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Abstract

In this thesis quantum phase slips in one-dimensional superconductors are stud-

ied. One-dimensional superconductors can be represented by two physical systems:

a superconducting wire and a Josephson junction chain. A superconducting wire

can be considered one-dimensional, if its transverse dimensions are smaller than the

superconducting coherence length. In one-dimensional systems �uctuations strongly

in�uence the system properties. The quantum phase slips correspond to quantum

tunneling between di�erent phase con�gurations along the superconductor. They

can be of two types. Coherent quantum phase slips do not involve dissipation and

only shift energy levels of the system. Incoherent quantum phase slips lead to a

dissipative relaxation in the system.

We start with studying an incoherent phase-slip process in a single underdamped

current-biased Josephson junction. This process corresponds to dissipative tunneling

between weakly broadened levels in neighboring minima of the tilted washboard

potential. We derive an expression for the voltage peaks near the resonant values of

the external current, which correspond to matching energies of the lowest level in one

minimum and an excited level in the lower neighboring minimum. This process is

analogous to resonant Zener breakdown known for electrons in a superlattice subject

to a strong electric �eld.

We continue with studying coherent quantum phase slips in a Josephson junction

chain. First, we determine the amplitude of a coherent quantum phase slip in a ho-

mogeneous chain. It has already been shown that the amplitude is determined by the

imaginary-time instanton action, which can be divided into the local (corresponding

to phase winding by 2π on one junction) and environmental (corresponding to phase

readjustment in the rest of the chain, which is determined by gapless Mooij-Sch�on

modes) parts. We derive a numerical correction to the environmental part of the

action, going beyond logarithmic precision. Second, we study the e�ect of spatial

periodic modulations of the chain parameters on the coherent quantum phase slip

process. We calculate the corrections both to the local and environmental part of the

coherent quantum phase slip action and show that both of them can be signi�cant,

depending on the chain and modulations parameters. Then, we study the e�ect of

two types of quenched disorder: random spatial modulation of the junction areas

and random induced background charges. The main result is that the dominant



contribution to the coherent quantum phase slip action is local. We also study the

statistics of the mesoscopic �uctuations of the quantum phase slips amplitude and

show that it can be non-Gaussian for chains which are not su�ciently long.

Finally, we consider one-dimensional superconducting wires. There is no micro-

scopic theory available for the fast phase winding in the phase-slip core, where the

order parameter is suppressed. However, the slow phase readjustment process, de-

termined by the Mooij-Sch�on modes with frequencies lower than 2∆, is analogous to

that in Josephson junction chains, so the resulting environmental part of the coher-

ent quantum phase slip action takes the same form. Therefore, we discuss how our

results, obtained for Josephson junction chains, can be applied to inhomogeneous

superconducting wires.

My publications related to the thesis

1. A. E. Svetogorov, M. Taguchi, Y. Tokura, D. M. Basko, and F. W. J. Hekking.

Theory of coherent quantum phase slips in Josephson junction chains with periodic

spatial modulations. Phys. Rev. B 97, 104514 (2018).

2. A. E. Svetogorov and D. M. Basko. E�ect of disorder on coherent quantum phase

slips in Josephson junction chains. Phys. Rev. B 98, 054513 (2018).
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R�esum�e

Dans cette th�ese, j'�etudie les sauts de phase quantiques dans des supracon-

ducteurs unidimensionnels. Les supraconducteurs unidimensionnels peuvent �etre

repr�esent�es par deux syst�emes physiques: un �l supraconducteur ou une cha��ne de

jonctions de Josephson. Un �l supraconducteur peut �etre consid�er�e unidimensionnel

si ses dimensions transversales sont inf�erieures �a la longueur de coh�erence supracon-

ductrice. Dans les syst�emes unidimensionnels, les �uctuations ont une grande in-

�uence sur les propri�et�es du syst�eme. Les sauts de phase quantiques correspondent

au tunnel quantique entre di��erentes con�gurations de phase le long du supracon-

ducteur. Ils peuvent �etre de deux types. Les sauts de phase quantiques coh�erents

n'impliquent pas de dissipation et ne font que d�eplacer les niveaux d'�energie du

syst�eme. Les sauts de phase quantiques incoh�erents entra��nent une relaxation dissi-

pative dans le syst�eme.

Nous commen�cons par �etudier un processus incoh�erent de saut de phase dans une

jonction de Josephson sous-att�enu�ee et soumise �a un courant externe. Ce processus

correspond �a un processus tunnel dissipatif entre des niveaux faiblement �elargis dans

les minima voisins du potentiel de planche �a laver inclin�e. J'obtiens une expression

pour les pics de tension proches des valeurs de r�esonance du courant externe, qui

correspondent �a l'�energies du niveau le plus bas dans un minimum et celle d'un

niveau excit�e dans le minimum voisin �etant proches. Ce processus est analogue �a la

rupture r�esonante de Zener connue pour les �electrons dans un super-r�eseau soumis

�a un champ �electrique fort.

Nous continuons �a �etudier les sauts de phase quantiques coh�erents dans une

cha��ne de jonctions de Josephson. Tout d'abord, nous d�eterminons l'amplitude d'un

saut de phase quantique coh�erent dans une cha��ne homog�ene. Il a d�ej�a �et�e montr�e

que l'amplitude est d�etermin�ee par l'action de l'instanton dans un temps imagi-

naire, qui peut �etre divis�ee en deux parties: l'action locale (correspondant �a un

enroulement de la phase par 2π sur une jonction) et l'environnement (correspon-

dant �a un r�eajustement de la phase dans le reste de la cha��ne, qui est d�etermin�ee

par des parties de Mooij-Sch�on sans gap). Nous obtenons une correction num�erique

de la partie environnementale de l'action, allant au-del�a de la pr�ecision logarith-

mique. Deuxi�emement, nous �etudions l'e�et de la modulation p�eriodique spatiale

des param�etres de la cha��ne sur la phase quantique coh�erente. Nous calculons les

corrections aux parties locale et environnementale de l'action du sauts de phase

quantique coh�erent et montrons que les deux peuvent �etre signi�catives, en fonction

des param�etres de la cha��ne et des modulations. Puis nous �etudions l'e�et des deux
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types de d�esordre : modulation spatiale al�eatoire des surfaces des jonctions et des

charges de fond induites de mani�ere al�eatoire. Le r�esultat principal est que la contri-

bution dominante �a l'action coh�erente du saut de phase quantique est locale. Nous

�etudions �egalement la statistique des �uctuations m�esoscopiques de l'amplitude des

sauts de phase quantiques et montrons qu'elle peut �etre non Gaussienne pour des

cha��nes qui ne sont pas su�samment longues.

En�n, nous consid�erons des �ls supraconducteurs unidimensionnels. Il n'y a

pas de th�eorie microscopique disponible pour l'enroulement de phase rapide dans

le noyau du saut de phase, o�u le param�etre d'ordre est supprim�e. Cependant, le

processus lent de r�eajustement de la phase, d�etermin�e par les modes de Mooij-Sch�on

avec des fr�equences inf�erieures �a 2∆, est analogue �a celui des cha��nes de jonction de

Josephson, de sorte que la partie environnementale r�esultante de l'action du saut de

phase quantique coh�erent prend la m�eme forme. Par cons�equent, nous discutons de

la fa�con dont nos r�esultats, obtenus pour les cha��nes de jonction Josephson, peuvent

�etre appliqu�es �a des �ls supraconducteurs inhomog�enes.

Mes publications li�ees �a la th�ese

1. A. E. Svetogorov, M. Taguchi, Y. Tokura, D. M. Basko, and F. W. J. Hekking.

Theory of coherent quantum phase slips in Josephson junction chains with periodic

spatial modulations. Phys. Rev. B 97, 104514 (2018).

2. A. E. Svetogorov and D. M. Basko. E�ect of disorder on coherent quantum phase

slips in Josephson junction chains. Phys. Rev. B 98, 054513 (2018).
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Chapter 1

Introduction

1.1 One-dimensional superconductivity: supercon-

ducting nanowires and Josephson junction chains

The phenomenon of superconductivity has taken a signi�cant place in condensed

matter physics since its discovery in 1911 by Kamerlingh Onnes [1]. The most inter-

esting feature of the phenomenon is the vanishing resistance of some metals below a

critical temperature Tc. Superconductivity is determined by coherent pairs of elec-

trons (Cooper pairs). These coherent Cooper pairs form a Bose-Einstein condensate,

whose wave function can be expressed by a complex order parameter ∆, which at

the same time determines the energy gap in the spectrum of quasiparticle excita-

tions. As a result, the state of a superconductor can be described by the Cooper-pair

condensate and quasiparticle excitations above the energy gap |∆|. In a bulk su-

perconductor, collective excitations (Goldstone modes) are also gapped by virtue of

the Anderson-Higgs mechanism, the gap corresponds to the plasma frequency of the

electrons in the metal. However, the picture changes if the system dimensionality

is reduced. In this case the collective excitations are no longer gapped, the �uctua-

tions of the order parameter are strong, which can in�uence the system properties

dramatically.

Superconductivity in one-dimensional systems has been studied both theoreti-

cally and experimentally since long ago [2, 3, 4, 5, 6]. One-dimensional supercon-

ductors are structures in which the order parameter of the Cooper-pair condensate

is almost constant across the superconductor and can vary only along the system.

Therefore, the properties of the system can be described by the order parameter

pro�le along the superconductor. Presently, one-dimensional superconductivity can
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be realized in Josephson junction (JJ) chains or thin metallic wires (see Refs. [7]

and [8] for respective reviews). Such structures are of great interest as they have

a variety of di�erent applications. These applications range from photon detectors

used in astronomy [9] to the proposed realization of a fundamental current standard

in quantum metrology [10, 11, 12]. Moreover, one-dimensional superconductivity is

a fundamental issue as it corresponds to the case of strong quantum �uctuations

resulting in a superconductor-insulator quantum phase transition. A quantum one-

dimensional system can be mapped on a two-dimensional classical system, which al-

lows to connect this quantum phase transition to the Berezinskii-Kosterlitz-Thouless

transition [13].

Superconducting nanowires can be considered one-dimensional from the con-

densate perspective, if their thickness w is much smaller than the superconducting

coherence length, w � ξ. Then the superconducting order parameter ∆ = |∆|eiφ

varies only along the wire and, in case the absolute value |∆| is not suppressed,

it is just the phase φ con�guration along the wire, which determines the system

properties. Still, from the fermionic quasiparticle excitation perspective, all realistic

wires are three-dimensional, as typical Fermi wavelength is of the order of a few

angstroms, while the thinnest existing wires have the transverse size of the order

of 10 nm. At low temperatures the dominant excitations are not quasiparticles but

collective gapless plasma modes (Mooij-Sch�on modes [14]) corresponding to small

oscillations of phase φ. And if the absolute value of the order parameter is sup-

pressed in some region of the wire, allowing the phase to �ip by 2π, those modes

determine phase readjustment in the rest of the core (for details see Sec. 1.2 and

Chapter 5).

A Josephson junction consists of two superconducting electrodes connected by

a weak link or a tunnel barrier. It was predicted [15] and then observed [16] that

at zero voltage there is a supercurrent I through the junction, which depends on

the superconducting phase di�erence ∆φ on the electrodes, I = Ic sin ∆φ, where

Ic = 2eEJ is the critical current supported by the junction (EJ is the Josephson

coupling energy, the electron charge is −e and we put ~ = 1 throughout the thesis).

Moreover, for nonzero voltage V along the junction the phase di�erence evolves as

d∆φ/dt = 2eV . A JJ chain consists of many superconducting islands, connected

by Josephson junctions. The properties of such a system are determined both by

the junction parameters, namely critical currents Ic, and e�ective capacitances C

(corresponding to electrostatic interactions between the neighboring islands), as well

as superconducting islands' capacitances to the ground Cg (corresponding to elec-
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trostatic interactions between the islands and the substrate) schematically shown

on Fig. 1.1. The continuous interest in JJ chains is due to their use as elements of

various superconducting circuits [17]. As JJ chains can be fabricated with a good

degree of control, they are used to create electromagnetic environments with special

properties, for example, to suppress charge �uctuations in the system [18, 19, 20].

Moreover, new coherent devices, such as topologically protected qubits [21, 22], were

proposed. And �nally JJ chains are supposed to be useful in realization of the fun-

damental current standard [10, 11, 12] dual to the Josephson voltage standard [23].

Figure 1.1: A schematic representation of a Josephson junction chain.

There are three main energy scales in a JJ chain. We have already introduced

Josephson coupling energy EJ , which determines the energy of the supercurrent

�owing through the junction. The Coulomb electrostatic energy associated with

Cooper-pair tunneling is determined by the energy scales corresponding to two ca-

pacitances, Ec = e2/(2C) and Eg = e2/(2Cg). Here we are interested in JJ chains

with EJ being the largest energy scale. Then the wave function of the system of N

junctions Ψ (φ0, φ1, ...φN) is peaked near some phase values φn, and a phase-coherent

Cooper-pair current can �ow through the chain without any external voltage.

1.2 Phase slips

During the studies of one-dimensional superconductivity an important role played

by phase slips has been realized [24]. Phase slips can be thermally activated [25, 26]

near the critical temperature Tc or caused by quantum tunneling at lower temper-

atures. A thermally activated phase slip is a nontrivial thermal �uctuation of the

complex order parameter ∆, corresponding to a temporal suppression of |∆| in a
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short region of the system, which allows the phase to jump by 2π. A quantum

phase slip (QPS) is a sudden change of the superconducting phase di�erence along

a one-dimensional superconductor by 2π via quantum-mechanical tunneling. In a

good superconductor phase slips are rare events, but they can give rise to qualita-

tively new e�ects, such as small but �nite dc resistance of the superconductor at

temperatures lower than the critical temperature Tc [27, 28, 29, 30, 31], or system

coupling to external charges [32, 33, 34, 35, 36]. If these phase slips become fre-

quent enough, they can turn the system into an insulator [13, 37, 38, 39], which is

superconductor-insulator phase transition. There are two types of QPS: incoherent

QPS, which are accompanied by energy dissipation, and coherent QPS, which only

shift the system energy levels. Both incoherent [27, 29, 30, 31, 40, 41, 42, 43] and

coherent [19, 35, 44, 45] QPSs have been observed experimentally. The simplest

system to observe the phase slips is a single Josephson junction. In case of low dis-

sipation and no induced current, the coherent QPSs result in band structure of the

system spectrum instead of discrete low-energy levels (discussed in more detail in

Sec. 2.1 of the present thesis), while dissipation in combination with induced current

can lead to incoherent QPSs, resulting in voltage peaks at resonant values of the

current (see Sec. 2.2).

We are mainly interested in coherent QPSs in the regime when phase tunneling

can be described quasiclassically. Then the amplitude of a single coherent QPS is

proportional to e−SQPS , where SQPS � 1 is the action on the classical imaginary-time

(instanton) trajectory φcl (x, τ) corresponding to the coherent QPS. This trajectory

consists of a fast phase winding by almost 2π in a small region of the superconductor

(a core region of the length `core ∼ 1 junction in a JJ chain or `core ∼ ξ in a

superconducting wire) and slow phase readjustment in the rest of the chain/wire.

The readjustment is governed by gapless Mooij-Sch�on modes [46, 47, 14, 48, 49, 50],

which represent small phase oscillations in the system. They can be seen as an

environment for the coherent QPS. This environment contribution to the action

diverges logarithmically with the system length L and gives rise to the logarithmic

interaction between phase-slips in multi-QPS con�gurations [13, 37, 38]. As a result,

the action can be divided into two parts: local and environmental, SQPS = Sloc+Senv.

The latter depends on the system length logarithmically, Senv = g ln L
`core

[8, 51],

where g is the dimensionless admittance of the system in units of superconducting

conductance quantum (2e)2/(π~) (we momentarily restore ~); for JJ chains it is

g =
√

π2EJ
8Eg

[52]. The local part of the action can be calculated explicitly for a JJ

chain, Sloc =
√

8EJ/Ec [33]. However, for superconducting nanowire only an order-

4



of-magnitude estimate is available for the local part of the action, Sloc ∼ νξ∆ [53],

where ∆ is the superconducting gap, ξ is the superconducting coherence length

and ν is the one-dimensional density of states at the Fermi level in the normal state.

Indeed, as the order parameter ∆ is suppressed in the core region of the length ξ, the

phase action is not valid in this region, and �uctuations of the absolute value of the

order parameter should be taken into account as well as quasiparticle excitations over

2|∆|. A more precise result can be obtained in the weak link limit [53]. Therefore,

further we derive quantitative theory for JJ chains, which then allows us to do

estimations for the superconducting nanowires.

1.3 Superconductor-insulator transition

As we have already mentioned, proliferation of quantum phase slips gives rise to

the superconductor-insulator transition. This is a correct statement for in�nite

chains. For �nite chains the system is rather in superconducting or insulating regime

depending on the phase-slip frequency (amplitude for coherent QPS), as phase slips

suppress the supercurrent, however, there is rather a crossover than a sharp phase

transition.

In their breakthrough work [54] Kosterlitz and Thouless described a new type of

phase transition, Berezinskii-Kosterlitz-Thouless (BKT) transition, which can occur

in a two-dimensional XY model or in neutral super�uids. The transition is caused

by the process of vortex-antivortex unbinding. It is known that a one-dimensional

quantum system can be mapped on a two dimensional classical system: the �rst

dimension corresponds to the coordinate x along the JJ chain, 0 < x < L, while the

second dimension is the imaginary time τ , 0 < τ < β ≡ 1/T , the inverse tempera-

ture. It was shown that the JJ chain can be mapped on a classicalXY model [13, 38],

where the role of the spin orientation angle is played by the superconductor order

parameter phase φ on each island. As a result, the superconductor-insulator tran-

sition in an in�nite JJ chain at zero temperature can be seen as an analogy of the

BKT phase transition in a classical XY model. A phase slip in a JJ chain corre-

sponds to a vortex in the (x, τ) plane. The phase slips interact logarithmically, the

strength of interaction is controlled by g. As a result, the pre-logarithm factor g in

the action Senv determines the phase transition: if it is larger than the critical value

gc, the vortices are bound in vortex-antivortex pairs; otherwise, free vortices destroy

the phase coherence and push the system into an insulating state. Therefore, g

plays the same role as the inverse temperature β = 1/T in the BKT transition for
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the classical XY model. If we consider realistic �nite-length systems, there is no

real phase transition, however, the BKT theory still can be useful to determine the

QPS amplitude scaling with the system size [55]. The scaling shows that there is a

crossover from superconducting to insulating regime in the region of g close to the

critical value gc, de�ned for our in�nite system.

1.4 Structure of the thesis

In this thesis we study the QPS process, which corresponds to quantum tunneling

between phase con�gurations, representing classically degenerate states. We start

with the simplest system possible � a single Josephson junction, discussed in Chap-

ter 2. First, we review how in case of zero dissipation and no external currents

coherent QPSs between in�nite number of the potential minima result in a band

structure of the system spectrum due to the Bloch theorem. Then we study the

e�ect of dissipation, modelled as an external resistance, which is inevitable in a real

experimental setup, on current-biased Josephson junction. We show that due to

incoherent quantum phase slips at certain resonant values of induced current there

are voltage peaks, and derive the form of these peaks.

In Chapter 3 we study coherent QPS in JJ chains. Starting from the case of ho-

mogeneous chain, we study a single coherent QPS process, which can be divided into

two parts: fast phase winding by 2π on one junction, and slow phase readjustment

in the rest of the chain (which plays the role of the environment for a phase slip).

We have been able to improve the result for the QPS action which was previously

known only with logarithmic precision [56].

We continue by studying the e�ects of disorder on the coherent QPS process in

Chapter 4. First, we consider an arti�cial case of spatially periodic modulations

(such as weak modulation of the junctions' areas). The Mooij-Sch�on modes are

sensitive to spatial variations of the chain parameters. Indeed, in this case the en-

vironment contribution to the QPS action can be signi�cantly modi�ed, both the

correction to the local part of the action (determined by the QPS core) and environ-

mental part can be dominant, depending on the chain and modulation parameters.

This study was published in [56]. Then we analyze the e�ect of disorder on both

the local and environmental contributions to the QPS action, published in [57]. We

consider two types of disorder: random spatial variation of the chain (i.e., junction

area variation) and random induced charges (which can arise from random gate volt-

ages or electronic density modulations). The former is known to induce Mooij-Sch�on

6



modes localization. However, we �nd that the e�ect of disorder on the environment

contribution to the QPS action is weak, and that the localization of the Mooij-Sch�on

modes does not signi�cantly a�ect the coherent QPS amplitude. The coherent QPS

amplitude in a disordered chain is a random quantity, determined as a sum of all the

partial phase-slip amplitudes on di�erent junctions (each is determined by classical

action Sn and, in case of induced charges, by a random phase θn)

W =
N−1∑
n=0

Wn =
N−1∑
n=0

Ωne
−Sn−iθn , (1.1)

whose statistics is determined by the �uctuations of the local term in the QPS

action. We study this statistics and show that it can be non-Gaussian if the chain

is not su�ciently long.

In the last chapter we apply the results obtained for Josephson junction chains to

superconducting nanowires. We show that the systems have similar low-frequency

properties, determined by Mooij-Sch�on modes, therefore, we can calculate the en-

vironmental part of the QPS action in a nanowire. However, for the local part we

have only an order-of-magnitude estimate, as the phase action cannot be written

on the length scales smaller than superconducting coherence length ξ, which is the

typical size of a phase-slip core. Nevertheless, we can show that qualitatively the

e�ects of disorder on QPS amplitude in wires are similar to the ones in Josephson

junction chains.
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Chapter 2

Quantum phase slips in an

underdamped Josephson junction

2.1 Coherent QPS and Bloch oscillations

The simplest system to consider phase slips is a single Josephson junction. We start

with the junction with capacitance C formed by the two junction electrodes and

Josephson energy EJ = Ic/(2e), where Ic is the critical current supported by the

junction. Then the Hamiltonian of the system is

H =
Q2

2C
− EJ cosφ, (2.1)

where Q is the electric charge of the capacitance C, while φ is the phase di�erence

between the two electrodes of the junction. These variables are conjugate: [φ,Q] =

2ei.

If we consider a Josephson junction disconnected from any other source of charges,

the charge on the electrodes is quantized, Q = 2en, where n is integer. Then the

basis functions of the system have the form Ψ ∼ exp
(
−iQφ

2e
)
)
∼ exp(−inφ), which is

2π-periodic in φ. Phases φ and φ+ 2π represent the same physical state. Therefore,

φ is a compact variable. As a result, the system is analogous to a quantum pendu-

lum with angular momentum Q/(2e), angular de�ection φ and moment of inertia

C/(2e)2. The spectrum consists of discrete energy levels.

In experimental setups the junction is usually connected to other circuit ele-

ments, the charge on the capacitance is not quantized (as now it is impossible to

separate the electron state in the island and in the connected electrodes). Phases φ

and φ + 2π represent two distinct physical states, the phase φ is not compact, and

8



the wave function is not necessarily 2π periodic. Then the system is equivalent to a

particle of mass C/(2e)2 with momentum Q/(2e) moving in a one-dimensional peri-

odic potential −EJ cosφ, where φ is a coordinate. We can rewrite the Hamiltonian

as

H = −(2e)2

2C

∂2

∂φ2
− EJ cosφ. (2.2)

The �rst term of the Hamiltonian corresponds to the kinetic energy, while the

Josephson term is the potential energy. We consider the case, when the poten-

tial term dominates, EJ � Ec ≡ e2

2C
. If we neglect tunneling, we have equivalent

sets of energy levels in all minima of the cosine potential. However, if we include

quantum tunneling between the minima, the degeneracy between the levels is lifted

and, as the tunneling is possible between the in�nite number of classically degenerate

levels, the resulting spectrum consists of energy bands rather than discrete levels.

This tunneling process is a coherent quantum phase slip (as there is no dissipation).

Its amplitude can be described by an instanton in the imaginary time.

As the system has a periodic potential, the Bloch theorem can be applied. The

eigenfunctions are Bloch waves:

ψ
(n)
k (φ) = u

(n)
k (φ) eikφ, u

(n)
k (φ+ 2π) = u

(n)
k (φ) . (2.3)

Here q = 2ek can be seen as a quasicharge in analogy with quasimomentum. And as

the energy is periodic in k within each band, E(n) (k + 1) = E(n) (k), we can restrict

the quasicharge to the �rst Brillouin zone, −1/2 < k < 1/2. We can substitute

eigenfunctions (2.3) into the Schr�odinger equation with Hamiltonian (2.2). As we

work in the limit EJ � Ec, for low energy levels, n �
√
EJ/Ec, we can apply

tight-binding approximation and �nd:

u
(n)
k (φ) =

∞∑
l=−∞

W (n) (φ− 2πl) e−i(φ−2πl)k, (2.4)

where W (n) (φ) is just the n-th eigenfunction of the harmonic oscillator with fre-

quency ωp =
√

8EJEc. Then the corresponding lowest energy bands are [58] (see

schematic representation of all energy bands in Fig. 2.1)

E(n) (φ) = ωp

(
n+

1

2

)
+

1

2
(−1)n+1 δ(n) cos (2πk) , (2.5)
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where δ(n)/4 is the exponentially small tunneling amplitude

δ(n) ≈
√

2/πEc

(
EJ
2Ec

)n/2+3/4
24n+5

n!
exp (−8EJ/ωp) . (2.6)

The lowest energy bands are narrow (the bandwidth is δ(n)) and located close to the

0

1

2

3

4

Figure 2.1: A schematic representation of the energy bands in a single Josephson
junction

energy levels of the plasma-frequency harmonic oscillator. Here we have illustrated

how the coherent quantum phase slips result in a band structure of the spectrum of

a single Josephson junction.

If the junction is connected to an external dc current source, the term −Iφ/(2e)
should be added to the potential. This can be easily seen from the Heisenberg equa-

tion of motion, corresponding to charge conservation, ∂Q/∂t = Itot = −Ic sinφ+ I,

which is correct only if we introduce a term in Hamiltonian, proportional to the in-

duced current and linear in φ. If this current is not too large, so that we can neglect

the inter-band transitions, the spectrum consists of equally spaced localized levels

(Wannier-Stark ladder) [59]. Now, if some dissipation is included in consideration,

these Wannier-Stark levels acquire a �nite life-time, the phase slowly drifts along

the tilted potential and the voltage arises V = 1
2e
dφ
dt
.

At low temperatures quasiparticles are absent, so the dissipation is usually due

to the external circuit (i.e. the resistance of the wires, connected to the junction). It

can be modelled as an external resistance R (see Fig. 2.3). There are two important

10



Figure 2.2: I − V characteristics from [60] at T = 0 for ω0 = 100δ(0). From top
to bottom, solid lines correspond to RQ/R = 100, 5, 1, 0.5 and 0.1. Dashed lines
correspond to �nite temperature T = ω0/50. Φ0 = 2π/(2e) is a �ux quantum,
EL = Φ2

0/(2L) is the inductive energy, δ(0) is the Bloch bandwidth, Vc = πδ(0)/e is
the maximal (critical) voltage the junction can sustain. The y-axis corresponds to
the current through the junction only, and not to the total external current, which
�ows both through the junction and the resistance.

limits: an overdamped junction, when this resistance is much smaller than resistance

quantum R � RQ = 2π/(2e)2, and the opposite limit, which corresponds to an

underdamped junction R � RQ. In the �rst limit the supercurrent peak at zero

voltage acquires a �nite width [60, 61]. Increasing the external resistance R shifts

the supercurrent peak to higher voltages, and at R > RQ the system becomes an

insulator: the I−V curve develops a branch with zero current through the junction,

but �nite voltage [60, 61]. This is often called Shmid phase transition, however, is

still debated [62]. In the limit R � RQ of an underdamped junction the I − V

characteristics resembles the one for an overdamped junction but with the role of

voltage and current interchanged [60]. The voltage peak at zero current is the so-

called Bloch nose [63, 58]. The I − V characteristics for a current-biased junction
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derived in di�erent regimes in [60] are shown in Fig. 2.2. In the next section we

study the I − V characteristics for higher induced currents.

Another important aspect of the underdamped limit is that in the classical RCSJ

model the I−V curve is hysteretic, as at I > Ih = 8eω0

R(2e)2
there are two possible states:

one with zero voltage, corresponding to phase localized inside one minimum of the

potential, and the running state, corresponding to a �nite voltage, when the phase

is sliding down the tilted potential, as the di�erence of the potential energy between

the neighboring potential maxima is larger than energy dissipated, while moving

between these maxima. In case of classical thermal noise it was shown [64, 65]

that the system is switching from the zero-voltage state to a �nite voltage state at

some current I > Ih. Quantum �uctuations should lead to a crossover between the

zero voltage and the �nite voltage state at some current I < Ic due to possibility

of tunneling through the barrier into the continuous spectrum. To the best of

my knowledge, the e�ect has not been studied yet quantitatively. In the rest of

this chapter we study a precursor to this e�ect � resonant tunneling into weakly

broadened excited levels in the neighboring minimum.

2.2 Incoherent QPS and resonant Zener breakdown:

Lindblad master equation

In this section we study an underdamped junction R� RQ in the regime of higher

induced currents, when the energy di�erence between the neighboring minima of

the potential tilted by the induced current, −EJ cosφ − Iφ/(2e), is comparable to

the level spacing inside a single minimum and we can no longer neglect transitions

between di�erent Bloch bands (here we suppose that we have several energy levels

inside each minimum). As a result, at certain current values the energy of the lowest

level in one minimum matches the energy of an excited state in the neighboring

minimum and, therefore, we have resonant tunneling between them (see Fig. 2.4).

Then from the excited state in the lower minimum the system can relax to the ground

state and tunnel to the next lower minimum. In the Bloch band representation,

this process is the equivalent of resonant Zener tunneling [66] of electron in the

presence of strong electric �eld. Such a process was experimentally observed in

superlattices [67, 68, 69]. The tunneling process between the neighboring local

minima is dissipative and corresponds to an incoherent quantum phase slip. We

assume the dissipation to be weak, so that relaxation rate Γ inside one minimum

is much smaller than level spacing. This tunneling results in voltage peaks as a

12
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Figure 2.3: A schematic representation of a single dissipative junction with Joseph-
son energy EJ , capacitance C, induced current I and current Ib through external
resistance R.

function of current. The opposite case of strongly broadened levels was studied

in [37].

The model consists of a single JJ, with external current I, shunted by a resistance

R, modelled as a bath of harmonic oscillators [61], (see Fig. 2.3). The Hamiltonian

is

H =
Q2

2C
− EJ cosφ− I

2e
φ+

Ib
2e
φ+Hb, (2.7)

where Ib =
∑

n 2egn
(
b†n + bn

)
is the current through resistor, Hb =

∑
n ωnb

†
nbn is the

bath Hamiltonian, corresponding to dissipation in the resistor, ωn are frequencies of

the harmonic bath modes, bn and b
†
n are annihilation and creation operators for the

bath modes, gn are coupling constants. The Hamiltonian can be divided into three

parts, H0 = Q2

2C
−EJ cosφ− I

2e
φ, corresponding to the junction without dissipation,

Hint = Ib
2e
φ, which is the interaction with the thermal bath, and the remaining part

Hb is the Hamiltonian of the bath itself.

Let us consider the states of the system in one of the local potential minima

of Hamiltonian H0, φ
l
min = arcsin I

2eEJ
+ 2πl, where l labels the minima. To have

local minima of the potential we need the current to be lower than the critical

value I < Icrit = 2eEJ . For I � Icrit we can approximate the states inside a

minimum as the states of a harmonic oscillator with momentum Q, coordinate φ,
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Figure 2.4: The tunneling X from the lowest classical state in the minima to the
�rst excited state in the lower neighboring local minima and further relaxation Γ to
the lower state.

mass m = C/ (2e)2 and frequency ω2
0 = ω2

p cosφlmin ≈ ω2
p:

H0 =
Q2

2C
−EJ cosφ− I

2e
φ ≈ −(2e)2

2C

∂2

∂φ2
+

1

2
EJ cosφlmin

(
φ− φlmin

)2
+const. (2.8)

As a result, we have approximate energy levels

El
n = ω0

(
n+

1

2

)
− EJ −

I

2e

(
arcsin

I

2eEJ
+ 2πl

)
. (2.9)

We can write the Lindblad master equation for the reduced density matrix of

the system ρ̂ (the total density matrix is ρ̂tot = ρ̂× ρ̂b, where ρ̂b corresponds to the

bath density matrix), using the standard approach (tracing out the bath degrees of

freedom) [58]

d

dt
ρ̂ (t) = −i

[
Ĥ0, ρ̂

]
+

Γ

2

∑
l

(
2âlρ̂ (t) â†l −

{
ρ̂ (t) , â†l âl

})
. (2.10)

Here âl and â
†
l are lowering and raising operators between the harmonic oscillator
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levels within each minimum, Γ stands for the relaxation rate inside this minimum,

Γ ∝ Re

t∫
0

dt′

(2e)2
〈Ib (t) Ib (t′) e−iω0t′ + Ib (t′) Ib (t) eiω0t′〉. (2.11)

To relate Γ to the resistance R, let us neglect tunneling and multiply Eq. (2.10) by

φ̂ and take the trace over ρ̂. Then we obtain an equation, corresponding to phase

evolution inside one minimum

d

dt
〈φ− φmin〉 = ω0

〈Q〉
2e

(
8Ec
EJ

)1/2

− Γ

2
〈φ− φmin〉 . (2.12)

Taking time derivative and relating d
dt
〈Q〉 to 〈φ − φmin〉 through the Heisenberg

equation of motion results in

d2

dt2
〈φ〉+ ω2

0 〈φ〉+
Γ

2

d

dt
〈φ〉 =

8EcI

2e
. (2.13)

In linear approximation (so that we can put sinφ ≈ φ) our system can be seen as

an LCR-contour, then the Kirchho� equation is

C

2e
φ̈+

φ

2eL
+

φ̇

2eR
= I. (2.14)

We can compare it to Eq. (2.13) and express relaxation rate Γ through the contour

parameters

Γ =
2

RC
=

2ω0

√
8Ec/EJ

(2e)2R
. (2.15)

We assume the relaxation rate to be much smaller than the oscillator level spacing,

Γ � ω0, then we need R/RQ �
√
Ec/EJ . Since we assume EJ � Ec, this is a

weaker condition than R � RQ, so this limit is often referred to as moderately

damped limit.

2.3 Voltage peaks due to incoherent QPS

2.3.1 E�ective two-level case

Let me start with the simplest case, when the lowest level in each minimum matches

the �rst excited level in the neighboring minimum; in this case, only two levels per

minimum need to be considered. We are interested in the tunneling between levels
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E1
1 and E0

0 , which are schematically depicted in Fig. 2.4, then we can rewrite the

system Hamiltonian Ĥ0 in the multiorbital tight-binding form:

〈ln
∣∣∣Ĥ0

∣∣∣ l′n′〉 = δll′δnn′E
l
n + (δl′,l+1δn′1δn0 + δl′,l−1δn′0δn1)X, (2.16)

where indices l and l′ label minima of the potential, n, n′ = 0, 1 are the level indices

inside one minimum, X stands for the matrix element of tunneling between levels

|l, 0〉 and |l + 1, 1〉 (tunneling between the excited state in the �rst minimum and

ground state in the neighboring). It is calculated in Appendix A.

Since we are interested in the stationary situation, when all minima are equiva-

lent, the density matrix must be periodic in the minimum index:

〈ln |ρ̂| l′n′〉 = 〈l + k, n |ρ̂| l′ + k, n′〉. (2.17)

We keep the coherence only between the neighboring minima. Then we have an

e�ective two-level system. The non-zero density matrix elements are

〈l0|ρ̂|l0〉 = σ00, 〈l1|ρ̂|l1〉 = σ11,

〈l0|ρ̂|l + 1, 1〉 = σ01, 〈l1|ρ̂|l − 1, 0〉 = σ10, (2.18)

all the others are zero.

Now we can write down the equation for the stationary state, including the e�ects

of dissipation, by setting dρ̂/dt = 0 in Eq. (2.10):

0 = −i (X (σ00 − σ11)−∆Eσ10)− 1
2
Γσ10,

0 = −i (X (σ11 − σ00) + ∆Eσ01)− 1
2
Γσ01,

0 = −i (X (σ10 − σ01)) + Γσ11,

0 = −i (X (σ01 − σ10))− Γσ11.

(2.19)

Here ∆E = πI/e−ω0 is the energy di�erence between E
0
l and E

1
l+1. Γ stands for the

relaxation rate between the classical levels in one minimum, Eq. (2.15). We study

the system close to the resonance, ∆E � ω0. The stationary solution is

σ10 = −N i (Γ/2 + i∆E)X

2X2 + ∆E2 + Γ2/4
, σ01 = N i (Γ/2− i∆E)X

2X2 + ∆E2 + Γ2/4
, (2.20)

σ11 = N X2

2X2 + ∆E2 + Γ2/4
, σ00 = N X2 + ∆E2 + Γ2/4

2X2 + ∆E2 + Γ2/4
, (2.21)

16



where N is the overall normalization constant to have Trρ̂ = 1. The voltage is

proportional to the probability current between neighboring sites of our multiorbital

tight-binding model

V̂ =
2π

2e
iX
∑
l

(|l, 0〉〈l + 1, 1| − |l + 1, 1〉〈l, 0|) . (2.22)

Then the average voltage can be calculated as

〈V̂ 〉 = Tr
{
V̂ ρ̂
}

=
1

Trρ̂

2π

2e
iX Tr

{(
0 1

−1 0

)
σ̂

}
, (2.23)

resulting in a voltage peak with the Lorentzian form:

〈V 〉 ≈ 1

2e

2πΓX2

2X2 + ∆E2 + Γ2/4
. (2.24)

The matrix element is (see Appendix A and put m = 1):

|X| = 33/4ω0

2e
√

2π
e−S1 , (2.25)

with the tunneling action

S1 =

√
8EJ
Ec
−
(

2 + ln
EJ/Ec

31/4

)
+O

(
(Ec/EJ)1/4

)
. (2.26)

One can see from Eq. (2.24) that there is a crossover from incoherent QPS (for

X � Γ) to coherent (for X � Γ), if we increase tunneling matrix element X. For

large X � Γ the voltage peak is proportional to relaxation rate Γ. It corresponds to

the fact that the state of the system is now a coherent superposition of two states in

two neighboring minima of the potential, until it relaxes to the ground state in the

lower minimum and becomes a superposition of this ground state and an excited

state in the next lower minimum. Therefore, the rate of phase sliding down the

tilted potential is determined only by the relaxation rate Γ.

However, in the case X � Γ the above picture is incomplete. Indeed, in the

harmonic approximation the resonance between E0
l and E

1
l+1 automatically implies

the resonance between E1
l+1 and E2

l+2, and so on. Therefore, one must consider

the possibility of coherence between more than two minima. On the other hand,

the resonant conditions are a�ected by the anharmonicity of the cosine potential.
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Namely,

(E1
l − E0

l )− (E2
l − E1

l ) ∼ Ec ∼ ω0

√
Ec/EJ . (2.27)

At the same time, from Eqs. (2.25), (2.26)

X ∼ ω0 (EJ/Ec) e
−2
√

8EJ/Ec (2.28)

is exponentially small in the same parameter
√
EJ/Ec � 1. Therefore, the two-

minima approximation is valid even when X � Γ, as long as Γ� Ec. In this thesis

I restrict myself to the case X � Γ, corresponding to incoherent QPS, which seems

to be more realistic due to exponential smallness of X.

2.3.2 Several levels in one minimum

Now we can consider a more general case. The assumption is that the m-th energy

level in the right minimum is close to the 0-th level in the left one. The non-zero

elements of ρ̂, which determine the voltage, are

〈ln|ρ̂|ln〉 = σnn forn ∈ [0,m], 〈l0|ρ̂|l + 1,m〉 = σ0m, 〈lm|ρ̂|l − 1, 0〉 = σm0. (2.29)

The Hamiltonian is

〈ln
∣∣∣Ĥ0

∣∣∣ l′n′〉 = δll′δnn′E
l
n + (δl′,l+1δn′mδn0 + δl′,l−1δn′0δnm)X. (2.30)

The resulting equations of the stationary state are

0 = −i (X (σ00 − σmm)−∆Eσm0)− 1
2
mΓσm0,

0 = −i (X (σmm − σ00) + ∆Eσ0m)− 1
2
mΓσ0m,

0 = −i (X (σm0 − σ0m)) + Γσ11,

0 = −i (X (σ0m − σm0))−mΓσmm,

0 = Γ ((k + 1)σk+1,k+1 − kσk,k) , for 0 < k < m.

(2.31)

One can see from the last line in Eq. (2.31) that for the diagonal elements between

0 and m we have: ρk+1,k+1 = k
k+1

ρkk, then we can write

ρkk =
m

k
σ, for 0 < k < m. (2.32)
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The �rst four lines of Eq. (2.31) give

σ =
iσm0X

1
2
mΓ + i∆

= σmm. (2.33)

As a result, we obtain

σm0 = σ∗0m = −N iX (mΓ/2 + i∆E)

m2Γ2/4 + ∆E2 + (mHm + 1)X2
, (2.34)

σ = N X2

m2Γ2/4 + ∆E2 + (mHm + 1)X2
, (2.35)

σ00 = N m2Γ2/4 + ∆E2 +X2

m2Γ2/4 + ∆E2 + (mHm + 1)X2
, (2.36)

where Hm =
∑m

n=1 1/n is the harmonic number. We focus on X � Γ, then we have

σ00 � σkk, for k > 0. As a result, we can neglect the tunneling between higher

energy levels (|l, k〉 → |l + 1, k +m〉), as their population is parametrically smaller.

Now we can calculate the average voltage 〈V 〉 = Tr
{
V̂ ρ̂
}
the same way it was

done for the e�ective two-level case. The voltage operator takes the form

V̂ =
2π

2e
iX
∑
l

(|l, 0〉〈l + 1,m| − |l + 1,m〉〈l, 0|) . (2.37)

Then the average voltage forms a peak

〈V 〉 =
1

2e

2πX2mΓ

m2Γ2/4 + ∆E2 + (mHm + 1)X2
. (2.38)

The resonant values of the current are given by I(m) = em
π
ω0 (where m is integer).

One can see that Eq. (2.24) gives just the �rst peak with m = 1. Moreover, qual-

itatively the result is valid even if we cannot use parabolic approximation for the

potential (for levels with energy Em ∼ EJ), the resonant values of the current are

I (m) = e
π

(Em − E0) instead of simple I (m) = e
π
mω0. The quantitative di�erence

is in the tunneling matrix element X. Here we consider only energies Em � EJ ,

corresponding to m � EJ/ω0 =
√
EJ/(8Ec), which allows us to use parabolic ap-

proximation of the potential in the classically allowed regions to calculate X. The

resulting matrix element is (see Appendix A)

X =
ω0

(√
m+ 1/2

)m+1/2

e−Sm

√
2πm!21/4

e−
m+1

2 , (2.39)
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with the tunneling action

Sm ≈
√

8EJ
Ec
−
(
m+ 1 + ln

EJ/Ec
(2m+ 1)1/4

)
+O

(
(Ec/EJ)1/4

)
. (2.40)
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Figure 2.5: A schematic I − V curve for an underdamped junction

One can see that Eq. (2.38) gives a set of Lorentzian peaks for the voltage,

corresponding to resonant induced current values. A schematic I−V curve and the

form of voltage peaks, derived in harmonic approximation, is depicted in Fig.2.5.

The I − V curve consists of a linear part V = IR at low induced currents up to a

critical voltage supported by a junction Vc = π
e
δ(0), which corresponds to insulating

state of the junction when all the current is �owing through the resistor (the so-

called Bloch nose) [59, 60], voltage peaks at the resonant current values and running

state regime at higher currents.
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2.4 Possibility of experimental observation

The voltage peaks corresponding to resonant Zener tunneling in an underdamped

Josephson junction have not been measured experimentally yet to the best of my

knowledge.

One di�culty is that the underdamped regime of a single Josephson junction

requires designing an environment with the impedance much higher than the resis-

tance quantum RQ = (2π)/(2e)2 = 6.45 kΩ at frequencies ω0 of the order 1010 Hz

with low stray capacitance. One of the �rst successful attempts is described in [70],

where the authors used chromium resistors with resistance up to 250 kΩ located very

close to the junction, which allowed to have impedance su�ciently higher than the

resistance quantum at ω0 ≈ 5× 1011 Hz as well as low stray capacitance of the elec-

trodes. Another e�cient way to design high-impedance environment is with SQUID

arrays, where the e�ective impedance can be controlled by applying a magnetic

�eld perpendicular to the SQUID loops [71, 18], the highest achieved impedance

is 50 MΩ. This approach allowed the scientists to measure the low-current part of

I−V characteristics for a single Josephson junction in both overdamped and under-

damped regimes, demonstrating charge-phase duality as the regimes resemble each

other with the role of I and V interchanged.

The second di�culty is that the voltage, associated with the peaks is exponen-

tially small. Indeed, to have voltage peaks, several energy levels in each potential

minimum are required. For example, for one voltage peak there should be at least

two energy levels in each minimum, (3/2)ω0 . 2EJ−ω0 (height of the tilted barrier),

which corresponds to EJ & 8Ec. Note that the voltage of the Bloch nose Vc is pro-

portional to δ(0) ∝ e−
√

8EJ/Ec , while the resonant tunneling peaks are proportional

to X2 ∝ e−2
√

8EJ/Ec . For R/RQ ∼ 103, reported in experiments[18], these peaks

are of the order of nanovolts or even smaller. Experimentally, one can detect volt-

ages of the order of hundreds of nanovolts. Therefore, to reach a reliable conclusion

about the possibility to observe resonant Zener tunneling peaks experimentally, one

has to focus on EJ/Ec not too large and study the system beyond the harmonic

approximation.

Chapter summary

In this chapter we studied QPS in a single Josephson junction. First we revisited

the simple case of a junction without dissipation, when coherent QPSs result in a
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band structure of the system spectrum. Then we discussed the e�ect of induced

current, tilting the cosine potential, with dissipation through external resistance R.

Two opposite limits of an overdamped (R � RQ) and an underdamped (R � RQ)

junction are dual, as the I − V characteristics are similar in these limits, but with

role of voltage and current interchanged. We studied an underdamped junction

with induced current I large enough to shift neighboring minima of the potential

by the value, comparable to level spacing inside a minimum I & e
π
ω0. Near certain

resonant values of induced current, I (m) = e
π

(Em − E0), the tunneling between the

ground state in one minimum and the m-th excited state in the lower neighboring

minimum, which is incoherent QPS, results in voltage peak as a function of current.

We derived the form of a few �rst peaks, m �
√
EJ/(8Ec), when the states inside

each minimum can be approximated by the states of a harmonic oscillator with

plasma frequency ωp =
√

8EJEc.
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Chapter 3

Coherent quantum phase slips in

Josephson junction chains (general

relations)

3.1 Action for coherent QPS in a JJ chain

3.1.1 Euclidean action for a closed ring

We consider a chain of N Josephson junctions closed in a ring, pierced by a magnetic

�ux (Fig. 3.1). The superconducting islands are labelled by an integer n, the

dynamical variables are the phases φn. The island n = 0 is identi�ed with the island

n = N , so that φ0 = φN . Then the Hamiltonian is

H =
1

2

N−1∑
n,m=0

(Qn − qn) Ĉ−1
n,m (Qn − qn)−

N−1∑
n=0

EJ,n cos

(
φn+1 − φn +

Φ

N

)
. (3.1)

Here Qn is the excess charge on the island n, qn is an external induced charge (usu-

ally induced by some random gate voltages) on the island n and Ĉ is the capacitance

matrix, de�ned as Ĉnm = (Cg,n + Cm + Cm−1) δn,m − Cnδn+1,m − Cn−1δn−1,m. EJ,n

and Cn are the Josephson energy and the capacitance of the junction between neigh-

bouring islands n and n+1 respectively, while Cg,n is the capacitance between island

n and a nearby ground plane. Φ is the magnetic �ux in units of the superconduct-

ing �ux quantum divided by 2π (one �ux quantum piercing the ring corresponds to

Φ = 2π).

The phases φn and the excess charges Qn on the nth island are conjugate vari-

ables: [φn, Qn] = 2ei (the electron charge is −e). Moreover, as the chain is closed,
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Figure 3.1: A schematic representation of a Josephson junction chain threaded by
a magnetic �ux Φ and containing N Josephson junctions.

the phases φn are compact variables. Since we are going to study quantum tun-

nelling of the superconducting phase φn in the quasiclassical limit, it is natural to

pass to imaginary time τ and describe the system by its zero-temperature Euclidean

action, [7]:

S =

∫ N−1∑
n=0

[
Cg,n

8e2
φ̇2
n +

Cn
8e2

(
φ̇n+1 − φ̇n

)2

− i qn
2e
φ̇n

− EJ,n cos

(
φn+1 − φn +

Φ

N

)]
dτ. (3.2)

Here φ̇n ≡ dφn/dτ . It is convenient to introduce energy scales corresponding to the

capacitances:

Ec,n =
e2

2Cn
, Eg,n =

e2

2Cg,n
. (3.3)

Typically in experiments Cg,n � Cn [50, 72, 73]. We assume that

EJ >
32

π2
Eg � Ec, (3.4)

which ensures that the phase slips are rare and the chain remains superconducting
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for large N [13, 38, 33, 51].

In principle, the phase can slip on any of the N junctions; QPSs at di�erent

junctions contribute to the same quantum transition (i. e., with the same initial and

�nal states), so the total QPS amplitude in a ring is a sum over the single QPSs

on di�erent chain junctions [32, 33]. Let us choose one of the junctions and study

the corresponding amplitude. The term, containing the induced charges qn, results

in a total phase of a single QPS event [for details see Eq. (3.16) and the discussion

around it]

θn =
n∑

m=0

2π
qm
2e

+ const. (3.5)

Therefore, we can omit the terms containing the induced charges and restore them

as the phases in each local QPS amplitude. It is also convenient to number the

junctions so that the slipping junction is the one between the islands n = N and

n = 0, which we will call "boundary". Then, it is convenient to perform a gauge

transformation,

φn → φn −
n

N
Φ, (3.6)

which corresponds to twisted boundary conditions, φN = φ0 + Φ. Then the �ux

disappears from all cosine terms in Eq. (3.2), except the last one, which becomes

−EJ cos(φ0 − φN−1 + Φ). As a result, the action is written in the form:

S =

∫ (N−1∑
n=0

1

16
Eg,n φ̇

2
n +

N−2∑
n=0

[
1

16
Ec,n

(
φ̇n+1 − φ̇n

)2

− EJ,n cos (φn+1 − φn)

]
+

1

16
Ec,N−1

(
φ̇0 − φ̇N−1

)2

− EJ,N−1 cos (φN−1 − φ0 − Φ)

)
dτ, (3.7)

where the second line corresponds to the boundary junction where the actual tun-

neling occurs, while the �rst line contains the rest of the chain, where the phase

readjustment takes place.

As we consider the chain to be long, N � 1, we suppose the phase di�erences

on all the junctions except the slipping one to be small, max|φn+1 − φn| ∼ 1/`s for

n < N−1, where `s =
√
C/Cg is the screening length (typically, `s � 1), so that we

can expand the cosine terms. Then we can go to the continuum limit for the whole

chain except the slipping junction. Namely, we take the limit n → x, φn → φ(x),

φn+1 − φn → ∂φ/∂x,
∑

n →
∫
dx, and the action can be written as
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S =

∫
dτ

∫ N

0

dx

[
1

16Eg(x)

(
∂φ

∂τ

)2

+
`2
s

16Eg(x)

(
∂2φ

∂x ∂τ

)2

+
EJ(x)

2

(
∂φ

∂x

)2
]

+

+

∫
dτ

16Ec(x)

[
∂φ(N, τ)

∂τ
− ∂φ(0, τ)

∂τ

]2

−
∫
dτ EJ(x) cos[φ(N, τ)− φ(0, τ)− Φ],

(3.8)

It is convenient to introduce plasma frequency ωp =
√

8EJEc, plasma velocity vp =

ωp`s =
√

8EJEg and dimensionless low-frequency admittance of the chain g =

π
√
EJ/(8Ec).

3.1.2 Classical phase con�gurations

In the quasiclassical limit, for each value of Φ there is a single static classical phase

con�guration, minimizing the potential energy. The exception is for Φ being an

odd multiple of π, when there are two con�gurations with equal potential energies.

Quantum tunnelling between these degenerate con�gurations is the main subject

of our study. As the dependence of action (3.8) on Φ is periodic, we can focus on

Φ = π without loss of generality.

Let us �nd the classical phase con�gurations taking into account the spatial

dependence EJ(x). Minimization of the bulk action leads to the equation

∂

∂x

∂L
∂φ

=
∂

∂x
EJ

∂φ

∂x
= 0, (3.9)

which is nothing but the current conservation. Its solution contains two integration

constants, φ0 and ϑ:

φ(x) = φ0 + ϑ

∫ x
0
E−1
J (x′) dx′∫ N

0
E−1
J (x′) dx′

. (3.10)

The constant ϑ should be found by minimizing the total potential energy including

the boundary term [52]:

∂

∂ϑ

[
ϑ2/2∫ N

0
E−1
J (x) dx

− EJ cos(ϑ− Φ)

]
= 0. (3.11)

For a homogeneous chain it is just [52] (see Fig. (3.4))

ϑ

N
+ sin(ϑ− Φ) = 0. (3.12)
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We consider a long chain N � 1, then ϑ ≈ Φ + 2πm with any integer m gives

a local minimum (half-integer values of m give local maxima) with the potential

energy (Φ + 2πm)2EJ/(2N). If Φ = π, then the two con�gurations with ϑ = π and

ϑ = −π have the same energies.

The observable quantities are the �ux-dependent ground state energy E0(Φ),

or the persistent current I0(Φ) ∝ ∂E0/∂Φ. In the zero approximation, one can

associate E0(Φ) with the static potential energy, discussed above. Then, I0(Φ) has

a discontinuous sawtooth-like dependence on Φ, as schematically shown on Fig. 3.2.

Quantum tunneling results in energy splitting between the degenerate con�gurations

when Φ is close to an odd multiple of π, which is measurable [35, 44]. Also, the

sawtooth in I0(Φ) is smoothened. A spatial modulation of the chain parameters

modi�es the quantum tunneling amplitude, together with the energy splitting and

the smoothening of the sawtooth in I0(Φ).

   splitting
by tunneling

0 Φ

ε
0

–2π –π π 2π Φ–2π –π π 2π

0I

0

smearing
by tunneling

Figure 3.2: Flux dependence of the ground state energy (upper panel) and persistent
current (lower panel), shown schematically in the purely classical approximation
(grey dashed line) and taking into account quantum tunneling (red solid line).

The second integration constant φ0 in Eq. (3.10) cannot be found from energetic

considerations, as the energy does not depend on the global phase. This does not

mean, however, that φ0 can be simply dropped from the consideration. Because of

the degeneracy with respect to φ0, each of the found energy minima is a circle rather

than a point in the con�guration space. The system eigenstates can be classi�ed

by the conjugate variable, which is the conserved total charge
∑

nQn (the number

of Cooper pairs). To estimate the tunnel splitting in the sector with zero excess

charge
∑

nQn = 0, we can assume that the system starts from some point on the

ϑ = π circle, which can be taken φ0 = 0 without loss of generality, and then sum

the amplitudes of tunnelling towards di�erent points of the ϑ = −π circle. For a

spatially homogeneous chain, symmetry considerations �x the dominant destination
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at ϑ = −π to be φ0 = π [52]. In the inhomogeneous case, it should be determined

by the classical trajectory.

As we mentioned before [Eq. (3.5)], the induced charges qn result in a phase

factor for the partial tunneling amplitude corresponding to each QPS trajectory.

Consider a trajectory going from the initial phase con�guration

φn = φi + πfn (3.13)

to the �nal phase con�guration

φn = φ
(m)
f − πfn +

{
0, n ≤ m,

2π, n > m,
(3.14)

where

fn =

∑n−1
0 E−1

J,n′∑N−1
0 E−1

J,n′

(3.15)

is the discrete version of the function appearing in Eq. (3.10), φi is the arbitrary

starting position on the ϑ = π circle, φ
(m)
f is the �nal position on the ϑ = −π circle

(see Fig. 3.3), determined by the classical trajectory involving the phase slip on the

junction between islands m and m + 1. The phase accumulated on this classical

trajectory is given by

ImScl =
N−1∑
n=0

(
φi − φ(m)

f

) qn
2e
− 2π

N−1∑
n=0

fn
qn
2e
− 2π

N−1∑
n=0

qn
2e

+ 2π
m∑
n=0

qn
2e
. (3.16)

In fact, the �rst term in this expression should be dropped, since it is an artefact

of the quasiclassical approximation. Indeed, a straightforward construction of the

WKB wave function on the ϑ = −π circle at the energy of potential minimum

would give Ψ0 (φf) ∝ exp
[
−iφf

∑N−1
n=0 qn/(2e)

]
, since the WKB approximation does

not contain the periodic boundary conditions Ψ (φf) = Ψ (φf + 2π). That is, the

instanton calculation describes tunneling from the initial state Ψ0 (φi) to the �nal

state Ψ0 (φf), and this is the origin of the �rst term in Eq. (3.16). However, since

we focus on the sector with the total charge
∑

nQn = 0, the wave functions of

the initial and the �nal states are uniformly spread over the corresponding circles

(invariant under a constant shift of all φn). Therefore, φi and φ
(m)
f do not contribute

to the phase factor. Omitting the m-independent terms, we arrive at Eq. (3.5).

The energy splitting due to the tunneling is proportional to the QPS amplitude.

The total amplitude for the QPS in the chain is a sum of QPS amplitudes over all
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ϕf 

Figure 3.3: Classical trajectories between φi and φ
(m)
f with di�erent m on ϑ = π

and ϑ = −π circles respectively.

chain junctions:

W =
N−1∑
n=0

Wn =
N−1∑
n=0

Ωne
−Sn+iθn . (3.17)

Here Sn is the classical action for a phase slip, occurring on a junction n, θn is the

phase, determined by Eq. (3.5), Ωn is the pre-exponent, determined by integrating

over quadratic �uctuations in the vicinity of the classical trajectory. One can see

(Fig. 3.2) that in case of high energy splitting, the lowest energy level is almost

constant as a function of magnetic �ux, and the persistent current is suppressed,

which corresponds to suppression of superconductivity due to QPSs.

Here it is important to mention that in a homogeneous chain due to the fact

that the system Hamiltonian is invariant under the circular permutation of the

islands, the angular momentum is conserved. Normally we have a zero total charge

due to electroneutrality, resulting in zero angular momentum, therefore QPSs are

possible as they do not violate this conservation law. However, if the total charge

is nonzero (and not 2eNm, where m is integer), the QPSs do not occur as the

classically degenerate states have di�erent angular momenta. This can also be seen
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from summing the QPS amplitudes over all the junctions, which will have phase

factors due to the nonzero charge, resulting in zero total amplitude [32].

3.1.3 The QPS action on a classical trajectory

The main contribution to the tunnelling amplitude comes from the vicinity of the

classical imaginary-time trajectory, connecting the two minima, which satis�es the

Lagrange equations of motion in the imaginary time. Following the discussion of

Ref. [52] for a spatially homogeneous ring, we schematically show the corresponding

con�guration space trajectory φ(x, τ) in Fig. 3.4.

N N

Figure 3.4: A schematic representation of the classical trajectory φ(x, τ) going from
the static con�guration with ϑ = π (solid line on upper panel) to ϑ = −π (solid line
on the lower panel) for a spatially homogeneous ring. Straight arrows correspond to
the slow adjustment of the phase in the whole ring, the round arrows show the fast
�ip of the phase in the vicinity of the slipping junction.

The trajectory consists of several stages. (i) Slow �attening of the phase pro�le in

the whole chain on the time scales which are linked to the spatial scales as τ ∼ x/vp,

except the vicinity of the boundary junction. This vicinity is characterized by a

certain length scale `∗ to be determined later. (ii) Flattening of the phase in the

vicinity on the time scale ∼ `∗/vp. (iii) Fast phase �ip on the boundary junction,

which may occur on the same time scale ∼ `∗/vp or a faster one, depending on the

parameters. (iv), (v) Phase readjustment in the vicinity and outside to the new

classical con�guration on the same time scales as (ii) and (i), respectively.

As the phase di�erences on all the junctions except the slipping one are small,

we can expand the cosine terms in the �rst line of the action (3.7). Then we can
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write this harmonic part of the action as

Sharm =

∫
dω

2π

N−1∑
n,m=0

|ω|
2(2e)2

φ∗n (ω)Yn,m (i|ω|)φm (ω) , (3.18)

where the admittance matrix of the chain Ŷ is de�ned by the relation

I = ŶV. (3.19)

Here VT = (V0, V1, ..., VN−1) and IT = (I0, I1, ..., IN−1), corresponds to the voltages

on the islands Vn (ω) = iω
2e
φn and incoming currents, respectively. In the harmonic

approximation the non-zero elements of Ŷ are

Yn,n = ωCg + 2
(2e)2

ω
EJ , (3.20)

Yn+1,n = Yn,n+1 = ωC − 2
(2e)2

ω
EJ . (3.21)

Eq. (3.19) represents a linear system of equations, which are nothing else then Kirch-

ho�'s laws for each node n of the circuit. The remaining part can be written as

Score =

∫
dω

2π

ω2

2(2e)2
φ0 (ω)CφN−1 (ω)−

∫
dτEJ cos (φ0 (τ)− φN−1 (τ) + Φ) (3.22)

We perform a change of variables, so that we can integrate out N − 1 variables

in which the action is quadratic:

ϑ = φN−1 − φ0, ϕ0 =
Eg,N−1φN−1 + Eg,0φ0

Eg,N−1 + Eg,0
. (3.23)

As a result, we have a variable ϑ, which corresponds to the phase di�erence on

the slipping junction, and ϕ0, which is the average of the phase on this junction

and decoupled from ϑ in the action, therefore, can be seen as one of the phases,

corresponding to the harmonic modes, along with φ1, φ2, ... φN−2. To integrate out

the harmonic modes we can write the partition function in a path-integral formalism:

Z =

∫ N−1∏
n=0

Dφne−S. (3.24)

As a result, applying the variable change, we can do Gaussian integration over the

harmonic modes, whose result contains matrix elements of the impedance matrix,
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which is just the inverse of the admittance matrix Ẑ = Ŷ −1

∫ N−2∏
n=1

DφnDϕ0Dϑ e−S ∝
∫
Dϑ exp (−Seff [ϑ]) , (3.25)

where the e�ective action takes the form

Seff [ϑ] =
1

2

∫
dω

2π

[
|ω|

(2e)2Z (i|ω|)
+
ω2C

(2e)2

]
|ϑ(ω)|2 +

∫
dτEJ [1− cos (ϑ(τ)− Φ)]

≡ 1

2

∫
dτ dτ ′K (τ − τ ′)ϑ(τ)ϑ(τ ′) +

∫
dτEJ [1− cos (ϑ(τ)− Φ)] . (3.26)

Here K (τ − τ ′) is the Fourier transform of

K(ω) =
|ω|

4e2Z (i|ω|)
+

ω2

8Ec
, K (τ − τ ′) =

∫
dω

2π
K(ω)e−iω(τ−τ ′). (3.27)

The classical imaginary-time trajectory for ϑ satis�es the equation:∫
K(τ − τ ′)ϑ(τ ′) dτ ′ = EJ sinϑ(τ). (3.28)

3.1.4 Normal modes, chain impedance

To derive the expression for the impedance Z introduced in the previous section,

we only need to solve the linear equations of motion, following from Eq. (3.2) in

the harmonic approximation. To deal with the dynamics described by the quadratic

Lagrangian density of action (3.8),

L =
1

16Eg

(
∂φ

∂τ

)2

+
`2
s

16Eg

(
∂2φ

∂x ∂τ

)2

+
EJ
2

(
∂φ

∂x

)2

, (3.29)

it is convenient to decompose the phase �eld φ(x) into the normal modes. Namely,

we write down the Euler-Lagrange equations of motion and look for the solutions

in the form φ(x, τ) = Ψ(x) e±ωτ (since τ is the imaginary time). This gives the

following equation for the normal mode wave functions:

ω2

8Eg
Ψ− ω2 ∂

∂x

`2
s

8Eg

∂Ψ

∂x
+

∂

∂x
EJ

∂Ψ

∂x
= 0, (3.30)

with the Dirichlet boundary conditions, Ψ(0) = Ψ(N) = 0 at x = 0, N .

For a spatially homogeneous chain, the solutions are plane waves, Ψ(x) ∝ sin kx,
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Figure 3.5: The dispersion curve of the phase oscillations (plasmons, Mooij-Sch�on
modes), determined by Eq. (3.31)

for which Eq. (3.30) gives the dispersion relation [49, 50]:

ω(k) =
ωp|k|`s√
1 + k2`2

s

. (3.31)

The plasma frequency can be expressed through the continuum limit parameters:

ωp = vp/`s, where vp =
√

8EgEJ is the plasma velocity. At small |k| � 1/`s the

dispersion is linear, ω ≈ vpl|k|. These harmonic modes with linear dispersion are in

fact the Goldstone modes, the collective excitations due to spontaneous symmetry

breaking.

It is convenient to characterize the chain by its low-frequency impedance in

the units of superconducting conductance quantum (2e)2/(π~) (we momentarily

restore ~), or its inverse, the dimensionless admittance:

g ≡

√
π2

8

EJ
Eg
. (3.32)

In the following we assume g > 2, otherwise the chain would be in the insulating

rather then the superconducting state [13, 37, 38].

Now we need to express the impedance of a general inhomogeneous chain through

the normal modes of the chain, determined by wave equation (3.30). The voltage

V is related to the phase by V = iωφ/(2e), and the currents injected at the ends

33



x = 0, N , are given by

I0 = 2e

(
ω2 `2

s

8Eg
− EJ

)
∂φ

∂x

∣∣∣
x=0

, IN = −2e

(
ω2 `2

s

8Eg
− EJ

)
∂φ

∂x

∣∣∣
x=N

(3.33)

Eq. (3.30) de�nes the scalar product of two arbitrary functions f1(x) and f2(x) as

(f1, f2) ≡ 1

Tc

∫ N

0

dx

8Eg(x)

[
f1(x)f2(x) + `2

s

df1(x)

dx

df2(x)

dx

]
, Tc ≡

∫ N

0

dx

8Eg(x)
.

(3.34)

Let us perform a change of variables similarly to Ref. [51]:

φ(x, τ) = ϑ(τ)X(x) + φ0(τ) +
∞∑
α=1

φα(τ) Ψα(x), (3.35)

where we denoted

X(x) ≡
∫ x

0
E−1
J (x′) dx′∫ L

0
E−1
J (x′) dx′

− 1

Tc

∫ N

0

dx

8Eg(x)

∫ x
0
E−1
J (x′) dx′∫ L

0
E−1
J (x′) dx′

, (3.36)

and Ψα(x) are the eigenfunctions of Eq. (3.30). Since φ0(τ) and ϑ(τ) take care of

the uniform phase shift and the phase jump between x = 0 and x = N , respectively,

Ψα(x) can be chosen to satisfy the Dirichlet boundary conditions, Ψα(0) = Ψα(N) =

0. They are orthogonal, with the respect to scalar product (3.34)

(Ψα,Ψβ) = δαβ. (3.37)

The constant o�set in Eq. (3.36) is chosen speci�cally to yield (1, X) = 0. Substi-

tuting our expression for the phase in terms of normal modes, Eq. (3.35), into the

wave equation (3.30), multiplying by Ψα>0, 1 and X, and integrating over x, we

obtain

ω2(Ψα, X)ϑ+ ω2(Ψα, 1)φ0 +
(
ω2 − ω2

α

)
φα = 0,

ω2Tcφ0 + ω2Tc
∞∑
α=1

(1,Ψα)φα = −I0 + IN
2e

,

ω2Tc(X,X)ϑ+ ω2Tc(Ψα, X)φα +
X(0)−X(N)∫ N
0
E−1
J (x′) dx′

ϑ = −X(0)I0 +X(N)IN
2e

. (3.38)
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Let I0 = −IN = I, then we eliminate φ0 and φα from Eqs. (3.38) and �nd

V (0)− V (N) = −iω
2e
ϑ ≡ Z (ω) I, (3.39)

resulting in

− iω

(2e)2

1

Z(ω)
= ω2

[
GXX(ω)− GX1(ω)G1X(ω)

G11(ω)

]
− 1∫ N

0
E−1
J (x′) dx′

, (3.40)

where the Green's functions are de�ned as

Gf1f2(ω) ≡ Tc

[∑
α

ω2
α

ω2 + ω2
α

(f1,Ψα) (f2,Ψα)−
∑
α

(f1,Ψα)(f2,Ψα) + (f1, f2)

]
,

(3.41)

for arbitrary f1(x), f2(x). (Note that the last two terms do not necessarily cancel

each other: while the functions Ψα(x) form a complete set in the space of functions

with Dirichlet boundary conditions, both 1 and X(x) do not belong to this space).

Eqs. (3.40), (3.41) determine the impedance of an inhomogeneous chain, which enters

the e�ective action, Eq. (3.26).

3.2 QPS amplitude for a homogeneous chain

3.2.1 Classical trajectory

In this section we show how the general calculation scheme, presented above, works

for the case of spatially homogeneous chains, for which the results are known [51,

52, 53]. For a spatially homogeneous chain, K(ω) can be calculated exactly. We

have

Ψα(x) =

√
2

1 + k2
α`

2
s

sin kαx, kα =
πα

N
,

X(x) =
x

N
− 1

2
, (X,Ψα) = −

√
2

1 + k2
α`

2
s

1 + (−1)α

2πα
,

(X,X)−
∑
α

(X,Ψα)
2

=
∞∑

n=−∞

`2
s/N

2

1 + (2πn`s/N)2
=

`s
2N

coth
N

2`s
.
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Now we evaluate the sum over α in Eq. (3.41) for GXX (G1X vanishes by parity):

K(ω) =
ω2

8Ec
+
`sω

2

16Eg

√
1 +

ω2
p

ω2
coth

N

2`s

√
ω2

ω2 + ω2
p

− EJ
N
. (3.42)

We will mostly work with the N →∞ limit of this expression [38]

K(ω) =
ω2

8Ec
+
`sω

2

16Eg

√
1 +

ω2
p

ω2
, (3.43)

whose low- and high-frequency asymptotics are

K(ω � ωK) =

√
EJ
8Eg

|ω|
2
, (3.44a)

K(ω � ωK) =

(
1

8Ec
+

`s
16Eg

)
ω2, (3.44b)

ωK ≡
√

8EJEg

Eg/Ec + `s/2
≈ ωp
`s
. (3.44c)

It is convenient to introduce new length scale `c ≡ Eg
Ec

+ `s/2, which in our limit

`s � 1 tends to `c ≈ `2
s. We start with the function

ϑ(τ) = −2 arctan sinh
τ

τs
, τs ≡

√
1

EJ

(
1

8Ec
+

`s
16Eg

)
≈ ω−1

p , (3.45)

whose Fourier transform is

ϑ(ω) =
2π

iω cosh(πωτs/2)
. (3.46)

This function is the exact solution of Eq. (3.28) with the kernel (3.44b), which then

describes a usual pendulum. The condition `s � 1 ensures that 1/τs � ωK , so

expression (3.46) is valid everywhere except the narrow frequency range |ω| . ωK .

Indeed, the low-frequency expansion of Eq. (3.46) is

ϑ(ω) =
2π

iω

[
1− π2

8
ω2τ 2

s +O(ω4τ 4
s )

]
, (3.47)

while for the low frequencies we expect it to contain a term proportional to |ω|.
Therefore, we have to study the low-frequency region in more detail. Indeed, we

suppose that there should be |ω| term corresponding to the fact that the trajectory
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π ϕ−π

V(ϕ)

π ϕ−π

V(ϕ)

Figure 3.6: The two potentials, V (φ) = −EJ(1 + cosφ) (left panel) and V (φ) =
−EJ(|φ| − π)2/2 (right panel), for which the slow part of the instanton trajectory
(solid arrows) should be similar.

ϑ(τ) very slowly reaches its limiting values ±π, which is due to coupling with the

slow Ohmic modes of the chain.

To analyze the slow part of the trajectory ϑ(τ), we note that it is mostly deter-

mined by the motion near the maxima of the potential at ϑ = ±π. Thus, if one

replaces the potential

V (φ) = −EJ(1 + cosφ) → V (φ) = −EJ
(|φ| − π)2

2
,

the low-frequency part of the trajectory at |ω| � 1/τs should remain similar. Then

we have ∫
K(τ − τ ′)ϑ(τ ′) dτ ′ = EJ [π − |ϑ(τ)|] signϑ(τ). (3.48)

This is still a non-linear equation. However, if one introduces a new variable

ϑ̃(τ) = ϑ(τ) + π sign τ, (3.49)

and uses the fact that signϑ(τ) = − sign τ , it is easy to see that ϑ̃ satis�es a linear

equation which is most easily written in the Fourier space

K(ω)

[
ϑ̃(ω) +

2π

iω

]
= −EJ ϑ̃(ω), (3.50)
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and gives

ϑ(ω) =
2π

iω

1

1 +K(ω)/EJ
. (3.51)

This expression has the required |ω| term at low frequencies, but if one expands

this expression in the powers of K/EJ ∼ ω2τ 2
s � 1, the ω2τ 2

s term already does not

match the expansion of cosh(πωτs/2). However, Eq. (3.51) shows that the relative

error of the expression (3.46) is ∼ |ω|ωp`s/(8EJEg), so the relative error in the action

evaluated on the trajectory (3.46) will be of the order of ωp`s/(8EJEgτs) ∼ 1/`s � 1.

To evaluate the action on the trajectory (3.46), we represent 1/ cosh2 = 1−tanh2

and notice that in the term with tanh2 the limit N →∞ can be taken directly:

Scl =

∞∫
−∞

[
1

8Ec
+

`s
16Eg

√
1 +

ω2
p

ω2
coth

N

2`s

√
ω2

ω2 + ω2
p

− EJ
Nω2

]
π dω

cosh2(πωτs/2)
+ 4EJτs

=

∞∫
−∞

[
`s

16Eg

√
1 +

ω2
p

ω2
coth

N

2`s

√
ω2

ω2 + ω2
p

− `s
16Eg

2`s
N

ω2
p

ω2
− `s

16Eg

]
π dω

cosh2(πωτs/2)

+ 8EJτs

= g

∞∫
0

[√
4`2
s

N2
+

1

u2
cothu− 1

u2
− 2`s

N

]
du

− g
∞∫

0

(√
1 +

1

u2
− 1

)
tanh2 πωpτsu

2
du+ 8EJτs.

The �rst integral converges, as for small u the integrand tends to 1 − 2`s/N +

2`2
s/N

2 + O (u), for 1 � u � N/`s it tends to 1/u, resulting in the logarithm,

while for large u � N/`s it tends to (N/(4`s)− 1) /u2 + O (1/u4). It evaluates to

ln(N/`s)+c2 +O(`s/N) where the constant c2 = −1.567514 . . .. The second integral

also converges, for small u the integrand tends to (πωpτs/2)2 u + O (u2), while for

large u it tends to 1/(2u2) +O (1/u4). Thus, we can write

Scl

g
=

8

π

√
`c + ln

N

`s +
√
`c
−Υ

(√
`c
`s

)
, (3.52a)

Υ(z) ≡
∫ ∞

0

(√
1 +

1

u2
− 1

)
tanh2 πzu

2
du− c2 − ln(1 + z). (3.52b)

We can de�ne Υ(z) as a monotonic bounded function, as we have extracted ln
(

1 +
√
`c
`s

)
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from it:

1.567514 . . . = Υ(0) 6 Υ(z) < Υ(∞) = 1.922 . . . .

Here one can see that the length `∗ = `s +
√
`c is determining the vicinity of the

slipping junction.

And as we neglect the correction of the order 1/`s we can rewrite the action on

the classical trajectory as

Scl

g
=

8

π
`s + ln

N

2`s
−Υ(1) ≈ 8

π
`s + ln

N

2`s
− 1.74126 . . . . (3.53)

The characteristic length scale for the QPS is `∗ ≈ 2`s.

3.2.2 Pre-exponent

As discussed in Refs. [74, 75], the tunnelling matrix element W between two neigh-

boring minima can be represented as

Wn =

√√√√Λ
(0)
j=0

2πτ∗

∏
j>0

Λ
(0)
j

Λj

e−Scl , (3.54)

where Scl is the action on the classical instanton trajectory ϑcl(τ), found in the

previous subsection, τ∗ is de�ned as

1

τ∗
≡
∫ ∞
−∞

(
dϑcl

dτ

)2

dτ, (3.55)

while Λj and Λ
(0)
j are the eigenvalues of the equation

EJψ(τ) +

∫
K(τ − τ ′)ψ(τ ′) dτ ′ + V (τ)ψ(τ) = Λψ(τ), (3.56)

for V (τ) = −EJ [1 + cosϑcl(τ)] and V (τ) = 0, respectively. The in�nite product in

Eq. (3.54) is over all eigenvalues except the lowest ones, Λ0 = 0 and Λ
(0)
0 = EJ . We

impose the periodic boundary conditions, ψ(−β/2) = ψ(β/2), where β → ∞ can

be viewed as the inverse temperature.

In the limit `s � 1, the classical solution (3.45) yields:

V (τ) = − 2EJ

cosh2(τ/τs)
,

1

τ∗
=

8

τs
. (3.57)
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Now the high-frequency asymptotics (3.44b) is su�cient, so the eigenvalue equa-

tion (3.56) becomes(
1− d2

ds2
− 2

cosh2 s

)
ψ(s) = ξψ(s), s ≡ τ

τs
, ξ =

Λ

EJ
. (3.58)

This equation can be solved exactly [76]. It has one discrete eigenvalue ξ = 0,

corresponding to the zero mode, and the continuous spectrum for ξ > 1. The

re�ection coe�cient is exactly zero, and the transmission coe�cient is a pure phase

factor. Namely, the right-travelling solution has the following asymptotics at s →
±∞:

i
√
ξ − 1 + 1

i
√
ξ − 1− 1

eis
√
ξ−1 ←

s→−∞
ψ(s) →

s→+∞
eis
√
ξ−1.

Together with the periodic boundary condition at τ = ±β/2, it determines the

quantization of the eigenvalues:

β

τs

√
ξ − 1 + 2 arctan

1√
ξ − 1

= 2πm, m = 1, 2, . . . . (3.59)

For V (τ) = 0 we have

β

τs

√
ξ

(0)
m − 1 = 2πm, m = 1, 2, . . . , (3.60)

which results in ξ
(0)
m =

(
τs
β

2πm
)2

+ 1. Expanding Eq. (3.59) in δξm = ξm − ξ(0)
m we

get:

δξm = −8πmτ 2
s

β2
arctan

β

2πmτs
. (3.61)

The same set of eigenvalues is obtained for left-travelling solutions. Then the deter-

minants' ratio evaluates to

∏
j>0

Λ
(0)
j

Λj

= exp

[∑
m6=0

ln
ξ

(0)
m

ξm

]
=

β→∞
exp

[
−
∑
m6=0

δξm

ξ
(0)
m

]
=

= exp

[
4

π

u arctan 1/u

u2 + 1
du

]
= exp

[
2

π

∫ ∞
0

ln(1 + u2)

1 + u2
du

]
= 4. (3.62)
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Collecting all factors, we obtain the amplitude of a single QPS on one of the junctions

Wn = 4

√
EJ
πτ2

e−Scl =
4EJ√
g

√
1

`s

[
2`s
N

eΥ−(8/π)`s

]g
=

=
4√
π

(
8E3

JEc
)1/4

exp

(
−
√

8EJ
Ec
−

√
π2

8

EJ
Eg

[
ln

N

2`s
− 1.74 +O (1/`s)

])
. (3.63)

To calculate the total QPS amplitude in the chain we have to coherently sum all

the QPS amplitudes on chain junctions. As a result we get W ∼ N1−g, while the

height of the potential at the classically degenerate points, corresponding to the odd

numbers of π induced by the magnetic �ux, is ∆E ∼ 1/N (see Fig. 3.2). Therefore,

for g < 2 the energy splitting is of the order of potential height, which results in

the ground state energy being almost constant as a function of a �ux and, as a

result, the persistent current is suppressed (and, therefore, the superconductivity).

For g > 2 the system can be seen as a good superconductor. In the limit of in�nite

chain there is a sharp superconductor-insulator transition at g = 2, which can be

seen as a BKT transition (see Sec. 3.5).

3.3 Weak junction limit (�uxonium)

A speci�c case is when one of the junctions is much smaller than the rest (we can

call it weak junction), then the QPS amplitude on this junction dominates over the

rest, which can be useful in producing devices such as �uxonium [19, 72, 77, 78].

To describe this situation, we introduce the explicit notations C̃ and ẼJ for the

capacitance and the Josephson energy of the boundary junction between n = N and

n = 0, the condition for the junction weakness is C̃ � C, ẼJ � EJ . As we consider

the rest of the junctions to share the same properties with each other, we can again

pass to the continuum limit for the rest of the chain.

As a result, we have the same general expressions for the QPS action (3.26) and

the kernel (3.43) with ẼJ and Ẽc instead of EJ and Ec for the slipping junction.

At this point it is convenient to introduce the length scale `J ≡ EJ
ẼJ
. `J � 1 is

the number of chain junctions which has the same Josephson inductance LJ =

[(2e)2EJ ]
−1

as that corresponding to ẼJ . Then in the limit

`J ≡
EJ

ẼJ
� Eg

Ẽc
+
`s
2
≡ `c. (3.64)
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it can be checked directly that the function

ϑ(τ) = −2 arctan
τ

τ1

, τ1 ≡
√
EJ/(8Eg)

2ẼJ
, (3.65a)

with the Fourier tranform

ϑ(ω) =
2π

iω
e−|ω|τ1 , (3.65b)

satis�es Eq. (3.28) with the kernel (3.44a). This approximation is consistent because

condition (3.64) ensures that 1/τ1 � ωK . Then, the instanton action is given by

Scl =
1

2

∫
dω

2π
K(ω) |ϑ(ω)|2 +

∫
ẼJ [1 + cosϑ(τ)] dτ. (3.66)

The last term equals π
√
EJ/(8Eg) ≡ g, while in the �rst term the integral is log-

arithmically divergent at ω → 0. To handle this divergence, one has to go back to

Eq. (3.42). At ω � ωK this amounts to replacing Eq. (3.44a) by

K(ω � ωK) =
EJ
N

[
N

2`s

ω

ωp

coth

(
N

2`s

ω

ωp

)
− 1

]
. (3.67)

Strictly speaking, the solution is no longer given by Eq. (3.65b); however, the 1/ω

behaviour at ω → 0 is unchanged since it is determined by the overall change of

ϑ(τ) from τ → −∞ to τ →∞. The resulting action is given by

Scl

g
= 1 +

∫ ∞
0

du

u2
(u cothu− 1) e−(2`J/N)u = ln

N

`J
+ c1 +O(`J/N), (3.68)

where the constant c1 = −0.837877 . . . is easily calculated numerically.

While in the opposite limit

`J ≡
EJ

ẼJ
� 8Eg

Ẽc
+
`s
2
≡ `c (3.69)

the QPS takes the same form as in the homogeneous chain, Eq. (3.52a), just with one

more length scale `J , basically replacing 1, which is the length scale of the junction.

Now we can calculate the pre-exponent for the case of weak junction. Again, for

the case of weak junction we have two limiting cases: `J ≡ EJ
ẼJ
� Eg

Ẽc
+ `s

2
≡ `c and

`J � `c. We start with the case `J � `c, where the classical solution (3.65a) yields

V (τ) = −2ẼJ
τ 2

1

τ 2 + τ 2
1

,
1

τ∗
=

2π

τ1

. (3.70)
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It is convenient to pass to the Fourier space, which is discrete, ωm = 2πm/β, m =

. . . ,−1, 0, 1, . . ., because of the boundary conditions ψ(β/2) = ψ(−β/2). Thus, we

decompose ψ (τ) =
∑

m ψme
−iωmτ . For Λ ∼ ẼJ � ωK we can use the low-frequency

expression (3.44a) for K(ω), then the eigenvalue equation (3.56) becomes

|m|ψm −
∑
m′

e−(2πτ1/β)|m−m′|ψm′ =
β

2πτ1

Λ− ẼJ
ẼJ

ψm. (3.71)

Let us de�ne a function

χm = − δm,0
1− e−2κ

+ θ(m+ 1/2) e−κm, κ ≡ 2πτ1

β
, (3.72)

where θ(x) is the Heaviside step function, then all eigenvectors and eigenvalues of

the problem (3.71) can be written down explicitly:

ψm = e−κ|m|, Λ/ẼJ = 1− κ cothκ,

ψm = χm, Λ/ẼJ = 1,

ψm = χ−m, Λ/ẼJ = 1,

ψm = χm−1, Λ/ẼJ = 1 + κ,

ψm = χ1−m, Λ/ẼJ = 1 + κ,

ψm = χm−2, Λ/ẼJ = 1 + 2κ,

ψm = χ2−m, Λ/ẼJ = 1 + 2κ,

. . . . (3.73)

At the same time, the eigenvalues of (3.71) with V (τ) = 0 are

Λ(0)/ẼJ = 1, 1 + κ, 1 + κ, 1 + 2κ, 1 + 2κ, . . . , (3.74)

that is, Λj>1 = Λ
(0)
j−2. However, the total number of eigenvalues must be unchanged

by the potential, that is we must recover Λj = Λ
(0)
j for very large j, otherwise the

in�nite product in Eq. (3.54) will diverge. Thus, we are obliged to consider high

frequencies, where the low-frequency expression (3.44a) is no longer valid and the

full frequency dependence (3.43) should be used.

At frequencies ω � 1/τ1, the potential V (τ) is a smooth function of τ , so we can

use the WKB approximation (note that the domains of validity of the asymptotic

expression (3.44a), ω � ωK , and of the WKB approximation, ω � 1/τ1, overlap).

Note that the solution Eq. (3.65a) for the classical trajectory remains valid even
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when the full expression (3.43) forK(ω) is used. Indeed, in the frequency representa-

tion (3.65b) the solution is suppressed at high frequencies ω � ω1 and thus is insen-

sitive to the kernel deviation from the low-frequency asymptotic expression (3.44a).

Therefore, in the WKB approximation we can use the same expression for the po-

tential V (τ) (3.70). We can write eigenfunctions as ψ(τ) = exp
[
±i
∫ τ

0
ω(τ ′) dτ ′

]
,

then ω(τ) should be found from the equation

ẼJ +K(ω(τ)) + V (τ) = Λ ⇒ ω(τ) ≈ ωΛ −
V (τ)

K ′(ωΛ)
, (3.75)

where ωΛ is the positive solution of the same equation for V (τ) = 0, and K ′(ω) =

dK(ω)/dω. In the presence of V (τ), the quantization condition involves the scat-

tering phase, ∫ β/2

−β/2
ω(τ) dτ = βωΛ +

2πẼJτ1

K ′(ωΛ)
= 2πm. (3.76)

This gives Λ = ẼJ +K(ωm)−κẼJ , where m must run over all integers, positive and

negative, except m = 0, in order to match Eq. (3.73). Then we can calculate

∏
j>0

Λ
(0)
j

Λj

=
∏
m 6=0

ẼJ +K(ωm)

ẼJ +K(ωm)− κẼJ
=

β→∞
exp

[∫ ∞
−∞

ẼJτ1 dω

ẼJ +K(ω)

]
. (3.77)

The integral can be calculated by choosing some value ū such that `s/`J � ū � 1

and writing

∞∫
−∞

du

2`s/`J + (16Eg/`sẼc)u2 + u2
√

1 + 1/u2

≈
ū∫

0

2 du

2`s/`J + u
+

∞∫
ū

2 du/u2

16Eg/`sẼc +
√

1 + 1/u2

= 2 ln
ū`J
2`s

+

1/ū∫
0

2 dy

16Eg/`sẼc +
√

1 + y2
≈ 2 ln

`J
`s
−

∞∫
−∞

(16Eg/`sẼc) du

16Eg/`sẼc + coshu

= 2 ln
`J
`s
− ζ

2
ln
ζ + 1

ζ − 1
, ζ ≡ Eg√

E2
g − `2

sẼ
2
c /32

.

Collecting all factors, we obtain

Wn =

√
2π

g

EJ
`s

(
ζ − 1

ζ + 1

)ζ/4(
e−c1

EJ

ẼJN

)g
. (3.78)
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In the opposite limiting case, `J � `c, we have the same result as for the homo-

geneous chain (Eq. 3.63), just replacing the typical length scales:

Wn =
4ẼJ√
g

(
`J
`c

)1/4 [
`s +
√
`J`c

N
eΥ−(8/π)

√
`c/`J

]g
. (3.79)

3.4 Open chain

Now let us consider an open JJ chain, which corresponds to a more realistic con-

�guration, when the JJ chain is included into an external circuit. The main formal

di�erence with the closed chain is that now the phases at the ends of the chain are

not compact. Therefore, it can be seen as a generalization of the single Josephson

junction case discussed in Sec. 2.1 with an N -dimensional potential (where N is

the number of junctions in the chain) instead of one-dimensional. The Bloch the-

orem can be applied and QPS results in a band structure of the spectrum. The

Hamiltonian is

H =
1

2

N∑
n,m=0

QnĈ
−1
nmQm − EJ

N−1∑
n=0

cos (φn+1 − φn) . (3.80)

The di�erence of the phases at the boundary contacts is φN+1 − φ0 = θ. We want

to study phase slip between con�gurations with θ = 0 and θ = 2π. We assume that

in the �nal con�guration the jump of 2π is on the junction m (φfm+1 − φfm = 2π);

the amplitude should then be summed over m.

For long chains we can use the continuum limit and write the action in the form

S =

∫
dτ

m∫
0

dxL (φ, ∂τφ) +

∫
dτ

N∫
m+1

dxL (φ, ∂τφ) +

+

∫
dτ

2Ec

[
φ̇ (m+ 1, τ)− φ̇ (m, τ)

]2

−
∫
dτEJ cos [φ (m+ 1, τ)− φ (m, τ)] (3.81)

where L is the same Lagrangian density as we used in the action for a closed chain

[see Eq. (3.29)]. We decompose the phase into modes on both sides of the slipping
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junction

φ (x, τ) =

(∑
n

φn (τ) Ψn (x) + ν (τ)X (x) + φ0 (τ)

)
θ (m− x) +

+

(∑
n

ϕn (τ) Φn (x) + ϕ0 (τ) + η (τ)Y (x)

)
θ (x−m) . (3.82)

Here Ψn (x) and Φn (x) are eigenfunctions of wave equation for S =
∫
dxL with

Dirichlet boundary conditions Ψn (0) = Ψn (m) = 0 = Φn (m) = Φn (N).

Eliminating the variables as in Sec. (3.1.3) we can write the QPS action in the

same way as for the closed chain, Eq. (3.26), replacing the kernel with

K(ω) =
|ω|

4e2 [ZL (i|ω|) + ZR (i|ω|)]
+

ω2

8Ec
, (3.83)

where ZL (ω) and ZR (ω) are the impedances of the left and right side of the chain

(with the respect to the slipping junction). One can see that if the phase slip occurs

far from the chain ends, the kernel K (ω) has the same type low- and high-frequency

assymptotics [see Eqs. (3.44a and 3.44b)] as in the closed chain, it has a region of

linear dependence on frequency, resulting in logarithmic term Senv ∼ ln min{m,N−m}
`s

in single QPS action. However, if m . `s or N − m . `s, there is no linear part

in the frequency dependence of K, K ≈
(

m
8Eg

+ 1
8Ec

)
ω2, on all relevant frequencies.

Therefore, the QPS amplitude in an open chain is dominated by the phase slips,

occurring near the ends of the chain, whose amplitude does not decay with increasing

N . The total QPS amplitude can be estimated as

W ≈ 2
∞∑
m=0

4√
π

(
8E3

JEc
)1/4

exp

(
−
√

8EJ/Ec −
√

8EJEc
Eg

m

)

=
4√
π

(8E3
JEc)

1/4

1− exp
(
−
√

8EJEc
Eg

) exp
(
−
√

8EJ/Ec

)

≈ 8√
π
Eg

(
EJ
8Ec

)1/4

exp(−
√

8EJ/Ec). (3.84)

It is independent of the total chain length N , which agrees with the predictions

of [55]. The last approximation is valid as usually
√
EJEc/Eg � 1. The factor 2 is

due to the fact that we have to sum QPS amplitudes near both ends of the chain.
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3.5 Relation to Kosterlitz-Thouless renormalization

group

Here we show that the obtained results for the QPS amplitude are consistent with

the standard Kosterlitz-Thouless scaling [54]. As it was mentioned in Introduction, a

one-dimensional quantum system can be mapped on a two-dimensional classical sys-

tem, therefore, superconductor-insulator transition in in�nite one-dimensional chain

can be seen as an analogy to the Berezinskii-Kosterlitz-Thouless (BKT) transition

in the classical XY model [13, 38]. Indeed, the continuous part of the action (3.8)

is equivalent to the XY model action at distances l > `s, when the second term of

the action can be neglected.

The QPSs play the role of vortices in the (x, τ) plane. On an in�nite plane at

distances l > `s they interact logarithmically, and the strength of the interaction is

determined by the the same prefactor g, which stands in front of logarithm lnN in

the QPS action. When g is large, vortex-untivortex pairs remain bounded and the

system is a superconductor. For small g vortex-antivortex pairs can unbind, which

corresponds to proliferation of QPSs and destruction of the superconductivity, so

the system becomes an insulator. Our instanton calculation for �nite length chain

at zero temperature corresponds to the plane being in�nite in the τ direction but

�nite in the x direction: for a ring, the plane is wrapped into a cylinder, while for an

open chain the plane becomes a strip 0 < x < N . In both cases, interaction between

vortices, whose separation in τ exceeds N/vpl, is no longer logarithmic, since the

logarithm is cut o� on the scale x ∼ N . Our instanton calculation corresponds to

a dilute gas of non-interacting vortices living on a cylinder or a strip and separated

by large distance in τ (Fig. 3.7).

Thus, in chains with a �nite length the Kosterlitz-Thouless RG �ow should be

started at l = `s as the shortest scale and integrated up to the longest scale l ∼ N .

As a result, there is no real zero-temperature transition and even at �nite but low

(compared to Tc) temperatures the chain can be superconducting. However, the RG

formalism can still help to predict the QPS amplitude scaling with the system length

and, therefore, the superconducting or insulating behaviour. The RG equations are:

dx

d ln l
= −y2,

dy2

d ln l
= −2xy2, (3.85)

where x ≡ g − 2, l is running length scale, while y is the QPS fugacity, which is

proportional to the QPS amplitude, y = W l
vpl
. The corresponding �ow is shown in
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Figure 3.7: A schematic representation of a typical vortex con�gurations for periodic
boundary conditions (a) and open boundary conditions (b).

Fig. 3.8.

As mentioned above, these RG equations should be integrated starting from the

scale l ∼ `s. What are the corresponding initial conditions? For shorter length scales

the capacitance Cg does not play a role and the Lagrangian of the chain splits into

independent pieces, corresponding to di�erent junctions. There are no interactions

between the phase slips. As a result, the parameter g arises only on the scale l ∼ `s

and its initial value is given by

g (`s) =
√

(π2/8) (EJ/Eg). (3.86a)

In the superconducting regime (not too close to the critical point gc = 2) the initial

fugacity is exponentially small for EJ/Ec � 1,

y (`s) =
4√
π

(
EJ
8Ec

)1/4

`s e
−
√

8EJ/Ec � 1. (3.86b)

As the system length is increased, for g > 2 (so that the system remains in the

superconducting regime) y becomes even smaller. Then we can neglect the �ow of
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x. As a result, we can integrate the second equation (3.85) straightforwardly

y (l) = y (`s) e
−(g−2) ln l

`s . (3.87)

One can see that g = 2 should correspond to the quantum phase transition in case

gg
c
= 2

y

Figure 3.8: Kosterlitz-Thouless RG �ows corresponding to Eqs. (3.85): The solid
line denotes the transition from insulating to superconducting phase. y is the fu-
gacity of the phase slip. The critical point is gc = 2.

of in�nite chain at zero temperature. As we work in the superconducting regime,

we consider g > 2. For �nite length chains at zero temperatures the RG-equation is

integrated up to the system length N , which gives

W =
vpl
N
y (N) ∼ N1−g. (3.88)

This is exactly the same scaling as derived by the instanton calculation, Eq. (3.63).

At g > 2, the typical distance between the phase slips in imaginary time is the

inverse of the CPS amplitude, ∆τ ∼ 1/W � N/vpl (see Fig. 3.7a), so there is

no logarithmic interaction between the QPSs (since the logarithm is cut o� on the

shorter scale l ∼ N). This justi�es the non-interacting instanton gas calculation of

the tunneling amplitude.

In an open chain, if a vortex is located near the chain ends, at a distancem� N ,

the logarithm in the QPS action is cut o� on the scale l ∼ m. Thus its action
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remains �nite even for N → ∞, as we have already seen in Sec. 3.4. This can be

interpreted as e�ect of interaction of the vortex with its mirror image in the picture

of two-dimensional Coulomb electrostatics of interacting vortices [55] (see Fig. 3.7b).

As a result, the QPS amplitude is determined by a gas of vortices sticking to the

boundaries.

Chapter summary

In this chapter we discussed coherent QPS in Josephson junction chains. First,

we presented general equations, which determine coherent QPS action in a closed

chain. Then we rederived expressions for QPS amplitude for both closed and open

homogeneous chains. We also studied a speci�c weak junction limit, when one of the

chain junctions is signi�cantly smaller than the rest. Finally, we discussed scaling

of QPS amplitude with the chain length and its relation to Kosterlitz-Thouless

renormalization group.
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Chapter 4

QPS in inhomogeneous JJ chains

4.1 Linear response to a spatial modulation of the

chain parameters

We want to study the e�ect of a spatial modulation of the junction and island pa-

rameters (such as Josephson energies and capacitances) on the QPS amplitude in

a JJ chain closed into a ring, as presented in Sec. 3.1. Since modi�cation of these

parameters can be useful in controlling the state of the chain, an arti�cial modu-

lation is worth studying. For example, if the chain is made of SQUIDs, changing

the magnetic �eld in di�erent SQUIDs may lead to a transition between supercon-

ducting and insulating states. Studying the e�ect of a weak random modulations

is important as in real experiments it is impossible to produce ideally homogeneous

chains, there is always some disorder in the elements' size or uncontrollable random

gate voltages.

Here we apply the results of Sec. 3.1. In the following, we will assume the spa-

tial modulation of the chain parameters such as junction capacitance C, Josephson

energy EJ and capacitance to the ground Cg to be weak (in Sec. 4.2.1 below we

discuss the physical mechanisms for modulations), and focus on the linear correc-

tion δScl to the classical instanton action Scl. The modulation results in a linear

correction δK(τ − τ ′) to the kernel for a homogeneous JJ chain, which, in turn,

produces a correction δϑcl(τ) to the classical trajectory. Note, however, that the

classical trajectory was found from the condition δS/δϑ = 0, so the correction to

the action can be evaluated on the zero-approximation classical trajectory, which is
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most conveniently done in the Fourier space:

δScl =
1

2

∫
dω

2π
δK(ω) |ϑcl(ω)|2 . (4.1)

When calculating the correction δK(ω) to the linear order in the modulations, one

can ignore the term containing GX1(ω)G1X(ω)
G11(ω)

in Eq. (3.40). Indeed, the homogeneous

chain is symmetric with respect to x→ N−1−x, so 1 andX(x) have di�erent parity,

and G1X(ω) = 0. A modulation breaking this symmetry will produce G1X(ω), linear

in the modulation, so the term ∼ GX1(ω)G1X(ω)
G11(ω)

in Eq. (3.40) is quadratic.

The classical trajectory is given by Eq. (3.46)

ϑcl(ω) =
2π

iω cosh(πωτs/2)
, τs ≈ ω−1

p , (4.2)

As 1/τs ∼ vp/`s, the high-frequency asymptotics of K(ω) should be taken into

account. It is convenient to separate the two contributions as

K(ω) = Klow(ω) +K2ω
2, (4.3)

where Klow(ω) corresponds to the �rst line in Eq. (3.41) for GXX and remains

�nite at ω → ∞. In the correction to Senv from Klow(ω), the integral converges at

frequencies ω ∼ ωp. Thus, the correction to the logarithmic term in Senv can be

calculated as

Senv + δSenv = π2Tc
∑
α

ωα

[
(X,Ψα)

]2

F(ωατs), (4.4)

where the function F(z) is de�ned as

F(z) =
2z

π

∫ ∞
0

1

cosh2(πu/2)

du

z2 + u2
. (4.5)

The coe�cient K2 in Eq. (4.3) determines the local part of the action Sloc; its

general expression is

K2 =
1

8Ec
+ Tc

{
(X,X)−

∑
α

[
(X,Ψα)

]2
}
. (4.6)

Then, δSloc = 4 δK2/τs.
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4.2 Periodically modulated chain

4.2.1 Physical mechanisms for the modulation

Here we apply the general scheme, outlined in the previous section, to the simplest

case of a weak periodic modulation of the chain parameters. We assume the modula-

tion period, N/m, to be an integer fraction of the chain length N (that is, m� 1 is

integer). This introduces no discontinuity of the JJ chain parameters at the QPS

location. Thus, the modulation is assumed to have a pro�le

µ(x) = 1− t cos k2m(x− x0), (4.7)

where t� 1 is the relative modulation amplitude, k2m ≡ 2πm/N , and x0 parametrizes

the relative QPS position with respect to the modulation. One can consider di�erent

modulations, depending on their physical implementation.

When fabricating JJ chains, one can control the area of each junction. While the

Josephson energy EJ and the capacitance C between the islands are both propor-

tional to the junction area, the capacitance of each island to the ground is controlled

by the island area. Assuming the junction areas to be modulated and the island

areas to remain constant, we arrive at the following spatial pattern of the coe�cients

in action (3.8):

Eg(x) = Eg0, `2
s(x) = `2

s0µ(x), EJ(x) = EJ0 µ(x). (4.8a)

Another possible way to modulate the parameters is to vary the island areas. In this

case, the ground capacitance Cg of each island is modulated, while EJ an C remain

constant. This corresponds to

Eg(x) =
Eg0
µ(x)

, `2
s(x) =

`2
s0

µ(x)
, EJ(x) = EJ0. (4.8b)

Finally, each Josephson junction can be implemented as a superconducting quan-

tum interference device (SQUID). In a magnetic �eld, the corresponding Josephson

energy of each SQUID is sensitive to the SQUID loop area. This enables one to

modulate EJ independently of C; this may lead to qualitatively di�erent e�ects

from the previous cases [79]. Thus, we consider the pro�le

Eg(x) = Eg0, `2
s(x) = `2

s0, EJ(x) = el0 µ(x). (4.8c)

53



Below we will analyze these cases separately, closely following the approach of

Ref. [80].

4.2.2 Junction area modulation

We start with the case of modulation (4.8a). First, we calculate the correction to

the classical con�guration:

X(x) =

(
x

N
− 1

2

)
+

t

k2mN
sin k2m(x− x0) +O(t2). (4.9)

Then, we �nd the normal mode wave functions Ψα(x) and frequencies ωα from the

modulated wave equation,

∂

∂x
µ(x)

∂Ψα

∂x
+ κ2(ωα) Ψα = 0, (4.10)

where κ(ω) denotes the inverse of the dispersion (3.31):

κ(ω) ≡ ω√
8EJ0Eg0 − `2

s0ω
2
. (4.11)

For t = 0 this gives the homogeneous result Ψα(x) =
√

2/(1 + k2`2
s0) sin kαx with

κ(ωα) = kα = πα/N .

First, we use perturbation theory in t� 1, seeking the wave function in the form

Ψα(x) =

√
2

1 + k2`2
s0

(
sin kαx−

B+ +B−
2

cos kαx +

+
B+

2
cos kα+2mx+

B−
2

cos kα−2mx+

+
A+

2
sin kα+2mx+

A−
2

sin kα−2mx

)
. (4.12)

The perturbation theory gives

A± = − kαkα±2m

k2
α − k2

α±2m

t cos k2mx0, B± = ± kαkα±2m

k2
α − k2

α±2m

t sin k2mx0, (4.13)
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and the correction to ωα is O(t2).

(X,Ψα) = − 1 + (−1)α

2

√
2

1 + k2
α`

2
s0

1

kαN

[
1− t

4
cos k2mx0

(
k2
α

k2
α − k2

m

+ 2δα,2m

)]
+

− 1− (−1)α

2

√
2

1 + k2
α`

2
s0

2t sin k2mx0

kαk2mN2
+O(t2). (4.14)

However, the perturbative expression (4.12) is not always valid. By a direct check,

we see that the corrections are small when two conditions are ful�lled:

|α−m| � tm, tα� m. (4.15)

The �rst condition breaks down in the relatively narrow interval of α, where the

gap in the frequency spectrum opens up. The resulting modi�cation of a relatively

small number of terms in the α sum in Eq. (4.4), those with |α −m| ∼ tm, leads

to a small correction to the N/m factor inside the logarithm [see Eq. (4.21) below].

This correction is beyond our precision.

For large α, the second condition (4.15) breaks down. Then, instead of doing

perturbation theory, one can construct Ψα(x) using the WKB approximation:

Ψα(x) =

√
2

1 + `2
s0κ

2(ωα)

sin s(x)

[µ(x)]1/4
, s(x) ≡

∫ x

0

κ(ωα) dx′√
µ(x′)

. (4.16)

The frequency ωα is determined by the boundary condition for Ψα(x), that is, s(N) =

πα. This results in a small relative correction O(t2) to the frequency and determines

the normalization factor in Eq. (4.16). Although the relative di�erence between s(x)

and its zero-approximation value kαx is small, the absolute di�erence may become

of the order of one, and then sin s(x)− sin kαx ∼ 1 as well. This is the reason of the

perturbation theory breakdown at large α. Note, however, that the perturbation

theory is valid at α � m/t, while the WKB approximation is valid at α � m, so

their regions of validity overlap.

Now we evaluate the overlap (X,Ψα) writing it as

(X,Ψα) =

√
2

1 + k2
α`

2
s0

Im

∫ N

0

dx

N
eis(x)[µ(x)]1/4

[
X(x)√
µ(x)

+ ikα`
2
s0

dX(x)

dx

]
. (4.17)

Note that eis(x) is fast oscillating, while the rest of the integrand is smooth, due

to the condition kα � k2m. Thus, we introduce the complex variable z such that
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Figure 4.1: (Color online) Deformation of the integration contour in Eq. (4.17) from
the real axis (solid red line) into the upper complex half-plane (dashed red line).
The dots represent branching points zj of s(z).

x = Re z, and deform the contour into the upper complex half-plane, as shown in

Fig. 4.1. The contour can be moved up to the branching points of s(z), located at

zj =
jN

m
+ x0 +

i

k2m

arccosh
1

t
.

The integral over the horizontal part of the contour near the branching points is

suppressed as tα/(2m); the branching points determine the small re�ection probability

from a weak smooth potential, which in the present case of a periodic modulation

leads to opening of small gaps at high frequencies. This e�ect is beyond our preci-

sion, so the contribution of interest comes from the steepest descent in the positive

imaginary direction from the points x = 0 and x = N . To linear order in 1/kα this

gives

(X,Ψα) =

√
2

1 + k2
α`

2
s0

[µ(0)]1/4

kαN
[X(0)− (−1)αX(N)] . (4.18)

This coincides with Eq. (4.14) in the limit α� m. The reason for this coincidence is

that even though the WKB wave function di�ers signi�cantly from the perturbative

one in the bulk of the chain, the overlap integral is dominated by the vicinities of
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x = 0, N , where the phase accumulated in s(x) is still small on the absolute scale.

Thus, Eq. (4.14) can be used for all α. Substituting it into Eq. (4.4) and ne-

glecting O(t2) terms, we obtain

δSenv

g
= −πt

N
cos k2mx0

∑
α even

kα
k2
α − k2

m

F(ωατs)

(1 + k2
α`

2
s0)3/2

. (4.19)

F is de�ned in Eq. (4.5). The sum can be replaced by the integral which should be

understood as the principal value (the contribution of the term with α = 2m has

relative smallness ∼ 1/m). The last factor cuts o� the integral at kα ∼ 1/`s. At

km`s � 1 the integral is logarithmic, where the small k cuto� is determined by the

�rst factor. In this case it is convenient to rewrite it as

δSenv

g
= −t cos k2mx0

2

∫ ∞
0

F(ω(k)τs) dk

(k + km)(k2`2
s0 + 1)3/2

, (4.20)

where we used the fact that the integral of k/(k2 − k2
m)− 1/(k + km) is identically

zero. As a result,

δSenv

g
= − t

2
cos k2mx0

(
ln

1

2km`s
+ Υ̃

)
, (4.21)

if km`s � 1; at km`s � 1, the correction is suppressed as 1/(km`s)
2. Υ̃ is a number

of the order of unity, evaluated numerically. In the limit `s � 1 it amounts to

Υ̃ = −0.4806 . . .. For realistic parameters, e. g., a chain of 1000 junctions with

g = 3 and `s = 10, modulated with t = 0.2 and m = 5, this gives δSenv ≈ 0.2.

Finally, to �nd the correction to the high-frequency asymptotics of the kernel

K(ω), determined by Eq. (4.6), we directly evaluate

(X,X)−
∑
α

[
(X,Ψα)

]2

=
`s0
2N

(
1− t

2

cos k2mx0

1 + k2
m`

2
s0

)
+O(`2

s/N
2). (4.22)

For km`s0 � 1, this correction corresponds precisely to the local value of `s, and

thus of `2
s/Eg ∝ C at the QPS location. For km`s0 � 1, the correction is suppressed,

as the modulation is e�ectively averaged out on the length `s0.
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4.2.3 Island area modulation

For modulation (4.8b), Eq. (3.36) gives

X(x) =
x

N
− 1

2
− t

k2mN
sin k2mx0. (4.23)

The wave functions Ψα are found from the wave equation

∂2Ψα

∂x2
+ κ2(ωα)µ(x) Ψα = 0. (4.24)

The perturbative expression for Ψα(x) is again Eq. (4.16), with coe�cients obtained

from Eqs. (4.2.2) by replacing kα±2m → kα in the numerators and inverting the

overall sign. The WKB wave function is given by the same expression (4.16), but

the phase s(x) is given by

s(x) = κ(ωα)

∫ x

0

√
µ(x′) dx′. (4.25)

The �nal result for (X,Ψα) turns out to be exactly the same as for the case of the

junction area modulation, Eq. (4.14). δSenv is also given by Eq. (4.21).

Evaluation of Eq. (4.6) with the perturbed wave functions again gives Eq. (4.22).

This time, at km`s0 � 1 it corresponds to taking the local value of the ground

capacitance Cg.

4.2.4 SQUID area modulation

For modulation (4.8c), the pro�le X(x) is again given by Eq. (4.9). The coe�cients

A±, B± are obtained by multiplying those from Eqs. (4.2.2) by 1 + k2
α`

2
s. All sub-

sequent calculations are analogous; the result is the same as in Eq. (4.21) but the

number Υ̃ is di�erent, we obtain Υ̃ = −0.0695 . . ..

Evaluation of Eq. (4.6) can be simpli�ed by noting that modulation (4.8c) does

not a�ect the scalar product. By completeness,
∑

α Ψα(x)Ψα(x′) ≡ I(x, x′) is the

kernel of the unit operator in the space of functions with Dirichlet boundary con-

ditions, and it does not depend on the choice of the functional basis Ψα in this

space. Thus, Eq. (4.6) can be evaluated using the wave functions for the homoge-

neous chain, Ψα(x) =
√

2/(1 + k2
α`

2
s0) sin kαx. As a result, the correction vanishes.

Indeed, modulation (4.8c) does not involve the capacitances at all.

58



4.2.5 Combined modulation

We can also consider a case when both Josephson energies and capacitances are

modulated, EJ(x) = el0 µl(x) and Eg(x) = Eg0/µc(x), generally speaking, with

two di�erent amplitudes tl and tc. Then, it is easy to see that the resulting e�ect

on (X,Ψα) is additive. For the �rst-order perturbative wave functions this follows

trivially, while for the WKB wave functions it follows from the steepest-descent

calculation, analogous to Eq. (4.17). Its result is determined by the derivative

s′(x = 0), which, in turn, can be calculated perturbatively.

The results obtained above may be conveniently combined if we introduce the

local dimensionless admittance:

g(x) ≡ π

√
EJ(x)

8Eg(x)
≡ g0 + δg(x). (4.26)

For all types of modulation, discussed in Sec. 4.2.1, we have

δg(x)/g0 = −(t/2) cos k2m (x− x0) +O(t2). (4.27)

For the combined modulation with two di�erent amplitudes tl and tc, the correction

is

δg(x)/g0 = −(tl/2 + tc/2) cos k2m (x− x0) +O(t2). (4.28)

Then, up to terms O(1), at km`s � 1 we can express correction δSenv in terms of

δg(x = 0), which is the local correction to the chain admittance at the QPS position,

for all types of modulations:

δSenv = δg(x = 0) ln
1

2km`s
, (4.29)

4.3 Disordered chain

4.3.1 Fluctuations of the QPS action

In this section we consider two types of disorder in the chain: spatial inhomo-

geneities, such as random variation in the junction areas, resulting in relative mod-

ulation of the Josephson energy and junction capacitance

Ec,n =
Ec

1 + ηn
, EJ,n = EJ (1 + ηn) , (4.30)
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as well as random induced charges qn on the islands [see Hamiltonian (3.1)], which

can be caused by random gate voltages, and result in a random phase of a single

QPS θn =
∑n

m=0 2πqm/(2e) (see Eq. (3.5)). We consider spatial disorder to be

relatively weak, 〈η2
n〉 � 1, which produces small relative corrections to the action

Sn and the prefactor Ωn in Eq. (3.17). While the latter results in a small relative

correction to the QPS amplitude W , the correction to the action, δSn, even though

small compared to Sn, can still be large compared to unity, since Sn itself is large.

As δSn stands in the exponent, it may signi�cantly modify W . Therefore, in the

following we focus on the statistics of δSn, calculating it to the linear order in ηn. For

this we can again use the unperturbed expression (4.2) for ϑcl in Eq. (4.1), because

it was derived from the condition δS/δϑ = 0. Then the correction to the action is:

δSn =

∫ [
ηn

16Ec

(
dϑcl
dτ

)2

+ ηnEJ (1 + cosϑcl)

]
dτ+

+
1

2

∫
δKn(ω) |ϑcl(ω)|2 dω

2π
≡ δSn,loc + δSn,env, (4.31)

where the kernel K is

Kn(ω) =
|ω|

(2e)2Zn (i|ω|)
. (4.32)

We assume ηn to be Gaussian distributed with 〈ηn〉 = 0, so the average correction

to the action is zero. The quadratic �uctuations of the action are determined (i) by

the variation of the slipping junction area, which in turn determines δSn,loc, the �rst

two terms in Eq. (4.31), and (ii) by the correlator 〈δKn (ω) δKn (ω′)〉, corresponding
to the variation in the impedance of the rest of the chain, which governs δSn,env,

the last term in Eq. (4.31). The latter is determined by the Mooij-Sch�on modes,

which become localized in the presence of disorder. Calculation of the correlator is

fully analogous to that of impedance �uctuations at real frequencies [81]: using the

recurrence relation for the impedance as the chain length is increased by one, one

arrives at a Langevin-like equation.

The basic idea of the approach is to study the change in the admittance YN(iω) ≡
1/ZN(iω) of an open chain of N Josephson junctions upon addition of an extra

junction N + 1. We can write the following recurrence relation for the admittance:

YN+1 = ωCg +
YNYJ
YN + YJ

, (4.33)

where YJ = 1/(ωLN+1)+ωCN+1 is the imaginary frequency admittance of the added

junction and the Josephson inductance is de�ned as 1/LN+1 = (2e)2EJ,N+1.
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First, let us consider a homogeneous chain. Then the recurrence relation (4.33)

has a stationary point Y∞, determined by the condition

Y∞ = ωCg +
Y∞YJ
Y∞ + YJ

, (4.34)

which gives

Y∞ =
ωCg

2
+

√
ω2C2

g

4
+ ωCgYJ ≈

√
ωCgYJ . (4.35)

The latter approximation follows from C � Cg. Focusing on small deviations from

the stationary point, we introduce a new variable XN = YN − Y∞. The linearized

recurrence relation takes a simple form:

XN+1 = τ XN , τ ≡ Y 2
J

(Y∞ + YJ)2 . (4.36)

Note that 1− τ � 1, following from Cg � C.

Now we can include �uctuations of the chain parameters,

CN+1 → C (1 + ηN+1) , LN+1 →
L

1 + ηN+1

, (4.37)

and write the linearized recurrence relation as

XN+1 = τXN +
Y 2
∞YJ

(Y∞ + YJ)2 ηN+1 = τXN + δXN+1. (4.38)

Using the condition 1− τ � 1 we can cast this equation into a di�erential form:

dXN

dN
= −(1− τ)XN +

Y 2
∞YJ

(Y∞ + YJ)2 ηN+1, (4.39)

which is a Langevin equation.

So far we considered the admittance at a given frequency ω. We are interested

in the correlator of admittances at two di�erent frequencies ω and ω′. Then taking

into account the fact that δXN+1 and XN are not correlated we can average the

product of equations (4.38) at di�erent frequencies:

〈XN+1 (ω)XN+1 (ω′)〉 = τ (ω) τ (ω′) 〈XN (ω)XN (ω′)〉+

+ 〈δXN+1 (ω) δXN+1 (ω′)〉 , (4.40)
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which can again be rewritten as a di�erential equation:

d

dN
〈XN (ω)XN (ω′)〉 =

= (τ (ω) τ (ω′)− 1) 〈XN (ω)XN (ω′)〉+

+ 〈δXN+1 (ω) δXN+1 (ω′)〉 . (4.41)

As we consider long chains, we can go to the limitN →∞ and look for the stationary

solution:

〈X (ω)X (ω′)〉 =
〈δX (ω) δX (ω′)〉
1− τ (ω) τ (ω′)

, (4.42)

which is the correlator of admittance �uctuations. The correlator of the kernel

�uctuations is

〈δK (ω) δK (ω′)〉 =
|ω| |ω′|
(2e)4 〈X (ω)X (ω′)〉 . (4.43)

Evaluating 〈δX (ω) δX (ω′)〉 from the de�nition (4.38) and collecting all factors, we

obtain the following behaviour in the two limiting cases. For ω, ω′ � ωp we have

〈δK (ω) δK (ω′)〉 =
|ω|2 |ω′|2

28E
3/2
g E

1/2
c

〈η2〉. (4.44)

At low frequencies ω, ω′ � ωp, the result is

〈δK (ω) δK (ω′)〉 =

√
2EJ

32E
3/2
g

|ω|2 |ω′|2

|ω|+ |ω′|
〈η2〉

2
. (4.45)

We are interested in the low-frequency limit of 〈δK (ω) δK (ω′)〉 because the inte-

grand in Eq. (4.31) is quickly suppressed at ω > ωp due to the frequency dependence

of ϑcl(ω), Eq. (4.2). From this we can estimate

〈δS2
env〉 ∼ 〈η2〉`s

√
EJEc
E2
g

∼
√
EJEc∫

0

dω dω′

ω + ω′
∼ 〈η2〉`sEJEc

E2
g

∼ 〈η2〉g
2

`s
. (4.46)

As typically g2 . `s, 〈δS2
env〉 � 1. At the same time

〈δS2
loc〉 ∼ 〈η2〉EJ

Ec
� 〈δS2

env〉, (4.47)

due to the condition Cg � C. Moreover, 〈δS2
loc〉 can be larger than 1, depending on

the parameters, as 〈η2〉 � 1, while EJ
Ec
� 1.
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As a result, the �uctuations of the QPS action are dominated by the local values

of the slipping junction parameters, while the e�ect of Mooij-Sch�on modes modi�-

cation by the disorder plays a minor role. This happened because the environment

contribution to the QPS amplitude is determined by the impedance at imaginary

frequencies, which turns out to be weakly �uctuating. This is in striking contrast

to the behaviour at real frequencies, when localization of the Mooij-Sch�on modes by

the disorder results in strong impedance �uctuations [81].

Having established the dominant character of the local contribution to the action

�uctuations, we can study the statistics of the QPS amplitudeW by using Eq. (3.17)

with Sn = Shom+δSn, where Shom is the action of the homogeneous chain, Eq. (3.53),

and δSn are independent Gaussian random variables:

δSn =

√
8
EJ
Ec
ηn, 〈δSn〉 = 0, 〈δSnδSm〉 = 8

EJ
Ec
〈η2
n〉δnm = σ2δnm. (4.48)

This problem is addressed in the following subsections.

4.3.2 QPS amplitude distribution without random induced

charges

First, we consider only the junction area variation assuming no induced charges.

For long chains we can use the central limit theorem resulting in the Gaussian

distribution with the average amplitude and dispersion

〈W 〉 = Ω e−ShomN eσ
2/2,

√
〈W 2〉 − 〈W 〉2 = Ω e−Shom

√
N(e2σ2 − eσ2). (4.49)

The central limit theorem is valid when the dispersion is much smaller than the

average, that is

N � eσ
2 − 1. (4.50)

However, even for small relative area �uctuations 〈η2
n〉 � 1, it is quite possible that

σ2 & 1. Indeed, taking the parameters of the experiment in [72], EJ/Ec ≈ 90, and

assuming 〈η2
n〉 = 10−2, we obtain σ2 ≈ 7. Then the central limit theorem applies

only for exponentially large N .

For σ > 1 and insu�ciently large N , the distribution of W can be far from

Gaussian; it develops a long asymmetric tail for large W . In this case the peak

of the distribution can be located at W much smaller than the average value 〈W 〉
(see Fig. 4.3); the average is then determined by rare con�gurations contributing

63



to the tail. In fact, this problem is known since long ago in many di�erent areas,

such as communications [82, 83], optics [84], transport in disordered systems [85],

�nances [86], yet no general analytical expression for the resulting distribution is

available. Sometimes the resulting distribution can be approximated by a lognormal

one [84, 86, 83]. Below we revisit this problem for σ2 & 1 and give some analytical

expressions valid in di�erent regimes [Eqs. (4.59) and (4.62)], and compare them to

the results of the direct numerical sampling and its lognormal �t (Fig. 4.3).

To derive analytical expressions, let us represent the QPS amplitude as W =

AΩ e−Shom , then the distribution function for the normalized amplitude A is de�ned

as

f (A) =

〈
δ

(
A−

N∑
n=1

exp (−δSn)

)〉
=

=

∫
dt

2π
eitA

[∫
dx√
2πσ

e−
x2

2σ2 exp
(
−ite−x

)]N
. (4.51)

The average value 〈A〉 = N eσ
2/2.

The t integral can be calculated in the saddle-point approximation similarly to

Ref. [85]. Let us rotate the integration contour in Eq. (4.51) to the imaginary axis:

f (A) =

i∞∫
−i∞

exp [zA−N I(z)]
dz

2πi
, (4.52)

I(z) ≡ − ln

[∫
dx√
2πσ

e−
x2

2σ2 exp
(
−ze−x

)]
. (4.53)

In the saddle-point approximation, we have

f (A) ≈

√
1

2πNI ′′ (zs)
exp [zsA+NI (zs)] , (4.54)

where I ′(z) = dI/dz and zs is de�ned as the solution of the equation

A+NI ′ (zs) = 0. (4.55)

Because we consider N � 1, the important values of z are those for which I(z)� 1,

so we can expand the logarithm and approximate

I (z) ≈
∫

dx√
2πσ

e−
x2

2σ2
[
1− exp

(
−ze−x

)]
. (4.56)
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Figure 4.2: Two factors of the integrand in I(z) (4.56), exp(− x2

2σ2 ) (dashed blue
line) and 1− exp (−ze−x) (dashed green line), and their product (solid red line).

In the saddle point approximation the integral (4.52) is determined by the small area

near the real axis. To calculate I(z) (4.56) we approximate exp (−ze−x) ≈ 1− ze−x

for x > ln z and exp (−ze−x) ≈ 1 for x < ln z. Then if − ln z & σ2 +σ the integrand

can be approximated as Gaussian for x > ln z and is suppressed for x . ln z [85]

(see Fig. 4.2):

I (z) ≈ −
∞∫

ln z

zeσ
2/2 dx√

2πσ
exp

[
−(x+ σ2)

2

2σ2

]
= −ze

σ2/2

2
erfc

(
ln z + σ2

√
2σ

)
, (4.57)

Therefore, Eq. (4.55) can be written as:

A−N eσ
2/2

2
erfc

(
ln zs + σ2

√
2σ

)
+N

eσ
2/2

√
2πσ

exp

[
−
(

ln zs + σ2

√
2σ

)2
]
≈ 0.

Introducing new variable y = ln zs+σ2
√

2σ
and considering |y| � σ we obtain

y ≈ erfc−1

(
2A

Neσ2/2

)
− 1√

2σ
. (4.58)
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Now we calculate the second derivative of I:

I ′′ (zs) ≈
eσ

2/2

√
2πσzs

exp

[
−
(

ln zs + σ2

√
2σ

)2
]

− eσ
2/2

√
2πσzs

ln zs + σ2

σ2
exp

[
−
(

ln zs + σ2

√
2σ

)2
]
≈

exp
(
3σ2/2−

√
2σy − y2

)
√

2πσ
.

resulting in

f (A) ≈ σ

Neσ2/2
M1/2 exp

(
−Me

√
2σQ−Q2

+
Q2 +

√
2σQ

2

)
, (4.59)

where Q = erfc−1
(

2A

Neσ
2/2

)
and M = Ne−σ

2/2
√

2πσe
.

For validity of the saddle-point approximation we need∣∣∣∣∣∣NI ′′′(zs)
[

1√
NI ′′(zs)

]3
∣∣∣∣∣∣� 1, (4.60)

where the quantity in the square brackets is the typical width of the relevant region

near zs. As a result, we obtain the condition N & σeσ
2/2−σ � 1.

Another analytically tractable regime is when the whole sum is determined by

a single term, corresponding to the junction with the highest QPS amplitude (the

weakest junction). The probability of having one junction with x < δSn < x + dx

and the rest of the junctions with δSn < x is

p (x) dx =

 x∫
−∞

dx√
2πσ

e−
x2

2σ2

N−1

N√
2πσ

e−
x2

2σ2 dx, (4.61)

where N in the last factor corresponds to the fact that the junction with the highest

amplitude can be any of the N junctions. Then for the distribution we have

f (A) =

∫
δ
(
A− e−x

)
p (x) dx =

N√
2πσA

exp

[
−(N − 1)

2
erfc

(
lnA√

2σ

)
− ln2A

2σ2

]
.

(4.62)

The weakest junction approximation is valid when the amplitude on the weak-

est junction, exp(−min{δSn}), is su�ciently larger than the sum of the ampli-

tudes on the rest of the junctions, which can be estimated from above as (N −
1) exp(−min′{δSn}), where min′{δSn} denotes the second smallest of {δSn}. To es-
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Figure 4.3: Distribution f(A) in the absence of induced charges, calculated for σ = 4
and di�erent N by the direct numerical sampling (blue dots), using the weakest
junction approximation (4.62) (red dashed lines), the saddle-point approximation
(4.59) (orange dotted lines), and the lognormal �t (solid green lines).
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Figure 4.4: Cumulative probability distribution of δSn and estimates of the two
smallest δSn for a typical sample.

timate the typical values of the two smallest δSn, we recall the standard procedure

for sampling the Gaussian distribution: from a sample of N numbers {xn}, uni-
formly distributed between 0 and 1, one obtains a sample of the Gaussian {δSn} by
taking the inverse of the cumulative probability distribution function (see Fig. 4.4).

In a typical sample, min{xn} ∼ 1/N and min′{xn}−min{xn} ∼ 1/N , so we estimate

1

2
erfc

(
min{δSn}√

2σ

)
=

1

N
,

1

2
erfc

(
min′{δSn}√

2σ

)
=

2

N
. (4.63)

This results in the validity condition

N . exp
[(

ln2 2/2
)1/3

σ2/3
]
. (4.64)

In Fig. 4.3 we compare results derived in weakest junction approximation, the

saddle-point approximation, a lognormal �t and direct numerical sampling. Log-

normal �t is reasonable in all limits, however, it is not clear how to choose its

parameters a priori, therefore, it does not seem to be useful. The weakest junction

approximation works well for short chains, while the saddle-point approximation is

more accurate for longer chains.

4.3.3 QPS amplitude distribution in the presence of random

induced charges

If we include random induced charges qn, we obtain a random phase in the amplitude

of a single QPS centered on each junction θn = 2π
∑n

m=0 qm/(2e) [32, 33], as a result

instead of the coherent sum for the total QPS amplitude in Eq. (3.17) we have the

68



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
|A|/ |A| * 10 3

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

|A
|

f(
|A

|)
*1

03

= 4
N = 100

0 5 10 15 20 25 30
|A|/ |A| * 10 3

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

|A
|

f(
|A

|)
*1

03

= 4
N = 104

Figure 4.5: Distribution f(|A|) with random induced charges, calculated for σ = 4
and di�erent N by the direct numerical sampling (blue dots) and using the weakest
junction approximation (4.62) (red dashed lines).

sum with random phases. If 〈q2
n〉/(2e)2 � 1, the distribution of qn is �at, so the

phases θn are uncorrelated. This represents a universal limit of maximally strong

disorder. Then the normalized QPS amplitude is given by

A =
N−1∑
n=0

e−δSn−iθn . (4.65)

Therefore, A is complex and its average is zero. The central limit theorem results

in the complex Gaussian distribution with√
〈|A|2〉 =

√
N eσ

2

. (4.66)

The criterion for the validity of the central limit theorem is the correspondence of

the moments of A to the moments of the complex Gaussian distribution, for example

〈|A|4〉 − 2〈|A|2〉2 � 〈|A|4〉. (4.67)

This results in the condition

N � (e4σ2 − 1)/2, (4.68)

even more restrictive than in the real case.

In the complex case, we were unable to derive a compact expression for the

distribution function corresponding to the saddle point approximation. The weakest

junction approximation works when

N . exp
[(

2 ln2 2
)1/3

σ2/3
]
. (4.69)
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Then the distribution of |A| is the same as the distribution of A in Eq. (4.62). The

only di�erence is in the restriction on the chain length N : the approximation is valid

for a wider range of N as seen from Eq. (4.69) and Eq. (4.64).

In Fig. 4.5 we compare the numerical sampling and the weakest junction approx-

imation. One can see that the latter remains accurate for a longer chains than in

case of no induced charges.

Chapter summary

This chapter is dedicated to e�ects of weak spatial inhomogeneities on the QPS

amplitude in a Josephson junction chain. We started by studying the case of weak

arti�cial periodic modulations of the chain parameters, such as Josephson energy

EJ , junction capacitance C and capacitance to the ground Cg, discussing di�erent

realisations of those modulations. We derived the corrections to an environmental

and a local contribution to a QPS action, showing that any of those corrections can

a�ect the QPS amplitude. The correction to the logarithmic term has a cut-o� at

the modulation wave-length N/m instead of system length N .

Then we studied the e�ects of disorder of two types: weak random variations of

the junction areas and random induced charges on superconducting islands, caused

by random gate voltages. We showed that the corrections to the environmental

contribution to the QPS action can be neglected, while the local part of the ac-

tion can be modi�ed strongly enough to change the QPS amplitude dramatically.

As a result, for short chains a junction with the smallest area can be seen as a

weak link, where all the phase slips occur. We studied the statistics of the QPS

amplitude and derived a criterion, determining chain behaviour in both limits of

zero, Eq. (4.50), and large random induced charges, Eq. (4.68). For small σ � 1

this criterion is trivial, in all the chains with length N � 1 a QPS amplitude

is very close to the one in a homogeneous chain. However, for large σ � 1 the

criterion de�nes, whether the total QPS amplitude is averaged over several weak

junctions, resulting in all the chains behaving similarly, with the QPS amplitude

given by the average value, 〈W 〉 = NΩe−Shom+σ2/2 in case of zero induced charges

and
√
〈|W |2〉 =

√
NΩe−Shom+σ2

in the presence of large induced charges, or whether

the chains, produced with the same average parameters but di�erent disorder real-

izations, behave di�erently, as the total QPS amplitude has a wide distribution over

di�erent realizations.
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Chapter 5

QPS in superconducting nanowires

w

h

dgrounded 
metallic gate

wire

Figure 5.1: Schematic representation of a superconducting nanowire of width w
and thickness h at a distance d from the metallic gate

The results obtained in the previous section for JJ chains can be applied to

superconducting wires. We consider a superconducting nanowire of rectangular

cross-section, whose width is smaller than the superconducting coherence length:

λF � h . w � ξ, here λF is the Fermi wavelength, h and w are the thickness and

the width of the wire respectively, ξ is the superconducting coherence length in the

bulk metal. The wire is placed at a distance d from a grounded metallic gate. We

consider the wire to be in the dirty limit, assuming that the electron mean free path

is much smaller then superconducting coherence length ` � ξ. Therefore, there

are three possible di�usive regimes in the system. First, if the electron mean free

path is shorter than the width `� h, the wire is in the three-dimensional di�usive

limit with the di�usion coe�cient D = vF `/3. If h � ` � w, then the system

is in the two-dimensional di�usive regime D = vF `/2. And �nally, for w � ` we
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have one-dimensional di�usive regime with D ∼ wvF due to sensitivity of electronic

motion to the surface roughness. We also consider the distance d between the wire

and the grounded metallic gate to be much larger than the wire width, d� w (see

Fig. 5.1). Here are some typical values of superconducting coherence length and the

electron mean free path in experimental setups: for rhenium ξ = 100− 150 nm and

` ranging from 60 nm to 2µm [87], for aluminium ξ0 = 1.7µm and ` ≈ 10 nm [88].

Following [89] we can write the phase action for the superconducting wire as a

gradient expansion on the scales k � 1/ξ (for wires k has the dimension of inverse

length, while for the JJ chains it was dimensionless, as we were measuring length in

Josepshon junctions). As the coordinate and time derivatives of the phase contribute

to the action in the same form as gauge �elds V and A, the scalar and the vector

potential, upon integrating out electron degrees of freedom the action takes the form

S =
1

8

∫
dk dω

(2π)2

[
ω2χρρ (k, ω) + ωkχρj (k, ω) + kωχjρ (k, ω) + k2χjj (k, ω)

]
|φ|2,

(5.1)

where the coe�cients are de�ned as components of the response matrix χ̂:(
ρ

j

)
=

(
χρρ χρj

χjρ χjj

)(
eV

− e
c
A

)
= χ̂ (k, ω)

(
eV

− e
c
A

)
, (5.2)

which determines the response of the electron density ρ and current j to the scalar

= ...

Figure 5.2: Ladder diagrams series for the components of the response matrix χρρ,
χjj, χjρ and χρj. Solid lines correspond to electron Green's functions averaged
over disorder, the dashed lines correspond to impurity potential. Each wavy line
corresponds either to 1 or current operator j, depending on the indices of χ.

and vector potentials. The components of the response matrix can be calculated

in Feynman diagrammatic formalism as loops with two vertices, each of them can

be either scalar (corresponding to the scalar �eld V ) or vector (corresponding to

the vector �eld A). In case of intrinsic disorder (as we consider di�usive regime)

the averaging over impurities is done by summing over the series of all ladder di-

agrams (diagrams with noncrossing impurity lines, see Fig. 5.2). As a result, in

low-frequency and low-momentum limit ω � ∆, k � ξ−1 without interactions we
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have [90]

χ0
ρρ ≈ ν, χ0

ρj = χ0
jρ ≈

πνD

16∆
kω, χ0

jj ≈ πνD∆. (5.3)

Here ∆ is the superconducting gap, ν and D are the density of states per unit length

and the di�usion coe�cient for the wire in the normal state. They can be related

to the bulk density of states ν3D and the superconducting coherence length of the

wire material, as well as to the wire cross-section s = wh, ν = sν3D, ξ =
√
D/∆.

However, we need to take into account Coulomb interaction in the system. There

are contributions both from the electrons in the wire itself and in the metallic gate

at distance d:

U (x− x′) =

w∫
0

dy

w

dy′

w

 e2/ε√
(x− x′)2 + (y − y′)2

− e2/ε√
(x− x′)2 + 4d2

 . (5.4)

Then in the random-phase approximation (see Fig 5.3) we obtain the χ-matrix as

=

+

+

+     ...

Figure 5.3: Random-phase approximation. Dotted lines correspond to Coulomb
interaction.

χ̂ (k, ω) = χ̂0 (k, ω)

[
1 +

(
U (k) 0

0 0

)
χ̂0 (k, ω)

]−1

. (5.5)

Here χ̂0 is the response matrix de�ned without Coulomb interactions in the system,
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U (k) is the Fourier transform of the Coulomb interaction. Then

χ̂ =
1

1 + U (k)χ0
ρρ

(
χ0
ρρ χ0

ρj

χ0
jρ χ0

jj

[
1 + U (k)χ0

ρρ)
]
− U (k)χ0

ρjχ
0
jρ

)
(5.6)

One can see that the �rst term in Eq. (5.1) is suppressed by

χ0
ρρU (k) ≈ 2e2ν

ε

[
ln

2d

we−3/2
− k2d2 ln

e1−γ

|k|d
+O

(
k4d4

)]
, (5.7)

due to the fact that χ0
ρρ ≈ ν, where ν is the one-dimensional density of states for

electrons in the wire, and in metallic wires νe2 � 1 (even for a small cross-section

s = 100 nm2, for rhenium νe2 = 3, 6 × 103 [87], for aluminium νe2 = 5 × 103 [88]).

As a result, even for relatively low k < ξ−1 we have to consider high frequencies

(ω > 2∆) and the quasiparticles should be taken into consideration.

As U (k) ≈ U (0) = 2e2

ε
ln 2d

we−3/2 for k � 1/d is very strong, many terms are

suppressed, the action can be written as [53]

S ≈ 1

8

∫
dk dω (2π)2 |φ (k, ω)|2

(
ω2

U(0)
+ χjj (ω) k2

)
, (5.8)

where χjj (ω) is proportional to the optical conductivity on imaginary frequencies,

χjj (ω) = |ω|σ (−i|ω|) [91]. For low frequencies, ω � ∆, χjj ≈ χ0
jj, we can determine

the plasma (Mooij-Sch�on) mode velocity as vpl =
√
U (0)χ0

jj and low-frequency

admittance as g = π
4

√
πν
U(0)

ξ∆.

As a result, the low-energy excitations (the Mooij-Sch�on modes) are similar to the

ones in JJ chains up to the frequencies ω . 2∆. The di�erence is that while in the

JJ chain model there are no excitations above the cuto� frequency ωp, in a wire the

role of the cuto� frequency is played by the superconducting gap 2∆, above which

quasiparticle excitations are present and can be virtually excited during the phase

tunnelling process. Therefore, slow phase readjustment in a superconducting wire is

completely analogous to a JJ chain, while in the core of the QPS the order parameter

is suppressed and the phase action is invalid. Thus, for the Ohmic (environment)

part of the action one can use the expressions derived for JJ chains, if `s is de�ned

as the inverse cut-o� wave vector for the Mooij-Sch�on modes:

`s ∼ vpl/∆ =
√
U(0)νπ ξ =

√
2πνe2

ε
ln

2d

we−3/2
ξ � ξ. (5.9)
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2Δ

ω

ξ -1
k

Figure 5.4: The dispersion curve of the phase oscillations ( Mooij-Sch�on modes) up
to 2∆

The non-Ohmic (local) contribution to the action is signi�cantly di�erent for wires

and JJ chains. A quantitative theory for the non-Ohmic contribution to the action

Sloc in superconducting wires does not exist, as the absolute value of the order param-

eter should be taken into consideration along with quaisparticles excitations. Still,

some qualitative understanding can be reached. The key fact is that for wires, the

instanton duration is of the order of ∆−1 [53]. Then, the contribution to the action

from the integral of K(ω) is parametrically smaller than that from the Josephson

EJ term (for wires the Josephson term has a more complicated form, non-local in

time, but the corresponding contributions can still be identi�ed and estimated [53]).

The low energy properties of a superconducting wire are determined by the

inductance per unit length, L = (e2πνξ2∆2)
−1
, and ground capacitance per unit

length, C = e2/U (0). We can represent a superconducting wire as a Josephson

junction chain with parameters EJ , Cg and junction size a by matching the Mooij-

Sch�on mode velocity and the low frequency wire admittance:

1√
LC

= a
√

8EJEg,

√
C
L

= (2e)2

√
EJ
8Eg

. (5.10)

While for Josephson junction chains the frequency cut-o� is
√

8EJEc, for wires it is

given by the superconducting gap 2∆. The analog of the random spatial variation

EJ,n = EJ(1+ηn) would be the spatial variation L(x) = L/[1+η(x)], which can result
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from, e.g., spatial �uctuations in the wire thickness on the spatial scale exceeding

the thickness itself and the superconducting coherence length ξ. The parameters

L(x) and C(x) are already averaged over the microscopic disorder due to impurities,

acting on the length scale shorter than ξ. Then instead of 〈ηnηm〉 = Gδnm with

G� 1 we have 〈η(x)η(x′)〉 = Gδ(x− x′), where G has the dimensionality of length

and δ(x− x′) is peaked on the length ∼ ξ. If we represent a segment of the wire of

length a & ξ by a Josephson junction with EJ = 1/[(2e)2aL], then G = G/a. Thus,
the weak-disorder condition is G � ξ.

Similarly to the Josephson junction chains, the QPS action in superconducting

wires can be represented as a sum of two contributions: SQPS = Sloc + Senv. The

environment part of the action is also determined by the Mooij-Sch�on modes. This

enables us to use the Eq. (4.45) for the low-frequency admittance �uctuations:

〈δK (ω) δK (ω′)〉 =
C3/2L−1/2 |ω|2 |ω′|2

2(2e)4 (|ω|+ |ω′|)
G. (5.11)

Using the estimate ∆−1 for the instanton duration [53], from Eq. (4.31) we obtain

an estimate

〈δS2
env〉 ∼

C
√
C/L∆G
(2e)4

. (5.12)

The local part of the QPS action can not be calculated precisely for superconducting

wires [90, 53]. However, it can be estimated as Sloc ∼ 1
(2e)2Lξ∆ [53], which gives

〈δS2
loc〉 ∼

G/ξ
(2e)4L2ξ2∆2

. (5.13)

As a result, we have 〈δS2
loc〉 � 〈δS2

env〉 if

ξ � 1

∆
√
LC

. (5.14)

In fact, this relation usually holds for superconducting wires because the mode

velocity 1/
√
LC is su�ciently high. Indeed, 1/C has two contributions: one from

the quantum capacitance of the Fermi sea, and the electrostatic contribution due

to Coulomb interaction. In the absence of Coulomb interaction the mode velocity

would be such that both sides of Eq. (5.14) would be of the same order. However,

the Coulomb contribution is usually much stronger, so the velocity is high enough

to ensure the strong inequality (5.14). The right-hand side of this inequality can be

seen as an analogue of `s for the superconducting wires, and inequality (5.14) is an

76



analogue of `s � 1. Moreover, condition (5.14) results in

〈δS2
env〉 �

√
π (ν∆ξ)2

32ν3/2U3/2(0)
. (5.15)

Depending on the cross section of the wire, it can be signi�cant or negligible,

〈δS2
env〉 > 1 or 〈δS2

env〉 < 1. For example, for small cross section, s = 100 nm2,

ν∆ξ ∼ 102 for rhenium and aluminium, while e2U(0) ∼ 103, resulting in 〈δS2
env〉 < 1.

However, it grows with the cross section.

As a result, analogously to the JJ chains, the �uctuations of the QPS action are

mostly determined by the local values of the wire parameters in the phase-slip core

of the size ξ, which coincides with the predictions of [53]. The contribution to the

environmental part of the action is parametrically smaller. However, it still can be

signi�cant, depending on the wire cross section and disorder.

Chapter summary

In the last chapter we applied the results, obtained in the previous chapters for

Josephson junction chains, to superconducting nanowires. The results for the hy-

drodynamic part of the QPS action, Senv, due to Mooij-Sch�on modes are analogous

for both the chains and the wires, provided parameters are correctly identi�ed. The

results for the core action cannot be used for the wires.
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Chapter 6

Conclusions and Outlook

In this thesis we have studied quantum phase slips (QPS). After a brief general

introduction we started with studying phase slips in a single dissipative Josephson

junction. The dissipation was modelled as an external resistance, while the induced

current tilts the potential, resulting in possibility of tunneling from a ground state in

one minimum of the potential to an excited state in the neighboring lower minimum.

This process is an incoherent QPS. We derived the form of voltage peaks at resonant

values of induced current.

In the next chapter we reproduced the known results for coherent QPS in close

and open Josephson junction chains. We discussed the relation of coherent QPS

amplitude scaling with system length to Kosterlitz-Thouless renormalization group.

We also found the numerical correction to the logarithmic term in QPS action.

The fourth chapter is dedicated to e�ects of disorder on QPS. First, we studied

coherent QPSs in chains with arti�cially periodically modulated parameters, such

as capacitances and Josephson energies of the junctions. We derived the corrections

to an environmental δSenv and a local δSloc parts of QPS action, which can both

be signi�cant. Then we considered two types of disorder: random variations of the

junctions' areas and random charges, induced by gate voltages. The former result in

negligible correction to the environmental part of QPS action δSenv � 1, however,

the correction to the local part can be signi�cant, δSloc > 1. Random induced

charges gives random phases for QPS on di�erent junctions. As a result average

QPS amplitude is zero. Then we studied the QPS amplitude statistics and found

the criterion for chain homogeneity.

In the end we applied the results obtained in the previous chapters to supercon-

ducting nanowires. We discussed the problems of derivation the QPS amplitude for

the wire, as the phase action is not valid on the length scales smaller than the su-
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perconducting coherence length ξ, which is the typical size of the QPS core, where

the phase tunneling occurs due to suppression of absolute value of the order pa-

rameter. However, low-frequency properties of the system are again determined by

gapless Mooij-Sch�on modes. Therefore, the environment part of the action can be

calculated, while for the local part only estimations are available. We showed that

disorder e�ect on the QPS amplitude is similar to the one in Josephson junction

chains. As a result, for the majority of experimentally realistic wires, the QPS am-

plitude is determined by a short region of the wire with the smallest cross-section,

that can be seen as a weak link, which agrees with predictions of [53].

There are several perspective directions for further development of the present

work. One e�ect, which can be studied, is the relaxation from an excited state of

a closed Josephson junction chain. The problem is non-trivial, as in case of zero

external dissipation the only possibility to decrease the system energy is through

exciting Mooij-Sch�on modes, which are discrete in a �nite system. As a result, the

energy can be decreased only by some discrete amounts, which can possibly pre-

vent the system from relaxation. Another interesting phenomenon is the analogue

of a resonant Zener breakdown for an open Josephson junction chain with dissipa-

tion through external resistance. And �nally, it would be interesting to study how

quantum �uctuations in�uence switching from zero voltage state to �nite voltage,

corresponding to the running state, in an underdamped Josephson junction.
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Appendix A

WKB calculation of the tunneling

matrix element in the tilted

washboard potential

To �nd the tunneling matrix element between the classical ground state in one

minimum of the tilted cosine potential and the m-th excited state in the neighboring

lower minimum (from now on we call them left and right, respectively), we put the

system exactly at resonance, I = mω0e/π, and calculate the tunnel splitting in the

WKB approximation. We have to write the solutions in the neighboring minima and

connect them to the WKB solutions under the barrier. It is important to mention

that tunneling shifts the level energies from their harmonic values. As a result, one

has to deal with parabolic cylinder functions, which can be seen as generalization

of Hermite polynomials on the case of non-integer index n, such that the energy of

the state inside each minimum is E = (n + 1/2)ω0. It is important to remember,

that the energy here is counted from the bottom of each minimum, therefore, the

same energy level corresponds to di�erent n in di�erent minima. As we consider the

tunneling to be exponentially weak. Then on the left side we have n = ε� 1, while

on the right n = m+ ε. That gives us two solutions in each minimum, which allows

us to connect them to both WKB exponents under the barrier.

The asymptotics for the wave functions in the parabolic potential of the left

minimum are

ψn (φ→ −∞) = CL
1

Γ (n+ 1)

(√
ω0

8Ec

∣∣φ− φ0
min

∣∣)n exp

(
− ω0

16Ec

(
φ− φ0

min

)2
)
,

(A.1)
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and

ψn (φ→∞) = −CL
sin πn

2n
√
π

e
ω0

16Ec
(φ−φ0min)

2∣∣∣√ ω0

8Ec
(φ− φ0

min)
∣∣∣n+1

+ CL
e−iπn

Γ (n+ 1)

∣∣∣∣√ ω0

8Ec

(
φ− φ0

min

)∣∣∣∣n e− ω0
16Ec

(φ−φ0min)
2

, (A.2)

where the position of each minimum is φlmin = arcsin I
2eEJ

+2πl, and for the left mini-

mum we put l = 0. It is convenient to introduce a new variable x =
√

ω0

8Ec
|φ− φ0

min|.
For the WKB solutions in the part of the classically forbidden region, where WKB

works but the potential can still be considered parabolic, we have:

ψWKB =
AL√
|p|
e−S(x) +

BL√
|p|
eS(x), (A.3)

where S(x) is the WKB action

S =

φ∫
a

|p (φ) | dφ =

x∫
x0

√
x2 − x2

0 dx ≈
x2

2
+
x2

0

2
ln

x0

2
√
ex
. (A.4)

Here a is the turning point, corresponding to x0 =
√

ω0

8Ec
(a− φ0

min) =
√

2n+ 1 in

the new variable. Substituting this into Eq. (A.3), we obtain

ψWKB ≈ AL

(
2
√
e√

2n+ 1

)n+1/2

xn e−x
2/2 +BL x

−n−1

(√
2n+ 1

2
√
e

)(n+1/2)

ex
2/2. (A.5)

We can connect the solutions

e−iπn

Γ (n+ 1)
xnCL = AL

(
2
√
e√

2n+ 1

)n+1/2

xn, (A.6)

resulting in

AL =
e−iπn

Γ (n+ 1)

(
2
√
e√

2n+ 1

)−n−1/2

CL, (A.7)

and

−sin πn

2n
√
π

CL
xn+1

= BL x
−n−1

(√
2n+ 1

2
√
e

)(n+1/2)

, (A.8)
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resulting in

BL = −
√

2
sinπn√

π

(√
2n+ 1√
e

)−(n+1/2)

CL. (A.9)

The function on the left corresponds to n = ε� 1. Then

AL ≈
(
2
√
e
)−1/2

CL, BL ≈ −
√

2πεe1/4CL. (A.10)

On the right side of the barrier the solution can be found exactly the same way,

just by exchanging −∞ ↔ +∞ asymptotics, and introducing y =
√

ω0

8Ec
|φ− φ1

min|.
The WKB solution under the right side of the barrier can be written in the form

ψWKB =
AR√
|p|
e−S(y) +

BR√
|p|
eS(y), (A.11)

where the WKB action is calculated from the left turning point y0. We connect

solutions under the barrier and in the classical region on the right exactly the same

way as we have done it for the left side:

AR =
e−iπn

Γ (n+ 1)

(
2
√
e√

2n+ 1

)−n−1/2

CR, (A.12)

BR = −
√

2
sinπn√

π

(√
2n+ 1√
e

)−(n+1/2)

CR. (A.13)

Now we can use the fact, that on the right side we have n = m + ε, where m is

integer and ε� 1:

AR ≈
(−1)m

m!

(
2
√
e√

2m+ 1

)−m−1/2

CR, (A.14)

BR ≈ −
√

2π (−1)m ε

(√
2m+ 1√

e

)−(m+1/2)

CR. (A.15)

Connecting WKB solution under the barrier is simple, as the actions in the

exponents are calculated from the turning points, therefore

BR = ALe
−Sm

, AR = BLe
Sm , (A.16)

where Sm is the tunneling action between the turning points. As a result, we �nally
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get

−
√

2π (−1)m ε

(√
2m+ 1√

e

)−(m+1/2)

CR =
(
2
√
e
)−1/2

CLe
−Sm

, (A.17)

−
√

2πεe1/4CL =
(−1)m

m!

(
2
√
e√

2m+ 1

)−m−1/2

CRe
−Sm . (A.18)

Then we have

CR/CL = 2m/2
√
m!,

and

ε = ±

(√
m+ 1/2

)m+1/2

e−Sm

√
2πm! 21/4

e−
m+1

2 .

This corresponds to the tunneling matrix element

X =
ω0

(√
m+ 1/2

)m+1/2

e−Sm

√
2πm! 21/4

e−
m+1

2 . (A.19)

Now it only remains to calculate the tunneling action Sm:

Sm =
1

2

√
EJ
Ec

b∫
a

√
− (cosφ− cosφ0

min)− I

2eEJ
(φ− φ0

min)− 1

2

ω0

EJ
dφ, (A.20)

where a and b are the turning points (see Fig.2.4). We can determine a as

1

2
ω0 − EJ cos

(
φ0
min

)
− I

2e
φ0
min = −EJ cos a− I

2e
a. (A.21)

As we assume it to be low enough for the harmonic oscillator approximation to be

valid, we can write

a ≈
√

8Ec
ω0

+ φ0
min. (A.22)

For b we have

b ≈ φ1
min −

√
8Ec (m+ 1/2)

ω0

. (A.23)

Therefore, the action is

Sm ≈
√

8EJ
Ec
−
(
m+ 1 + ln

EJ/Ec
(2m+ 1)1/4

)
+O

(
(Ec/EJ)1/4

)
. (A.24)
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