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Abstract

In this thesis quantum phase slips in one-dimensional superconductors are stud-
ied. One-dimensional superconductors can be represented by two physical systems:
a superconducting wire and a Josephson junction chain. A superconducting wire
can be considered one-dimensional, if its transverse dimensions are smaller than the
superconducting coherence length. In one-dimensional systems fluctuations strongly
influence the system properties. The quantum phase slips correspond to quantum
tunneling between different phase configurations along the superconductor. They
can be of two types. Coherent quantum phase slips do not involve dissipation and
only shift energy levels of the system. Incoherent quantum phase slips lead to a
dissipative relaxation in the system.

We start with studying an incoherent phase-slip process in a single underdamped
current-biased Josephson junction. This process corresponds to dissipative tunneling
between weakly broadened levels in neighboring minima of the tilted washboard
potential. We derive an expression for the voltage peaks near the resonant values of
the external current, which correspond to matching energies of the lowest level in one
minimum and an excited level in the lower neighboring minimum. This process is
analogous to resonant Zener breakdown known for electrons in a superlattice subject
to a strong electric field.

We continue with studying coherent quantum phase slips in a Josephson junction
chain. First, we determine the amplitude of a coherent quantum phase slip in a ho-
mogeneous chain. It has already been shown that the amplitude is determined by the
imaginary-time instanton action, which can be divided into the local (corresponding
to phase winding by 27 on one junction) and environmental (corresponding to phase
readjustment in the rest of the chain, which is determined by gapless Mooij-Schon
modes) parts. We derive a numerical correction to the environmental part of the
action, going beyond logarithmic precision. Second, we study the effect of spatial
periodic modulations of the chain parameters on the coherent quantum phase slip
process. We calculate the corrections both to the local and environmental part of the
coherent quantum phase slip action and show that both of them can be significant,
depending on the chain and modulations parameters. Then, we study the effect of
two types of quenched disorder: random spatial modulation of the junction areas

and random induced background charges. The main result is that the dominant



contribution to the coherent quantum phase slip action is local. We also study the
statistics of the mesoscopic fluctuations of the quantum phase slips amplitude and
show that it can be non-Gaussian for chains which are not sufficiently long.
Finally, we consider one-dimensional superconducting wires. There is no micro-
scopic theory available for the fast phase winding in the phase-slip core, where the
order parameter is suppressed. However, the slow phase readjustment process, de-
termined by the Mooij-Schon modes with frequencies lower than 2A, is analogous to
that in Josephson junction chains, so the resulting environmental part of the coher-
ent quantum phase slip action takes the same form. Therefore, we discuss how our
results, obtained for Josephson junction chains, can be applied to inhomogeneous

superconducting wires.
My publications related to the thesis

1. A. E. Svetogorov, M. Taguchi, Y. Tokura, D. M. Basko, and F. W. J. Hekking.
Theory of coherent quantum phase slips in Josephson junction chains with periodic
spatial modulations. Phys. Rev. B 97, 104514 (2018).

2. A. E. Svetogorov and D. M. Basko. Effect of disorder on coherent quantum phase
slips in Josephson junction chains. Phys. Rev. B 98, 054513 (2018).



Résumé

Dans cette these, j’étudie les sauts de phase quantiques dans des supracon-
ducteurs unidimensionnels. Les supraconducteurs unidimensionnels peuvent étre
représentés par deux systémes physiques: un fil supraconducteur ou une chaine de
jonctions de Josephson. Un fil supraconducteur peut étre considéré unidimensionnel
si ses dimensions transversales sont inférieures a la longueur de cohérence supracon-
ductrice. Dans les systemes unidimensionnels, les fluctuations ont une grande in-
fluence sur les propriétés du systeme. Les sauts de phase quantiques correspondent
au tunnel quantique entre différentes configurations de phase le long du supracon-
ducteur. Ils peuvent étre de deux types. Les sauts de phase quantiques cohérents
n’impliquent pas de dissipation et ne font que déplacer les niveaux d’énergie du
systeme. Les sauts de phase quantiques incohérents entrainent une relaxation dissi-
pative dans le systeme.

Nous commencons par étudier un processus incohérent de saut de phase dans une
jonction de Josephson sous-atténuée et soumise a un courant externe. Ce processus
correspond a un processus tunnel dissipatif entre des niveaux faiblement élargis dans
les minima voisins du potentiel de planche a laver incliné. J’obtiens une expression
pour les pics de tension proches des valeurs de résonance du courant externe, qui
correspondent a I’énergies du niveau le plus bas dans un minimum et celle d’'un
niveau excité dans le minimum voisin étant proches. Ce processus est analogue a la
rupture résonante de Zener connue pour les électrons dans un super-réseau soumis
a un champ électrique fort.

Nous continuons a étudier les sauts de phase quantiques cohérents dans une
chaine de jonctions de Josephson. Tout d’abord, nous déterminons I'amplitude d’un
saut de phase quantique cohérent dans une chaine homogene. Il a déja été montré
que 'amplitude est déterminée par I'action de l'instanton dans un temps imagi-
naire, qui peut étre divisée en deux parties: l'action locale (correspondant a un
enroulement de la phase par 27 sur une jonction) et I’environnement (correspon-
dant a un réajustement de la phase dans le reste de la chaine, qui est déterminée
par des parties de Mooij-Schon sans gap). Nous obtenons une correction numérique
de la partie environnementale de I'action, allant au-dela de la précision logarith-
mique. Deuxiémement, nous étudions I'effet de la modulation périodique spatiale
des parametres de la chaine sur la phase quantique cohérente. Nous calculons les
corrections aux parties locale et environnementale de 'action du sauts de phase
quantique cohérent et montrons que les deux peuvent étre significatives, en fonction

des parametres de la chaine et des modulations. Puis nous étudions 'effet des deux



types de désordre : modulation spatiale aléatoire des surfaces des jonctions et des
charges de fond induites de maniere aléatoire. Le résultat principal est que la contri-
bution dominante & I'action cohérente du saut de phase quantique est locale. Nous
étudions également la statistique des fluctuations mésoscopiques de 'amplitude des
sauts de phase quantiques et montrons qu’elle peut étre non (Gaussienne pour des
chaines qui ne sont pas suffisamment longues.

Enfin, nous considérons des fils supraconducteurs unidimensionnels. Il n’y a
pas de théorie microscopique disponible pour I'enroulement de phase rapide dans
le noyau du saut de phase, ou le parametre d’ordre est supprimé. Cependant, le
processus lent de réajustement de la phase, déterminé par les modes de Mooij-Schon
avec des fréquences inférieures & 2A, est analogue a celui des chaines de jonction de
Josephson, de sorte que la partie environnementale résultante de ’action du saut de
phase quantique cohérent prend la méme forme. Par conséquent, nous discutons de
la facon dont nos résultats, obtenus pour les chaines de jonction Josephson, peuvent

étre appliqués a des fils supraconducteurs inhomogenes.
Mes publications liées a la these

1. A. E. Svetogorov, M. Taguchi, Y. Tokura, D. M. Basko, and F. W. J. Hekking.
Theory of coherent quantum phase slips in Josephson junction chains with periodic
spatial modulations. Phys. Rev. B 97, 104514 (2018).

2. A. E. Svetogorov and D. M. Basko. Effect of disorder on coherent quantum phase
slips in Josephson junction chains. Phys. Rev. B 98, 054513 (2018).



Chapter 1

Introduction

1.1 Omne-dimensional superconductivity: supercon-

ducting nanowires and Josephson junction chains

The phenomenon of superconductivity has taken a significant place in condensed
matter physics since its discovery in 1911 by Kamerlingh Onnes [1]. The most inter-
esting feature of the phenomenon is the vanishing resistance of some metals below a
critical temperature 7T,.. Superconductivity is determined by coherent pairs of elec-
trons (Cooper pairs). These coherent Cooper pairs form a Bose-Einstein condensate,
whose wave function can be expressed by a complex order parameter A, which at
the same time determines the energy gap in the spectrum of quasiparticle excita-
tions. As a result, the state of a superconductor can be described by the Cooper-pair
condensate and quasiparticle excitations above the energy gap |Al. In a bulk su-
perconductor, collective excitations (Goldstone modes) are also gapped by virtue of
the Anderson-Higgs mechanism, the gap corresponds to the plasma frequency of the
electrons in the metal. However, the picture changes if the system dimensionality
is reduced. In this case the collective excitations are no longer gapped, the fluctua-
tions of the order parameter are strong, which can influence the system properties
dramatically.

Superconductivity in one-dimensional systems has been studied both theoreti-
cally and experimentally since long ago |2, 3, 4, 5, 6]. One-dimensional supercon-
ductors are structures in which the order parameter of the Cooper-pair condensate
is almost constant across the superconductor and can vary only along the system.
Therefore, the properties of the system can be described by the order parameter

profile along the superconductor. Presently, one-dimensional superconductivity can



be realized in Josephson junction (JJ) chains or thin metallic wires (see Refs. [7]
and [8] for respective reviews). Such structures are of great interest as they have
a variety of different applications. These applications range from photon detectors
used in astronomy [9] to the proposed realization of a fundamental current standard
in quantum metrology [10, 11, 12]. Moreover, one-dimensional superconductivity is
a fundamental issue as it corresponds to the case of strong quantum fluctuations
resulting in a superconductor-insulator quantum phase transition. A quantum one-
dimensional system can be mapped on a two-dimensional classical system, which al-
lows to connect this quantum phase transition to the Berezinskii-Kosterlitz-Thouless
transition [13].

Superconducting nanowires can be considered one-dimensional from the con-
densate perspective, if their thickness w is much smaller than the superconducting
coherence length, w < €. Then the superconducting order parameter A = |Ale®
varies only along the wire and, in case the absolute value |A| is not suppressed,
it is just the phase ¢ configuration along the wire, which determines the system
properties. Still, from the fermionic quasiparticle excitation perspective, all realistic
wires are three-dimensional, as typical Fermi wavelength is of the order of a few
angstroms, while the thinnest existing wires have the transverse size of the order
of 10 nm. At low temperatures the dominant excitations are not quasiparticles but
collective gapless plasma modes (Mooij-Schon modes [14]) corresponding to small
oscillations of phase ¢. And if the absolute value of the order parameter is sup-
pressed in some region of the wire, allowing the phase to flip by 27, those modes
determine phase readjustment in the rest of the core (for details see Sec. 1.2 and
Chapter 5).

A Josephson junction consists of two superconducting electrodes connected by
a weak link or a tunnel barrier. It was predicted [15] and then observed [16] that
at zero voltage there is a supercurrent I through the junction, which depends on
the superconducting phase difference A¢ on the electrodes, I = I.sin A¢, where
I, = 2eE; is the critical current supported by the junction (E; is the Josephson
coupling energy, the electron charge is —e and we put & = 1 throughout the thesis).
Moreover, for nonzero voltage V' along the junction the phase difference evolves as
dA¢/dt = 2eV. A JJ chain consists of many superconducting islands, connected
by Josephson junctions. The properties of such a system are determined both by
the junction parameters, namely critical currents /., and effective capacitances C'
(corresponding to electrostatic interactions between the neighboring islands), as well

as superconducting islands’ capacitances to the ground C, (corresponding to elec-



trostatic interactions between the islands and the substrate) schematically shown
on Fig. 1.1. The continuous interest in JJ chains is due to their use as elements of
various superconducting circuits [17]. As JJ chains can be fabricated with a good
degree of control, they are used to create electromagnetic environments with special
properties, for example, to suppress charge fluctuations in the system [18, 19, 20].
Moreover, new coherent devices, such as topologically protected qubits [21, 22|, were
proposed. And finally JJ chains are supposed to be useful in realization of the fun-

damental current standard [10, 11, 12] dual to the Josephson voltage standard [23].
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Figure 1.1: A schematic representation of a Josephson junction chain.

There are three main energy scales in a JJ chain. We have already introduced
Josephson coupling energy E;, which determines the energy of the supercurrent
flowing through the junction. The Coulomb electrostatic energy associated with
Cooper-pair tunneling is determined by the energy scales corresponding to two ca-
pacitances, E, = ¢?/(2C) and E, = €*/(2C,). Here we are interested in JJ chains
with E; being the largest energy scale. Then the wave function of the system of N
junctions U (¢, @1, ...¢n ) is peaked near some phase values ¢,,, and a phase-coherent

Cooper-pair current can flow through the chain without any external voltage.

1.2 Phase slips

During the studies of one-dimensional superconductivity an important role played
by phase slips has been realized [24]. Phase slips can be thermally activated |25, 26]
near the critical temperature 7, or caused by quantum tunneling at lower temper-
atures. A thermally activated phase slip is a nontrivial thermal fluctuation of the

complex order parameter A, corresponding to a temporal suppression of |A| in a



short region of the system, which allows the phase to jump by 27. A quantum
phase slip (QPS) is a sudden change of the superconducting phase difference along
a one-dimensional superconductor by 27 via quantum-mechanical tunneling. In a
good superconductor phase slips are rare events, but they can give rise to qualita-
tively new effects, such as small but finite dc resistance of the superconductor at
temperatures lower than the critical temperature T, [27, 28, 29, 30, 31|, or system
coupling to external charges [32, 33, 34, 35, 36]. If these phase slips become fre-
quent enough, they can turn the system into an insulator [13, 37, 38, 39|, which is
superconductor-insulator phase transition. There are two types of QPS: incoherent
QPS, which are accompanied by energy dissipation, and coherent QPS, which only
shift the system energy levels. Both incoherent [27, 29, 30, 31, 40, 41, 42, 43] and
coherent [19, 35, 44, 45| QPSs have been observed experimentally. The simplest
system to observe the phase slips is a single Josephson junction. In case of low dis-
sipation and no induced current, the coherent QPSs result in band structure of the
system spectrum instead of discrete low-energy levels (discussed in more detail in
Sec. 2.1 of the present thesis), while dissipation in combination with induced current
can lead to incoherent QPSs, resulting in voltage peaks at resonant values of the
current (see Sec. 2.2).

We are mainly interested in coherent QPSs in the regime when phase tunneling
can be described quasiclassically. Then the amplitude of a single coherent QPS is
proportional to e~%ars where Sqps > 1 is the action on the classical imaginary-time
(instanton) trajectory ¢ (z, 7) corresponding to the coherent QPS. This trajectory
consists of a fast phase winding by almost 27 in a small region of the superconductor
(a core region of the length l.,.. ~ 1 junction in a JJ chain or l.y.. ~ £ in a
superconducting wire) and slow phase readjustment in the rest of the chain/wire.
The readjustment is governed by gapless Mooij-Schon modes [46, 47, 14, 48, 49, 50|,
which represent small phase oscillations in the system. They can be seen as an
environment for the coherent QPS. This environment contribution to the action
diverges logarithmically with the system length L and gives rise to the logarithmic
interaction between phase-slips in multi-QPS configurations [13, 37, 38|. As a result,
the action can be divided into two parts: local and environmental, Sqps = Sipe+Sens-
The latter depends on the system length logarithmically, S.,, = glnﬁ 8, 51],
where ¢ is the dimensionless admittance of the system in units of superconducting
conductance quantum (2¢)?/(wh) (we momentarily restore h); for JJ chains it is
g = \/T;ZP;E; [52]. The local part of the action can be calculated explicitly for a JJ

chain, Si,. = \/8F;/E. [33]. However, for superconducting nanowire only an order-



of-magnitude estimate is available for the local part of the action, Sj,. ~ V€A [53],
where A is the superconducting gap, £ is the superconducting coherence length
and v is the one-dimensional density of states at the Fermi level in the normal state.
Indeed, as the order parameter A is suppressed in the core region of the length &, the
phase action is not valid in this region, and fluctuations of the absolute value of the
order parameter should be taken into account as well as quasiparticle excitations over
2|A|. A more precise result can be obtained in the weak link limit [53]. Therefore,
further we derive quantitative theory for JJ chains, which then allows us to do

estimations for the superconducting nanowires.

1.3 Superconductor-insulator transition

As we have already mentioned, proliferation of quantum phase slips gives rise to
the superconductor-insulator transition. This is a correct statement for infinite
chains. For finite chains the system is rather in superconducting or insulating regime
depending on the phase-slip frequency (amplitude for coherent QPS), as phase slips
suppress the supercurrent, however, there is rather a crossover than a sharp phase
transition.

In their breakthrough work [54] Kosterlitz and Thouless described a new type of
phase transition, Berezinskii-Kosterlitz-Thouless (BKT) transition, which can occur
in a two-dimensional XY model or in neutral superfluids. The transition is caused
by the process of vortex-antivortex unbinding. It is known that a one-dimensional
quantum system can be mapped on a two dimensional classical system: the first
dimension corresponds to the coordinate x along the JJ chain, 0 < x < L, while the
second dimension is the imaginary time 7, 0 < 7 < § = 1/T, the inverse tempera-
ture. It was shown that the JJ chain can be mapped on a classical XY model [13, 38|,
where the role of the spin orientation angle is played by the superconductor order
parameter phase ¢ on each island. As a result, the superconductor-insulator tran-
sition in an infinite JJ chain at zero temperature can be seen as an analogy of the
BKT phase transition in a classical XY model. A phase slip in a JJ chain corre-
sponds to a vortex in the (z,7) plane. The phase slips interact logarithmically, the
strength of interaction is controlled by g. As a result, the pre-logarithm factor g in
the action S,,, determines the phase transition: if it is larger than the critical value
ge, the vortices are bound in vortex-antivortex pairs; otherwise, free vortices destroy
the phase coherence and push the system into an insulating state. Therefore, g

plays the same role as the inverse temperature 5 = 1/7 in the BKT transition for



the classical XY model. If we consider realistic finite-length systems, there is no
real phase transition, however, the BKT theory still can be useful to determine the
QPS amplitude scaling with the system size [55|. The scaling shows that there is a
crossover from superconducting to insulating regime in the region of ¢ close to the

critical value g., defined for our infinite system.

1.4 Structure of the thesis

In this thesis we study the QPS process, which corresponds to quantum tunneling
between phase configurations, representing classically degenerate states. We start
with the simplest system possible — a single Josephson junction, discussed in Chap-
ter 2. First, we review how in case of zero dissipation and no external currents
coherent QPSs between infinite number of the potential minima result in a band
structure of the system spectrum due to the Bloch theorem. Then we study the
effect of dissipation, modelled as an external resistance, which is inevitable in a real
experimental setup, on current-biased Josephson junction. We show that due to
incoherent quantum phase slips at certain resonant values of induced current there
are voltage peaks, and derive the form of these peaks.

In Chapter 3 we study coherent QPS in JJ chains. Starting from the case of ho-
mogeneous chain, we study a single coherent QPS process, which can be divided into
two parts: fast phase winding by 27 on one junction, and slow phase readjustment
in the rest of the chain (which plays the role of the environment for a phase slip).
We have been able to improve the result for the QPS action which was previously
known only with logarithmic precision [56].

We continue by studying the effects of disorder on the coherent QPS process in
Chapter 4. First, we consider an artificial case of spatially periodic modulations
(such as weak modulation of the junctions’ areas). The Mooij-Schén modes are
sensitive to spatial variations of the chain parameters. Indeed, in this case the en-
vironment contribution to the QPS action can be significantly modified, both the
correction to the local part of the action (determined by the QPS core) and environ-
mental part can be dominant, depending on the chain and modulation parameters.
This study was published in [56]. Then we analyze the effect of disorder on both
the local and environmental contributions to the QPS action, published in [57]. We
consider two types of disorder: random spatial variation of the chain (i.e., junction
area variation) and random induced charges (which can arise from random gate volt-

ages or electronic density modulations). The former is known to induce Mooij-Schon



modes localization. However, we find that the effect of disorder on the environment
contribution to the QPS action is weak, and that the localization of the Mooij-Schoén
modes does not significantly affect the coherent QPS amplitude. The coherent QPS
amplitude in a disordered chain is a random quantity, determined as a sum of all the
partial phase-slip amplitudes on different junctions (each is determined by classical

action S,, and, in case of induced charges, by a random phase 6,,)

r
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whose statistics is determined by the fluctuations of the local term in the QPS
action. We study this statistics and show that it can be non-Gaussian if the chain
is not sufficiently long.

In the last chapter we apply the results obtained for Josephson junction chains to
superconducting nanowires. We show that the systems have similar low-frequency
properties, determined by Mooij-Schon modes, therefore, we can calculate the en-
vironmental part of the QPS action in a nanowire. However, for the local part we
have only an order-of-magnitude estimate, as the phase action cannot be written
on the length scales smaller than superconducting coherence length &, which is the
typical size of a phase-slip core. Nevertheless, we can show that qualitatively the
effects of disorder on QPS amplitude in wires are similar to the ones in Josephson

junction chains.



Chapter 2

Quantum phase slips in an

underdamped Josephson junction

2.1 Coherent QPS and Bloch oscillations

The simplest system to consider phase slips is a single Josephson junction. We start
with the junction with capacitance C' formed by the two junction electrodes and
Josephson energy E; = 1./(2¢), where I, is the critical current supported by the
junction. Then the Hamiltonian of the system is

QQ

H:%_EJCOS¢, (2.1)

where @ is the electric charge of the capacitance C', while ¢ is the phase difference
between the two electrodes of the junction. These variables are conjugate: [¢, Q] =
2ei.

If we consider a Josephson junction disconnected from any other source of charges,
the charge on the electrodes is quantized, () = 2en, where n is integer. Then the
basis functions of the system have the form ¥ ~ exp (—zg—f)) ~ exp(—ing), which is
2m-periodic in ¢. Phases ¢ and ¢ + 27 represent the same physical state. Therefore,
¢ is a compact variable. As a result, the system is analogous to a quantum pendu-
lum with angular momentum @ /(2¢), angular deflection ¢ and moment of inertia
C/(2¢)?. The spectrum consists of discrete energy levels.

In experimental setups the junction is usually connected to other circuit ele-
ments, the charge on the capacitance is not quantized (as now it is impossible to
separate the electron state in the island and in the connected electrodes). Phases ¢

and ¢ + 27 represent two distinct physical states, the phase ¢ is not compact, and



the wave function is not necessarily 2w periodic. Then the system is equivalent to a
particle of mass C/(2¢)? with momentum )/(2¢) moving in a one-dimensional peri-
odic potential —FE; cos ¢, where ¢ is a coordinate. We can rewrite the Hamiltonian

as

— — Ejcos ¢. (2.2)

The first term of the Hamiltonian corresponds to the kinetic energy, while the
Josephson term is the potential energy. We consider the case, when the poten-
tial term dominates, E; > E. = % If we neglect tunneling, we have equivalent
sets of energy levels in all minima of the cosine potential. However, if we include
quantum tunneling between the minima, the degeneracy between the levels is lifted
and, as the tunneling is possible between the infinite number of classically degenerate
levels, the resulting spectrum consists of energy bands rather than discrete levels.
This tunneling process is a coherent quantum phase slip (as there is no dissipation).
Its amplitude can be described by an instanton in the imaginary time.

As the system has a periodic potential, the Bloch theorem can be applied. The

eigenfunctions are Bloch waves:
0) = u” (@)™, w (¢ +2m) = u (9). (2:3)

Here ¢ = 2ek can be seen as a quasicharge in analogy with quasimomentum. And as
the energy is periodic in k within each band, E™ (k + 1) = E™ (k), we can restrict
the quasicharge to the first Brillouin zone, —1/2 < k < 1/2. We can substitute
eigenfunctions (2.3) into the Schrodinger equation with Hamiltonian (2.2). As we
work in the limit E; > FE., for low energy levels, n < \/m7 we can apply
tight-binding approximation and find:

u,gn) (¢) = i W (¢ — 2ml) e H@—2mDk (2.4)

l=—c0

where W™ (4) is just the n-th eigenfunction of the harmonic oscillator with fre-
quency w, = v/8E;E.. Then the corresponding lowest energy bands are [58] (see
schematic representation of all energy bands in Fig. 2.1)

1 1

E™ (¢) = w, (n + 5) +3 (=1 6™ cos (2rk) (2.5)



where 6 /4 is the exponentially small tunneling amplitude

E; n/2+3/4 94n+5
6™ ~ \/2/7E, (2_Ec) T exD (—8E;/wy) . (2.6)

The lowest energy bands are narrow (the bandwidth is §™) and located close to the

<V

Figure 2.1: A schematic representation of the energy bands in a single Josephson
junction

energy levels of the plasma-frequency harmonic oscillator. Here we have illustrated
how the coherent quantum phase slips result in a band structure of the spectrum of
a single Josephson junction.

If the junction is connected to an external dc current source, the term —I¢/(2e)
should be added to the potential. This can be easily seen from the Heisenberg equa-
tion of motion, corresponding to charge conservation, 0Q /0t = I;,; = —I.sin¢ + I,
which is correct only if we introduce a term in Hamiltonian, proportional to the in-
duced current and linear in ¢. If this current is not too large, so that we can neglect
the inter-band transitions, the spectrum consists of equally spaced localized levels
(Wannier-Stark ladder) [59]. Now, if some dissipation is included in consideration,

these Wannier-Stark levels acquire a finite life-time, the phase slowly drifts along
1 dg
2e dt”
At low temperatures quasiparticles are absent, so the dissipation is usually due

the tilted potential and the voltage arises V =

to the external circuit (i.e. the resistance of the wires, connected to the junction). It

can be modelled as an external resistance R (see Fig. 2.3). There are two important

10



_ I S
{,EL U o) V \-’E

Figure 2.2: I — V characteristics from [60] at T = 0 for wy = 1006(”. From top
to bottom, solid lines correspond to Rg/R = 100, 5, 1, 0.5 and 0.1. Dashed lines
correspond to finite temperature 7' = wy/50. ®¢ = 27/(2e) is a flux quantum,
E;, = ®2/(2L) is the inductive energy, 6 is the Bloch bandwidth, V, = 76© /e is
the maximal (critical) voltage the junction can sustain. The y-axis corresponds to
the current through the junction only, and not to the total external current, which
flows both through the junction and the resistance.

limits: an overdamped junction, when this resistance is much smaller than resistance
quantum R < Rg = 27/(2e)?, and the opposite limit, which corresponds to an
underdamped junction R > Rq. In the first limit the supercurrent peak at zero
voltage acquires a finite width [60, 61|. Increasing the external resistance R shifts
the supercurrent peak to higher voltages, and at R > R the system becomes an
insulator: the I —V curve develops a branch with zero current through the junction,
but finite voltage |60, 61|. This is often called Shmid phase transition, however, is
still debated [62]. In the limit R > Ry of an underdamped junction the [ — V
characteristics resembles the one for an overdamped junction but with the role of
voltage and current interchanged [60]. The voltage peak at zero current is the so-

called Bloch nose |63, 58|. The I — V' characteristics for a current-biased junction

11



derived in different regimes in [60] are shown in Fig. 2.2. In the next section we
study the I — V characteristics for higher induced currents.

Another important aspect of the underdamped limit is that in the classical RCSJ

8ewg
R(2¢)?

one with zero voltage, corresponding to phase localized inside one minimum of the

model the I—V curve is hysteretic, asat I > I, = there are two possible states:

potential, and the running state, corresponding to a finite voltage, when the phase
is sliding down the tilted potential, as the difference of the potential energy between
the neighboring potential maxima is larger than energy dissipated, while moving
between these maxima. In case of classical thermal noise it was shown |64, 65]
that the system is switching from the zero-voltage state to a finite voltage state at
some current [ > [,. Quantum fluctuations should lead to a crossover between the
zero voltage and the finite voltage state at some current I < I. due to possibility
of tunneling through the barrier into the continuous spectrum. To the best of
my knowledge, the effect has not been studied yet quantitatively. In the rest of
this chapter we study a precursor to this effect — resonant tunneling into weakly

broadened excited levels in the neighboring minimum.

2.2 Incoherent QPS and resonant Zener breakdown:

Lindblad master equation

In this section we study an underdamped junction R > Rg in the regime of higher
induced currents, when the energy difference between the neighboring minima of
the potential tilted by the induced current, —FE;cos¢ — I¢/(2e), is comparable to
the level spacing inside a single minimum and we can no longer neglect transitions
between different Bloch bands (here we suppose that we have several energy levels
inside each minimum). As a result, at certain current values the energy of the lowest
level in one minimum matches the energy of an excited state in the neighboring
minimum and, therefore, we have resonant tunneling between them (see Fig. 2.4).
Then from the excited state in the lower minimum the system can relax to the ground
state and tunnel to the next lower minimum. In the Bloch band representation,
this process is the equivalent of resonant Zener tunneling |66] of electron in the
presence of strong electric field. Such a process was experimentally observed in
superlattices [67, 68, 69]. The tunneling process between the neighboring local
minima is dissipative and corresponds to an incoherent quantum phase slip. We
assume the dissipation to be weak, so that relaxation rate I' inside one minimum

is much smaller than level spacing. This tunneling results in voltage peaks as a

12



Figure 2.3: A schematic representation of a single dissipative junction with Joseph-
son energy FE;, capacitance C'| induced current [ and current [, through external
resistance R.

function of current. The opposite case of strongly broadened levels was studied
in [37].

The model consists of a single JJ, with external current I, shunted by a resistance
R, modelled as a bath of harmonic oscillators [61], (see Fig. 2.3). The Hamiltonian
is 0 / I

H:%—EJCOS¢—2—€¢—|—2—6¢—|—HIJ, (2.7)
where I, = ) 2eg, (bL + bn) is the current through resistor, H, = > w,blb, is the
bath Hamiltonian, corresponding to dissipation in the resistor, w, are frequencies of
the harmonic bath modes, b, and b} are annihilation and creation operators for the
bath modes, g, are coupling constants. The Hamiltonian can be divided into three
parts, Hy = % — FEjcos¢— é(b, corresponding to the junction without dissipation,
H;: = %qﬁ, which is the interaction with the thermal bath, and the remaining part
H, is the Hamiltonian of the bath itself.

Let us consider the states of the system in one of the local potential minima
of Hamiltonian Hy, ¢!, = arcsin ﬁ + 27l, where [ labels the minima. To have
local minima of the potential we need the current to be lower than the critical
value I < I,; = 2ek;. For I <« I.; we can approximate the states inside a

minimum as the states of a harmonic oscillator with momentum (), coordinate ¢,
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Figure 2.4: The tunneling X from the lowest classical state in the minima to the
first excited state in the lower neighboring local minima and further relaxation I" to
the lower state.

2
mass m = C/ (2¢)” and frequency wj = w? cos ¢l,,;,, ~ w2:

@ I (207 0* 1 l L2
Hy = e Ejcos¢ Qegbw 50 a¢2—|—2EJcosgbmm (¢ — Prin) +const. (2.8)

As a result, we have approximate energy levels

1 I 1
E! = wy (n + 5) —E;— % <arcsin 2ok, + 27rl> . (2.9)

We can write the Lindblad master equation for the reduced density matrix of

the system p (the total density matrix is py; = p X gy, Where p,, corresponds to the
bath density matrix), using the standard approach (tracing out the bath degrees of
freedom) [58]

L) = —i [f. 0] + & > (anwal ~{p@.ala}). @0

Here a; and le are lowering and raising operators between the harmonic oscillator



levels within each minimum, I" stands for the relaxation rate inside this minimum,

t
dtl ; / : /
FocRe [ GO L) OO, @)
e
0
To relate I' to the resistance R, let us neglect tunneling and multiply Eq. (2.10) by
$ and take the trace over p. Then we obtain an equation, corresponding to phase

evolution inside one minimum

d _ (@) (8E
a <¢ - ¢mzn> = Wo—H— ( EJ

/2 p

Taking time derivative and relating 4£(Q) to (¢ — dmin) through the Heisenberg
equation of motion results in

2 ) T d 8E,I

S0+ (0) + 5o () = (213)

In linear approximation (so that we can put sin¢ & ¢) our system can be seen as
an LC'R-contour, then the Kirchhoff equation is

Cip,p 90 L 9
2e

%L ' 2R (2.14)

We can compare it to Eq. (2.13) and express relaxation rate I through the contour

2 2wy\/SE.JE
ro 2 _ 2ov8E/Ey (2.15)

~ RC (2e)2R
We assume the relaxation rate to be much smaller than the oscillator level spacing,
I' < wy, then we need R/Rg > \/E./E;. Since we assume E; > E,., this is a

weaker condition than R > Ry, so this limit is often referred to as moderately

parameters

damped limit.

2.3 Voltage peaks due to incoherent QPS

2.3.1 Effective two-level case

Let me start with the simplest case, when the lowest level in each minimum matches
the first excited level in the neighboring minimum; in this case, only two levels per

minimum need to be considered. We are interested in the tunneling between levels
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E{ and E{, which are schematically depicted in Fig. 2.4, then we can rewrite the

system Hamiltonian H, in the multiorbital tight-binding form:
(in | Ho| Un') = 0w By + (Gr410w100 + Gs-10w0d) X, (2.16)

where indices [ and I’ label minima of the potential, n, n’ = 0,1 are the level indices
inside one minimum, X stands for the matrix element of tunneling between levels
|1,0) and |l + 1,1) (tunneling between the excited state in the first minimum and
ground state in the neighboring). It is calculated in Appendix A.

Since we are interested in the stationary situation, when all minima are equiva-

lent, the density matrix must be periodic in the minimum index:
(In|p|l'n"y =+ k,n|p|l' + k,n'). (2.17)

We keep the coherence only between the neighboring minima. Then we have an

effective two-level system. The non-zero density matrix elements are

(lO\ﬁ\lO> = 000, <ll‘ﬁu1> =011,
A0Ip|L+ 1,1) = op1,  (11]p]1 — 1,0) = oy, (2.18)

all the others are zero.
Now we can write down the equation for the stationary state, including the effects
of dissipation, by setting dp/dt = 0 in Eq. (2.10):

0=—2 (X (0'00 - 0'11) - AEO’lo) — %FO’lo,

0=—i(X (011 —000) + AFE0g;) — %FO-OD (2.19)
0=—i(X (010 —001)) + Loy,

0=—i(X (001 —010)) — Tony

Here AE = 7l /e —wy is the energy difference between E} and E}, |. I stands for the
relaxation rate between the classical levels in one minimum, Eq. (2.15). We study

the system close to the resonance, AE < wy. The stationary solution is

i(T)2+iAE) X _ (T2 -iaE) X

9X2 + AE2 +12/4 " TV ox2 L AE? 4 12/4
X? NX2+AE2+F2/4

0X2 + AEZ 4 12/4 T TN oxe T AR L T2/4

010 = —N (220)

011 :N

(2.21)
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where N is the overall normalization constant to have Trp = 1. The voltage is
proportional to the probability current between neighboring sites of our multiorbital

tight-binding model

‘/\/:

—1
2e

2TX S (L 0Y I+ 1,1 — 1+ 1,1)(1,0) (2.22)

Then the average voltage can be calculated as

- . 1 27 0 1
=T Yy = —XT 5 2.2
(V) r{Vp} T 5 (X T {( 1o ) cr} , (2.23)

resulting in a voltage peak with the Lorentzian form:

1 2n X2
VY~ — ) 2.24
V) 22X?2+ AE?+172/4 (2:24)
The matrix element is (see Appendix A and put m = 1):
33/4(,00
X| = e, 2.25
M= e (2:25)
with the tunneling action
8E; E;/E.
Si=1\5 - (2+1n St ) +0 ((EC/EJ)1/4> : (2.26)

One can see from Eq. (2.24) that there is a crossover from incoherent QPS (for
X <« T') to coherent (for X > I'), if we increase tunneling matrix element X. For
large X > I the voltage peak is proportional to relaxation rate I'. It corresponds to
the fact that the state of the system is now a coherent superposition of two states in
two neighboring minima of the potential, until it relaxes to the ground state in the
lower minimum and becomes a superposition of this ground state and an excited
state in the next lower minimum. Therefore, the rate of phase sliding down the
tilted potential is determined only by the relaxation rate I'.

However, in the case X > I' the above picture is incomplete. Indeed, in the
harmonic approximation the resonance between E and El1+1 automatically implies
the resonance between E},, and E7,, and so on. Therefore, one must consider
the possibility of coherence between more than two minima. On the other hand,

the resonant conditions are affected by the anharmonicity of the cosine potential.
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Namely,
(B} —E))— (E} —E}) ~ E. ~wy\/E./E;. (2.27)

At the same time, from Egs. (2.25), (2.26)
X ~wy (Ey/E,) e 2V8Es/Be (2.28)

is exponentially small in the same parameter \/E;/E. > 1. Therefore, the two-
minima approximation is valid even when X > I'; as long as I' < E.. In this thesis
I restrict myself to the case X < I', corresponding to incoherent QPS, which seems

to be more realistic due to exponential smallness of X.

2.3.2 Several levels in one minimum

Now we can consider a more general case. The assumption is that the m-th energy
level in the right minimum is close to the 0-th level in the left one. The non-zero

elements of p, which determine the voltage, are
(In|plin) = oy, forn € [0,m], (I0[p|l +1,m) = oom, {Im|p|l —1,0) = 0. (2.29)
The Hamiltonian is
(In ’Ho‘ IR’y = SGm E + (8.10100mbn0 + 00 110mo0m) X (2.30)

The resulting equations of the stationary state are

1
000 — Omm) — AEO_mO) - §mram07

1
Omm — 000) + AE0q,) — sml ooy,

)
)

Omo — UOm)) + Fo'lla (231)
)

~—~ I~ N

Oom — Omo ) - mramm7

One can see from the last line in Eq. (2.31) that for the diagonal elements between

0 and m we have: ppy1 41 = kiﬂpkk, then we can write

Prk = %a, for0 < k <m. (2.32)
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The first four lines of Eq. (2.31) give

iamOX
= 2.33
Il +in (2.33)

As a result, we obtain
iX (ml'/2 +iAFE)

mo = 0= — : 9.34
7m0 = Oom = N T AR + (i, + 1) X2 (2.34)

X2
o=N (2.35)

m2I'2/4+ AE? + (mH,, + 1) X%’
m?I? /4 + AF? + X?

0 =N T AR T (i, £ 1) X2

(2.36)

where H,, = > 1/n is the harmonic number. We focus on X < I, then we have
ogo > ok, for kK > 0. As a result, we can neglect the tunneling between higher
energy levels (|I,k) — |l + 1,k +m)), as their population is parametrically smaller.

Now we can calculate the average voltage (V') = Tr {Vﬁ} the same way it was

done for the effective two-level case. The voltage operator takes the form

~ 21 .
V= %ZX;(U,O}(Z—FL?M — L+ 1,m){1,0]). (2.37)

Then the average voltage forms a peak

(VY = i 21 X2mD
© 2em?T2/4 + AE2 + (mH, +1) X2’

(2.38)

The resonant values of the current are given by I(m) = “*w, (where m is integer).
One can see that Eq. (2.24) gives just the first peak with m = 1. Moreover, qual-
itatively the result is valid even if we cannot use parabolic approximation for the
potential (for levels with energy E,, ~ E;), the resonant values of the current are
I(m) = £ (E, — Ey) instead of simple I (m) = Smuw,. The quantitative difference
is in the tunneling matrix element X. Here we consider only energies F,, < Ej,
corresponding to m < E;/wy = v/ F;/(8E.), which allows us to use parabolic ap-
proximation of the potential in the classically allowed regions to calculate X. The

resulting matrix element is (see Appendix A)

m+1/2
X—%(‘ mH/Q) o - 2.39
B V2mm!21/4 ‘ ’ (2:39)
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with the tunneling action

Sy & \/?j— (m +1+1n %) +0 ((EC/EJ)1/4> . (2.40)

A
Running
state
3ewo/Tt
Voltage
2ewolTt < resonant peaks
ewol/Tt
I=VIR
V., V

Figure 2.5: A schematic I — V curve for an underdamped junction

One can see that Eq. (2.38) gives a set of Lorentzian peaks for the voltage,
corresponding to resonant induced current values. A schematic [ —V curve and the
form of voltage peaks, derived in harmonic approximation, is depicted in Fig.2.5.
The I — V curve consists of a linear part V = IR at low induced currents up to a
critical voltage supported by a junction V, = 25(0), which corresponds to insulating
state of the junction when all the current is flowing through the resistor (the so-
called Bloch nose) [59, 60|, voltage peaks at the resonant current values and running

state regime at higher currents.
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2.4 Possibility of experimental observation

The voltage peaks corresponding to resonant Zener tunneling in an underdamped
Josephson junction have not been measured experimentally yet to the best of my
knowledge.

One difficulty is that the underdamped regime of a single Josephson junction
requires designing an environment with the impedance much higher than the resis-
tance quantum Rg = (2m)/(2e)? = 6.45k) at frequencies wy of the order 10" Hz
with low stray capacitance. One of the first successful attempts is described in [70],
where the authors used chromium resistors with resistance up to 250 k€2 located very
close to the junction, which allowed to have impedance sufficiently higher than the
resistance quantum at wy ~ 5 x 10! Hz as well as low stray capacitance of the elec-
trodes. Another efficient way to design high-impedance environment is with SQUID
arrays, where the effective impedance can be controlled by applying a magnetic
field perpendicular to the SQUID loops [71, 18], the highest achieved impedance
is 50 MS2. This approach allowed the scientists to measure the low-current part of
I —V characteristics for a single Josephson junction in both overdamped and under-
damped regimes, demonstrating charge-phase duality as the regimes resemble each
other with the role of I and V interchanged.

The second difficulty is that the voltage, associated with the peaks is exponen-
tially small. Indeed, to have voltage peaks, several energy levels in each potential
minimum are required. For example, for one voltage peak there should be at least
two energy levels in each minimum, (3/2)wy < 2E; —wy (height of the tilted barrier),
which corresponds to F; 2 8FE.. Note that the voltage of the Bloch nose V, is pro-
portional to 6 o e”V8Es/Ee while the resonant tunneling peaks are proportional
to X2 x e 2V8Es/Ee  For R/Rg ~ 10%, reported in experiments[18], these peaks
are of the order of nanovolts or even smaller. Experimentally, one can detect volt-
ages of the order of hundreds of nanovolts. Therefore, to reach a reliable conclusion
about the possibility to observe resonant Zener tunneling peaks experimentally, one
has to focus on E;/E, not too large and study the system beyond the harmonic

approximation.

Chapter summary

In this chapter we studied QPS in a single Josephson junction. First we revisited

the simple case of a junction without dissipation, when coherent QPSs result in a
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band structure of the system spectrum. Then we discussed the effect of induced
current, tilting the cosine potential, with dissipation through external resistance R.
Two opposite limits of an overdamped (R < Rg) and an underdamped (R > Rg)
junction are dual, as the I — V' characteristics are similar in these limits, but with
role of voltage and current interchanged. We studied an underdamped junction
with induced current [ large enough to shift neighboring minima of the potential
by the value, comparable to level spacing inside a minimum I 2 w,. Near certain
resonant values of induced current, I (m) = £ (E,, — Ep), the tunneling between the
ground state in one minimum and the m-th excited state in the lower neighboring
minimum, which is incoherent QPS, results in voltage peak as a function of current.
We derived the form of a few first peaks, m < \/m, when the states inside

each minimum can be approximated by the states of a harmonic oscillator with
plasma frequency w, = /8E L.
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Chapter 3

Coherent quantum phase slips in
Josephson junction chains (general

relations)

3.1 Action for coherent QPS in a JJ chain

3.1.1 Euclidean action for a closed ring

We consider a chain of N Josephson junctions closed in a ring, pierced by a magnetic
flux (Fig. 3.1). The superconducting islands are labelled by an integer n, the
dynamical variables are the phases ¢,. The island n = 0 is identified with the island
n = N, so that ¢g = ¢n. Then the Hamiltonian is

= X N-1 P
H = 5 n;zo (Qn - Qn) T;:n (Qn - Qn) - ; EJ,n CcOs (an—&-l - ¢n + N) . (31)

Here @, is the excess charge on the island n, g, is an external induced charge (usu-
ally induced by some random gate voltages) on the island n and C'is the capacitance
matrix, defined as Chpm = (Cym + Con + Crn1) Snm — Cobnsiom — Co10n-1m- Egn
and ), are the Josephson energy and the capacitance of the junction between neigh-
bouring islands n and n+1 respectively, while Cy ,, is the capacitance between island
n and a nearby ground plane. ® is the magnetic flux in units of the superconduct-
ing flux quantum divided by 27 (one flux quantum piercing the ring corresponds to
o = 27).

The phases ¢,, and the excess charges (), on the nth island are conjugate vari-

ables: [¢n, Qn] = 2ei (the electron charge is —e). Moreover, as the chain is closed,
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Figure 3.1: A schematic representation of a Josephson junction chain threaded by
a magnetic flux ® and containing N Josephson junctions.

the phases ¢, are compact variables. Since we are going to study quantum tun-
nelling of the superconducting phase ¢, in the quasiclassical limit, it is natural to
pass to imaginary time 7 and describe the system by its zero-temperature Euclidean

action, |7]:

N-1
_ Con o Cuf N2 .G
S - / ; |:8€2 (bn + 862 <¢n+1 ¢n> Z26¢n
P
— EJ’n COS ((anrl - (bn + N)} dr. (32)

Here ¢, = d¢n, /dr. Tt is convenient to introduce energy scales corresponding to the

capacitances:

e? e?

FBop=-—, E,n=—. 3.3
’ 20, & 2C, (3.3)

Typically in experiments C,,, < C,, [50, 72, 73]. We assume that
32
E; > ﬁEg > Ec, (34)

which ensures that the phase slips are rare and the chain remains superconducting
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for large N [13, 38, 33, 51].

In principle, the phase can slip on any of the N junctions; QPSs at different
junctions contribute to the same quantum transition (i. e., with the same initial and
final states), so the total QPS amplitude in a ring is a sum over the single QPSs
on different chain junctions [32, 33]. Let us choose one of the junctions and study
the corresponding amplitude. The term, containing the induced charges ¢,, results
in a total phase of a single QPS event [for details see Eq. (3.16) and the discussion

around it]

6, = Z 2%%—: + const. (3.5)
m=0

Therefore, we can omit the terms containing the induced charges and restore them
as the phases in each local QPS amplitude. It is also convenient to number the
junctions so that the slipping junction is the one between the islands n = N and
n = 0, which we will call "boundary". Then, it is convenient to perform a gauge

transformation,

which corresponds to twisted boundary conditions, ¢y = ¢g + ®. Then the flux
disappears from all cosine terms in Eq. (3.2), except the last one, which becomes

—FEjcos(¢g — dn_1+ D). As a result, the action is written in the form:

N-1 1 . N_2 . . N
S = / (Z 76 Fon oty [1—6Ec,n (épnﬂ — ¢n) — Ej c08 (i1 — %)1
n=0 n=0

b Bt (do—dr) — Eayocos (6w — o - @)) dr, (3.7)
where the second line corresponds to the boundary junction where the actual tun-
neling occurs, while the first line contains the rest of the chain, where the phase
readjustment takes place.

As we consider the chain to be long, N > 1, we suppose the phase differences
on all the junctions except the slipping one to be small, max|¢, 1 — ¢,| ~ 1/¢; for
n < N—1, where ¢, = \/TCQ is the screening length (typically, £, > 1), so that we
can expand the cosine terms. Then we can go to the continuum limit for the whole
chain except the slipping junction. Namely, we take the limit n — x, ¢, — ¢(x),
Pni1 — P — 00/0x, > — [dx, and the action can be written as
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B N 1 (9¢\*, & 0% \* | Ej(x) (06’
S‘/dT/O @6, @) (E) " 168, (2) (axaf) L (a_m)

dr 0p(N, 1)  0¢(0,7)
+/16Ec(a:) { or o

} — /dT Ej(x)cos[¢p(N, 1) — ¢(0,7) — P],
(3.8)

It is convenient to introduce plasma frequency w, = +/8E;E,, plasma velocity v, =
wpls = /8E;E, and dimensionless low-frequency admittance of the chain g =

w\/E,/(8E,).

3.1.2 Classical phase configurations

In the quasiclassical limit, for each value of ® there is a single static classical phase
configuration, minimizing the potential energy. The exception is for ® being an
odd multiple of 7, when there are two configurations with equal potential energies.
Quantum tunnelling between these degenerate configurations is the main subject
of our study. As the dependence of action (3.8) on @ is periodic, we can focus on
® = 7 without loss of generality.

Let us find the classical phase configurations taking into account the spatial

dependence E;(z). Minimization of the bulk action leads to the equation

0oL 0 0o
——=—LF;,—=0 3.9
or 0 ox ' oxr (39)
which is nothing but the current conservation. Its solution contains two integration
constants, ¢y and 1J:

L g o B d

foN Ejl(m/) dx'

P(z) = ¢o

(3.10)

The constant ¥ should be found by minimizing the total potential energy including
the boundary term [52]:

0 92/2

I s Ecos(d— )| =0 3.11
0 | [NEy (a)de (6 -2) (3.11)

For a homogeneous chain it is just [52] (see Fig. (3.4))

% +sin(¥ — @) = 0. (3.12)
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We consider a long chain N > 1, then ¥ =~ ® + 27mm with any integer m gives
a local minimum (half-integer values of m give local maxima) with the potential
energy (® + 27m)?E;/(2N). If ® = 7, then the two configurations with ¥ = 7 and
1 = —m have the same energies.

The observable quantities are the flux-dependent ground state energy &y(®P),
or the persistent current Io(®) o 0&/OP. In the zero approximation, one can
associate & (®P) with the static potential energy, discussed above. Then, I;(®) has
a discontinuous sawtooth-like dependence on ®, as schematically shown on Fig. 3.2.
Quantum tunneling results in energy splitting between the degenerate configurations
when @ is close to an odd multiple of 7, which is measurable [35, 44]. Also, the
sawtooth in Io(®) is smoothened. A spatial modulation of the chain parameters
modifies the quantum tunneling amplitude, together with the energy splitting and
the smoothening of the sawtooth in [o(®).

&

40 .
4l
. 0, smearing
&1 by tunneling

27 splitting S~ S~ )
~by tunneling /
0 I8

-2n - (] n 2n [ —7 - U

Figure 3.2: Flux dependence of the ground state energy (upper panel) and persistent
current (lower panel), shown schematically in the purely classical approximation
(grey dashed line) and taking into account quantum tunneling (red solid line).

The second integration constant ¢o in Eq. (3.10) cannot be found from energetic
considerations, as the energy does not depend on the global phase. This does not
mean, however, that ¢ can be simply dropped from the consideration. Because of
the degeneracy with respect to ¢g, each of the found energy minima is a circle rather
than a point in the configuration space. The system eigenstates can be classified
by the conjugate variable, which is the conserved total charge ) @, (the number
of Cooper pairs). To estimate the tunnel splitting in the sector with zero excess
charge > @, = 0, we can assume that the system starts from some point on the
¥ = 7 circle, which can be taken ¢y = 0 without loss of generality, and then sum
the amplitudes of tunnelling towards different points of the ¥ = —x circle. For a

spatially homogeneous chain, symmetry considerations fix the dominant destination
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at U = —7 to be ¢g = 7 [52|. In the inhomogeneous case, it should be determined
by the classical trajectory.

As we mentioned before [Eq. (3.5)], the induced charges ¢, result in a phase
factor for the partial tunneling amplitude corresponding to each QPS trajectory.

Consider a trajectory going from the initial phase configuration

¢n = ¢i + 7Tfn (313)

to the final phase configuration

m 07 n S m7
R { (3.14)
2w, n>m,
where _
n— E— ,
fo= 00 (3.15)
0 EJ,;/

is the discrete version of the function appearing in Eq. (3.10), ¢; is the arbitrary
starting position on the ¥ = 7 circle, gbgm) is the final position on the ¢ = —m circle
(see Fig. 3.3), determined by the classical trajectory involving the phase slip on the
junction between islands m and m + 1. The phase accumulated on this classical

trajectory is given by

N—1 N-1 N-1 m
Im S, = (i— <m>>q—”—2 I _ g In | or NI 3.16
T Od nZ:% ¢ ¢f 2e anznge WHZ:;Ze—i_ W;% ( )

In fact, the first term in this expression should be dropped, since it is an artefact
of the quasiclassical approximation. Indeed, a straightforward construction of the
WKB wave function on the ¥ = —x circle at the energy of potential minimum
would give W (¢r) o< exp | —igy Zi\:ol qn/(Qe)], since the WKB approximation does
not contain the periodic boundary conditions ¥ (¢¢) = W (¢¢ + 27). That is, the
instanton calculation describes tunneling from the initial state Wy (¢;) to the final
state Wy (¢¢), and this is the origin of the first term in Eq. (3.16). However, since
we focus on the sector with the total charge ) @, = 0, the wave functions of
the initial and the final states are uniformly spread over the corresponding circles
(invariant under a constant shift of all ¢,,). Therefore, ¢; and ¢§m) do not contribute
to the phase factor. Omitting the m-independent terms, we arrive at Eq. (3.5).
The energy splitting due to the tunneling is proportional to the QPS amplitude.
The total amplitude for the QPS in the chain is a sum of QPS amplitudes over all
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Figure 3.3: Classical trajectories between ¢; and ¢§m) with different m on ¥ =«
and ¥ = —m circles respectively.

chain junctions:

=2

—1 N—
W=>y W,=>Y Qe "t (3.17)

n

—_

i
=)
I
=)

Here S, is the classical action for a phase slip, occurring on a junction n, 6, is the
phase, determined by Eq. (3.5), £, is the pre-exponent, determined by integrating
over quadratic fluctuations in the vicinity of the classical trajectory. One can see
(Fig. 3.2) that in case of high energy splitting, the lowest energy level is almost
constant as a function of magnetic flux, and the persistent current is suppressed,
which corresponds to suppression of superconductivity due to QPSs.

Here it is important to mention that in a homogeneous chain due to the fact
that the system Hamiltonian is invariant under the circular permutation of the
islands, the angular momentum is conserved. Normally we have a zero total charge
due to electroneutrality, resulting in zero angular momentum, therefore QPSs are
possible as they do not violate this conservation law. However, if the total charge
is nonzero (and not 2eNm, where m is integer), the QPSs do not occur as the

classically degenerate states have different angular momenta. This can also be seen
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from summing the QPS amplitudes over all the junctions, which will have phase

factors due to the nonzero charge, resulting in zero total amplitude [32].

3.1.3 The QPS action on a classical trajectory

The main contribution to the tunnelling amplitude comes from the vicinity of the
classical imaginary-time trajectory, connecting the two minima, which satisfies the
Lagrange equations of motion in the imaginary time. Following the discussion of
Ref. [52] for a spatially homogeneous ring, we schematically show the corresponding

configuration space trajectory ¢(z,7) in Fig. 3.4.

A P(x)

----- L Ty N ip—
v __::_f_'.f /L//
R ¢
el X
t, N

Figure 3.4: A schematic representation of the classical trajectory ¢(z, 7) going from
the static configuration with ¢ = 7 (solid line on upper panel) to ¥ = —7 (solid line
on the lower panel) for a spatially homogeneous ring. Straight arrows correspond to
the slow adjustment of the phase in the whole ring, the round arrows show the fast
flip of the phase in the vicinity of the slipping junction.

The trajectory consists of several stages. (i) Slow flattening of the phase profile in
the whole chain on the time scales which are linked to the spatial scales as 7 ~ x /v,
except the vicinity of the boundary junction. This vicinity is characterized by a
certain length scale £, to be determined later. (ii) Flattening of the phase in the
vicinity on the time scale ~ /¢, /v,. (iii) Fast phase flip on the boundary junction,
which may occur on the same time scale ~ ¢, /v, or a faster one, depending on the
parameters. (iv), (v) Phase readjustment in the vicinity and outside to the new
classical configuration on the same time scales as (ii) and (i), respectively.

As the phase differences on all the junctions except the slipping one are small,

we can expand the cosine terms in the first line of the action (3.7). Then we can
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write this harmonic part of the action as
dw |wl

S arm — 5 —— 0, Ynm - m ’ 3.18

o = [ 5 3 e () Y ilel) b ) (319)

where the admittance matrix of the chain Y is defined by the relation
I=YV. (3.19)

Here VI' = (Vo, Vi, ..., Vy_1) and I = (Iy, I1, ..., Ixy_1), corresponds to the voltages

on the islands V,, (w) = ;—eqbn and incoming currents, respectively. In the harmonic

approximation the non-zero elements of Y are

(2¢)”

(2¢)”

Yy = wCy+2 E;, (3.20)

YTL+1,TL — Yn,n+1 — wc - 2 EJ. (321)

Eq. (3.19) represents a linear system of equations, which are nothing else then Kirch-

hoff’s laws for each node n of the circuit. The remaining part can be written as

S = / ;Z—“;z(‘;—e)ﬂao (@) Con 1 (w)— / drE cos (o (7) — by 1 (1) + ) (3.22)

We perform a change of variables, so that we can integrate out N — 1 variables

in which the action is quadratic:

Eyn_10n-1 + Eg000

[9: 1 — ey
ON-1 — Do, o Eg,Nfl_’_Eg,O

(3.23)

As a result, we have a variable ¢/, which corresponds to the phase difference on
the slipping junction, and ¢y, which is the average of the phase on this junction
and decoupled from 1 in the action, therefore, can be seen as one of the phases,
corresponding to the harmonic modes, along with ¢, ¢, ... on_2. To integrate out

the harmonic modes we can write the partition function in a path-integral formalism:

N-1
Z = / EO Depne>. (3.24)

As a result, applying the variable change, we can do Gaussian integration over the

harmonic modes, whose result contains matrix elements of the impedance matrix,
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A

which is just the inverse of the admittance matrix Z=Y"!

N-2
/H D, Doy DY e~ /Dq? exp (—=Sess [9]) (3.25)
n=1

where the effective action takes the form

w“C

Serf V] = %/;l—:; [(26)2|;|(2’|w|) + (26)2} 19(w)]? + /dTEJ [1 —cos (VU(1) — D)]

= %/dT dr'K (1 — 7)) 9(m)9(7") + / drE;[1 —cos (9(1) — ®)]. (3.26)

Here K (1 — 7') is the Fourier transform of

o |CU| W A dw —iw(r—1")
KW =tazum) Tegy T =) g K - 320

The classical imaginary-time trajectory for v satisfies the equation:
/K(T — 7)) dr" = E;sind(7). (3.28)

3.1.4 Normal modes, chain impedance

To derive the expression for the impedance Z introduced in the previous section,
we only need to solve the linear equations of motion, following from Eq. (3.2) in
the harmonic approximation. To deal with the dynamics described by the quadratic

Lagrangian density of action (3.8),

1 (9 2 P\ Ey (09
L= 16E, (E) " 16E, <8:13 87) iy (8_35) ’ (3.29)

it is convenient to decompose the phase field ¢(z) into the normal modes. Namely,

we write down the Euler-Lagrange equations of motion and look for the solutions

in the form ¢(z,7) = ¥(z)e*™ (since 7 is the imaginary time). This gives the

following equation for the normal mode wave functions:
w? T2 0 ﬁ ov 0 ov

Yoy CAIAY A ) 3.30
8E, v 0z 8E, Ox +8x wr ’ ( )

with the Dirichlet boundary conditions, U(0) = ¥(N) =0 at z = 0, N.

For a spatially homogeneous chain, the solutions are plane waves, ¥(z) o sin kz,
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Figure 3.5: The dispersion curve of the phase oscillations (plasmons, Mooij-Schén
modes), determined by Eq. (3.31)

for which Eq. (3.30) gives the dispersion relation [49, 50]:

wp| ks
V14 k22
The plasma frequency can be expressed through the continuum limit parameters:

wp, = vp/ls, where v, = \/8E,E; is the plasma velocity. At small |k| < 1/{, the

dispersion is linear, w = vy|k|. These harmonic modes with linear dispersion are in

wk) = (3.31)

fact the Goldstone modes, the collective excitations due to spontaneous symmetry
breaking.

It is convenient to characterize the chain by its low-frequency impedance in
the units of superconducting conductance quantum (2e)?/(7h) (we momentarily

restore i), or its inverse, the dimensionless admittance:

2 EJ
L 3.32
/55 (3.32)

In the following we assume g > 2, otherwise the chain would be in the insulating
rather then the superconducting state [13, 37, 38|.

Now we need to express the impedance of a general inhomogeneous chain through

9

the normal modes of the chain, determined by wave equation (3.30). The voltage
V' is related to the phase by V' = iw¢/(2¢), and the currents injected at the ends
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x =0, N, are given by

2 d¢ 2 d¢
_ 2_"s _r — 2 7s -
I() = 2e (w 8Eg EJ) ax 1:07 IN 2e <w 8Eg EJ) al’

Eq. (3.30) defines the scalar product of two arbitrary functions fi(z) and fy(x) as

(3.33)

=N

Y de o dfi(z) dfa(x) N da
(3.34)
Let us perform a change of variables similarly to Ref. [51]:
o(z,7) = 9(r) X () + ¢o(7) + Z bo(T) Wo (), (3.35)
where we denoted
r Efl / / N UCEfl / /

fOL E7Na)de  TeJo 8Ey(x) fOL E;'(2!) da’

and U, (x) are the eigenfunctions of Eq. (3.30). Since ¢o(7) and 9J(7) take care of
the uniform phase shift and the phase jump between x = 0 and z = N, respectively,
U, (x) can be chosen to satisfy the Dirichlet boundary conditions, ¥, (0) = ¥V, (N) =
0. They are orthogonal, with the respect to scalar product (3.34)

(Wa, Ug) = Gag. (3.37)

The constant offset in Eq. (3.36) is chosen specifically to yield (1, X) = 0. Substi-
tuting our expression for the phase in terms of normal modes, Eq. (3.35), into the
wave equation (3.30), multiplying by W,~o, 1 and X, and integrating over x, we

obtain

wz(qjaa X)ﬁ + C"}2(\11047 1)¢O + (C“-)2 - wi) ¢a - 07

g JotIn
w%cbow%;(l,%)%:— 2
2 2 X(0) - X(N) X(0)]o + X(N) Iy
W To(X, X)0 + 0 To(Ua, X) o + — W= — . (3.38)
Jy Es (a) dat 2e
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Let Iy = —Iny = I, then we eliminate ¢ and ¢, from Eqgs. (3.38) and find

V(0) — V(N) = —;—Zﬁ = Z(w)], (3.39)
resulting in
| iw L:wz N _GXl(w)Glx(w) B 1
Er e G R o e eyar O

where the Green’s functions are defined as

2

Gra@) =T, [Z s (0 90) () = 0 (W) U 0) + f2>] ,

i i (3.41)
for arbitrary fi(x), fa(z). (Note that the last two terms do not necessarily cancel
each other: while the functions ¥, (x) form a complete set in the space of functions
with Dirichlet boundary conditions, both 1 and X (z) do not belong to this space).
Egs. (3.40), (3.41) determine the impedance of an inhomogeneous chain, which enters

the effective action, Eq. (3.26).

3.2 QPS amplitude for a homogeneous chain

3.2.1 Classical trajectory

In this section we show how the general calculation scheme, presented above, works
for the case of spatially homogeneous chains, for which the results are known [51,
52, 53|. For a spatially homogeneous chain, K(w) can be calculated exactly. We

have

2 . T
U, (z) = EwETE sinkox, ko= N
a1 2 (e
X(x) = N 2 (X, Wa) = 1+ k202 2ra0
— 2 2/ N? 0y N
X X)-S (X, 0.) = E - b
(X, X) Za:( Ya) Z_:Oo 15 (2mnty /Ny~ 2N ™ o
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Now we evaluate the sum over « in Eq. (3.41) for Gxx (G1x vanishes by parity):

w? lw? w? N w? E;
K(w) = 2 1+ eoth o [ = 3.42
e A T (PR T | PR (3:42)

We will mostly work with the N — oo limit of this expression [38|

w? lw? w?
K = ® 14+ 2 3.43
W =35 " ep VT o (3.43)

whose low- and high-frequency asymptotics are

Ey |wl
K - =L 44
(w < wg) SE, 2 (3.44a)
1 I
K = s 2 A44b
(> wi) (8}57c + 16Eg) v (3.44b)
SE,E
w = Y079 Y (3.44c)

T E,JE.+0,)2

It is convenient to introduce new length scale ¢, = % + {s/2, which in our limit
¢y > 1 tends to (. ~ (*>. We start with the function

1 1 4
1) = -2 arctansinh%, Ts = \/E_J (8EC + 16Eg> R w§17 (3.45)
whose Fourier transform is
2
9 (w) = il (3.46)

iwcosh(rwr,/2)

This function is the exact solution of Eq. (3.28) with the kernel (3.44b), which then
describes a usual pendulum. The condition ¢; > 1 ensures that 1/75 > wg, so
expression (3.46) is valid everywhere except the narrow frequency range |w| < wk.
Indeed, the low-frequency expansion of Eq. (3.46) is

00) = 22 [1- Turr? + Outrd) (3.47)

w)=—|1—-—uwr w )|, X
iw 8 ® ®

while for the low frequencies we expect it to contain a term proportional to |w|.
Therefore, we have to study the low-frequency region in more detail. Indeed, we

suppose that there should be |w| term corresponding to the fact that the trajectory
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Figure 3.6: The two potentials, V(¢) = —E;(1 + cos¢) (left panel) and V(¢) =
—E;(|¢| — m)?/2 (right panel), for which the slow part of the instanton trajectory
(solid arrows) should be similar.

Y(7) very slowly reaches its limiting values £, which is due to coupling with the
slow Ohmic modes of the chain.

To analyze the slow part of the trajectory J(7), we note that it is mostly deter-
mined by the motion near the maxima of the potential at ¢ = £x. Thus, if one
replaces the potential

(l¢| — m)?

V(¢) = —E;(14+cosg) — V(¢)=—E; 5

the low-frequency part of the trajectory at |w| < 1/75 should remain similar. Then

we have

/ K(r — ) 9(r') dr' = Ey [r — [9(7)|] sign 9(7). (3.48)

This is still a non-linear equation. However, if one introduces a new variable
(1) = I(1) + wsign T, (3.49)

and uses the fact that signd(7) = —sign 7, it is easy to see that ¥ satisfies a linear

equation which is most easily written in the Fourier space

K@) |i6) + 22| = B, (3.50)

ww
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and gives
2 1

W) = T R@/E

(3.51)

This expression has the required |w| term at low frequencies, but if one expands
this expression in the powers of K/E; ~ w?r? < 1, the w?7? term already does not
match the expansion of cosh(mwr,/2). However, Eq. (3.51) shows that the relative
error of the expression (3.46) is ~ |w|w,ls/(8E s E,), so the relative error in the action
evaluated on the trajectory (3.46) will be of the order of wy,ls/(8E;E,7s) ~ 1/0; < 1.

To evaluate the action on the trajectory (3.46), we represent 1/ cosh® = 1 —tanh?

and notice that in the term with tanh? the limit N — oo can be taken directly:

T 1 14 w? N w? E; T dw
Sa = ° /1 P \/ — 4FE T,
! / 8E, * 16E, w? 20, \| w2+ w2 Nw? cosh?(mw,/2) ARt
gy 20, w2 g T dw
16E w? +w2 16E, N w2 16E, | cosh®(rwr,/2)
+ 8EJTS
AN A
—9 N? w N |

0 L

1 s
—g/ ,/1+$—1> h”“’*; du + 8E, 7.

The first integral converges, as for small u the integrand tends to 1 — 2(,/N +
202/N? + O (u), for 1 < v < N/l it tends to 1/u, resulting in the logarithm,
while for large u > N//{, it tends to (N/(44s) — 1) /u? + O (1/u?). Tt evaluates to
In(N/ls)+co+O(ls/N) where the constant ¢; = —1.567514 . ... The second integral
also converges, for small u the integrand tends to (7w,7,/2)* u + O (u?), while for
large u it tends to 1/(2u?) + O (1/u?). Thus, we can write

Sqa 8 N Ve
2d 2l ——— 1 X)),
w\/_+n€s+\/£_c <€)

9
o 1
T(z) = / (\ [1+— — 1) tanh? w_;u du — co — In(1 + z). (3.52b)
0 u

We can define T'(z) as a monotonic bounded function, as we have extracted In (1 + f)

(3.52a)
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from it:

1.567514 ... = T(0) < Y(z) < T(oc0) = 1.922.. ..

Here one can see that the length ¢, = ¢, + /¢, is determining the vicinity of the
slipping junction.
And as we neglect the correction of the order 1//; we can rewrite the action on
the classical trajectory as
Scl

8
— =—Vl;+1In
g

N N
Y~ 30+
m

T o~ LT (3.53)

The characteristic length scale for the QPS is ¢, ~ 2/;.

3.2.2 Pre-exponent

As discussed in Refs. [74, 75|, the tunnelling matrix element W between two neigh-

boring minima can be represented as

‘) (3.54)

where S is the action on the classical instanton trajectory 9. (7), found in the

previous subsection, 7, is defined as

1 © fddg\?
— = d .
Tw /_OO ( dr > T (3.55)

while A; and Aéo) are the eigenvalues of the equation

Ep(T)+ /K(T — YY) dr + V() ¥(T) = AY(T), (3.56)

for V(1) = —E;[1 + cos¥a(7)] and V(1) = 0, respectively. The infinite product in
Eq. (3.54) is over all eigenvalues except the lowest ones, Ay = 0 and Aéo) = E;. We
impose the periodic boundary conditions, ¥(—/3/2) = 1(5/2), where 5 — oo can
be viewed as the inverse temperature.
In the limit ¢; > 1, the classical solution (3.45) yields:
Wﬂz-—%i— 1.3 (3.57)

_COShQ(T/TS)’ T  Ts
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Now the high-frequency asymptotics (3.44b) is sufficient, so the eigenvalue equa-
tion (3.56) becomes

, = —. 3.58
cosh? s ¢ ( )

d? 2
l—— - — S) = S), s =
(1- 4 JECEEES:

This equation can be solved exactly [76]. It has one discrete eigenvalue £ = 0,
corresponding to the zero mode, and the continuous spectrum for & > 1. The
reflection coefficient is exactly zero, and the transmission coefficient is a pure phase
factor. Namely, the right-travelling solution has the following asymptotics at s —
+o0:

WE—14+1 e isy/E=T

—— — P(s) — e :

7,1/5 —1-=1 §——00 s——+00
Together with the periodic boundary condition at 7 = +(3/2, it determines the

quantization of the eigenvalues:

B 1
— — 14 2arct =2 =1,2,.... 3.59
- VE + 2arc an\/£T1 ™m, m )2, (3.59)
For V (1) = 0 we have
B Jeo 4 _ _
—\/&w —1=2mm, m=12,..., (3.60)
Ts

2
which results in 5,(,9) = (%2%771) + 1. Expanding Eq. (3.59) in 6&,, = &, — 57(,2) we

get:
8rmr?

(3.61)

5 arctan .
15} 2mmT,

65m =

The same set of eigenvalues is obtained for left-travelling solutions. Then the deter-

minants’ ratio evaluates to

A @ O
H A_ = eXp [Z lng—] 5_:>ooeXp [— Z W] =

m#0

4 yarctan1/u 2 [ In(1+u?)
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Collecting all factors, we obtain the amplitude of a single QPS on one of the junctions

W, =4

T

4 (SESE,) 1/4e . ( |8E; 7r2 EJ DQJZS : (1/&)}) . (3.63)

By —sa _ 4EJ [% —(8/m)ts ]g:

= =

To calculate the total QPS amplitude in the chain we have to coherently sum all
the QPS amplitudes on chain junctions. As a result we get W ~ N179, while the
height of the potential at the classically degenerate points, corresponding to the odd
numbers of 7 induced by the magnetic flux, is AE ~ 1/N (see Fig. 3.2). Therefore,
for g < 2 the energy splitting is of the order of potential height, which results in
the ground state energy being almost constant as a function of a flux and, as a
result, the persistent current is suppressed (and, therefore, the superconductivity).
For g > 2 the system can be seen as a good superconductor. In the limit of infinite
chain there is a sharp superconductor-insulator transition at ¢ = 2, which can be

seen as a BKT transition (see Sec. 3.5).

3.3 Weak junction limit (fluxonium)

A specific case is when one of the junctions is much smaller than the rest (we can
call it weak junction), then the QPS amplitude on this junction dominates over the
rest, which can be useful in producing devices such as fluxonium [19, 72, 77, 7§].
To describe this situation, we introduce the explicit notations C' and E; for the
capacitance and the Josephson energy of the boundary junction between n = N and
n = 0, the condition for the junction weakness is C < C, E; < E;. As we consider
the rest of the junctions to share the same properties with each other, we can again
pass to the continuum limit for the rest of the chain.

As a result, we have the same general expressions for the QPS action (3.26) and
the kernel (3.43) with E; and E. instead of E; and E. for the slipping junction.
At this point it is convenient to introduce the length scale ¢; = % by > 1is
the number of chain junctions which has the same Josephson inductance L; =
[(2¢)2E,]" as that corresponding to E;. Then in the limit

Ey E, ¢

=2 ste b
T B T E 2

0. (3.64)
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it can be checked directly that the function

r _ JE/JBE,) (3.65a)

¥(r) = —2arctan —, T = F———"
71 2EJ

with the Fourier tranform
W(w) = = e wlm, (3.65b)

satisfies Eq. (3.28) with the kernel (3.44a). This approximation is consistent because
condition (3.64) ensures that 1/7 < wg. Then, the instanton action is given by
1 dw 2 ~
S = 5[ 5 K(w)|9(w)|"+ [ E;[1+ cosd(r)]dr. (3.66)
T
The last term equals 71/ E,;/(8E,) = ¢, while in the first term the integral is log-

arithmically divergent at w — 0. To handle this divergence, one has to go back to
Eq. (3.42). At w < wg this amounts to replacing Eq. (3.44a) by

E; | N w N w
K . - h =) —=11. .
<w < WK) N |:2€s (-"-‘p cot (2£s U‘p) :| (3 67)

Strictly speaking, the solution is no longer given by Eq. (3.65b); however, the 1/w
behaviour at w — 0 is unchanged since it is determined by the overall change of

Y¥(7) from 7 — —o00 to 7 — 0o. The resulting action is given by

Se *<d N
i 1+/ —Z(ucothu—1)6’(%"/]\[)“zln——l—cl—l—O(@]/N), (3.68)
9 0o U ly

where the constant ¢; = —0.837877 ... is easily calculated numerically.

While in the opposite limit

= 85 b, (3.69)

E; E. 2
the QPS takes the same form as in the homogeneous chain, Eq. (3.52a), just with one
more length scale ¢, basically replacing 1, which is the length scale of the junction.
Now we can calculate the pre-exponent for the case of weak junction. Again, for
the case of weak junction we have two limiting cases: (; = g—j > % + % = /. and
ly; < L.. We start with the case £; > (., where the classical solution (3.65a) yields

V(r)=—2E,—— —==—". (3.70)
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It is convenient to pass to the Fourier space, which is discrete, w,, = 27rm/f, m =
...,—1,0,1,..., because of the boundary conditions ¢(8/2) = 1)(—(3/2). Thus, we
decompose ¥ (1) = 3 Wbne”“mT. For A ~ E; < wy we can use the low-frequency

expression (3.44a) for K(w), then the eigenvalue equation (3.56) becomes

B A-E,

2t F 7

L i V- (3.71)

m/
Let us define a function

2mT

/6 )

6m,0
1—e 26

Xm = — +0(m+1/2)e " K (3.72)

where 0(x) is the Heaviside step function, then all eigenvectors and eigenvalues of

the problem (3.71) can be written down explicitly:

Y =e M AJE; =1 — kcothr,
Um = Xm, A E;=1,
Um = X—m, NEj=1,
Um = Xm—1, MEj=1+k,
Um = X1-m: A/ E;=1+&,
Um = Xm-2, A/Ey =1+ 25,
Um = Xo—m, N/Ej=1+ 2k,
(3.73)

At the same time, the eigenvalues of (3.71) with V(1) = 0 are
AOJE; =1, 14k, 14k, 142k, 142k, ..., (3.74)

that is, Ajo; = A;OJQ. However, the total number of eigenvalues must be unchanged
by the potential, that is we must recover A; = Agp) for very large j, otherwise the
infinite product in Eq. (3.54) will diverge. Thus, we are obliged to consider high
frequencies, where the low-frequency expression (3.44a) is no longer valid and the
full frequency dependence (3.43) should be used.

At frequencies w > 1/7, the potential V(1) is a smooth function of 7, so we can
use the WKB approximation (note that the domains of validity of the asymptotic
expression (3.44a), w < wg, and of the WKB approximation, w > 1/7y, overlap).

Note that the solution Eq. (3.65a) for the classical trajectory remains valid even
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when the full expression (3.43) for K (w) is used. Indeed, in the frequency representa-
tion (3.65b) the solution is suppressed at high frequencies w > w; and thus is insen-
sitive to the kernel deviation from the low-frequency asymptotic expression (3.44a).
Therefore, in the WKB approximation we can use the same expression for the po-
tential V() (3.70). We can write eigenfunctions as (1) = exp [+i [ w(7’) d7’],

then w(7) should be found from the equation

V(r)

B+ Kwrm)+ V() =A = wl7) % = g,

(3.75)

where wy is the positive solution of the same equation for V(7) = 0, and K'(w) =
K(w)/dw. In the presence of V(7), the quantization condition involves the scat-

tering phase,

B/2 27TEJ7'1
/—,B/QW(T) T = Pwp + K (on) ™ (3.76)

This gives A = E;+ K (Wm) — xE;, where m must run over all integers, positive and

negative, except m = 0, in order to match Eq. (3.73). Then we can calculate

/oo M] . (3.77)
—00 EJ + K(w)

EJ—I—me)
H—_H exp
EJ+me _/{E'Jﬁﬁoo

7>0 J
The integral can be calculated by choosing some value @ such that /;/¢; < 1 < 1
and writing

o0

du

/ 20,05 + (16, /0, E)u? + u2\/1 + 1/u?

U

N/ 2du +/ 2du/u
/ 20 /0 +u ) 16E,/0.E. + /14 1/u?

1/a

il / 2 dy @, ]O (16E,/(,E.) du
=2In—— + =
2¢, 16E,/0.E. + /1 + 2 ls 16E, /(s E. + coshu
0, ¢ (+1 E,
—olm 2wt =
ng Tl ¢

\J B2 — (2E2/32

Collecting all factors, we obtain

By -\ B
T (&) (an) .
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In the opposite limiting case, {; < {., we have the same result as for the homo-

geneous chain (Eq. 3.63), just replacing the typical length scales:

~ 1/4 7 g
W. = @ g_‘] M e Y—=(8/m)\/Lle/ls (3 79)
VRN N ' '

3.4 Open chain

Now let us consider an open JJ chain, which corresponds to a more realistic con-
figuration, when the JJ chain is included into an external circuit. The main formal
difference with the closed chain is that now the phases at the ends of the chain are
not compact. Therefore, it can be seen as a generalization of the single Josephson
junction case discussed in Sec. 2.1 with an N-dimensional potential (where N is
the number of junctions in the chain) instead of one-dimensional. The Bloch the-
orem can be applied and QPS results in a band structure of the spectrum. The

Hamiltonian is

N N-1
1 A1
H = n;g QnCil Qum — E; nz; o8 (Gny1 — bn) - (3.80)
The difference of the phases at the boundary contacts is ¢y1 — @9 = 6. We want
to study phase slip between configurations with 8 = 0 and ¢ = 27. We assume that
in the final configuration the jump of 27 is on the junction m (quJ;H — ¢f = 2m);
the amplitude should then be summed over m.

For long chains we can use the continuum limit and write the action in the form

5= / dT]ndxC (6,0.0) + / dr 7 dol (6,0-6) +
0

m—+1

+/2(gc |:¢(m+1,7')—Q.s(ij):|2_/dTEJCOS[¢(m+1,T)—gb(m’T)] (3.81)

where £ is the same Lagrangian density as we used in the action for a closed chain

[see Eq. (3.29)]. We decompose the phase into modes on both sides of the slipping
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junction

¢ (x,7) = (Z%(T)‘I’n(ﬂf)+V(T)X(I)+¢o(7)) 0(m—x)+

n

(Z% +900()+77(T)Y(93)>9(I—m)~ (3.82)

Here U, (z) and @, (z) are eigenfunctions of wave equation for S = [ daxL with
Dirichlet boundary conditions ¥,, (0) = ¥,, (m) =0 = &, (m) = &, (N).
Eliminating the variables as in Sec. (3.1.3) we can write the QPS action in the

same way as for the closed chain, Eq. (3.26), replacing the kernel with

@i w?

12 [ Zy o)) + Zr Gla])] | SE.

K(w) = (3.83)
where Z; (w) and Zg (w) are the impedances of the left and right side of the chain
(with the respect to the slipping junction). One can see that if the phase slip occurs
far from the chain ends, the kernel K (w) has the same type low- and high-frequency
assymptotics [see Egs. (3.44a and 3.44b)| as in the closed chain, it has a region of

min{m,N—m}
s

in single QPS action. However, if m < ¢, or N —m < /g, there is no linear part

linear dependence on frequency, resulting in logarithmic term Se,, ~ In

in the frequency dependence of K, K ~ (% + %) w?, on all relevant frequencies.
Therefore, the QPS amplitude in an open chain is dominated by the phase slips,
occurring near the ends of the chain, whose amplitude does not decay with increasing
N. The total QPS amplitude can be estimated as

9

W2 (srg) e (VBB - 5 e )

4 (SE3E )1/4 >exp<_\/m>

\/_1—exp< VSE"EC
S g, (L2 " exp(—\/8E,/E,) (3.84)
N — — xp(— ). .
/7 9 \SE, P J
It is independent of the total chain length N, which agrees with the predictions

of [55]. The last approximation is valid as usually \/E;E./E, < 1. The factor 2 is
due to the fact that we have to sum QPS amplitudes near both ends of the chain.
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3.5 Relation to Kosterlitz-Thouless renormalization

group

Here we show that the obtained results for the QPS amplitude are consistent with
the standard Kosterlitz-Thouless scaling [54]. As it was mentioned in Introduction, a
one-dimensional quantum system can be mapped on a two-dimensional classical sys-
tem, therefore, superconductor-insulator transition in infinite one-dimensional chain
can be seen as an analogy to the Berezinskii-Kosterlitz-Thouless (BKT) transition
in the classical XY model [13, 38]. Indeed, the continuous part of the action (3.8)
is equivalent to the XY model action at distances [ > /,, when the second term of
the action can be neglected.

The QPSs play the role of vortices in the (z,7) plane. On an infinite plane at
distances [ > /, they interact logarithmically, and the strength of the interaction is
determined by the the same prefactor g, which stands in front of logarithm In NV in
the QPS action. When g¢ is large, vortex-untivortex pairs remain bounded and the
system is a superconductor. For small g vortex-antivortex pairs can unbind, which
corresponds to proliferation of QPSs and destruction of the superconductivity, so
the system becomes an insulator. Our instanton calculation for finite length chain
at zero temperature corresponds to the plane being infinite in the 7 direction but
finite in the x direction: for a ring, the plane is wrapped into a cylinder, while for an
open chain the plane becomes a strip 0 < x < N. In both cases, interaction between
vortices, whose separation in 7 exceeds N/vy, is no longer logarithmic, since the
logarithm is cut off on the scale x ~ N. Our instanton calculation corresponds to
a dilute gas of non-interacting vortices living on a cylinder or a strip and separated
by large distance in 7 (Fig. 3.7).

Thus, in chains with a finite length the Kosterlitz-Thouless RG flow should be
started at [ = ¢, as the shortest scale and integrated up to the longest scale [ ~ N.
As a result, there is no real zero-temperature transition and even at finite but low
(compared to T,) temperatures the chain can be superconducting. However, the RG
formalism can still help to predict the QPS amplitude scaling with the system length
and, therefore, the superconducting or insulating behaviour. The RG equations are:

dx 9 dy?

o —_ 2
AR T (3.85)

where x = g — 2, [ is running length scale, while y is the QPS fugacity, which is
proportional to the QPS amplitude, y = WULI The corresponding flow is shown in
P
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Figure 3.7: A schematic representation of a typical vortex configurations for periodic
boundary conditions (a) and open boundary conditions (b).

Fig. 3.8.

As mentioned above, these RG equations should be integrated starting from the
scale [ ~ (5. What are the corresponding initial conditions? For shorter length scales
the capacitance Cy does not play a role and the Lagrangian of the chain splits into
independent pieces, corresponding to different junctions. There are no interactions
between the phase slips. As a result, the parameter ¢ arises only on the scale [ ~ £

and its initial value is given by

g (L) = \/(72/8) (Es/E,). (3.86a)

In the superconducting regime (not too close to the critical point g. = 2) the initial

fugacity is exponentially small for E;/E. > 1,

4 E 1/4
y(ls) = N (SEJ) loe” VBEI/Be 1. (3.86b)

As the system length is increased, for g > 2 (so that the system remains in the

superconducting regime) y becomes even smaller. Then we can neglect the flow of

48



z. As a result, we can integrate the second equation (3.85) straightforwardly
y (1) =y (b)e oD (3.87)

One can see that ¢ = 2 should correspond to the quantum phase transition in case

Figure 3.8: Kosterlitz-Thouless RG flows corresponding to Eqs. (3.85): The solid
line denotes the transition from insulating to superconducting phase. ¥ is the fu-
gacity of the phase slip. The critical point is g. = 2.

of infinite chain at zero temperature. As we work in the superconducting regime,
we consider g > 2. For finite length chains at zero temperatures the RG-equation is

integrated up to the system length N, which gives
W=-2y(N)~ N9, (3.88)

This is exactly the same scaling as derived by the instanton calculation, Eq. (3.63).
At g > 2, the typical distance between the phase slips in imaginary time is the
inverse of the CPS amplitude, A7 ~ 1/W > N/v, (see Fig. 3.7a), so there is
no logarithmic interaction between the QPSs (since the logarithm is cut off on the
shorter scale | ~ N). This justifies the non-interacting instanton gas calculation of
the tunneling amplitude.

In an open chain, if a vortex is located near the chain ends, at a distance m < N,

the logarithm in the QPS action is cut off on the scale [ ~ m. Thus its action
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remains finite even for N — oo, as we have already seen in Sec. 3.4. This can be
interpreted as effect of interaction of the vortex with its mirror image in the picture
of two-dimensional Coulomb electrostatics of interacting vortices [55] (see Fig. 3.7b).
As a result, the QPS amplitude is determined by a gas of vortices sticking to the

boundaries.

Chapter summary

In this chapter we discussed coherent QPS in Josephson junction chains. First,
we presented general equations, which determine coherent QPS action in a closed
chain. Then we rederived expressions for QPS amplitude for both closed and open
homogeneous chains. We also studied a specific weak junction limit, when one of the
chain junctions is significantly smaller than the rest. Finally, we discussed scaling
of QPS amplitude with the chain length and its relation to Kosterlitz-Thouless

renormalization group.
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Chapter 4

QPS in inhomogeneous JJ chains

4.1 Linear response to a spatial modulation of the

chain parameters

We want to study the effect of a spatial modulation of the junction and island pa-
rameters (such as Josephson energies and capacitances) on the QPS amplitude in
a JJ chain closed into a ring, as presented in Sec. 3.1. Since modification of these
parameters can be useful in controlling the state of the chain, an artificial modu-
lation is worth studying. For example, if the chain is made of SQUIDs, changing
the magnetic field in different SQUIDs may lead to a transition between supercon-
ducting and insulating states. Studying the effect of a weak random modulations
is important as in real experiments it is impossible to produce ideally homogeneous
chains, there is always some disorder in the elements’ size or uncontrollable random
gate voltages.

Here we apply the results of Sec. 3.1. In the following, we will assume the spa-
tial modulation of the chain parameters such as junction capacitance C', Josephson
energy E; and capacitance to the ground C, to be weak (in Sec. 4.2.1 below we
discuss the physical mechanisms for modulations), and focus on the linear correc-
tion 05, to the classical instanton action Sy. The modulation results in a linear
correction 0K (7 — 7') to the kernel for a homogeneous JJ chain, which, in turn,
produces a correction 69.(7) to the classical trajectory. Note, however, that the
classical trajectory was found from the condition §5/69 = 0, so the correction to

the action can be evaluated on the zero-approximation classical trajectory, which is
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most conveniently done in the Fourier space:

55, = %/g—:wqw) e (w)[?. (4.1)

When calculating the correction 6 K (w) to the linear order in the modulations, one
can ignore the term containing %ﬁi)’(m in Eq. (3.40). Indeed, the homogeneous
chain is symmetric with respect to x — N—1—x, so 1 and X (x) have different parity,
and G1x(w) = 0. A modulation breaking this symmetry will produce G x(w), linear
in the modulation, so the term ~ %ﬁif@ in Eq. (3.40) is quadratic.

The classical trajectory is given by Eq. (3.46)

2m 1
Ts R W,

Ja(w) (4.2)

~ iw cosh(rwr,/2)’
As 1/75 ~ wv,/ls, the high-frequency asymptotics of K (w) should be taken into

account. It is convenient to separate the two contributions as
K (w) = Kigw(w) + Kow?, (4.3)

where Kjow(w) corresponds to the first line in Eq. (3.41) for Gxx and remains
finite at w — oo. In the correction to Seny from Ky (w), the integral converges at
frequencies w ~ w,. Thus, the correction to the logarithmic term in Se,, can be

calculated as

SeIlV + 5Senv = 7T27:3 Z WOZ |:(X7 \IIOZ):| : F(wOKTS)7 (44)

where the function F(z) is defined as

2z [ 1 du
F(2)===Z ) 4.5
(2) T /0 cosh?(mu/2) 22 + u? (4.5)

The coefficient K, in Eq. (4.3) determines the local part of the action Sj.; its

general expression is

Ky = 8]136 VT {(X, X -y [ \ya)r} | (4.6)

«

Then, 0S10c = 40K,/ 7s.
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4.2 Periodically modulated chain

4.2.1 Physical mechanisms for the modulation

Here we apply the general scheme, outlined in the previous section, to the simplest
case of a weak periodic modulation of the chain parameters. We assume the modula-
tion period, N/m, to be an integer fraction of the chain length N (that is, m > 1 is
integer). This introduces no discontinuity of the JJ chain parameters at the QPS

location. Thus, the modulation is assumed to have a profile
p(x) =1 —tcos ko (x — x0), (4.7)

where ¢ < 1is the relative modulation amplitude, ky,, = 2rm/N, and xy parametrizes
the relative QPS position with respect to the modulation. One can consider different
modulations, depending on their physical implementation.

When fabricating JJ chains, one can control the area of each junction. While the
Josephson energy E; and the capacitance C' between the islands are both propor-
tional to the junction area, the capacitance of each island to the ground is controlled
by the island area. Assuming the junction areas to be modulated and the island
areas to remain constant, we arrive at the following spatial pattern of the coefficients

in action (3.8):
By@) = By, Cx) = Copla),  Ey(r) = Epou(a). (18)

Another possible way to modulate the parameters is to vary the island areas. In this
case, the ground capacitance C, of each island is modulated, while £; an C' remain
constant. This corresponds to

EgO 2

Eg(l’) = [L(.f)’ ES(IE) =

EJ(.I) = EJO. (48b)

Finally, each Josephson junction can be implemented as a superconducting quan-
tum interference device (SQUID). In a magnetic field, the corresponding Josephson
energy of each SQUID is sensitive to the SQUID loop area. This enables one to
modulate F; independently of C; this may lead to qualitatively different effects

from the previous cases [79]. Thus, we consider the profile

Ey(x) = Ep, ((r) =10, E;(x)=eop(w). (4.8¢)
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Below we will analyze these cases separately, closely following the approach of
Ref. [80].

4.2.2 Junction area modulation

We start with the case of modulation (4.8a). First, we calculate the correction to

the classical configuration:

X(x) = (% - %) + kgiN sin ko (z — 20) + O(#?). (4.9)

Then, we find the normal mode wave functions ¥, (z) and frequencies w, from the

modulated wave equation,

& ) 2
ox K ox

+ K3 (wq) ¥y = 0, (4.10)

where k(w) denotes the inverse of the dispersion (3.31):

w

R{W .
( ) \/SEJOEQO — EEOUJQ

(4.11)

For ¢ = 0 this gives the homogeneous result W, (x) = \/2/(1 + k2(2,) sin k,x with
K(wg) = ko = ma/N.

First, we use perturbation theory in t < 1, seeking the wave function in the form

[ 2 . B, +B_
U, (x) = Tk%go (sm kox — ——5——cos kox +

B B_
+ 7+ c0S kg rom® + > coS ko—omT +
A A_
+ 7+ Sin ko yom® + - sin ka2mx> ) (4.12)

The perturbation theory gives

ka kai2m kakaiZm .
A:I: = —mtcos kal‘o, Bi = imtSln ka.To, (413)
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and the correction to w, is O(t?).

1+ (=1)" 2 1 t k2
X, 0,) = — 1— - — e 49
(X, ¥a) 2 1+ k202, ko N { 4 €08 Ram o (kg g, T 2azm ||
1— (=1~ 2 2t sin ko, 9
— : 4.14
2 1+ k202, kokomN? +0() (4.14)

However, the perturbative expression (4.12) is not always valid. By a direct check,

we see that the corrections are small when two conditions are fulfilled:
la —m|>tm, ta<<m. (4.15)

The first condition breaks down in the relatively narrow interval of «, where the
gap in the frequency spectrum opens up. The resulting modification of a relatively
small number of terms in the o sum in Eq. (4.4), those with |a — m| ~ tm, leads
to a small correction to the N/m factor inside the logarithm [see Eq. (4.21) below].
This correction is beyond our precision.

For large «, the second condition (4.15) breaks down. Then, instead of doing

perturbation theory, one can construct ¥, (x) using the WKB approximation:

B 2 sin s(x) _ " Ewa) do’
O Eee o Y e 4

The frequency w, is determined by the boundary condition for ¥, (x), that is, s(N) =

ma. This results in a small relative correction O(t?) to the frequency and determines
the normalization factor in Eq. (4.16). Although the relative difference between s(z)
and its zero-approximation value k,x is small, the absolute difference may become
of the order of one, and then sin s(x) —sin k,z ~ 1 as well. This is the reason of the
perturbation theory breakdown at large o. Note, however, that the perturbation
theory is valid at o < m/t, while the WKB approximation is valid at o > m, so
their regions of validity overlap.

Now we evaluate the overlap (X, V,,) writing it as

(X, xpa)z,/%%lm/o OZN]”e“@ff)[ﬂ(:c)]l/‘l [%—Hka@o%ﬁ o (4.17)

Note that ¢”(®) is fast oscillating, while the rest of the integrand is smooth, due

to the condition k, > ks,,. Thus, we introduce the complex variable z such that

95



Im 2z
Z

J
° ° ° ° °

o N

Figure 4.1: (Color online) Deformation of the integration contour in Eq. (4.17) from
the real axis (solid red line) into the upper complex half-plane (dashed red line).
The dots represent branching points z; of s(z).

x = Rez, and deform the contour into the upper complex half-plane, as shown in
Fig. 4.1. The contour can be moved up to the branching points of s(z), located at
IN i

2j = — 4+ x9 + — arccosh —.

J m 0 kgm t
The integral over the horizontal part of the contour near the branching points is
suppressed as t*/(>™); the branching points determine the small reflection probability
from a weak smooth potential, which in the present case of a periodic modulation
leads to opening of small gaps at high frequencies. This effect is beyond our preci-
sion, so the contribution of interest comes from the steepest descent in the positive

imaginary direction from the points x = 0 and = = N. To linear order in 1/k, this

1/4
X0 =\ T oy YO = (C0rxl. )

This coincides with Eq. (4.14) in the limit o > m. The reason for this coincidence is

gives

that even though the WKB wave function differs significantly from the perturbative

one in the bulk of the chain, the overlap integral is dominated by the vicinities of
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x = 0, N, where the phase accumulated in s(z) is still small on the absolute scale.
Thus, Eq. (4.14) can be used for all a. Substituting it into Eq. (4.4) and ne-
glecting O(#?) terms, we obtain

0 Seny F(waTs)
= ——cos ko, : 4.1
g COS 2mLo Z _kz (1 + k202,)3/° (4.19)

o even

F is defined in Eq. (4.5). The sum can be replaced by the integral which should be
understood as the principal value (the contribution of the term with o = 2m has
relative smallness ~ 1/m). The last factor cuts off the integral at k, ~ 1/¢5. At
knls < 1 the integral is logarithmic, where the small k& cutoff is determined by the

first factor. In this case it is convenient to rewrite it as

0Senv  tcos kamg /°° Flw(k)Ts) dk
0

g 2 (k + k) (K202, + 1)3/2

(4.20)

where we used the fact that the integral of k/(k* — k2) — 1/(k + k,,) is identically

zero. As a result,

0Seny
g

t 1 -
=-3 oS kamTo (ln ST + T) , (4.21)

if k. 0y < 1; at k,,ls > 1, the correction is suppressed as 1/(kn(s)?. Y is a number
of the order of unity, evaluated numerically. In the limit ¢, > 1 it amounts to
T = —0.4806.... For realistic parameters, e. g., a chain of 1000 junctions with
g =3 and /4, = 10, modulated with ¢ = 0.2 and m = 5, this gives 0.5, ~ 0.2.

Finally, to find the correction to the high-frequency asymptotics of the kernel
K(w), determined by Eq. (4.6), we directly evaluate

}2 Lo 1 t cos koo
2N 21+ k202

m*s0

)+O@mﬂ. (4.22)

For k0, < 1, this correction corresponds precisely to the local value of ¢,, and
thus of (2 /E, oc C at the QPS location. For k(s > 1, the correction is suppressed,

as the modulation is effectively averaged out on the length /.
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4.2.3 Island area modulation

For modulation (4.8b), Eq. (3.36) gives

= N 9 kaN sin kgmxo. (423)

The wave functions ¥, are found from the wave equation

0,

o2+ (wa) (@) Uo = 0. (4.24)
The perturbative expression for U, (z) is again Eq. (4.16), with coefficients obtained
from Egs. (4.2.2) by replacing k42, — ko in the numerators and inverting the
overall sign. The WKB wave function is given by the same expression (4.16), but

the phase s(x) is given by

s(x) = /@(wa)/ V(') da'. (4.25)
0
The final result for (X, ¥, ) turns out to be exactly the same as for the case of the
junction area modulation, Eq. (4.14). 0Se,, is also given by Eq. (4.21).
Evaluation of Eq. (4.6) with the perturbed wave functions again gives Eq. (4.22).
This time, at k,,lso < 1 it corresponds to taking the local value of the ground

capacitance Cg.

4.2.4 SQUID area modulation

For modulation (4.8¢c), the profile X () is again given by Eq. (4.9). The coefficients
Ay, By are obtained by multiplying those from Eqs. (4.2.2) by 1 + k2¢2. All sub-
sequent calculations are analogous; the result is the same as in Eq. (4.21) but the
number T is different, we obtain T = —0.0695.. . ..

Evaluation of Eq. (4.6) can be simplified by noting that modulation (4.8¢c) does
not affect the scalar product. By completeness, Y U, (z)¥,(z') = Z(x,2’) is the
kernel of the unit operator in the space of functions with Dirichlet boundary con-
ditions, and it does not depend on the choice of the functional basis ¥, in this
space. Thus, Eq. (4.6) can be evaluated using the wave functions for the homoge-
neous chain, ¥, (x) = msin kox. As a result, the correction vanishes.

Indeed, modulation (4.8¢c) does not involve the capacitances at all.
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4.2.5 Combined modulation

We can also consider a case when both Josephson energies and capacitances are
modulated, E;(x) = egm(z) and Ey(x) = Ey/p.(z), generally speaking, with
two different amplitudes ¢; and ¢.. Then, it is easy to see that the resulting effect
on (X, ¥,) is additive. For the first-order perturbative wave functions this follows
trivially, while for the WKB wave functions it follows from the steepest-descent
calculation, analogous to Eq. (4.17). Its result is determined by the derivative
s'(x = 0), which, in turn, can be calculated perturbatively.

The results obtained above may be conveniently combined if we introduce the

local dimensionless admittance:

EJ(.T)
8E,(x)

glx)=7 = go + 0g(x). (4.26)

For all types of modulation, discussed in Sec. 4.2.1, we have
5g(z)/go = —(t/2) cos ko (x — 20) + O(?). (4.27)

For the combined modulation with two different amplitudes ¢; and t., the correction
is

69(x) /g0 = —(t1/2 + t/2) cos ko (7 — x0) + O(t?). (4.28)
Then, up to terms O(1), at k,,fs < 1 we can express correction §Se,, in terms of

dg(x = 0), which is the local correction to the chain admittance at the QPS position,

for all types of modulations:

(4.29)

2kl
4.3 Disordered chain

4.3.1 Fluctuations of the QPS action

In this section we consider two types of disorder in the chain: spatial inhomo-
geneities, such as random variation in the junction areas, resulting in relative mod-

ulation of the Josephson energy and junction capacitance

Ec,n — 5 EJ,n — EJ (1 + nn> ) (430)
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as well as random induced charges g, on the islands [see Hamiltonian (3.1)], which
can be caused by random gate voltages, and result in a random phase of a single
QPS 0, = > _,2mqmn/(2¢) (see Eq. (3.5)). We consider spatial disorder to be
relatively weak, (n?) < 1, which produces small relative corrections to the action
Sy, and the prefactor 2, in Eq. (3.17). While the latter results in a small relative
correction to the QPS amplitude W, the correction to the action, 4.5, even though
small compared to S,,, can still be large compared to unity, since S, itself is large.
As §S,, stands in the exponent, it may significantly modify W. Therefore, in the
following we focus on the statistics of 0.9,,, calculating it to the linear order in 7,,. For
this we can again use the unperturbed expression (4.2) for ¥, in Eq. (4.1), because

it was derived from the condition §5/69 = 0. Then the correction to the action is:

(5Sn:/

dr+

2
) + 0, Ey (14 costy)

Tin dﬁcl
16FE,. \ dr

+% / 0K (W) [Da(w)]? do _ 05, 10c + 0Sn.env,  (4.31)

or
where the kernel K is ]
w

(2€)Z (ilwl)’

We assume 7, to be Gaussian distributed with (n,) = 0, so the average correction

Kn(w) = (4.32)

to the action is zero. The quadratic fluctuations of the action are determined (i) by
the variation of the slipping junction area, which in turn determines 0.5, jo., the first
two terms in Eq. (4.31), and (ii) by the correlator (J/C,, (w) d/C,, (w')), corresponding
to the variation in the impedance of the rest of the chain, which governs 0.5, e,
the last term in Eq. (4.31). The latter is determined by the Mooij-Schén modes,
which become localized in the presence of disorder. Calculation of the correlator is
fully analogous to that of impedance fluctuations at real frequencies [81]: using the
recurrence relation for the impedance as the chain length is increased by one, one
arrives at a Langevin-like equation.

The basic idea of the approach is to study the change in the admittance Yy (iw) =
1/Zn(iw) of an open chain of N Josephson junctions upon addition of an extra

junction N + 1. We can write the following recurrence relation for the admittance:

YnY;

Yy =wl, + —————
N = g+YN+YJ7

(4.33)

where Y; = 1/(wLyy1)+wCxy1 is the imaginary frequency admittance of the added

junction and the Josephson inductance is defined as 1/Lyq = (26)2 Ejnti.
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First, let us consider a homogeneous chain. Then the recurrence relation (4.33)

has a stationary point Y,,, determined by the condition

YY;

Y, = —_— 4.34
o ng+YOO+YJ, (4.34)
which gives
C w2(C?
Yy = “29 n \/ T T WY~ Y. (4.35)

The latter approximation follows from C' > C,. Focusing on small deviations from
the stationary point, we introduce a new variable Xy = Yy — Y,,. The linearized

recurrence relation takes a simple form:

Y2

Xyp=7Xy, 7=—L 4.36
N+1 N (Yoo + YJ)2 ( )

Note that 1 — 7 < 1, following from Cy < C.

Now we can include fluctuations of the chain parameters,
L
CN+1 —C (1 + ’I7N+1) , LN—H —_ (437)
L+ 181
and write the linearized recurrence relation as
Y2Y;

XN+1:TXN+m77N+1:TXN+(5XN+1- (438)

Using the condition 1 — 7 < 1 we can cast this equation into a differential form:

dXy Y2Y;
=—(1=7)Xn+ =" v+, (4.39)
dN (Yoo + Y5)?
which is a Langevin equation.
So far we considered the admittance at a given frequency w. We are interested
in the correlator of admittances at two different frequencies w and w’. Then taking
into account the fact that 6 Xy, and Xy are not correlated we can average the

product of equations (4.38) at different frequencies:

(Xnt1 (W) Xvr (W) =7 (W) 7 () (X () X (W) +
(0 X v (w) 0 X nar (&) (4.40)
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which can again be rewritten as a differential equation:

d /
N (Xn (W) Xn (W) =
= (1 (W) 7 (W) = 1) (Xn (w) Xn (W) +
(XN (@) 6 X sa () (4.41)

As we consider long chains, we can go to the limit N — oo and look for the stationary

solution:

(0X () 0X ()

(X (@) X (@) = T

(4.42)

which is the correlator of admittance fluctuations. The correlator of the kernel

fluctuations is )
jw| |w'|

(2¢)*
Evaluating (6 X (w)0X (w')) from the definition (4.38) and collecting all factors, we

obtain the following behaviour in the two limiting cases. For w, w’ > w, we have

(0K (w) 0K () = (X (W) X (&) - (4.43)

ol o

(0K (w) 6K () = W

(). (4.44)

At low frequencies w, w’ < wy, the result is

V2E; |’ (n*)
328y lwl+ || 2

(OK (w) 0K (w')) = (4.45)

We are interested in the low-frequency limit of (J/C (w) 0K (w')) because the inte-
grand in Eq. (4.31) is quickly suppressed at w > w, due to the frequency dependence
of ¥y (w), Eq. (4.2). From this we can estimate

~E E,

E \/E E, dw dw’ (BB, g?
(6S2,,) ~ () 1= / S %) EJ2 ~ <772)£_. (4.46)
g S

As typically ¢* < 4, (652 ) < 1. At the same time

env

Ey
(3520 ~ ()22 > (552,),

(4.47)

due to the condition C, < C. Moreover, (65

) can be larger than 1, depending on
the parameters, as (n?) < 1, while % > 1.
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As a result, the fluctuations of the QPS action are dominated by the local values
of the slipping junction parameters, while the effect of Mooij-Schén modes modifi-
cation by the disorder plays a minor role. This happened because the environment
contribution to the QPS amplitude is determined by the impedance at imaginary
frequencies, which turns out to be weakly fluctuating. This is in striking contrast
to the behaviour at real frequencies, when localization of the Mooij-Schén modes by
the disorder results in strong impedance fluctuations [81].

Having established the dominant character of the local contribution to the action
fluctuations, we can study the statistics of the QPS amplitude W by using Eq. (3.17)
with S, = Shom+0S,, where Syopn, is the action of the homogeneous chain, Eq. (3.53),

and 05, are independent Gaussian random variables:

E )
58, = 8?177“, (0S,) =0, (65,68,,) = 8F°’<ng>5nm = 025,,.. (4.48)

This problem is addressed in the following subsections.

4.3.2 QPS amplitude distribution without random induced

charges

First, we consider only the junction area variation assuming no induced charges.
For long chains we can use the central limit theorem resulting in the Gaussian

distribution with the average amplitude and dispersion

(W) = Qe ShomN 72\ /(IW2) — (W)2 = Qe Som [N (€202 — ¢7?).  (4.49)

The central limit theorem is valid when the dispersion is much smaller than the
average, that is
N> —1. (4.50)

However, even for small relative area fluctuations (n?) < 1, it is quite possible that
0? 2 1. Indeed, taking the parameters of the experiment in [72|, E;/E. =~ 90, and
assuming (n?) = 1072, we obtain 0? ~ 7. Then the central limit theorem applies
only for exponentially large V.

For ¢ > 1 and insufficiently large N, the distribution of W can be far from
Gaussian; it develops a long asymmetric tail for large W. In this case the peak
of the distribution can be located at W much smaller than the average value (W)

(see Fig. 4.3); the average is then determined by rare configurations contributing
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to the tail. In fact, this problem is known since long ago in many different areas,
such as communications [82, 83|, optics [84], transport in disordered systems [85],
finances [86], yet no general analytical expression for the resulting distribution is
available. Sometimes the resulting distribution can be approximated by a lognormal
one [84, 86, 83]. Below we revisit this problem for 02 > 1 and give some analytical
expressions valid in different regimes [Eqgs. (4.59) and (4.62)], and compare them to
the results of the direct numerical sampling and its lognormal fit (Fig. 4.3).

To derive analytical expressions, let us represent the QPS amplitude as W =

AQ e~%hom then the distribution function for the normalized amplitude A is defined

f(A) = <5 (A —) exp (-55@) > =

dt de 2 N
:/ e”A{ L e exp (— z'tex)l . (4.51)

2w 2no

as

The average value (A) = N e”/2,
The t integral can be calculated in the saddle-point approximation similarly to

Ref. [85]. Let us rotate the integration contour in Eq. (4.51) to the imaginary axis:

100

d
F(A) = / exp [2A — N I(2)] == (4.52)
. 2mi’
I(z)=—1In e 27 ex e ” 4.53
[ e e (e (4.5%
In the saddle-point approximation, we have
1

A —————— sA+ NI (z4)], 4.54
P~ gy o A + NT (2) (1.54)

where I'(z) = dI/dz and z is defined as the solution of the equation
A+ NI'(z) =0. (4.55)

Because we consider NV > 1, the important values of z are those for which I(z) < 1,

so we can expand the logarithm and approximate

I(2)~ de 67% [1—exp (—ze™™)]. (4.56)

2ro
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Inz -0? 0 X

Figure 4.2: Two factors of the integrand in I(z) (4.56), exp(—%) (dashed blue
line) and 1 — exp (—ze™ ™) (dashed green line), and their product (solid red line).

In the saddle point approximation the integral (4.52) is determined by the small area
near the real axis. To calculate I(z) (4.56) we approximate exp (—ze ™) ~ 1 — ze™®
for x > Inz and exp (—ze™®) &~ 1 for z < In 2. Then if —Inz > 0+ o the integrand
can be approximated as Gaussian for x > In z and is suppressed for z < Inz [85]

(see Fig. 4.2):

(z + 02)°
202

a2 /2 1 + 2
ze nz-+o
= — erfc . (4.57
2 ( V20 ) (4:57)

Therefore, Eq. (4.55) can be written as:

o2/2 1 2 a?/2 1 2\ 2

e nzs+o e nzs+o

A—N erfc + N——exp |— [ ——— ~ 0.
2 < V20 ) V2o P [ < V20 )

Introducing new variable y = Dzsto” \Z/it < and considering |y| < o we obtain
2A 1
~ -1 —
y = erfc (Ne”2/2) i (4.58)
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Now we calculate the second derivative of I:

(ln 2+ 02 ) 2
V20
e’/ Inz; + o2 (ln 25+ 02)2 exp (302/2 — 20y — y?)
- exp |— | ——— ~ .
\V2moz, o? P \/50 V2ro

1" (z,) o
Zs) X ——ex
2mo 2, P

resulting in

2 2 2
f(A) = v 02/2]\41/2 exp (—Me‘/i"Q_Q + w> , (4.59)
60

where Q = erfc™ < e ) and M = N€7”2/2_

Neo?/2 2noe
For validity of the saddle-point approximation we need

NI (2) [ﬁ] <1, (4.60)

where the quantity in the square brackets is the typical width of the relevant region
near z;. As a result, we obtain the condition N 2 oe? 270 > 1,

Another analytically tractable regime is when the whole sum is determined by
a single term, corresponding to the junction with the highest QPS amplitude (the
weakest junction). The probability of having one junction with z < 65, < x + dx
and the rest of the junctions with 65, < z is

N-1

dr  _ a2 N

e 202
2mo 2mo

T

22
e 22 dx, (4.61)

p(x) do =

— 00

where N in the last factor corresponds to the fact that the junction with the highest

amplitude can be any of the N junctions. Then for the distribution we have

F(A) = /(5(A—em)p(:c) dz = \/QLXUA exp PN; Y et (5‘;) - h;z_f] .

(4.62)

The weakest junction approximation is valid when the amplitude on the weak-

est junction, exp(—min{dS,}), is sufficiently larger than the sum of the ampli-
tudes on the rest of the junctions, which can be estimated from above as (N —
1) exp(—min’{dS,}), where min'{45,,} denotes the second smallest of {4.S,}. To es-
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Figure 4.3: Distribution f(A) in the absence of induced charges, calculated for o = 4
and different N by the direct numerical sampling (blue dots), using the weakest
junction approximation (4.62) (red dashed lines), the saddle-point approximation
(4.59) (orange dotted lines), and the lognormal fit (solid green lines).
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Figure 4.4: Cumulative probability distribution of 05, and estimates of the two
smallest 4.5, for a typical sample.

timate the typical values of the two smallest 9.5,,, we recall the standard procedure
for sampling the Gaussian distribution: from a sample of N numbers {x,}, uni-
formly distributed between 0 and 1, one obtains a sample of the Gaussian {05, } by
taking the inverse of the cumulative probability distribution function (see Fig. 4.4).

In a typical sample, min{z, } ~ 1/N and min'{z, } —min{z,} ~ 1/N, so we estimate

1 min{55n}> 1 1 (min’{55n}> 2
—erfc | ————— | = —, -zefc| —— | = —. 4.63
2 ( V20 N 2 V20 N ( )
This results in the validity condition
N < exp [(1112 2/2) e 02/3] . (4.64)

In Fig. 4.3 we compare results derived in weakest junction approximation, the
saddle-point approximation, a lognormal fit and direct numerical sampling. Log-
normal fit is reasonable in all limits, however, it is not clear how to choose its
parameters a priori, therefore, it does not seem to be useful. The weakest junction
approximation works well for short chains, while the saddle-point approximation is

more accurate for longer chains.

4.3.3 QPS amplitude distribution in the presence of random

induced charges

If we include random induced charges g,, we obtain a random phase in the amplitude
of a single QPS centered on each junction 6, = 27> " _ ¢,/(2¢e) [32, 33|, as a result
instead of the coherent sum for the total QPS amplitude in Eq. (3.17) we have the
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Figure 4.5: Distribution f(]A|) with random induced charges, calculated for o = 4

and different N by the direct numerical sampling (blue dots) and using the weakest
junction approximation (4.62) (red dashed lines).

sum with random phases. If (¢2)/(2¢)? > 1, the distribution of ¢, is flat, so the

phases 6,, are uncorrelated. This represents a universal limit of maximally strong
disorder. Then the normalized QPS amplitude is given by

N-1
A=) i, (4.65)
n=0

Therefore, A is complex and its average is zero. The central limit theorem results
in the complex Gaussian distribution with

V{AP) = VN e (4.66)

The criterion for the validity of the central limit theorem is the correspondence of

the moments of A to the moments of the complex Gaussian distribution, for example

(A% — 2 AF)* < (|A[).

(4.67)
This results in the condition

N> (2" —1)/2,

(4.68)
even more restrictive than in the real case.

In the complex case, we were unable to derive a compact expression for the

distribution function corresponding to the saddle point approximation. The weakest
junction approximation works when

N < exp [(2 In” 2) e 02/3] : (4.69)
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Then the distribution of |A| is the same as the distribution of A in Eq. (4.62). The
only difference is in the restriction on the chain length N: the approximation is valid
for a wider range of N as seen from Eq. (4.69) and Eq. (4.64).

In Fig. 4.5 we compare the numerical sampling and the weakest junction approx-
imation. One can see that the latter remains accurate for a longer chains than in

case of no induced charges.

Chapter summary

This chapter is dedicated to effects of weak spatial inhomogeneities on the QPS
amplitude in a Josephson junction chain. We started by studying the case of weak
artificial periodic modulations of the chain parameters, such as Josephson energy
Ej, junction capacitance C' and capacitance to the ground Cy, discussing different
realisations of those modulations. We derived the corrections to an environmental
and a local contribution to a QPS action, showing that any of those corrections can
affect the QPS amplitude. The correction to the logarithmic term has a cut-off at
the modulation wave-length N/m instead of system length N.

Then we studied the effects of disorder of two types: weak random variations of
the junction areas and random induced charges on superconducting islands, caused
by random gate voltages. We showed that the corrections to the environmental
contribution to the QPS action can be neglected, while the local part of the ac-
tion can be modified strongly enough to change the QPS amplitude dramatically.
As a result, for short chains a junction with the smallest area can be seen as a
weak link, where all the phase slips occur. We studied the statistics of the QPS
amplitude and derived a criterion, determining chain behaviour in both limits of
zero, Eq. (4.50), and large random induced charges, Eq. (4.68). For small 0 < 1
this criterion is trivial, in all the chains with length N > 1 a QPS amplitude
is very close to the one in a homogeneous chain. However, for large o > 1 the
criterion defines, whether the total QPS amplitude is averaged over several weak
junctions, resulting in all the chains behaving similarly, with the QPS amplitude
given by the average value, (W) = NQe Sremt7%/2 in case of zero induced charges
and \/W = /NQe Sromt” in the presence of large induced charges, or whether
the chains, produced with the same average parameters but different disorder real-
izations, behave differently, as the total QPS amplitude has a wide distribution over

different realizations.
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Chapter 5

QPS in superconducting nanowires

wire

grounded q
metallic gate

Figure 5.1: Schematic representation of a superconducting nanowire of width w
and thickness h at a distance d from the metallic gate

The results obtained in the previous section for JJ chains can be applied to
superconducting wires. We consider a superconducting nanowire of rectangular
cross-section, whose width is smaller than the superconducting coherence length:
Ar € h S w <K, here Ap is the Fermi wavelength, h and w are the thickness and
the width of the wire respectively, £ is the superconducting coherence length in the
bulk metal. The wire is placed at a distance d from a grounded metallic gate. We
consider the wire to be in the dirty limit, assuming that the electron mean free path
is much smaller then superconducting coherence length ¢ < £. Therefore, there
are three possible diffusive regimes in the system. First, if the electron mean free
path is shorter than the width ¢ < h, the wire is in the three-dimensional diffusive
limit with the diffusion coefficient D = vpl/3. If h < ¢ < w, then the system

is in the two-dimensional diffusive regime D = vpf/2. And finally, for w < ¢ we
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have one-dimensional diffusive regime with D ~ wvp due to sensitivity of electronic
motion to the surface roughness. We also consider the distance d between the wire
and the grounded metallic gate to be much larger than the wire width, d > w (see
Fig. 5.1). Here are some typical values of superconducting coherence length and the
electron mean free path in experimental setups: for rhenium £ = 100 — 150 nm and
¢ ranging from 60nm to 2 um [87], for aluminium &, = 1.7 um and ¢ ~ 10nm [88|.
Following [89] we can write the phase action for the superconducting wire as a
gradient expansion on the scales k < 1/¢ (for wires k has the dimension of inverse
length, while for the JJ chains it was dimensionless, as we were measuring length in
Josepshon junctions). As the coordinate and time derivatives of the phase contribute
to the action in the same form as gauge fields V' and A, the scalar and the vector

potential, upon integrating out electron degrees of freedom the action takes the form

1 [ dkdw
=3 / oy [0 (1) o () oy () g (0] ol
(5.1)

where the coefficients are defined as components of the response matrix x:

(el n)
j Xio  Xjj —<A —<

which determines the response of the electron density p and current j to the scalar

Figure 5.2: Ladder diagrams series for the components of the response matrix y,,,,
Xijs Xjp and xp;. Solid lines correspond to electron Green’s functions averaged
over disorder, the dashed lines correspond to impurity potential. Each wavy line
corresponds either to 1 or current operator j, depending on the indices of y.

and vector potentials. The components of the response matrix can be calculated
in Feynman diagrammatic formalism as loops with two vertices, each of them can
be either scalar (corresponding to the scalar field V') or vector (corresponding to
the vector field A). In case of intrinsic disorder (as we consider diffusive regime)
the averaging over impurities is done by summing over the series of all ladder di-
agrams (diagrams with noncrossing impurity lines, see Fig. 5.2). As a result, in

low-frequency and low-momentum limit w < A, &k < ¢! without interactions we
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have [90]
v D

Xgp ~ U, ng = X?p ~ 16—Akw, ng ~ tvDA. (5.3)
Here A is the superconducting gap, v and D are the density of states per unit length
and the diffusion coefficient for the wire in the normal state. They can be related
to the bulk density of states v3p and the superconducting coherence length of the
wire material, as well as to the wire cross-section s = wh, v = sv3p, £ = \/m
However, we need to take into account Coulomb interaction in the system. There
are contributions both from the electrons in the wire itself and in the metallic gate

at distance d:

, wdydy’ e? /e e? /e
Ulx—2")=[| =— — . (54)
o/ww Va-aP+u—y7 -2+

Then in the random-phase approximation (see Fig 5.3) we obtain the y-matrix as

©-O

Figure 5.3: Random-phase approximation. Dotted lines correspond to Coulomb
interaction.

X (k’ w) = )ACO (k7w>

vtk 0\ o, ]
1+< 0 0)x(k,w)] : (5.5)

Here ° is the response matrix defined without Coulomb interactions in the system,
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U (k) is the Fourier transform of the Coulomb interaction. Then

1 X2 Xpj
X =1 0 0 0 0y 04 (56)
1L+ U (k) Xoo \ Xjp Xjj [1 + U (k) pr)] — U (k) XpjXijp

One can see that the first term in Eq. (5.1) is suppressed by

2¢e2y 2d 1=y
XopU (k) ~ [m

—RPmE— + 0 (k4d4)] , (5.7)

€ we3/2 |k|d

due to the fact that Xgp ~ v, where v is the one-dimensional density of states for
electrons in the wire, and in metallic wires ve? > 1 (even for a small cross-section
s = 100nm?, for rhenium ve? = 3,6 x 10 |87], for aluminium ve? = 5 x 103 |88|).
As a result, even for relatively low k& < ! we have to consider high frequencies
(w > 2A) and the quasiparticles should be taken into consideration.

As U (k) = U(0) = %ln 24 for k < 1/d is very strong, many terms are

suppressed, the action can be written as 53]

s 1 [ araw e o (bl (g + 0 @)1, 659)

U(0)
where x;; (w) is proportional to the optical conductivity on imaginary frequencies,
Xjj (W) = |w| o (—i|w]) [91]. For low frequencies, w < A, x,; ~ X?j, we can determine
the plasma (Mooij-Schon) mode velocity as v, = /U (0) x}; and low-frequency
admittance as g = g\/%fA.

As a result, the low-energy excitations (the Mooij-Schon modes) are similar to the
ones in JJ chains up to the frequencies w < 2A. The difference is that while in the
JJ chain model there are no excitations above the cutoff frequency wy,, in a wire the
role of the cutoff frequency is played by the superconducting gap 2A, above which
quasiparticle excitations are present and can be virtually excited during the phase
tunnelling process. Therefore, slow phase readjustment in a superconducting wire is
completely analogous to a JJ chain, while in the core of the QPS the order parameter
is suppressed and the phase action is invalid. Thus, for the Ohmic (environment)
part of the action one can use the expressions derived for JJ chains, if ¢/, is defined

as the inverse cut-off wave vector for the Mooij-Schén modes:

orver  2d
Oy ~ o)A = \/U(O)r € = \/ ”6”6 In—— > ¢ (5.9)
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Figure 5.4: The dispersion curve of the phase oscillations ( Mooij-Schén modes) up
to 2A

The non-Ohmic (local) contribution to the action is significantly different for wires
and JJ chains. A quantitative theory for the non-Ohmic contribution to the action
Sloc in superconducting wires does not exist, as the absolute value of the order param-
eter should be taken into consideration along with quaisparticles excitations. Still,
some qualitative understanding can be reached. The key fact is that for wires, the
instanton duration is of the order of A~! [53]. Then, the contribution to the action
from the integral of K(w) is parametrically smaller than that from the Josephson
E; term (for wires the Josephson term has a more complicated form, non-local in
time, but the corresponding contributions can still be identified and estimated [53]).

The low energy properties of a superconducting wire are determined by the
inductance per unit length, £ = (627TV52A2)71, and ground capacitance per unit
length, C = €2/U (0). We can represent a superconducting wire as a Josephson
junction chain with parameters E;, C; and junction size a by matching the Mooij-

Schon mode velocity and the low frequency wire admittance:

% — a\/8E,E,, \/g = (20)?, /8%. (5.10)

While for Josephson junction chains the frequency cut-off is \/8F;E.., for wires it is
given by the superconducting gap 2A. The analog of the random spatial variation
E;. = E;(14n,) would be the spatial variation £(x) = £/[1+4n(z)], which can result
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from, e.g., spatial fluctuations in the wire thickness on the spatial scale exceeding
the thickness itself and the superconducting coherence length £&. The parameters
L(z) and C(z) are already averaged over the microscopic disorder due to impurities,
acting on the length scale shorter than . Then instead of (n,n,) = G, with
G < 1 we have (n(z)n(z')) = Gé(x — 2’), where G has the dimensionality of length
and §(x — 2') is peaked on the length ~ &. If we represent a segment of the wire of
length a > £ by a Josephson junction with E; = 1/[(2¢)?aL], then G = G/a. Thus,
the weak-disorder condition is G < &.

Similarly to the Josephson junction chains, the QPS action in superconducting
wires can be represented as a sum of two contributions: Sqps = Sioc + Senv. The
environment part of the action is also determined by the Mooij-Schén modes. This

enables us to use the Eq. (4.45) for the low-frequency admittance fluctuations:

C3/2£_1/2 ’w’2 |w/‘2
2(2e)* (|wl + o))

(6K (w) 6K (') G. (5.11)

Using the estimate A~! for the instanton duration [53], from Eq. (4.31) we obtain

C\/C/LAG
(557, ~ YLD (5.12)

/
(2e)

The local part of the QPS action can not be calculated precisely for superconducting

an estimate

wires |90, 53|. However, it can be estimated as Sje ~ m [53|, which gives
Gg/¢
2
(35%) ~ (oyigzeans (5.13)

As a result, we have (52 ) > (§S52,) if

€< (5.14)

1
AVLC
In fact, this relation usually holds for superconducting wires because the mode
velocity 1/\/R is sufficiently high. Indeed, 1/C has two contributions: one from
the quantum capacitance of the Fermi sea, and the electrostatic contribution due
to Coulomb interaction. In the absence of Coulomb interaction the mode velocity
would be such that both sides of Eq. (5.14) would be of the same order. However,
the Coulomb contribution is usually much stronger, so the velocity is high enough
to ensure the strong inequality (5.14). The right-hand side of this inequality can be

seen as an analogue of /4 for the superconducting wires, and inequality (5.14) is an
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analogue of ¢, > 1. Moreover, condition (5.14) results in

T (vAE)?
<5S§nv> < 321/\/;2—(]32)(0) (515)

Depending on the cross section of the wire, it can be significant or negligible,
(682.) > 1 or (652

env env

vA¢ ~ 102 for rhenium and aluminium, while e2U(0) ~ 103, resulting in (552 ) < 1.

env

) < 1. For example, for small cross section, s = 100 nm?,

However, it grows with the cross section.

As a result, analogously to the JJ chains, the fluctuations of the QPS action are
mostly determined by the local values of the wire parameters in the phase-slip core
of the size £, which coincides with the predictions of [53]. The contribution to the
environmental part of the action is parametrically smaller. However, it still can be

significant, depending on the wire cross section and disorder.

Chapter summary

In the last chapter we applied the results, obtained in the previous chapters for
Josephson junction chains, to superconducting nanowires. The results for the hy-
drodynamic part of the QPS action, S.,,, due to Mooij-Schén modes are analogous
for both the chains and the wires, provided parameters are correctly identified. The

results for the core action cannot be used for the wires.
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Chapter 6
Conclusions and Outlook

In this thesis we have studied quantum phase slips (QPS). After a brief general
introduction we started with studying phase slips in a single dissipative Josephson
junction. The dissipation was modelled as an external resistance, while the induced
current tilts the potential, resulting in possibility of tunneling from a ground state in
one minimum of the potential to an excited state in the neighboring lower minimum.
This process is an incoherent QPS. We derived the form of voltage peaks at resonant
values of induced current.

In the next chapter we reproduced the known results for coherent QPS in close
and open Josephson junction chains. We discussed the relation of coherent QPS
amplitude scaling with system length to Kosterlitz-Thouless renormalization group.
We also found the numerical correction to the logarithmic term in QPS action.

The fourth chapter is dedicated to effects of disorder on QPS. First, we studied
coherent QPSs in chains with artificially periodically modulated parameters, such
as capacitances and Josephson energies of the junctions. We derived the corrections
to an environmental 0.5,,, and a local §.5,,. parts of QPS action, which can both
be significant. Then we considered two types of disorder: random variations of the
junctions’ areas and random charges, induced by gate voltages. The former result in
negligible correction to the environmental part of QPS action 5., < 1, however,
the correction to the local part can be significant, 65, > 1. Random induced
charges gives random phases for QPS on different junctions. As a result average
QPS amplitude is zero. Then we studied the QPS amplitude statistics and found
the criterion for chain homogeneity.

In the end we applied the results obtained in the previous chapters to supercon-
ducting nanowires. We discussed the problems of derivation the QPS amplitude for

the wire, as the phase action is not valid on the length scales smaller than the su-
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perconducting coherence length &, which is the typical size of the QPS core, where
the phase tunneling occurs due to suppression of absolute value of the order pa-
rameter. However, low-frequency properties of the system are again determined by
gapless Mooij-Schon modes. Therefore, the environment part of the action can be
calculated, while for the local part only estimations are available. We showed that
disorder effect on the QPS amplitude is similar to the one in Josephson junction
chains. As a result, for the majority of experimentally realistic wires, the QPS am-
plitude is determined by a short region of the wire with the smallest cross-section,
that can be seen as a weak link, which agrees with predictions of [53].

There are several perspective directions for further development of the present
work. One effect, which can be studied, is the relaxation from an excited state of
a closed Josephson junction chain. The problem is non-trivial, as in case of zero
external dissipation the only possibility to decrease the system energy is through
exciting Mooij-Schon modes, which are discrete in a finite system. As a result, the
energy can be decreased only by some discrete amounts, which can possibly pre-
vent the system from relaxation. Another interesting phenomenon is the analogue
of a resonant Zener breakdown for an open Josephson junction chain with dissipa-
tion through external resistance. And finally, it would be interesting to study how
quantum fluctuations influence switching from zero voltage state to finite voltage,

corresponding to the running state, in an underdamped Josephson junction.
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Appendix A

WKB calculation of the tunneling
matrix element in the tilted

washboard potential

To find the tunneling matrix element between the classical ground state in one
minimum of the tilted cosine potential and the m-th excited state in the neighboring
lower minimum (from now on we call them left and right, respectively), we put the
system exactly at resonance, I = mwye/m, and calculate the tunnel splitting in the
WKB approximation. We have to write the solutions in the neighboring minima and
connect them to the WKB solutions under the barrier. It is important to mention
that tunneling shifts the level energies from their harmonic values. As a result, one
has to deal with parabolic cylinder functions, which can be seen as generalization
of Hermite polynomials on the case of non-integer index n, such that the energy of
the state inside each minimum is £ = (n + 1/2)wp. It is important to remember,
that the energy here is counted from the bottom of each minimum, therefore, the
same energy level corresponds to different n in different minima. As we consider the
tunneling to be exponentially weak. Then on the left side we have n = ¢ < 1, while
on the right n = m + €. That gives us two solutions in each minimum, which allows
us to connect them to both WKB exponents under the barrier.

The asymptotics for the wave functions in the parabolic potential of the left

minimum are

- 1 Wo 0 " _ Wo 0 2
wn (¢ — _OO) - CLF (TL 4 1) ( 8Ec ‘Qb ¢mm‘) exXp ( 16EC (¢ ¢mm) ) ?
(A1)
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and

SlIl ™ e leC (¢ ¢9nzn)2
’ 8(‘1)[_7(}) ¢ (bmm
+ CL T ((25 ¢ ) ' eflgigc(‘ﬁ*d)omm)z (A.Q)
I (n + 1) min ,
where the position of each minimum is ¢[;,, = arcsin 5-p-+2ml, and for the left mini-

mum we put [ = 0. It is convenient to introduce a new varlable = /55 |0 — &0l
For the WKB solutions in the part of the classically forbidden region, Where WKB

works but the potential can still be considered parabolic, we have:

AL s BL e (A.3)

Ywip = ,
T ViAl

where S(x) is the WKB action

5 .
2 2
= = 2 _ 2 zx— %01, %o
/Ip(cb)ldcb /\/x wdem S g (A.4)

= /5= (a—¢%.)=+2n+1in

the new variable. Substituting this into Eq. (A.3), we obtain

Here a is the turning point, corresponding to xg

2y/e v n ,—z2/2 pe1 (V2041 e z2/2
5 1 x"e +Brx NG e’ /2. (A.5)
V2n e

We can connect the solutions

e—imn 2\/5 n+1/2
oy = A 2 n A6
F(n—i—l)x L L( —2n+1> z (A.6)

Ywrp ~ Ar (

resulting in

e—iwn 2\/6 -n—1/2
A = C A7
LT+ (m) b (A7)

and
sintn Cf, — <\/2n + 1> (n+1/72)
— B,z vent ,

S onymantl 2\/e (4-8)
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resulting in

. —(n+1/2)
sinmn (v/2n+1
By, =—vV2 Cr. A9
V- ( Ve ) " (A9)
The function on the left corresponds to n = € < 1. Then
A~ (2ve) P 0L, By~ —V2mee 'y (A.10)

On the right side of the barrier the solution can be found exactly the same way,
just by exchanging —co <+ +o0 asymptotics, and introducing y = /&2 |d — ¢, -
The WKB solution under the right side of the barrier can be written in the form

A B
Vwip = —m=eSW 4 ZE SW) (A.11)

Vpl vV Ip]
where the WKB action is calculated from the left turning point y,. We connect
solutions under the barrier and in the classical region on the right exactly the same

way as we have done it for the left side:

e—imn 2\/6 -n—1/2
Ap = C A12
T+ 1) (m) " (A.12)

sinn v2n + 1 ~(nt1/2)
BR = —\/§ CR-
NZ3 Ve

Now we can use the fact, that on the right side we have n = m + ¢, where m is

(A.13)

integer and € < 1:

Ap ~ (=" ( 2ve 1>_m_1/2 Chr, (A.14)

m/! 2m +

e\ —(m+1/2)
Br~ —V2r(=1)"¢ <%) Chr. (A.15)

Connecting WKB solution under the barrier is simple, as the actions in the

exponents are calculated from the turning points, therefore
Br = ALG_Sm, AR = BL(ESm, (A16)

where S,, is the tunneling action between the turning points. As a result, we finally
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get

o —(m+1/2)
—V27 (—1)™e (%) Cr = (2ve) " Cre™, (A.17)

_1\ym —m—1/2
—\/27T6€1/4CL:< D ( 2ve 1) Cre™m. (A.18)

m! 2m +

Then we have

CR/CL = 2m/2vm!,

and +1/2
( m + 1/2> 675”” m+1
e==+ e 2 .
V2mm! 21/4
This corresponds to the tunneling matrix element
m+1/2
Wo ( m+ 1/2) e om
= e 2 (A.19)

V2mrm! 21/4

Now it only remains to calculate the tunneling action S,,:

b
1 /E 1 1
S = 3\ / F‘C] / \/— (cosp —cos @l . ) — %E, (6 — ¢0n) — 5;—3 do,  (A.20)

where a and b are the turning points (see Fig.2.4). We can determine a as

1 . I, I
SWo — Ejcos (bmin) — 2—€¢mm =—FEjcosa— 5% (A.21)

As we assume it to be low enough for the harmonic oscillator approximation to be

valid, we can write

ar 2B L g (A.22)
Wo
For b we have
E, 1/2
bsgb}nm—\/S e(m+1/2) (A.23)
wo

Therefore, the action is

S \/gECJ - (m +1+1In %) +0 ((EC/EJ)V“) : (A.24)
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