cyclic deformation and microstructure evolution of high Nb containing TiAl alloy during high temperature low cycle fatigue, Int. J. Fatigue, 2017.

G. Malakondaiah and T. Nicholas, High-temperature low-cycle fatigue of a gamma titanium aluminide alloy Ti-46Al-2Nb-2Cr, Metall. Mater. Trans. A, vol.27, issue.8, pp.2239-2251, 1996.

D. M. Kumpfert and Y. W. Kimb, Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46 . 5A1-3 . ONb-2 . 1Cr-0 . 2W, Mater. Sci. Eng. A, vol.193, pp.465-473, 1995.

T. Kruml and K. Obrtlík, Microstructure degradation in high temperature fatigue of TiAl alloy, Int. J. Fatigue, vol.65, pp.28-32, 2013.

V. Bauer, W. Cui, and H. Christ, The effect of temperature and environment on the fatigue be-haviour of a third generation, pp.2-7

H. Christ, F. O. Fischer, and H. J. Maier, High-temperature fatigue behavior of a near-k titanium aluminide alloy under isothermal and thermo-mechanical conditions, Mater. Sci. Eng. A, vol.321, pp.625-630, 2001.

K. T. Venkateswara-rao, Y. W. Kim, C. L. Muhlstein, and R. O. Ritchie, Fatigue-Crack Growth and Fracture-Resistance of a 2-Phase (Gamma+Alpha(2)) Tial Alloy in Duplex and Lamellar Microstructures, Mater. Sci. Eng. A, vol.193, pp.474-482, 1995.

Y. Mutoh, S. J. Zhu, T. Hansson, S. Kurai, and Y. Mizuhara, Effect of microstructure on fatigue crack growth in TiAl intermetallics at elevated temperature, Mater. Sci. Eng. A, vol.323, issue.1-2, pp.62-69, 2002.

M. Werwer, R. Kabir, A. Cornec, and K. H. Schwalbe, Fracture in lamellar TiAl simulated with the cohesive model, Eng. Fract. Mech, vol.74, issue.16, pp.2615-2638, 2007.

B. D. Worth, J. M. Larsen, S. J. Balsone, and J. W. Jones, Mechanisms of Ambient Temperature Fatigue Crack Growth in Ti-46 . 5Al-3Nb-2Cr-0 . 2W, Metall. Mater. Trans. A, vol.28, pp.825-835, 1997.

X. S. Wang, M. Zhang, X. P. Song, S. Jia, Q. Chen et al., Fatigue failure analyses on a Ti-45Al-8Nb-0.2W-0.2B-0.1Y alloy at different temperatures, Materials (Basel), vol.5, issue.11, pp.2280-2291, 2012.

O. Berteaux, Etude des mécanismes d'écrouissage et d'endommagement cycliques des alliages TiAl élaborés par métallurgie des poudres, 2005.

J. C. Grosskreutz, The Mechanisms of Metal Fatigue ( I ), Phys. Status Solidi, vol.47, p.11, 1971.

C. E. Feltnert and L. , Cyclic stress-strain of fcc metals and alloys-II Dislocation structures and mechanisms, Acta Metall, vol.15, 1967.

H. J. and G. J. , Mechanisms of fatigue hardening in copper single crystals, Acta Metall, vol.17, p.77, 1969.

M. Weisse, C. K. Wamukwamba, H. Christ, and H. Mughrabi, BEHAVIOUR OF THE LOW CARBON STEEL SAE 1045 IN, Acta Metall. Mater, vol.41, issue.7, pp.2227-2233, 1993.

B. Guennec, A. Ueno, T. Sakai, M. Takanashi, Y. Itabashi et al., Dislocation-based interpretation on the effect of the loading frequency on the fatigue properties of JIS S15C low carbon steel, Int. J. Fatigue, vol.70, pp.328-341, 2015.

S. J. Basinski, Z. S. Basinski, and A. Howie, Early stages of fatigue in copper single crystals, Philos. Mag, vol.19, pp.899-924, 1969.

M. Niewczas, Latent hardening effects in low cycle fatigue of copper single crystals, Philos. Mag. A, vol.93, pp.37-41, 2013.

C. Guillemer-neel, V. Bobet, and M. Clavel, Cyclic deformation behaviour and Bauschinger effect in ductile cast iron, Mater. Sci. Eng, vol.272, pp.431-442, 1999.

S. M. Sastry and H. ,

. Lipsitt, Fatigue Deformation of TiAI Base Alloys, Mettalurgical Trans. A, vol.8, pp.299-308, 1977.

G. Hénaff, O. Berteaux, M. Jouiad, and M. Thomas, LOW CYCLE FATIGUE AND CYCLIC DEFORMATION OF TiAl ALLOYS, Mater. Sci. Forum, pp.1324-1329, 2010.

A. L. Gloanec, G. Henaff, M. Jouiad, D. Bertheau, P. Belaygue et al., Cyclic deformation mechanisms in a gamma titanium aluminide alloy at room temperature, Scr. Mater, vol.52, issue.2, pp.107-111, 2005.

A. L. Gloanec, M. Jouiad, D. Bertheau, M. Grange, and G. Hénaff, Low-cycle fatigue and deformation substructures in an engineering TiAl alloy, Intermetallics, vol.15, issue.4, pp.520-531, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00661370

W. F. Cui and C. M. Liu, Fracture characteristics of ?-TiAl alloy with high Nb content under cyclic loading, J. Alloys Compd, vol.477, pp.596-601, 2009.

Z. S. Basinski and S. J. Basinski, Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals, Prog. Mater. Sci, vol.36, pp.89-148, 1992.

N. Grilli, K. G. , and H. Van-swygenhoven, Crystal plasticity finite element modelling of low cycle fatigue in fcc metals, J. Mech. Phys. Solids, vol.84, pp.424-435, 2015.

T. Zofia, Etude des mécanismes activés par SPS dans un alliage TiAl et dans le système Ag-Zn, Paul Sabatier Toulouse, vol.3, 2015.

T. Voisin, J. P. Monchoux, M. Thomas, C. Deshayes, and A. Couret, Mechanical Properties of the TiAl IRIS Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.47, issue.12, pp.6097-6108, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01426453

M. Roth and H. Biermann, Thermo-mechanical fatigue behaviour of the ? -TiAl alloy TNB-V5, Scr. Mater, vol.54, pp.137-141, 2006.

M. Roth and H. Biermann, Thermo-mechanical fatigue behaviour of the gamma-titanium aluminide TNB-V5 with near-gamma microstructure, Mater. Sci. Forum, pp.1559-1564, 2007.

T. Heckel and H. Christ, Low Cycle Fatigue Life Threshold for Titanium Aluminides, Adv. Eng. Mater, vol.12, issue.11, pp.1142-1145, 2010.

J. Ding, M. Zhang, T. Ye, Y. Liang, Y. Ren et al., Microstructure stability and micromechanical behavior of as-cast gamma-TiAl alloy during high-temperature low cycle fatigue, Acta Mater, 2018.

M. A. Gibson and C. T. Forwood, Slip transfer of deformation twins in duplex ? -based Ti -Al alloys . Part I . Transfer across ? -? coherent twin interfaces, Philos. Mag. A, vol.80, issue.12, pp.2747-2783, 2000.

L. Wu, Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A, Acta Mater, vol.56, issue.4, pp.688-695, 2008.

A. Couret, S. Farenc, C. Daniel, and A. Coujou, Proceedings of a symposium on twinning in advanced materials, p.361, 1994.

J. Edington, Practical Electron Microscopy in Materials Science: 3 Interpretaion of Electron Micrographs, 1976.

D. Williams and C. Carter, Transmission Electron Micoscopy: 3 Imaging, 1996.

M. Feuerbacher and D. Caillard, the complex metallic alloy ??-Al-Pd-Mn, Acta Mater, vol.52, issue.5, pp.1297-1304, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01665178

F. Appel and R. Wagner, Microstructure and deformation of two-phase ?-titanium aluminides, Mater. Sci. Eng. R Reports, vol.22, issue.5, pp.187-268, 1998.

J. Malaplate, D. Caillard, and A. Couret, Interpretation of the stress dependence of creep by a mixed climb mechanism in TiAl, Philos. Mag, vol.84, issue.34, pp.3671-3687, 2004.

S. Jiao, N. Bird, P. B. Hirsch, and G. Taylor, Yield stress anomalies in single crystals of Ti-54.5 at.% Al I. Overview and (011) superdislocation slip, Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop, vol.78, issue.3, pp.777-802, 1998.

Y. Zheng, L. Zhao, and I. Table, Microstructure evolution during heat treatment of a Cr-bearing Ti3Al+TiAl alloy, Scr. Metall. Materalia, vol.25, p.2599, 1992.

J. Beddoes, W. R. Chen, and L. Zhao, Precipitation of ? particles in a fully lamellar Ti-47Al-2Nb-1Mn-0 . 5W-0 . 5Mo-0 . 2Si ( at .%) alloy, J. Mater. Sci, vol.7, pp.621-627, 2002.

D. Y. Seo, J. Beddoes, and L. Zhao, Primary creep behavior of Ti-48Al-2W as a function of stress and lamellar morphology, Metall. Mater. Trans. A Phys. Metall. Mater. Sci, vol.34, issue.10, pp.2177-2190, 2003.

W. M. Yin, V. Lupinc, and L. Battezzati, Microstructure study of a k -TiAl based alloy containing W and Si, Mater. Sci. Eng. A, vol.240, pp.713-721, 1997.

R. Kainuma, Y. Fujita, H. Mitsui, I. Ohnuma, and K. Ishida, Phase equilibria among a (hcp), b (bcc) and g (L1 0 ) phases in Ti±Al base ternary alloys, Intermetallics, vol.8, pp.855-867, 2000.

M. Grange, J. Raviart, M. Thomas-;-m-.-grange, *. , J. Raviart et al., Thomas Influence of microstructure on tensile and creep properties of a new castable TiAl-based alloy Metallurgical and Mater, Metall. Mater. Trans. A, vol.35, p.2087, 2004.

H. Jabbar, A. Couret, L. Durand, and J. P. Monchoux, Identification of microstructural mechanisms during densification of a TiAl alloy by spark plasma sintering, J. Alloys Compd, vol.509, issue.41, pp.9826-9835, 2011.

R. Yu, L. L. He, Z. Y. Cheng, J. Zhu, and H. Q. Ye, B2 precipitates and distribution of W in a Ti -47Al -2W -0 . 5Si alloy, Intermetallics, vol.10, pp.661-665, 2002.

F. Herrouin, D. Hu, P. Bowen, and I. P. Jones, Microstructural changes during creep of a fully lamellar TiAl alloy, Acta Mater, vol.46, issue.14, pp.4963-4972, 1998.

M. F. Bartholomeusz and J. A. Wert, Modeling creep deformation of a two-phase TiAI/Ti3Al alloy with a lamellar microstructure, Metall. Mater. Trans. A, vol.25, issue.10, pp.2161-2171, 1994.

M. Es-souni, A. Bartels, and R. Wagner, Creep deformation and creep microstructures of a near ?-TiAl alloy Ti48Al2Cr, Mater. Sci. Eng. A, vol.171, issue.1-2, pp.127-141, 1993.

, L'évolution de chacun des deux domaines est similaire à celle du modèle unifié

, ONERA (Sai, 1993)

. .. V.-conclusion,

C. Bouby, Adaptation élastoplastique de structures sous chargements variables avec règle d'écrouissage cinématique non linéaire et non associée, 2006.

L. Bucher, Etude de l'endommagement en fatigue thermique des aciers inoxydables F17TNb et R20-12 pour application automobile, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00163013

G. Cailletaud, Advanced elastoplastic models, Présentation. MINES ParisTech, 2014.

J. L. Chaboche, Time-independent constitutive theories for cyclic plasticity, International Journal of Plasticity, vol.2, pp.149-188, 1986.

J. L. Chaboche, Constitutive theories for cyclic plasticity and cyclic viscoplasticity, International Journal of Plasticity, vol.5, pp.247-302, 1989.

J. L. Chaboche, A review of some plasticity and viscoplasticity constitutive theories, International Journal of Plasticity, vol.24, pp.1642-1693, 2008.

E. Charkaluk, Lois de comportement pour le calcul de structures sous chargement cyclique : choix et influence sur les réponses asymptotiques, Colloque MECAMAT, 2017.

E. Contesti and G. Cailletaud, Description of creep-plasticity interaction with nonunified constitutive equations: application to an austenitic stainless steel, Nuclear Engineering and Design, vol.116, pp.265-280, 1989.

L. Djimli, Analyse du phénomène de rochet : essais et modélisation, 2010.

P. Erve, Avril, 2010.

. Microstructure, oxydation et propriétés mécaniques d'alliages intermétalliques à base de TiAl

G. C. Farida-azzouz, Identification of viscoplastic constitutive and creep-fatigue damage coefficients to use in ABAQUS automotive structural calculations with the Zmat library, 2002.

, ABAQUS Users' Conference

A. May, Etude du comportement cyclique et de l'endommagement par fatigue d'un alliage d'aluminium anisotrope du type, 2014.
URL : https://hal.archives-ouvertes.fr/tel-00925413

D. Nouailhas, Modélisation de l'écrouissage et de la restauration en viscoplasticité cyclique. Revue de Physique Appliquee, pp.339-349, 1988.

K. Sai, Modèles à grand nombre de variables internes et méthodes numériques associées, 1993.

M. Thomas, Les alliages intermétalliques à base de TiAl. Techniques de l'ingenieur

V. Velay, Modélisation du comportement cyclique et de la durée de vie d'aciers à outils martensitiques, 2005.

Z. , Materials manual version 8.6. Centre des Matériaux ParisTech, 2016.

Z. , Simulation-Optimization GUI Handbook Version 8.6. Centre des Matériaux ParisTech, 2016.

Z. , User commands Version 8.5. Centre des Matériaux ParisTech, 2016.