
�>���G �A�/�, �i�2�H�@�y�k�9�N�k�R�k�k

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�k�9�N�k�R�k�k

�a�m�#�K�B�i�i�2�/ �Q�M �k�e �6�2�# �k�y�k�y

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�a�2�+�m�`�2 �J�m�H�i�B�@�S���`�i�v �*�Q�K�T�m�i���i�B�Q�M ���M�/ �S�`�B�p���+�v
���m�`�2�H�B�2�M �.�m�T�B�M

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���m�`�2�H�B�2�M �.�m�T�B�M�X �a�2�+�m�`�2 �J�m�H�i�B�@�S���`�i�v �*�Q�K�T�m�i���i�B�Q�M ���M�/ �S�`�B�p���+�v�X �*�`�v�T�i�Q�;�`���T�?�v ���M�/ �a�2�+�m�`�B�i�v �(�+�b�X�*�_�)�X
�*�2�M�i�`���H�2�a�m�T�û�H�2�+�- �k�y�R�N�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�N�*�a�l�S�y�y�R�y���X ���i�2�H�@�y�k�9�N�k�R�k�k��

https://tel.archives-ouvertes.fr/tel-02492122
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT
CENTRALESUPÉLEC

COMUE UNIVERSITÉ BRETAGNE LOIRE

École Doctorale N°601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication

Spécialité : Informatique

Par Aurélien D UPIN

Secure Multi-Party Computation and Privacy
Calculs Multi-Parties et Vie Privée

Thèse présentée et soutenue à l'ÉCOLE NORMALE SUPÉRIEURE de PARIS, le 13 juin 2019

Unité de recherche : CIDRe

Thèse N° 2019-05-TH

Composition du jury

Directeurs de thèse : Christophe BIDAN CentraleSupélec

David POINTCHEVAL École Normale Supérieure

Encadrant industriel : Renaud DUBOIS Thales

Rapporteurs : Sébastien CANARD Orange Labs

Marine MINIER Université de Lorraine

Président : Jean-Sébastien CORON Université du Luxembourg

Examinateurs : Duong Hieu PHAN Université de Limoges

Jean-Marc ROBERT École de Technologie Supérieure

ACKNOWLEDGEMENT

Tout mémoire de thèse commence par le remerciement de toutes les personnes impliquées

dans l'élaboration de ladite thèse. C'est en rédigeant cette partie que je me rends compte que

j'ai eu la chance de rencontrer énormément de personnes, avec lesquelles mes échanges ont

été des plus enrichissants.

Je commence par remercier mes directeurs de thèse, Christophe Bidan et David Pointcheval,

qui ont su me guider tout au long de ces trois dernières années, et sans lesquels je me serai

probablement égaré. Apprendre auprès d'eux aura été extrêmement instructif et sympathique.

Je tiens aussi à remercier Renaud Dubois et Éric Garrido de m'avoir donné l'opportunité

de réaliser ma thèse dans un cadre industriel. Il s'agissait pour moi d'une condition nécessaire

pour me lancer dans un doctorat. Et quel cadre! Le souvenir de ce petit bureau étriqué au milieu

d'un couloir avec vue sur la A86 m'emplie déjà de nostalgie!

Je remercie également Marine Minier et Sébastien Canard d'avoir consenti à être rappor-

teurs et pour leurs remarques pertinentes. Compte tenu de l'épaisseur de ce document, cela

n'a pas dû être facile. J'espère que ce manuscrit vous aura intéressé et que sa lecture aura

été agréable et instructive. Je remercie également Jean-Sébastien Coron, Duong Hieu Phan et

Jean-Marc Robert d'avoir accepté d'être examinateurs pour ma soutenance.

Je remercie particulièrement Jean-Marc Robert, grâce à qui j'ai découvert l'univers de la

cryptographie pendant mon master au Canada, et qui a par conséquent énormément in�uencé

mon cursus universitaire et professionnel. Avec du recul, je ne regrette pas ce choix, bien au

contraire.

Je souhaite aussi exprimer ma gratitude aux membres et anciens membres de l'équipe

chiffre de Thales: Emeline, Renaud, Éric, Ange, Thomas R, Thomas P, Olivier B, Olivier O, Syl-

vain, David, Mickaël, Philippe, Alexandre, Sonia, Didier, Julien, Simon, Jean-Paul et Matthieu.

Ils ont su m'accueillir dans leur équipe et me soutenir durant ces trois années de thèse. Je tiens

à remercier tout particulièrement Thomas Prest pour avoir libéré son poste au bon moment –ce

qui a largement simpli�é ma recherche d'emploi–. Grâce à lui, l'équipe devra encore supporter

ma présence pendant quelques années. Toujours grâce à lui, je vais en�n pouvoir pro�ter de

la crème brulée du jeudi midi, et rien que pour ça, ça valait le coup de faire une thèse.

Je remercie également les membres de l'équipe crypto de l'ENS: Romain pour nous avoir

affranchis de la notion de matin, Chloé pour son sens de la diplomatie, Mélissa pour m'avoir ac-

compagné sur chaque continent, Balthazar pour ces moments mémorables, Geoffroy pour ses

réponses concises, Georg pour avoir été mon meilleur élève, Michele M, Michele O, la com-

3

munauté italienne pour avoir si peu d'imagination pour les prénoms, Dahmun pour sa capacité

à mentir, Brice pour m'avoir offert un voyage en Australie, Michel pour m'avoir permis de par-

ticiper à l'organisation d'eurocrypt, Adrian –membre émérite de la Houda team–, Louiza pour ...

je ne sais quoi mais merci beaucoup, Jérémy, Pooya, Antoine, Anca, Alain, Thierry, Rafael, Flo-

rian, Pierre-Alain, Houda, Léo, Hugo, Théo, Thibaut, Léonard, Édouard, Julia, Céline, Quentin,

Damien, Fabrice, Azam, Ehsan, Pierrick pour m'avoir fait investir dans le marché de la crevette,

mes quarante crevettes pour s'être entredévorées, Nespresso, César, les stagiaires.

Ma gratitude va également aux membres de l'équipe CIDre de CentraleSupélec. J'ai �nale-

ment passé très peu de temps avec cette équipe durant ces trois années, mais nos échanges

ont toujours été très agréables et instructifs.

Je remercie aussi Megguy et mes parents pour leur soutien indéfectible pendant ces trois

années et même avant, et mes plus proches amis –non-crypto– Axel, Antoine, Alexia et Amy

de m'avoir permis de m'évader quand j'en avais besoin. Je leur suggère d'ailleurs de ne pas

dépasser les remerciements lors de leur lecture. Non Alexia, il n'y a pas d'images.

En�n, je tiens à remercier sincèrement, chaleureusement, amicalement, spontanément,

cordialement, franchement, loyalement, réellement, directement, ouvertement et surtout sim-

plement Alice, Bob, l'adversaire honnête-mais-curieux et la majorité honnête qui m'auront ac-

compagné tout au long de cette thèse.

Si votre nom n'apparaît pas dans ces remerciements, c'est soit que j'ai oublié de vous

mentionner –auquel cas je vous prierai de m'en excuser–, soit que vous n'avez aucunement

contribué à cette thèse, comme la grande majorité des êtres peuplant cette planète –auquel

cas vous n'auriez aucune raison de lire ce document–.

4

RÉSUMÉ

L'information numérique n'a pas cessé de se développer ces dernières décennies. Les don-

nées privées appartenant à des individus, des entreprises ou même des gouvernements sont

devenues le fondement technique sur lequel s'appuient divers modèles économiques. Dans le

domaine de la cryptographie, nous pensons généralement à des clés privées ou à des mots de

passe, mais ce n'est pas ce type d'information qui nous intéresse dans cette thèse. Cette thèse

s'intéresse aux données qui constituent le fondement même d'une entité. Pour une personne,

il peut s'agir de sa situation économique (revenus, prêts, impôts ...) ou de sa santé (historique

médical ...) ou plus simplement son âge, son adresse, ses opinions politiques ou toute autre

information qu'il ou elle ne souhaite pas révéler à n'importe qui. Pour une entreprise, il peut

s'agir d'une base de données de clients, d'employés, de sa situation économique ou toute

information sur son fonctionnement interne.

Historiquement, la cryptographie s'intéresse à la conception de schémas de chiffrement

permettant à des utilisateurs distants, qui se connaissent généralement et se font con�ance,

de communiquer de manière sécurisée malgré la présence d'un adversaire externe. Bien que

cet objectif soit déjà compliqué à atteindre, son énoncé est simple à comprendre. Dans notre

société moderne hyper connectée et centrée sur les informations personnelles, les choses de-

viennent malheureusement plus compliquées. Avec la diversi�cation des appareils connectés

et des réseaux sociaux, nous devons désormais communiquer, interagir et collaborer avec un

grand nombre de parties, que nous ne connaissons souvent pas et auxquelles nous faisons

encore moins con�ance. Il est même possible que nous ayons des con�its d'intérêts avec cer-

taines d'entre elles! À la différence de la cryptographie classique, il est donc indispensable

de supposer que l'adversaire est interne et qu'il peut être une ou plusieurs parties. Malgré

cela, il faut collaborer avec eux, ce qui implique souvent l'utilisation de nos données privées.

Cette situation paradoxale nous amène donc à concevoir de nouveaux outils cryptographiques

permettant de contrôler la fuite d'informations con�dentielles alors même qu'elles sont commu-

niquées et utilisées par des tiers auxquels nous ne faisons pas con�ance.

De tels outils ont été formellement introduits en 1982 par Andrew Yao [Yao82] en tant que

calculs deux-parties sécurisés (2PC). L'objectif du 2PC est de concevoir des protocoles au-

torisant deux utilisateurs à calculer coopérativement une fonction arbitraire de leurs données

privées sans toutefois révéler lesdites données à la partie opposée. Yao donne une preuve de

faisabilité en imaginant une solution au problème des millionnaires. Le problème est dé�ni de

la manière suivante: deux millionnaires souhaitent savoir lequel des deux est le plus riche sans

5

Partie 1 Partie 2 � � � Partie n

x1 y1 x2 y2 xn yn

Calculs multi-parties sécurisés
f (x1; x2; : : : ; xn) = (y1; y2; : : : ; yn)

Figure 1: Calculs multi-parties sécurisés

révéler sa fortune à l'autre. Le protocole de Yao permet donc à deux utilisateurs de comparer

de façon sécurisée deux valeurs privées. En 1986, Yao trouve une solution générale au prob-

lème du 2PC permettant ainsi de calculer n'importe quelle fonction, et non uniquement une

comparaison. Sa solution prit plus tard le nom de garbled circuits. En quelques mots, un des

utilisateurs va “chiffrer” la fonction à évaluer (vue comme un circuit Booléen) tandis que l'autre

va pouvoir l'évaluer sans apprendre les valeurs intermédiaires.

Une généralisation naturelle des calculs deux-parties sécurisés est dé�nie par les cal-

culs multi-parties sécurisés (MPC). Ce nouveau problème peut être vu comme n participants

cherchant à calculer une fonction de leurs paramètres privés d'une manière sécurisée, c'est-

à-dire tel que l'exactitude du résultat et l'anonymat de leurs données soient assurés. Con-

crètement, si le participant i connait x i pour 1 � i � n, alors le MPC permet de déter-

miner f (x1; : : : ; xn) = (y1; : : : ; yn), tel que le participant i apprennent uniquement yi , comme

représenté dans la Figure 1. Dans la plupart des cas d'applications, les utilisateurs obtiennent

le même résultat y1 = � � � = yn . En 1987, Goldreich, Micali et Widgerson [GMW87] détaillent la

première solution générale de MPC.

Comme mentionné précédemment, au contraire de la cryptographie traditionnelle, nous

considérons dans les protocoles 2PC et MPC que l'adversaire est interne au protocole. Il est

un des utilisateurs, voire plusieurs. Par conséquent, il est nécessaire de dé�nir de nouveaux

modèles d'attaquants. Ces adversaires peuvent être catégorisés selon leur capacité ou volonté

à dévier des spéci�cations du protocole. Nous étudions essentiellement deux modèles: le mod-

èle semi-honnête et le modèle malveillant.

Par dé�nition, l'adversaire semi-honnête, ou honnête-mais-curieux, ne dévie pas du proto-

cole, mais cherche à apprendre plus d'information qu'autorisé, en exploitant le résultat et les

calculs intermédiaires. Il s'agit donc de véri�er que le protocole ne révèle pas d'information sen-

sible par inadvertance. Les protocoles conçus dans ce modèle ont l'avantage d'être générale-

ment très ef�caces et ils sont souvent considérés comme une étape importante vers des mod-

6

èles de sécurité plus élevés.

À l'inverse, l'attaquant malveillant peut dévier arbitrairement du protocole a�n d'obtenir des

informations sur les données des autres parties. Dans ce modèle, la sécurité est souvent as-

surée par l'ajout de mécanismes garantissant que l'adversaire ne peut pas dévier du protocole

ou que le protocole s'interrompra avant de divulguer des données privées. Toutefois, ce haut

niveau de sécurité s'accompagne souvent d'une perte d'ef�cacité.

Dans ce contexte, cette thèse apporte diverses contributions. Les travaux de Yao [Yao86],

connus sous le nom de “garbled circuits”, sont une solution générale au problème de 2PC

dans le modèle semi-honnête. Il est cependant vite apparu évident que cette solution n'était

pas sécurisée face à un adversaire malveillant. En effet, ce dernier peut aisément modi�er

la fonction à évaluer sans que l'autre partie puisse s'en apercevoir. Ainsi, l'attaquant peut

apprendre l'information de son choix. L'utilisation de “cut-and-choose” s'est révélée être une

contre-mesure adéquate face à un tel adversaire: un grand nombre de circuits sont générés

par l'attaquant et seule une portion est évaluée, les autres étant véri�és par la partie opposée.

Toutefois, cette solution s'accompagne d'un surcoût considérable.

Depuis, de nombreuses optimisations ont été réalisées, tant sur les “garbled circuits” que

sur le “cut-and-choose”. Néanmoins, il n'a jamais était dé�ni clairement comment un adversaire

malveillant pouvait corrompre un circuit à évaluer. C'est là qu'intervient la première contribution

de cette thèse: nous dé�nissons formellement quelles modi�cations du circuit l'adversaire peut

faire sans que cela soit détecté par le participant honnête. Nous montrons que ses possibilités

sont étonnamment limitées, du moins plus restreintes que ce que la précédente revue de lit-

térature laisse suggérer. Nous analysons ensuite l'impact de cette étude sur des circuits réels

et observons que certains circuits ne nécessitent pas l'utilisation de “cut-and-choose” pour être

sûrs face à un adversaire malveillant.

La seconde contribution apporte un nouveau domaine d'application au MPC. En effet, nous

étudions le cas des services basés sur la localisation, qui sont devenus de plus en plus présents

ces dernières années. Toutefois, ces applications reposent aujourd'hui sur l'honnêteté des gens

à transmettre leur véritable position. S'ils ont une motivation à tricher, ils peuvent le faire facile-

ment. Les systèmes de preuves de localisation corrigent ce défaut en permettant à un prouveur

d'obtenir des preuves de sa présence à un endroit et un instant donnés, à l'aide des témoins qui

sont autour de lui. Il pourra ensuite fournir ces preuves à un véri�eur a�n d'obtenir l'accès à un

service. Cependant, on peut facilement concevoir que ces différents utilisateurs ne souhaitent

pas révéler leur identité et leur position à chaque génération de preuve de localisation.

Notre seconde contribution est une conception du premier système de preuve de locali-

sation respectueux de la vie privée. Grâce à l'utilisation de calculs multi-parties sécurisés, le

prouveur est en mesure d'obtenir ses preuves, tout en garantissant que son identité et sa posi-

tion ne sont pas révélés aux témoins. Réciproquement, l'identité et la position des témoins ne

7

sont révélées ni au prouveur, ni au véri�eur.

En contribution annexe de ce travail, nous concevons aussi un nouveau protocole de calcul

de maximum sécurisé. Ce protocole permet à n participants de savoir lequel d'entre eux pos-

sède la plus grande valeur sans les révéler. À la différence des protocoles précédents nécessi-

tant O(n2) opérations, notre solution ne requiert que O(n log(n)) opérations, mais s'accompagne

d'une petite divulgation d'information. Bien que nous l'ayons conçue spéci�quement dans le

cadre des preuves de localisation, nous pensons que notre solution peut s'appliquer à de nom-

breux scénarios où cette fuite d'information est tolérable.

La dernière contribution porte sur l'étude de primitives facilement évaluables en calculs

multi-parties. Plus spéci�quement, notre étude porte sur le générateur pseudo-aléatoire de Gol-

dreich (PRG de Goldreich). Les générateurs pseudo-aléatoires localisés permettent d'étendre

une petite chaîne aléatoire en une chaîne pseudo-aléatoire de plus grande taille, tel que chaque

bit de sortie ne dépende que d'un nombre constant d de bits d'entrée. Cette particularité donne

à cette primitive de nombreuses applications dans diverses branches de la cryptographie, et

particulièrement en MPC grâce à sa faible complexité. En effet, cela rend cette famille de PRG

facilement évaluable par un groupe de participants de sorte qu'aucun d'entre eux ne connaisse

la chaîne aléatoire initialement utilisée.

Tandis que la sécurité théorique du PRG de Goldreich a été intensivement étudiée, aboutis-

sant à de nombreux critères que doivent véri�er les paramètres pour être sécurisés, peu de ré-

sultats s'intéressent à la sécurité concrète et l'ef�cacité réelle de cette primitive. Motivés par les

nombreuses applications théoriques et l'espoir de voir des instanciations pratiques ce celles-ci,

nous initions une analyse de la sécurité réelle du PRG de Goldreich.

8

TABLE OF CONTENTS

Introduction 13

Applications of Secure Multi-Party Computations . 14

Adversary Models . 16

Contributions . 17

Organization . 19

Personal Publications . 20

1 Preliminaries 21

1.1 Yao's Millionaires' Problem . 22

1.2 Adversary Models . 22

1.3 Useful Tools for Multi-Party Computation . 23

1.3.1 Homomorphic Encryption Schemes . 24

1.3.2 Zero-Knowledge Proof . 25

1.3.3 Oblivious Transfer . 26

1.4 Garbled Circuits: a General Solution to the 2PC Problem 29

1.5 Secret Sharing: a General Solution to the MPC Problem 30

1.6 MPC-Friendly Primitives . 31

1.7 Regarding the Preprocessing Model . 32

2 On the Leakage of Corrupted Garbled Circuits 33

2.1 Preliminaries . 35

2.1.1 Formal De�nition . 35

2.1.2 Simplest Garbling Scheme . 36

2.1.3 The Point-and-Permute Trick . 40

2.1.4 The 25% Row-Reduction . 41

2.1.5 The Free-XOR Trick . 42

2.1.6 The Two-Half-Gate Technique . 44

2.1.7 Privacy-Free Garbled Circuits . 46

2.1.8 Corruption of Garbled Circuits . 47

2.1.9 The Cut-&-Choose Paradigm . 49

2.2 Motivation of Our Work . 52

2.3 Corruption of Optimized Garbled Circuits . 53

9

TABLE OF CONTENTS

2.4 Delimitation of the Corruption . 54

2.4.1 Impossibility of Reducing the Number of Garbled Keys to One 55

2.4.2 Impossibility of Three-Key Wires - Part 1 56

2.4.3 Impossibility of Three-Key Wires - Part 2 59

2.4.4 Impossibility of Turning a Non-Linear Gate into a Linear Gate 65

2.4.5 About Other Non-Linear Gates . 66

2.4.6 Fitting Everything Together . 66

2.4.7 Ensuring the Correct Garbling of Input Wires 68

2.5 Applications to Real Circuits . 70

2.5.1 The Greater-Than Function . 71

2.5.2 The Addition Function . 72

2.5.3 The Equality-Test Function . 72

2.5.4 Trade-Off with Cut-&-Choose . 74

2.5.5 Garbled Circuits with Covert Adversaries 74

2.6 Conclusion . 78

3 Location Proof System based on Multi-Party Computations 81

3.1 Introduction . 83

3.2 Preliminaries . 84

3.2.1 Group Signature Schemes . 84

3.2.2 Prior Location-Proof Systems . 85

3.2.3 Secure Two-Party Comparison Protocol 86

3.2.4 Secure Multi-Party Maximum Protocol . 88

3.3 Problem Statement . 89

3.3.1 Location-Proof Generation Protocol Outline 90

3.3.2 Adversary Models . 91

3.4 Location-Proof Gathering and Verifying . 92

3.4.1 Location-Proof Gathering . 92

3.4.2 Security Properties of the Overall Process 93

3.4.3 Location-Proof Verifying . 94

3.5 Secure Multi-Party Maximum Protocol . 95

3.5.1 The Protocol Description . 95

3.5.2 The Protocol Security . 96

3.5.3 The Protocol Analysis . 97

3.6 Secure Iterative Two-Party Comparison Protocol 98

3.6.1 The Protocol Correctness . 98

3.6.2 The Protocol Security . 100

3.6.3 The Protocol Complexity . 102

10

TABLE OF CONTENTS

3.6.4 The Maximum Transfer . 102

3.7 Complexity of the Overall System . 103

3.8 Conclusion . 104

4 On the Concrete Security of Goldreich's Pseudorandom Generator 107

4.1 Introduction . 109

4.1.1 Goals and Results . 111

4.1.2 Organization of the Chapter . 112

4.2 Preliminaries . 112

4.2.1 Hypergraphs . 113

4.2.2 Predicates . 113

4.2.3 Pseudorandom Generators . 114

4.2.4 Implications of Polynomial-Stretch Local Pseudorandom Generators . . . 117

4.2.5 On the Security of Goldreich's PRG . 118

4.3 Guess & Determine Cryptanalysis of Goldreich's PRG with P5 121

4.3.1 The Attack - Asymptotic Description . 121

4.3.2 Complexity Analysis . 122

4.3.3 Success Probability . 125

4.3.4 Seed Recovery . 126

4.3.5 Concrete Instantiation of the Attack . 128

4.3.6 Experiments . 132

4.4 Algebraic Cryptanalysis of Goldreich's PRG with P5 134

4.4.1 A Polynomial Attack with Degree-Two Linearization 136

4.4.2 Gröbner Approach . 143

4.4.3 Conclusion . 145

4.5 About the Ordered Case . 146

4.5.1 Guess and Determine . 146

4.5.2 Algebraic Attack on the Ordered Case . 147

4.6 Other Results . 148

4.7 Conclusion and Open Questions . 148

5 Conclusion 151

Bibliography 162

11

INTRODUCTION

In the last few decades, the world has turned into a modern information-driven society. The

everyday life of individuals, companies and governments is full of cases where various kinds of

private information are valuable resources. While cryptographers might think of keys or pass-

words, these types of secrets are not the main concern in this thesis. Instead, this thesis is

concerned with the data that is related to the primary business of a private person or a corpo-

ration. For a person, this might be information about his or her economic situation (incomes,

loans, tax, ...), about his or her health condition (past or current diseases, allergies, ...) or more

simply about his or her age, address, political tendencies and so on. Instead, for a company,

it might be a customer database, the economic situation or information related to its internal

functioning. For governments, it could be a list of tax-fraud suspects, positions of satellites, etc.

Cryptography has been historically dealing with the design of encryption schemes, permit-

ting distant parties, who generally know and trust each other, to communicate securely even in

the presence of an external eavesdropper. Although this goal is not trivial to reach, its purpose

is easy to understand. Things get much more complicated in modern society: using electronic

devices, we need to communicate, interact and do business with a large number of parties,

some of whom we have never met, and most of whom we do not trust. Some of these parties

may even have con�icts of interest with us! In this context, unlike in traditional cryptography,

we have to assume that the adversary may be one or several of the inside participants. And

yet, we have to do business with them, which often requires our private data. This paradoxical

situation calls for cryptographic tools for controlling leakage of con�dential data while they are

being communicated and computed on, even in the case where their owner does not trust the

parties he or she is interacting with.

Such tools were formally introduced in 1982 by Andrew Yao [Yao82] as secure two-party

computation (2PC), which is a sub�eld of cryptography. The goal of 2PC is to create proto-

cols allowing two parties to co-operatively compute an arbitrary function of their private inputs

without sharing the clear value of their inputs with the opposing party. Yao gives evidence of

feasibility with a solution to the so-called Millionaires' Problem. The problem is stated as fol-

lows: two millionaires wish to learn who is the richer without telling their actual wealth to the

other. Beside the undeniable breakthrough that it represented in the upper class at that time, it

also gave intuitions about feasibility of such problems. In 1986, Yao found a general solution for

the two-party computation problem [Yao86]. His general solution later took the name of garbled

circuits, which allows one of the participants to “encrypt” the function to evaluate (seen as a

13

Introduction

Player 1 Player 2 � � � Player n

x1 y1 x2 y2 xn yn

Secure Multi-Party Computation
f (x1; x2; : : : ; xn) = (y1; y2; : : : ; yn)

Figure 2: Multi-party computation

Boolean circuit) and the other to obliviously evaluate it on “encrypted” inputs, without leaking

any intermediate value. Not only this solves the 2PC problem, but it is also very ef�cient, and

even optimal, in terms of rounds of communication.

A natural generalization of the secure two-party computation is the secure secure multi-

party computation (MPC). Secure multi-party computation can be de�ned as the problem of

n participants to compute an agreed function of their inputs in a secure way, where secu-

rity means guaranteeing the correctness of the output as well as the privacy of the users'

inputs. Concretely, if participant i knows x i for 1 � i � n, then MPC allows to compute

f (x1; : : : ; xn) = (y1; : : : ; yn), such that player i learns yi but nothing more, as shown in Fig. 2.

In most applications, the participants obtain the same output y1 = � � � = yn .

In 1987, Goldreich, Micali and Widgerson [GMW87] detail the �rst general solution to secure

multi-party computation. Their solution is based on secret sharing, which enables a participant

to split his data into several shares that will be sent to each of the participants, with the guar-

antee that any individual share does not leak any sensitive information. The authors then show

how to perform operations on these shares without revealing them.

Since then, both two-party and multi-party computations have attracted a lot of interest.

New generic solutions have been designed and decades of optimizations have made garbled

circuits and secret-sharing based solutions very ef�cient ([ZRE15, DPSZ12] and many others).

Interestingly, custom protocols were also given, restricted to a single function and sometimes

in some speci�c context. They are often more ef�cient than generic solutions.

Applications of Secure Multi-Party Computations

2PC and MPC enjoy a wide variety of applications. Let us describe two that have been com-

mercialized: a private double auction system and a privacy-preserving data mining system.

14

Introduction

Private Double Auction

A double auction is a process of trading goods when potential buyers and sellers submit their

bids to an auctioneer. In this context, a bid is the quantity the bidder agrees to buy/sell for

a given price. The auctioneer then determines the price p that clears the market: the supply

matches the demand.

However, the auctioneer has access to all bids for any price p0 6= p. This brings new pri-

vacy issues. For example, if a seller initially agreed to sell at p0 � p, this might leak sensitive

information about his or her economic situation, and thus disadvantaging him or her in future

negotiations. This is particularly true if the auctioneer has interests that con�icts with the bid-

ders.

This tricky situation was met by the Danish sugar beet farmers in 2008. Here is the context:

several thousand farmers produce sugar beets, which are sold to a single corporation (a buyer's

monopoly). Farmers have contracts that give them rights and obligation to sell a certain amount

of beets to this company at a certain price. These contracts can be traded between the farmers.

Such trades were historically very limited and done via bilateral negotiations. However, due to

several political factors, there was an urgent need to reallocate contracts between farmers:

a nationwide double action was required. However, since a bid reveals the productivity and

the economic situation of a farmer, they were not willing to let the corporation acting as an

auctioneer, nor any other entity.

As explained in [BCD+ 09], this situation was solved using secure multi-party computations.

More precisely, secret sharing was used to split the farmers' bid between the parties. Then a

private double auction algorithm was performed on the shared data, thus allowing to determine

the price p and the quantity that each farmer committed to buy/sell for price p, without leaking

any additional information. Since then, the system has been used several times by thousands

of Danish farmers.

Privacy-Preserving Data Mining

In most countries, databases containing personal, medical or �nancial information about in-

dividuals are classi�ed as sensitive and the corresponding laws specify who can gather and

process them. However, this sensitive information plays a crucial role in medical, �nancial or

social studies. Thus, one needs new mechanisms for conducting statistical surveys without

compromising the privacy of the participants. The corresponding research area is commonly

referred as privacy-preserving data mining.

Most approaches focus on anonymized inputs (through k-anonymity) or randomized in-

puts (roughly speaking, a small error is added to individuals' inputs). However, the nature of

these solutions leads to a trade-off between privacy and accuracy of the outcomes. The more

15

Introduction

anonymized or randomized the inputs are, the more privacy-preserving the system becomes

but the more meaningless the statistical survey is. Also the security is preserved only on aver-

age.

Sharemind [BLW08] gives the �rst commercial solution based on secure multi-party com-

putation. It is designed with secret sharing: the participants of the survey split their personal

data among a few servers, that will perform operations on the shares. Sharemind thus allows

to reach both privacy and accuracy of the outcomes, as long as the majority of the servers are

honest.

In 2015, this solution was actually used for a large-scale statistical study in Estonia, as

reported in [BKK+ 15]. Using Sharemind, social scientists managed to cross the Estonian Tax

database with the Ministry of Education database in order to analyze the correlation between

working during university studies and failing to graduate in time. In this context, MPC allows to

compute meaningful statistics without leaking any information about incomes or degree course.

In 2016, a similar solution was deployed to analize the gender and ethnicity wage disparities

in the Greater Boston Area [LVB+ 16]. Although 50 of the biggest employers had agreed to take

part in this study, none would let sensitive employee wage data their servers and no institution

was willing to gamble on hosting, and possibly losing, the data. MPC and secret sharing solved

this issue.

Adversary Models

As shown in these two cases of application, unlike traditional cryptographic scenarios, such

as encryption or signature, one must assume that the adversary in a 2PC or MPC protocol

is one (or more in the case of MPC) of the participants engaged in the system. Therefore, it

soon appeared essential to de�ne new adversary models. Adversaries faced by the different

protocols can be categorized according to how willing they are to deviate from the protocol.

There are essentially two types of adversaries: the semi-honest adversary and the malicious

adversary.

The semi-honest adversary does not deviate from the protocol speci�cation but tries to

gather more information than allowed out of the protocol. Thus, it is a weak security model that

only prevents from inadvertent leakage of information between the parties. However, protocols

in the semi-honest model are often very ef�cient and are generally considered as an important

�rst step for achieving higher levels of security.

The malicious adversary may arbitrarily deviate from the protocol speci�cation in its attempt

to force the output or to learn more information on the other parties' inputs. Protocols that

achieve security in this model provide a very high security guarantee. Security against malicious

adversaries is often achieved by ensuring with cryptographic mechanisms that the participants

16

Introduction

cannot deviate from the protocol, or the protocol will abort without leaking anything. However,

using these tools generally leads to a reduction in ef�ciency.

In order to better understand the motivation and the possibilities of a malicious adversary, let

us focus on the private double auction system previously described. Obviously, any participant

has an incentive to force the output of double auction so that he or she buys/sells at any chosen

price. If their is no countermeasure, the malicious participant may try to do so by sending

inconsistent shared data to the other users. Similarly, the malicious participant can also deviate

from the protocol during the evaluation of the double auction algorithm by computing another

function (in order to change the output of the algorithm).

Alternatively, a malicious participant could also deviate from the protocol in order to learn

more information than allowed, which can give a clear competitive advantage in the double

auction. For example, he or she can try to make the protocol abort for some condition on

the other parties inputs (e.g. some condition on the buying price of a speci�c concurrent).

In this case, if the protocol is restarted, he can repeat the same attack under some other

condition (e.g. the buying price of another concurrent), until he or she accumulates enough

information to maximize the pro�t. Then, any party has to prove that he or she is running the

expected computation (while keeping the manipulated data secret), which often leads to lower

performances.

Note that in the malicious model, no distinction is made between the deviations that are

undetected by the other parties and the corruptions that are detected (such as the abortion of

the protocol). In some context, it is reasonable to consider that an adversary is willing to cheat

only if the risk of getting caught is “not too high”. In the example previously described, if the

honest parties can determine who is responsible for the abortion of the protocol, they may just

ban the adversary and restart the protocol. Then, the adversary must remain undetected. This

behavior is captured by the covert adversary. Although it has been less studied, this model can

lead to more ef�cient solutions than in the malicious model.

Contributions

On the Leakage of Corrupted Garbled Circuits

The pioneering work of Yao [Yao86], known as garbled circuits, is a general solution to the

secure two-party computation problem, which is extremely ef�cient in terms of rounds of com-

munications, that is constant and optimal. It involves two parties: a generator that builds the

garbled circuit to be evaluated, and an evaluator that executes it on its inputs. It was originally

designed in the semi-honest model and it was clear that a malicious generator could modify the

logic gates of the garbled circuit before sending it to the evaluator for execution.

17

Introduction

Applying cut-&-choose to garbled circuits soon appeared to �x this issue, but requires to

generate, transmit and evaluate a large number of garbled circuits, which can clearly lead to a

serious overcost.

Since then, a lot of work has been made to optimize the garbled circuits, on the one hand

[BMR90, NPS99, KS08, ZRE15], and the cut-&-choose, on the other hand [MF06, LP07, sS11,

MR13, Lin13, sS13, AMPR14, WMK17]. The best of these approaches still requires s garbled

circuits for a statistical security of 2� s against malicious adversaries, thus resulting in a serious

overhead compared to the semi-honest model.

However, all these techniques aim at avoiding any kind of modi�cation on the circuit. Nev-

ertheless, it has never been studied which modi�cations a malicious generator can make to a

single garbled circuit, still leading to an accepted execution, and then why the cut-&-choose is

necessary.

The �rst contribution of this thesis is to de�ne formally what the adversary is able to corrupt.

We prove that, for a large class of circuits, the malicious generator is limited to add NOT gates

on the wires of his choice. Hence, his possibilities are much more restricted than what we could

have expected from the previous state of the art. We also show some impacts of this result

on real circuits and on cut-&-choose based solutions. Finally, we give a garbled-circuit solution

against covert adversaries that is not based on cut-&-choose.

Location Proof System Based on Multi-Party Computations

We show how multi-party computations can help users to protect their privacy in everyday

life. More speci�cally, we study the case of location-based services that have become quite

popular (e.g. GPS, location-based advertising, augmented reality games). Their variety and

their numerous users show it clearly. However, these applications rely on the people's honesty

to use their real location. If they are motivated to lie about their position, they can easily do

so. A location-proof system allows a prover to obtain proofs from nearby witnesses, for being

at a given location at a given time. Such a proof can be used to convince a veri�er later on.

However, provers and witnesses may not want to broadcast their identity or their position each

time they generate location proofs.

Many solutions have been designed in the last decade, but none protects perfectly the

privacy of their participants. In this thesis, a solution is presented in which a malicious adver-

sary, acting as a prover, cannot cheat on his position. It relies on multi-party computations and

group-signature schemes to protect the private information of both the prover and the witnesses

against any semi-honest participant.

Additionally, this thesis also gives a new secure multi-party maximum computation protocol

for the speci�c context of location-proof systems. This protocol allows n users to know which

one of them has the greatest value without revealing these values. It requires O(n log(n)) com-

18

Introduction

putations and communications, which greatly improves the previously known solutions having

O(n2) complexities, but at the cost of some small leakage that we analyze. Although it is de-

signed for our location-proof system, it can be applied to any scenario in which a small infor-

mation leakage is acceptable.

On the Concrete Security of Goldreich's Pseudorandom Generator

Historically, the design of symmetric cryptographic primitives (such as block ciphers, pseudo-

random generators, and pseudorandom functions) has been motivated by ef�ciency consider-

ations (memory consumption, hardware compatibility, ease of implementation,...). The �eld of

multi-party computation, where parties want to jointly evaluate a function on secret inputs, has

led to the emergence of new ef�ciency considerations: the ef�ciency of secure evaluations of

symmetric primitives is strongly related to parameters such as the circuit depth of the primitive,

and the number of its AND gates. This observation has motivated the design of MPC-friendly

symmetric primitives in several recent works (e.g. [ARS+ 15, CCF+ 16, MJSC16, GRR+ 16]),

that aim for an ef�cient secure evaluation.

Local pseudorandom generators allow to expand a short random string into a long pseudo-

random string such that each output bit depends on a constant number d of input bits. Due

to its extreme ef�ciency features, this intriguing primitive enjoys a wide variety of applications

in cryptography and makes very promising candidate MPC-friendly PRGs. In the polynomial

regime, where the seed is of size n and the output of size ns for s > 1, the only known solution

is the Goldreich's PRG.

While the security of Goldreich's PRG has been deeply investigated, with a variety of results

deriving provable security guarantees against class of attacks in some parameter regimes and

necessary criteria to be satis�ed by the underlying parameters, little is known about its con-

crete security and ef�ciency. Motivated by its numerous theoretical applications and the hope

of getting practical instantiations for some of them, we initiate a study of the concrete secu-

rity of Goldreich's PRG. Along the way, we develop a new guess-and-determine-style attack,

and identify new criteria which re�ne existing criteria and capture the security guarantees of

candidate local PRGs in a more �ne-grained way.

Organization

The rest of this manuscript is organized as follows: Chapter 1 gives the basic cryptographic

notions that will be used in the following chapters. Next, Chapter 2 de�nes formally how a

malicious adversary can corrupt a circuit and what the impact on real circuits. Chapter 3 gives

both practical and theoretical contributions to secure multi-party computations: we give the �rst

19

Introduction

construction of location-proof system based on MPC and we also give a new secure maximum

computation scheme. Finally, in Chapter 4, by cryptanalyzing it, we study the concrete ef�ciency

of an MPC-friendly pseudorandom generator: the Goldreich's pseudorandom generator.

Personal Publications

[CDM+ 18] G. Couteau, A. Dupin, P. Méaux, M. Rossi, and Y. Rotella. On the concrete

security of Goldreich's pseudorandom generator. In ASIACRYPT 2018, Part

II, LNCS, pages 96–124. Springer, Heidelberg, December 2018.

[DPB18] A. Dupin, D. Pointcheval, and C. Bidan. On the leakage of corrupted garbled

circuits. In ProvSec 2018, LNCS, pages 3–21. Springer, Heidelberg, 2018.

[DRB18] 1 A. Dupin, J.-M. Robert, and C. Bidan. Location-proof system based on

secure multi-party computations. In ProvSec 2018, LNCS, pages 22–39.

Springer, Heidelberg, 2018.

1This work was partially done during my Master at the École de Technologie Supérieure of Montreal (Canada),

with the supervision of Jean-Marc Robert.

20

CHAPTER 1

PRELIMINARIES

In this chapter, we introduce all the basic tools like homomorphic encryption, zero-knowledge

proof and oblivious transfer that will be used throughout this thesis. For comparison purpose,

we also present some seminal solutions such as secret sharing.

Contents

1.1 Yao's Millionaires' Problem . 22

1.2 Adversary Models . 22

1.3 Useful Tools for Multi-Party Computation . 23

1.3.1 Homomorphic Encryption Schemes . 24

1.3.2 Zero-Knowledge Proof . 25

1.3.3 Oblivious Transfer . 26

1.4 Garbled Circuits: a General Solution to the 2PC Problem 29

1.5 Secret Sharing: a General Solution to the MPC Problem 30

1.6 MPC-Friendly Primitives . 31

1.7 Regarding the Preprocessing Model . 32

21

Partie , Chapter 1 – Preliminaries

Protocol 1.1: Yao's millionaires problem and its solution [Yao82]
Input: The two integers a and b of Alice and Bob, where a; b � N . The public key NA of

Alice and its encryption function EA (�) and decryption function DA (�).
Output: Bob learns whether a � b or a < b.
Step 1: Bob picks a random x 2 ZNA , encrypts k = EA (x) and sends k � b.
Step 2: Alice does the following:
repeat

Alice takes a random prime number p of size jNA j=2.
for i = 1 à N do

Alice computes yi = DA (k � b+ i) and zi = yi mod p.
end

until 8i; 8j 6= i; jzi � zj j � 2;
Step 3: Alice sends z1; z2; : : : ; za; za+1 + 1 ; : : : ; zN + 1 and p to Bob.
Step 4: Bob read the bth element sent by Alice, noted z0

b.
Bob determines a � b if and only if z0

b = x mod p.

1.1 Yao's Millionaires' Problem

Yao's millionaires' problem is a well-known problem presented by Andrew Yao in the early eight-

ies [Yao82], that introduced the concept of secure two-party computation. The problem dis-

cusses two millionaires, Alice and Bob, who are interested in knowing which of them is richer

without revealing their actual wealth. The �rst solution was given by Yao himself [Yao82] and is

presented in Protocol 1.1. It only uses of a public-key encryption scheme and does not require

any homomorphic property.

The correctness of this protocol is easy to prove: remark that yb = x, then zb = x mod p. If

a � b, then we have z0
b = zb = x mod p. Otherwise, we have z0

b = zb + 1 6= x mod p.

Although this protocol is correct, it is highly inef�cient due to its exponential complexity.

Since then, more ef�cient solutions have been designed, either from generic tools or with cus-

tom protocols. Such protocols are given in Chapter 3.

Since the problem is analogous to a more general problem where two participants have

inputs a and band the goal is to determine whether a � bwithout leaking the clear values a and

b, let us call these solutions secure two-party comparison protocols.

1.2 Adversary Models

Secure multi-party computation is about designing protocols for allowing participants to jointly

compute a public function over their private inputs. If the parties follow the protocol speci�ca-

tions, then they are guaranteed that their private information remains secret. But what if one of

the participants does not follow the instructions? What if one of them deviates from the proto-

22

1.3. Useful Tools for Multi-Party Computation

col? If one of the participants does not follow the rules, it is very likely that the protocol leaks

more information than allowed unless the protocol was speci�cally designed to resist such at-

tacks.

Therefore, when designing MPC protocols, de�ning what kind of adversary we are dealing

with is a crucial matter. The �rst adversary model that is generally considered is the semi-

honest adversary, which is also referred as passive adversary or honest-but-curious adversary.

The following de�nition is extracted from [HL10] :

De�nition 1.1 (semi-honest adversary model). A semi-honest adversary follows the protocol

speci�cation exactly, but it may try to learn more information than allowed by looking at the

messages that it received and its internal state.

Of course, it is not always realistic to assume that all participants will behave correctly. In

fact, designing protocols in the semi-honest adversary model is often seen as a �rst step toward

more powerful adversaries. Malicious adversaries (also known as active adversaries), on the

contrary, do not follow the rules. The following de�nition is also extracted from [HL10] :

De�nition 1.2 (malicious adversary model). A malicious adversary may use any ef�cient attack

strategy and thus may arbitrarily deviate from the protocol speci�cation.

Designing protocols against malicious adversaries ensures privacy for the participants how-

ever they behave, but often requires use of heavy cryptographic mechanisms. This may result in

impractical solutions. Thus it is sometimes interesting to de�ne intermediate adversary models,

yet realistic.

In the malicious adversary model, there is no distinction between deviations that are de-

tected by the other parties and deviations that are indistinguishable. Therefore, in many con-

texts, it is reasonable to consider that the adversary is willing to cheat only if the risk of getting

caught is not too high. Then, we can de�ne the covert adversary as in [AL07]:

De�nition 1.3 (covert adversary with � -deterrent). A covert adversary with � -deterrent can de-

viate from the protocol as long as the probability of being caught by the honest parties is lower

than � .

In this thesis, we consider those three kinds of adversaries.

1.3 Useful Tools for Multi-Party Computation

In this section, we detail three cryptographic tools that are particularly useful when designing

secure multi-party computation protocols.

23

Partie , Chapter 1 – Preliminaries

1.3.1 Homomorphic Encryption Schemes

Homomorphic encryption is a particular form of encryption that allows computations on en-

crypted data. It generates an encrypted result which, after decryption, matches the result of the

operations as if they were computed on the plaintext.

Several kinds of homomorphic encryption schemes can be de�ned, depending on the na-

ture of the operations they allow to perform:

• Multiplicative encryption schemes: these schemes allow to perform multiplication over

encrypted data. The RSA [RSA78] and the ElGamal [ElG84] encryption schemes are two

of them. Indeed, with these two schemes, multiplying two ciphertexts allows to obtain an

encryption of the product of the two plaintexts.

• Additive encryption schemes: they allow to perform addition over encrypted data, and by

extension a multiplication between an encrypted value and a clear value. The Paillier's

cryptosystem [Pai99] is an example: multiplying two ciphertexts creates an encryption of

the sum of the two plaintexts.

• Fully Homomorphic Encryption (FHE) schemes: they support both addition and multipli-

cation, which makes any circuit evaluable over encrypted data. The �rst construction was

given by Gentry in 2009 [Gen09] and has attracted a lot of interest. Despite major opti-

mizations, the size of the ciphertexts and the overcost for performing operations are still

an important issue.

In this thesis, we are mostly interested in additive schemes. Let us detail the Paillier's cryp-

tosystem. Let p and q be two secret large prime numbers. The public and private keys are

de�ned as follows:

pk = N = p � q and sk = ' (N) = (p � 1)(q � 1) :

Let m 2 ZN be the message to encrypt and r 2 Z �
N be a random number chosen by the

encrypter. Then the encryption function is

EN : ZN � Z �
N ! Z �

N 2

EN (m; r) = (1 + N)m � r N mod N 2

= c :

24

1.3. Useful Tools for Multi-Party Computation

And the decryption function is

D ' (N) : Z �
N 2 ! ZN

D ' (N) (C) =
(c' (N) mod N 2) � 1

N
� ' (N) � 1 mod N

= m :

The correctness of this decryption can be proven under the binomial theorem and Euler's the-

orem. Note that this encryption scheme is probabilistic and has the following homomorphic

properties:

EN (m1; r1) � EN (m2; r2) = EN (m1 + m2; r1r2)

EN (m1; r)m2 = EN (m1m2; r) :

These properties make this tool a very interesting primitive for secure multi-party computation.

The contributions of Chapter 3 heavily rely on these properties.

1.3.2 Zero-Knowledge Proof

A zero-knowledge proof (ZKP) is a protocol allowing a prover to convince a veri�er that a given

statement is true, without leaking any information apart from the fact that the statement is true.

It has many cryptographic applications and most particularly in MPC, since it allows a user to

prove that it has not deviated from a protocol. Informally, a proof must satisfy the following three

properties:

1. Correctness: if the statement is true and the prover knows a proof of this, he will succeed

in convincing the veri�er.

2. Soundness: if the statement is false, no prover can convince the veri�er of the truth of the

statement, except with some small probability.

3. Zero-knowledge: if the statement is true, no veri�er learns anything other than the fact

that the statement is true.

The Schnorr protocol [Sch90] is an example of zero-knowledge proof permitting a prover

to prove knowledge of discrete logarithm without revealing it. This protocol is shown in Proto-

col 1.2.

Informally, the correctness of this protocol can be easily proven using the fact that

gaye = gr � exgex = gr ;

25

Partie , Chapter 1 – Preliminaries

Protocol 1.2: Schnorr protocol for proving knowledge of a discrete logarithm
Input: Let G be a public group of order q and generator g, where the discrete logarithm

problem is hard. x 2 Z �
q is known only by the prover. Let y = gx be public.

Output: The veri�er is convinced that the prover knows x
Commitment phase : the prover picks a random r 2 Z �

q, computes the commitment
c = gr and sends c to the veri�er.

Challenge phase : the veri�er picks a random challenge e 2 Z �
q and sends it to the prover.

Answer phase : the prover sends a = r � e � x mod q to the veri�er.
Veri�cation : the veri�er accepts the proof (c; e; a) if and only if c = ga � ye

which indeed matches c. The soundness property can be proven by showing that an adversarial

prover able to produce a valid tuple (c; e; a) without knowing x can be used to compute any

discrete logarithm in G (and in fact x itself). The zero knowledge property relies on the existence

of an ef�cient simulator that takes as input (y; e) and outputs a valid proof (c; e; a) without

needing the secret x. Note that the simulator computes the answer a before the challenge c.

ZKP is very convenient for proving that no participant has deviated from the protocol. Thus,

it allows to turn any protocol secure in the semi-honest model into a protocol secure in the

malicious model. The ef�ciency of this transformation depends on the protocol to secure.

1.3.3 Oblivious Transfer

1 out of 2 Oblivious Transfer

1 out of 2 oblivious transfer, also known as 1-2 oblivious transfer or just oblivious transfer (OT),

is a useful primitive for secure multi-party computation. The protocol involves two participants:

a sender and a receiver. The sender has two messages m0 and m1 and the receiver has a bit b

and wishes to receive mb, while keeping bsecret. The sender wants to ensure that the receiver

learns only one of the two messages. Even, Goldreich, and Lempel gave the �rst solution to

this problem [EGL82], using any public-key encryption scheme. This solution is described in

Protocol 1.3.

As shown in Protocol 1.4, 1 out of 2 oblivious transfers can be made more ef�cient with

additive homomorphic encryption schemes. Note that this protocol is only secure against semi-

honest adversaries. Indeed, for example, a malicious receiver could send an encryption of 2

(instead of 0 or 1) during Step 1 and learn m1 � m0. This would be crucial if we consider two

plaintext English messages: knowing the difference could allow to recover them both. This can

be prevented by adding some zero-knowledge proofs.

Note that 1 out of 2 oblivious transfer of long messages (longer than the encryption scheme

allows in Protocol 1.3 or 1.4) can be reduced to oblivious transfer of short strings using any

pseudorandom generator G. Very brie�y, the sender generates two keys k0 and k1 and sends

26

1.3. Useful Tools for Multi-Party Computation

Protocol 1.3: Oblivious Transfer Protocol of Even et al. [EGL82]
Input: Alice has two secret messages m0 and m1 (of same size), a public encryption

function EA (�) and a decryption function DA (�). Bob has a bit b.
Output: Bob learns mb.
Step 1: Alice chooses two random strings r0 and r1 (same size as the ciphertexts) and
sends them to Bob.

Step 2: Bob chooses a random string k (same size as the messages), computes
q = EA (k) � rb ans sends it to Alice.

Step 3: Alice computes k0 = DA (q � r0) and k1 = DA (q � r1) and sends
(m0 � k0; m1 � k1) to Bob.

Step 4: Bob gets mb = (mb � kb) � k.

Protocol 1.4: Oblivious Transfer Protocol from Additive Homomorphic Encryption Scheme
Input: Alice has two secret messages m0 and m1. Bob has a bit b, a public encryption

function EB (�) and a decryption function DB (�).
Output: Bob learns mb.
Step 1: Bob computes EB (b) and sends it to Alice.
Step 2: Alice computes homomorphically

EB (mb) = EB (m0 + b(m1 � m0))

and sends it to Bob.
Step 3: Bob decrypts and obtains mb.

m0 � G(k0) and m1 � G(k1). The two parties then run a regular OT where the sender's input is

(k0; k1). This trick is sometimes referred as hybrid oblivious transfer.

1 out of n and k out of n Oblivious Transfer

A natural generalization of this problem is the 1 out of n oblivious transfer and then k out of n

oblivious transfer. Both have been solved by Brassard, Crépeau and Robert [BCR87]. In the

1 out of n OT, the sender now has n secrets and the receiver wishes to obtain one of them.

As before, the choice of the receiver and the other messages must remain secret. Note that it

makes this primitive 2PC-complete1: if two parties have respective inputs x1 and x2 and want

to compute f (x1; x2), it “suf�ces" for the �rst party to compute f (x1; x0
2) for every possible value

of x0
2 and then to act as the sender in a 1 out of n oblivious transfer protocol. The other party

acts as the receiver and obliviously receives the x2
th messages, that is f (x1; x2).

The solution of Brassard et al. [BCR87] allows to build 1 out of n OT from 1 out of 2 OT only.

Then, the 1 out 2 OT is also 2PC-complete. Of course, when dealing with secure multi-party

computation, more ef�cient solutions than the one just described are generally desirable.

1i.e. it is a general solution to the 2PC problem.

27

Partie , Chapter 1 – Preliminaries

Protocol 1.5: Oblivious transfer extension of Ishai et al. [IKNP03]
Input: The sender has n pairs (mj; 0; mj; 1) of `-bit messages, 1 � j � n.
The receiver has n choices b = (b1; : : : ; bn).
A security parameter � and a random oracle H : [m] � F�

2 ! F`
2.

Output: The receiver learns mj;b j , 1 � j � n.
Step 1: The sender picks a random bit vector s of size � .
Step 2: The receiver picks a random n � � bit matrix T.
Step 3: The parties run � OT protocols with reverse roles:

the receiver has inputs (T i ; b� T i),
the sender has input si and obtains si � b� T i , 1 � i � � .

Step 4: Let Q denote the n � � matrix of values obtained by the sender.
For 1 � j � n, the sender sends ((yj; 0; yj; 1)) where

yj; 0 = mj; 0 � H (j; Q j) and yj; 1 = mj; 1 � H (j; Q j � s) :

Step 5: For 1 � j � n, the receiver decrypts mj;b j = yj;b j � H (j; T j).

In the rest of the thesis, we only consider 1 out of 2 oblivious transfer, that will be referred

as oblivious transfer (OT) to improve readability.

Oblivious Transfer Extension

Due to its massive usage in secure protocols, ef�ciency is particularly crucial for oblivious

transfer. In the two previous protocols, the bottleneck relies on the use of public-key encryption

schemes, both in terms of computation and communication.

Therefore, the problem of extending a small number of OT to a large number of OT, with

no additional asymmetric operations, has attracted a lot of interest. It has been solved by Ishai

et al. [IKNP03] in the random oracle model2. In this model, the authors show that an arbitrary

number of OT can be made from � regular OT, where � is a security parameter. Then, only

O(�) asymmetric operations are necessary for any number of OT.

Their solution is illustrated in Protocol 1.5. For a matrix M , we note M i the i th column of this

matrix and M j the j th row.

The correctness of this protocol relies on the fact that Qi = si � b � T i . This implies that

Qj = bj � s � Tj . Then, the de�nition of yj; 0 and yj; 1 can be developed as follows:

yj; 0 = mj; 0 � H (j; b j � s � Tj) and yj; 1 = mj; 1 � H (j; b j � s � s � Tj) :

It is now easy to see that the vector s (that is unknown to the receiver) will disappear in yj;b j .

Similarly, the security relies on the fact that s does not disappear from yj;b j . We refer the reader

2A random oracle is an oracle that responds to every unique query with a truly random response chosen uniformly
from its output domain. If a query is repeated, then it responds the same way.

28

1.4. Garbled Circuits: a General Solution to the 2PC Problem

to the original paper for more details.

Then, this allows to build a large number of OT from � OT where the roles are inverted, with

a small communication overhead (2n messages are sent in Step 4).

In some speci�c cases, Asharov et al. [ALSZ13] propose two optimizations to reduce this

overhead: random-OT and correlated-OT.

Random-OT. In Protocol 1.5, consider that it is acceptable that the n pairs of messages

(mj; 0; mj; 1) are chosen uniformly at random at the end of the protocol. Then, the authors sug-

gest to de�ne in Step 4:

mj; 0 = H (j; Q j) and mj; 1 = H (j; Q j � s) :

Therefore, there is no need to transmit yj; 0 and yj; 1, which completely removes the overhead.

However, the sender does not know mj; 0 and mj; 1 before Step 4, which implies a deep change

of functionality: the sender has no input but an output.

Correlated-OT. Similarly, consider that in each pair one of the messages (say mj; 0) can be

chosen uniformly at random at the end of the protocol and the other message is correlated to

the �rst (mj; 1 = f j (mj; 0)). Then, the same trick can be applied:

mj; 0 = H (j; Q j) and mj; 1 = f j (mj; 0) :

Therefore, only yj; 1 has to be transmitted, which lower by half the communication overcost.

However, as for random-OT, (mj; 0; mj; 1) is outputted to the sender.

1.4 Garbled Circuits: a General Solution to the 2PC Problem

The seminal work of Yao [Yao86], which later took the name of Yao's garbled circuits, is a gen-

eral solution to the two-party computation problem. It is extremely ef�cient in terms of number

rounds of communications, which is constant and independent of the function to evaluate.

The target function is seen as a Boolean circuit: a collection of gates and wires to connect

them. The two parties called generator and evaluator are responsible for respectively generat-

ing and evaluating the garbled circuit. At a high level, the generator prepares the garbled circuit

by replacing the two possible values (0 and 1) of each wire by two random keys. He then “en-

crypt" and shuf�e the truth table of each gate under these keys. These encrypted truth tables

are given to the evaluator, along with the random keys representing the input of the generator.

After the evaluator retrieves the keys representing his input through oblivious transfer pro-

tocols, he can then start evaluating the circuit. Basically, knowing the encrypted truth table of

29

Partie , Chapter 1 – Preliminaries

a gate and one key for each input wire is enough information to evaluate it and obtain the key

matching the output. But it does not allow to decrypt the keys, and thus the evaluator can oblivi-

ously evaluate the entire circuit without learning any information. Finally, the evaluator decrypts

the result by looking at some decryption table that is provided by the generator.

It was originally designed in the semi-honest adversary model, but can be adapted to mali-

cious adversaries using further mechanisms, like cut-&-choose and ZKP.

Decades of optimizations have made this tool very practical. Indeed XOR gates of the

Boolean circuit are no longer transmitted and are evaluated for free. Only non-linear opera-

tions, which can be seen as multiplications in F2, require some encryptions and decryptions.

Chapter 2 gives an extended introduction to garbled circuits, optimizations and countermea-

sures to malicious adversaries.

1.5 Secret Sharing: a General Solution to the MPC Problem

Secret sharing is about splitting a secret among a group of n participants, each of whom is given

a share of the secret. The secret can then be reconstructed only if some prede�ned subset of

shares are combined together. An individual share alone does not leak any information about

the secret.

The work of Shamir [Sha79] introduced the �rst solution to (t; n)-threshold secret sharing:

a speci�c case of secret sharing where any subset of t shares or more among n allows to

ef�ciently reconstruct the secret. On the contrary, the knowledge of less than t shares reveals

nothing. Shamir's secret sharing is based on a polynomial representation of the secret over a

�nite �eld F. The only restriction is that jFj > n , but we will assume for simplicity that F = Zp for

some prime p > n .

Let s be the secret and f s(X) = F[X] be a random polynomial of degree t � 1 such that

f s(0) = s. The secret is then shared by sending to participant Pj the share sj = f s(j) for each

1 � j � n. It is then trivial that the polynomial f s (and therefore the secret s itself) can be

reconstructed by any t shares or more, using the Lagrange interpolation.

Later, it has been demonstrated that if t � (n � 1)=2, then the shamir's secret sharing

becomes a general solution the multi-party computation problem in the semi-honest model.

Indeed, it is easy to prove that it allows addition and multiplication over shared inputs, and

therefore any function. For two secrets a and b, if each participant Pj has f a(j) and f b(j),

then he can locally compute f a+ b(j) = f a(j) + f b(j), and f a+ b(X) is a polynomial of degree

t � 1 and f a+ b(0) = a + b. Similarly, he can also compute f ab(j) = f a(j) � f b(j), which is a

valid share of f ab(0) = ab. However, the polynomial f ab(X) is of degree 2t � 2 and thus 2t � 1

shares are necessary to reconstruct the secret. Since t � (n � 1)=2, there are enough shares,

but no further multiplication can be made without lowering the degree of the polynomial. To

30

1.6. MPC-Friendly Primitives

perform this degree reduction, each participant Pj creates n new shares of his own share

f ab(j) and sends one to each other participant. Each participant can then locally compute the

Lagrange interpolation of the received shares and produce f 0
ab(j) where f 0

ab(X) is of degree

t. This process allows to compute an unlimited number of multiplications but requires O(n2)

communications.

Note that, like for garbled circuits, addition is made for free whereas multiplication requires

communications. Besides, remark that the number of rounds of communications is proportional

to the depth of the circuit to evaluate. Therefore, secret sharing based solutions calls for new

cryptographic primitives with minimal multiplicative and depth complexity, so that they can be

computed ef�ciently via secret sharing.

There are plenty of schemes of secret sharing allowing computation over shares (see for

example [DPSZ12]), but they all require a quadratic number of communications for performing

a certain type of operation.

1.6 MPC-Friendly Primitives

Historically, the design of symmetric cryptographic primitives (such as block ciphers, pseudo-

random generators, and pseudorandom functions) has been motivated by ef�ciency consider-

ations (memory consumption, hardware compatibility, ease of implementation,...). The �eld of

secure multi-party computation has led to the emergence of new ef�ciency considerations: the

ef�ciency of secure evaluation of a symmetric primitive is strongly related to parameters such

as its circuit depth, and the number of its AND gates. This is particularly true for garbled circuits

and secret sharing as mentioned previously.

This observation has motivated the design of MPC-friendly symmetric primitives in several

recent works (e.g. [ARS+ 15, CCF+ 16, MJSC16, GRR+ 16]). Secure evaluation of such sym-

metric primitives enjoys a wide variety of applications.

Among many MPC-friendly primitives, Goldreich's pseudorandom generator has attracted

a lot of interest due to its applications in many cryptographic constructions. A pseudorandom

generator (PRG) maps a random seed to a longer pseudorandom string, with the guarantee that

the output of the PRG cannot be distinguished from the uniform distribution. The Goldreich's

pseudorandom generator can be de�ned as follows: let n be size of the seed, let m be the size

of the output and let (� 1; : : : ; � m) be a list of m subsets of bits of the seed, such that each

subset is of small size: for any i � m, j� i j = d(n), where d(n) � n (in actual instantiations, d(n)

can for example be logarithmic in n, or even constant). Fix a simple predicate P : f 0; 1gd(n) 7!

f 0; 1g, and de�ne the function f : f 0; 1gn 7! f 0; 1gm as follows: on input x 2 f 0; 1gn , for any

subset S of [n], let x[�] denote the subset of the bits of x indexed by � . Compute f (x) as

P(x[� 1])jj � � � jj P(x[� m]) (that is, f (x) is computed by applying the predicate P to all subsets of

31

Partie , Chapter 1 – Preliminaries

the bits of x indexed by the sets � 1; : : : ; � m).

This construction makes this PRG an interesting candidate for MPC-friendly since every

output bit only depends on d(n) bits of the seed. In practice d(n) can be as small as �ve and

the predicate can be limited to a single multiplication. In order to measure its ef�ciency, a study

of concrete parameters of this PRG with some speci�c predicates is made in Chapter 4.

1.7 Regarding the Preprocessing Model

In this thesis, only the most general settings are covered but some more speci�c settings have

been studied a lot by the cryptographic community. One of them particularly makes sense for

multi-party computation: the preprocessing model.

In this model, the computation is separated in two phases: a preprocessing (or of�ine 3)

phase and an online phase. In the preprocessing phase, the participants do not know their

inputs yet, but they have access to the function f to evaluate and they wish to compute every-

thing that does not depend on the input (shared coin �ipping, generation and transmission of

a garbled circuit, ...). In the online phase, the parts that depend on the inputs are computed. It

generally results in very ef�cient online phase.

This allows drastic ef�ciency improvement in several primitives, among which:

• Oblivious transfer : it is known since [Bea95] that oblivious transfers can be preprocessed

on random inputs, and then “derandomized” in the online phase to OTs of chosen inputs.

• Garbled Circuits: the generation, the transmission and the OT phase of the garbled circuit

protocol can be preprocessed. In the online phase, it just remains to derandomize the

OTs and to evaluate the circuit. In the malicious setting, the cut-&-choose can also be

made of�ine.

• Secret sharing: SPDZ [DPSZ12] is a special kind of secret sharing in the malicious ad-

versary model, that takes advantage of the preprocessing model to preprocess multipli-

cations over random data (that allows more ef�cient multiplications in the online phase)

and proofs that no participant is deviating from the protocol.

As already noticed, this setting is out of the scope of the thesis, but the preliminaries of

Chapter 2 and our results also apply in this model. This model is also one of the motivations of

our studies in Chapter 4.

3The “of�ine" term can be misleading since it often requires interactions between the participants.

32

CHAPTER 2

ON THE LEAKAGE OF CORRUPTED

GARBLED CIRCUITS

The seminal work of Yao [Yao86], known as garbled circuits, is a general solution to the secure

two-party computation problem, which is extremely ef�cient in terms of rounds of communica-

tions, which is constant and optimal. The protocol designed by Yao, is asymmetric and involves

two parties: the generator is responsible for creating the garbled circuit to be evaluated, and

an evaluator is responsible for executing it on its inputs. Originally, it was designed in the semi-

honest model, assuming that the generator correctly generates the circuit, and it was clear that

a malicious generator could easily modify the logic gates of the garbled circuit before sending

it to the evaluator for execution. Applying cut-&-choose to garbled circuits soon appeared to �x

this issue, but requires to generate, transmit and evaluate a large number of garbled circuits.

Since then, a lot of work has been made to optimize both garbled circuits [BMR90, NPS99,

KS08, ZRE15] and cut-&-choose based solutions [MF06, LP07, sS11, MR13, Lin13, sS13,

AMPR14, WMK17]. Unfortunately, the best of these approaches still requires the generator

to generate and transmit s garbled circuits for a statistical security of 2� s against malicious

adversaries, thus resulting in a serious overhead compared to the semi-honest model.

However, all these techniques based on cut-&-choose aim at avoiding any kind of modi�-

cation on the circuit, without having to de�ne them explicitely. Suprisingly, it has never been

studied which modi�cations a malicious generator can make to a single garbled circuit, still

leading to an accepted execution, and therefore why the cut-&-choose is necessary.

In this chapter, a detailed introduction to garbled circuits is �rst given. Hopefully, it should

allow readers with a basic cryptographic background to be more familiar with this elegant tool.

Our contribution comes after: we prove that, for a large class of circuits, the malicious generator

is limited to add NOT gates on the wires of his choice. Hence, his possibilities are much more

restricted than what we could have expected from the previous state of the art. Finally, we show

some impacts of this result on real circuits and on cut-&-choose based solutions.

33

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Contents

2.1 Preliminaries . 35

2.1.1 Formal De�nition . 35

2.1.2 Simplest Garbling Scheme . 36

2.1.3 The Point-and-Permute Trick . 40

2.1.4 The 25% Row-Reduction . 41

2.1.5 The Free-XOR Trick . 42

2.1.6 The Two-Half-Gate Technique . 44

2.1.7 Privacy-Free Garbled Circuits . 46

2.1.8 Corruption of Garbled Circuits . 47

2.1.9 The Cut-&-Choose Paradigm . 49

2.2 Motivation of Our Work . 52

2.3 Corruption of Optimized Garbled Circuits . 53

2.4 Delimitation of the Corruption . 54

2.4.1 Impossibility of Reducing the Number of Garbled Keys to One 55

2.4.2 Impossibility of Three-Key Wires - Part 1 56

2.4.3 Impossibility of Three-Key Wires - Part 2 59

2.4.4 Impossibility of Turning a Non-Linear Gate into a Linear Gate 65

2.4.5 About Other Non-Linear Gates . 66

2.4.6 Fitting Everything Together . 66

2.4.7 Ensuring the Correct Garbling of Input Wires 68

2.5 Applications to Real Circuits . 70

2.5.1 The Greater-Than Function . 71

2.5.2 The Addition Function . 72

2.5.3 The Equality-Test Function . 72

2.5.4 Trade-Off with Cut-&-Choose . 74

2.5.5 Garbled Circuits with Covert Adversaries 74

2.6 Conclusion . 78

34

2.1. Preliminaries

2.1 Preliminaries

Although garbled circuits have been heavily modi�ed, optimized and formalized since the mid-

80s, the original idea is due to the work of Andrew Yao [Yao86]. As mentioned in his paper,

garbled circuits appear to be a general solution to the two-party computation problem, in the

sense that it allows to solve this problem for any function f , even in the presence of semi-honest

participants.

Informally, the generator G(one of the parties) is responsible for generating a garbled circuit

representing the function f to evaluate, that one can see as an “encrypted" version of the

circuit computing f . Roughly speaking, each wire of the circuit is associated two random keys

(later called garbled keys) having hidden semantics 0 and 1. Then, “encrypted" truth tables

(later called garbled gates or garbled truth tables) are provided to the evaluator E (the other

party) to propagate garbled keys across gates, while keeping their semantics secret. Finally, E

is responsible for evaluating it, so that he learns (and possibly returns) the result while keeping

all intermediate values of this circuit secret.

The work of Beaver, Micali, and Rogaway [BMR90] is the �rst to introduce the term gar-

bled circuit and also the �rst to give a construction based on symmetric primitives. Later, the

�rst construction based on pseudorandom functions was given by Naor, Pinkas and Sumner

[NPS99], allowing many other works to optimize garbled circuits and to make this tool very

practical.

2.1.1 Formal De�nition

Despite the fact that almost thirty years passed since the original work of Yao, the �rst general

formalization of garbled circuits was made by Bellare, Hoang and Rogaway [BHR12].

A garbling scheme G consists in �ve components G = (Gb; Enc; Dec; Ev; ev). A garbling

algorithm Gb is a randomized algorithm that generates from the function f : f 0; 1gn ! f 0; 1gm

and a security parameter � three functions (F; e; d): a garbled function F , an encoding function

e and a decoding function d. An encryption algorithm Enc takes the input x of the function

to evaluate and the encoding function e and returns a garbled input X = e(x). This garbled

input can be used along with F and the evaluation algorithm Ev to obtain the garbled output

Z = F (X). Finally, the decryption algorithm Decand the decryption function d allow to decrypt

this garbled output and to obtain the �nal result z = f (x), which must be equal to the output of

the insecure evaluation algorithm ev. Then, it is required that f = d � F � e. This decomposition

of G is illustrated in Fig. 2.1.

The work of Bellare et al. [BHR12] also de�nes three security properties that capture the

general case:

• Privacy: a party acquiring (F; X; d) does not learn more about the input x than the result

35

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Gb

x Enc Ev Dec z = f (x)

ev z = f (x)

1�

f
e

F

d

X Z

Figure 2.1: Components of a garbling scheme G = (Gb; Enc; Dec; Ev; ev)

f (x) already allows to learn. Formally, there must exist a simulator S that takes as input

(1� ; f; f (x)) and whose output cannot be distinguished from (F; X; d) generated the usual

way.

• Obliviousness: a party acquiring (F; X) does not learn any information about x. More

speci�cally, there must exist a simulator S that takes as input (1� ; f) and whose output

cannot be distinguished from (F; X) generated the usual way.

• Authenticity: a party acquiring (F; X) should be unable to produce a garbled output Z � 6=

F (X), such that the decryption algorithm does not abort (i.e. Dec(d; Z �) 6= ?), except with

negligible probability.

In some speci�c cases, a garbling scheme may satisfy a subset only of these security

properties, which may result in a more ef�cient solution.

Now that garbled circuits have been formally de�ned, let us see how it works in practice.

2.1.2 Simplest Garbling Scheme

In this part, a “de-optimized" version of [NPS99] is detailed. More speci�cally the version pre-

sented here is roughly equivalent to the original solution of Yao [Yao86], except that asymmetric

operations are replaced by symmetric tools. This choice makes this part and the following op-

timizations much more accessible to non-specialists. Therefore, the presented scheme is only

for educational purpose and, up to my knowledge, has never been published.

We consider a symmetric encryption scheme based on a hash function, noted H .

H : F2n ! F2� ; n � �

For a message m 2 F2� , a key k 2 F2� and a salt i (of any size), the encryption function E

36

2.1. Preliminaries

wi 0

wi 00
wi

k0
i 0; k1

i 0

k0
i 00; k1

i 00

k0
i ; k1

i

H (k0
i 0jj k0

i 00) E i
k0

i 0
(E i

k0
i 00

(kgi (0;0)
i))

H (k0
i 0jj k1

i 00) E i
k0

i 0
(E i

k1
i 00

(kgi (0;1)
i))

H (k1
i 0jj k0

i 00) E i
k1

i 0
(E i

k0
i 00

(kgi (1;0)
i))

H (k1
i 0jj k1

i 00) E i
k1

i 0
(E i

k1
i 00

(kgi (1;1)
i))

Figure 2.2: On the left side, a gate gi with garbled keys at the input and output wires. On the
right side, the corresponding non-shuf�ed garbled truth table.

of the scheme is de�ned as:

E i
k (m) = m � H (kji)

The function f to evaluate is public and we assume that both parties already agreed on

some public circuit representation of it Cf . We note x and y the respective inputs of the gen-

erator G and the evaluator E. Note that (x; y) refers to the input x de�ned in [BHR12] (see

Section 2.1.1). We note wi the i th wire of Cf (for some arbitrary order), I the set of input wires

of the circuit, I X the input wires carrying x, I Y the input wires carrying y (I = I X [I Y) and O

the set of output wires. Finally, we note gi the gate that outputs wi (unless wi 2 I).

Garbling algorithm (F; e; d) Gb(1� ; f): for each wire wi of the circuit, the generator G

randomly generates keys k0
i and k1

i (of size �) having secret semantics 0 and 1. Let us call

them the garbled keys for wi . Then, for each gate gi of the circuit, taking as input some wires

wi 0 and wi 00, G generates a garbled truth table (also called garbled table or garbled gate) by

hashing the input garbled keys and encrypting the outputs garbled keys with the corresponding

input garbled keys. The identi�er i of the gate is used as salt for the PRF used in the encryption

scheme. The situation is illustrated in Fig. 2.2. The four rows of the garbled gate are then

randomly shuf�ed by G. These garbled tables correspond to the garbled circuit F . Next, G

computes the commitment table for each output wire of the circuit wi 2 O . A commitment table

is a mapping between the hashed garbled keys and their clear value, a trivial solution would be

(0; H (k0
i)) ; (1; H (k1

i)) . These commitment tables correspond to d and will be used to decrypt

the result. Finally, garbled tables and commitment tables (in the formal de�nition F and d) are

transmitted to the evaluator E. Note that G knows the garbled keys of all input wires wi 2 I and

their clear value, which represent the encryption function e.

Encryption algorithm X Enc(e;(x; y)) : G knows e and x (his input). Therefore, for every

wire wi 2 I X carrying some input bit x j of x, G can directly compute the garbled key kx j
i and

send it to E, while keeping the clear value of x private. These keys correspond to the �rst part

of the garbled input X . The second part, that depends on the evaluator's private input y is a

bit trickier to obtain. For every wire wi 2 I Y carrying some input bit yj of y, E wants to retrieve

kyj
i without revealing yj , and G wants to ensure that only one of the two garbled keys k0

i and

37

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

k1
i for wi is learnt by E. Oblivious transfers allow to solve this issue. For ef�ciency reasons, OT-

extension and random-OT1 can be used. We refer the reader to Section 1.3.3 for more details

about oblivious transfers and its optimizations.

Evaluation algorithm Z Ev(F; X): the evaluator E knows one (and only one) garbled key

for each wire of I and these keys represent the input value x and y (although x is kept secret).

He also knows the garbled table for each gate of the circuit and a commitment table for each

wire of O. Note that with a garbled table for gi , as shown in Fig. 2.2, if E has two keys ka
i 0 and

kb
i 00 for some hidden input bits a and b, then he is able to compute kgi (a;b)

i , while keeping a,

b and gi (a; b) secret. More speci�cally, E computes and uses H (ka
i 0jj kb

i 00) to determine which

row of the garbled table to decrypt. Then, he can decrypt E i
ka

i 0
(E i

kb
i 00

(kgi (a;b)
i)) to retrieve kgi (a;b)

i .

To evaluate the entire circuit, E starts by evaluating, as just described, the �rst gate, the input

garbled keys of which he already knows, and obtains the output garbled keys. He can then

evaluate the entire circuit, one gate at a time, until he gets the garbled keys for the wires of O

(that represent Z).

Decryption algorithm z Dec(d; Z): E has computed one garbled key kzj
i for each wire

wi 2 O (that represent Z) and has been given the commitment tables (for d) of the form

(0; H (k0
i)) ; (1; H (k1

i)) . Then, he can hash the garbled keys he has and reconstruct the clear

result z, that must be equal to f (x; y).

At the end of this decryption algorithm, E learns the result z = f (x; y). Instead of naively

returning this result to G, he returns Z (i.e. the garbled keys kzj
i for each wire wi 2 O). Since

G knows d, he can also run the decryption algorithm. Thanks to the authenticity property of

the garbling scheme, this convinces the generator G that z is indeed the correct evaluation of

f (x; y) and not an arbitrary value chosen by an adversarial evaluator.

An overview of the full protocol is presented in Fig. 2.3. Note that only three communications

are necessary since the �rst one (the transmission of the garbled circuit) can be merged with

the answer of the OT protocol. If it is not required that G learns the result, then only two are

necessary, which is optimal in terms of rounds of communications.

The reason of the salt i used in the encryption scheme is to avoid linear dependencies

between several garbled truth tables. As shown in Fig. 2.2, the same salt is used for an entire

gate gi . From this point, to simplify notations, this salt will be omitted unless necessary.

To sum up, Yao's garbled circuits are an elegant solution to solve the two-party computation

problem, furthermore, in a constant number of rounds. However, the communication cost is

linear in the size of the circuit to evaluate. Indeed, as shown previously, a garbled truth table

has to be transmitted for each gate of the circuit. This transmission is the bottleneck of the

protocol and decades of optimizations aimed at making it more ef�cient.

1Random-OT implies that the garbled keys of I Y are known to the generator only after the OT protocol. Then, a
part of the garbled circuit (the gates connected to I Y) cannot be pre-computed.

38

2.1. Preliminaries

Generator
Input: x

Evaluator
Input: y

Generate two garbled keys k0
i and k1

i per wire wi of Cf
Generate a garbled table for every gate of Cf
Generate a commitment table per wire of O

Garbled tables, commitment tables,
8wi 2 I X carrying x j , one garbled key kx j

i

OT

8wi 2 I Y , k0
i and k1

i
y

8wi 2 I Y , kyj
i

Evaluate sequentially every garbled gate using the
known garbled keys
Decrypt the garbled output using the commitment tables
Learn the result f (x; y)

One garbled key for each wire of O

Decrypt the garbled output using the commitment tables
Learn the result f (x; y)

Figure 2.3: Garbled circuits protocol overview

39

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

wi 0

wi 00
wi

k0
i 0; k1

i 0; pi 0

k0
i 00; k1

i 00; pi 00
k0

i ; k1
i ; pi

(a)

0 0 gi (0; 0)
0 1 gi (0; 1)
1 0 gi (1; 0)
1 1 gi (1; 1)

(b)

k0
i 0 k0

i 00 Ek0
i 0

(Ek0
i 00

(kgi (0;0)
i))

k0
i 0 k1

i 00 Ek0
i 0

(Ek1
i 00

(kgi (0;1)
i))

k1
i 0 k0

i 00 Ek1
i 0

(Ek0
i 00

(kgi (1;0)
i))

k1
i 0 k1

i 00 Ek1
i 0

(Ek1
i 00

(kgi (1;1)
i))

(c)

s(kpi 0

i 0) = 0 s(kpi 00

i 00) = 0 Ek
pi 0
i 0

(Ek
pi 00
i 00

(kgi (pi 0;pi 00)
i))

s(kpi 0

i 0) = 0 s(kpi 00

i 00) = 1 Ek
pi 0
i 0

(E
k

pi 00
i 00

(kgi (pi 0;pi 00)
i))

s(kpi
i 0) = 1 s(kpi 00

i 00) = 0 E
k

pi 0
i 0

(Ek
pi 00
i 00

(kgi (pi 0;pi 00)
i))

s(kpi 0

i 0) = 1 s(kpi 00

i 00) = 1 E
k

pi 0
i 0

(E
k

pi 00
i 00

(kgi (pi 0;pi 00)
i))

(d)

Ek
pi 0
i 0

(Ek
pi 00
i 00

(kgi (pi 0;pi 00)
i))

Ek
pi 0
i 0

(E
k

pi 00
i 00

(kgi (pi 0;pi 00)
i))

E
k

pi 0
i 0

(Ek
pi 00
i 00

(kgi (pi 0;pi 00)
i))

E
k

pi 0
i 0

(E
k

pi 00
i 00

(kgi (pi 0;pi 00)
i))

(e)

Figure 2.4: (a) a gate gi with garbled keys and a permute bit at the input and output wires. (b)
the clear truth table. (c) the unsecure garbled truth table. (d) the garbled truth table sorted by
the select bit of the input keys. (e) the �nal garbled truth table.

2.1.3 The Point-and-Permute Trick

The point-and-permute trick of Beaver, Micali and Rogaway [BMR90] is an elegant optimization

for garbled circuits to get rid of the input column of Fig. 2.2.

From now on, we call s() the function that takes a garbled key as input and outputs the least

signi�cant bit of that key. This least signi�cant bit of a garbled key is referred as select bit.

Consider the boolean gate gi shown in Fig. 2.4.a and its corresponding (clear) truth table

in Fig. 2.4.b. Observe that if one wanted to send a description of gi , then the third column of

Fig. 2.4.b would be suf�cient, using the convention that the two �rst columns are sorted. The

work of Beaver et al. [BMR90] manages to apply the same trick to garbled truth tables.

Roughly speaking, a random permute bit pi is picked by G for every wire wi of the circuit. A

new constraint is added to the generation of the garbled keys: the select bit of a garbled key (the

least signi�cant bit 2) is now the clear value masked with the permute bit. More speci�cally, the

select bit of ka
i is a � pi . Remark that it implies the select bit of every garbled key is arranged so

2Coding the select bit in the least signi�cant bit of a key is a widespread convention. It could be any other bit or
any other way of differentiating the two garbled keys of a wire. Without loss of generality, we use this convention in
the rest of the chapter.

40

2.1. Preliminaries

that the two garbled keys for a same wire have opposite select bits. Then we have the following

facts:

s(ka
i) = a � pi

s(kpi
i) = 0 s(kpi

i) = 1

s(k0
i) = pi s(k1

i) = pi

Therefore, one can replace the values of the clear truth table (Fig. 2.4.b) by their respective

garbled keys, as shown in Fig. 2.4.c. The resulting truth table is de�nitely insecure but can be

sorted by the select bit (i.e. the least signi�cant bit) of the input garbled keys. This situation

is illustrated in Fig. 2.4.d. Using the convention that a garbled truth table is now sorted by the

select bit of the input keys, the two �rst columns of Fig. 2.4.d become unnecessary. Then, G

only has to generate and transmit four ciphertexts, as shown in Fig. 2.4.e. We stress that these

four ciphertexts are no longer randomly shuf�ed. When evaluating, E just has to look at the

select bit of the keys he knows to determine which one of the ciphertext he must decrypt.

More formally, the garbling algorithm (F; e; d) Gb(1� ; f) is now changed as follows: for

every wire wi , G picks a random bit pi , called permute bit. The select bit of a garbled key is

the clear value masked with the permute bit. More speci�cally, the select bit of ka
i is a � pi .

Instead of being randomly shuf�ed, the garbled truth tables can be sorted by these select bits,

as shown in Fig. 2.4.e. These tables can then be sent to E.

The evaluation algorithm Z Ev(F; X) has to be modi�ed accordingly: when evaluating

a gate, E uses the select bit of the garbled keys to determine which row he should decrypt.

More speci�cally, for a gate gi , if he has input garbled keys ka
i 0 and kb

i 00, then he can decrypt the

(2 � s(ka
i 0) + s(kb

i 00)) th ciphertext and retrieve the relevant key kgi (a;b)
i .

Thanks to this optimization, the size of a garbled table is reduced to only four ciphertexts,

thus reducing the communicational cost of garbled circuits by half.

2.1.4 The 25% Row-Reduction

Naor, Pinkas and Sumner [NPS99] introduced garbled row-reduction as a way of reducing the

number of ciphertexts that describe a garbled gate. The main idea of their optimization is that

instead of randomly picking two garbled keys for each wire wi , one of them can be dependent

of the input garbled keys of gi (the gate that outputs wi), and the garbling scheme still remains

secure.

Concretely, the garbled keys are chosen such that the �rst ciphertext of a garbled truth table

will always be the all-zeroes string and thus does not have to be transmitted. This situation is

illustrated in Fig. 2.5. It implies that kgi (pi 0;pi 00)
i is the decryption of zero: Dk

pi 00
i 00

(Dk
pi 0
i 0

(0)) .

41

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

wi 0

wi 00
wi

k0
i 0; k1

i 0; pi 0

k0
i 00; k1

i 00; pi 00
k0

i ; k1
i ; pi

Ek
pi 0
i 0

(Ek
pi 00
i 00

(kgi (pi 0;pi 00)
i)) = 0

Ek
pi 0
i 0

(E
k

pi 00
i 00

(kgi (pi 0;pi 00)
i))

E
k

pi 0
i 0

(Ek
pi 00
i 00

(kgi (pi 0;pi 00)
i))

E
k

pi 0
i 0

(E
k

pi 00
i 00

(kgi (pi 0;pi 00)
i))

Figure 2.5: On the left side, a gate gi with garbled keys and a permute bit at the input and output
wires. On the right side, the corresponding garbled truth table with only three ciphertexts.

The garbling algorithm (F; e; d) Gb(1� ; f) is therefore changed as follows: the generator

G randomly chooses a permute bit and two garbled keys (according to the point-and-permute

trick previously described) for every wire of I . For every gate gi taking as input some wires wi 0

and wi 00, G sets one of the garbled keys for wi kgi (pi 0;pi 00)
i = Dk

pi 00
i 00

(Dk
pi 0
i 0

(0)) , which also �xes the

permute bit pi . The other key kgi (pi 0;pi 00)
i is randomly chosen by G as usual (still according to the

point-and-permute trick). G now generates the garbled truth tables as usual, except for the �rst

ciphertext, which is the all-zeroes string by de�nition and thus does not have to be computed

nor transmitted to the evaluator E.

Very few modi�cations are made to the evaluation algorithm Z Ev(F; X): for a gate gi , if

E has input garbled keys ka
i 0 and kb

i 00, if (2 � s(ka
i 0) + s(kb

i 00)) 6= 0 , then he can decrypt as usual.

Otherwise, he simply assumes that the cipertext is the all-zeroes string and decrypts it.

Therefore, this optimization manages to lower the communication cost of garbled circuit by

25%. Since only one garbled key is randomly generated per wire, this work also drastically

reduces the need for randomness generation, although the question of randomness generation

is not explored further in this thesis.

Finally, another contribution of Naor, Pinkas and Sumner [NPS99] has to be mentioned:

they describe a way to further reduce the size of garbled gates to only two ciphertexts, based

on polynomial interpolation. Unfortunately, this second optimization is not compatible with the

free-XOR trick that follows and is beaten by more recent works.

2.1.5 The Free-XOR Trick

The free-XOR trick of Kolesnikov and Schneider [KS08] allows to garble XOR gates for free.

They observe that the difference between the two keys for a wire k0
i � k1

i can be the same for

all wires of the circuit, and the scheme still remains secure. The idea is to let G choose a global

offset � that will be used to differentiate the two garbled keys for a same wire k0
i � k1

i = � .

That way, when E has to evaluate a XOR gate, he just bitwise XOR the two input garbled keys

to obtain the output garbled key. Note that, in order to make it compatible with the point-and-

42

2.1. Preliminaries

permute technique, � has to be odd.

The garbling algorithm (F; e; d) Gb(1� ; f) is optimized as follows: G starts by picking

randomly an odd global offset � of size � . For every wire wi 2 I , he randomly chooses one of

the garbled keys (say k0
i having hidden semantic 0), accordingly to the point-and-permute trick,

and sets the other key to be the bitwise-XOR of the �rst and the global offset (k1
i = k0

i � �).

For a non-XOR gate gi , the key kgi (pi 0;pi 00)
i is computed as before (i.e. the decryption of zero),

and the other key is set as kgi (pi 0;pi 00)
i = kgi (pi 0;pi 00)

i � � . This also sets the permute bit pi . The

generation of garbled truth tables is made as usual for non-XOR gates. For a XOR gate gi ,

having wi 0 and wi 00 as input, the two garbled keys for the output wire wi are set at k0
i = k0

i 0 � k0
i 00

and k1
i = k0

i � � . This implies that pi = pi 0 � pi 00. No garbled truth tables are made for XOR

gates.

For a XOR gate gi , observe that:

(
k0

i = k0
i 0 � k0

i 00

k1
i = k0

i � �
=)

8
>>>>><

>>>>>:

k0
i = k0

i 0 � k0
i 00

k0
i = k1

i 0 � k1
i 00

k1
i = k1

i 0 � k0
i 00

k1
i = k0

i 0 � k1
i 00

Then, the evaluation algorithm Z Ev(F; X) has to be slightly modi�ed: the evaluation

of non-XOR gates remains unchanged. The evaluation of a XOR gates gi is made by bitwise-

XORing the input garbled keys together. If E has input garbled keys ka
i 0 and kb

i 00, the output

garbled key is ka� b
i = ka

i 0 � kb
i 00.

Not only there is no ciphertext to transmit for XOR gates, but also the output garbled keys of

any gate fully depend on the input keys and thus do not require any randomness to generate.

Recursively, the garbled keys of the whole circuit fully depend on the garbled keys of I .

Remark that it also implies that the random-OT optimization cannot be used any longer,

since the two garbled keys of any wire of I Y are correlated. Then the correlated-OT protocol

should be used instead. Note that (as for the random-OT), the garbled keys of I Y , and thus

the garbled keys of the entire circuit, are known to the generator only after the correlated-OT

protocol. This means that the garbling algorithm comes after the exchange of the inputs. If this

situation is not desirable, then the OT extension should be used alone. We refer the reader to

Section 1.3.3 for more details about oblivious transfer.

In order to grasp the impact of this optimization, here are some statistics about real circuits,

de�ned in [KSS09]. 66% of the gates of a multiplexer (of any size) are XOR gates. Thus the

size of a multiplexer garbled circuit (in number of transmitted ciphertexts) is reduced by 66%.

Similarly, the additioner circuit cost is reduced by 80%. The cost of the AES S-box, as designed

in [BP11], is reduced by 73%.

43

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

1

a a ^ b

2

b
k0

B ; k1
B ; pB

k0
A ; k1

A ; pA

k0
B ; k1

B

k0
X ; k1

X ; pX

k0
Y ; k1

Y ; pY

Figure 2.6: The two half-gates of an AND gate

2.1.6 The Two-Half-Gate Technique

More recently, Zahur, Rosulek and Evans [ZRE15] found a solution to reduce the size of a gar-

bled gate to only two ciphertexts, and that remains compatible with the previous optimizations.

In fact, this work is a very clever combination of the previous optimizations and is based on the

following fact:

8 2 F2; a ^ b = (a ^)
| {z }

First half-gate

� (a ^ (b�))
| {z }
Second half-gate

Therefore, every AND gates of the circuit is implicitly replaced by the corresponding sub-

circuit shown in Fig. 2.6, where is a bit randomly chosen by the generator G. A similar equation

and a similar sub-circuit can be obtained from “any gate whose truth table contains an odd

number of ones (e.g. AND, NAND, OR, NOR, etc.).” [ZRE15]. For simplicity, we only focus

w.l.o.g. on AND gates.

An AND gate is then replaced by two AND gates and two (free) XOR gates. The two new

AND gates are called half-gates and are de�ned as follows:

De�nition 2.1 (Half-gate). AND gate for which one of the parties knows one of the inputs.

Indeed, for the �rst half-gate a ^ , G knows , and for the second half-gate a ^ (b �),

note that b � can be revealed to E without leaking b. At �rst sight, it does not look like an

improvement, but the authors show that combining the previous optimizations in the particular

case of half-gates, one can garble a half-gate with a single ciphertext. Thus, the total cost of

the original AND gate is two ciphertexts.

In this section, we no longer need the symmetric encryption scheme E. Instead, we directly

work with the hash function H .

H : F2n ! F2� ; n � �

Since an AND gate is now replaced by a fairly complex sub-circuit, we need to de�ne a

few notations that will be used to describe this optimization. We now call a and b the two

44

2.1. Preliminaries

(presumably secret) input bits of the AND gate gi and are carried by the wires wA and wB . wB ,

wX and wY respectively refer to the intermediate wires carrying b � , a ^ and a ^ (b �).

According to these notations, the garbled keys and permute bits of these wires are as usual:

k0
B , k1

B and so on. All those notations are illustrated in Fig. 2.6. The wire carrying is �ctive:

it has no garbled key and no permute bit, this will be explained later.

Consider the �rst half-gate. G knows and we will use this knowledge to garble this gate

with only two ciphertexts and then apply the previous optimizations to reduce it to only one. If

 = 0 , then the half-gate must output k0
X for any value of a. Therefore, we only need a two-

ciphertext garbled table. If = 1 , the half-gate must output ka
X . We also need a two-ciphertext

garbled table. In both cases, the garbled truth table is applied the point-and-permute trick (so

that E can decrypt the s(ka
A)th ciphertext) and the 25%-row reduction (so that the �rst ciphertext

is the all-zeroes string). Therefore, only one ciphertext (that we call G) has to be transmitted. E

can then evaluate it by decrypting either zero or G (depending on the value of s(ka
A)) with the

garbled key ka
A that he knows.

The computation of b � is �ctive. Since G knows , he can directly de�ne k0
B = k

B ,

k1
B = k

B and pB = pB � . Then, no generation or evaluation is needed. G gives pB �

to E, allowing him to learn the clear value b � of the garbled key kb�
B obtained during the

evaluation, without leaking the sensitive values b and .

Consider now the second half-gate. As just described, E knows b � . If b � = 0 , then

the half-gate must output 0. Then, the encryption of k0
Y under k0

B must be provided. This

�rst encryption is nulli�ed, using the same trick as in the 25%-row reduction (k0
Y = H (k0

B)). If

b� = 1 , then the half-gate must output a. In that case, it gets trickier, Gcomputes an encryption

E of k0
Y � k0

A under k1
B (E = k0

Y � k0
A � H (k1

B)). Note that the point-and-permute trick is

unnecessary since the evaluator E already knows the clear value of b � . The ciphertext E is

transmitted to E. When evaluating, if b � = 0 , he simply computes k0
Y = H (k0

B). Otherwise,

he computes ka^ (b�)
Y = E � ka

A � H (k1
B) (this is correct since ka

A = k0
A � a�).

The generation of E and G is illustrated in Tab. 2.1. Very few modi�cations have to be made

to this garbling algorithm to garble other “gate[s] whose truth table contains an odd number of

ones (e.g. NAND, OR, NOR, etc.).” [ZRE15]. We will call later these gates non-linear gates in

F2.

Table 2.1: Garbling the half-gates of an AND gate gi

First half-gate Second half-gate
Garbled table if = 0 Garbled table if = 1 b� Garbled table
k0

X � H (kpA
A j2i) = 0 kpA

X � H (kpA
A j2i) = 0 0 k0

Y � H (k0
B j2i + 1) = 0

k0
X � H (kpA

A j2i) = G kpA
X � H (kpA

A j2i) = G 1 k0
Y � k0

A � H (k1
B j2i + 1) = E

Similarly to the previous sections, the identi�er i of the gate is used as salt for the hash

45

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

function. More speci�cally, since we now have two (half-)gates, note that 2i and 2i + 1 are used

respectively for the �rst and second half-gates. Unless necessary, we omit these salts in order

to improve readability.

The evaluation of the half-gates is illustrated in Tab. 2.2. For gates other than AND, the

evaluation remains exactly the same. Note that there are four different possible evaluations of

the half-gates (one for each input combination), noted from K 1 to K 4. If E and G were correctly

generated, then three of these results would collide, so that there are only two distinct garbled

key for the output wire. For example, if gi is an AND gate and if pA = 0 , then we should have

K 1 = K 2 = K 3.

Table 2.2: Evaluating the half-gates of a gate gi

Inputs First half-gate Second half-gate Garbled output key
kpA

A k0
B H (kpA

A) H (k0
B) K 1 = H (kpA

A) � H (k0
B)

kpA
A k1

B H (kpA
A) E � H (k1

B) � kpA
A K 2 = E � H (kpA

A) � H (k1
B) � kpA

A

kpA
A k0

B G � H (kpA
A) H (k0

B) K 3 = G � H (kpA
A) � H (k0

B)
kpA

A k1
B G � H (kpA

A) E � H (k1
B) � kpA

A K 4 = E � G � H (kpA
A) � H (k1

B) � kpA
A

2.1.7 Privacy-Free Garbled Circuits

Jawurek et al. [JKO13] demonstrated that garbled circuits can be used as a practical solution to

zero-knowledge proof of knowledge protocols. The evaluator E (i.e. the prover) can prove any

statement “9x : f (x) = 1 ” to the generator G (i.e. the veri�er) without revealing x, using a single

garbled circuit for f .

However, in this particular context, E has the input x and G has no input at all. Since E

knows the entire input, he also knows the value of each intermediate wire of the garbled circuit,

and thus there is no need to hide these values to E. Then, the privacy property as de�ned in

Section 2.1.1 becomes unnecessary.

Frederiksen et al. [FNO15] showed that in this context, the size of the garbled circuits can be

signi�cantly reduced. The work of [ZRE15] provides an optimal garbling scheme in this context.

Since E knows every value, the garbled gates can be viewed as half-gates, and thus require

a single ciphertext. More precisely, they are equivalent to the second half-gate, as de�ned in

Section 2.1.6. For an AND gate, this ciphertext is E = H (k0
B) � H (k1

B) � k0
A and the evaluation

algorithm is modi�ed as presented in Tab. 2.3.

Although we focus only on the general case in the contributions of this chapter, they also

apply to the privacy-free garbling scheme of [ZRE15]. Additionally, one of our constructions

partially uses this speci�c scheme for ef�ciency reasons.

46

2.1. Preliminaries

Table 2.3: Evaluating the privacy-free garbled gate

Inputs Garbled output key
k0

A k0
B K 1 = H (k0

B)
k0

A k1
B K 2 = E � H (k1

B) � k0
A

k1
A k0

B K 3 = H (k0
B)

k1
A k1

B K 4 = E � H (k1
B) � k1

A

wi 0

wi 00
wi

k0
i 0; k1

i 0

k0
i 00; k1

i 00

k0
i ; k1

i

H (k0
i 0jj k0

i 00) Ek0
i 0

(Ek0
i 00

(kgi (0;0)
i))

H (k0
i 0jj k1�

i 00) Ek0
i 0

(Ek1�
i 00

(kgi (0;1)
i))

H (k1
i 0jj k0

i 00) Ek1
i 0

(Ek0
i 00

(kgi (1;0)
i))

H (k1
i 0jj k1�

i 00) Ek1
i 0

(Ek1�
i 00

(kgi (1;1)
i))

Figure 2.7: Example of selective failure attack. A corrupted garbled key k1�
i 00 is used for encryp-

tion in the garbled truth table instead of k1
i 00.

2.1.8 Corruption of Garbled Circuits

Now that we have seen how to garble a circuit, let us see how a malicious generator G can

cheat. For simplicity, consider that the garbling scheme is unoptimized. There exists two kinds

of corruptions: those that cannot be detected, since the evaluation always succeeds, and those

that may lead the adversary to get caught, because of an invalid output (inconsistent with the

commitments).

Selective Failure Attacks

We �rst consider the latter category, that leads to the so-called selective failure attacks. These

are corruptions of the garbled circuit that make it executable only if a condition on internal

values is met. If not, the protocol aborts: E does not obtain a correct output and thus cannot

send back a result to G. Then, G learns whether the condition is met, but, if not, E detects the

corruption and G gets caught. More speci�cally, the malicious G could use inconsistent keys to

construct a garbled gate or to exchange inputs during the oblivious transfer step.

Let us see two examples, �rst, with the modi�cation of an internal gate, and then with a

corrupted oblivious transfer during the initialization step.

Alteration of an internal garbled gate. We consider an internal corrupted gate garbled as in

Fig. 2.7. Suppose a key k1�
i 00 has been used for the generation of the garbled truth table instead

of k1
i 00.

During the evaluation, if E gets k1
i 00, then he has no way of evaluating the gate and E is

compelled to abort the protocol. If E gets k0
i 00, he can evaluate the gate as usual and does not

47

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

even notice the corruption.

If the protocol aborts, G learns that k1
B should have been used and E detects the attack. But

if the protocol runs correctly, G learns the normal output, plus an internal bit k0
B , and E does not

detect it.

Note that if the point-and-permute technique is used, the attack is a bit different. E is always

able to (possibly incorrectly) evaluate a gate. Therefore, after such a corrupted gate, E will get

an inconsistent key, that will be used to evaluate the rest of the circuit. It will not be detected

until the last gate of the circuit, the output of which will not match any value of the commitment

table as de�ned in Section 2.1.2. Because he cannot return a valid output, E is forced to abort

the protocol, and the leakage is exactly the same as previously described.

Remark that if G makes several such attacks in the circuits and if the protocol aborts, he

does not know which attack (or both) lead to an abortion, which reduces the leakage of infor-

mation. In that case, he learns much more information if the protocol succeeds.

Corruption during the oblivious transfer. We now consider E has some input bit b and G

generates honestly the circuit using k0
B and k1

B . However, during the oblivious transfer step, G

uses k0
B and k1�

B . Then, if b = 1 , E gets an inconsistent key and the leakage of information

is just as before. Note that the circuit itself is not modi�ed, meaning that cut-&-choose based

solutions (that will be introduced later) does not solve this issue. More speci�c and ef�cient

solutions have been designed, such as s-probe-resistant matrices [LP07, sS13].

Roughly speaking, an s-probe-resistant matrix is a public Boolean matrix M used to encode

the evaluator's input y = My 0, such that every bit of y depends of at least s bits of y0. The

function to evaluate now becomes f 0(x; y0) = f (x; My 0). Then, E chooses a random y0 that

matches y = My 0and the rest of the garbled circuit protocol is performed using the function f 0.

It is now easy to see that G carries out s0 < s such selective failure attacks, then no information

about y is leaked. Then, G has to perform at least s attacks, which the protocol to abort with

probability 1� 2� s without leaking any meaningful information. In terms of ef�ciency, the garbling

and the evaluation of M is free (it is only made of XOR gates), but the length of y0 is slightly

higher than the one of y. Different approaches aim at reducing this overcost.

Information vs. Detection. In both above cases, the malicious generator can be detected

since the failure is part of the way to learn information. Hence, the adversary must make the

protocol fail with non-negligible probability to learn something. In the rest of the chapter, we

restrict the study to context where the potential gain of information is not worth the risk of

getting caught by the honest party. Moreover, if the garbled circuit and the inputs were signed

by the generator, the evaluator could easily prove to some authority that the garbled circuit is

indeed non-executable. This seems reasonable in many real-life cases. We thus limit alterations

48

2.1. Preliminaries

wi 0

wi 00
wi

k0
i 0; k1

i 0

k0
i 00; k1

i 00

k0
i ; k1

i

H (k0
i 0jj k0

i 00) Ek0
i 0

(Ek0
i 00

(k0
i))

H (k0
i 0jj k1

i 00) Ek0
i 0

(Ek1
i 00

(k0
i))

H (k1
i 0jj k0

i 00) Ek1
i 0

(Ek0
i 00

(k0
i))

H (k1
i 0jj k1

i 00) Ek1
i 0

(Ek1
i 00

(k0
i))

Figure 2.8: On the left side, a gate gi supposed to be an AND gate. On the right side, the
corrupted corresponding garbled table that always ouputs False.

to the garbled circuit that do never lead to a failure.

Undetectable Corruptions

In order to be undetectable, the corrupted circuit must keep the same topology and the outputs

must match the values of the commitment tables.

For simplicity, consider the original garbling scheme of Section 2.1.2. A malicious generator

G can easily make such a corruption by changing the functionality of a gate before garbling it.

The example given in Fig. 2.8 shows how to turn (w.l.o.g.) an AND gate into (w.l.o.g.) a gate

that always outputs False. Generalizing it to the whole circuit, a malicious generator can easily

choose the output of the circuit. Similarly, he can also make the circuit output a part of (or

even the entire) evaluator's private input. These modi�cations can be made arbitrarily by the

generator and it will not be detected by the evaluator.

These two kinds of corruptions (selective failure attacks and undetectable corruptions) are

traditionally prevented by cut-&-choose based solutions.

2.1.9 The Cut-&-Choose Paradigm

As described previously, if the generator G is malicious, he can construct a garbled circuit that

computes a function that is different from the one that E and G agreed on, or he can make

it abort under some conditions on E's inputs. A well-known approach for such problems in

cryptography is the cut-&-choose technique.

Loosely speaking, in the context of garbled circuits, G generates a set of t garbled circuits

for the function f and send them all to E. Then, E randomly chooses a subset of the t garbled

circuits and asks G to open this subset. G complies and reveals all the garbled keys for the

requested garbled circuits. E can then check that these garbled circuits are correctly garbled. If

this veri�cation fails, he can safely abort the protocol. Otherwise, the exchange of the inputs and

the evaluation of the unopened garbled circuits is done as in the semi-honest case. Clearly, this

solution solves the problem of G corrupting the garbled circuit. Indeed, an adversarial G now

has to guess which subset will be randomly chosen by E. The number t of garbled circuits

49

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

depends on some statistical security parameter s 3.

However, it is not suf�cient since it creates new problems within itself:

1. Input consistency for the generator : a malicious G can provide inconsistent input garbled

keys for the t circuits. In other words, he can submit different values of x for the unopened

circuits.

2. Input consistency for the evaluator : a malicious G can switch some garbled keys for an

input wire of E for some circuits during the oblivious transfer phase (thus after the opening

phase), resulting in different values of y (the difference of which is known to the adver-

sary). Similarly, a malicious E can submit different values of y for the unopened circuits.

3. Output consistency: the evaluated circuits (i.e. those that are unopened) may output dif-

ferent results if some of them are corrupted by G. The protocol must specify what E should

do since an abortion would leak one bit of information.

The state of the art provides a large number of solutions that answer these issues in different

manners and that aim are reducing the number of garbled circuits t required to reach a security

level s.

Input Consistency for the Generator

Two main approaches have been introduced to solve the �rst issue.

First, the work of Mohassel and Franklin [MF06] uses a commitment scheme with ef�cient

proof-of-equality. This tool allows one to generate commitments (of zero and one in these set-

tings) and then to ef�ciently prove that two (or more) commitments are for the same value

(zero or one) without revealing any information. As shown in [Ped91], this scheme can be built

from the ElGamal encryption scheme. Given a �nite group G and a generator g, the commiter

randomly picks h 2 G and sends

EGCommit(h; m; r) = (gr ; hr gm) :

This commitment is computationally-hiding and perfectly-binding. Moreover, given two com-

mitments EGCommit(h; m1; r1) and EGCommit(h; m2; r2), the commiter can prove the equality

m1 = m2 by revealing r1 � r2. The veri�er can then check that

hr 1 gm1

hr 2 gm2
= hr 1 � r 2 :

3Small values of s are generally considered (i.e. 40 or 60) since an adversarial generator is given only one try to
guess which circuits are to be opened and which circuits are to be evaluated.

50

2.1. Preliminaries

Roughly speaking, the garbled keys for the input wires of G are no longer chosen randomly

but are commitments of zero and one (i.e. EGCommit(h; 0; r) and EGCommit(h; 1; r)). After the

opening procedure, G can send a garbled key (i.e. a commitment EGCommit(h; x i ; r j)) for each

bit x i and for each unopened circuit and then prove that all garbled keys for x i commit to the

same bit. The drawback of this solution is that the generation of the input garble keys requires

some exponentiations, which is computationally more expensive

A different technique is presented by [LP07]: t sets of t pairs of commitments (without proof-

of-equality) are generated by G for the two garbled keys for all input wires of G. All the 2t2jxj

commitments are transmitted to E. Then, cut-&-choose is also applied to the t sets. This solution

does not use any exponentiation, but requires a large number of commitments. This solution is

no longer used in more recent works and we refer the reader to this paper for more details.

Input Consistency for the Evaluator

A countermeasure against a malicious G trying to switch the garbled keys for an input bit yi of E

is to add a commitment table to the input wires of E. Or even more ef�ciently, another solution

would be to �x the permute bit of these wires to zero. This allows E to check that all garbled

keys he receives for his input yi from the oblivious transfer phase have semantic values yi .

The input consistency against a malicious evaluator can be forced by transmitting all the

t garbled keys for the input bit yi in a single oblivious transfer. Not only it solves this security

issue, but it also makes the number of oblivious transfer protocols independent of t.

Output Consistency

In this part, we de�ne what should happen if some evaluated circuits output different results,

although all opened circuits were correctly garbled. It means that the adversarial generator has

corrupted a few circuits and that these circuits were not opened. However, there are also some

unopened circuits correctly garbled. This last issue is the trickiest one and has attracted a lot

of interest.

The �rst solution, described in [MNP + 04] is to have only one evaluated circuit and t � 1

opened circuits. This clearly solves the problem but is limited to very small values of the security

parameter s, since it gives t = 2 s. Indeed, the adversary correctly guesses which circuit will be

evaluated with probability 1=t.

Later, several works [MF06, LP07, sS11] propose to open a constant fraction ct of the

circuits and to output the majority result. In this case, the adversary must corrupt a majority of

51

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

evaluated circuits and none opened circuits. The probability of success of such an adversary is

� t � ct
d t � ct

2 e

�

� t
d t � ct

2 e

� < 2� s :

The works of [MF06, LP07] originally speci�ed a constant c = 1=2 but Shelat and Shen [sS11]

later proved that an optimal setting is c = 0 :6, which gives t � 3s.

More recently, Lindell [Lin13] designed an optimal solution that requires only t = s garbled

circuits. The core idea is to build a mechanism that allows E to learn the input x of the generator

if and only if the evaluated circuits output different results (i.e. if G is malicious). Then, E learns

x and can run an insecure evaluation f (x; y) and return the honest result to the malicious G,

who learns nothing more than in the honest case. Therefore, the adversary wins if he is able to

guess which circuits will be opened and which will be evaluated. Moreover, the author suggests

to open any circuit with probability 1=2 (with the constraint that at least one is not opened).

Then, the probability of success of the adversary is 2� s. In [Lin13], this mechanism is based on

small garbled circuits, which takes as input x and the output of the evaluated garbled circuits.

However, these smaller garbled circuits also require to be secure against a malicious generator,

thus the previous solution t = 3s has to be applied.

Afshar et al. [AMPR14] get rid of this overcost by using zero-knowledge proofs and com-

mitment schemes. Very brie�y, the commitment scheme EGCommit is used to commit all input

bits of G. This is no overcost, since it was already necessary for the input consistency issue.

EGCommit(h; x i ; r) = (gr ; hr gx i) :

The garbled keys of the output wires of the circuits are arranged so that learning two different

results allows E to retrieve the trapdoor logg(h), and then the input x. Zero-knowledge proofs

are used to convince E that obtaining two different results indeed allows to compute logg(h).

2.2 Motivation of Our Work

As seen in the previous section, a lot of work has been made to optimize cut-&-choose based

solutions, that aim at avoiding any kind of modi�cation on the circuit. Nevertheless, it has never

been studied which modi�cations a malicious generator can make to a single garbled circuit,

still leading to an accepted execution, and then why the cut-&-choose is necessary.

Before the most recent general optimization of semi-honest garbling schemes of Zahur, Ro-

sulek and Evans [ZRE15], such a study would have been meaningless. Indeed, it was obvious

that an adversary could apply any modi�cation of his choice as long as the topology of the cir-

cuit remains the same. Some examples are given in Section 2.1.8. In other words, any binary

52

2.3. Corruption of Optimized Garbled Circuits

gate could be turned into any other binary gate and the resulting corrupted garbled circuit would

be still executable for any input.

However, the recent improvement of [ZRE15] manages to reduce the size of a garbled truth

table to only two ciphers (instead of three since the work of Naor et al. [NPS99], or even four

before that). Whereas this result can be seen as a nice improvement for an honest party, it

is clearly an extra constraint for a malicious party, given that he can now change only two

variables instead of three or four. Since then, it is not clear which modi�cations can actually be

made, and we prove in this chapter that it is much more limited than suggested in the previous

state-of-the-art.

More speci�cally, we prove that a malicious generator is limited to turn non-linear gates into

other non-linear gates. We de�ne non-linear gates and by opposition linear gates as follows:

De�nition 2.2 (non-linear gate). A non-linear gate is “any gate whose truth table contains an

odd number of ones (e.g. AND, NAND, OR, NOR, etc.).” [ZRE15]. A non-linear gate computes

a non-linear operation in F2.

De�nition 2.3 (linear gate). A linear gate is a gate that computes a linear operation in F2 (e.g.

XOR, XNOR, True, False, etc.).

Then, such corruptions are equivalent to say that an adversary is only able to add NOT

gates to a circuit or to allow abortion of the protocol.

The rest of this chapter is organized as follows: we �rst show how these modi�cations can

be made and then prove that these are the only possible alteration. Finally, we show the impact

of this contribution on real circuits.

2.3 Corruption of Optimized Garbled Circuits

We consider the garbling scheme of [ZRE15], as described in Section 2.1.6.

If G garbles the half-gates by switching some garbled keys, as shown in Tab. 2.4, it is easy

to prove that the resulting gate computes �a ^ b, and that the execution algorithm of E remains

unchanged. Moreover, this modi�ed garbled truth table is actually the correct way of garbling

�a ^ b.

Table 2.4: Turning a ^ b into �a ^ b

First half-gate Second half-gate
Garbled table if = 0 Garbled table if = 1 b� Garbled table

k0
X � H (kpA

A) = 0 kpA
X � H (kpA

A) = 0 0 k0
Y � H (k0

B) = 0
k0

X � H (kpA
A) = G kpA

X � H (kpA
A) = G 1 k0

Y � k1
A � H (k1

B) = E

53

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Similarly, we show in Tab. 2.5 and Tab. 2.6 how to obtain a correct garbling of a^ �band a ^ b

from a corrupted AND gate.

Table 2.5: Turning a ^ b into a ^ �b

First half-gate Second half-gate
Garbled table if = 1 Garbled table if = 0 b� Garbled table

k0
X � H (kpA

A) = 0 kpA
A � H (kpA

A) = 0 0 k0
Y � H (k0

B) = 0
k0

X � H (kpA
A) = G kpA

A � H (kpA
A) = G 1 k0

Y � k0
A � H (k1

B) = E

Table 2.6: Turning a ^ b into a ^ b

First half-gate Second half-gate
Garbled table if = 0 Garbled table if = 1 b� Garbled table

k1
X � H (kpA

A) = 0 kpA
A � H (kpA

A) = 0 0 k0
Y � H (k0

B) = 0
k1

X � H (kpA
A) = G kpA

A � H (kpA
A) = G 1 k0

Y � k0
A � H (k1

B) = E

Combining these three modi�cations, one can turn a AND gate into any of the eight non-

linear gates. The example of the OR gate is also given Tab. 2.7, which is a combination of the

three previous corruptions. Note that other ways exist to obtain the same results, but we chose

these because they represent the honest ways of garbling �a ^ b, a ^ �b and a ^ b, as described

in [ZRE15].

Table 2.7: Turning a ^ b into a _ b

First half-gate Second half-gate
Garbled table if = 1 Garbled table if = 0 b� Garbled table

k1
X � H (kpA

A) = 0 kpA
A � H (kpA

A) = 0 0 k0
Y � H (k0

B) = 0
k1

X � H (kpA
A) = G kpA

A � H (kpA
A) = G 1 k0

Y � k1
A � H (k1

B) = E

These modi�cations can be made arbitrarily by the generator and it will not be detected by

the evaluator unless a cut-&-choose solution is used. In the rest of the chapter, we are proving

that no other modi�cation can be made by a probabilistic polynomial-time adversary, or the

protocol may abort.

2.4 Delimitation of the Corruption

Let us now prove that the above modi�cations and their combinations are the only ones that

can be made by an adversarial generator G, if it does not want to get detected. We call f the

function to evaluate and Cf a Boolean circuit representation of it.

54

2.4. Delimitation of the Corruption

We assume in this section that the (possibly corrupted) garbled circuit is executable for all

inputs, since the adversary does not want to get detected.

Let us start with the obvious limitations. First, as already mentioned, the topology of the

Boolean circuit to evaluate is public, which ensures that G cannot cheat on the number of gates

or the way they are connected. Second, because of the free-XOR trick [KS08], XOR gates have

no garbled truth tables to transmit, then they cannot be corrupted either.

But G can still garble “correctly” another circuit Cf 0 (computing some other function f 0 in-

stead of f). By correct garbling, we mean that G garbles Cf 0 in accordance with the garbling

algorithm (and its optimizations), and keeps the number of gates and the way they are con-

nected to each other unchanged, as if f 0was the correct function to evaluate. XOR gates of Cf

must also be present in Cf 0. More speci�cally, we have the following restrictions :

1. Only two ciphers are sent for each non-linear gate.

2. XOR gates are not transmitted.

3. There is a global offset that differentiates the two garbled keys of each wire of Cf 0 (in

accordance with the free-XOR trick [KS08]) and this offset is odd (as required by the

point-and-permute technique [BMR90]).

4. Cf 0 is Boolean: for every wire of the circuit, there are two garbled keys.

The requirement of an odd offset follows from the fact that we took the convention that

the select bit of a key is its least signi�cant bit. If select bits were represented differently, the

requirement would have to be changed accordingly.

It is obvious that the �rst two requirements are met. Otherwise, E will refuse to evaluate the

circuit. In this section, we show that if the input wires of Cf are correctly garbled (i.e. have a

common odd offset), then the rest of the circuit is also correctly garbled, or the protocol may

abort. Thereafter, we provide a construction to ensure that input wires are correct. This will help

to prove that the adversary is only able to turn a non-linear gate into another non-linear gate.

For the sake of simplicity, we consider that the original circuit is only composed of XOR and

AND gates and we show later that the same result applies for the other gates.

Since the evaluation algorithm shown in Tab. 2.2 are the keystone of our proofs, we recall

here in Tab. 2.8 a shorter version of it.

The correct generation of E and G are detailed in Section 2.1.6, but since we consider that

G is malicious, we cannot make any assumption of their value.

2.4.1 Impossibility of Reducing the Number of Garbled Keys to One

The �rst thing to prove is that, for any garbled gate, there are at least two output garbled keys.

Consider the case where an adversary wants to alter an AND gate (w.l.o.g.) so that it always

55

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Table 2.8: Evaluating the half-gates

Select bits Inputs Garbled output key
0 0 kpA

A k0
B K 1 = H (kpA

A) � H (k0
B)

0 1 kpA
A k1

B K 2 = E � H (kpA
A) � H (k1

B) � kpA
A

1 0 kpA
A k0

B K 3 = G � H (kpA
A) � H (k0

B)
1 1 kpA

A k1
B K 4 = E � G � H (kpA

A) � H (k1
B) � kpA

A

outputs True (or always False), whatever the inputs are. Then, he must choose E and G in

Tab. 2.8, so that the four garbled output keys are equal. Then, we have the following system of

equations:

8
>><

>>:

K 2 = K 1

K 3 = K 1

K 4 = K 1

()

8
>><

>>:

E � H (kpA
A) � H (k1

B) � kpA
A = H (kpA

A) � H (k0
B)

G � H (kpA
A) � H (k0

B) = H (kpA
A) � H (k0

B)

E � G � H (kpA
A) � H (k1

B) � kpA
A = H (kpA

A) � H (k0
B)

()

8
>><

>>:

E = H (k0
B) � H (k1

B) � kpA
A

G = H (kpA
A) � H (kpA

A)

kpA
A = kpA

A

We thus proved here the following lemma:

Lemma 2.1. For any garbled gate, if the �rst operand has two garbled keys with an odd offset,

then the output wire has at least two possible garbled keys.

Proof. If we indeed have kpA
A � kpA

A = � that is odd (i.e. the two garbled keys of the �rst operand

have an odd offset), then we have kpA
A 6= kpA

A and the four keys cannot be equal.

2.4.2 Impossibility of Three-Key Wires - Part 1

In the last part, we showed that if the input wires are correct, there are at least two garbled

keys per wire. In this section, we aim at proving that there exists no wire having more than two

possible garbled keys, while the circuit remains evaluable.

As described in Section 2.1.2, the garbled circuit is considered to have two commitments

on the garbled keys of its output wires in O. This ensures that output wires have at most two

possible keys, or the protocol aborts when a third key is obtained. Then, if some wire of the

circuit has three possible keys or more, then there must be a gate that reduces it to only two.

We show that such a gate is impossible.

As de�ned in Section 2.1.3, s() refers to the function that takes a garbled key as input and

outputs the select bit of that key. This function tells the evaluator which line of Tab. 2.8 he should

use while evaluating: s(kpA
A) = 0 and s(k0

A) = pA .

56

2.4. Delimitation of the Corruption

a

b�

kA ; k0
A ; k00

A

kB ; k0
B

k; k0

Figure 2.9: Reducing the number of keys of the �rst operand: Impossible

Since the previous notations are irrelevant if there are more than two keys or if the point-

and-permute trick is not followed by the adversary, we now call kX , k0
X the two distinct garbled

key for a wire wX , and k00
X a third garbled key when needed.

We remind that H () is a hash function that is assumed to behave like a random function

from F2n to F2� and we expect the following problems to be computationally unfeasible by any

polynomially bounded adversary :

1. Finding distinct k1; k0
1 2 F2� , so that H (k1) = H (k0

1) requires 2�= 2 evaluations of H () on

average (Birthday paradox).

2. Finding distinct k1; k0
1 2 F2� , so that H (k1) � k1 = H (k0

1) � k0
1 requires 2�= 2 evaluations of

H () on average (Equivalent to the birthday paradox).

3. For given i and j , �nding k1; k
0

1; k2; k
0

2 2 F2� , so that k1 6= k
0

1, k2 6= k
0

2 and H (k1ji) �

H (k
0

1ji) � H (k2jj) � H (k
0

2jj) = 0 requires 2�= 4 evaluation of H () on average.

4. For given i and j , �nding k1; k
0

1; k2; k
0

2 2 F2� , so that k1 6= k
0

1, k2 6= k
0

2 and H (k1ji) � k1 �

H (k
0

1ji) � k
0

1 � H (k2jj) � H (k
0

2jj) = 0 requires 2�= 4 evaluations of H () on average.

All these properties can be proven if H is modelled as a random oracle, using the birthday

paradox bound. Note that in the de�nition of these problems, the adversary can freely choose

the garbled keys k1, k
0

1, k2 and k
0

2, whereas for garbled gates, they are constrained by the

garbling of the previous gates. Intuitively, solving these problems requires a lot more evaluations

than listed above.

These properties lead to the following lemma, illustrated in Fig. 2.9:

Lemma 2.2. For any garbled gate, if the �rst operand has at least three possible garbed keys,

and the second has at least two, then the output wire has at least three garbled keys.

Proof. We note kA , k0
A and k00

A the three keys of the �rst operand and kB ; k0
B the two keys of

the second operand.

Suppose �rst that we have the following select bits s(kA) = s(k0
A) = 0 , s(kB) = 0 and

s(k0
B) = 1 . We add no constraint on s(k00

A). We can apply the evaluation algorithm for each

57

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

combination, as shown in Tab. 2.8, and we obtain the following set of garbled output keys:

8
>>>>><

>>>>>:

K 1 = H (kA) � H (kB)

K 2 = E � H (kA) � H (k0
B) � kA

K 3 = H (k0
A) � H (kB)

K 4 = E � H (k0
A) � H (k0

B) � k0
A

We also have K 5 and K 6 that depends on k00
A . Then, the adversary has to reduce the number

of keys to two. Thanks to the properties of the hash function, K 1 and K 3 are different. Then,

he has to choose E that maps K 2 and K 4 to K 1 or K 3. If we try K 2 = K 1, then we get

K 4 = H (k0
A) � H (kB) � kA � k0

A .

Because the �rst operand has three keys, kA 6= k0
A and K 4 6= K 3. Because of Property 2 of

the hash function, K 4 cannot be mapped with K 1. A similar result would have been obtained if

we �rst assumed K 2 = K 3. Then, the combination of select bits s(kA) = s(k0
A) = 0 , s(kB) = 0

and s(k0
B) = 1 and any k00

A cannot be reduced to two garbled keys.

Let us see the case s(kA) = s(k0
A) = s(kB) = s(k0

B) = 0 . We add no constraint on s(k00
A).

Then, we get:

8
>>>>><

>>>>>:

K 1 = H (kA) � H (kB)

K 2 = H (kA) � H (k0
B)

K 3 = H (k0
A) � H (kB)

K 4 = H (k0
A) � H (k0

B)

We also have K 5 and K 6 that depends on k00
A . Then, the adversary has to reduce the

number of keys to two. Thanks to Properties 1 and 3 of the hash function, K 1, K 2, K 3 and K 4

are different.

Let us see the case s(kA) = s(k0
A) = s(kB) = s(k0

B) = 1 . We add no constraint on s(k00
A).

Then, we get:

8
>>>>><

>>>>>:

K 1 = E � G � H (kA) � H (kB) � kA

K 2 = E � G � H (kA) � H (k0
B) � kA

K 3 = E � G � H (k0
A) � H (kB) � k0

A

K 4 = E � G � H (k0
A) � H (k0

B) � k0
A

We also have K 5 and K 6 that depends on k00
A . Then, the adversary has to reduce the

number of keys to two. Note that in this particular case, the choice of E and G has no impact

on the number of distinct keys. From Property 1 of the hash function, we know that K 1 6= K 2.

Property 2 allows to claim K 1 6= K 3 and Property 4 K 2 6= K 3. Then, K 1, K 2 and K 3 are

different. In this particular case, it is even possible to prove that there cannot be less than six

distinct keys.

58

2.4. Delimitation of the Corruption

a

b�

k0
A � k1

A = �

k0
B � k1

B = �

k � k0 6= �

Figure 2.10: Modi�cation of the offset: Impossible

Finally, let us see the case s(kA) = s(k0
A) = 1 , s(kB) = 0 and s(k0

B) = 1 . We add no

constraint on s(k00
A). Then, we get:

8
>>>>><

>>>>>:

K 1 = G � H (kA) � H (kB)

K 2 = E � G � H (kA) � H (k0
B) � kA

K 3 = G � H (k0
A) � H (kB)

K 4 = E � G � H (k0
A) � H (k0

B) � k0
A

We also have K 5 and K 6 that depends on k00
A . Then, the adversary has to reduce the number

of keys to two. Thanks to Property 1 of the hash function, K 1 and K 3 are different. Then, he

has to choose E that maps K 2 and K 4 to K 1 or K 3. We describe below the case K 2 = K 1 and

show that K 4 does not map any other key.

K 2 = K 1 () E = H (kB) � H (k0
B) � kA

() K 4 = G � H (k0
A) � H (kB) � kA � k0

A

Because of Property 2 of the hash function, K 4 cannot be mapped with K 1 and K 4 6= K 3

since kA 6= k0
A . A similar result would have been obtained if we �rst assumed K 2 = K 3.

All other cases are changes of variables of the already studied cases, which ends the proof

of Lemma 2.2.

2.4.3 Impossibility of Three-Key Wires - Part 2

In this part, we study the opposite problem, where the second operand has at least three

garbled keys and the �rst has at least two. The proof being trickier, we need to demonstrate

Lemma 2.3 as a preliminary step.

Lemma 2.3. For any gate, if the operands have two garbled keys and have the same odd offset,

then the output wire has the same offset or at least three keys.

Proof. This situation is illustrated in Fig. 2.10. Consider the case where the adversary wants

to corrupt a garbled AND gate (w.l.o.g.) so that the offset is altered in the process. Then, he

must choose such E and G in Tab. 2.8. We prove here that it cannot be done. As stated in

59

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Section 2.1.6, there are four evaluation algorithms, the output of which, noted K 1 to K 4 collide

so that there are at least two distinct results (from Lemma 2.2, the case K 1 = K 2 = K 3 = K 4

is already proven to be impossible).

First, let us see the case K 1 = K 2 = K 3. As expected, the output wire has the same odd

offset � :
8
>>>>><

>>>>>:

K 1 = H (kpA
A) � H (k0

B)

K 2 = E � H (kpA
A) � H (k1

B) � kpA
A = K 1

K 3 = G � H (kpA
A) � H (k0

B) = K 1

K 4 = E � G � H (kpA
A) � H (k1

B) � kpA
A

)

8
>>>>><

>>>>>:

K 1 = H (kpA
A) � H (k0

B)

E = H (k0
B) � H (k1

B) � kpA
A

G = H (kpA
A) � H (kpA

A)

K 4 = K 1 � �

The same result is obtained from the case K 1 = K 2 = K 4:

8
>>>>><

>>>>>:

K 1 = H (kpA
A) � H (k0

B)

K 2 = E � H (kpA
A) � H (k1

B) � kpA
A = K 1

K 3 = G � H (kpA
A) � H (k0

B)

K 4 = E � G � H (kpA
A) � H (k1

B) � kpA
A = K 1

)

8
>>>>><

>>>>>:

K 1 = H (kpA
A) � H (k0

B)

E = H (k0
B) � H (k1

B) � kpA
A

G = H (kpA
A) � H (kpA

A) � �

K 3 = K 1 � �

The same result is obtained from the case K 1 = K 3 = K 4:

8
>>>>><

>>>>>:

K 1 = H (kpA
A) � H (k0

B)

K 2 = E � H (kpA
A) � H (k1

B) � kpA
A

K 3 = G � H (kpA
A) � H (k0

B) = K 1

K 4 = E � G � H (kpA
A) � H (k1

B) � kpA
A = K 1

)

8
>>>>><

>>>>>:

K 1 = H (kpA
A) � H (k0

B)

E = H (k0
B) � H (k1

B) � kpA
A

G = H (kpA
A) � H (kpA

A)

K 2 = K 1 � �

The same result is obtained from the case K 2 = K 3 = K 4.

8
>>>>><

>>>>>:

K 1 = H (kpA
A) � H (k0

B)

K 2 = E � H (kpA
A) � H (k1

B) � kpA
A

K 3 = G � H (kpA
A) � H (k0

B) = K 2

K 4 = E � G � H (kpA
A) � H (k1

B) � kpA
A = K 2

=)

8
>>>>><

>>>>>:

K 1 = H (kpA
A) � H (k0

B)

K 2 = E � H (kpA
A) � H (k1

B) � kpA
A

E = G � H (kpA
A) � H (k1

B) � kpA
A � H (kpA

A) � H (k0
B)

K 4 = H (kpA
A) � H (k0

B) � � =) K 4 = K 1 � �

We now prove that all other cases appear to be impossible.

60

2.4. Delimitation of the Corruption

(
K 1 = K 2

K 3 = K 4
,

(
E � H (kpA

A) � H (k1
B) � kpA

A = H (kpA
A) � H (k0

B)

G � H (kpA
A) � H (k0

B) = E � G � H (kpA
A) � H (k1

B) � kpA
A

,

(
E = H (k0

B) � H (k1
B) � kpA

A

E = H (k0
B) � H (k1

B) � kpA
A

This implies that kpA
A = kpA

A and � = 0 . This is not possible since the operands have two distinct

garbled keys and since the offset � is odd.

(
K 1 = K 4

K 2 = K 3
,

(
E � G � H (kpA

A) � H (k1
B) � kpA

A = H (kpA
A) � H (k0

B)

G � H (kpA
A) � H (k0

B) = E � H (kpA
A) � H (k1

B) � kpA
A

,

(
E � G = H (kpA

A) � H (kpA
A) � H (k0

B) � H (k1
B) � kpA

A

E � G = H (kpA
A) � H (kpA

A) � H (k0
B) � H (k1

B) � kpA
A

, � = 0

(
K 1 = K 3

K 2 = K 4
,

(
G � H (kpA

A) � H (k0
B) = H (kpA

A) � H (k0
B)

E � H (kpA
A) � H (k1

B) � kpA
A = E � G � H (kpA

A) � H (k1
B) � kpA

A

,

(
G = H (kpA

A) � H (kpA
A)

G = H (kpA
A) � H (kpA

A) � kpA
A � kpA

A

, � = 0

In the case of a XOR gate, the offset is also propagated, since garbled keys are simply

XORed together.

8
>>>>><

>>>>>:

K 1 = k0
A � k0

B

K 2 = k0
A � k0

B � � = K 1 � �

K 3 = k0
A � � � k0

B = K 1 � �

K 4 = k0
A � � � k0

B � � = K 1

This ends the proof of Lemma 2.3.

We now aim at concluding the last case with the following lemma:

Lemma 2.4. If the input wires of the circuit have garbled keys with an odd global offset, then

the garbled circuit cannot have a gate such that the second operand has at least three possible

garbed keys, and the �rst has at least two, while the output wire has only two garbled keys.

61

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

a

b�

kA ; k0
A

kB ; k0
B ; k00

B

k; k0

Figure 2.11: Reducing the number of keys of the second operand: Impossible

Proof. From Lemma 2.2, we know this is true if the two operands have at least three keys. We

thus focus to the case where the �rst operand has two keys and the second operand has three

keys, as illustrated in Fig. 2.11. For this proof, we consider that the input wires of I are correctly

garbled : these wires have two garbled keys and they have an odd global offset � . We study the

case of the �rst gate, called F , of the circuit (in topological order) that has two garbled inputs

for the �rst operand and three (or more) for the second.

Since F is the �rst of its kind in the circuit and because of Lemma 2.2, the sub-circuit that

links the inputs of the circuit to the �rst operand wire of F have only wires with exactly two

garbled keys. Moreover, since all input wires of this sub-circuit have the global offset � and

because of Lemma 2.3, all wires of the sub-circuit, including the �rst operand of F , have this

same odd offset � .

Remark that an input wire of the circuit cannot have three keys. Then the three keys (or

more) of the second operand of F come from a corrupted gate F 0 that outputs three distinct

keys (or more). However, the two operand wires of F 0have two possible garbled keys, and, with

a similar approach, we can show that they have the same offset � as the �rst operand of F .

Using the same convention as before, we call kA and k0
A the keys of the �rst operand and

kB , k0
B and k00

B the keys of the second operand. As stated above, the computation of kB ,

k0
B and k00

B engages the choice of � , and consequently kA � k0
A . We develop here the trickiest

case s(kA) = s(kB) = s(k0
B) = 0 and s(k0

A) = s(k00
B) = 1 , which gives the following set of

keys: 8
>>>>>>>>>><

>>>>>>>>>>:

K 1 = H (kA) � H (kB)

K 2 = H (kA) � H (k0
B)

K 3 = E � H (kA) � H (k00
B) � kA

K 4 = G � H (k0
A) � H (kB)

K 5 = G � H (k0
A) � H (k0

B)

K 6 = E � G � H (k0
A) � H (k00

B) � k0
A

Thanks to the property of the hash function, K 1 and K 2 are different. Then, the adversary

must choose E and G, so that K 3 to K 6 collide with K 1 or K 2. Let us �rst consider the case

K 4 = K 1.

62

2.4. Delimitation of the Corruption

K 4 = K 1 =)

8
>>>>>>><

>>>>>>>:

G = H (kA) � H (k0
A)

K 1 = K 4 = H (kA) � H (kB)

K 2 = K 5 = H (kA) � H (k0
B)

K 3 = E � H (kA) � H (k00
B) � kA

K 6 = E � H (kA) � H (k00
B) � k0

A

Then we have two more cases to enumerate : K 3 = K 1 and K 3 = K 2.

(
K 4 = K 1

K 3 = K 1
=)

8
>>>>>>><

>>>>>>>:

G = H (kA) � H (k0
A)

E = H (kB) � H (k00
B) � kA

K 1 = K 3 = K 4 = H (kA) � H (kB)

K 2 = K 5 = H (kA) � H (k0
B)

K 6 = H (kA) � H (kB) � kA � k0
A

Then, K 6 is different from K 1 since � is odd and thus non-zero. Matching K 6 and K 2 is

computationally unfeasible since it would require that H (kB) � H (k0
B) = � and we demon-

strated above that the values of kB and k0
B commits the value of � . The same result can be

obtained if we assumed that K 4 = K 2 and/or K 3 = K 2

Let us now see the case s(kA) = s(kB) = 0 and s(k0
A) = s(k0

B) = s(k00
B) = 1 . Using the

four evaluation algorithms on each of the combinations, we have the following set of keys:

8
>>>>>>>>>><

>>>>>>>>>>:

K 1 = H (kA) � H (kB)

K 2 = E � H (kA) � H (k0
B) � kA

K 3 = E � H (kA) � H (k00
B) � kA

K 4 = G � H (k0
A) � H (kB)

K 5 = E � G � H (k0
A) � H (k0

B) � k0
A

K 6 = E � G � H (k0
A) � H (k00

B) � k0
A

Thanks to the property of the hash function, K 2 and K 3 are different. Then, the adversary

must choose E and G, so that K 1 and K 4 to K 6 collide with K 2 or K 3. Let us �rst consider the

63

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

case K 1 = K 2, then the system of keys becomes:

K 1 = K 2 =)

8
>>>>>>>>>><

>>>>>>>>>>:

E = H (kB) � H (k0
B) � kA

K 1 = K 2 = H (kA) � H (kB)

K 3 = H (kA) � H (kB) � H (k0
B) � H (k00

B)

K 4 = G � H (k0
A) � H (kB)

K 5 = G � H (k0
A) � H (kB) � k0

A � kA

K 6 = G � H (k0
A) � H (kB) � H (k0

B) � H (k00
B) � k0

A � kA

Then we have two more cases to enumerate : K 4 = K 2 and K 4 = K 3.

(
K 1 = K 2

K 4 = K 2
=)

8
>>>>>>>>>><

>>>>>>>>>>:

E = H (kB) � H (k0
B) � kA

G = H (kA) � H (k0
A)

K 1 = K 2 = K 4 = H (kA) � H (kB)

K 3 = H (kA) � H (kB) � H (k0
B) � H (k00

B)

K 5 = H (kA) � H (kB) � k0
A � kA

K 6 = H (kA) � H (kB) � H (k0
B) � H (k00

B) � k0
A � kA

(
K 1 = K 2

K 4 = K 3
=)

8
>>>>>>>>>><

>>>>>>>>>>:

E = H (kB) � H (k0
B) � kA

G = H (kA) � H (k0
A) � H (k0

B) � H (k00
B)

K 1 = K 2 = H (kA) � H (kB)

K 3 = K 4 = H (kA) � H (kB) � H (k0
B) � H (k00

B)

K 5 = H (kA) � H (kB) � H (k0
B) � H (k00

B) � k0
A � kA

K 6 = H (kA) � H (kB) � k0
A � kA

Note that in the two cases, K 5 and K 6 are simply switched around. Then, we only focus

on the former case. K 5 is different from K 2 since � is odd and thus non-zero. Matching K 6

and K 3 is computationally unfeasible since it would require that H (kB) � H (k0
B) = � and we

demonstrated above that the values of kB and k0
B commits the value of � . The same result

would be obtained if we assumed �rst that K 1 = K 3. Indeed, it would only be a permutation of

the keys k0
B and k00

B .

Let us see the case s(kA) = s(kB) = s(k0
B) = s(k00

B) = 0 and s(k0
A) = 1 . Using the four

64

2.4. Delimitation of the Corruption

evaluation algorithms on each of the combinations, we have the following set of keys:

8
>>>>>>>>>><

>>>>>>>>>>:

K 1 = H (kA) � H (kB)

K 2 = H (kA) � H (k0
B)

K 3 = H (kA) � H (k00
B)

K 4 = G � H (k0
A) � H (kB)

K 5 = G � H (k0
A) � H (k0

B)

K 6 = G � H (k0
A) � H (k00

B)

This case is easier since the three �rst keys are different because of the properties of the

hash function.

Let us see the case s(kA) = 0 and s(k0
A) = s(kB) = s(k0

B) = s(k00
B) = 1 . Using the four

evaluation algorithms on each of the combinations, we have the following set of keys:

8
>>>>>>>>>><

>>>>>>>>>>:

K 1 = E � H (kA) � H (kB) � kA

K 2 = E � H (kA) � H (k0
B) � kA

K 3 = E � H (kA) � H (k00
B) � kA

K 4 = E � G � H (k0
A) � H (kB) � k0

A

K 5 = E � G � H (k0
A) � H (k0

B) � k0
A

K 6 = E � G � H (k0
A) � H (k00

B) � k0
A

The three �rst keys are different because of the properties of the hash function.

So far, we studied all the cases where s(kA) = 0 and s(k0
A) = 1 (and by change of variables

s(kA) 6= s(k0
A)). All cases where s(kA) = s(k0

A) is equivalent to one already seen in the proof

of Lemma 2.2 (it follows from the fact that we do not use the third key k00
A in the referred proof),

which ends the proof of Lemma 2.4.

2.4.4 Impossibility of Turning a Non-Linear Gate into a Linear Gate

In Section 2.3, we showed how to turn a non-linear gate into any other non-linear gate. We will

now prove that, since an adversarial generator is limited to Boolean circuits and cannot deviate

from the global offset, he cannot turn a non-linear gate into a linear gate. We focus on the case

of an AND gate.

Lemma 2.5. For any non-linear gate, if the two operands have two garbled keys and have the

same odd offset, then it cannot be turned into a linear gate.

Proof. All cases are already studied in other proofs:

65

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

• The case K 1 = K 2 = K 3 = K 4 (the gate that output True or False) is already shown to

be unsolvable from Lemma 2.1.

• The case K 1 = K 2 and K 3 = K 4 (the gate that always output the �rst operand a or always

its negation a) is proved to be impossible in the proof of Lemma 2.3.

• The case K 1 = K 3 and K 2 = K 4 (the gate that always output the second operand b or

always its negation b) is proved to be impossible in the proof of Lemma 2.3.

• The case K 1 = K 4 and K 2 = K 3 (the gate that computes a � b or a � b) is proved to be

impossible in the proof of Lemma 2.3.

This ends the proofs of Lemma 2.5.

Two particular cases of this lemma clearly reduce the possibilities of a malicious generator.

First, an adversary cannot force the output of a non-linear gate, and thus cannot trivially force

the output of the entire garbled circuit. Moreover, the adversary cannot alter a gate so that it

always outputs the �rst input a (K 1 = K 2 and K 3 = K 4). This last example is interesting: it

actually means that the malicious generator cannot modify the circuit so that the evaluator's

inputs go directly to the output through the circuit.

2.4.5 About Other Non-Linear Gates

We showed in Section 2.3 how to turn a gate that computes a ^ b into �a ^ b, a ^ �b and a ^ b.

It appears that these alterations and their combinations are identical to the honest ways of

garbling these respective gates, described in [ZRE15].

Then, an honest garbling of a ^ b (or any other non-linear gate) can be obtained from a

corruption of a ^ b. Thus, there is no modi�cation that can be made on a ^ b and that cannot be

made on a ^ b. Therefore, any non-linear gate can only be turned into another non-linear gate.

2.4.6 Fitting Everything Together

Assembling the lemmata previously proved, we obtain Theorem 2.1, which is the main contri-

bution of this chapter.

Theorem 2.1. If all the operands of the �rst non-linear garbled gates can take the two values

according to the evaluator's inputs (while the generator's inputs are �xed), and if there are

output commitments, then the adversarial generator is limited to turn any non-linear gates into

other non-linear gates.

66

2.4. Delimitation of the Corruption

This theorem means that if we can guarantee that the �rst garbled gates (the non-linear

gates that are the closest to the input wires) can take the two possible inputs, independently on

each wire, according to the evaluator's choice, then all the garbled gates can only be altered

into any non-linear gates.

Proof. Using Lemma 2.1, if the input wires of the �rst garbled gates all have two possible

garbled keys, then there is no wire in the rest of the circuit that has only one possible key.

Combining Lemmata 2.2 and 2.4, if the input wires of the �rst garbled gates of the circuit all

have the same odd global offset and if the circuit has output commitments, then no wire of the

rest of the circuit has more than two possible garbled keys. Moreover, with the same conditions,

Lemma 2.3 shows that all wires share the same odd global offset. Then, Lemma 2.5 comes

last and shows that non-linear gates can only be turned into other non-linear gates, and that

this is the only possible corruption.

It remains to study the conditions so that the starting point of this theorem is satis�ed: all

the inputs of the �rst non-linear gates have two possible garbled keys. How to guarantee some

wires to have two possible garbled keys, with the same global odd offset? We will show below

that it is possible to make sure that all the evaluator's inputs are converted into garbled keys

with a common global odd offset. But there is no way to do the same for the generator's inputs.

Indeed, the adversarial generator cannot be forced to choose his inputs after generating the

garbled circuit. On the other hand, XOR gates cannot be corrupted, and so a XOR gate with an

evaluator's input will necessarily have two distinct outputs. Hence, here are some interesting

cases that will meet our above requirements:

• one wants to evaluate f (y), for a public function f , so that the evaluator chooses y, but

the generator will get the result;

• one evaluates f (x; y), and any input wires of the �rst non-linear gates is either a yj chosen

by the evaluator, or x i � yj , where x i is chosen by the generator. Indeed, in both cases, yj

or x i � yj , when x i is �xed, the inputs of the �rst gates can take the two possible values

according to yj .

The latter case applies to a large class of circuits, including the addition, the greater-than (as

de�ned in [KSS09]), the equality test, combination of those, or even more complex circuits,

such as AES.

The former case is known as privacy-free garbled circuits. As described in Section 2.1.7,

there are more ef�cient garbling schemes in this context. The work of [ZRE15] provides an

optimal solution for this purpose. Our results also hold with this garbling scheme, but only the

general solution is presented here.

67

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

r
~yi yi

MUX

~yi +1 yi +1

MUX

Figure 2.12: Overview of the sub-circuit

r

~yi 1 yi

2

Figure 2.13: Implementation of the MUX

2.4.7 Ensuring the Correct Garbling of Input Wires

In this section, we describe a construction to guarantee that input wires of the evaluator E are

correctly garbled by the generator G(i.e. all input wires of E share the same odd offset). Whether

this can be solved using a modi�ed version of correlated-OT (see Section 1.3.3) is an open

question that deserves some attention. Instead, we propose to modify the circuit representation

of the function to evaluate, by adding a sub-circuit in front of the original circuit4. This sub-circuit

is illustrated in Fig. 2.12. Fig. 2.13 gives details of the multiplexer, but is not required for the

correctness. As usual, we call x the input of G, and y the input of E.

Construction

The main idea is that rather than transmitting the input garbled keys of E through an oblivious

transfer, the inputs are now connected to the outputs of this sub-circuit. The sub-circuit has the

same number of inputs of E as the original circuit plus one: a bit r that is randomly chosen by

E. For each input yi of the original circuit, the sub-circuit has an input ~yi = yi � r and an output

yi . The new inputs are transmitted as usual through an oblivious transfer.

We also give restrictions on some permute bits: the permute bit of wR (the wire carrying

r) and w ~Yi
(carrying ~yi) must be zero. Also the permute bit of wYi (the wire carrying yi) must

be public. This is to ensure that G does not force the inputs of E during the oblivious transfer

phase.

Because of r and of those permute bits, the protocol has to be slightly modi�ed, as sug-

gested by the following sketch:

1. Ggarbles the concatenation of the two circuits using the usual garbling scheme and sends

it to E, along with his garbled input keys for x and the permute bit for wYi , for all i ;

2. E randomly picks a bit r ;

4We do not modify the garbling scheme itself.

68

2.4. Delimitation of the Corruption

3. E and G perform oblivious transfers in order E to obtain the garbled keys of ~yi and r , and

E checks that the select bits of these keys match the clear values or aborts. This ensures

two possible keys for the evaluator's inputs;

4. E evaluates the sub-circuit and checks if the select bits of the keys for the input y match

the clear value, or aborts;

5. E evaluates the rest of the circuit and returns the result.

Note that the listed steps can be grouped so that only four communications are needed.

Since the functionality of the circuit is not changed by the sub-circuit (as long as the new input

~y is chosen according to r), the correctness is preserved.

Analysis

Our security goal is to ensure that all output wires of the sub-circuit (i.e. inputs of the rest of

the circuit) share the same odd global offset, or the protocol aborts for some speci�c inputs. To

prove it, we need two more lemmata.

Lemma 2.6. For any garbled gate, if the two operands have distinct but odd offsets, then the

offset of the �rst operand is propagated to the output wire.

Proof. The proof of this lemma is identical to the proof of Lemma 2.3. Indeed, in the proof of

Lemma 2.3, the offset of the second operand (k0
B � k1

B) never appears.

Lemma 2.7. For any XOR gate, if the offsets of the operands are different or if one of the

operands has more than two garbled keys, there are at least four distinct garbled keys at the

output.

Proof. The proof of this lemma is trivial since the output keys of a XOR gate are the input keys

XORed together.

Let us analyze the propagation of offsets in one of the multiplexers of the sub-circuit. Remark

that there cannot be only one possible garbled key for wYi . Indeed, since the permute bit of this

wire is known by the evaluator, then there must be at least two possible keys with opposite

select bits. We consider the multiplexer illustrated in Fig. 2.13. We stress that the order of the

operands matters. Let w1 and w2 refer to the output wires of the AND gates noted respectively

1 and 2. We also note � the offset of wire wR carrying r and � ~Yi
the offset of the wire carrying

~yi . We can enumerate the different corruption cases:

1. The offsets � and � ~Yi
are different but odd.

2. � is even and � ~Yi
is odd.

69

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

a

b
a ^ b �!

a

b
a

Figure 2.14: Impossible corruption

3. � is odd and � ~Yi
is even.

4. Both offsets are even (distinct or not).

Consider the �rst case. According to Lemma 2.6, the different offsets propagate so that w1 has

offset � ~Yi
and w2 has offset � , or one of them two wires have more than two keys. In either

case, using Lemma 2.7, the output of the XOR gate gives at least three different keys. Given

that these three (or more) keys engages the value of � , we can show that it cannot be reduced

back to two in the rest of the circuit, using the same method as for Lemma 2.4.

Consider the second case, if � is even, then the garbled keys of wR have equal select bits.

In other words, the select bit of one of the garbled keys does not match the clear value of r .

Since r is known to evaluator and since the permute bit must be set to zero, this situation is

detected and leads the evaluator to abort. The exact same reasoning works for the third and

fourth cases.

We can now conclude that the output wires of the sub-circuit have exactly two possible

garbled keys with the same odd global offset, or the protocol aborts for some inputs of the

evaluator or some r .

2.5 Applications to Real Circuits

In the previous sections, we have de�ned precisely how a malicious generator can corrupt a

garbled circuit. Turning non-linear gates into other non-linear gates is equivalent at adding NOT

gates to the circuit. Then, we consider in this section that the adversary is able to add a NOT

gate to any wire of the circuit. An important consequence is that a circuit cannot be modi�ed

so that the evaluator's inputs go through the gates to the outputs of the circuit. More precisely,

the corruption of a gate as shown in Fig. 2.14 cannot be generated. Thus, the question “does

a corrupted circuit leak more information than the original circuit?” turns out to be trickier than

suggested in the previous works.

In this section, we don't provide a general answer, but we see the impact of corruptions on

some real circuits. We measure this impact with the Shannon entropy of the evaluator's input.

We call x and y the respective inputs of the generator and the evaluator. Let z = f (x; y) be

the function to evaluate and Cf a boolean circuit computing it. We note Cf the set of all circuits

that can be obtained by corrupting Cf (i.e. by adding NOT gates to Cf). In other words, there

70

2.5. Applications to Real Circuits

Algorithm 2.1: Finding the best corruption of a circuit
Input: A circuit Cf of N wires w1 to wN (arbitrary order).
Output: The corrupted circuit that leaks the most information.
Set an N -bits integer ! to zero.
Compute the initial entropy H = H (Y jX = x; f (x; y)) .
while ! < 2N do

! ! + 1
Cf 0 Cf

foreach ! i do
If ! i = 1 , add a NOT gate to the wire wi of Cf 0.

end
Compute the truth table of Cf 0.
Compute the entropy H 0 = H (Y jX = x0; f 0(x0; y)) .
if H 0 < H then

H H 0

Cf 0 becomes the best corrupted circuit so far.
end
return The best corrupted circuit found.

end

exists a corruption of Cf that leads to Cf 0, that computes some other function f 0, if and only if

Cf 0 2 Cf . We formalize the problem as follows :

Problem 2.1. For a circuit Cf , does it exist a corrupted circuit Cf 0 2 Cf , such that the obtained

function f 0 leaks more information on the evaluator's input :

H (Y jX = x; Z = f (x; y)) > H (Y jX = x0; Z = f 0(x0; y)) ?

Remark that in the entropy equation, the generator knows x since this is his input. In our

computations, we consider that the adversarial generator chooses his input in order to increase

the leakage: i.e. he picks x that minimizes H (Y jX = x; Z = f (x; y)) . Similarly, for a corrupted

circuit, he also chooses x0.

To help us answer that question, we implemented a tool to exhaustively compute all corrup-

tions Cf 0 of a circuit Cf and check if one of them leaks more information. More details about

this tools are given in Algorithm 2.1.

2.5.1 The Greater-Than Function

Let us now see a practical example: the greater-than function, that returns a single bit (1 if

x > y , 0 otherwise). Assuming the adversary takes the middle of the set as input (which leaks

the most information), the original function leaks one bit of entropy. Since there is a single

71

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

output wire, whatever the modi�cation made on the circuit, it does not leak more than one bit

of entropy on y. But it is interesting to see that the adversary is limited in the choice of that bit.

For example, if we consider the greater-than circuit de�ned in [KSS09], it cannot be modi�ed to

output the parity bit of y. This can be proven exhaustively for the 3-bit greater-than circuit and

then recursively.

In the particular case of greater-than circuit, remark that the best strategy of an adversarial

generator G, willing to retrieve the input y, consists in not modifying the circuit. If y is `-bit long,

then it would require ` evaluations for Gto �nd y, and it cannot be reduced by corrupting it. Thus,

in this context, using cut-&-choose based solutions does not enhance privacy (but ensures the

correctness).

2.5.2 The Addition Function

Let us study now the addition function f , the circuit Cf of which is de�ned and optimized in

[KSS09]. Consider that E has two inputs y; y0 2 F`
2 and the generator none. This circuit com-

putes the addition of y and y0 in F`
2 (the carry bit is not returned). The original function f does

not leak any information on y (or on y0). Up to ` = 10, we exhaustively demonstrated that no

modi�cation leaks any information on y:

H (Y jZ = f 0(y; y0)) = H (Y jZ = f (y; y0)) = `

Since the construction of [KSS09] uses serial 1-bit adders, this result can be extended

recursively for larger values of `.

2.5.3 The Equality-Test Function

Unfortunately, it is not the case for all circuits. Consider now the equality-test function that

returns 1 if and only if x = y. The Boolean circuit we study for the 4-bit case is shown in

Fig. 2.15. Inputs are 4-bit long and after the evaluation of the original function, it remains 3:66

bits of entropy.

This circuit is vulnerable to the addition of NOT gates. Indeed, we demonstrated exhaus-

tively that the best corruption requires to add a single NOT gate, as shown in red in Fig. 2.15.

Now, the remaining entropy is H (Y jX = x0; Z = f 0(x0; y)) = 3 :01 bits. Consequently, almost 1

bit is leaked by this function f 0. Actually, f 0 returns x3 � y3 if x0� 2 and y0� 2 are different (which

happens with probability 7/8) and 0 otherwise. Clearly, this same attack would work (even with

higher probability) for larger equality-test circuits.

But note that this attack is entirely based on the topological representation of the function.

If we inverted the direction of the cascade of AND gates, as shown in Fig. 2.16, the leaked bit

72

2.5. Applications to Real Circuits

x0
y0

x1
y1

x2
y2

x3
y3

z

Figure 2.15: Circuit for the 4-bit-equality test
and its best corrupted circuit in red

x0
y0

x1
y1

z

x2
y2

x3
y3

Figure 2.16: Another circuit for the 4-bit-
equality test

x0
y0

x1
y1

x2
y2 MUX

x3
y3

c

z

Figure 2.17: Improved circuit for the 4-bit-
equality test

x0
y0

x1
y1

x2
y2 MUX

x3
y3

c

z

Figure 2.18: Best corrupted circuit for the im-
proved 4-bit-equality test

would be x0 � y0.

Since the leakage is dependent on the topology, we started investigating whether there

exists a circuit (computing the same functionality) that has a reduced leakage in case of cor-

ruption. We discovered a generic construction of such circuits for any function f . Unfortunately,

this �x also requires to increase the size of the circuit. In order to reduce the leakage, we ac-

tually take advantage of the fact that it depends on the topology of the circuit. In the case of

the equality test (w.l.o.g.), we propose to evaluate two parallel sub-circuits with different topolo-

gies (for example the topologies of Fig. 2.15 and Fig. 2.16), and to output only one, randomly

chosen by the evaluator E. This approach is illustrated in Fig. 2.17. A dashed sub-circuit per-

forming differently the equality test is added to the previous one, and a multiplexer (described

in [KS08]) allows E to choose which of the two results is returned (let c represent this choice).

If the generator G is honest, the circuit remains correct : the sub-circuits have the same result

and the multiplexer has no in�uence on the correctness. Otherwise, G does not know which

one of the two sub-circuits has returned the result.

However, the attacker can still add NOT gates to this new circuit. Using the same method,

we computed that the best corruption requires six NOT gates to be added, as illustrated in

73

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Fig. 2.18. By studying the multiplexer of [KS08], we can show that there is no way for the

adversary to force the choice of c. Then, we do not detail the multiplexer in the �gures. The

remaining entropy on the evaluator's input after evaluating this corrupted circuit is H (Y jX =

x0; Z = f 0(x0; y)) = 3 :35 bits. Then, we have considerably reduced the leakage of information.

Of course, one can reduce it even more by parallelizing more sub-circuits, but the size of the

global circuit would drastically increase.

This work opens the problem of �nding circuits that resist to the addition of NOT gates.

2.5.4 Trade-Off with Cut-&-Choose

We showed that, for some classes of circuits, there exists corrupted circuits that leak more in-

formation than the original function. In such cases, a cut-&-choose solution remains necessary

if we want to avoid this leakage. Based on the fact that this leakage depends on the topology

of the circuit, our results still allow to improve for free any cut-&-choose based solutions since

[Lin13].

Since several garbled circuits are generated, we recommend to use different circuits of

the same function (with different topologies). Then, even if the adversary manages to guess

correctly which circuits are opened and which are evaluated, he is limited to corruptions that

can be obtained from all unopened circuits and their respective topologies. Indeed, if different

corrupted circuits do not compute the same (corrupted) function, then they may output different

results, which allows the evaluator to learn the adversarial inputs thanks to [Lin13, AMPR14].

For example, let us consider the two circuits of Fig. 2.15 and 2.16 of the same function. Say

that a cut-&-choose solution is used with half of the circuits with the �rst topology and the other

half with the second. Assume that at least one circuit of each is unopened. Then, we demon-

strated exhaustively that any corrupted function that can be obtained from both topologies does

not leak any information on the evaluator's inputs more than the original function already does.

2.5.5 Garbled Circuits with Covert Adversaries

We showed that there exists circuits for which the addition of NOT does not advantage a ma-

licious generator. However, such an adversary is still able to make selective failure attacks if

he accepts the risk of getting caught. In this section, we design mechanisms to prevent from

selective failure attacks. Unlike cut-&-choose, our only protects against selective failure attacks,

but we believe it can lead to more ef�cient solutions.

In this part, we focus on a covert adversary with 1=2-deterrent (as de�ned in Section 1.2) but

the proposed solution could be adapted to any deterrence factor. Note that a deterrent factor

of 1=2 implies that an adversary is willing to cheat only if his probability of success is strictly

74

2.5. Applications to Real Circuits

higher than his probability of getting caught. We believe this setting applies to many real world

contexts.

Based on the observation that selective failure attack is very similar to the probing model in

side channel analysis, the proposed scheme is heavily inspired by 1-order masking schemes.

However, one cannot simply apply a masking scheme to garbled circuits. Indeed, one of the

main differences is the ability of the adversary to modify a circuit before executing it.

Adapting a 1-Order Masking Scheme

In order to simplify notations, the AND operation a ^ b will just be noted ab for the rest of the

chapter.

The purpose of this section is to show how to modify a circuit, so that any sensitive value

is split in at least two wires, independently of the modi�cations (i.e. addition of NOT gates)

possibly made on the circuit by an adversarial generator.

We note x and y the respective l-bit inputs (w.l.o.g. they have the same length) of the

generator and the evaluator. They want to compute privately f (x; y) and agreed on some circuit

Cf computing this function. Let d = depth(Cf) be the non-linear depth of this circuit, de�ned as

follows:

De�nition 2.4 (non-linear depth). The non-linear depth of a circuit is the number of non-linear

gates of the longest path from the inputs to the outputs of that circuit.

This de�nition is somewhat similar to the usual depth of a circuit, with the particularity that

this circuit would not have any linear gate. We also de�ne a layer of a circuit as follows:

De�nition 2.5 (layer of a circuit). The layer i of a circuit is the set of all non-linear gates, to

which the longest path from the inputs crosses i non-linear gates.

The evaluator E randomly chooses a d-bit mask r . We note r i the i th bit of r . The main

idea of our scheme is to mask every wire of layer i with r i and to replace every AND gate (or

similarly any other non-linear gate) by the following sub-circuit, also shown in Fig. 2.19:

ab� r i +1 = (a � r i)(b� r i) � r i (b� r i) � r i (a � r i) � r i +1 � r i

Similarly, a XOR gate is replaced by the following free sub-circuit:

a � b� r i +1 = (a � r i) � r i +1 � (b� r i)

Note that if a wire carrying some bit c � r i is needed in layer j > i , one can easily update

the mask with the following free sub-circuit :

c � r j = (c � r i) � r j � r i

75

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

1a � r i

2b� r i

ab� r i +1

3r i

r i +1

Figure 2.19: 1-order masked AND gate for garbled circuits

It is interesting to see that at no point a value stays unmasked. However, unlike in side-

channel analysis, G is able to modify some gates of the circuit. Replacing one AND gate by

three AND gates allows G to add NOT gates to any of them. But thanks to the new mask r i +1

and the impossibility of corrupting a XOR gate, there is no way to obtain an unmasked result.

Thus, for the rest of this part, we consider that the only possible modi�cations of the previous

global AND gate are:

ab� � 0a � � 1b� � 2 � r i +1

with the bits � 0, � 1 and � 2 of the generator's choice. Written differently, this corresponds to

ab� r i +1 , ab� r i +1 , etc.. Thus, the modi�cations made on a global AND gate are no more than

what we studied on a regular AND gate.

In terms of ef�ciency, we have replaced a single AND gate by three new AND gates. Then,

one could expect the communication cost to be multiplied by 3. However, it can be reduced to

a multiplicative overhead of 2 or even less by using the privacy free garbling scheme studied

in Section 2.1.7. Indeed, r i is known to E and we can take advantage of this knowledge to

garble r i (a � r i) and r i (b � r i) (gates 2 and 3 of Fig. 2.19) with a single ciphertext. Then, the

multiplicative overhead over the semi-honest settings is only two: the garbling of a global AND

gate requires four ciphertexts.

Moreover, remark that these gates (2 and 3) can also be redundant with other gates of the

circuit. For example, if another global AND gate computes ac � r i +1 in the same layer i , the

gate labelled 2 is already de�ned. In that case, only seven ciphertexts are required to garble

two global AND gates (instead of four in the semi-honest settings). Similarly, if another global

AND gates computes bc� r i +1 , then gates 2 and 3 are redundant and only nine ciphertexts are

needed for three global AND, which represent a 1.5 multiplicative overhead, instead of 2 in the

corresponding cut-&-choose solution.

76

2.5. Applications to Real Circuits

r0 � � � r i � � � rd

x0

...

x l

f (x; y)

y0 � r0

...
yl � r0

1-order masked circuit1-order masked circuit

Figure 2.20: Inputs of an 1-order masked circuit

Garbling and Exchange of the Inputs

Before the inputs are exchanged, E randomly chooses a mask r of d bits. We note wX j the wire

carrying x j , wR i the wire carrying r i , wX j � R i and so on. We stress that there is no wire carrying

yj unmasked.

Then, the inputs wire of the masked garbled circuits are wX j , wYj � R0 (for all 0 � j � l)

and wR i (for all 0 � i � d). We stress that wX j is connected to a single gate: a XOR gate that

outputs wX j � R0 .

We recommend the permute bit of wR i and wYi � R0 to be set to zero. In other words, for any

of these wires, the least signi�cant bit (select bit) of a garbled key is the clear value itself. E gets

the garbled keys for these wires through a 1-out-of-2 oblivious transfer. He can then check that

the select bits of the received keys match the input and the chosen mask. If not, the adversarial

G was trying to make a selective failure attack, or an offset was even, and E can safely abort.

This ensures that the offsets are odd for these wires, or the adversary is caught with probability

one half. We remind that odd input offsets is a necessary condition to the global circuit security.

Still, it remains to ensure that an odd offset is used for wX j , the input of the generator.

Obviously, the permute bit of this wire must be chosen randomly by G, in order to preserve his

privacy. Because of this, the same trick cannot be applied. However, this wire is used in a single

gate: a XOR gate that takes as input wX i and wR0 . We just showed that an odd offset is used

for wR0 and we proved in Section 2.4 that the input wires of a XOR gate must have the same

offset.

The overall circuit is shown in Fig. 2.20. In dashed are the wires the permute bit of which is

set to zero (i.e. the least signi�cant bit of a garbled key is the clear value itself).

77

Partie , Chapter 2 – On the Leakage of Corrupted Garbled Circuits

Comparison with Cut-&-Choose

With the best general case cut-&-choose solution, two circuits would be necessary to be secure

in the proposed setting. One of them would be opened and the other would be executed.

In comparison, our scheme requires a single circuit with three times more non-free gates

than in the semi-honest settings. However, we showed that the garbling only requires twice the

number of ciphertexts to transmit, compared to the semi-honest settings. Then, the communi-

cation cost is similar to the best cut-&-choose solution. Even better, when some gates share the

same input, we showed that one less ciphertext has to be sent, thus reducing the multiplicative

overhead below two.

On the other hand, our scheme requires a few more oblivious transfers, since the masking

bits are randomly chosen by the evaluator. We remind that d masks are necessary for a circuit of

depth d. We believe these are negligible with the size of the circuit and the number of oblivious

transfers used for the inputs.

We remind that a covert adversary is still able to add NOT gates. This scheme only protects

against selective failure attacks. However, it shows that more speci�c solutions than the tradi-

tional overkill cut-&-choose can be designed. Hopefully, optimizations of our scheme allowing

to reduce the number of non-free gates would make our scheme much more competitive.

2.6 Conclusion

In the beginning of this chapter, a detailed introduction to garbled circuits, its major optimizations

and cut-&-choose was made. After three decades of works on this very competitive research

area, I believe it was necessary and I hope it will bring new people interested into the subject.

The main contribution of this chapter is to de�ne precisely what alterations of a garbled

circuit a malicious generator can make. We have proved that for a large class of circuits, the

adversary is limited to turn non-linear gates into other non-linear gates and to make selective

failure attack. This is equivalent to say that he can only add NOT gates to the wires of his choice,

or to probe some wires with some probability of getting caught. This is drastically lower than

the previous state-of-the-art suggests. We believe this work can lead to some more optimized

secure solutions in the malicious setting, more ef�cient than the regular cut-&-choose schemes.

For circuits outside the class we de�ne, what corruptions an adversary is able to make is

still an open question. Our preliminary studies suggest that this question is highly non-trivial

and may depend on the topology of the circuit being corrupted.

The second contribution is the analysis of the impact of NOT gates in real-life circuits. We

show that some circuits do not leak more information when NOT gates are added, and thus

cut-&-choose solutions are unnecessary to enhance the privacy security property. However, for

78

2.6. Conclusion

some other circuits, the addition of NOT gates can lead them to reveal more information, but in

that case we give recommendations to improve cut-&-choose solutions for free.

For circuits that are resistant to the addition of NOT gates, we design an alternative to cut-

&-choose to prevent selective failure attacks. Although it has roughly the same overcost than

cut-&-choose based solutions, we believe this direction can lead to more ef�cient solutions.

Finally, our contribution also opens an interesting problem: can we de�ne an OT protocol,

such that the sender has n pairs of messages (mj; 0; mj; 1) with mj; 1 = mj; 0 � � for all 1 � j � n

(or more generally mj; 1 = f (mj; 0) for an arbitrary function f)? The sender has n choices bj

and wishes to obtain mj;b j for all j , with the guarantee that mj; 1 = mj; 0 � � . Of course this can

be achieved by adding commitments and zero-knowledge proofs, but it would be interesting

to study if it can be solved with no overcost compared to the OT-extension protocol [IKNP03].

From a theoretical point of view, this could be achieved even more ef�ciently since all pairs of

messages share the same relation.

79

CHAPTER 3

LOCATION PROOF SYSTEM BASED ON

MULTI-PARTY COMPUTATIONS

In this chapter, we show how multi-party computations can help users to protect their privacy in

everyday life. More speci�cally, we study the case of location-based services that have become

quite popular (e.g. GPS, location-based advertising, augmented reality games). Their variety

and their numerous users show it clearly. However, these applications rely on the people's

honesty to use their real location. If they are motivated to lie about their position, they can

easily do so. A location-proof system allows a prover to obtain proofs from nearby witnesses,

for being at a given location at a given time. Such a proof can be used to convince a veri�er later

on. However, provers and witnesses may not want to broadcast their identity or their position

each time they generate location proofs.

Many solutions have been designed in the last decade, but none protects perfectly the

privacy of their participants. In this chapter, a solution is presented in which a malicious adver-

sary, acting as a prover, cannot cheat on his position. It relies on multi-party computations and

group-signature schemes to protect the private information of both the prover and the witnesses

against any semi-honest participant.

Additionally, this chapter gives a new secure multi-party maximum computation protocol for

the speci�c context of location-proof systems. This tool allows n users to know which one of

them has the greatest value without revealing their values. It requires O(n log(n)) computations

and communications, which greatly improves the previously known solutions having O(n2) com-

plexities, but at the cost of some small leakage that we analyze. Although it is designed for our

location-proof system, it can be applied to any scenario in which a small information leakage is

acceptable.

81

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

Contents

3.1 Introduction . 83

3.2 Preliminaries . 84

3.2.1 Group Signature Schemes . 84

3.2.2 Prior Location-Proof Systems . 85

3.2.3 Secure Two-Party Comparison Protocol 86

3.2.4 Secure Multi-Party Maximum Protocol 88

3.3 Problem Statement . 89

3.3.1 Location-Proof Generation Protocol Outline 90

3.3.2 Adversary Models . 91

3.4 Location-Proof Gathering and Verifying . 92

3.4.1 Location-Proof Gathering . 92

3.4.2 Security Properties of the Overall Process 93

3.4.3 Location-Proof Verifying . 94

3.5 Secure Multi-Party Maximum Protocol . 95

3.5.1 The Protocol Description . 95

3.5.2 The Protocol Security . 96

3.5.3 The Protocol Analysis . 97

3.6 Secure Iterative Two-Party Comparison Protocol 98

3.6.1 The Protocol Correctness . 98

3.6.2 The Protocol Security . 100

3.6.3 The Protocol Complexity . 102

3.6.4 The Maximum Transfer . 102

3.7 Complexity of the Overall System . 103

3.8 Conclusion . 104

82

3.1. Introduction

3.1 Introduction

Location-based services are now ubiquitous, mostly through our phones and vehicles. These

services generally rely on the people's honesty to use their real location. Hence, they are limited

to situations in which the people do not have any motivation to lie. However, for some services

such as electronic voting, location-based access control, and law enforcement investigation,

this is not the case. These services must be based on a location-proof system that allows a

participant, called prover, to obtain proofs from nearby participants, called witnesses, asserting

that he has been at a given location at a given time. Such a proof can be used later on to

convince a service provider, called veri�er .

Any location-proof system based on the interaction between a prover and his neighbours

has some privacy issues. The prover may not want to broadcast his identity every time he

needs location proofs. Similarly, witnesses may want to hide their identity and location. Hence,

private information must be kept secret from all the participants but not from an independent

trusted third party, called judge. Indeed, the judge must be allowed to retrieve the identities

of the participants, in order to detect malicious collusions among them. In this chapter, we

consider that an ideal location-proof system for such applications must then have the following

properties [GKRT14].

1. Correctness: location proofs generated honestly by a prover with the collaboration of

honest witnesses must always be accepted by the veri�er.

2. Unforgeability : a prover cannot obtain/modify valid location proofs for a location where he

is not, or at a different time.

3. Non-transferability : location proofs are valid only for the prover who generated them. They

cannot be exchanged.

4. Traceability1: given a proof, the judge must be able to retrieve the identity of the witness

who signed it.

5. Location and identity privacy: the location and the identity of the witnesses and the prover

must be kept secret from other participants (except the judge).

6. Unlinkability : given two distinct location proofs, a participant cannot guess whether they

have been generated by the same witness, nor whether they concern the same prover.

This obviously does not stand for the judge.

7. Storage sovereignty: the prover is responsible for storing his own location proofs. No one

is able to access them without the prover's agreement.

1The traceability property is new, it does not come from [GKRT14].

83

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

In this chapter, we propose the �rst privacy-aware location-proof system that ful�ls all these

properties. It relies on two protocols: a location-proof gathering protocol (allowing a prover

to obtain proofs from witnesses) and a location-proof verifying protocol (allowing a veri�er to

validate the correctness of a proof). The �rst one ensures that both the prover and the witnesses

keep their identity and their location secret. Once the location proofs have been obtained from

witnesses, a prover must keep them securely and may use them later on to convince veri�ers.

For ef�ciency reasons, no centralized server is used during the gathering protocol.

The security of our solution is analyzed against malicious and semi-honest adversaries.

The former is a prover trying to obtain invalid location proofs, whereas the latter is any partic-

ipant (prover, witness or veri�er) trying to obtain the private information on other participants.

Static collusions between a prover and some of the witnesses against other witnesses are also

considered.

3.2 Preliminaries

3.2.1 Group Signature Schemes

A group signature scheme is a technique introduced by Chaum and Van Heyst [Cv91] for al-

lowing a member of a group to anonymously sign a message. A veri�er is then able to check

the validity of a signature but cannot determine which group member generated it. Every group

member is given a unique secret key from a group manager, that possesses the master secret

key. Therefore, the group manager is responsible for adding members to the group and revok-

ing signature anonymity. Many solutions have been designed and they all meet the following

requirements:

• Soundness and completeness: valid signatures by group members always verify correctly,

and invalid signatures always fail veri�cation.

• Unforgeability : only group members can generate valid group signatures.

• Traceability : given a valid signature, the group manager must be able to lift the anonymity

of the signer.

• Anonymity: given a message and its signature, none should be able to determine the

identity of the signer (except the group manager).

• Unlinkability : given two messages and their signatures, none should be able to determine

whether they have been generated by the same group member.

Depending on the solutions, additional properties can be added. Particularly, the group man-

ager is often divided in two entities: a membership manager and a revocation manager, this

84

3.2. Preliminaries

allows to separate the two responsibilities. We do not consider this separation in the rest of the

chapter.

More recently, Franklin and Zhang [FZ12] introduced a new property that breaks the unlink-

ability property in the very particular case where the two messages are the same:

• Uniqueness: given a single message and two signatures of this message, one can tell

whether they have been generated by the same group member.

Such solutions are referred as unique group signature schemes.

3.2.2 Prior Location-Proof Systems

Several solutions that partially ful�l our objectives were proposed. Unfortunately, most of them

require that the participants broadcast their identity and/or location. Sastry et al. [SSW03] in-

troduced the notion of secure location veri�cation . Their solution relies on the deployment of

impersonal local access points to locate participants in a given region, using distance-bounding

protocols. Furthermore, the identity and location of the prover have to be transmitted to allow

access points to grant access to nearby location-based services. In [SW09], Saroiu et al. intro-

duced the notion of location proofs. The prover can now ask access points to generate proofs

that he can store until he has to convince a veri�er. However, it still requires an infrastructure to

be deployed and does not ensure privacy. Later, other approaches based on impersonal access

points (Luo et al. [LH10a, LH10b] and Pham et al. [PHB+ 15]) start answering the privacy issues

using hash functions and pseudonyms. Although the most recent of these schemes achieve a

high level of privacy, it is still limited to regions where access points are already deployed.

A complete different approach has been used by Singelee et al. [SP05]. Instead of de-

ploying impersonal devices, they have suggested to involve nearby users. These users, called

witnesses, can run distance-bounding protocols with the prover to certify his location. Unfor-

tunately, the scheme still does not provide any privacy property. The solution of Graham et

al. [GG09] is somehow similar, but the veri�er has to choose himself the witnesses among

the nearby volunteers. It reduces the probability of collusion among the participants. Later,

Zhu et al. proposed a new solution APPLAUS [ZC11] that protects identities through a set of

pseudonyms. This allows the witnesses to generate location proofs without leaking their identity.

However, all proofs (including pseudonyms and locations) are stored in a centralized authority,

raising some privacy and ef�ciency issues. The protocol Link of Talasila et al. [TCB10] is also

based on centralized system.

Finally, Gambs et al. [GKRT14] proposed a solution to get rid of the central authority and

to ensure most privacy properties. Identities are protected with a group-signature scheme in-

stead of pseudonyms and the positions of the witnesses are not transmitted. Unfortunately, the

85

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

E
ch

o
[S

S
W

03
]

[S
P

05
]

S
LV

P
G

P
[G

G
09

]

[S
W

09
]

[L
H

10
a]

V
er

ip
la

ce
[L

H
10

b]

A
pp

la
us

[Z
C

11
]

Li
nk

[T
C

B
10

]

[D
C

F
12

]

P
ro

ps
[G

K
R

T
14

]

S
ec

ur
eR

un
[P

H
B

+
15

]

O
ur

w
or

k

Prover anonymity
P: pseudonyms
G: group signatures
H: hash function

H H G P G

Witness anonymity
P: pseudonyms
G: group signatures
NA: not applicable

NA NA NA NA P H G NA G

Prover location privacy X X X X � X X

Witness location privacy NA NA NA NA X X NA X

Storage sovereignty X X X X
No infrastructure
requirement

X X X X X X X

Traceability NA X NA NA NA X X X X X

Table 3.1: Comparison of existing protocols

location of the prover is still learned by the witnesses. A comparison of all these schemes is

provided in Tab. 3.1.

In comparison, our solution relies on multi-party computations and group signature schemes

to protect the identity and the location of all participants. It assumes that the participants have

phones/vehicles with directional antenna to locate their neighbours. Such a solution can com-

plement classical distance-bounding protocols [BGG+ 16].

3.2.3 Secure Two-Party Comparison Protocol

Since the millionaires' problem was introduced by Yao [Yao82], it has attracted a lot of interest.

Although the original solution of Yao solves the problem, its ef�ciency becomes prohibitive for

large values (see Section 1.1). Generic solutions like garbled circuits or homomorphic secret

sharing could be used to answer the problem, but it appears that some custom protocols are

more ef�cient ([IG03, BK04, LT05] ...).

In this section, the technique of Lin and Tzeng [LT05] is detailed. We choose this one among

others for ef�ciency reasons and because it is highly customizable.

Their solution uses either a multiplicative homomorphic encryption scheme or an additive

86

3.2. Preliminaries

Protocol 3.1: Secure two-party comparison protocol of Lin and Tzeng [LT05].
Input: The l-bit private values a and b of A and B .
The encryption function EA (�) with key NA for an additive encryption scheme.
A hash function h(�).
Output: A determines whether a > b or a � b.
Step 1: A does the following computations:

Compute Ta
1 .

Create the l-element vector , so that i = h(Ta
1 [i]) if it exists, otherwise i is a

random value.
Return (EA (1); � � � ; EA (l)) to B .

Step 2: B does the following steps:
Compute Tb

0 and pick a random permutation � B (�).
If Tb

0 [i] exists, homomorphically compute the l-element vector � :

EA (� i) = EA (ki � (h(Ta
1 [i]) � h(Tb

0 [i])))

= (EA (i) � EA (� h(Tb
0 [i]))) k i

where ki 2R ZNA .
Otherwise, � i is a random non-zero value.
Send � B (EA (� 1); � � � ; EA (� l)) to A.

Step 3: A does the following steps :
Decrypt the shuf�ed vector � .
The vector � contains 0 if and only if a > b.

homomorphic encryption scheme. We present the latter one in Protocol 3.1, since we will need

the additive property in our scheme.

Given an integer x, let us de�ne the following sets: T x
0 = f x1x2:::x i � 11jx i = 0g and T x

1 =

f x1x2:::x i jx i = 1g, where x1 is the most signi�cant bit of x. Let T x
j [i] denote the i th element of

T x
j , if it exists. Lin and Tzeng's protocol relies on the following observation:

a > b () Ta
1 \ Tb

0 6= ;

() 9 i; T a
1 [i] = Tb

0 [i]

Note that Ta
1 \ Tb

0 contains at most one element. The two parties, having values a and b, lo-

cally compute these two sets and then privately determine the size of the intersection. This

intersection is done in Step 2 by computing homomorphically

� i = ki � (h(Ta
1 [i]) � h(Tb

0 [i])) ;

which equals 0 if Ta
1 [i] = Tb

0 [i]. Observe that the index i � such that Ta
1 [i �] = Tb

0 [i �] leaks how

many most signi�cant bits x and y have in common. Thus, the vector � is shuf�ed in Step 2

87

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

before decryption in Step 3.

Our secure maximum computation protocol that is presented in Section 3.5 is based on a

modi�ed version of Lin and Tzeng's protocol.

3.2.4 Secure Multi-Party Maximum Protocol

This problem generalizes the millionaires' problem to n users. Every participant Pi has a value

x i and we want to know who possesses the maximum max(x i j1 � i � n), without revealing

any of the n values including the maximum. An alternative goal would be to learn the maximal

value while keeping hidden the identity of its owner and the other values.

Generic solutions based on secret sharing could be used to answer that problem, but they

would imply a huge number of interactions between the participants in order to share the inputs

and then to obtain the result. For this reason, many custom protocols have been speci�cally

designed to answer it more ef�ciently.

Two different approaches have been studied. The �rst one consists in running a secure

two-party comparison protocol for every pair of participants. Obviously, the main dif�culty of

this technique is to hide the results of these intermediate comparisons. The work of Zhang

and Makedon [ZM05] elegantly solves this issue with a system of vectors that hide the private

values of the participant. The main steps of this approach is given in Protocol 3.22. Very roughly

speaking, when comparing their value, the parties Pi and Pj cannot distinguish whether they

are comparing x i with x j or � x i with � x j . Only P1 (that has a speci�c role) knows but does not

have access to the result of the comparison. At the end of the n2 � n comparisons, P1 is able

to determine which participant has the maximal value without leaking any further information.

Thus, this family of solutions requires O(n2) comparisons.

Other solutions, like [HMMB13], aim at computing the maximum bit by bit privately. Such

solutions require O(l � n2) communications, where l is the bit size of the inputs, which is then

equivalent to the quadratic number of comparisons of the �rst approach.

As already mentioned, our scheme relies on a multi-party maximum protocol. Although any

existing protocol would be suf�cient, we design a new multi-party maximum protocol in Sec-

tion 3.5 requiring O(n log(n)) computations and communications. All previously known results

have their complexity in O(n2). However, our construction is based on a trade-off between ef�-

ciency and privacy, but can be generalized to any scenario where a small information leakage

is acceptable.

2The original solution of [ZM05] outputs the maximal value. For simplicity, the presented protocol has been
slightly modi�ed to output the identity of the owner instead.

88

3.3. Problem Statement

Protocol 3.2: Overview of the secure multi-party maximum computation protocol of Zhang
and Makedon [ZM05]

Input: Every participant Pi (1 � i � n) has a distinct value x i and an additive encryption
function E i (�).

Output: P1 obtains i max .
Step 1: forall i 6= 1 do

Pi generates a vector Vi = [x i ; � x i ; x i ; � x i ; :::] of size 2n, encrypts every element and
sends it to P1. We note Vi;k the kth element of Vi .

end
Step 2: P1 does the following steps:

Generate a permutation � (�) that randomly switches the 2j th and the (2j + 1) th

elements of a vector of size 2n.
Generate a random vector R of size 2n.
forall i 6= 1 compute homomorphically V 0

i = � (Vi) + R and send it to Pi .
Step 3: forall i 6= 1 do

Pi decrypts V 0
i and creates a vector Ti of size 2n.

forall 1 � j � n do
Pi and Pj run a secure comparison protocol between Vi; 2j and Vj; 2j , such that
only Pi learns the result.

If Vi; 2j > V j; 2j , Pi sets Ti; 2j = 1 , else Ti; 2j = 0 .
Pi and Pj do the same for Vi; 2j +1 and Vj; 2j +1 .

end
Pi sets Ti; 2i = Ti; 2i +1 = 0 .

end
Step 4: P1 does the �nal step:

forall i 6= 1 do
Generate T0

i = [1 ; 0; 1; 0; :::] with T0
i; 2i = T0

i; 2i +1 = 0 .
Note that � (T0

i) = Ti () Pi has the maximal value.
P1 and Pi privately check if � (T0

i) = Ti , such that only P1 learns the result.
end

3.3 Problem Statement

Let us suppose the participants have devices (e.g. phone or vehicle) equipped with directional

antennas, allowing to locate a transmitting device in 90� -quadrants with respect to their position

and orientation. Depending on his location and orientation, a witness would be able to locate a

prover in one of the four reference orthogonal half-planes (north, east, south, west), as shown

in Fig. 3.1.

Our location problem can therefore be stated as follows. Consider n witnesses having lo-

cated a prover P in half-planes with respect to their position. Looking for a location proof, P

wants to obtain an authenticated description of the intersection of these half-planes, as shown

in Fig. 3.2, while the witnesses want to protect their identity and private information. This can be

89

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

(b)(a)

Wi

Wi

Figure 3.1: Half-planes from 90� -quadrants

W1

W2

W3

W5

W4

W7P

Figure 3.2: Intersecting half-planes

reduced to �nd the maximum (or minimum) of the private x� or y� coordinates of the witnesses.

3.3.1 Location-Proof Generation Protocol Outline

Our method relies on an additive homomorphic encryption scheme, such as Paillier's cryptosys-

tem [Pai99], and a unique group-signature scheme [FZ12]. The uniqueness property prevents

that an accomplice of the prover P, or P himself, simulates the presence of multiple witnesses

(Sybil attack). In our scheme, groups can be dynamically managed and each participant U

has a signing key gskU . Let GS(gskU ; m) denote the private signature function of the message

m with gskU , and GV(gv ; m; �) the public veri�cation function that allows anyone to verify the

signature � of m with the public group key gv .

Our solution also relies on a multi-party maximum computation protocol, allowing P to learn

the encrypted maximum (or minimum for the north and east sides) of the private x� coordinate

(or y� coordinate for the north and south sides) of the closest witness under the key of the veri-

�er. We note EV(x i min), EV(x i max), EV(yi min) and EV(yi max) these results. Such a protocol can

be obtained with small modi�cations of the original work of [ZM05] or from any other solution

that uses an additive homomorphic encryption scheme. In later sections, we also design a new

secure multi-party computation protocol that can be used instead. In comparison, it is much

more ef�cient but has a small leakage. It consists of two sub-protocols, for which we give a

brief overview for future references:

• Protocol 3.5: it is a secure multi-party maximum computation protocol that allows P to

learn which witness is the closest to him, but not the encrypted coordinate.

• Protocol 3.7: if P knows which witness is the closest to him, this secure protocol allows P

to retrieve its encrypted coordinate without leaking any further information.

Protocol 3.3 presents the outline of our approach. After sharing among all participants the

ephemeral additive homomorphic public keys, and the directions in which the prover is located

for all witnesses (Step 1), the idea is to �nd the intersection of the witness-de�ned orthogonal

half-planes approximating the prover's position using multi-party computation protocols (Step 2-

3), and generate a location proof from it (Step 4-5).

90

3.3. Problem Statement

Protocol 3.3: Location proof generation
Input: Each participant U knows his position (x i ; yi) and his group signature key gskU .

The encryption function of the veri�er EV(�) is public.
Output: P obtains an authenticated location proof from his neighbor witnesses.
Step 1: Initialization

P broadcasts a request: “I'd like location proofs at time � ”.
forall accepting witness Wi do

Find the direction di of P (North, South, West or East).
Generate an ephemeral public key NW i .
Send back (di ; NW i) to P.

end
P broadcasts to all witnesses � = (�; N P; (di ; NW i)1� i � n) and GS(gskP; �).
NP is his ephemeral public key.
forall accepting witness Wi do

Find his key NW i in the properly signed message. If not, abort.
Return the signature GS(gskW i ; �).

end
P broadcasts f GS(gskW i ; �)j1 � i � ng.
forall accepting witness Wi do

Find if all the signatures are valid and different. If not, abort.
end

Step 2: forall accepting witness Wi do
Run a min/max computation protocol with all witnesses (Either [ZM05] or
Protocol 3.5).

end
Step 3: P gets EV(x i min), EV(x i max), EV(yi min) and EV(yi max) (Either [ZM05] or
Protocol 3.7).

Step 4: P transfers these encrypted results to all witnesses.
Step 5: All Wi sign the proof, using gskW i , and send it to P (this will be detailed in
Protocol 3.4).

3.3.2 Adversary Models

In this chapter, we stress that there are two different motivations for the prover. First, the main

motivation of a malicious prover is to obtain a valid proof that he is at a given location at a

given time, when in fact he is somewhere else. In this case, the prover has to deviate from the

protocol, while remaining undetected. Otherwise, legitimate witnesses would abort and alert

the judge.

On the other hand, a curious prover may be interested in getting information about his

neighbours (identity or precise location). Since the identity of a witness relies on the security

of the group-signature scheme used, the potential risk is low. At best, the prover can expect to

get the location of an unknown participant.

The witnesses could be interested in discovering more information on their neighbours.

91

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

However, since a witness has far fewer possibilities than a prover, a malicious witness would

be better to act as a prover with his neighbours.

Similarly, the veri�er does not participate in the gathering location protocol and thus can

only follow the semi-honest adversary model to try to get more information about the witnesses

and the prover.

Finally, notice that a prover can always obtain a valid but faked location proof from ac-

complices. The veri�er and the judge can always determine the number of witnesses having

participated in the protocol. If they determine that this number is too low, they may reject the

valid proof anyway.

To sum up, our scheme is secure against the following adversaries :

• A malicious prover willing to obtain fake location proofs.

• A semi-honest prover, witness or veri�er trying to violate other participants' privacy.

In the rest of the chapter, Section 3.4 presents how to build encrypted location proofs

against a malicious adversary, and how to verify them. In Section 3.5, a new solution to the

secure multi-party maximum computation problem is described. It relies on a modi�ed version

of a classical two-party comparison protocol presented in Section 3.6 and is optimized in the

context of our location-proof system.

3.4 Location-Proof Gathering and Verifying

Let us �rst assume that the prover P has obtained somehow the four encrypted optimum val-

ues EV(x i min), EV(x i max), EV(yi min) and EV(yi max) describing the rectangle in which he lies.

Section 3.5 presents how to obtain them from his neighbouring witnesses. Unfortunately, noth-

ing proves that he has not chosen these values himself and encrypted them with the veri�er

public key. The goal of Step 4 and Step 5 of Protocol 3.3 is speci�cally to prevent this malicious

behaviour. In this section, we design a protocol allowing the witnesses to certify these optimum

values. In this section, we will focus only on one of these values, say EV(x i max).

3.4.1 Location-Proof Gathering

Let us assume w.l.o.g. that the public key NV of the veri�er is 2048-bit long and that the wit-

nesses are at most at one kilometre from the prover. If the scale of the grid system is one metre,

the difference x i max � x i � 210 uses at most lx = 10 bits. We de�ne lk = jNV j � (lx + 1) . Our

method for generating the location proofs is presented in Protocol 3.4. If a witness follows the

92

3.4. Location-Proof Gathering and Verifying

Protocol 3.4: Location-proof gathering protocol
Input: P knows EV(x i max). Each witness Wi has his value x i and his signature key

gskW i . Each witness knows the number of participants n, GS(gskP; �), and the
veri�er semi-homomorphic encryption function EV(�).

Output: P obtains a location proof from each witness.
Step 1: P broadcasts the randomized version of EV(x i max).
Step 2: forall witness Wi do

Choose randomly ki 2R J2lx +1 ; 2lk � 1Kand r i 2R J� 2lx + 1; 2 lx � 1K.
Compute EV(ki (x i max � x i) + r i) = (EV(x i max) � EV(� x i)) k i � EV(r i).
Send EV(ki (x i max � x i) + r i) to P.

end
Step 3: P broadcasts f EV(ki (x i max � x i) + r i)j1 � i � ng.
Step 4: forall witness Wi do

Check the presence of EV(ki (x i max � x i) + r i). If not, abort.
De�ne � = ((EV(ki (x i max � x i) + r i))1� i � n ; EV(x i max); n; GS(gskP; �)) .
Sign � i = GS(gskW i ; �) and send it to P.

end
Step 5: P stores � , GS(gskP; �) and all witness signatures � i .

protocol, the veri�er would be able to retrieve the value ki (x i max � x i) + r i , which is such that:

ki (x i max � x i) + r i > 2lx i� x i < x i max (1)

� 2lx <k i (x i max � x i) + r i < 2lx i� x i = x i max (2)

ki (x i max � x i) + r i < � 2lx i� x i > x i max (3)

If all the participants follow the protocols, Case (2) must happen at least once and Case (3)

never. This can be con�rmed by the veri�er V. Thus, V can detect if a malicious prover deviates

in Step 1 and uses an invalid value. On the other hand, if a malicious prover deviates in Step 3

and drops (or alters) some values, at least one witness can abort the protocol and alert the

judge, by sending him any value signed by the prover (such as GS(gskP; �) of Protocol 3.3),

which the judge can trace thanks to the properties of the group-signature scheme. Finally, the

prover cannot deviate in Step 5 due to the unique group-signature scheme.

3.4.2 Security Properties of the Overall Process

We have now to argue that the overall process to obtain the location proofs respects all the

security properties listed in the introduction.

Since the unique group signature scheme [FZ12] is unforgeable, the prover P cannot forge

new proofs, except with his own key. In Step 5 of Protocol 3.3, such an opportunity is impossi-

93

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

ble. P would have to generate two distinct signatures on the same message, contradicting the

uniqueness property of the signature scheme. In fact, the judge would identify any transgress-

ing participant in this step, due to the traceability property of the signature scheme. Thus, the

unforgeability and traceability properties of our location-proof protocol are ensured.

In Step 1 of Protocol 3.3, the prover broadcasts a message � and its signature GS(gskP; �).

This links the timestamp and the n ephemeral keys of the witnesses. Since this signature is

included in the �nal proofs signed by the witnesses, the location proof is valid only for the

participant able to produce the valid signature GS(gskP; �), con�rming the non-transferability

property of the protocol.

Due to the unlinkability property of the group signature scheme, the location proof associ-

ated to GS(gskP; �) would not be linkable with another location proof associated to a different

signature GS(gskP; � 0) done by the same prover. Similarly, the signatures of the witnesses in

Protocol 3.4 would also not be linkable. Thus, the unlinkability property of our location-proof

protocol is guaranteed.

The privacy of the identities follows from the property of group signature scheme. Similarly,

the privacy of the positions (x i ; yi) relies on the semantic property of the encryption scheme

and the randomization process (see Section 3.6.2). Unfortunately, the last step of Protocol 3.4

leaks some information through EV(ki (x i max � x i) + r i). The veri�er can guess some bits of x i .

However, we can show that the Shannon entropy H (X jY = ki (x i max � x i) + r i) is still close to

H (X jX � x i max). For the parameters we consider, we computed that

H (X jY = ki (x i max � x i) + r i) � 0:85� H (X jX � x i max) :

The prover obtains his location proofs during Step 5. Then, he stores them until he needs

to convince the veri�er, ensuring the storage sovereignty property.

3.4.3 Location-Proof Verifying

Finally, the correctness property has to be shown. The prover P wants to convince the veri�er

V that EV(x i max) is indeed the maximum value. So, he sends:

• His position x, the message � and his signature GS(gskP; �). The message contains the

timestamp � and the number of witnesses n (Protocol 3.3).

• The randomized value of maximum EV(x i max) (Either [ZM05] or Protocol 3.7).

• The n proofs EV(ki (x i max � x i) + r i) and the witness signatures � i of � = ((EV(ki (x i max �

x i) + r i))1� i � n ; EV(x i max); n; GS(gskP; �)) (Protocol 3.4).

94

3.5. Secure Multi-Party Maximum Protocol

The veri�er proceeds to several veri�cations. He �rst decrypts EV(x i max) and checks if

x i max < x . Then, he checks that the n proofs are generated by n distinct participants, dif-

ferent from P. This veri�cation is based on the uniqueness property of the group signature

scheme. All the signatures of the message � must be different. The veri�er also asks the judge

to check that GS(gskP; �) was generated using gskP, ensuring that P took place in the proof

generation protocol. The �nal step is to make sure that EV(x i max) is indeed the maximum value

of the witnesses. From the values of EV(ki (xmax � x i) + r i) in � , the veri�er can check that

there is an index j s.t. � 2lx < k j (x i max � x j) + r j < 2lx , and that there is no index j s.t.

kj (x i max � x j) + r j < � 2lx .

If all the veri�cations succeed, the veri�er should be convinced that P was indeed at the

east of x i max at the given time. If any of these steps fails, it reveals a malicious action by either

the prover or a witness. But unlike the prover, witnesses do not have any incentive to cheat. If

some proofs are missing, the prover might have deleted them on purpose, or a witness may

have aborted because of a deviation of the prover.

3.5 Secure Multi-Party Maximum Protocol

In this section, we introduce a new approach for a secure multi-party maximum protocol. The

main purpose is to enable a third party (the prover in our context) to determine the owner of the

maximum value among a set of n participants (or witnesses). The prover is the only party who

gets a result from this protocol.

The basic idea is to use iteratively a dedicated secure two-party comparison protocol, that

(i) enables the prover P to know which one of the two witnesses owns the greater private value

without having to know this value, and (ii) guarantees that if one of the witnesses has already

lost a comparison against another witness, the prover would not get any further information.

We assume we have such a protocol. Indeed, we will give a construction in Section 3.6 (Proto-

col 3.6). Let “iterative two-party comparison protocol” refer to this tool.

3.5.1 The Protocol Description

Protocol 3.5 presents our approach for maximum computations. The prover gathers subsets of

witnesses in a binary tree. In each node, the witnesses of the associated subset are paired and

the secure iterative two-party comparison protocol is used. At the end of each round, the prover

gets the results of these comparisons and can eliminate half of the remaining witnesses. If a

witness does not participate in any further comparison, he can deduce that he was farther away

from the prover than his latest paired witness. Similarly, if one keeps participating in the protocol,

he knows he has won every previous comparison. Thus, the protocol should be adapted to

95

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

Protocol 3.5: Secure maximum computation based on binary tree
Input: The witnesses S1 = f W1; W2; � � � ; Wng. Each Wi has a private value x i .
Output: P determines i max = arg max f x i j1 � i � ng.
for i = 1 to dlog(n)e do

for j = 2 i � 1 to 2i � 1 do
Step 1: P does the following steps :

S = ;
if jSj j is odd then

Select Single 2R Sj s.t. Single is not marked.
Mark the witness Single and add it to S.

end
Pair the elements of Sj n S � pair the marked witnesses.

Step 2: Each pair of witnesses uses the iterative secure two-party comparison
protocol, and P obtains the index of the owner of the greater value.

Step 3: P selects k 2R f 0; 1g and computes the following sets:
S2j + k = S [f the set of the losing witnessesg
S2j + k = S [f the set of the winning witnessesg

end
end
Step 4: P determines the index Set i max of this witness.

ensure that witnesses keep participating in the protocol even if they have been eliminated.

However, the comparisons with eliminated witnesses must be randomized and meaningless for

the prover.

First assume that the number of witnesses is a power of 2. In the initial round, the prover

pairs the 2k witnesses all together. Each of these pairs runs the two-party comparison protocol.

At the end of the round, the winners and the losers are gathered independently. This process

is then applied recursively on each subset. Hence, two witnesses would never be paired twice

together. After i iterations, there would be 2i subsets of 2k� i witnesses. One of these subsets

would contain only winners and all the others would contain only losers.

Consider now the general case of n witnesses. The prover pairs the witnesses. If there is

an odd number of witnesses in a subset, one of them (called Single in Protocol 3.5) would be

doubled, and considered as both a winner and a loser.

Finally, notice that the witnesses do not communicate with each other directly. Otherwise, it

would be simple to �nd out which one is closer to the prover due to the directional antennas.

Thus, communications must go through P.

3.5.2 The Protocol Security

The security of our maximum computation protocol relies on these objectives: (1) the prover

cannot get any information from the two-party comparison protocol if at least one of the wit-

96

3.5. Secure Multi-Party Maximum Protocol

nesses has been already eliminated previously, (2) the prover cannot get any information on

the value of any witness, and (3) the witnesses cannot get any information from the comparison

protocol.

The prover does the pairing and acts as the intermediary for the two-party comparison

protocol. He can then observe all the messages exchanged between the witnesses. Thus,

Objectives (1) and (2) rely on the security of the two-party comparison protocol. This will be

addressed in Section 3.6.

Objective (3) relies on the indistinguishability of the subsets Sj in the round i of Protocol 3.5,

for 2i � 1 � j � 2i � 1. If the two-party comparison protocol is secure, the only way for a semi-

honest witness to get any information on the comparisons is to �nd if he is in the subset of the

winners. Since the indices of the subset are chosen randomly, any of them can be the subset

of the winners.

3.5.3 The Protocol Analysis

The maximum computation problem has already been studied (e.g. [CFIK03, HBB12]). How-

ever, the computational and communication complexities of these solutions are in O(n2). Such

complexities are not suitable for portable or embedded devices. In comparison, our method only

requires O(n log(n)) two-party comparisons, at the cost of leaking n � 1 comparison results in-

volving winning witnesses. This follows directly from the underlying binary tree orchestrating

the comparisons. The leaked information is not suf�cient to order the witnesses.

In order to determine the complexity of Protocol 3.5, few facts must be proven. Since some

witnesses may be doubled, they may be compared at least twice in any given round. We con-

sider that the comparisons of a marked witness are resolved sequentially. In that case, two

consecutive stages of comparisons are required for a round. The �rst step is to show that in

any subset of witnesses at any round, there are at most two marked witnesses. This can be

seen as an invariant of the protocol. Let us assume that a subset Sj contains at most two

marked witnesses at the beginning of the round. If jSj j is even, the subsets S2j and S2j +1

may contain at most one marked element. Otherwise, if jSj j is odd, one new witness would be

marked, and the subsets S2j and S2j +1 may contain at most two marked elements - the new

one and an old one. Hence, for any subset of odd cardinality in a non-�nal round, there are

at least one unmarked witness that can be marked and doubled if needed. Marking twice the

same witness is unnecessary. As a corollary of this analysis, we have the following lemma:

Lemma 3.1. Sets having two marked witnesses at the end of a round would contain one previ-

ously marked witness and a newly doubled witness.

The second step is to show that any combination of comparisons can always be split into at

most two stages in any given round. Consider the hypothetical cycle of comparisons between

97

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

marked witnesses in a given round.

f Wi 1 ; Wi 2 g; f Wi 2 ; Wi 3 g; � � � ; f Wi k ; Wi 1 g

Each of these pairs belongs to a different subset of witnesses. If k is even, these comparisons

can be split into two independent stages. This is optimal since a marked witness may have to

be compared with two other witnesses. Now, if k is odd, alternate witnesses would have been

just doubled in the round. By Lemma 3.1, this is impossible since the length of the cycle is odd.

Hence, no cycle of comparisons of odd length may exist. Two stages per round are enough to

orchestrate the comparisons. As a result, the total number of stages is greater than dlog(n)e

and lower than 2dlog(n)e.

One can actually prove that no cycle can exist at all, but it does not improve the complexity

further.

3.6 Secure Iterative Two-Party Comparison Protocol

In this section, we propose a speci�c two-party comparison protocol (Protocol 3.6) that enables

a third party (the prover P) to know which one of the two participants (the witnesses A and

B) owns the greater private value without having to know this value explicitly. This can be

used iteratively, so that if one of the participants has already lost a comparison against another

participant, he should not give any further information to the third party. Such a protocol can be

obtained by adapting the protocol of Lin and Tzeng [LT05], chosen for ef�ciency.

Given an integer x, let us de�ne the following sets for our comparison protocol: T x
0 =

f x1x2:::x i � 11jx i = 0g and T x
1 = f x1x2:::x i jx i = 1g. Let T x

j [i] denote the i th element of T x
j ,

if it exists. Lin and Tzeng's protocol relies on this lemma:

Lemma 3.2. [LT05] For x; y 2 N, x > y if and only if T x
1 \ T y

0 6= ; .

Our comparison protocol has been developed to be used in our multi-party maximum pro-

tocol presented in the previous section. It relies heavily on a probabilistic additive encryption

scheme such as Paillier's cryptosystem [Pai99]. The participants use their ephemeral encryp-

tion keys broadcast in Protocol 3.3. These keys are signed by the prover and veri�ed by all the

nearby witnesses. This associates the keys to a particular session of the protocol. As mentioned

previously, there should be no direct communication between the participants.

3.6.1 The Protocol Correctness

Let us �rst assume that the private values sA and sB have been initialized to zero by A and B ,

respectively. To simplify the notations, let us assume w.l.o.g. that the permutation functions are

98

3.6. Secure Iterative Two-Party Comparison Protocol

Protocol 3.6: Secure iterative two-party comparison protocol determining which partici-
pant has the greater private value.

Input: The l-bit private values a and b of A and B . The encryption functions EA (�), EB (�)
and EP(�), with keys NA , NB and NP. The private values EP(sA) and EP(sB) of A
and B , respectively. The hash function h(�).

Output: P determines whether a > b or a � b.
Step 1: A does the following steps :

Compute Ta
1 and the l-element vector , so that i = h(Ta

1 [i]) if it exists,
otherwise, i is simply a random value.
Pick a random c 2R ZNB .
Return (EA (1); � � � ; EA (l)) and EB (c) to B through P.

Step 2: B does the following steps after decrypting EB (c):
Compute Tb

0 and the l-element vector �
EA (� i) = EA (ki (h(Ta

1 [i]) � h(Tb
0 [i])) + rB)

= (EA (i) � EA (� h(Tb
0 [i]))) k i � EA (rB)

where ki ; rB 2R ZNA s.t. (ki ; NA) = 1 . Otherwise, � i is a random value.;
Pick randomly a permutation � B (�) and �; � 2R ZNP s.t. (�; N P) = 1 .
Return EP(sB � rB + c), EA (�), EA (�) and
(EA (� �

1); � � � ; EA (� �
l)) = � B (EA (� 1); � � � ; EA (� l)) to A through P.

Step 3: A does the following steps :
Decrypt the elements EA (� �

i) and compute the vector � homomorphically
EP(� i) = EP((� �

i � rB + sB + sA + rA;i) � rA;i
� 1)

= (EP(� �
i + rA;i) � EP(sA) � EP(sB � rB + c) � EP(� c)) r A;i

� 1

where rA;i 2R ZNP s.t. (rA;i ; NP) = 1 .
Return (EP(� �

1); � � � ; EP(� �
l)) = � A (EP(� 1); � � � ; EP(� l)) ,

where � A (�) is a random permutation, to P.
Step 4: P decrypts the cyphertexts EP(� �

i).
If one of the elements of � � is equal to 1, then a > b and P sets s0

A = 0 . Otherwise,
a � b and P sets s0

A = 1 . P returns EP(s0
A) to A.

Step 5: A does the following steps, once � and � have been retrieved :
Update EP(sA) EP(sA + kA � s0

A) using EP(sA) � EP(s0
A)kA , where kA 2R ZNP .

Return EP(�s 0
B + �) = (EP(1) � EP(s0

A) � 1) � � EP(�) to B through P,
since s0

B = 1 � s0
A .

Step 6: B does the following steps :
Retrieve EP(s0

B) = (EP(�s 0
B + �) � EP(� �)) � � 1

.
Update EP(sB) EP(sB + kB � s0

B) using EP (sB) � EP (s0
B)kB , where kB 2R ZNP .

the identity function. At the end of Step 2, there is an index i � such that � i � = rB , iff a > b. This

follows from Lemma 3.2 and the fact that the hash function is collision-free. Consequently, at the

end of Step 3, if sA and sB are both still equal to 0, there would be an element � i � = rA i � � r � 1
A i � =

1, if and only if a > b. Thus, P would know the result of the comparison. On the other hand,

if at least one of the participants has randomized his private value EP(s�), due to a previous

comparison, no element of the vector � would be equal to 1, except if � i � rB + sA + sB � 0

99

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

mod ZNP . In any case, the result would be meaningless.

In Step 4, P obtains the result and de�nes s0
A = 0 if A has won the comparison (a > b) or

s0
A = 1 otherwise. In Step 5, A updates homomorphically his value sA sA + kA � s0

A . Then it

is easy to verify that if A has won every past comparison and the current one, then sA remains

null. But if A has lost at least one comparison, then sA becomes or remains random. At the end

of Step 5 and in Step 6, B (with the help of A) obtains homomorphically s0
B = s0

A and updates

sB sB + kB � s0
B . Remark that s0

B = 0 if and only if B has won this comparison. Therefore, sB

remains zero if and only if B has not lost any comparison. This also implies that at the end of

the protocol, at least one of sA and sB is randomized.

3.6.2 The Protocol Security

To prove the security of Protocol 3.6 against semi-honest polynomially-bounded adversaries

trying to get more information on other participants, we have to show that these objectives are

achieved: (1) A does not learn anything about b, (2) B does not learn anything about a, (3) P

cannot �nd neither a nor b, (4) the result of the comparison is known only to P, (5) no one knows

the �rst index i � that differentiates a and b, (6) P eliminates A or B , (7) there is no information

leaking if A or B has been already discarded, and (8) P cannot simulate A or B and have a

coherent result.

Proof of Objective (1). At the beginning of Step 3, A learns � B (� 1; � � � ; � l) with

� i = ki (h(Ta
1 [i]) � h(Tb

0 [i])) + rB

Remember that h(Tb
0 [i]) can be seen as an encoding of b. Let us prove that the vector � does

not leak any information about b.

W.l.o.g. assume that � B (�) is the permutation identity. Let us take any value b0 6= band show

that the same vector � can be obtained from b0 and thus does not leak any information.

If a > b0, let i � be the index such that Ta
1 [i �] = Tb0

0 [i �] and take rB = � i � . On the other hand,

if a � b0, we can choose arbitrarily rB . Now if we take:

ki = (� i � rB) � (h(Ta
1 [i]) � h(Tb0

0 [i])) � 1 8i 6= i �

then we obtain the same vector � .

This can be generalized to permutation � B (�). Hence, � can be obtained from any value of

b0 with the same probability, and does not therefore leak any information about b.

It remains to prove that A does not learn the result of the comparison (part of Objective

(4)) which would leak partial information about b. The result of the comparison (either in the

100

3.6. Secure Iterative Two-Party Comparison Protocol

vector � , the value sA or sB) is always encrypted under the public key of P. We assume the

cryptosystem is semantically secure, which ends the proof of Objective (1).

Proof of Objectif (2). Consider the information sent by A in Step 1. Ta
1 gives a bit-encoding of

a. Due to the semantic security of Paillier's cryptosystem, P and B cannot get any information

on a (also part of Objective (3)).

Notice that the exact same (including random values) must be produced by A at any

iteration. Otherwise, a collusion of P and B can set EA (� i) = EA (i) � EA (0
i)

� 1 and have an

encoding of a. Either � i would be equal to 0, if ai = 1 , or be a random value, if ai = 0 .

The result of the comparison (either in the vector � , the value sA or sB) is always encrypted

under the public key of P. We assume the cryptosystem is semantically secure, which ends the

proof of Objective (2).

Proof of Objective (3). At the beginning of Step 4, P learns � A (� 1; � � � ; � l) where

� i = (� �
i � rB + sB + sA + rA;i) � rA;i

� 1

and � �
i = � � B (i) . To simplify notations, assume that � A (�) and � B (�) are the identity permuta-

tion. If sA or sB is different from 0, this case is simple (Objective (7)): the vector � follows an

independent uniform distribution of Z l
NP

. Thus, we only study the case:

� i = (ki (h(Ta
1 [i]) � h(Tb

0 [i])) + rA;i) � rA;i
� 1

Knowing that a > b, we will now show that for any couple (a0; b0) such that a0 > b0, we can

obtain the same vector � with the same probability. In this case, let i � be the index such that

Ta0

1 [i �] = Tb0

0 [i �]. In this case, ki � can be chosen arbitrarily. For all other value i 6= i � , rA;i can be

chosen arbitrarily, and ki can be de�ned as:

ki = (� i � rA;i � rA;i) � (h(Ta0

1 [i]) � h(Tb0

0 [i])) � 1:

Finally, if a � b, this is simpler. In this case, the index i � is not de�ned, and the values of all

rA;i and ki are de�ned as above.

Thus, the same vector � can be obtained. This can be done for any values of a0 and b0, as

long as the result remains unchanged, and for any permutation � A (�) and � B (�). Therefore, the

vector � does not leak any information about a or bexcept whether a > b or not, which ends the

proof.

Proof of Objective (4). Objectives (1) and (2) implies Objective (4).

Proof of Objective (5). Due to the permutations, no information on the index i � differentiating a

and b can be inferred.

101

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

Proof of Objective (6). In the last two steps, sA and sB are updated. Since P cannot infer the

values of � and � in Step 2, it cannot manipulate the value of s0
B in Step 6 in such a way that

s0
B = 0 . At least one of the participants would then have his value s� 6= 0 .

Proof of Objective (7). Notice that once sA or sB is a random number different than 0, � � follows

an independent uniform distribution of Z l
NP

. Hence, no conclusion follows from the value of � �

in Step 4.

Proof of Objective (8). Finally, note that � and c are necessary to obtain the result and that

they are encrypted respectively with A's and B 's public keys. Assuming that these keys have

been properly exchanged and have not been tampered with by P, a polynomially-bounded P

cannot simulate A or B successfully. In such a case, the result of the protocol would then be

meaningless.

Let us brie�y consider the collusion between A and P against B . In such a case, A and P

accept to exchange all their private information. Due to � B (�), A and P cannot obtain the index

of the bit that differentiates a and b. Moreover, due to the multiplication of each element of � by a

distinct ki , A and P cannot compute h(Ta
1 [i �]) � h(Tb

0 [i �]), except if the hashes are equal, which

has been discarded anyhow. Thus, P does not discover more information with the help of A.

Similarly, B and P do not gain more information neither. The index of the bit that differentiates

a and b is hidden by the permutation � A (�), and it is impossible to compute � � without knowing

the values rA;i generated by A.

3.6.3 The Protocol Complexity

Following the fact that communications are made through P, any message sent between A and

B is counted twice. The size of a public key N is denoted by jN j. Notice that ciphertexts are

2jN j-bit long in Paillier's cryptosystem.

For any iteration, there are eight communications and (10l + 22) jN j bits transferred. A max-

imum of 4l + 6 cryptographic operations are computed by A, 2l + 8 by B and only l + 1 by P. By

cryptographic operations, we mean encryption, decryption and modular exponentiation. If ei-

ther A or B was eliminated, P does not have to decrypt the result in Step 4: only one encryption

is needed.

3.6.4 The Maximum Transfer

Using Protocols 3.5 and 3.6, the prover P knows the index i max of the witness that has the

maximum value. However, P needs to obtain EV(x i max), which corresponds to the maximum

value encrypted with the veri�er's public key. P does not want to inform which witness has

102

3.7. Complexity of the Overall System

Protocol 3.7: Maximum transfer protocol
Input: P knows i max . Each witness Wi has his values x i and EP(sW i). Public keys NP

and NV with functions EP(�) EV(�).
Output: P obtains EV(x i max).
Step 1: forall witness Wi do

Generate a random number � i 2R ZNP .;
Compute EP(� i + sW i) = EP(� i) � EP(sW i) and return it to P.

end
Step 2: P does the following steps:

Compute � i max from EP(� i max + sW i max
) received from Wi max .

Broadcast to all witnesses EV(� i max).
Step 3: forall witness Wi receiving EV(� i max) do

Compute EV(� i max � � i + x i) = EV(� i max) � EV(� � i) � EV(x i).
and return it to P, only if it is the �rst request for that proof generation.

end
Step 4: P does the �nal steps:

Receive EV(x i max) from Wi max .
Randomize it EV(x i max) EV(x i max) � r NV , for r 2R Z �

NV
.

been selected, but the discarded witnesses do not want to provide their location uselessly.

Protocol 3.7 manages to reach both objectives. It relies on the fact that Wi max ends up with the

internal value EP(sW i max
) = EP(0) at the end of Protocol 3.6 (which correspond to sA or sB in

Protocol 3.6). The other witnesses have a random sW i .

The security of Protocol 3.7 is easy to show. The security of all encrypted messages relies

on the semantic security of the cryptosystem. In Step 1, P receives only random values from

the witnesses. In Step 2, he picks one of them and broadcasts it back to all witnesses encrypted

with the veri�er's public key. A witness would return a meaningful value in Step 3 if and only if his

internal random value � i is the additive inverse of the value sent by P. In this case, the witness

would return his encrypted position. Otherwise, he would return a random encrypted value.

Finally, EV(x i max) is randomized to conceal it from the witness Wi max . In terms of complexity, if

broadcasting generates only one communication, 2n + 1 messages of 2jN j bits are exchanged

during the protocol.

This concludes our secure multi-party maximum protocol and allows to build our location-

proof system more ef�ciently than with previous existing works. The complexity of the full

location-proof system and of each sub-protocol is given in Section 3.7.

3.7 Complexity of the Overall System

We have detailed the computational and communication complexity in each sub-protocol, but

we are now interested in the complexity of the overall location-proof system (Protocol 3.3), de-

103

Partie , Chapter 3 – Location Proof System based on Multi-Party Computations

Cryptographic operations Communication cost
Each witness Prover Communications Bits sent

Protocol 1 negl negl 2m + 3 (2m + 1)(jN j + jSj)
(overall system) + Protocols 3.4, 3.5, 3.7 + 4� Protocols 3.4, 3.5, 3.7

Protocol 3.4 negl negl 2n + 2 (4n + 2) jN j + mjSj

Protocol 3.5
< 2dlogne � n

2 dlogne � Protocol 3.6
� Protocol 3.6

Protocol 3.6 � 4l + 6 l + 1 or 1 � 8 � (10l + 22) jN j
Protocol 3.7 negl negl 2n + 1 (4n + 2) jN j

Table 3.2: Complexity of the system

pending on the number of witnesses. For simplicity, let us assume there are m = 4n witnesses,

i.e. n in each direction. Let jN j denote the size of the keys (the size of a ciphertext is simply

2jN j with the Paillier's cryptosystem) and jSj denote the size of group signatures. We consider

that the encryption, decryption functions and homomorphic operations are in O(1).

Tab. 3.2 presents the number of cryptographic operations processed by the prover and

by each witness, the number of communications and the bits exchanged during the different

protocols. We only deal with the worst-case scenario: a marked witness for the computational

complexity in P rotocol 3:5, and only a witness A in Protocol 3.6. This can obviously be optimized

by giving role B to marked witnesses as often as possible. The complexity of Protocol 3.5 is an

approximation of the total number of comparisons. An exact formula is given in Section 3.5.3.

In Protocol 3.6, it has been shown that P runs l + 1 operations in n � 1 comparisons, and

only 1 otherwise. Thus, the number of operations done by the prover in Protocol 3.5 and 3.6 is

approximately (n � 1)l + n
2 dlogne.

To summarize, the global complexity, both in terms of computations and communication,

is in O(n logn) for the prover and O(log n) for a witness. More speci�cally, each witness pro-

cesses less than dlogne(4l + 6) cryptographic computations and the prover makes less than

2ndlogne(l + 1) . The overall system requires a total of n(16dlogne+ 24) + 15 communications.

In comparison, most previous location-based systems have a complexity for the prover in

O(n), and O(1) for a witness. This is due to the fact that witnesses do not need to interact with

each other. However, location privacy requires such interactions, and thus we do not reach the

same objectives.

3.8 Conclusion

We have presented a privacy-aware location-proof system, allowing a prover to generate lo-

cation proofs with the cooperation of nearby witnesses. Our solution is the �rst of its kind to

provide both identity and location privacy. Our scheme relies on secure multi-party computa-

104

3.8. Conclusion

tions, allowing the prover to learn which participant is the closest, and thus to approximate more

accurately the region in which he is. The proofs are then signed with a group signature scheme,

protecting the identity of the participants and allowing the detection of any adversary trying to

impersonate multiple witnesses. However, our scheme assumes that participants' devices are

equipped with directional antennas. Although this is not a technological challenge, obtaining a

similar level of privacy without these antennas is still an open problem.

As a second contribution, we also designed a new multi-party maximum computation based

on a trade-off between ef�ciency and privacy. We showed that by leaking a few intermediate

values, we can reduce the asymptotic cost to O(n log(n)) instead of O(n2). Although it was

originally designed speci�cally for our location-proof system, it can be applied to any scenario

in which this leakage is acceptable.

105

CHAPTER 4

ON THE CONCRETE SECURITY OF

GOLDREICH ' S PSEUDORANDOM

GENERATOR

Historically, the design of symmetric cryptographic primitives (such as block ciphers or pseudo-

random generators) has been motivated by ef�ciency considerations (e.g. memory consump-

tion, hardware compatibility). The �eld of multi-party computation, where parties want to jointly

evaluate a function on secret inputs, has led to the emergence of new considerations: the

ef�ciency of secure evaluations of primitives is strongly related to parameters such as the cir-

cuit depth of the primitive, and the number of its AND gates (as shown in Chapters 1 and 2).

This observation has motivated the design of MPC-friendly primitives in several recent works

(e.g. [ARS+ 15, CCF+ 16, MJSC16, GRR+ 16]), that aim for an ef�cient secure evaluation.

Local pseudorandom generators allow to expand a short random string into a long pseudo-

random string, such that each output bit depends on a constant number d of input bits. Due to

its extreme ef�ciency features, this intriguing primitive enjoys a wide variety of applications in

cryptography and complexity and makes very promising candidate MPC-friendly PRGs. In the

polynomial regime, where the seed is of size n and the output of size ns for s > 1, the only

known solution, commonly known as Goldreich's PRG, proceeds by applying a simple d-ary

predicate to public random size-d subsets of the bits of the seed.

While the security of Goldreich's PRG has been deeply investigated, with a variety of re-

sults deriving provable security guarantees against class of attacks in some parameter regimes

and necessary criteria to be satis�ed by the underlying predicate, little is known about its con-

crete security and ef�ciency. Motivated by its numerous theoretical applications and the hope

of getting practical instantiations for some of them, we initiate a study of the concrete secu-

rity of Goldreich's PRG. Along the way, we develop a new guess-and-determine-style attack,

and identify new criteria which re�ne existing criteria and capture the security guarantees of

candidate local PRGs in a more �ne-grained way.

107

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

Contents

4.1 Introduction . 109

4.1.1 Goals and Results . 111

4.1.2 Organization of the Chapter . 112

4.2 Preliminaries . 112

4.2.1 Hypergraphs . 113

4.2.2 Predicates . 113

4.2.3 Pseudorandom Generators . 114

4.2.4 Implications of Polynomial-Stretch Local Pseudorandom Generators . . 117

4.2.5 On the Security of Goldreich's PRG . 118

4.3 Guess & Determine Cryptanalysis of Goldreich's PRG with P5 121

4.3.1 The Attack - Asymptotic Description . 121

4.3.2 Complexity Analysis . 122

4.3.3 Success Probability . 125

4.3.4 Seed Recovery . 126

4.3.5 Concrete Instantiation of the Attack . 128

4.3.6 Experiments . 132

4.4 Algebraic Cryptanalysis of Goldreich's PRG with P5 134

4.4.1 A Polynomial Attack with Degree-Two Linearization 136

4.4.2 Gröbner Approach . 143

4.4.3 Conclusion . 145

4.5 About the Ordered Case . 146

4.5.1 Guess and Determine . 146

4.5.2 Algebraic Attack on the Ordered Case 147

4.6 Other Results . 148

4.7 Conclusion and Open Questions . 148

108

4.1. Introduction

4.1 Introduction

One of the most fundamental problems in cryptography is the question of what makes an ef�-

ciently computable function hard to invert. The quest for the simplest design which leads to a

primitive resisting all known attacks is at the heart of both symmetric and asymmetric cryptog-

raphy: while we might be able to build seemingly secure primitives by relying on more and more

complex designs to thwart cryptanalysis attempts, such a “security by obscurity” approach is

unsatisfying. Instead, as advocated almost two decades ago by Goldreich [Gol00], we should

seek to construct the simplest possible function that we do not know how to invert ef�ciently.

Random Local Functions

In an attempt to tackle this fundamental problem, Goldreich suggested a very simple candi-

date one-way function as a promising target for cryptanalysis: let (n; m) be integers, and let

(� 1; : : : ; � m) be a list of m subsets of [n], such that each subset is of small size: for any i � m,

j� i j = d(n), where d(n) � n (in actual instantiations, d(n) can for example be logarithmic in

n, or even constant). Fix a simple predicate P : f 0; 1gd(n) 7! f 0; 1g, and de�ne the function

f : f 0; 1gn 7! f 0; 1gm as follows: on input x 2 f 0; 1gn , for any subset � of [n], let x[�] denote the

subset of the bits of x indexed by � :

� = [i 1; i 2; i 3] =) x[�] = [x i 1 ; x i 2 ; x i 3]

Compute f (x) as P(x[� 1])jj � � � jj P(x[� m]) (that is, f (x) is computed by applying the pred-

icate P to all subsets of the bits of x indexed by the sets � 1; : : : ; � m). We call random local

functions the functions obtained by instantiating this template.

In his initial proposal, Goldreich advocated instantiating the above methodology with m �

n and d(n) = O(log(n)) , and conjectured that if the subsets (� 1; : : : ; � m) form an expander

graph1, and for an appropriate choice of the predicate P, it should be infeasible to invert the

above function f in polynomial time. While setting d(n) to O(log(n)) offers stronger security

guarantees, the more extreme design choice d(n) = O(1) (also discussed in Goldreich's paper)

enhances the above candidate with an appealing feature: it enjoys constant input locality (which

puts it into the complexity class NC0)2, hence it is highly parallelizable (it can be computed in

constant parallel time). It appeared in subsequent works that a stronger variant of Goldreich's

conjecture, which considers m � n and claims that f is in fact a pseudorandom generator, was

1The subsets form an expander graph if for some k, every k subsets cover k +
(n) elements of [n]. In practice,
it suf�ces to pick once for all the subsets (� 1 ; : : : ; � m) at random to guarantee that they will be expanding except
with some small probability.

2Recall that NC0 is the class of functions that can be computed by constant-depth circuits with bounded fan-in.
In an NC0 function, each bit of the output depends on a constant number of input bits

109

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

of particular interest; we will elaborate on this later on.

Local Pseudorandom Generators

The question of whether cryptographic primitives can exist in weak complexity classes such

as NC0 has attracted a lot of attention in the cryptographic community. A primitive of particular

interest, which has been the focus of most works on the subject, is the notion of pseudorandom

generators (PRGs), which are functions G : f 0; 1gn 7! f 0; 1gm extending a short random seed

into a longer, pseudorandom string. The existence of PRGs in NC0 was �rst considered by

Cryan and Miltersen in [CM01]. Remarkably, it was shown by Applebaum, Ishai, and Kushile-

vitz [AIK04, AIK08] that cryptographically secure pseudorandom generators (with linear stretch

m = O(n)) exist in a complexity class as low as NC0
4 (the class of constant depth, polysize

circuits where each output bit depends on at most 4 input bits), under widely believed stan-

dard assumption for the case of PRG with sublinear stretch (such as factorization, or discrete

logarithm), and under a speci�c intractability assumption related to the hardness of decoding

“sparsely generated” linear codes, for the case of PRG with linear stretch. While this essentially

settled the question of the existence of linear stretch PRGs in NC0, an intriguing open question

remained: could PRGs in NC0 have polynomial stretch, m = poly(n)?

Some early negative results were given by Cryan and Miltersen [CM01] (who ruled out the

existence of PRGs in NC0
3 with stretch m > 4n) and Mossel, Shpilka, and Trevisan [MST03]

(who ruled out the existence of PRGs in NC0
4 with stretch m > 24n). The authors of [CM01]

also conjectured that any candidate PRG with superlinear stretch in NC0 would be broken by

simple, linear distinguishing tests3; this conjecture was refuted in [MST03], who gave a concrete

candidate PRG in NC0, by instantiating a random local function with d = 5 , and the predicate

P5 : (x1; x2; x3; x4; x5) 7! x1 + x2 + x3 + x4x5 :

where the + denotes the addition in F2 (i.e. the xor).

They proved that this PRG fools linear tests, even when m is a (suf�ciently small) polyno-

mial in n. By the previously mentioned negative result on PRGs in NC0
4, this candidate PRG,

which has locality 5, achieves the best possible locality. Recently, there has been a renewed

interest in the study of this local PRG, now commonly known as Goldreich's PRG, and its gen-

eralizations [BQ09, App12, OW14, CEMT14, App15, ABR16, AL16, IPS08, LV17, BCG+ 17].

3A linear test attempts to distinguish a string from random by checking whether the xor of a subset of the bits of
the string is biased toward either 0 or 1.

110

4.1. Introduction

4.1.1 Goals and Results

In this work, we continue the study of the most common candidate local pseudorandom gener-

ators. However, we signi�cantly depart from the approach of previous works, in that we wish to

analyze the concrete security of local PRGs. To our knowledge, all previous works were only

concerned about establishing asymptotic security guarantees for candidate local PRGs, with-

out providing any insight on, e.g. which parameters can be conjectured to lead to a primitive

with a given bit-security. Our motivations for conducting this study are twofold.

• Several recent results, which we brie�y overview in Section 4.2.4, indicate that (poly-

stretch) local PRGs enjoy important theoretical applications. However, the possibility of

instantiating these applications with concrete PRG candidates remains unclear, as their

ef�ciency quickly deteriorates with the parameters of the underlying PRG. For example,

the iO scheme of [LT17], which requires low-degree multilinear maps and therefore might

be a viable approach to obtain ef�ciency improvements in iO constructions (as candidate

high-degree multilinear maps are prohibitively expensive); however, it has a cost cubic

in the seed size of a poly-stretch local PRG, which renders it practical only if we can

safely use local PRGs with reasonably small seeds. Overall, we believe that there is a

growing need for a better understanding of the exact ef�ciency of candidate local PRGs,

and providing concrete estimations can prove helpful for researchers willing to understand

which ef�ciency could potentially be obtained for local-PRG-based primitives.

• At a more theoretical level, previous works on (variants of) Goldreich's PRG have identi-

�ed criteria which characterize the predicates susceptible to lead to secure local PRGs.

Identifying such criteria is particularly relevant to the initial goal set up by Goldreich

in [Gol00], which is to understand what characteristics of a function is the source of its

cryptographic hardness, by designing the simplest possible candidate that resists all at-

tacks we know of. However, existing criteria only distinguish predicates leading to insecure

instances from those leading to instances for which no polynomial-time attack is known.

We believe that it is also of particular relevance to this fundamental question to �nd crite-

ria which capture in a more �ne-grained way the cryptographic hardness of random local

functions.

Our Results

We provide new cryptanalytic insights on the security of Goldreich's pseudorandom generator.

• A new subexponential attack on Goldreich's PRG. We start by devising a new attack on

Goldreich's PRG. Our attack relies on a guess-and-determine technique, in the spirit of

the recent attack [DLR16] on the FLIP family of stream ciphers [MJSC16]. The complexity

111

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

of our attack is 2O(n2� s) where s is the stretch and n is the seed size. This complements

O'Donnel and Witmer's result [OW14] showing that Goldreich's PRG is likely to be secure

for stretch up to 1:5, with a more �ne-grained complexity estimation. We implemented

our attack4 and provide experimental results regarding its concrete ef�ciency, for various

seed size and stretch parameters.

• Linearization and Gröbner attack. We complement our study with an analysis of the ef-

�ciency of algebraic attacks à la Gröbner on Goldreich's PRG. While it is known that

Goldreich's PRG (and its variants) provably resists such attacks for appropriate choices

of (asymptotic) parameters [AL16], little is known about its exact security against such

attacks for concrete choices of parameters. We evaluated the concrete security of Gol-

dreich's PRG against a degree-two linearization attack. The existence of such an attack

allows to derive bounds on Gröbner basis performance. Using an implemented proof of

concept, we introduce heuristic bounds for vulnerable parameters.

We also generalize these results to other predicates in [CDM+ 18], but we refer the reader

to this paper for more details.

4.1.2 Organization of the Chapter

Section 4.2 introduces necessary preliminaries on predicates and local pseudorandom gen-

erators and their applications in cryptography. Section 4.3 describes a guess-and-determine

attack on Goldreich's PRG instantiated with the predicate P5 and analyzes it. Section 4.4 inves-

tigates algebraic cryptanalysis of Goldreich's PRG with P5, presenting a degree 2 linearization

attack, and an attack using Gröbner basis approach. Finally, Section 4.5 considers the case of

using Goldreich's PRG with ordered subset (as was initially advocated in [Gol00]) and provides

indications that this weakens its concrete security.

4.2 Preliminaries

Throughout this chapter, n denotes the size of the seed of the PRGs considered. A probabilistic

polynomial time algorithm (PPT, also denoted ef�cient algorithm) runs in time polynomial in the

parameter n. A positive function f is negligible if for any polynomial p there exists a bound

B > 0 such that, for any integer k � B , f (k) � 1=jp(k)j. An event depending on n occurs with

overwhelming probability when its probability is at least 1� negl(n) for a negligible function negl.

Given an integer k, we write [k] to denote the set f 1; : : : ; kg. Given a �nite set S, the notation

X $ S means a uniformly random assignment of an element of S to the variable X . Given a

4Our proof of concept can be found at https://github.com/LuMopY/SecurityGoldreichPRG .

112

https://github.com/LuMopY/SecurityGoldreichPRG

4.2. Preliminaries

string x 2 f 0; 1gk for some k and a subset � of [k], we let x[�] denote the subsequence of the

bits of x whose index belongs to � . Moreover, the i -th bit of x[�] will be denoted by x � i .

4.2.1 Hypergraphs

Hypergraphs generalize the standard notion of graphs (which are de�ned by a set of nodes

and a set of edges, an edge being a pair of nodes) to a more general object de�ned by a set

of nodes and a set of hyperedges, each hyperedge being an arbitrary subset of the nodes. We

de�ne an (n; m; d)-hypergraph G to be a hypergraph with n vertices and m hyperedges, each

hyperedge having cardinality d. The hyperedges are assumed to be ordered from 1 to m, and

each hyperedge f i 1; i 2; : : : ; i dg is ordered and satis�es i j 6= i k for all j � d, k � d, j 6= k. We

will consider hypergraphs satisfying some expansion property, de�ned below.

De�nition 4.1 (Expander Graph). An (n; m; d)-hypergraph G, denoted (� 1; : : : ; � m), is (�; �)-

expanding if for any S � [m] such that jSj � � � m, it holds that j [i 2 S � i j � � � jSj � d.

4.2.2 Predicates

The constructions of local pseudorandom generators that we will consider in this work rely on

predicates satisfying some speci�c properties. Formally, a predicate P of arity d is a function

P : f 0; 1gd 7! f 0; 1g. We de�ne below the two properties that were shown to be necessary for

instantiating local PRGs:

• Resiliency: a predicate P is k-resilient if it has no correlation with any linear combination

of up to k of its inputs. An example of predicate with maximal resiliency is the parity

predicate (i.e. the predicate which xors all its inputs). For exemple, the predicate P5

P5(x1; x2; x3; x4; x5) = x1 + x2 + x3 + x4x5

is 2-resilient and cannot be 3-resilient since it is correlated with x1 + x2 + x3.

• Algebraic Immunity: a predicate P has algebraic immunity e, referred to as AI(P) = e,

if the minimal degree of a non-null function g (called annihilator) such that Pg = 0 (or

(P + 1) g = 0) on all its entries is e. For example, g(x) = 1 + x1 is an annihilator of

P(x) = x1x2x3x4 since:

(1 + x1)(x1x2x3x4) = x1x2x3x4 + x1x2x3x4 = 0

A local PRG built from an AI-e predicate cannot be pseudorandom with a stretch ne due

to algebraic attacks.

113

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

Note that the algebraic immunity (also referred as rational degree in [AL16]) implies a lower

bound on the degree and on the bit-�xing degree. Moreover, a high algebraic immunity implies

at least the same degree. Hence, for now on, those two criteria are considered as the relevant

criteria for evaluating the security of Goldreich's PRG.

We de�ne a particular family of predicates which have been considered as a potential in-

stantiation:

De�nition 4.2 (XOR̀ Mk predicates). We call XOR̀ Mk predicate a predicate P of arity ` + k

such that M is a predicate of arity k and:

P(x1; : : : ; x` ; z1; : : : ; zk) =
X̀

i =1

x i + M (z1; : : : ; zk) :

We also de�ne a subfamily of XOR̀ Mk predicates, which have been considered in [AL16]:

De�nition 4.3 (XOR̀ MAJk predicates). We call XOR̀ MAJk predicate a predicate P of arity ` + k

such that P is a XOR̀ Mk predicate such that M is the majority function in k variables:

M (z1; : : : ; zk) = 1 , wH (z1; : : : ; zk) �
�

k
2

�
;

where wH denotes the Hamming weight.

4.2.3 Pseudorandom Generators

De�nition

A pseudorandom generator is a deterministic process that expands a short random seed into a

longer sequence, so that no ef�cient adversary can distinguish this sequence from a uniformly

random string of the same length.

De�nition 4.4 (Pseudorandom Generator). A m(n)-stretch pseudorandom generator, for a

polynomial m, is an ef�cient uniform deterministic algorithm PRGwhich, on input a seed x 2

f 0; 1gn , outputs a string y 2 f 0; 1gm(n) . It satis�es the following security notion: for any proba-

bilistic polynomial-time adversary Adv,

Pr[y $ f 0; 1gm(n) : Adv(pp; y) = 1]

� Pr[x $ f 0; 1gn ; y PRG(x) : Adv(pp; y) = 1]

Here � denotes that the absolute value of the difference of the two probabilities is negligible in

the security parameters, and pp stands for the public parameters of the PRG.

114

4.2. Preliminaries

Roughly said, a PRGshould ensure that no probabilistic polynomial-time adversary should

be able to distinguish the output of the PRGfrom a uniformly random output of same size.

For any n 2 N, we denote PRGn the function PRGrestricted to n-bit inputs.

De�nition 4.5 (Local Pseudorandom Generator). A pseudorandom generator PRG is d-local

(for a constant d) if for any n 2 N, every output bit of PRGn depends on at most d input bits.

Goldreich's Pseudorandom Generator

Goldreich's candidate local PRGs form a family FG;P of local PRGs: PRGG;P : f 0; 1gn 7! f 0; 1gm ,

parametrized by an (n; m; d)-hypergraph G = (� 1; : : : ; � m) (where m is polynomial in n), and

a predicate P : f 0; 1gd 7! f 0; 1g, de�ned as follows: on input x 2 f 0; 1gn , PRGG;P returns the

m-bit string (P(x � 1
1
; : : : ; x � 1

d
); : : : ; P(x � m

1
; : : : ; x � m

d
)) .

Conjecture 4.1 (Informal). If G is a suf�ciently expanding (n; m; d) hypergraph and P is a

predicate with suf�ciently high resiliency and high algebraic immunity, then the function PRGG;P

is a secure pseudorandom generator.

Note that picking an hypergraph G uniformly at random suf�ces to ensure that it will be

expanding with probability 1 � o(1). However, picking a random graph will always give a non-

negligible probability of having an insecure PRG. To see that, observe that when the locality d is

constant, a random hypergraph G will have two hyperedges containing the same vertices with

probability 1=poly(n); for any such graph G, the output of PRGG;P on a random input can be

trivially distinguished from random. Therefore, the security of random local functions is usually

formulated non-uniformly, by stating that for a 1� o(1) fraction of all hypergraphs G (and appro-

priate choice of P), no polytime adversary should be able to distinguish the output of PRGG;P

from random with non-negligible probability.

Fixed hypergraph versus random hypergraphs

Goldreich's candidates local pseudorandom generators require to use a suf�ciently expand-

ing hypergraph. Unfortunately, building concrete graphs satisfying the appropriate expansion

properties is a non-trivial task. Indeed, all known concrete constructions of expanding bipartite

hypergraphs fail to achieve parameters which would allow to construct a PRG with constant

locality. Therefore, to our knowledge, in all works using local PRG (see e.g. [IKOS08, App13,

Lin17, ADI+ 17a, BCG+ 17]), it is always assumed (implicitly or explicitly) that the hypergraph G

of the PRG is picked uniformly at random (which makes it suf�ciently expanding with probability

1 � o(1), even in the constant-locality setting) in a one-time setup phase. Therefore, this is the

setting we assume for our cryptanalysis.

115

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

Notations

In the �rst part of this work, we focus on the predicate P5, assuming that the subsets � 1; :::; � m

are random subsets. The predicate P5 can be regarded as a Boolean function of �ve variables:

P5(x1; x2; x3; x4; x5) = x1 + x2 + x3 + x4x5 :

The predicate P5 has algebraic degree 2 and an algebraic immunity of 2, and is 2-resilient.

Let n be the size of the input (i.e. the number of initial random bits). We de�ne the stretch s

and denote the size m of the output as m = ns. Let x1; : : : ; xn 2 F2 be the input random bits

and y1; : : : ; ym 2 F2 be the output bits. The m public equations E i for 1 � i � m are drawn as

follows:

• a subsequence of [n] of size 5 is chosen uniformly at random. Let us call it

� i = [� i
1; � i

2; � i
3; � i

4; � i
5] :

• E i is the quadratic equation of the form

x � i
1

+ x � i
2

+ x � i
3

+ x � i
4
x � i

5
= yi :

The public system � that we consider is then de�ned with the m equations, that is (E i)1� i � m .

Ordered and unordered

There are two different cases to consider:

• The ordered case: � i is ordered, i.e. � i
1 < � i

2 < � i
3 < � i

4 < � i
5.

• The unordered case: the order � i 's elements is arbitrary.

However, we consider the unordered case in this chapter, as we will provide evidence that the

vulnerabilities are even more important for the ordered case in Section 4.5.

Matrix inversion complexity

Our attacks of Section 4.3 require a sparse matrix inversion algorithm. We consider the Wiede-

mann's algorithm [Wie86], the complexity of which is O(n2) in this context, since there are less

than d � n non-zero elements of our matrices. Other algorithms could be used, but the com-

plexity of our attacks would have to be modi�ed accordingly. For other Sections, with arbitrary

matrices, we denote by ! the exponent for matrix inversion complexity O(n!).

116

4.2. Preliminaries

4.2.4 Implications of Polynomial-Stretch Local Pseudorandom Generators

The original motivation for the study of local pseudorandom generators was the intriguing possi-

bility of designing cryptographic primitives that can be evaluated in constant time, using polyno-

mially many cores. While this is already a strong motivation in itself, it was observed in several

works that the existence of (poly-stretch) local PRGs had a number of non-trivial implications,

and is at the heart of feasibility results for several high-end cryptographic primitives. Beside

being very good MPC-friendly candidates, local pseudorandom generators have impacts in the

following (non-exhaustive) primitives:

• Secure computation with constant computational overhead. In the recent work [IKOS08],

the authors explored the possibility of computing cryptographic primitives with essentially

optimal ef�ciency, namely, constant overhead over a naive insecure implementation of

the same task. One of their main results establishes the existence of constant-overhead

two-party computation protocols for any boolean circuit, assuming the existence of poly-

stretch local PRGs (and oblivious transfers). In a recent work [ADI+ 17b], this result was

extended to arithmetic circuits, using an arithmetic generalization of local PRGs.

• Indistinguishability obfuscation (iO). Introduced in the paper of Barak et al. [BGI+ 01],

iO is a primitive that has received a considerable attention in the past years, as a long

sequence of works starting with [SW14] has demonstrated that iO had tremendous the-

oretical implications, to the point that it is often referred to as being a “crypto-complete”

primitive. All known candidate constructions of iO rely, directly or indirectly, on a primi-

tive called k-linear map, for some degree k. Recently, a sequence of papers (culminating

with [LT17]) has attempted to �nd out the minimal k for which a k-linear map would imply

the existence of iO (with the ultimate goal of reaching k = 2 , as bilinear maps are well

understood objects). These works have established a close relation between this value k

and the existence of pseudorandom generators with poly-stretch, and locality k.5

• Cryptographic capsules. In [BCG+ 17], Boyle et al. studied the homomorphic secret shar-

ing (HSS). An important implication of HSS is that, assuming the existence of a local

PRG with poly-stretch, one can obtain MPC protocols in the preprocessing model where

the amount of communication between the parties is considerably smaller than the cir-

cuit size of the function, by constructing a primitive called cryptographic capsule which,

informally, allows to compress correlated (pseudo-)random coins. MPC protocols with

low-communication preprocessing have numerous appealing applications. However, the

ef�ciency of the constructions of cryptographic capsule strongly depends on the locality

5The locality requirement can in fact be weakened to a related notion of block locality.

117

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

and seed size of the underlying local PRG (both should be as small as possible to get a

reasonably ef�cient instantiation).

4.2.5 On the Security of Goldreich's PRG

In this section, we provide a brief overview of the state-of-the-art regarding the security of local

pseudorandom generators. For a more detailed and well-written overview dating from 2015, we

refer the reader to [App15].

Positive Results: Security against Class of Attacks

The seminal paper of Goldreich [Gol00] made some preliminary observations on necessary

properties for a local one-way function. The predicate P must satisfy some non-degeneracy

properties, such as being non-linear (otherwise, one could inverse the function using Gaussian

elimination). It also noted that to avoid a large class of natural “backtracking” attacks, which

make a guess on the values of bit inputs based on local observations and attempt to com-

bine many local solutions into a global solution, the subsets (S1; : : : ; Sm) should be suf�ciently

expanding: for some k, every k subsets should cover k +
(n) elements of [n]. The security

of Goldreich's candidate one-way function against a large class of backtracking algorithm was

formally analyzed in [AHI05, CEMT14], where it was proven that two restricted types of back-

tracking algorithms (called “drunk” and “myopic” backtracking algorithms) take exponential time

to invert the function (with high probability). They also ran experiments to heuristically evalu-

ate its security against SAT solvers6 (and observed experimentally an exponential increase in

running time as a function of the input length).

The pseudorandomness of random local functions was originally analyzed in [MST03]. They

proved (among other results) that the random local function instantiated with the predicate P5

fools F2-linear distinguishers for a stretch up to m(n) = n1:25� " (for an arbitrary small constant

"). This result was later extended to a larger stretch n1:5� " in [OW14]. In the same paper, the

authors proved that this candidate PRG is also secure against a powerful class of attacks, the

Lasserre/Parrilo semide�nite programming (SDP) hierarchy, up to the same stretch. Regard-

ing security against F2-linear attacks, a general dichotomy theorem was proven in [ABR12],

which identi�ed a class of non-degenerate predicates and showed that for most graphs, a local

PRG instantiated with a non-degenerate predicate is secure against linear attacks, and for most

graphs, a local PRG instantiated with a degenerate predicate is insecure against linear distin-

guishers. In general, to fool F2-linear distinguishers, the predicate should have high algebraic

degree (in particular, a random local function instantiated with a degree-` predicate cannot be

6 The Boolean satis�ability problem (SAT) is the problem of determining if there exists an interpretation that
satis�es a given Boolean formula. If this is the case, the formula is called satis�able.

118

4.2. Preliminaries

pseudorandom for a stretch ` (m � n`), as it is broken by a straightforward Gaussian elimination

attack).

Being pseudorandom seems to be a much stronger security property than being one-way.

Nevertheless, in the case of random local functions, it was shown in [App12] that the existence

of local pseudorandom generators follows from the existence of one-way random local functions

(with suf�ciently large output size).

Negative Results

The result of O'Donnell and Witmer [OW14] regarding security against SDP attacks is almost

optimal, as attacks from this class are known to break the candidate for a stretch �(n1:5 logn).

More generally, optimizing SDP attacks leads to a polytime inversion algorithm for any predicate

P which is (even slightly) correlated with some number c of its inputs, as soon as the output size

exceeds m 2
(nc=2 + n logn) [OW14, App15]. Therefore, a good predicate should have high

resiliency (i.e. it should be k-wise independent, for a k as large as possible). This result shows,

in particular, that a random local function with a constant locality d and with an output size

m > poly(d) � n is insecure when instantiated with a uniformly random predicate P. Combining

this observation with the result of Siegenthaler [Sie84], which studied the correlation of d-ary

predicates, gives a polytime inversion algorithm for any random local function implemented with

a d-ary predicate, and with an output size m 2
(n1=2b2d=3c logn).

Bogdanov and Qiao [BQ09] studied the security of random local functions when the out-

put is suf�ciently larger than the input (i.e., m � Dn , for a large constant D). They proved

that for suf�ciently large D, inverting a random local function could be reduced to �nding an

approximate inverse (i.e. �nding any x0 which is close to the inverse x in Hamming distance),

by showing how to invert the function with high probability given an advice x0 close to x. For

random local function with an output size polynomial in n, m = ns for some s, this leads to a

subexponential-time attack [App15]: �x a parameter " , assign random values to the (1 � 2")n

�rst inputs, and create a list that enumerates over all possible 2"n assignments for the remain-

ing variables. Then the list is guaranteed to contain a value x0 that agree with the preimage

x on a (1=2 + ")n fraction of the coordinates with good probability. By applying the reduction

of [BQ09], using each element of the list as an advice string, one recovers the preimage in

time poly(n) � 22"n provided that m =
(n="2d) (d is the arity of the predicate P). In the case of

the 5-ary predicate P5, this leads to an attack in subexponential-time 2O(n1� (s� 1) =2d) (e.g. using

s = 1 :45 gives an attack in time 2O(n0:955)).

By the previous observations, we know that the predicate of a random local function must

have high resiliency and high algebraic degree to lead to a pseudorandom function. A natural

question is whether this characterization is also suf�cient; this question was answered neg-

atively in [AL16], who proved that a predicate must also have high bit-�xing degree to fool

119

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

linear attacks.7 In particular, this observation disproved a previous conjecture of Applebaum

that XOR-AND predicates (which are natural generalizations of the predicate P5) could lead to

local PRGs with stretch greater than 2 that fools all linear tests (see [AL16, Corollary 1.3]).

In the same work, Applebaum and Lovett considered the class of algebraic attacks on local

pseudorandom function, which are incomparable to linear attacks. An algebraic attack against a

function f : f 0; 1gn 7! f 0; 1gm starts with an output y and uses it to initialize a system of polyno-

mial equations over the input variables x = (x1; : : : ; xn). The system is further manipulated and

extended until a solution is found or until the system is refuted. Applebaum and Lovett proved

that a predicate must also have high rational degree to fool algebraic attacks (a predicate P has

rational degree e if it is the smallest integer for which there exist degree e polynomials Q and

R, not both zero, such that PQ = R). Indeed, if e < s then P is not s-pseudorandom against

algebraic attacks (see [AL16], Theorem 1:4).

In the symmetric cryptography community, the rational degree denotes the well-known al-

gebraic immunity criterion on Boolean function that underlies the so-called algebraic attacks

on stream ciphers [CM03, Cou03]. An algebraic immunity of e implies an r -bit �xing degree

greater than or equal to e � r ([DGM05], Proposition 1), giving that an high algebraic immu-

nity guarantees both high rational degree and high bit �xing degree. The algebraic degree is

equivalent to the 0-bit �xing degree, then it leads to the following characterization: a predicate

of a random local function must have high resiliency and high algebraic immunity. In light of

this characterization, the authors of [AL16] suggested the XOR-MAJ predicate as a promising

candidate for building high-stretch local PRGs, the majority function having optimal algebraic

immunity [DMS05].

Security against Subexponential Attacks

While there is a large body of work that studied the security of random local functions, leading to

a detailed characterization of the parameters and predicates that lead to insecure instantiations,

relatively little is known on the exact security of local PRGs instantiated with non-degenerated

parameters. In particular, most papers only prove that some classes of polytime attacks prov-

ably fail to break candidates local PRGs; however, these results do not preclude the possible

existence of non-trivial subexponential attacks (speci�cally, these polytime attacks do not “de-

grade gracefully” into subexponential attacks when appropriate parameters are chosen for the

PRG; instead, they do always and provably not succeed).

To our knowledge, the only results in this regard are the proof from [AHI05, CEMT14] that

many backtracking-type attacks require exponential time to invert a random local function, and

the subexponential-time attack arising from the work of Bogdanov and Qiao [BQ09]. How-

7A predicate P has r -bit �xing degree e if the minimal degree of the restriction of P obtained by �xing r inputs is
e

120

4.3. Guess & Determine Cryptanalysis of Goldreich's PRG with P5

ever, as we saw above, the latter attack only gives a slightly-subexponential algorithm, in time

2O(n1� (s� 1) =2d) for a d-ary predicate, and an ns-stretch local PRG.

4.3 Guess & Determine Cryptanalysis of Goldreich's PRG with P5

4.3.1 The Attack - Asymptotic Description

We �rst describe a distinguishing attack, where our adversary outputs 1 when the challenged

bit-stream is considered as the PRG's output and 0 when it is considered as a random string.

At a high level, the attack works by collecting a large number of linear equations, by guessing

well-chosen bits of the seed, seen as a vector x of n variables. When enough equations have

been collected, two cases can occur.

• Either suf�ciently many equations are linearly independent (as much as the number of

variables). In this case, the attacker can invert a large subsystem of equations, obtain a

candidate seed, and check it against the PRG output (therefore �nding out whether the

guesses were correct in the �rst place).

• Either most of the equations are linearly dependent. In this case, we show that this implies

that the PRG output must pass a large number of linear tests, which a random string would

be unlikely to all pass. We use this observation to mount a distinguishing attack.

We now proceed with the formal description of the attack. Our algorithm has the description

of the PRG hardcoded (namely, an (n; m; 5)-hypergraph G = (� 1; � � � ; � m), where m = ns, and

each � i = (� i
1; � � � ; � i

5) is a size-5 subset of [n]). It takes as input an m-bit string y = y1 � � � ym ,

and must distinguish whether y is a random string, or whether it is in the image of PRGG;P5 . The

algorithm starts by considering the following list of quadratic equations for i = 1 to m:

P5(x � i
1
; � � � ; x � i

5
) = yi :

We denote Q this list. The algorithm will proceed by constructing O(m) linear equations from

Q.

Selection Phase

The algorithm dynamically determines a “selected” subset of the quadratic equations and a

subset � of [m], which it will use in the guessing phase. The sets are constructed using the

following greedy approach: set j 1 and mark all equations of Q as “unselected”. In the j th

step, �nd the variable that appears in the largest number of quadratic terms over all equations

in Q which are marked “unselected”. Mark all the equations in which this variable appears in

121

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

a quadratic term as “selected”, and add their indexes in Q to � , also add the linear equation

corresponding to the affectation of this variable and count it as a “selected” equation. If the

number s of equations marked as “selected” satis�es s � n + j , set ` j , y0 y[�] , and

proceed to the guessing phase. Otherwise, set j j + 1 and continue.

Guessing Phase

In the previous phase, the algorithm has identi�ed a subset of ` variables which appear overall

in the quadratic term of s � n + ` selected quadratic (and linear) equations. In this step, the

algorithm will enumerate over all 2` possible assignments for these variables, in some arbitrary

�xed order. In each step, for i = 1 to 2` , the algorithm obtains a system of s linear equations

by assigning a value in f 0; 1g to each of the ` variables across all selected quadratic equations.

Let A i denote the matrix of this system. We distinguish two cases:

• Case 1. rank(A i) = n. In this case, there is an n � n invertible submatrix of A i . The

algorithm extract this submatrix, let us denote it Ci . We also denote by y0
i the subsequence

of y0 indexed by the position of the rows of Ci in A i . . The algorithm computes a candidate

seed x0
i C � 1

i y0
i , and checks whether PRGG;P5 (x0

i) = y. If it holds, it outputs 1 and halts.

Else, it sets i i + 1 .

• Case 2. rank(A i) < n . In this case, there exists at least ` + 1 linearly dependent rows

of A i . Let B i denote the row echelon form of A i , obtained through Gaussian elimination,

and let Gi denote the (invertible) matrix of this transformation; that is, B i = Gi A i . Let

(v|
1; : : : ; v|

`+1) denote the last ` + 1 rows of Gi . The algorithm checks whether v|
k y0 = 0 for

k = 1 to ` + 1 . If all checks pass, it outputs 1 and halts. Else, it sets i i + 1 .

If the algorithm reaches i = 2 ` + 1 , it outputs 0 and halts.

4.3.2 Complexity Analysis

We now analyze the complexity of the algorithm. We �rst estimate the average value of ` ob-

tained in the selection phase. We consider the list Q of all quadratic equations. For all i such

that 1 � i � n let denote N 1
i the number of occurrences of x i in degree-two monomials.

Proposition 4.1 (Number of guesses). For any instance with n variables, m equations and c

collisions, an upper bound on the suf�cient number of guesses required to build n � c linear

equations is:

` �

$
n2

2m
+ 1

%

: (4.1)

122

4.3. Guess & Determine Cryptanalysis of Goldreich's PRG with P5

Proof. Let us choose the variable with more occurrences, denoted w.l.o.g. x1, as there are m

equations,
P n

i =1 N 1
i = 2m, and therefore N 1

1 � 2m
n . Fixing the value of x1 we get N 1

1 linear

equations (plus the linear equation �xing the value of x1). Since the value of x1 is �xed, the

remaining quadratic system of equations consists of m � N1 equations in n � 1 unknowns

(x2; : : : ; xn). We recursively use this strategy:

For all j (2 � j � n) we denote N j
i the number of occurrences of x i in a degree-two mono-

mial in the system of equations obtained after �xing the j � 1 �rst most appearing variables (as

previously described) w.l.o.g. x1; : : : ; x j � 1. Then, choosing the variable with higher N j
i , w.l.o.g.

x j , the remaining quadratic system of equations consists of m � N 1
1 � N 2

2 � � � � � N j
j equations

in n � j unknowns. So for all 1 � j � n:

N j
j � 2

m � N 1
1 � N 2

2 � � � � � N j � 1
j � 1

n � j + 1
� 2

m
n

;

and we get N 1
1 + N 2

2 + � � � + N j
j + j linear equations at this step with the value of x1; x2; : : : ; x j

being �xed.

Take ` as the �rst value of j such that N 1
1 + N 2

2 + � � � + N j
j + j � n + j (which is correctly

de�ned as we only consider cases where 2m � n). Then,

N 1
1 + N 2

2 + � � � + N ` � 1
` � 1 + ` � 1 < n + ` � 1 :

As for all 1 � j � `, we have N j
j � 2m

2 we get

2(` � 1)
m
n

< n :

So, the number of variables to guess ` is at most:

$
n2

2m
+ 1

%

:

Note that since we consider the regime of superlinear stretch (m = ns with s > 1), the above

implies that ` = o(n) (in fact, ` = O(n2� s)).

We show further in Section 4.3.6 that experimental results are much better. It is worth notic-

ing that the value obtained at Proposition 4.1 is the extreme case for the attacker and does

not re�ect the average case. However, this frequency of appearance is linked to a well-known

problem of combinatorics in the context of balls-into-bins. At the second order, the maximum

123

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

load (i.e. the number of occurrences of the variable that appears the most) follows:

�

0

@

s
m ln n

n
+

m
n

1

A ;

where m corresponds to the number of balls and n to the number of bins (e.g. [JK77, KSC78]),

which means we gain nothing asymptotically in average. This is related to us, but is not exactly

the same, as in one monomial, one variable cannot be taken twice. However, we can lower the

maximum that one variable appears with the classical setting of balls and bins by only consid-

ering the �rst variable, but also upper bound our exact probability distribution using twice the

maximum load. Eventually, we can say that in average, the number of guesses is asymptotically

the same as the worst case for the attacker.

Cost of the Selection Phase

The lemma below follows immediately:

Lemma 4.1. The selection phase has complexity O(` � m) which is O(n2) with Equation 4.1

estimation.

Cost of the Guessing Phase

For each i 2 f 1; : : : ; 2`g, the algorithm executes either the procedure of Case 1 or the procedure

of Case 2; �nding out which case to execute requires computing the rank of an s � n matrix,

with s � n + `. The cost of Case 1 is dominated by the inversion of an n � n matrix (since

this cost is at least n2, it dominates the cost of evaluating PRGG;P5 , which is O(m)); the cost

of Case 2 is dominated by the Gaussian elimination step. Observe that by construction, the

matrix A i (hence the submatrix Ci as well) is very sparse: each of its rows contains at most four

nonzero entries. Therefore, we can apply Wiedemann algorithm [Wie86] and compute the rank

of A i , the inverse of Ci , or the row echelon form of A i , in time O(n � (n + `)) = O(n2) (since they

can all be computed by making a constant number of black-box calls to an algorithm solving a

sparse system of linear equations).

Combining the above calculations, the cost of the entire algorithm is dominated by

O(n2 � 2`) = 2 O(n2� s) :

Lemma 4.2. The asymptotic complexity of the attack is

O
�

n22
n 2� s

2

�
:

124

4.3. Guess & Determine Cryptanalysis of Goldreich's PRG with P5

4.3.3 Success Probability

We now analyze the success probability of the algorithm. Let us �rst assume that y is in the

image of the PRG: there exists x such that y = PRGG;P5 (x). In this case, during the guessing

phase, since the algorithm enumerates over all possible values for the ` selected variables,

there must be an index i such that the selected variables have been assigned the correct value.

Let i � denote this index.

• If rank(A i �) = n (Case 1), the algorithm exactly recovers the right seed x by inverting the

n � n subsystem, hence the check that PRGG;P5 (x0
i) = y necessarily passes, hence the

algorithm outputs 1 and halts with probability 1.

• If rank(A i �) < n (Case 2), observe that by construction, the last ` + 1 rows of B i � are

identically zero (since the number of zero rows at the end of the row echelon form of the

matrix A i � is equal to the co-rank of A i � , which is at least ` + 1). By assumption y is in the

image of the PRG and i � is the right guess, hence we have

Gi � y0 = Gi � (A i � x) = B i � x;

which implies that Gi � y0ends with at least ` +1 zeroes (since the last ` +1 rows of B i � are

identically zero). Therefore, all checks of the algorithm necessarily pass, and it outputs 1

and halts with probability 1.

Hence, if y is in the image of the PRG, the algorithm always outputs 1. Let us now assume

that y is a uniformly random m-bit string. Let us �x an arbitrary i between 1 and 2` . We analyze

the probability that the algorithm outputs 1 on this i , where the probability is over the uniformly

random choice of y. As previously, two cases can happen.

• If rank(A i) = n (Case 1), the algorithm extracts a candidate seed x0
i . Note that this extrac-

tion is entirely independent of the choice of y. There are 2n possible values of x0
i , hence 2n

possible values of PRGG;P5 (x0
i). The probability (over a random choice of the m-bit string

y) that y hits one of those values is equal to 2n=2m = 1=2m� n . Hence, the probability that

the algorithm outputs 1 at step i , conditioned on case 1 happening, is upper bounded by

1=2m� n .

• If rank(A i) < n (Case 2), the algorithm obtains ` +1 vectors (v1; : : : ; v`+1). Note that since

the vi are rows of Gi , and Gi is invertible, the vi are all linearly independent. Now, the

probability that a uniformly random bit-vector y passes ` + 1 linearly independent linear

tests is at most 1=2`+1 ; therefore, the probability that the algorithm outputs 1 at step i ,

conditioned on case 2 happening, is upper bounded by 1=2`+1 .

125

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

Since ` + 1 = O(n2=m) = o(m � n), for a suf�ciently large n we have

1
2`+1 >

1
2m� n ;

from which we get that for each i , the probability (over a random choice of y) that the algorithm

outputs 1 is at most 1=2`+1 . Taking a union bound over all possible choices of i , we get that the

probability that there exists an index i for which the algorithm outputs 1 is at most 2` � 1=2`+1 =

1=2. Hence, with probability at least 1=2, the algorithm outputs 0.

Overall, the algorithm correctly distinguishes between y = PRGG;P5 (x) and random y with

probability at least 1=2(1 + 1=2) = 3=4. Note that the success probability of the adversary can

be made as close to 1 as one wishes, by collecting n + ` + � � 1 linear equations instead of

n + `, for a security parameter � ; it is easy to check that this does not change the asymptotic

complexity of the algorithm, and by the same analysis, the algorithm correctly outputs 0 when

y is random with overwhelming probability at least 1 � 1=2� .

4.3.4 Seed Recovery

The attack which we described above is a distinguishing attack: it breaks the pseudorandom-

ness of the PRG in subexponential time 2O(n2� s) . Observe that when y = PRGG;P5 (x) for some

x, if Case 1 happens at the step i � corresponding to the right guess, the attack gives something

stronger: it actually breaks the one-wayness of the PRG, by recovering the seed. Furthermore,

our experimental evaluations (which we will discuss in Section 4.3.6) show that this is actually

always the case: the algorithm systematically ends up in Case 1, and Case 2 never happens,

leading to a seed recovery attack. In this section, we provide some theoretical support for this

observation:

• we put forth a combinatorial assumption and prove that, under this assumption, there is

a seed recovery algorithm which is a slight variation of our algorithm (and has the same

complexity);

• we provide heuristic support for our combinatorial conjecture by relating it to existing

results in mathematics.

Combinatorial Conjecture

We consider the following conjecture: set � b n2=2m + 1c, and de�ne, for i = 1 to 2� , Dn;i

to be the distribution over Fn� n
2 obtained by sampling the hypergraph of Goldreich's PRG at

random (with d = 5), selecting ` variables that appear in n + ` quadratic equations using the

selection phase algorithm (see Section 4.3.1), and outputting the n � n matrix M n of the linear

126

4.3. Guess & Determine Cryptanalysis of Goldreich's PRG with P5

system obtained by setting all ` selected variables to the values indicated by the ` �rst bits of i

(note that our analysis guarantees that ` � �). We truncate to n equations for simplicity.

Hypothesis 4.1. There exists a constant such that for every suf�ciently large n 2 N, for every

i � 2� , the matrix M i contains with overwhelming probability an invertible subsystem of � n

equations, where the probability is taken over the coins of M i
$ D n;i .

Note that the conjecture is tailored to our particular attack, and could be easily generalized

to more general PRG distributions and variable selection methods – indeed, we do consider

generalizations and variants of this conjecture in the following sections. We �rst show that if

Hypothesis 4.1 is veri�ed, then there is a seed recovery attack on Goldreich's PRG instantiated

with P5. The attack is a simple variation of our previous algorithm, where in the guessing phase

we do not consider case 2. Instead, the algorithm extracts a n � n invertible submatrix Ci of

A i (whose existence is guaranteed by Hypothesis 4.1), and uses it to recover a subsequence

of n bits of the seed x. Now, by applying the result of Bogdanov and Qiao [BQ09] on recov-

ering a preimage from an approximate preimage of Goldreich's PRG, there exists a black-box

polynomial-time reduction from an algorithm that recovers (with no error) O(n(7� s)=8) � � n

bits of the seed to an algorithm that fully recovers the seed.

Supporting the Conjecture

Unfortunately, the distributions Dn;i are quite complex, and it seems relatively dif�cult (and out-

side the scope of this work) to prove our conjecture. However, we can provide some heuristic

support for the conjecture: variants of our conjecture with respect to simpler (and natural) dis-

tributions (which are close to the one we consider) follow from existing results in mathematics

and computer science. Note that the Dn;i are distributions of random very sparse matrices, with

at most 4 nonzero entries per row. We can consider two simpler natural distribution over very

sparse matrices:

• the distribution D obtained by setting each entry of the matrix to be 1 with probability 4=n,

and 0 with probability (n � 4)=n (the Bernouilli distribution);

• the distribution D 0obtained by sampling 4 random positions between 1 and n in each row,

setting the entries at these positions to be 1, and setting all other entries of the row to be

0.

For the distribution D , simply looking at the entries that contain exactly a single 1 will give with

high probability a n � n invertible submatrix (indeed, a permutation matrix),with � 5 � e� 5.

This gives a very loose lower bound on , but in fact, much stronger bounds are known for this

distribution, at least in the case of random sparse symmetric matrices [BL10].

127

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

For the distribution D 0, the conjecture is very close to problems which have been studied in

computer science under the name of Random XOR-SAT. In particular, the recent work of [PS16]

gave a precise threshold value of c such that a random c�n� n matrix contains an n� n invertible

matrix with probability 1; this result implies in particular a (loose) lower bound of = 1=cfor our

conjecture.

4.3.5 Concrete Instantiation of the Attack

We formulated our attack in an asymptotic sense, to obtain provable asymptotic ef�ciency guar-

antees. However, it is possible to obtain a much better concrete ef�ciency than the one achieved

by our algorithm. A �rst observation is that even before the selection phase, we can collect sev-

eral linear equations “for free” by looking at all quadratic equations where the quadratic terms

are equal, and XORing them to cancel out the quadratic terms.

Finding All Collisions

We �rst de�ne the notion of collisions between two quadratic equations.

De�nition 4.6. A collision is a couple (i; j) 2 [m]2 such that i 6= j and f � i
4; � i

5g = f � j
4; � j

5g.

Observe that any collision leads to a linear equation “for free”: XORing the quadratic equa-

tions indexed by � i and � j , the terms x � i
4

� x � i
5

and x � j
4

� x � j
5

cancel out, leading to a linear

equation. The algorithm �rst �nds all collisions, and derives the corresponding linear equa-

tions. Let c be the number of linear equations obtained with this step. While the asymptotic

number of such collisions is small, hence it does not change the asymptotic complexity, it turns

out that this simple step already strongly reduces the concrete cost of the attack. Let c denote

the number of linear equations obtained this way.

Note that �nding all collisions can be reached with a tweaked sorting algorithm. The idea

is to sort the equations (E i)1� i � m according to an order8 on the quadratic term x � i
4
x � i

5
. And,

each time an equality between two quadratic terms is found, one equation is removed and a

new linear equation E i + E j is derived. The complexity is dominated by the sorting complexity

O(m � log(m)) .

Avoiding the Bogdanov and Qiao Algorithm

Furthermore, as we already mentioned, we observe experimentally that Case 2 never happens.

In all our experiments, the algorithm always ends up in Case 1, with a value of > 0:90. Note

also that applying the result of Bogdanov and Qiao to obtain the seed from the approximate

8The order does not matter since only equalities are necessary, one can take the lexicographic order for example.

128

4.3. Guess & Determine Cryptanalysis of Goldreich's PRG with P5

preimage is an overkill: this result actually only requires knowing an approximate preimage (but

not necessarily which of the bits of the preimage are correct), while our attack gives us also

the exact position of the correct bits of the preimage. Therefore, we can simply inject directly

these n > 0:90n values in our list of quadratic equations, which will turn a large fraction of

them into linear equations, and hope to obtain the missing values directly from these linear

equations. Our experiments show that this is indeed the case: after recovering a large fraction

of the preimage, injecting the values in the quadratic equations always allows to recover the full

seed. Our experiments show that this is the case with a large con�dence gap: injecting only a

small fraction > 0:20of the preimage in the quadratic equations is suf�cient to always recover

the full seed.

Collecting Less Equations

Lastly, since Case 2 never happens, we do not need to collect n + ` linear equations: we can

stop as soon as we collect n � c linear equations in the guessing phase (leading to a total

of n linear equations when adding the equations obtained through collisions – note that we

were already truncating the matrices A i and ignoring the last ` equations when formulating

Hypothesis 4.1).

Assessing the Number of Collisions

For completeness, we analyze the asymptotic number of equations obtained through collisions.

As previously noticed, collisions can be used to build linear equations. For example, let us

assume we have the following two equations in � :

x � i
1

+ x � i
2

+ x � i
3

+ x � i
4
x � i

5
= yi (E1)

x � j
1

+ x � j
2

+ x � j
3

+ x � i
4
x � i

5
= yj (E2)

then adding Equation (E1) and Equation (E2) gives us the following linear equation:

x � i
1

+ x � i
2

+ x � i
3

+ x � j
1

+ x � j
2

+ x � j
3

= yi + yj

However, we stress that if we had a third colliding equation:

x � k
1

+ x � k
2

+ x � k
3

+ x � i
4
x � i

5
= yk (E3)

then we could only produce a single other linear equation (w.l.o.g. (E1) + (E3)), since the other

combination ((E2) + (E3)) would be linearly equivalent to the two previous linear equations.

129

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

Hence, this problem can be seen as a balls-into-bins problem: m balls are randomly thrown

into
� n

2

�
bins and we want to know how many balls in average hit a bin that already contains at

least one ball. Indeed, this number will approximate the value c of the algorithm.

Proposition 4.2 (Average number of collisions). Let n be the number of variables, and m be

the number of equations, let C be the random variable counting the number of collisions on the

degree-two monomials in the whole system. Then, the average number of collisions is:

E(C) = m �

n
2

!

+

n
2

! � n
2

�
� 1

� n
2

�

! m

2 O(n2(s� 1)) :

Proof. We �rst consider individually the
� n

2

�
degree-two possible monomials. For each equation,

the two variables of the degree-two monomial are taken uniformly from the n variables (with

replacement), therefore the probability that the monomial indexed by i; j is taken follows a

Bernouilli law with parameter p = 1
(n

2)
.

The random variable counting how many times the monomial indexed by i; j is selected

follows a binomial law of parameters m and p. As a collision happens when the monomial has

already been taken, we consider the random variable Ci;j counting 0 if the monomial has been

taken 0 or 1 times, k � 1 otherwise. The expectation of Ci;j is therefore

E(Ci;j) =
mX

k=2

P[B (m;p)= k] � (k � 1);

where P[B (m;p)= k] stands for the probability for a random variable following a binomial distribu-

tion of parameters m and p to take the value k. The total number of collisions is obtained by

summing the expectations of all the Ci;j .

130

4.3. Guess & Determine Cryptanalysis of Goldreich's PRG with P5

E(C) =
nX

i =1

nX

j = i +1

E(Ci;j) =
nX

i =1

nX

j = i +1

mX

k=2

P[B (m;p)= k] � (k � 1)

=

n
2

! mX

k=2

P[B (m;p)= k] � (k � 1) =

n
2

! mX

k=2

m
k

!

pk (1 � p)m� k � (k � 1)

=

"
n
2

! mX

k=0

m
k

!

pk (1 � p)m� k � (k � 1)

#

�

"
n
2

! 1X

k=0

m
k

!

pk (1 � p)m� k � (k � 1)

#

=

"
n
2

! mX

k=0

m
k

!

pk (1 � p)m� k � (k � 1)

#

+

n
2

!

p0(1 � p)m

=

"
n
2

! mX

k=0

k

m
k

!

pk (1 � p)m� k

#

�

n
2

!

+

n
2

!

(1 � p)m

=

2

4
mX

k=0

k

m
k

!
1

� n
2

�

! k� 1 � n
2

�
� 1

� n
2

�

! m� k
3

5 �

n
2

!

+

n
2

!

(1 � p)m since p =
1

� n
2

�

=

2

4
m� 1X

k0= � 1

(k0+ 1)

m

k0+ 1

!
1

� n
2

�

! k0 � n
2

�
� 1

� n
2

�

! m� 1� k03

5 �

n
2

!

+

n
2

!

(1 � p)m

=

2

4
m� 1X

k0=0

m

m � 1

k0

!
1

� n
2

�

! k0 � n
2

�
� 1

� n
2

�

! m� 1� k03

5 �

n
2

!

+

n
2

! � n
2

�
� 1

� n
2

�

! m

= m �

n
2

!

+

n
2

! � n
2

�
� 1

� n
2

�

! m

:

Eventually this number can be estimated with a limited development:

E(C) = ns �

n
2

!

+

n
2

!

e
ln

�
1� 1

(n
2)

�
ns

= ns �

n
2

!

+

n
2

!

e

�
� 1

(n
2)

� 1

2(n
2)

2 + o

�
1

(n
2)

3

��
ns

= ns �

n
2

!

+

n
2

!

e

�
� n 1+ s

(n
2)

� n 1+ s

2(n
2)

2 + o

�
n s

(n
2)

3

��

= ns �

n
2

!

+

n
2

!

1 �
ns
� n

2

� �
ns

2
� n

2

� 2 + o

"
ns

� n
2

� 3

#

+
n2s

2
� n

2

� 2 + o

"
n2s

� n
2

� 2

#!

= ns �

n
2

!

+

n
2

!

� ns �

� n
2

�
ns

2
� n

2

� 2 +

� n
2

�
n2s

2
� n

2

� 2 + o

" � n
2

�
n2s

� n
2

� 2

#

= �
ns

2
� n

2

� +
n2s

2
� n

2

� + o

"
n2s

2
� n

2

�

#

= O(n2(s� 1)) :

131

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

Tab. 4.1 gives the evaluation of this formula for some set of parameters. Our experimen-

tal results (see Section 4.3.6) corroborate these expectations and show that the number of

collisions is always very close to this expected average.

4.3.6 Experiments

Distribution of the number of collisions

The theoretical results of Table 4.1 are veri�ed in practice, as shown in Fig. 4.1 for the particular

case of n = 1024 and s = 1 :4. As expected with the analytical formula, the number of collisions

is very close to 254 in average. Moreover, our experimental results are very dense around the

average, suggesting that the distribution has a low variance.

200 250 300
0

20

40

60

Number of collisions

N
um

be
r

of
te

st
s

Figure 4.1: Number of collisions for n = 1024
and s = 1 :4 with 2000 tests

64 65 66 67 68 69
0

200

400

600

800

Number of guesses

N
um

be
r

of
te

st
s

Figure 4.2: Number of guesses for n = 2048
and s = 1 :3 with 2000 tests

Implementation of the attack

Since the original motivation of this work is to study the concrete security of Goldreich's PRG,

it is important to practically check if the attack presented in Section 4.3.4 can be ef�cient when

implemented. For this purpose, we provide a proof of concept in Python9.

We �rst analyzed experimentally Hypothesis 4.1 and observed that we always obtain an

invertible subsystem of at least 0:90 � n equations, for all tested parameters (28 � n � 214 and

1 < s < 1:5). We also experimented that knowing only 20%of the seed allows to inject it in the

quadratic system and to recover the remaining 80%, showing a large gap of con�dence in our

hypothesis.

9Our proof of concept can be found at https://github.com/LuMopY/SecurityGoldreichPRG

132

https://github.com/LuMopY/SecurityGoldreichPRG

4.3. Guess & Determine Cryptanalysis of Goldreich's PRG with P5

One can note that the practical attack should be on average more ef�cient than assessed

theoretically. Indeed, the asymptotic complexity of Proposition 4.2 is estimated in the worst

case and pessimistic approximations were made on n � c and on the value of `. Hence, we

experimented this attack for different stretches and different values of n and we effectively

noticed that the complexity on average is much smaller than the expected complexity. Table 4.2

represents the theoretical number of guesses necessary to recover the seed and Table 4.3

represents the average number of guesses actually needed in the experiment. Moreover, we

also noticed that the number of guesses needed to invert the system has a very low variance,

as shown in Fig. 4.2.

Table 4.1: Theoretical number of collisions
(average case)

n 256 512 1024 2048 4096

s = 1 :45 142 269 506 946 1771
s = 1 :4 83 145 254 442 773
s = 1 :3 28 42 64 97 147

Table 4.2: Theoretical number of guesses
(worst case)

n 256 512 1024 2048 4096

s = 1 :45 4 7 11 18 27
s = 1 :4 9 15 23 37 58
s = 1 :3 20 34 56 94 156

Table 4.3: Experimental number of guesses
(average case)

n 256 512 1024 2048 4096

s = 1 :45 4 6 9 14 21
s = 1 :4 6 11 17 27 44
s = 1 :3 13 23 39 66 110

Table 4.4: Challenge parameters for seed
recovery attacks. The �rst line contains the
parameter n and below are represented the
associated stretches s.

Operations 512 1024 2048 4096

< 280 1:120 1:215 1:296 1:361
< 2128 1:048 1:135 1:222 1:295

This experiment enables to estimate the practical security of Goldreich's PRG against the

guess and determine approach with 80bits of security. Indeed, for one instance of the PRG, the

complexity of the seed recovery can be easily derived from the number ` of guesses as 2`n! .

So to assess the 80 bits security, one can evaluate the average number of guesses necessary

for one choice of (n; s) and check if the complexity is lower than 280. For that, for 30 values of

n 2 [27; 214], we delimited the smallest stretch for which the average number of guesses allows

a 80 bits attack. Each average has been done on 1000measurements because the variance

was very small. Fig. 4.3 represents the limit on vulnerable (n; s) parameters. Above the line,

the parameters are on average insecure against the guess and determine attack.

133

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

29 210 211 212 213 214
1:1

1:15

1:2

1:25

1:3

1:35

1:4

1:45

Size of the seed

S
tr

et
ch

of
th

e
P

R
G

above: < 80 bits security

Figure 4.3: Limit stretch for vulnerable instances. The grey zone above the curve denotes the
insecure choices of parameters.

Candidate Non-Vulnerable Parameters

We were able to estimate the practical range of parameters that appear to resist this attack.

To assess them, we estimated the number of guesses necessary and deduced the bit security.

With many measurements (1024for each set of parameters), we could �nd the limit stretch for

parameters that are, not vulnerable to our attack. The couples (n; s) that possess the maximal

s with an expected security of 80 or 128bits10 are conjectured to be the limit for non-vulnerable

parameters. These couples11 are represented by the two lines in Fig. 4.4.

We also introduce certain parameters in Table 4.4 as challenges for improving the crypt-

analysis of Goldreich's PRG. These parameters correspond to choices of the seed size and

the stretch which cannot be broken in less than 280 (resp. 2128) operations with the attacks de-

scribed in this chapter. Further study is required to assess con�dence in the security level given

by these parameters.

4.4 Algebraic Cryptanalysis of Goldreich's PRG with P5

To complement the attacks of Section 4.3.1, we also provide an analysis of the ef�ciency of

algebraic attacks with Gröbner basis on Goldreich's PRG. While it is known that Goldreich's

10We actually took a margin of 10% to take into account the possible improvements of our implementation.
11This curve should not be extrapolated because outside of its range, Gröbner attacks seem more powerful, see

Fig. 4.10

134

4.4. Algebraic Cryptanalysis of Goldreich's PRG with P5

29 210 211 212

1:05

1:1

1:15

1:2

1:25

1:3

1:35

Size of the seed

S
tr

et
ch

of
th

e
P

R
G

below: conjectured > 80 bits security
below: conjectured > 128 bits security

Figure 4.4: Limit stretch for conjectured non-vulnerable instances.

PRG (and its variants) provably resists such attacks for appropriate choices of (asymptotic)

parameters ([AL16], Theorem 5:5), little is known about its exact security against such attacks

for concrete choices of parameters.

In this section, we study the existence of polynomial attacks for s < 1:5. In fact, with the

current literature, either s � 1:5 and there is a polynomial inversion, or s < 1:5 and the only

known attack is subexponential. The idea of this section is to offer some granularity on the pa-

rameters (n; s) instead of this abrupt limit for polynomial inversion. For this, we opt for a different

algebraic approach without guess and determine. Instead of guessing values to transform the

public system into a linear system in the seed, one might want to generate enough equations

in order to linearize. This standard method has been introduced by Macaulay in [Mac64] and

Lazard in [laz81]. The idea behind linearization is the assignment of an unknown variable for

each of the monomials appearing in the system. For example, to each monomial x i x j , a vari-

able X i;j will be assigned. Thereby, a linear system of equations with more unknowns of type

X i;j remains to be solved. This linearization method has been improved in Gröbner basis com-

putations due to Buchberger [Buc76] and later by Faugère with F4 [Fau99] and F5 [Fau02]

algorithms.

Performance of a Gröbner basis strategy is hard to assess for the speci�c case of Goldre-

ich's PRG with the existing theory (see [BFSyY] for complexity bounds on Boolean random

quadratic systems). Indeed, Goldreich's PRG is far from a Boolean random quadratic system,

it has a strong structure and is very sparse. These features should make Goldreich's PRG an

easier target. In a �rst step, in order to give an intuition on how Gröbner basis algorithms would

behave on Goldreich's PRG with predicate P5, we provide an easy-to-understand degree-two

135

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

linearization attack . This polynomial attack leads to a practical seed recovery for certain param-

eters (n; s) and we can derive a heuristic bound for vulnerable (n; s) for 80 bits of security12.

The existence of such an attack allows to estimate Gröbner basis algorithm complexity. In-

deed, Gröbner basis algorithms use an optimized method to generate polynomials. So, their

performance is at least as good as our linearization attack. Thus, from our linearization at-

tack performance and complexity, we derive a heuristic bound on vulnerable (n; s) parameters

against a Gröbner basis technique. This heuristic bound shows that a Gröbner basis approach

may attack more parameters than the guess-and-determine technique (of Section 4.3) for high

values of n.

4.4.1 A Polynomial Attack with Degree-Two Linearization

For a degree-two linearization, the number of variables will highly increase in comparison to the

Section 4.3 case. Indeed, the total variables will include linear terms of shape x i and quadratic

terms of shape x i x j where i 6= j . Thus, the total number of variables is

Nvar (n) = n +

n
2

!

:

To get a chance to invert a system with so many linearized variables, one needs to generate

as many quadratic equations as possible. Fortunately, Goldreich's PRG with P5 predicate has

such a structure that allows any attacker to create a large number of new equations from the

original system. Before showing how to generate these equations, let us introduce the principle

of the attack assuming that a certain number of equations is drawn.

An Attack and its Complexity

Suppose that a Goldreich's PRG is drawn with parameters (n; s) and with c collisions. Suppose

also that one can create a set of quadratic equations that contains N indep eqns linearly indepen-

dent ones. Only equations of degree exactly two are counted in N indep eqns . We sketch a seed

recovery attack assuming that

0 � N var (n) � N indep eqns � c

and assess its complexity.

Step 1 From the system of N indep eqns , we create a linear system in matrix form.

12The case of 128 bits of security is harder to assess because a degree-three linearization must then be consid-
ered. This study is left for future work.

136

4.4. Algebraic Cryptanalysis of Goldreich's PRG with P5

Step 2 We rewrite this system by separating the quadratic part and creating submatrices. Let

qi be the quadratic part of this new system and bi be its linear part and yi be its constant

term.

q1 + b1 = y1

...

qN indep eqns + bN indep eqns = yN indep eqns

The linearization consists in solving (qi + bi = yi) i 2 [N indep eqns] by replacing each monomial

with a variable and trying to invert a linear system of size N indep eqns � N var (n). We then

rewrite the system in terms of matrices. Let Q 2 F
N indep eqns �(n

2)
2 represent the coef�cients

of the quadratic polynomials qi and B 2 F
N indep eqns �n
2 represent the coef�cients of the lin-

ear part bi . Due to its sparseness, B is full rank with high probability. Figure 4.5 represents

such matrices. The grey vector represents the list of quadratic variables of type (x i x j),

the light-grey vector represents the linear and constant variables.

Step 3 We compute the rank of matrix Q.

• If Q is full rank after deleting its columns of zero, then we invert the system by ap-

plying Gaussian elimination on QjB which is enough to recover the secret seed

x1; : : : ; xn .

• Else Q is not full rank but the rank defect is bounded because of the condition

Nvar (n) � N indep eqns � c. Indeed, the previous condition can be reformulated as

Nvar (n) > rank (QjB) � N var (n) � c. With the addition of the c linear equations

obtained by collisions (that are linearly independant with high probability), the whole

quadratic system becomes invertible.

Remark 4.1. In this precise case, we actually re�ned the computation in order to gain

experimental complexity. For this, we rewrite the system differently as in Figure 4.6.

We derive a matrix � for left kernel of Q. We multiply the system in Figure 4.6 by �

and obtain a linear system as in Figure 4.7. With the addition of the c linear equations

obtained by collisions, the inversion of the remaining linear system in x i gives the

secret seed with high probability.

Since the costliest step in this attack is the inversion of a matrix of size
� n

2

�
, the complexity

is O(n2�!). It then leads to the following proposition.

Proposition 4.3. Let Goldreich's PRG be instantiated with n, s, and P5. Let c be the number

of collisions and N indep eqns be the number of linearly independent quadratic polynomials gen-

137

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

BQ = y BQ = + y B
�

= y

Figure 4.5: Linearized sys-
tem

Figure 4.6: Rewritten system Figure 4.7: Linear system

erated with the previous generation. If 0 � N var (n) � N indep eqns � c the previous algorithm

recovers the seed with high probability with time complexity O(n2�!).

Creating and Counting Quadratic Equations

In order to satisfy Proposition 4.3's hypothesis, one must draw N indep eqns linearly independent

quadratic equations such that

N indep eqns � N var (n) � c :

In order to achieve it, in the following we introduce a (non exhaustive) list of ways to create new

quadratic polynomials. In each case, equations are grouped in a type. We denote by NTi the

number of equations following from Type i . Unfortunately, predicting the linear dependencies

with these new equations is a dif�cult task for a system with such a structure. For each type, we

will remove all redundant equations (also with other types) and assess the number. The linear

independence will only be conjectured from experiments.

Let us suppose that an instance of Goldreich's PRG with (n; s) is drawn and gives m = ns

equations E1; : : : ; Em evaluated in the secret seed x1; : : : ; xn such that for i 2 [m],

x � i
1

+ x � i
2

+ x � i
3

+ x � i
4
x � i

5
= yi (E i)

where y1; : : : ; ym 2 F2 is the output.

Type 0: the Original System

The �rst quadratic equations are the system itself composed of ns quadratic equations. If the

system has linear dependencies between equations, then a distinguisher is found and the PRG

is broken. We then consider that all equations are linearly independent. All the new quadratic

equations will come from this system. To avoid redundancy in the next constructions, we remove

one equation from each collision, thus NT0 = ns � c.

138

4.4. Algebraic Cryptanalysis of Goldreich's PRG with P5

Type 1: Generated Individually

New quadratic polynomials can be derived directly from each equation E i with i 2 [m]. Let us

�x i 2 [m]. In the �eld F2, the equation x2 = x gives

x � i
1

+ x � i
2

+ x � i
3

+ x � i
4
x � i

5
= yi ! x � i

1
x � i

5
+ x � i

2
x � i

5
+ x � i

3
x � i

5
+ x � i

4
x � i

5
= yi x � i

5

! x � i
1
x � i

4
+ x � i

2
x � i

4
+ x � i

3
x � i

4
+ x � i

4
x � i

5
= yi x � i

4
:

Thus, the set of quadratic equations generated from E i is

f zEi j 8z 2 f x � i
4
; x � i

5
gg :

Then, considering all i in [m], 2 � N T0 = 2ns � 2c new equations can be created. A linear

dependence in these equations would also lead to a distinguisher, then we consider that all

these equations are linearly independent, thus NT1 = 2ns � 2c.

Remark 4.2. If we combine equations of Type 0 with equations of Type 1, a small number of

linear equations can follow. Indeed, take the following example

x � i
1

+ x � i
2

+ x � i
3

+ x � i
4
x � i

5
= yi ! x � i

1
x � i

5
+ x � i

2
x � i

5
+ x � i

3
x � i

5
+ x � i

4
x � i

5
= yi x � i

5
:

If the quadratic monomials x � i
1
x � i

5
, x � i

2
x � i

5
and x � i

3
x � i

5
also appear in Type 0 equations, then

each quadratic term can be replaced by the linear part. Thus, a new linear equation of weight

up to 13 is created. The expected number of such linear equations is

Nextra lin (n; s) = 2 � N T0 �
�

NT0

n
� n

2

�
� 3

� 24 � n4s� 6 :

This number is low, so these equations are added to the linear equations coming from collisions.

In other words, from now on, c c + Nextra lin (n; s) � c.

Type 2: from Collisions

According to De�nition 4.6, a collision is a couple (i; j) such that the sum of E i and E j generates

a linear equation of shape x � i
1

+ x � i
2

+ x � i
3

+ x � j
1

+ x � j
2

+ x � j
3

= yi + yj . Thus, the set of quadratic

equations generated from a linear equation L is

f zL j 8z 2 f x1; : : : ; xngg :

Then, n � c quadratic equations can be created. A linear dependence in these equations would

lead to a distinguisher with success probability higher than 1=2, then we consider that all these

139

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

equations are linearly independent, thus NT2 = n � c.

Type 3: from Semi-Collisions

Let us �rst introduce the de�nition of a semi-collision.

De�nition 4.7 (semi-collision). A semi-collision is a couple (i; j) 2 [m]2 such that i 6= j , (i; j) is

not a collision and such that there exists a k 2 [n] so that

k 2 f � i
4; � i

5g and k 2 f � j
4; � j

5g :

For example, the following equations,

x1 + x2 + x3 + x7x10 = y1 (E1)

x4 + x5 + x6 + x7x8 = y2 (E2)

induces (1; 2) as a semi-collision because x7 appears in both degree-2 monomials.

Lemma 4.3. When a semi-collision (i; j) occurs, an extra quadratic equation of shape

x � j
5 or 4

E i + x � i
4 or 5

E j

can be generated.

In the previous example, it is easy to see that one can generate a new quadratic equation.

x8x1 + x8x2 + x8x3 + x10x4 + x10x5 + x10x6 = x8 � y1 + x10 � y2 (x8 � E1 + x10 � E2)

Lemma 4.4. The total number of semi-collisions can be approximated by

Nsemi collisions = n

2n� 1(ns � c)

2

!

:

Proof. Let p be the probability that a �xed variable x i appears in the quadratic term of a �xed

Type 0 quadratic equation. Thus, p = 2
n . For a variable x i , there are on average (m � c)p =

2n� 1(ns � c) elements13 that have x i in their quadratic term. Inside this set of 2n� 1(ns � c)

elements, there are
� 2n � 1 (ns� c)

2

�
couples. To get all the semi-collisions and collisions, we multiply

the previous equation by n. This multiplication is accurate because this counting does not imply

simple intersections.

13This is a worst-case approximation.

140

4.4. Algebraic Cryptanalysis of Goldreich's PRG with P5

Removing Redundant Zquations inside Type 3

If naively generated following Lemma 4.4's proof, many equations are redundant. To compute

a correct assessment of the signi�cant Type 3 equations, we will remove several redundant

equations. Let us study a phenomenon that is at the origin of many redundancies. Look at the

following example :

x1 + x2 + x3 + x10x11 = y1 (E1)

x4 + x5 + x6 + x11x12 = y2 (E2)

x7 + x8 + x9 + x10x12 = y3 (E3)

Among the three semi-collisions concerning x10, x11 and x12, one is exactly the sum of both

other. Then, when a “cycle” of size 3 appears in the quadratic terms, one semi-collision should

be ignored. This makes NT3 smaller than Nsemi collisions . Let Ncycles be the expected number of

these “cycles” of size three in a random instance Goldreich's PRG . Ncycles can be approximated

by the following:

Ncycles �
1

� (n
2)
3

� �

n
3

!

�

m
3

!

2 O(n3s� 3) :

Then, the remaining number of linearly independent equations is upper bounded by

Nsemi collisions � N cycles :

One equation per cycle is removed and all other equations are kept and counted in NT3 .

NT3 = Nsemi collisions � N cycles

Proposition 4.4. The total number of linearly independent quadratic equations that can be

generated with the previous types of equations is upper-bounded by

N indep eqns � N T0 + NT1 + NT2 + NT3 := Neqn(n; s) 2 O(n2s� 1) :

Asymptotically, s < 1:5 =) N eqn(n; s) < Nvar (n) which makes the linearization impossi-

ble. This result comes with no surprise since it is part of the asymptotic security assumptions.

However, for many instances (when n < 214), Neqn(n; s) � N var (n). In the next section, we pro-

vide conditions on n and s such that a polynomial seed recovery is possible with non-negligible

probability.

141

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

100 120 140 160 180 200 220 240
1:25

1:3

1:35

1:4

Size of the seed

S
tr

et
ch

of
th

e
P

R
G

Conjectured stretch limit
Experimental limit

Figure 4.8: Experiment

Conjectured Bound on Vulnerable Parameters

Proposition 4.3 condition (Nvar (n) � N indep eqns � c) does not easily give a bound in terms of

parameters. Indeed, N indep eqns is hard to assess because the linear independence of equations

form types 0, 1, 2 and 3 is non-trivial to prove.

However, extensive experiments on small parameters support Neqn(n; s) � N indep eqns . That is

what allows us to make the following conjectured limit parameters for this polynomial attack:

Neqn(n; s) > Nvar (n) � c (Heuristical limit)

Experiment

We implemented this attack with a proof of concept using Magma CAS14. For each value

n 2 f 100; 110; 120; : : : ; 240g, we found out that if (n; s) are such that Neqn(n; s) � N var (n) � c,

the attack succeeds with high probability which corroborates the theory. For a given n, we mea-

sured the limit stretch s for which the success probability goes under 50%. Indeed, in Fig. 4.8,

the dots represent the experiments, the line corresponds to the equality Neqn(n; s) = Nvar (n)� c

(Heuristical limit) which was computed discretely in another Magma code. The estimation of

Heuristical limit was a worst-case assessment, so it is not surprising that some experimental

limits are actually slightly below the line.

14The Magma code can be found at https://github.com/LuMopY/SecurityGoldreichPRG

142

https://github.com/LuMopY/SecurityGoldreichPRG

4.4. Algebraic Cryptanalysis of Goldreich's PRG with P5

28 29 210 211 212 213 214
1:3

1:35

1:4

1:45

Size of the seed

S
tr

et
ch

of
th

e
P

R
G

above : conjectured polynomialy broken

Figure 4.9: Extrapolation graph

Heuristic 4.1 (Extrapolation for greater size of seed). For any set of parameters (n; s) such

that Equation Heuristical limit is veri�ed, we conjecture that there is a polynomial seed recovery

attack for Goldreich's PRG with P5 with cost O(n2!).

We can notice that if n < 214 then the complexity is lower than 280.

In Fig. 4.9, we represent the extrapolated heuristic bound on (n; s). Above the line, the sets

of parameters are conjectured to be vulnerable to this polynomial attack.

4.4.2 Gröbner Approach

An ef�cient alternative algebraic attack is using Gröbner basis algorithms such as Faugères F4

[Fau99] and F5 [Fau02]. It consists in a succession of linearization attempts where the degree

of the linearization is incremented at each step. For each linearization attempt, all polynomial

combinations are exhausted in a smart way in order to generate as many new equations as pos-

sible. However hard to assess (see Bardet, Faugère, Salvy and Yag's work [BFSyY]), Gröbner

basis computation's complexity is dominated by Gaussian elimination on the smallest invertible

Macaulay matrix. This Macaulay matrix contains coef�cients associated with the monomials of

a �xed degree. We denote by degree of regularity or D reg , the degree of the monomials asso-

ciated with the invertible Macaulay matrix. In [BFSyY], under certain hypotheses, the degree of

regularity for a random Boolean quadratic system is upper bounded by

� ns +
n
2

+
n
2

r

2n2s� 2 � 10ns� 1 � 1 + 2(ns� 1 + 2)
q

ns� 1(ns� 1 + 2) :

143

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

This bound is too generic and does not represent what happens for practical (n; s). Goldreich's

PRG structure allows to drastically reduce the degree of regularity. We conjecture an upper

bound on the degree of regularity for certain parameters based on Section 4.4.1 attack results

and that is observed to be true in our experiments.

Claim 4.1. If the attack of Section 4.4.1 recovers the seed for one instance of Goldreich's PRG ,

the degree of regularity D reg is 3 and drops to 2 for the resolution on this instance.

The performance of Faugères F4 or F5 algorithm on Goldreich's PRG is strictly superior to

the attack presented in Section 4.4.1. Indeed, the three types of equations found in Step 1 form

a subset of the equations derived from Gröbner basis algorithm up to degree three. Then, if

the subsystem is invertible with a degree-two linearization, Gröbner basis algorithm will also be

able to invert it with a degree-two linearization. There is a subtlety because when computing

the Gröbner basis, the maximal degree of polynomials involved is actually three: for �nding

semi-collisions, the quadratic polynomials need to be multiplied by a monomial. But then, once

enough semi-collisions are found, the Gröbner basis algorithm falls back into solving a degree-

two system. This phenomenon is called a degree fall.

Experimental Results

To experiment the performance, we used the Gröbner basis algorithms of Magma CAS. The

Magma code is then very simple as it consists in computing GroebnerBasis(System,3) which

calls a Boolean variant of Faugère F4 algorithm. For each computation, we checked that

the degree fall happened and the inversion was done with a degree two. For each value

n 2 f 100; 110; : : : ; 240g and the conjectured limit stretch for 50% success, we ran 100 seed

recoveries and Gröbner basis algorithm was able to recover around than 90%of the seeds. We

�nally conclude that according to the conducted experiments, Heuristic 4.1 is observed to be

true for small values of n.

Remark 4.3. We noticed that Gröbner basis performance was able to attack more parameters

with lower stretches (often below s = 1 :25) with degree of regularity 2. So, some parameters

below the heuristic bound may also be vulnerable.

Increasing the Degree of Regularity

Since we consider 80 bits of security, we want the cost of a degree D reg linearization to be

doable with at most 280 operations. A degree D reg linearization corresponds to a Gaussian

elimination on a system with
� n

n� D reg

�
variables. Then, D reg should verify:

n

n � D reg

! !

< 280 :

144

4.4. Algebraic Cryptanalysis of Goldreich's PRG with P5

29 210 211 212 213 214

1:15

1:2

1:25

1:3

1:35

1:4

1:45

Size of the seed

S
tr

et
ch

of
th

e
P

R
G

Guess and determine
Degree-two linearization

Figure 4.10: Limit stretch for vulnerable parameters with 80 bits of security against both guess
and determine (Section 4.3) and degree-two linearization attacks (See Appendix 4.4). The grey
zone above the curves denotes the insecure choices of parameters.

This implies that D reg cannot be higher than 2 for n > 512. For n � 512, a degree-three

linearization might solve more (n; s) instances. We leave this study as future work.

4.4.3 Conclusion

We described in Section 4.3 a guess-and-determine attack against Goldreich's PRG. In this

section, we complement this result with an analysis of the security of Goldreich's PRG against

a degree-two linearization attack (à la Gröbner). We represent on Figure 4.10 the range of pa-

rameters for which Goldreich's PRG is conjectured to have 80 bits of security against those two

attacks. As illustrated in the graph, the guess-and-determine approach targets more parame-

ters for low n while the linearization attack performs better for n > 4000.

Although Goldreich's PRG is conjectured to be theoretically secure for a stretch approaching

1:5 by an arbitrary constant, our analysis shows that a very large seed must be used to achieve

at least 80 bits of security with such a stretch. In particular, if a stretch of 1:4 is needed, no seed

smaller than 5120 bits should be used. Similarly, for a stretch as small as 1:1, the seed must be

at least 512 bits long.

145

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

4.5 About the Ordered Case

In this section, we show that the additional structure given by an ordered Goldreich's PRG with

the predicate P5 brings a lower security level than the unordered case.

4.5.1 Guess and Determine

Although the ordered case seems highly non-trivial to analyze from a theoretical point of view,

we give evidence that it brings a lower security level than the unordered case. Then, we also

give some experimental measures to support our studies. Each subset is of the form:

� i = [� i
1; � i

2; � i
3; � i

4; � i
5]; where � i

1 < � i
2 < � i

3 < � i
4 < � i

5 ;

and the equations are of the form:

x � i
1

+ x � i
2

+ x � i
3

+ x � i
4
x � i

5
= yi :

In this particular case, the average number of collisions is much higher than in the unordered

case, since the lasts bits of the seed are drawn with a higher probability.

More formally, the average number of collisions is given by the following proposition:

Proposition 4.5 (Average number of collisions in the ordered case). Let n be the number of

variables, and m be the number of equations, let C be the random variable counting the number

of collisions on the degree-two monomials in the whole system. Then, the average number of

collisions is:

E(C) =
n� 1X

i =1

(n � i) (� 1 + mpi + (1 � pi)m) ;

where pi = (i � 1
3)

(n
5)

.

Proof. We �rst consider individually the
� n

2

�
degree-two possible monomials. For each equation,

the two variables of the degree-two monomial are taken after the three degree-one monomials,

therefore the probability that the monomial indexed by i; j is taken follows a Bernouilli law with

parameter pi = (i � 1
3)

(n
5)

.

The random variable counting how many times the monomial indexed by i; j is selected

follows a binomial law of parameters m and pi . As a collision happens when the monomial has

already been taken, we consider the random variable Ci;j counting 0 if the monomial has been

taken 0 or 1 times, k � 1 otherwise. The expectation of Ci;j is therefore:

E(Ci;j) =
mX

k=2

P[B (m;p i)= k] � (k � 1) ;

146

4.5. About the Ordered Case

where P[B (m;p i)= k] stands for the probability for a random variable following a binomial distribu-

tion of parameters m and pi to take the value k.

The total number of collisions is obtained by summing the expectations of all the Ci;j :

E(C) =
n� 1X

i =1

nX

j = i +1

E(Ci;j) =
n� 1X

i =1

nX

j = i +1

mX

k=2

P[B (m;p i)= k] � (k � 1)

=
n� 1X

i =1

(n � i)
mX

k=2

m
k

!

pk
i (1 � pi)m� k � (k � 1)

=
n� 1X

i =1

(n � i)

" mX

k=0

m
k

!

pk
i (1 � pi)m� k � (k � 1)

!

+ (1 � pi)m

#

=
n� 1X

i =1

(n � i)

" mX

k=0

k

m
k

!

pk
i (1 � pi)m� k

!

� 1 + (1 � pi)m

#

=
n� 1X

i =1

(n � i)

" mX

k=0

m

m � 1
k � 1

!

pk
i (1 � pi)m� k

!

� 1 + (1 � pi)m

#

=
n� 1X

i =1

(n � i)

"

m
m� 1X

k0=0

m � 1

k0

!

pk0+1
i (1 � pi)m� 1� k0

!

� 1 + (1 � pi)m

#

=
n� 1X

i =1

(n � i) [mpi � 1 + (1 � pi)m]

The penultimate line is obtained by �xing k0 = k � 1.

In this very particular case, the average number of collisions and the number of guesses

are hard to determine. Intuitively, we expect the last bits of the seed to be drawn more often in

the monomials of degree two. As a consequence, the number of collisions is likely to be much

higher. Also, the number of guesses should be greatly reduced , since we guess the bits of the

seed that appears the most.

Our experimental results, shown in Table 4.5 and Table 4.6, support this intuition. Even

better, for s = 1 :45 we could not �nd a seed size n that forces the attacker to make at least one

guess.

4.5.2 Algebraic Attack on the Ordered Case

Algebraic attacks are also more ef�cient for the ordered case since there is an additional struc-

ture. One can �gure that, in that case, the number of equations derived from the three types

method of Section 4.4.1 will �nd more collisions and semi-collisions. So, the limit stretch can

be lowered in comparison to the non ordered case.

147

Partie , Chapter 4 – On the Concrete Security of Goldreich's Pseudorandom Generator

Table 4.5: Average number of collisions for
the ordered case

Table 4.6: Average number of guesses for
the ordered case

n 256 512 1024 2048 4096

s = 1 :45 458 890 1703 3251 6162
s = 1 :4 271 488 873 1539 2709
s = 1 :3 95 145 221 341 520

n 256 512 1024 2048 4096

s = 1 :45 0 0 0 0 0
s = 1 :4 0 1 2 5 9
s = 1 :3 6 10 17 30 50

4.6 Other Results

Additionally, our work [CDM+ 18] also has two important results that we do not detail in this

document:

• Generalization. We generalize the guess-and-determine attack to the class of XOR-M

predicates, which are divided into two parts, a linear part (the XOR part) and a non-linear

part (the M part), XORed together. This captures all known candidate generalizations

of Goldreich's PRG. By guessing the variables in the non-linear part, our attack takes

subexponential time as soon as the stretch of the PRG is strictly above one. Importantly,

our attack does not depend on the locality of the predicate, but only on the number of

variables involved in the non-linear part. In a recent work [AL16], Applebaum and Lovett

put forth an explicit candidate local PRG (of the form XOR-MAJ), as a concrete target

for cryptanalytic effort. Our attack gives a new subexponential algorithm for attacking this

candidate.

• Extending the Applebaum-Lovett polynomial-time algebraic attack. Applebaum and Lovett

recently established that local pseudorandom generators can be broken in polynomial

time, as long as the stretch s of the PRG is greater than the rational degree e of its

predicate. We extend this result as follows: we show that the seed of a large class of

local PRGs (which include all existing candidates) can be recovered in polynomial time

whenever s � e � logNe=logn, where e is the rational degree, n is the seed size, and

Ne is the number of independent annihilators of the predicate (or of its conjugate) 15 of

degree at most e.

4.7 Conclusion and Open Questions

In this work, we described a guess-and-determine attack and a degree-two linearization attack

(à la Gröbner) against Goldreich's PRG with predicate P5. Although Goldreich's PRG is con-

15An annihilator of a predicate P is a non-zero polynomials Q such that Q � P = 0 , the conjugate of a predicate P
is the predicate P + 1

148

4.7. Conclusion and Open Questions

jectured to be theoretically secure for a stretch approaching 1:5 by an arbitrary constant, our

analysis shows that a very large seed must be used to achieve at least 80 bits of security with

such a stretch. In particular, if a stretch of 1:4 is needed, no seed smaller than 5120 bits should

be used. Similarly, for a stretch as small as 1:1, the seed must be at least 512 bits long. We also

proved and experimented that even larger keys have to be considered for the ordered case.

This work then gives more �ne-grained security parameters to consider when instantiating

Goldreich's PRG. Although large seeds have to be considered for high stretches, this PRG still

remains very ef�cient for small stretches closer to 1, thanks to its constant depth.

We also gave some challenge parameters in order to motivate the crypto community in

cryptanalyzing this interesting PRG. Despite the fact that SAT Solvers are known to run in

exponential time against such problems [CEMT14], it would be interesting to analyze how they

behave against small seed sizes such as 512 or 1024 bits.

149

CHAPTER 5

CONCLUSION

Contributions to various theoretical and practical aspects of multi-party computation are pre-

sented in this thesis. These contributions lead to some interesting open problem.

Garbled circuits against malicious adversaries. The �rst contribution focuses on de�ning

how a malicious adversary can corrupt a garbled circuit protocol. For a large class of circuits,

we have shown that this adversary is much less powerful than what we could have expected

from the previous state of the art. Formally, he is only able to add NOT gates and to make

selective failure attacks. Therefore, it also suggests that cut-&-choose based solutions might

be an overkill to achieve security in the malicious model and we may be able to design more

speci�c and more ef�cient solutions. We leave it as an open question.

For circuits outside this class, what corruptions an adversary is able to make is still an

open question. Our preliminary studies suggest that this question is highly non-trivial and may

depend on the topology of the circuit being corrupted. However, they also suggest that the

adversary is still very limited: only a few gates close to the generator's inputs can be modi�ed

more than with NOT gates.

Alternatively, it would also be very interesting to study whether any function can be repre-

sented by a circuit in the class we de�ne, and with which overcost compared to an "intuitive"

circuit.

Finally, this work also opens an interesting problem: can we de�ne an oblivious transfer

protocol, such that the sender has n pairs of messages (mj; 0; mj; 1) with mj; 1 = mj; 0 � � for

all 1 � j � n (or more generally mj; 1 = f (mj; 0) for an arbitrary function f)? The sender has

n choices bj and wishes to obtain mj;b j for all j , with the guarantee that mj; 1 = mj; 0 � � .

Designing such a protocol with no overcost compared to the OT-extension protocol remains an

open problem.

MPC for location-based services. Our second contribution has both theoretical and prac-

tical impacts. It �rst shows that location-proof systems are a relevant �eld of applications for

secure multi-party computation. It indeed allows users to prove their location without broad-

casting it to everyone, enabling a wide variety of privacy-preserving location-based services.

151

However, it requires users devices to be equipped with directional antennas, it would be inter-

esting to study whether we can achieve similar results without this hardware requirement, for

example from distance bounding protocols.

We also provides a new secure maximum computation scheme that is asymptotically more

ef�cient, in terms of communications and computations, than all prior works or generic solu-

tions. However, this ef�ciency gain goes with a small leakage of information that we believe

in many real-life scenarios, such as location-based services. We also believe that this trade-off

between privacy and ef�ciency can be applied to many cryptographic primitives, such as private

set intersection.

Analysis of MPC-friendly primitives. Finally, the last contribution describes a guess-and-

determine attack and a degree-two linearization attack (à la Gröbner) against Goldreich's PRG

with predicate P5, which is a very interesting MPC-friendly candidate due to its extreme simplic-

ity. Although Goldreich's PRG is conjectured to be theoretically secure for a stretch approaching

1:5 by an arbitrary constant, we show that a very large seed must be used to achieve at least

80 bits of security with such a stretch. In particular, if a stretch of 1:4 is needed, no seed smaller

than 5120 bits should be used. Thus, Goldreich's PRG with predicate P5 is limited to scenarios

where a small stretch is suf�cient. For example, for a stretch as small as 1:1, the seed can be as

small as 512 bits. We then extended our study to other predicates with a particular interest for

XOR-MAJ predicates and improved the theorem of [AL16], by taking into account the number

of annihilators of the predicate.

In order to continue cryptanalyzing Goldreich's PRG, a possible direction would be to study

the in�uence of the hamming weight of the seed on the predicates. For example, consider again

the predicate P5 that takes has input (x i 1 ; x i 2 ; x i 3 ; x i 4 ; x i 5). Note that the choice of i 1 impacts the

values of x i 2 , x i 3 , x i 4 and x i 5 since the positions i j cannot be equal. Then, the input of P5 has a

small bias (that depends on the seed length and its hamming weight) and it appears that P5 is

balanced only for a uniformly random input. This ends up with a very small bias at the output of

the predicate P5, but since all the subsets are taken from the same seed, it might be possible to

build a distinguisher from this observation. Our �rst studies on the question suggests that the

two attacks on P5 described in this document are much more ef�cient and allow to break more

parameters. However, we believe this direction is of particular interest for other predicates with

higher localities and higher stretches.

152

B IBLIOGRAPHY

[ABR12] B. Applebaum, A. Bogdanov, and A. Rosen. A dichotomy for local small-bias gen-

erators. In TCC 2012, LNCS 7194, pages 600–617. Springer, Heidelberg, March

2012.

[ABR16] B. Applebaum, A. Bogdanov, and A. Rosen. A dichotomy for local small-bias gen-

erators. Journal of Cryptology, 29(3):577–596, July 2016.

[ADI+ 17a] B. Applebaum, I. Damgård, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic

computation with constant computational overhead. In Crypto'17, pages 223–254,

2017.

[ADI+ 17b] B. Applebaum, I. Damgård, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic

computation with constant computational overhead. Cryptology ePrint Archive, Re-

port 2017/617, 2017. http://eprint.iacr.org/2017/617 .

[AHI05] M. Alekhnovich, E. A. Hirsch, and D. Itsykson. Exponential lower bounds for the

running time of dpll algorithms on satis�able formulas. Journal of Automated Rea-

soning, 35(1-3):51–72, 2005.

[AIK04] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. In 45th FOCS,

pages 166–175. IEEE Computer Society Press, October 2004.

[AIK08] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with

linear stretch in nc 0. Computational Complexity, 17(1):38–69, 2008.

[AL07] Y. Aumann and Y. Lindell. Security against covert adversaries: Ef�cient protocols

for realistic adversaries. In TCC 2007, LNCS 4392, pages 137–156. Springer, Hei-

delberg, February 2007.

[AL16] B. Applebaum and S. Lovett. Algebraic attacks against random local functions and

their countermeasures. In 48th ACM STOC, pages 1087–1100. ACM Press, June

2016.

[ALSZ13] G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More ef�cient oblivious transfer

and extensions for faster secure computation. In ACM CCS 13, pages 535–548.

ACM Press, November 2013.

153

http://eprint.iacr.org/2017/617

[AMPR14] A. Afshar, P. Mohassel, B. Pinkas, and B. Riva. Non-interactive secure computation

based on cut-and-choose. In EUROCRYPT 2014, LNCS 8441, pages 387–404.

Springer, Heidelberg, May 2014.

[App12] B. Applebaum. Pseudorandom generators with long stretch and low locality from

random local one-way functions. In 44th ACM STOC, pages 805–816. ACM Press,

May 2012.

[App13] B. Applebaum. Pseudorandom generators with long stretch and low locality from

random local one-way functions. SIAM J. Comput., 42(5):2008–2037, 2013.

[App15] B. Applebaum. The cryptographic hardness of random local functions – survey.

Cryptology ePrint Archive, Report 2015/165, 2015. http://eprint.iacr.org/

2015/165.

[ARS+ 15] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers

for MPC and FHE. In EUROCRYPT 2015, Part I, LNCS 9056, pages 430–454.

Springer, Heidelberg, April 2015.

[BCD+ 09] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøigaard,

J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I. Schwartzbach, and T. Toft.

Secure multiparty computation goes live. In FC 2009, LNCS 5628, pages 325–343.

Springer, Heidelberg, February 2009.

[BCG+ 17] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù. Homomorphic secret shar-

ing: Optimizations and applications. In ACM CCS 17, pages 2105–2122. ACM

Press, 2017.

[BCR87] G. Brassard, C. Crépeau, and J.-M. Robert. All-or-nothing disclosure of secrets. In

CRYPTO'86, LNCS 263, pages 234–238. Springer, Heidelberg, August 1987.

[Bea95] D. Beaver. Precomputing oblivious transfer. In CRYPTO'95, LNCS 963, pages

97–109. Springer, Heidelberg, August 1995.

[BFSyY] M. Bardet, J.-C. Faugere, B. Salvy, and B. y. Yang. Asymptotic behaviour of the

degree of regularity of semi-regular polynomial systems. In MEGA05, 2005. Eighth

International Symposium on Effective Methods in Algebraic Geometry.

[BGG+ 16] X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and J.-M. Robert. A

prover-anonymous and terrorist-fraud resistant distance-bounding protocol. In

Proc. of WISec, pages 121–133. ACM, 2016.

154

http://eprint.iacr.org/2015/165
http://eprint.iacr.org/2015/165

[BGI+ 01] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and

K. Yang. On the (im)possibility of obfuscating programs. In CRYPTO 2001, LNCS

2139, pages 1–18. Springer, Heidelberg, August 2001.

[BHR12] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In ACM

CCS 12, pages 784–796. ACM Press, October 2012.

[BK04] I. F. Blake and V. Kolesnikov. Strong conditional oblivious transfer and computing on

intervals. In ASIACRYPT 2004, LNCS 3329, pages 515–529. Springer, Heidelberg,

December 2004.

[BKK+ 15] D. Bogdanov, L. Kamm, B. Kubo, R. Rebane, V. Sokk, and R. Talviste. Students

and taxes: a privacy-preserving social study using secure computation. Cryptology

ePrint Archive, Report 2015/1159, 2015. http://eprint.iacr.org/2015/1159 .

[BL10] C. Bordenave and M. Lelarge. The rank of diluted random graphs. In Proceedings

of the twenty-�rst annual ACM-SIAM symposium on Discrete algorithms , pages

1389–1402. Society for Industrial and Applied Mathematics, 2010.

[BLW08] D. Bogdanov, S. Laur, and J. Willemson. Sharemind: A framework for fast

privacy-preserving computations. In ESORICS 2008, LNCS 5283, pages 192–206.

Springer, Heidelberg, October 2008.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols

(extended abstract). In 22nd ACM STOC, pages 503–513. ACM Press, May 1990.

[BP11] J. Boyar and R. Peralta. A depth-16 circuit for the AES s-box. Cryptology ePrint

Archive, Report 2011/332, 2011. http://eprint.iacr.org/2011/332 .

[BQ09] A. Bogdanov and Y. Qiao. On the security of goldreich's one-way function. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques, pages 392–405. Springer, 2009.

[Buc76] B. Buchberger. A theoretical basis for the reduction of polynomials to canonical

forms. SIGSAM Bull., 10(3):19–29, August 1976.

[CCF+ 16] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier, and

R. Sirdey. Stream ciphers: A practical solution for ef�cient homomorphic-ciphertext

compression. In FSE 2016, LNCS 9783, pages 313–333. Springer, Heidelberg,

March 2016.

[CDM+ 18] G. Couteau, A. Dupin, P. Méaux, M. Rossi, and Y. Rotella. On the concrete secu-

rity of Goldreich's pseudorandom generator. In ASIACRYPT 2018, Part II, LNCS,

pages 96–124. Springer, Heidelberg, December 2018.

155

http://eprint.iacr.org/2015/1159
http://eprint.iacr.org/2011/332

[CEMT14] J. Cook, O. Etesami, R. Miller, and L. Trevisan. On the one-way function candidate

proposed by goldreich. ACM Transactions on Computation Theory (TOCT), 6(3):14,

2014.

[CFIK03] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Ef�cient multi-party computation

over rings. In EUROCRYPT 2003, LNCS 2656, pages 596–613. Springer, Heidel-

berg, May 2003.

[CM01] M. Cryan and P. B. Miltersen. On pseudorandom generators in nc 0. In International

Symposium on Mathematical Foundations of Computer Science, pages 272–284.

Springer, 2001.

[CM03] N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feedback.

In EUROCRYPT 2003, LNCS 2656, pages 345–359. Springer, Heidelberg, May

2003.

[Cou03] N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In

CRYPTO 2003, LNCS 2729, pages 176–194. Springer, Heidelberg, August 2003.

[Cv91] D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT'91, LNCS 547,

pages 257–265. Springer, Heidelberg, April 1991.

[DCF12] B. Davis, H. Chen, and M. K. Franklin. Privacy-preserving alibi systems. In ASI-

ACCS 12, pages 34–35. ACM Press, May 2012.

[DGM05] D. K. Dalai, K. C. Gupta, and S. Maitra. Cryptographically signi�cant Boolean func-

tions: Construction and analysis in terms of algebraic immunity. In FSE 2005, LNCS

3557, pages 98–111. Springer, Heidelberg, February 2005.

[DLR16] S. Duval, V. Lallemand, and Y. Rotella. Cryptanalysis of the FLIP family of stream

ciphers. In CRYPTO 2016, Part I, LNCS 9814, pages 457–475. Springer, Heidel-

berg, August 2016.

[DMS05] D. K. Dalai, S. Maitra, and S. Sarkar. Basic theory in construction of Boolean func-

tions with maximum possible annihilator immunity. Cryptology ePrint Archive, Re-

port 2005/229, 2005. http://eprint.iacr.org/2005/229 .

[DPB18] A. Dupin, D. Pointcheval, and C. Bidan. On the leakage of corrupted garbled cir-

cuits. In ProvSec 2018, LNCS, pages 3–21. Springer, Heidelberg, 2018.

[DPSZ12] I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from

somewhat homomorphic encryption. In CRYPTO 2012, LNCS 7417, pages 643–

662. Springer, Heidelberg, August 2012.

156

http://eprint.iacr.org/2005/229

[DRB18] A. Dupin, J.-M. Robert, and C. Bidan. Location-proof system based on secure multi-

party computations. In ProvSec 2018, LNCS, pages 22–39. Springer, Heidelberg,

2018.

[EGL82] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.

In CRYPTO'82, pages 205–210. Plenum Press, New York, USA, 1982.

[ElG84] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In CRYPTO'84, LNCS 196, pages 10–18. Springer, Heidelberg, August

1984.

[Fau99] J.-C. Faugere. A new ef�cient algorithm for computing grobner bases (f4). Journal

of Pure and Applied Algebra, 139(1):61 – 88, 1999.

[Fau02] J. C. Faugere. A new ef�cient algorithm for computing grobner bases without reduc-

tion to zero (f5). In Proceedings of the 2002 International Symposium on Symbolic

and Algebraic Computation, ISSAC '02, pages 75–83, New York, NY, USA, 2002.

ACM.

[FNO15] T. K. Frederiksen, J. B. Nielsen, and C. Orlandi. Privacy-free garbled circuits with

applications to ef�cient zero-knowledge. In EUROCRYPT 2015, Part II, LNCS

9057, pages 191–219. Springer, Heidelberg, April 2015.

[FZ12] M. K. Franklin and H. Zhang. Unique group signatures. In ESORICS 2012, LNCS

7459, pages 643–660. Springer, Heidelberg, September 2012.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC,

pages 169–178. ACM Press, May / June 2009.

[GG09] M. Graham and D. Gray. Protecting privacy and securing the gathering of loca-

tion proofs–the secure location veri�cation proof gathering protocol. In Proc. of

MobiSec, pages 160–171. Springer, 2009.

[GKRT14] S. Gambs, M.-O. Killijian, M. Roy, and M. Traoré. Props: A privacy-preserving loca-

tion proof system. In Proc. of SRDS, pages 1–10. IEEE, 2014.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A

completeness theorem for protocols with honest majority. In 19th ACM STOC,

pages 218–229. ACM Press, May 1987.

[Gol00] O. Goldreich. Candidate one-way functions based on expander graphs. Cryptology

ePrint Archive, Report 2000/063, 2000. http://eprint.iacr.org/2000/063 .

157

http://eprint.iacr.org/2000/063

[GRR+ 16] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. MPC-friendly

symmetric key primitives. In ACM CCS 16, pages 430–443. ACM Press, October

2016.

[HBB12] O. Hasan, L. Brunie, and E. Bertino. Preserving privacy of feedback providers in

decentralized reputation systems. pages 816–826. Elsevier Advanced Technology,

2012.

[HL10] C. Hazay and Y. Lindell. Ef�cient Secure Two-Party Protocols - Techniques and

Constructions. ISC. Springer, Heidelberg, 2010.

[HMMB13] O. Hasan, J. Miao, S. B. Mokhtar, and L. Brunie. A privacy preserving prediction-

based routing protocol for mobile delay tolerant networks. In 2013 IEEE 27th Inter-

national Conference on Advanced Information Networking and Applications (AINA),

pages 546–553. IEEE, 2013.

[IG03] I. Ioannidis and A. Grama. An ef�cient protocol for yao's millionaires' problem.

In Proc. of the 36th Annual Hawaii International Conference on System Sciences,

pages 6–pp. IEEE, 2003.

[IKNP03] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers ef�ciently.

In CRYPTO 2003, LNCS 2729, pages 145–161. Springer, Heidelberg, August 2003.

[IKOS08] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant

computational overhead. In 40th ACM STOC, pages 433–442. ACM Press, May

2008.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. Secure arithmetic computation with no

honest majority. Cryptology ePrint Archive, Report 2008/465, 2008.

[JK77] N. Johnson and S. Kotz. Urn models and their application: an approach to mod-

ern discrete probability theory. Wiley Series in Probability and Statistics: Applied

Probability and Statist ICS Sesction Series. Wiley, 1977.

[JKO13] M. Jawurek, F. Kerschbaum, and C. Orlandi. Zero-knowledge using garbled circuits:

how to prove non-algebraic statements ef�ciently. In ACM CCS 13, pages 955–966.

ACM Press, November 2013.

[KS08] V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and

applications. In ICALP 2008, Part II, LNCS 5126, pages 486–498. Springer, Hei-

delberg, July 2008.

158

[KSC78] V. Kolchin, B. Sevastianov, and V. Chistiakov. Random allocations. Scripta series

in mathematics. V. H. Winston, 1978.

[KSS09] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved garbled circuit building

blocks and applications to auctions and computing minima. In CANS 09, LNCS

5888, pages 1–20. Springer, Heidelberg, December 2009.

[laz81] D. lazard. Resolution des systemes d'equations algebriques. Theoretical Computer

Science, 15(1):77 – 110, 1981.

[LH10a] W. Luo and U. Hengartner. Proving your location without giving up your privacy. In

Proc. of the HotMobile, pages 7–12. ACM, 2010.

[LH10b] W. Luo and U. Hengartner. Veriplace: a privacy-aware location proof architecture.

In Proc. of SIGSPATIAL, pages 23–32. ACM, 2010.

[Lin13] Y. Lindell. Fast cut-and-choose based protocols for malicious and covert adver-

saries. In CRYPTO 2013, Part II, LNCS 8043, pages 1–17. Springer, Heidelberg,

August 2013.

[Lin17] H. Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5

PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 599–629. Springer, Heidel-

berg, August 2017.

[LP07] Y. Lindell and B. Pinkas. An ef�cient protocol for secure two-party computation in

the presence of malicious adversaries. In EUROCRYPT 2007, LNCS 4515, pages

52–78. Springer, Heidelberg, May 2007.

[LT05] H.-Y. Lin and W.-G. Tzeng. An ef�cient solution to the millionaires' problem based

on homomorphic encryption. In ACNS 05, LNCS 3531, pages 456–466. Springer,

Heidelberg, June 2005.

[LT17] H. Lin and S. Tessaro. Indistinguishability obfuscation from trilinear maps and block-

wise local PRGs. In CRYPTO 2017, Part I, LNCS 10401, pages 630–660. Springer,

Heidelberg, August 2017.

[LV17] A. Lombardi and V. Vaikuntanathan. Limits on the locality of pseudorandom gen-

erators and applications to indistinguishability obfuscation. In TCC 2017, Part I,

LNCS, pages 119–137. Springer, Heidelberg, March 2017.

[LVB+ 16] A. Lapets, N. Volgushev, A. Bestavros, F. Jansen, and M. Varia. Secure multi-

party computation for analytics deployed as a lightweight web application. Technical

report, Computer Science Department, Boston University, 2016.

159

[Mac64] F. Macaulay. The Algebraic Theory of Modular Systems. Cambridge tracts in math-

ematics and mathematical physics. Stechert-Hafner Service Agency, 1964.

[MF06] P. Mohassel and M. Franklin. Ef�ciency tradeoffs for malicious two-party computa-

tion. In PKC 2006, LNCS 3958, pages 458–473. Springer, Heidelberg, April 2006.

[MJSC16] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet. Towards stream ciphers for

ef�cient FHE with low-noise ciphertexts. In EUROCRYPT 2016, Part I, LNCS 9665,

pages 311–343. Springer, Heidelberg, May 2016.

[MNP+ 04] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al. Fairplay-secure two-party computation

system. In USENIX Security Symposium, pages 287––302. USENIX, 2004.

[MR13] P. Mohassel and B. Riva. Garbled circuits checking garbled circuits: More ef�cient

and secure two-party computation. In CRYPTO 2013, Part II, LNCS 8043, pages

36–53. Springer, Heidelberg, August 2013.

[MST03] E. Mossel, A. Shpilka, and L. Trevisan. On e-biased generators in NC0. In 44th

FOCS, pages 136–145. IEEE Computer Society Press, October 2003.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism

design. In Proceedings of the 1st ACM conference on Electronic commerce, pages

129–139. ACM, November 1999.

[OW14] R. ODonnell and D. Witmer. Goldreich's prg: evidence for near-optimal polyno-

mial stretch. In Computational Complexity (CCC), 2014 IEEE 29th Conference on,

pages 1–12. IEEE, 2014.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In EUROCRYPT'99, LNCS 1592, pages 223–238. Springer, Heidelberg,

May 1999.

[Ped91] T. P. Pedersen. Non-interactive and information-theoretic secure veri�able secret

sharing. In Annual International Cryptology Conference, pages 129–140. Springer,

1991.

[PHB+ 15] A. Pham, K. Huguenin, I. Bilogrevic, I. Dacosta, and J.-P. Hubaux. Securerun:

Cheat-proof and private summaries for location-based activities. In Proc. of TMC,

pages 2109–2123. IEEE, 2015.

[PS16] B. Pittel and G. B. Sorkin. The satis�ability threshold for k-xorsat. Combinatorics,

Probability and Computing, 25(2):236–268, 2016.

160

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signature

and public-key cryptosystems. Communications of the Association for Computing

Machinery, 21(2):120–126, 1978.

[Sch90] C.-P. Schnorr. Ef�cient identi�cation and signatures for smart cards. In CRYPTO'89,

LNCS 435, pages 239–252. Springer, Heidelberg, August 1990.

[Sha79] A. Shamir. How to share a secret. Communications of the Association for Comput-

ing Machinery, 22(11):612–613, November 1979.

[Sie84] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryp-

tographic applications (corresp.). IEEE Transactions on Information theory,

30(5):776–780, 1984.

[SP05] D. Singelee and B. Preneel. Location veri�cation using secure distance bounding

protocols. In Proc. of MASS, pages 7–14. IEEE, 2005.

[sS11] a. shelat and C.-H. Shen. Two-output secure computation with malicious adver-

saries. In EUROCRYPT 2011, LNCS 6632, pages 386–405. Springer, Heidelberg,

May 2011.

[sS13] a. shelat and C.-H. Shen. Fast two-party secure computation with minimal assump-

tions. In ACM CCS 13, pages 523–534. ACM Press, November 2013.

[SSW03] N. Sastry, U. Shankar, and D. Wagner. Secure veri�cation of location claims. In

Proc. of WISEC, pages 1–10. ACM, 2003.

[SW09] S. Saroiu and A. Wolman. Enabling new mobile applications with location proofs.

In Proc. of HotMobile, pages 1–6. ACM, 2009.

[SW14] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable en-

cryption, and more. In 46th ACM STOC, pages 475–484. ACM Press, May / June

2014.

[TCB10] M. Talasila, R. Curtmola, and C. Borcea. Link: Location veri�cation through imme-

diate neighbors knowledge. In Proc. of MobiSec, pages 210–223. Springer, 2010.

[Wie86] D. Wiedemann. Solving sparse linear equations over �nite �elds. IEEE transactions

on information theory, 32(1):54–62, 1986.

[WMK17] X. Wang, A. J. Malozemoff, and J. Katz. Faster secure two-party computation in

the single-execution setting. In EUROCRYPT 2017, Part III, LNCS 10212, pages

399–424. Springer, Heidelberg, May 2017.

161

[Yao82] A. C.-C. Yao. Protocols for secure computations (extended abstract). In 23rd FOCS,

pages 160–164. IEEE Computer Society Press, November 1982.

[Yao86] A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th

FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[ZC11] Z. Zhu and G. Cao. Applaus: A privacy-preserving location proof updating system

for location-based services. In Proc. of INFOCOM, pages 1889–1897. IEEE, 2011.

[ZM05] S. Zhang and F. Makedon. Privacy preserving learning in negotiation. In Proc. of

SAC, pages 821–825. ACM, 2005.

[ZRE15] S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data

transfer in garbled circuits using half gates. In EUROCRYPT 2015, Part II, LNCS

9057, pages 220–250. Springer, Heidelberg, April 2015.

162

Producteurs

Christophe BIDAN David POINTCHEVAL

Coproducteurs

Renaud DUBOIS Éric GARRIDO Jean-Marc ROBERT

Postproducteurs

Sébastien CANARD Jean-Sébastien CORON Marine MINIER

Équipe de tournage

Costumes Anca NITULESCU

Cascades Georg FUCHSBAUER

Michele ORRU

Piano Geoffroy COUTEAU

Logistique Romain GAY

Balthazar BAUER

Traduction Michele MINELLI

Razvan ROŞIE

Quoc Huy VU

Scénario Pierrick MÉAUX

Chefs de production Didier LE MAITRE

Laurent FREREBEAU

Fournisseur de café Michel ABDALLA

Fournisseur de dlog
Edouard

DUFOUR SANS

Anonymous reviewer Brice MINAUD

Photographe
Emeline HUFSCHMITT

en second

Eleboniste Thomas PREST

Jeux de société Florian BOURSE

Antoine PLOUVIEZ

Ange MARTINELLI

Mélissa ROSSI

Thomas RICOSSET

Punchline Chloé HÉBANT

Houda team Dahmun GOUDARZI

Adrian THILLARD

Hackeurs Anne VIGUIÉ

administratifs Karine BERNARD

Lise-Marie BIVARD

Soutien émotif Megguy GUYON

Soutien culinaire PAPA et MAMAN

Figurants

Alexandre

ANZALA-YAMAJAKO

Sonia BELAID

Fabrice BENHAMOUDA

Olivier BERNARD

Céline CHEVALIER

Jérémy CHOTARD

Léo COLISSON

Rafael DEL PINO

Pierre-Alain DUPONT

Pooya FARSHIM

Houda FERRADI

Mickael GEFFRAULT

Matthieu GIRAUD

Junqing GONG

Julia HESSE

Louiza KHATI

Jean KIEFFER

Sylvain LACHARTRE

David LEFRANC

Simon MASSON

Thierry MEFENZA NOUNTU

Olivier ORCIÈRE

Philippe PAINCHAULT

Alain PASSELÈGUE

Julien PRAT

Théo RYFFEL

Quentin SANTOS

Damien VERGNAUD

Hoeteck WEE

Cette thèse est une oeuvre de �ction. Toute ressemblance avec la réalité serait

purement fortuite.

163

Titre: Calculs Multi-Parties et Vie Privée

Mot clés : Multi-party computation, vie privée, garbled circuits, preuve de localisation, Goldre-

ich's PRG

Resumé : Les calculs multi-parties sécurisés

(MPC) sont une branche de la cryptographie

qui a pour objectif de concevoir des solutions

permettant à plusieurs parties de calculer en-

semble une fonction de leurs données, tout en

gardant ces données secrètes. Contrairement

à la cryptographie classique, où l'on cherche

à assurer la sécurité malgré la présence d'un

adversaire extérieur, le MPC garantit la sécu-

rité face à un adversaire interne contrôlant un

ou plusieurs participants.

Cette thèse apporte à la fois des contribu-

tions théoriques et pratiques dans le domaine

du MPC. D'un point de vue théorique, une

étude est réalisée sur la corruption des “gar-

bled circuits”, qui sont une solution générale

au problème à deux parties.

Sur un plan pratique, nous réalisons une

cryptanalyse de certaines primitives propres

au MPC, dans le but d'étudier leur ef�cacité

réelle. En�n, nous montrons que les services

basés sur la position des utilisateurs peuvent

prendre avantage du MPC pour devenir plus

respectueux de la vie privée.

Title: Secure Multi-Party Computation and Privacy

Keywords : Multi-party computation, privacy, garbled circuits, location-proof, Goldreich's PRG

Abstract: Secure multi-party computation

(MPC) is a sub�eld of cryptography that

aims at designing protocols for parties to co-

operatively compute a function over their in-

puts while keeping those inputs private. Unlike

traditional cryptographic tools (encryption, sig-

nature, ...), where cryptography ensures secu-

rity and integrity of communication or storage

against an external eavesdropping adversary,

MPC assures security against an internal ad-

versary, that controls one or more of the actual

participants.

Both theoretical and practical contributions

to MPC are made in this thesis. From a theo-

retical point of view, we study the possible cor-

ruptions of garbled circuits, which is a general

solution for the two-party case.

On a practical level, we cryptanalyze some

MPC-friendly primitives in order to assess their

concrete ef�ciency. Finally, we also show that

MPC can be used to build privacy-preserving

location-based services.

	Introduction
	Applications of Secure Multi-Party Computations

	Preliminaries

