M. Abdel-salam and . Eleiche, Strain-rate history and temperature effects on the torsional-shear behavior of a mild steel, Exp. Mech, vol.21, pp.285-294, 1981.

M. Amiri and M. M. Khonsari, Life prediction of metals undergoing fatigue load based on temperature evolution, Mater. Sci. Eng. A, vol.527, pp.1555-1559, 2010.

N. K. Arakere, Gigacycle rolling contact fatigue of bearing steels: A review, Int. J. Fatigue, vol.93, pp.238-249, 2016.

E. C. Bain, Functions of the Alloying Elements in Steel, 1939.

J. D. Baird, The effects of strain-ageing due to interstitial solutes on the mechanical properties of metals, Metall. Rev, vol.16, pp.1-18, 1971.

W. P. Bao, Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates, J. Mech. Eng, vol.46, p.74, 2010.

B. Bardes, Metals Handbook: Properties and Selection: Irons and Steels, 1978.

C. Bathias, There is no infinite fatigue life in metallic materials, Fatigue Fract. Eng. Mater. Struct, vol.22, pp.559-565, 1999.

C. Bathias and P. C. Paris, Gigacycle fatigue in mechanical practice, 2005.

C. Bathias and A. Pineau, Fatigue of Materials and Structures, 2013.

A. Beukel and . Van-den, Theory of the effect of dynamic strain aging on mechanical properties, Phys. Status Solidi A, vol.30, pp.197-206, 1975.

S. P. Bhat, L. , and C. , The cyclic stress-strain curves in monocrystalline and polycrystalline metals, Scr. Metall, vol.12, pp.687-692, 1978.

R. Botny and J. Kaleta, A method for determining the heat energy of the fatigue process in metals under uniaxial stress: Part 1. Determination of the amount of heat liberated from a fatigue-tested specimen, Int. J. Fatigue, vol.8, pp.29-33, 1986.

T. Boulanger, A. Chrysochoos, C. Mabru, and A. Galtier, Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels, Int. J. Fatigue, vol.26, pp.221-229, 2004.

M. W. Brown and K. J. Miller, A Theory for Fatigue Failure under Multiaxial Stress-Strain Conditions, Proc. Inst. Mech. Eng, vol.187, pp.745-755, 1973.

C. Brugger, T. Palin-luc, P. Osmond, and M. Blanc, A new ultrasonic fatigue testing device for biaxial bending in the gigacycle regime, Int. J. Fatigue, vol.100, pp.619-626, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01468535

W. D. Callister, Materials science and engineering: an introduction, 2007.

W. D. Callister, Fundamentals of Materials Science and Engineering: An Integrated Approach, 2015.

J. D. Campbell and W. G. Ferguson, The temperature and strain-rate dependence of the shear strength of mild steel, Philos. Mag. J. Theor. Exp. Appl. Phys, vol.21, pp.63-82, 1970.

R. Cazaud, G. Pomey, P. Rabbe, and C. Janssen, La Fatigue des Mé taux, 1968.

J. A. Charles, F. J. Appl, and J. E. Francis, Using the scanning infrared camera in experimental fatigue studies, Exp. Mech, vol.15, pp.133-138, 1975.

F. Chmelík, F. B. Klose, H. Dierke, J. ?achl, H. Neuhäuser et al., Investigating the Portevin-Le Châ telier effect in strain rate and stress rate controlled tests by the acoustic emission and laser extensometry techniques, Mater. Sci. Eng. A, vol.462, pp.53-60, 2007.

A. Chrysochoos and H. Louche, An infrared image processing to analyse the calorific effects accompanying strain localisation, Int. J. Eng. Sci, vol.38, pp.1759-1788, 2000.

A. Chrysochoos, O. Maisonneuve, G. Martin, H. Caumon, and J. Chezeaux, Plastic and dissipated work and stored energy, Nucl. Eng. Des, vol.114, pp.323-333, 1989.

J. Cuddy and M. Bassim, Study of dislocation cell structures from uniaxial deformation of AISI 4340 steel, Mater. Sci. Eng. A, vol.113, pp.421-429, 1989.

F. Cura, G. Curti, and R. Sesana, A new iteration method for the thermographic determination of fatigue limit in steels, Int. J. Fatigue, vol.27, pp.453-459, 2005.

C. Doudard, M. Poncelet, S. Calloch, C. Boue, F. Hild et al., Determination of an HCF criterion by thermal measurements under biaxial cyclic loading, Int. J. Fatigue, vol.29, pp.748-757, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00322198

J. A. Ewing and J. C. Humfrey, VI. The fracture of metals under repeated alternations of stress, Phil Trans R Soc Lond A, vol.200, pp.241-250, 1903.

V. Favier, A. Blanche, C. Wang, N. L. Phung, N. Ranc et al., Very high cycle fatigue for single phase ductile materials: Comparison between ?-iron, copper and ?-brass polycrystals, Int. J. Fatigue, vol.93, pp.326-338, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687259

P. J. Forsyth, Some metallographic observations on the fatigue of metals, J. Inst. Met, vol.80, p.181, 1951.

P. J. Forsyth, Exudation of material form slips bands at the surface of fatigued crystals of an aluminum copper alloy, Nature, vol.171, pp.172-173, 1953.

P. J. Forsyth, Fatigue damage and crack growth in aluminium alloys, Acta Metall, vol.11, pp.703-715, 1963.

D. Franç-ois, A. Pineau, and A. Zaoui, Mechanical Behaviour of Materials, vol.1, 2012.

T. Gladman and R. Barker, Internal friction characteristics of interstitial carbon and nitrogen in alpha-iron, J. Phys. Colloq, vol.2, pp.2-57, 1971.

Q. Guo and X. Guo, Research on high-cycle fatigue behavior of FV520B stainless steel based on intrinsic dissipation, Mater. Des, vol.90, pp.248-255, 2016.

A. G. Guy, Essentials of Materials Science, 1976.

H. Hempel, Metallographic observations on the fatigue of steels, Proceedings of the International Conference on Fatigue of Metals, p.p, 1957.

Y. S. Hong and C. Q. Sun, The nature and the mechanism of crack initiation and early growth for very-high-cycle fatigue of metallic materials -An overview, Theor. Appl. Fract. Mech, vol.92, pp.331-350, 2017.

Y. S. Hong, Z. Q. Lei, C. Q. Sun, and A. Q. Zhao, Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels, Int. J. Fatigue, vol.58, pp.144-151, 2014.

Z. Y. Huang, Endommagement des aciers au C-Mn en fatigue oligocyclique et gigacyclique. PhD dissertation, 2010.

Z. Y. Huang, D. Wagner, Q. Y. Wang, and C. Bathias, Effect of carburizing treatment on the "fish eye" crack growth for a low alloyed chromium steel in very high cycle fatigue, Mater. Sci. Eng. A, vol.559, pp.790-797, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01420501

Z. Y. Huang, J. L. Chaboche, Q. Y. Wang, D. Wagner, and C. Bathias, Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel, Mater. Sci. Eng. A, vol.589, pp.34-40, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01687035

Z. Y. Huang, D. Wagner, and C. Bathias, Some metallurgical aspects of Dynamic Strain Aging effect on the Low Cycle Fatigue behavior of C-Mn steels, Int. J. Fatigue, vol.80, pp.113-120, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01687050

Z. Y. Huang, N. Ranc, and D. Wagner, Dislocations gliding study by IR thermography in C-Mn steels with different solute atoms content in the gigacycle fatigue domain, Key Engineering Materials, vol.664, pp.177-187, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687127

D. Hull and D. J. Bacon, , 2011.

Z. Y. Jiang, Développement d"une machine de fatigue gigacyclique en torsion pour les maté riaux mé talliques à haute ré sistance, 2018.

H. D. Johnson, Lüders bands in RPV steel, 2012.

D. W. Kim, W. G. Kim, and W. S. Ryu, Role of dynamic strain aging on low cycle fatigue and crack propagation of type 316L(N) stainless steel, Int. J. Fatigue, vol.25, pp.1203-1207, 2003.

V. Kinra and A. Wolfenden, M3D III: Mechanics and Mechanisms of Material Damping, 1992.

M. Klesnil and P. Luká?, Dislocation arrangement in surface layer of alpha-iron grains during cyclic loading, J Iron Steel Inst, vol.203, pp.1043-1048, 1965.

P. Knysh and Y. P. Korkolis, Determination of the fraction of plastic work converted into heat in metals, Mech. Mater, vol.86, pp.71-80, 2015.

L. Rosa, G. Risitano, and A. , Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, Int. J. Fatigue, vol.22, pp.65-73, 2000.

C. Laird and D. J. Duquette, Corrosion Fatigue: Chemistry, Mechanics, and Microstructure, pp.88-117, 1972.

C. Laird, P. Charsley, and H. Mughrabi, Low energy dislocation structures produced by cyclic deformation, Mater. Sci. Eng, vol.81, pp.433-450, 1986.

B. H. Lee and I. S. Kim, Dynamic strain aging in the high-temperature low-cycle fatigue of SA508 Cl. 3 forging steel, J. Nucl. Mater, vol.226, pp.216-225, 1995.

Z. Q. Lei, Y. S. Hong, J. J. Xie, C. Q. Sun, and A. Q. Zhao, Effects of inclusion size and location on very-high-cycle fatigue behavior for high strength steels, Mater. Sci. Eng. A, vol.558, pp.234-241, 2012.

P. Li, Z. F. Zhang, X. W. Li, S. X. Li, and Z. G. Wang, Effect of orientation on the cyclic deformation behavior of silver single crystals: Comparison with the behavior of copper and nickel single crystals, Acta Mater, vol.57, pp.4845-4854, 2009.

Y. Liu, J. Fu, W. U. , and H. , Precipitation of aluminum nitride in low carbon aluminum-killed steel, Chin. J. Iron Steel, vol.21, pp.20-20, 2009.

P. Luká? and M. Klesnil, Cyclic stress-strain response and fatigue life of metals in low amplitude region, Mater. Sci. Eng, vol.11, pp.345-356, 1973.

B. Luo, M. Li, G. Wang, F. Tan, J. Zhao et al., Strain rate and hydrostatic pressure effects on strength of iron, Mech. Mater, vol.114, pp.142-146, 2017.

Z. Luo, L. Wang, Q. Sun, S. Li, Y. Ma et al., AlN precipitation behavior and its effect on work hardening of low carbon steel in deep drawing process, Trans. Mater. Heat Treat, vol.37, 2016.

M. P. Luong, Infrared thermographic scanning of fatigue in metals, Nucl. Eng. Des, vol.158, pp.363-376, 1995.

M. P. Luong, Fatigue limit evaluation of metals using an infrared thermographic technique, Mech. Mater, vol.28, pp.155-163, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00111598

L. B. Magalas, The Snoek-Köster (SK) relaxation and Dislocation-Enhanced Snoek Effect (DESE) in deformed iron. Solid State Phenom, vol.115, pp.67-72, 2006.

C. Mareau, Influence of the free surface and the mean stress on the heat dissipation in steels under cyclic loading, Int. J. Fatigue, vol.31, pp.1407-1412, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00371739

C. W. Marschall, M. P. Landow, and G. M. Wilkowski, Effect of Dynamic Strain Aging on Fracture Resistance of Carbon Steels Operating at Light-Water Reactor Temperatures, Fract. Mech. Twenty-First Symp, 1990.

P. G. Mccormigk, A model for the Portevin-Le Chatelier effect in substitutional alloys, Acta Metall, vol.20, pp.351-354, 1972.

P. Mikell and . Groover, Fundamentals of modern manufacturing; materials, processes, and systems, 2007.

K. J. Miller, Metal fatigue-past, current and future, Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci, vol.205, pp.291-304, 1991.

J. C. Moreno, Vieillissement dynamique dans les joints soudés d"acier au carbonne manganèse : relation entre les paramètres métallurgiques et le comportement mé canique. PhD dissertation. Châ tenay-Malabry, 1998.

A. Mucsi, Effect of hot rolled grain size on the precipitation kinetics of nitrides in low carbon Al-killed steel, J. Mater. Process. Technol, vol.214, pp.1536-1545, 2014.

H. Mughrabi, Microscopic Mechanisms of Metal Fatigue, Strength of Metals and Alloys, pp.1615-1638, 1979.

H. Mughrabi, On the life-controlling microstructural fatigue mechanisms in ductile metals and alloys in the gigacycle regime, Fatigue Fract. Eng. Mater. Struct, vol.22, pp.633-641, 1999.

H. Mughrabi, On "multi-stage" fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue, Fatigue Fract. Eng. Mater. Struct, vol.25, pp.755-764, 2002.

H. Mughrabi, Specific features and mechanisms of fatigue in the ultrahigh-cycle regime, Int. J. Fatigue, vol.28, pp.1501-1508, 2006.

H. Mughrabi, Cyclic slip irreversibilities and the evolution of fatigue damage, Metall. Mater. Trans. B, vol.40, pp.431-453, 2009.

H. Mughrabi, Microstructural fatigue mechanisms: Cyclic slip irreversibility, crack initiation, non-linear elastic damage analysis, Int. J. Fatigue, vol.57, pp.2-8, 2013.

H. Mughrabi, Cyclic slip irreversibility and fatigue life: A microstructure-based analysis, Acta Mater, vol.61, pp.1197-1203, 2013.

H. Mughrabi, Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth, Philos. Transact. A Math. Phys. Eng. Sci, vol.373, 2015.

H. Mughrabi and S. Stanzl-tschegg, Fatigue damage evolution in ductile single-phase face-centred cubic metals in the UHCF-regime, Fourth International Conference on Very High Cycle Fatigue, pp.75-82, 2007.

H. Mughrabi, F. Ackermann, and K. Herz, Persistent slip bands in fatigued face-centered and body-centered cubic metals, Fatigue Mech ASTM-STP, vol.675, pp.67-105, 1979.

H. Mughrabi, K. Herz, and X. Stark, Cyclic deformation and fatigue behaviour of ?-iron mono-and polycrystals, Int. J. Fract, vol.17, pp.193-220, 1981.

E. H. Mühlhaus, J. Wiley, N. Y. Ch, and R. Lakes, Continuum models for materials with microstructure, 1995.

R. Munier, C. Doudard, S. Calloch, and B. Weber, Determination of high cycle fatigue properties of a wide range of steel sheet grades from self-heating measurements, Int. J. Fatigue, vol.63, pp.46-61, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00967431

R. Munier, C. Doudard, S. Calloch, and B. Weber, Identification of the micro-plasticity mechanisms at the origin of self-heating under cyclic loading with low stress amplitude, Int. J. Fatigue, vol.103, pp.122-135, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581049

F. H. Norton, The creep of steel at high temperatures, 1929.

M. Ouarabi, Influence de la fré quence de chargement sur la ré sistance à l"amorçage et la croissance de fissure de fatigue dans des aciers utilisés pour des applications mé caniques exigeantes, 2018.

D. P. Petarra and D. N. Beshers, Cold-work internal friction peak in iron, Acta Metall, vol.15, pp.791-800, 1967.

K. Pohl, P. Mayr, and E. Macherauch, Persistent slip bands in the interior of a fatigued low carbon steel, Scr. Metall, vol.14, pp.1167-1169, 1980.

J. Polák, V. Mazánová, M. Heczko, R. Petrá?, I. Kub?na et al., The role of extrusions and intrusions in fatigue crack initiation, Eng. Fract. Mech, vol.185, pp.46-60, 2017.

B. Pyttel, D. Schwerdt, and C. Berger, Very high cycle fatigue -Is there a fatigue limit?, Int. J. Fatigue, vol.33, pp.49-58, 2011.

N. Ranc and D. Wagner, Experimental study by pyrometry of Portevin-Le Châ telier plastic instabilities-Type A Type B transition, Mater. Sci. Eng. A, vol.474, pp.188-196, 2007.

N. Ranc, V. Favier, B. Munier, F. Vales, G. Thoquenne et al., , 2015.

, Thermal Response of C45 Steel in High and Very High Cycle Fatigue. Procedia Eng, vol.133, pp.265-271

N. Ranc, W. Du, I. Ranc, and D. Wagner, Experimental studies of Portevin-Le Chatelier plastic instabilities in carbon-manganese steels by infrared pyrometry, Mater. Sci. Eng. A, vol.663, pp.166-173, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01377562

K. L. Reifsnider and R. S. Williams, Determination of fatigue-related heat emission in composite materials, Exp. Mech, vol.14, pp.479-485, 1974.

D. Rittel, L. H. Zhang, and S. Osovski, The dependence of the Taylor-Quinney coefficient on the dynamic loading mode, J. Mech. Phys. Solids, vol.107, pp.96-114, 2017.

T. Sakai, Y. Sato, and N. Oguma, Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue, Fatigue Fract. Eng. Mater. Struct, vol.25, pp.765-773, 2002.

A. Sarkar, A. Nagesha, R. Sandhya, K. Laha, and M. Okazaki, Manifestations of dynamic strain aging under low and high cycle fatigue in a type 316LN stainless steel, Mater. High Temp, vol.35, pp.523-528, 2018.

M. Sennour and C. Esnouf, Contribution of advanced microscopy techniques to nano-precipitates characterization: case of AlN precipitation in low-carbon steel, Acta Mater, vol.51, pp.943-957, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00475118

R. C. Sharma, Principles of heat treatment of steels (New Age International), 2003.

C. C. Shih, N. J. Ho, and H. L. Huang, The relationship between cyclic stress-strain curve and dislocation structures in cyclically deformed IF steel, Mater. Sci. Eng. A, vol.517, pp.235-238, 2009.

D. H. Shin, Y. S. Kim, and E. J. Lavernia, Formation of fine cementite precipitates by static annealing of equal-channel angular pressed low-carbon steels, Acta Mater, vol.49, pp.2387-2393, 2001.

J. L. Snoek, Effect of small quantities of carbon and nitrogen on the elastic and plastic properties of iron, Physica, vol.8, pp.711-733, 1941.

D. Spriestersbach, P. Grad, and E. Kerscher, Influence of different non-metallic inclusion types on the crack initiation in high-strength steels in the VHCF regime, Int. J. Fatigue, vol.64, pp.114-120, 2014.

S. Stanzl-tschegg, H. Mughrabi, and B. Schoenbauer, Life time and cyclic slip of copper in the VHCF regime, Int. J. Fatigue, vol.29, pp.2050-2059, 2007.

S. Suresh, Fatigue of Materials, 1998.

G. D. Thomas and J. R. Samuel, Heat treatment and properties of iron and steel, 1960.

N. Thompson and N. J. Wadsworth, Metal fatigue, Adv. Phys, vol.7, pp.72-169, 1958.

N. Torabian, V. Favier, S. Ziaei-rad, J. Dirrenberger, F. Adamski et al., Thermal response of DP600 dual-phase steel under ultrasonic fatigue loading, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01377599

, Mater. Sci. Eng. A, vol.677, pp.97-105

N. Torabian, V. Favier, J. Dirrenberger, F. Adamski, S. Ziaei-rad et al., Correlation of the high and very high cycle fatigue response of ferrite based steels with strain rate-temperature conditions, Acta Mater, vol.134, pp.40-52, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01592775

N. Torabiandehkordi, High and very high cycle fatigue behavior of DP600 dual-phase steel : correlation between temperature, strain rate, and deformation mechanisms, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01682888

R. Z. Valiev, Y. V. Ivanisenko, E. F. Rauch, and B. Baudelet, Structure and deformaton behaviour of Armco iron subjected to severe plastic deformation, Acta Mater, vol.44, pp.4705-4712, 1996.

D. Wagner, J. C. Moreno, C. Prioul, J. M. Frund, and B. Houssin, Influence of dynamic strain aging on the ductile tearing of C-Mn steels: modelling by a local approach method, J. Nucl. Mater, vol.300, pp.178-191, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01863962

D. Wagner, N. Roubier, and C. Prioul, Measurement of sensitivity to dynamic strain aging in C-Mn steels by internal friction experiments, Mater. Sci. Technol, vol.22, pp.301-307, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00020227

D. Wagner, N. Ranc, C. Bathias, and P. C. Paris, Fatigue crack initiation detection by an infrared thermography method, Fatigue Fract. Eng. Mater. Struct, vol.33, pp.12-21, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02269208

D. Wagner, C. Wang, Z. Huang, and C. Bathias, Surface crack initiation mechanism for body centered cubic materials in the gigacycle fatigue domain, Int. J. Fatigue, vol.93, pp.292-300, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687219

C. Wang, Microplasticité et dissipation en fatigue à trè s grand nombre de cycles du fer et de l"acier, 2013.

C. Wang, A. Blanche, D. Wagner, A. Chrysochoos, and C. Bathias, , 2014.

, Dissipative and microstructural effects associated with fatigue crack initiation on an Armco iron, Int. J. Fatigue, vol.58, pp.152-157

C. Wang, J. Petit, Z. Huang, and D. Wagner, Investigation of crack initiation mechanisms responsible for the fish eye formation in the Very High Cycle Fatigue regime, Int. J. Fatigue, vol.119, pp.320-329, 2019.

A. Weidner, D. Amberger, F. Pyczak, B. Schönbauer, S. Stanzl-tschegg et al., Fatigue damage in copper polycrystals subjected to ultrahigh-cycle fatigue below the PSB threshold, Int. J. Fatigue, vol.32, pp.872-878, 2010.

M. Weller, The Snoek-Köster relaxation in body-centered cubic metals, J. Phys. Colloq, vol.44, pp.9-63, 1983.

A. T. Winter, A model for the fatigue of copper at low plastic strain amplitudes, Philos. Mag. J. Theor. Exp. Appl. Phys, vol.30, pp.719-738, 1974.

A. Wöhler, Über die Festigkeitsversuche mit Eisen und Stahl, Z. Für Bauwes. References, vol.20, pp.73-106, 1870.

S. Yang, Heat Transfer, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02044900

Z. F. Zhang and Z. G. Wang, Grain boundary effects on cyclic deformation and fatigue damage, Prog. Mater. Sci, vol.53, pp.1025-1099, 2008.

J. M. Zhang, S. X. Li, Z. G. Yang, G. Y. Li, W. J. Hui et al., Influence of inclusion size on fatigue behavior of high strength steels in the gigacycle fatigue regime, Int. J. Fatigue, vol.29, pp.765-771, 2007.

J. S. Zhao and L. M. Zhang, A study on the dislocation density in 300M steel, J. Beijing Univ. Aeronaut. Astronaut, vol.1, pp.14-17, 1991.

J. H. Zuo, Z. G. Wang, and E. H. Han, Effect of microstructure on ultra-high cycle fatigue behavior of Ti-6Al-4V, Mater. Sci. Eng. A, vol.473, pp.147-152, 2008.