S. Natarajan, S. Chung, L. Paris, and A. Keshavarzi, Searching for the dream embedded memory, IEEE, vol.1, pp.34-44, 2009.

Q. Hubert, Optimisation de mémoires PCRAM pour générations sub-40 nm: intégration de matériaux alternatifs et structures innovantes, 2013.

R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, Introduction to flash memory, Proceedings of the IEEE, vol.91, pp.489-502, 2003.

E. Lai, H. Lue, Y. Hsiao, J. Hsieh, C. Lu et al., A multilayer stackable thin-film transistor (TFT) NAND-type flash memory, 2006 International Electron Devices Meeting, pp.1-4, 2006.

H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata et al., Bit cost scalable technology with punch and plug process for ultra high density flash memory, 2007 IEEE Symposium on VLSI Technology, pp.14-15, 2007.

C. Nail, Investigation of hybrid CBRAM/OXRAM non-volatile memories for low consumption and high reliability, 2018.
URL : https://hal.archives-ouvertes.fr/tel-01862319

P. H. Nielsen and N. M. Bashara, The reversible voltage-induced initial resistance in the negative resistance sandwich structure, IEEE Transactions on Electron Devices, vol.11, pp.243-244, 1964.

J. G. Simmons, R. R. Verderber, and N. F. Mott, New conduction and reversible memory phenomena in thin insulating films, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol.301, issue.1464, pp.77-102, 1967.

C. J. Varker and E. M. Juleff, Electron beam recording in SiO 2 with direct read-out using the electron beam induced current at a p-n junction, Proceedings of the IEEE, vol.55, pp.728-729, 1967.

W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker et al., Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM), Digest. International Electron Devices Meeting, pp.193-196, 2002.

I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo et al.,

. Suh, Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, IEDM Technical Digest. IEEE International Electron Devices Meeting, pp.587-590, 2004.

M. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta 2 O 5-x /Ta 2 O 2-x bilayer structures, Nature Materials, vol.10, pp.625-630, 2011.

J. R. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo et al., Conductive-bridge memory (CBRAM) with excellent high-temperature retention, 2013 IEEE International Electron Devices Meeting, 2013.

A. Belmonte, W. Kim, B. Chan, N. Heylen, A. Fantini et al., 90nm W/Al 2 O 3 /TiW/Cu 1T1R CBRAM cell showing lowpower, fast and disturb-free operation, 2013 5th IEEE International Memory Workshop, pp.26-29, 2013.

L. Goux, K. Opsomer, R. Schuitema, R. Degraeve, R. Muller et al., Self-limited filament formation and low-power resistive switching in Cu x Te 1-x /Al 2 O 3 /Si CBRAM cell, 2011 3rd IEEE International Memory Workshop (IMW), pp.1-4, 2011.

B. Traoré, Étude de cellules mémoires résistives RRAMà base de HfO 2 par caractérisationélectrique et simulations atomistiques, 2015.

K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto et al., A novel resistance memory with high scalability and nanosecond switching, 2007 IEEE International Electron Devices Meeting, pp.783-786, 2007.

L. Zhao, Z. Jiang, H. Chen, J. Sohn, K. Okabe et al., Ultrathin (?2nm) HfO xas the fundamental resistive switching element: Thickness scaling limit, stack engineering and 3D integration, 2014 IEEE International Electron Devices Meeting, 2014.

J. Wu, J. Cao, and W. Han, Functional Metal Oxide Nanostructures, vol.149, 2012.

H. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu et al., Metal-Oxide RRAM, Proceedings of the IEEE, vol.100, pp.1951-1970, 2012.

R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories -nanoionic mechanisms, prospects, and challenges, Advanced Materials, vol.21, pp.2632-2663, 2009.

B. Govoreanu, G. S. Kar, Y. Chen, V. Paraschiv, S. Kubicek et al., 10×10 nm 2 Hf/HfO x crossbar resistive RAM with excellent performance, reliability and low-energy operation, 2011.

E. Vianello, O. Thomas, G. Molas, O. Turkyilmaz, N. Jovanovic et al., Resistive memories for ultra-low-power embedded computing design, IEEE International Electron Devices Meeting, vol.2015, p.2014

Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux et al., Improvement of data retention in HfO 2 /Hf 1T1R RRAM cell under low operating current, 2013 IEEE International Electron Devices Meeting, 2013.

X. P. Wang, Y. Y. Chen, L. Pantisano, L. Goux, M. Jurczak et al., Effect of anodic interface layers on the unipolar switching of HfO 2 -based resistive RAM, 2010.

F. Stefano, M. Houssa, J. A. Kittl, M. Jurczak, V. V. et al., Semiconducting-like filament formation in TiN/HfO 2 /TiN resistive switching random access memories, Applied Physics Letters, vol.100, issue.14, p.142102, 2012.

G. Bersuker, D. C. Gilmer, D. Veksler, J. Yum, H. Park et al., Metal oxide RRAM switching mechanism based on conductive filament microscopic properties, 2010 International Electron Devices Meeting, 2010.

M. Lanza, K. Zhang, M. Porti, M. Nafría, Z. Y. Shen et al., Grain boundaries as preferential sites for resistive switching in the HfO 2 resistive random access memory structures, Applied Physics Letters, vol.100, issue.12, p.123508, 2012.

L. Vandelli, A. Padovani, L. Larcher, G. C. Broglia, G. G. Ori et al., Comprehensive physical modeling of forming and switching operations in HfO 2 RRAM devices, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02349309

L. Zhao, J. Zhang, Y. S. He, X. Guan, Q. He et al., Dynamic modeling and atomistic simulations of SET and RESET operations in TiO 2 -based unipolar resistive memory, IEEE Electron Device Letters, vol.32, pp.677-679, 2011.

D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser, Characteristic electroforming behavior in Pt/TiO 2 /Pt resistive switching cells depending on atmosphere, Journal of Applied Physics, vol.104, issue.12, p.123716, 2008.

R. Waser and A. M. , Nanoionics-based resistive switching memories, Nature Materials, vol.6, issue.12, pp.833-840, 2007.

C. Walczyk, C. Wenger, R. Sohal, M. Lukosius, A. Fox et al., Pulse-induced low-power resistive switching in HfO 2 metalinsulator-metal diodes for nonvolatile memory applications, Journal of Applied Physics, vol.105, pp.114103-114103, 2009.

H. Y. Lee, Y. S. Chen, P. S. Chen, P. Y. Gu, Y. Y. Hsu et al., Evidence and solution of over-RESET problem for HfO X based resistive memory with sub-ns switching speed and high endurance, 2010 International Electron Devices Meeting, 2010.

Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai et al., Highly reliable TaO x ReRAM and direct evidence of redox reaction mechanism, 2008 IEEE International Electron Devices Meeting, pp.1-4, 2008.

G. Buh, I. Hwang, and B. H. Park, Time-dependent electroforming in NiO resistive switching devices, Applied Physics Letters, vol.95, issue.14, p.142101, 2009.

Y. Y. Chen, R. Degraeve, S. Clima, B. Govoreanu, L. Goux et al., Understanding of the endurance failure in scaled HfO 2 -based 1T1R RRAM through vacancy mobility degradation, 2012 International Electron Devices Meeting, 2012.

U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet et al., Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices, Nano Letters, vol.14, issue.5, pp.2401-2406, 2014.

C. Gopalan, Y. Ma, T. Gallo, J. Wang, E. Runnion et al., Demonstration of conductive bridging random access memory (CBRAM) in logic CMOS process, 2010 IEEE International Memory Workshop, pp.1-4, 2010.

E. Vianello, G. Molas, F. Longnos, P. Blaise, M. Reyboz et al., Sb-doped GeS 2 as performance and reliability booster in conductive bridge RAM, 2012.

Y. Pershin and M. D. Ventra, Memory effects in complex materials and nanoscale systems, Advances in Physics, vol.60, p.2010

G. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan et al., Phase change memory technology, Jour. Vacu. Scien. tech. B, vol.28, 2010.

Q. Hubert, C. Jahan, A. Toffoli, G. Navarro, S. Chandrashekar et al., Carbon-doped Ge 2 Sb 2 Te 5 phase-change memory devices featuring reduced reset current and power consumption, pp.286-289, 2012.

A. L. Lacaita and A. Redaelli, The race of phase change memories to nanoscale storage and applications, Microelectronic Engineering, vol.109, pp.351-356, 2013.

H. ,

P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg et al., Phase change memory, Proceedings of the IEEE, vol.98, pp.2201-2227, 2010.

D. Ielmini and A. L. Lacaita, Phase change materials in non-volatile storage, Materials Today, vol.14, issue.12, pp.600-607, 2011.

J. S. Meena, S. M. Sze, U. Chand, and T. Tseng, Overview of emerging nonvolatile memory technologies, Nanosc. Resear. Lett, vol.9, p.526, 2014.

M. Julliere, Tunneling between ferromagnetic films, Physics Letters A, vol.54, issue.3, pp.225-226, 1975.

A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. S. Beach et al., Basic principles of STT-MRAM cell operation in memory arrays, Journal of Physics D: Applied Physics, vol.46, p.74001, 2013.

W. J. Gallagher, Emerging nonvolatile magnetic memory technologies, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, pp.1073-1076, 2010.

J. Son, S. Rajan, S. Stemmer, and S. Allen, A heterojunction modulation-doped mott transistor, Journal of Applied Physics, vol.110, issue.8, p.84503, 2011.

Y. Zhou and S. Ramanathan, Correlated electron materials and field effect transistors for logic: A review, Critical Reviews in Solid State and Materials Sciences, vol.38, issue.4, pp.286-317, 2013.

D. Garbin, E. Vianello, O. Bichler, Q. Rafhay, C. Gamrat et al., HfO 2 -based OxRAM devices as synapses for convolutional neural networks, IEEE Transactions on Electron Devices, vol.62, pp.2494-2501, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01947647

M. Ramadan, N. Wainstein, R. Ginosar, and S. Kvatinsky, Adaptive programming in multi-level cell reram, Microelectronics Journal, vol.90, pp.169-180, 2019.

F. García-redondo and M. López-vallejo, Self-controlled multilevel writing architecture for fast training in neuromorphic RRAM applications, Nanotechnology, vol.29, p.405203, 2018.

S. Datta, Electronic Transport in Mesoscopic Systems, 1995.

M. and D. Ventra, Electronic Transport in Nanoscale Systems, 2008.

R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Dev, vol.1, pp.223-231, 1957.

R. Landauer, Electrical resistance of disordered one-dimensional lattices, Philos. Mag, vol.21, pp.863-867, 1970.

M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Generalized manychannel conductance formula with application to small rings, Phys. Rev. B, vol.31, pp.6207-6215, 1985.

N. W. Ashcroft and N. D. Mermin, Solid State Physics. Brooks/Cole Cengage Learning, 1976.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, pp.864-871, 1964.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, pp.1133-1138, 1965.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev, vol.94, pp.1498-1524, 1954.

M. Buongiorno-nardelli, Electronic transport in extended systems: Application to carbon nanotubes, Phys. Rev. B, vol.60, pp.7828-7833, 1999.

N. Papior, N. Lorente, T. Frederiksen, A. García, and M. Brandbyge, Improvements on non-equilibrium and transport green function techniques: The next-generation transiesta, Comp. Phys. Commun, vol.212, pp.8-24, 2017.

A. Calzolari, N. Marzari, I. Souza, and M. Buongiorno-nardelli, Ab initio transport properties of nanostructures from maximally localized wannier functions, Phys. Rev. B, vol.69, p.35108, 2004.

Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett, vol.68, pp.2512-2515, 1992.

M. P. Lopez-sancho, J. M. Lopez-sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: application to Mo (100), J. Phys. F: Metal Phys, vol.14, p.1205, 1984.

M. P. Lopez-sancho, J. M. Lopez-sancho, J. M. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface green functions, J. Phys. F: Metal Phys, vol.15, p.851, 1985.

F. Garcia-moliner and V. Velasco, Theory of Single and Multiple Interfaces, 1992.

G. Vignale and M. D. Ventra, Incompleteness of the Landauer formula for electronic transport, Phys. Rev. B, vol.79, p.14201, 2009.

P. Ordejón, E. Artacho, and J. M. Soler, Self-consistent order-N density-functional calculations for very large systems, Phys. Rev. B, vol.53, pp.10441-10444, 1996.

J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera et al., The SIESTA method for ab initio order-N materials simulation, Journal of Physics: Condensed Matter, vol.14, 2002.

A. A. Mostofi, J. R. Yates, Y. Lee, I. Souza, D. Vanderbilt et al., Wannier90: A tool for obtaining maximally-localised Wannier functions, Comp. Phys. Commun, vol.178, issue.9, pp.685-699, 2008.

A. A. Mostofi, J. R. Yates, G. Pizzi, Y. Lee, I. Souza et al., An updated version of Wannier90: A tool for obtaining maximally-localised wannier functions, Comput. Phys. Commun, vol.185, issue.8, pp.2309-2310, 2014.

J. Li, N. D. Drummond, P. Schuck, and V. Olevano, Comparing manybody approaches against the helium atom exact solution, SciPost Phys, vol.6, p.40, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01714146

J. P. Perdew, Density functional theory and the band gap problem, International Journal of Quantum Chemistry, vol.28, issue.S19, pp.497-523, 1985.

R. B. Gangineni, C. Bellouard, A. Duluard, B. Negulescu, C. Baraduc et al., Interfacial electronic transport phenomena in single crystalline Fe-MgO-Fe thin barrier junctions, Appl. Phys. Lett, vol.104, issue.18, p.182402, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01282868

L. Hedin, New method for calculating the one-particle Green's function with application to the electron-gas problem, Phys. Rev, vol.139, pp.796-823, 1965.

A. D. Becke, A new mixing of Hartree-Fock and local density functional theories, J. Chem. Phys, vol.98, issue.2, pp.1372-1377, 1993.

J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev, vol.81, pp.385-390, 1951.

T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G. M. Rignanese, Transport properties of molecular junctions from manybody perturbation theory, Phys. Rev. B, vol.84, p.45426, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00960120

T. Rangel, A. Ferretti, V. Olevano, and G. M. Rignanese, Many-body correlations and coupling in benzene-dithiol junctions, Phys. Rev. B, vol.95, p.115137, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01558372

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

P. Giannozzi, QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials, Journal of Physics: Condensed Matter, vol.21, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

P. Giannozzi, Advanced capabilities for materials modelling with quantum ESPRESSO, Journal of Physics: Condensed Matter, vol.29, p.465901, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01634887

X. Gonze, First-principles computation of material properties: The ABINIT software project, Computational Materials Science, vol.25, pp.478-492, 2002.

X. Gonze, A brief introduction to the ABINIT software package, Zeitschrift für Kristallographie -Crystalline Materials, vol.220, pp.558-562, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00020828

X. Gonze, ABINIT: First-principles approach to material and nanosystem properties, Comput. Phys. Commun, vol.180, pp.2582-2615, 2009.

X. Gonze, Recent developments in the ABINIT software package, Comput. Phys. Commun, vol.205, pp.106-131, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01849847

N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Phys. Rev. B, vol.56, pp.12847-12865, 1997.

I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy bands, Phys. Rev. B, vol.65, p.35109, 2001.

N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Vanderbilt, Maximally localized Wannier functions: Theory and applications, Rev. Mod. Phys, vol.84, pp.1419-1475, 2012.

G. Mahan, Many-Particle Physics, Kluwer Academic / Plenum Publishers, 2000.

R. V. Stefanucci, Nonequilibrium Many-Body Theory of Quantum Systems, A Modern Introduction, 2013.

F. Bruneval, Exchange and Correlation in the Electronic Structure of Solids, from Silicon to Cuprous Oxide: GW Approximation and beyond, 2005.
URL : https://hal.archives-ouvertes.fr/tel-00125779

G. Onida, L. Reining, and A. Rubio, Electronic excitations: densityfunctional versus many-body Green's-function approaches, Rev. Mod. Phys, vol.74, pp.601-659, 2002.

P. Darancet, Théorie et simulation du transport quantique dans les nanostructures, 2009.

M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies, Phys. Rev. B, vol.34, pp.5390-5413, 1986.

R. W. Godby and R. J. Needs, Metal-insulator transition in Kohn-Sham theory and quasiparticle theory, Phys. Rev. Lett, vol.62, pp.1169-1172, 1989.

W. Der-linden and P. Horsch, Precise quasiparticle energies and Hartree-Fock bands of semiconductors and insulators, Phys. Rev. B, vol.37, pp.8351-8362, 1988.

G. E. Engel and B. Farid, Generalized plasmon-pole model and plasmon band structures of crystals, Phys. Rev. B, vol.47, pp.15931-15934, 1993.

M. Giantomassi, Core-electrons and self-consistency in the GW approximation from a PAW perspective, 2009.

W. Rudin, Real and Complex Analysis, 1987.

M. S. Hybertsen and S. G. Louie, First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators, Phys. Rev. Lett, vol.55, pp.1418-1421, 1985.

T. Kotani, M. Van-schilfgaarde, and S. V. Faleev, Quasiparticle selfconsistent gw method: A basis for the independent-particle approximation, Phys. Rev. B, vol.76, p.165106, 2007.

T. R. Gordillo, Many-body perturbation theory and maximally-localized Wannier functions: a combined tool for first-principles electronic structure and quantum transport calculations, 2011.

L. Hedin and S. Lundqvist, Solid State Physics, vol.23, 1969.

J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, The Journal of Chemical Physics, vol.118, issue.18, pp.8207-8215, 2003.

A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, J. Chem. Phys, vol.125, issue.22, p.224106, 2006.

G. H. Wannier, The structure of electronic excitation levels in insulating crystals, Phys. Rev, vol.52, pp.191-197, 1937.

P. O. Löwdin, On the non orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, The Journal of Chemical Physics, vol.18, issue.3, pp.365-375, 1950.

M. Gilo and N. Croitoru, Study of HfO 2 films prepared by ion-assisted deposition using a gridless end-hall ion source, Thin Solid Films, vol.350, issue.1, pp.203-208, 1999.

J. Robertson, High dielectric constant gate oxides for metal oxide si transistors, Reports on Progress in Physics, vol.69, pp.327-396, 2005.

G. M. Wolten, Diffusionless phase transformations in zirconia and hafnia, J. Am. Ceram. Soc, vol.46, issue.9, pp.418-422, 1963.

M. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green et al., Morphology and crystallization kinetics in HfO 2 thin films grown by atomic layer deposition, J. Appl. Phys, vol.93, issue.3, pp.1477-1481, 2003.

N. V. Nguyen, A. V. Davydov, D. Chandler-horowitz, and M. M. Frank, Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon, Appl. Phys. Lett, vol.87, issue.19, p.192903, 2005.

J. Park, D. Lee, D. Lim, H. Lee, and S. Choi, Optical properties of thermally annealed hafnium oxide and their correlation with structural change, J. Appl. Phys, vol.104, issue.3, p.33521, 2008.

D. H. Hill, R. A. Bartynski, N. V. Nguyen, A. C. Davydov, D. Chandler-horowitz et al., The relationship between local order, long range order, and sub-band-gap defects in hafnium oxide and hafnium silicate films, J. Appl. Phys, vol.103, issue.9, p.93712, 2008.

S. Sayan, T. Emge, E. Garfunkel, X. Zhao, L. Wielunski et al., Band alignment issues related to HfO 2 /SiO 2 /p?Si gate stacks, J. Appl. Phys, vol.96, issue.12, pp.7485-7491, 2004.

E. Bersch, S. Rangan, R. A. Bartynski, E. Garfunkel, and E. Vescovo, Band offsets of ultrathin high-? oxide films with Si, Phys. Rev. B, vol.78, p.85114, 2008.

M. Balog, M. Schieber, M. Michman, and S. Patai, Chemical vapor deposition and characterization of HfO 2 films from organo-hafnium compounds, Thin Solid Films, vol.41, pp.247-259, 1977.

S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, K. Ono et al., Chemistry and band offsets of HfO 2 thin films on Si revealed by photoelectron spectroscopy and x-ray absorption spectroscopy, J. Electron. Spectrosc. Relat. Phenom, pp.141-144, 2004.

W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, Effect of Al inclusion in HfO 2 on the physical and electrical properties of the dielectrics, IEEE Electron Device Lett, vol.23, pp.649-651, 2002.

N. V. Edwards, Status and prospects for VUV ellipsometry (applied to high K and low K materials), AIP Conf. Proc, vol.683, p.723, 2003.

M. Modreanu, P. K. Hurley, B. J. O'sullivan, B. O'looney, J. Senateur et al., Optical characterization of high-k dielectrics HfO 2 thin films obtained by MOCVD, Proc. SPIE, vol.4876, p.1236, 2003.

H. Y. Yu, M. F. Li, B. J. Cho, C. C. Yeo, M. S. Joo et al., Energy gap and band alignment for (HfO 2 ) x (Al 2 O 3 ) 1-x on (100) Si, Appl. Phys. Lett, vol.81, p.376, 2002.

R. Puthenkovilakam and J. P. Chang, An accurate determination of barrier heights at the HfO 2 /Si interfaces, J. Appl. Phys, vol.96, p.2701, 2004.

M. C. Cheynet, S. Pokrant, F. D. Tichelaar, and J. Rouvière, Crystal structure and band gap determination of HfO 2 thin films, J. Appl. Phys, vol.101, p.54101, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00354604

N. Ikarashi and K. Manabe, Electronic structure analysis of Zr silicate and Hf silicate films by using spatially resolved valence electron energyloss spectroscopy, J. Appl. Phys, vol.94, p.480, 2003.

C. Guedj, L. Hung, A. Zobelli, P. Blaise, F. Sottile et al., Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent densityfunctional theory, App. Phys. Lett, vol.105, p.222904, 2014.

L. Hung, C. Guedj, N. Bernier, P. Blaise, V. Olevano et al., Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory, Phys. Rev. B, vol.93, p.165105, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01558383

M. Grüning, R. Shaltaf, and G. Rignanese, Quasiparticle calculations of the electronic properties of ZrO 2 and HfO 2 polymorphs and their interface with Si, Phys. Rev. B, vol.81, p.35330, 2010.

P. Ondra?ka, D. Holec, D. Ne?as, and L. Zají?ková, Accurate prediction of band gaps and optical properties of HfO 2, J. Phys. D: Appl. Phys, vol.49, issue.39, p.395301, 2016.

H. Jiang, R. I. Gomez-abal, P. Rinke, and M. Scheffler, Electronic band structure of zirconia and hafnia polymorphs from the gw perspective, Phys. Rev. B, vol.81, p.85119, 2010.

A. G. Van-der-geest, P. Blaise, and N. Richard, Ab initio study of the electrostatic dipole modulation due to cation substitution in HfO 2 /SiO 2 interfaces, Phys. Rev. B, vol.86, p.85320, 2012.

G. Strinati, H. J. Mattausch, and W. Hanke, Dynamical correlation effects on the quasiparticle bloch states of a covalent crystal, Phys. Rev. Lett, vol.45, pp.290-294, 1980.

G. Strinati, H. J. Mattausch, and W. Hanke, Dynamical aspects of correlation corrections in a covalent crystal, Phys. Rev. B, vol.25, pp.2867-2888, 1982.

S. V. Faleev, M. Van-schilfgaarde, and T. Kotani, All-electron selfconsistent GW approximation: Application to Si, MnO, and NiO, Phys. Rev. Lett, vol.93, p.126406, 2004.

E. E. Salpeter and H. A. Bethe, A relativistic equation for bound-state problems, Phys. Rev, vol.84, pp.1232-1242, 1951.

W. Hanke and L. J. Sham, Dielectric response in the Wannier representation: Application to the optical spectrum of diamond, Phys. Rev. Lett, vol.33, pp.582-585, 1974.

W. Hanke and L. J. Sham, Many-particle effects in the optical excitations of a semiconductor, Phys. Rev. Lett, vol.43, pp.387-390, 1979.

M. Shishkin and G. Kresse, Self-consistent GW calculations for semiconductors and insulators, Phys. Rev. B, vol.75, p.235102, 2007.

J. Klime?, M. Kaltak, and G. Kresse, Predictive GW calculations using plane waves and pseudopotentials, Phys. Rev. B, vol.90, p.75125, 2014.

T. Sander, E. Maggio, and G. Kresse, Beyond the Tamm-Dancoff approximation for extended systems using exact diagonalization, Phys. Rev. B, vol.92, p.45209, 2015.

M. Grüning, R. Shaltaf, and G. Rignanese, , 2018.

T. Rangel, A. Ferretti, P. E. Trevisanutto, V. Olevano, and G. Rignanese, Transport properties of molecular junctions from many-body perturbation theory, Phys. Rev. B, vol.84, p.45426, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00960120

F. Bruneval and M. Gatti, Quasiparticle Self-Consistent GW Method for the Spectral Properties of Complex Materials, pp.99-135, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01073577

S. Poncé, G. Antonius, P. Boulanger, E. Cannuccia, A. Marini et al., Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron-phonon coupling and zeropoint motion correction to the gap between ABINIT and QE/Yambo, Comp. Mat. Science, vol.83, pp.341-348, 2014.

H. Weissker, J. Serrano, S. Huotari, E. Luppi, M. Cazzaniga et al., Dynamic structure factor and dielectric function of silicon for finite momentum transfer: Inelastic xray scattering experiments and ab initio calculations, Phys. Rev. B, vol.81, p.85104, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00960172

F. Fuchs, C. Rödl, A. Schleife, and F. Bechstedt, Efficient O(N 2 ) approach to solve the Bethe-Salpeter equation for excitonic bound states, Phys. Rev. B, vol.78, p.85103, 2008.

F. Sottile, M. Marsili, V. Olevano, and L. Reining, Efficient ab initio calculations of bound and continuum excitons in the absorption spectra of semiconductors and insulators, Phys. Rev. B, vol.76, p.161103, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00361591

S. Botti, N. Vast, L. Reining, V. Olevano, and L. C. Andreani, Ab initio calculations of the anisotropic dielectric tensor of GaAs/AlAs superlattices, Phys. Rev. Lett, vol.89, p.216803, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00438375

R. Wyckoff, Crystal Structure, vol.1, 1965.

W. P. Davey, Precision measurements of the lattice constants of twelve common metals, Phys. Rev, vol.25, pp.753-761, 1925.

S. Schintke, S. Messerli, M. Pivetta, F. Patthey, L. Libioulle et al., Insulator at the ultrathin limit: MgO on Ag(001), Phys. Rev. Lett, vol.87, p.276801, 2001.

N. Troullier and J. L. Martins, Efficient pseudopotentials for planewave calculations, Phys. Rev. B, vol.43, pp.1993-2006, 1991.

F. Viñes, O. Lamiel-garcía, K. Ko, J. Y. Lee, and F. Illas, Systematic study of the effect of hse functional internal parameters on the electronic structure and band gap of a representative set of metal oxides, J. Comput. Chem, vol.38, pp.781-789, 2017.

W. H. Butler, X. Zhang, T. C. Schulthess, and J. M. Maclaren, Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches, Phys. Rev. B, vol.63, p.54416, 2001.

A. Ferretti, G. Mallia, L. Martin-samos, G. Bussi, A. Ruini et al., Ab initio complex band structure of conjugated polymers: Effects of hydrid density functional theory and GW schemes, Phys. Rev. B, vol.85, p.235105, 2012.

W. Chen and A. Pasquarello, Accurate band gaps of extended systems via efficient vertex corrections in GW, Phys. Rev. B, vol.92, p.41115, 2015.

W. Chen and A. Pasquarello, Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus many-body perturbation theory, Phys. Rev. B, vol.86, p.35134, 2012.

W. Chen and A. Pasquarello, Erratum: Band-edge levels in semiconductors and insulators: Hybrid density functional theory versus manybody perturbation theory, Phys. Rev. B, vol.86, p.119906, 2012.

C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salon et al., Experimental and theoretical study of electrode effects in HfO 2 based RRAM, IEDM Tech. Dig, vol.12, pp.658-661, 2011.

T. Cabout, J. Buckley, C. Cagli, V. Jousseaume, J. Nodin et al., Role of Ti and Pt electrodes on resistance switching variability of HfO 2 -based resistive random access memory, EMRS 2012 Symposium L, vol.533, pp.19-23, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01762335

A. Gavrikov, A. Knizhnik, A. Bagaturyants, B. Potapkin, L. Fonseca et al., Oxidation of the Pt/HfO 2 interface: The role of the oxygen chemical potential, Journal of Applied Physics, vol.101, pp.14310-014310, 2007.

E. Cho and S. Han, Electronic structure of Pt/HfO 2 interface with oxygen vacancy, Microelectronic Engineering, vol.88, issue.12, pp.3407-3410, 2008.

H. Zhu, C. Tang, and R. Ramprasad, Phase equilibria at Si-HfO 2 and Pt-HfO 2 interfaces from first principles thermodynamics, Phys. Rev. B, vol.82, p.235413, 2010.

L. Lin, Adaptively compressed exchange operator, Journal of Chemical Theory and Computation, vol.12, issue.5, pp.2242-2249, 2016.

B. Sklénard, A. Dragoni, F. Triozon, and V. Olevano, Optical vs electronic gap of hafnia by ab initio bethe-salpeter equation, Applied Physics Letters, vol.113, issue.17, p.172903, 2018.

A. Dragoni, B. Sklénard, V. Olevano, and F. Triozon, Plane-wave many-body corrections to the conductance in bulk tunnel junctions, Phys. Rev. B, vol.101, p.75402, 2020.

J. K. Tomfohr and O. F. Sankey, Complex band structure, decay lengths, and fermi level alignment in simple molecular electronic systems, Phys. Rev. B, vol.65, p.245105, 2002.

F. Tisseur and K. Meerbergen, The quadratic eigenvalue problem, SIAM Review, vol.43, issue.2, pp.235-286, 2001.

I. Rungger and S. Sanvito, Algorithm for the construction of selfenergies for electronic transport calculations based on singularity elimination and singular value decomposition, Phys. Rev. B, vol.78, p.35407, 2008.