N. Muzyczka and K. I. Berns, AAV's Golden Jubilee, Mol. Ther, vol.23, issue.5, pp.807-808, 2015.

E. Hastie and R. J. Samulski, Adeno-Associated Virus at 50: A Golden Anniversary of Discovery, Research, and Gene Therapy Success-A Personal Perspective, Hum. Gene Ther, vol.26, issue.5, pp.257-265, 2015.

H. Büning, Gene therapy enters the pharma market: The short story of a long journey: Gene therapy enters market, EMBO Mol. Med, vol.5, issue.1, pp.1-3, 2013.

N. Miller, Glybera and the future of gene therapy in the European Union, Nat. Rev. Drug Discov, vol.11, issue.5, p.419, 2012.

S. Ylä-herttuala, Endgame: Glybera Finally Recommended for Approval as the First Gene Therapy Drug in the European Union, Mol. Ther, vol.20, issue.10, pp.1831-1832, 2012.

K. E. Brown, The expanding range of parvoviruses which infect humans, Rev. Med. Virol, vol.20, issue.4, pp.231-244, 2010.

R. W. Atchison, B. C. Casto, and W. M. Hammon, Adenovirus-Associated Defective Virus Particles, Science, vol.149, issue.3685, pp.754-755, 1965.

M. D. Hoggan, N. R. Blacklow, and W. P. Rowe, Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics, Proc. Natl. Acad. Sci. U. S. A, vol.55, issue.6, pp.1467-1474, 1966.

J. L. Melnick, H. D. Mayor, K. O. Smith, and F. Rapp, Association of 20-Millimicron Particles with Adenoviruses, J. Bacteriol, vol.90, issue.1, pp.271-274, 1965.

R. M. Buller, J. E. Janik, E. D. Sebring, and J. A. Rose, Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication, J. Virol, vol.40, issue.1, pp.241-247, 1981.

B. J. Thomson, F. W. Weindler, D. Gray, V. Schwaab, and R. Heilbronn, Human herpesvirus 6 (HHV-6) is a helper virus for adeno-associated virus type 2 (AAV-2) and the AAV-2 rep gene homologue in HHV-6 can mediate AAV-2 DNA replication and regulate gene expression, Virology, vol.204, issue.1, pp.304-311, 1994.

J. R. Schlehofer, M. Ehrbar, and H. Zur-hausen, Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus, Virology, vol.152, issue.1, pp.110-117, 1986.

C. Walz, A. Deprez, T. Dupressoir, M. Dürst, M. Rabreau et al., Interaction of human papillomavirus type 16 and adeno-associated virus type 2 co-infecting human cervical epithelium, J. Gen. Virol, vol.78, pp.1441-1452, 1997.

R. Calcedo, L. H. Vandenberghe, G. Gao, J. Lin, and J. M. Wilson, Worldwide Epidemiology of Neutralizing Antibodies to Adeno-Associated Viruses, J. Infect. Dis, vol.199, issue.3, pp.381-390, 2009.

C. L. Halbert, A. D. Miller, S. Mcnamara, J. Emerson, R. L. Gibson et al., Prevalence of Neutralizing Antibodies Against Adeno-Associated Virus (AAV) Types 2, 5, and 6 in Cystic Fibrosis and Normal Populations: Implications for Gene Therapy Using AAV Vectors, Hum. Gene Ther, vol.17, issue.4, pp.440-447, 2006.

T. R. Flotte and B. J. Carter, Adeno-associated virus vectors for gene therapy, Gene Ther, vol.2, issue.6, pp.357-362, 1995.

R. J. Chandler, M. C. Lafave, G. K. Varshney, N. S. Trivedi, N. Carrillo-carrasco et al., Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy, J. Clin. Invest, vol.125, issue.2, pp.870-880, 2015.

D. Grimm, A. Kern, K. Rittner, and J. A. Kleinschmidt, Novel Tools for Production and Purification of Recombinant Adenoassociated Virus Vectors, Hum. Gene Ther, vol.9, issue.18, pp.2745-2760, 1998.

G. Gao, L. H. Vandenberghe, M. R. Alvira, Y. Lu, R. Calcedo et al., Clades of Adeno-Associated Viruses Are Widely Disseminated in Human Tissues, J. Virol, vol.78, issue.12, pp.6381-6388, 2004.

Z. Wu, A. Asokan, and R. Samulski, Adeno-associated Virus Serotypes: Vector Toolkit for Human Gene Therapy, Mol. Ther, vol.14, issue.3, pp.316-327, 2006.

S. Daya and K. I. Berns, Gene Therapy Using Adeno-Associated Virus Vectors, Clin. Microbiol. Rev, vol.21, issue.4, pp.583-593, 2008.

L. Lisowski, S. S. Tay, and I. E. Alexander, Adeno-associated virus serotypes for gene therapeutics, Curr. Opin. Pharmacol, vol.24, pp.59-67, 2015.

M. Nonnenmacher and T. Weber, Intracellular transport of recombinant adeno-associated virus vectors, Gene Ther, vol.19, issue.6, pp.649-658, 2012.

S. Pillay, N. L. Meyer, A. S. Puschnik, O. Davulcu, J. Diep et al., An essential receptor for adeno-associated virus infection, Nature, vol.530, issue.7588, pp.108-112, 2016.

H. Azuma, N. Paulk, A. Ranade, C. Dorrell, M. Al-dhalimy et al., Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/-mice, Nat. Biotechnol, vol.25, issue.8, pp.903-910, 2007.

K. Jakab, C. Norotte, F. Marga, K. Murphy, G. Vunjak-novakovic et al., Tissue engineering by self-assembly and bio-printing of living cells, Biofabrication, vol.2, issue.2, p.22001, 2010.

E. Masat, G. Pavani, and F. Mingozzi, Humoral immunity to AAV vectors in gene therapy: challenges and potential solutions, Discov. Med, vol.15, issue.85, pp.379-389, 2013.

R. Calcedo and J. M. Wilson, Humoral Immune Response to AAV, Front. Immunol, vol.4, 2013.

L. V. Tse, S. Moller-tank, and A. Asokan, Strategies to circumvent humoral immunity to adenoassociated viral vectors, Expert Opin. Biol. Ther, vol.15, issue.6, pp.845-855, 2015.

D. S. Im and N. Muzyczka, The AAV origin binding protein Rep68 is an ATP-dependent sitespecific endonuclease with DNA helicase activity, Cell, vol.61, issue.3, pp.447-457, 1990.

D. M. Mccarty, D. J. Pereira, I. Zolotukhin, X. Zhou, J. H. Ryan et al., Identification of linear DNA sequences that specifically bind the adeno-associated virus Rep protein, J. Virol, vol.68, issue.8, pp.4988-4997, 1994.

R. O. Snyder, D. S. Im, T. Ni, X. Xiao, R. J. Samulski et al., Features of the adenoassociated virus origin involved in substrate recognition by the viral Rep protein, J. Virol, vol.67, issue.10, pp.6096-6104, 1993.

R. O. Snyder, R. J. Samulski, and N. Muzyczka, In vitro resolution of covalently joined AAV chromosome ends, Cell, vol.60, issue.1, pp.105-113, 1990.

R. J. Samulski, L. S. Chang, and T. Shenk, A recombinant plasmid from which an infectious adenoassociated virus genome can be excised in vitro and its use to study viral replication, J. Virol, vol.61, issue.10, pp.3096-3101, 1987.

S. K. Mclaughlin, P. Collis, P. L. Hermonat, and N. Muzyczka, Adeno-associated virus general transduction vectors: analysis of proviral structures, J. Virol, vol.62, issue.6, pp.1963-1973, 1988.

M. A. Labow and K. I. Berns, The adeno-associated virus rep gene inhibits replication of an adeno-associated virus/simian virus 40 hybrid genome in cos-7 cells, J. Virol, vol.62, issue.5, pp.1705-1712, 1988.

N. Chejanovsky and B. J. Carter, Replication of a human parvovirus nonsense mutant in mammalian cells containing an inducible amber suppressor, Virology, vol.171, issue.1, pp.239-247, 1989.

R. Dubielzig, J. A. King, S. Weger, A. Kern, and J. A. Kleinschmidt, Adeno-associated virus type 2 protein interactions: formation of pre-encapsidation complexes, J. Virol, vol.73, issue.11, pp.8989-8998, 1999.

J. A. King, DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids, EMBO J, vol.20, issue.12, pp.3282-3291, 2001.

D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L. Anderson et al., The bacteriophage straight phi29 portal motor can package DNA against a large internal force, Nature, vol.413, issue.6857, pp.748-752, 2001.

F. Sonntag, K. Schmidt, and J. A. Kleinschmidt, A viral assembly factor promotes AAV2 capsid formation in the nucleolus, Proc. Natl. Acad. Sci, vol.107, pp.10220-10225, 2010.

F. Sonntag, K. Kother, K. Schmidt, M. Weghofer, C. Raupp et al., The Assembly-Activating Protein Promotes Capsid Assembly of Different Adeno-Associated Virus Serotypes, J. Virol, vol.85, issue.23, pp.12686-12697, 2011.

S. P. Becerra, J. A. Rose, M. Hardy, B. M. Baroudy, and C. W. Anderson, Direct mapping of adenoassociated virus capsid proteins B and C: a possible ACG initiation codon, Proc. Natl. Acad. Sci. U. S. A, vol.82, issue.23, pp.7919-7923, 1985.

S. P. Becerra, F. Koczot, P. Fabisch, and J. A. Rose, Synthesis of adeno-associated virus structural proteins requires both alternative mRNA splicing and alternative initiations from a single transcript, J. Virol, vol.62, issue.8, pp.2745-2754, 1988.

J. A. Kleinschmidt, M. Ried, A. Girod, K. Leike, C. E. Wobus et al., The VP1 capsid protein of adeno-associated virus type 2 is carrying a phospholipase A2 domain required for virus infectivity, J. Gen. Virol, vol.83, issue.5, pp.973-978, 2002.

S. Bleker, F. Sonntag, and J. A. Kleinschmidt, Mutational Analysis of Narrow Pores at the Fivefold Symmetry Axes of Adeno-Associated Virus Type 2 Capsids Reveals a Dual Role in Genome Packaging and Activation of Phospholipase A2 Activity, J. Virol, vol.79, issue.4, pp.2528-2540, 2005.

S. Kronenberg, B. Bottcher, C. W. Der-lieth, S. Bleker, and J. A. Kleinschmidt, A Conformational Change in the Adeno-Associated Virus Type 2 Capsid Leads to the Exposure of Hidden VP1 N Termini, J. Virol, vol.79, issue.9, pp.5296-5303, 2005.

B. L. Gurda, C. Raupp, R. Popa-wagner, M. Naumer, N. H. Olson et al., Mapping a Neutralizing Epitope onto the Capsid of Adeno-Associated Virus Serotype 8, J. Virol, vol.86, issue.15, pp.7739-7751, 2012.

M. A. Dimattia, H. Nam, K. Van, M. Vliet, A. Mitchell et al., Structural Insight into the Unique Properties of Adeno-Associated Virus Serotype 9, J. Virol, vol.86, issue.12, pp.6947-6958, 2012.

B. L. Gurda, M. A. Dimattia, E. B. Miller, A. Bennett, R. Mckenna et al., Capsid Antibodies to Different Adeno-Associated Virus Serotypes Bind Common Regions, J. Virol, vol.87, issue.16, pp.9111-9124, 2013.

H. Nam, B. L. Gurda, R. Mckenna, M. Potter, B. Byrne et al., Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking, J. Virol, vol.85, issue.22, pp.11791-11799, 2011.

R. Ng, L. Govindasamy, B. L. Gurda, R. Mckenna, O. G. Kozyreva et al., Structural Characterization of the Dual Glycan Binding Adeno-Associated Virus Serotype 6, J. Virol, vol.84, issue.24, pp.12945-12957, 2010.

L. Govindasamy, E. Padron, R. Mckenna, N. Muzyczka, N. Kaludov et al., Structurally Mapping the Diverse Phenotype of Adeno-Associated Virus Serotype 4, J. Virol, vol.80, issue.23, pp.11556-11570, 2006.

Q. Xie, W. Bu, S. Bhatia, J. Hare, T. Somasundaram et al., The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy, Proc. Natl. Acad. Sci, vol.99, issue.16, pp.10405-10410, 2002.

Y. Tseng and M. Agbandje-mckenna, Mapping the AAV Capsid Host Antibody Response toward the Development of Second Generation Gene Delivery Vectors, Front. Immunol, vol.5, 2014.

S. R. Opie, K. H. Warrington, M. Agbandje-mckenna, S. Zolotukhin, and N. Muzyczka, Identification of Amino Acid Residues in the Capsid Proteins of Adeno-Associated Virus Type 2 That Contribute to Heparan Sulfate Proteoglycan Binding, J. Virol, vol.77, issue.12, pp.6995-7006, 2003.

L. M. Drouin and M. Agbandje-mckenna, Adeno-associated virus structural biology as a tool in vector development, Future Virol, vol.8, issue.12, pp.1183-1199, 2013.

E. Zinn and L. H. Vandenberghe, Adeno-associated virus: fit to serve, Curr. Opin. Virol, vol.8, pp.90-97, 2014.

S. Kronenberg, J. A. Kleinschmidt, and B. Böttcher, Electron cryo-microscopy and image reconstruction of adeno-associated virus type 2 empty capsids, EMBO Rep, vol.2, issue.11, pp.997-1002, 2001.

W. H. Roos, R. Bruinsma, and G. J. Wuite, Physical virology, Nat. Phys, vol.6, issue.10, pp.733-743, 2010.

I. L. Ivanovska, P. J. De-pablo, B. Ibarra, G. Sgalari, F. C. Mackintosh et al., Bacteriophage capsids: Tough nanoshells with complex elastic properties, Proc. Natl. Acad. Sci, vol.101, issue.20, pp.7600-7605, 2004.

I. Ivanovska, G. Wuite, B. Jonsson, and A. Evilevitch, Internal DNA pressure modifies stability of WT phage, Proc. Natl. Acad. Sci, vol.104, pp.9603-9608, 2007.

U. Sae-ueng, D. Li, X. Zuo, J. B. Huffman, F. L. Homa et al., Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection, Nat. Chem. Biol, vol.10, issue.10, pp.861-867, 2014.

C. Carrasco, A. Carreira, I. A. Schaap, P. A. Serena, J. Gomez-herrero et al., DNA-mediated anisotropic mechanical reinforcement of a virus, Proc. Natl. Acad. Sci, vol.103, issue.37, pp.13706-13711, 2006.

C. Carrasco, M. Castellanos, P. J. De-pablo, and M. G. Mateu, Manipulation of the mechanical properties of a virus by protein engineering, Proc. Natl. Acad. Sci, vol.105, issue.11, pp.4150-4155, 2008.

V. Rayaprolu, S. Kruse, R. Kant, B. Venkatakrishnan, N. Movahed et al., Comparative Analysis of Adeno-Associated Virus Capsid Stability and Dynamics, J. Virol, vol.87, issue.24, pp.13150-13160, 2013.

E. D. Horowitz, K. S. Rahman, B. D. Bower, D. J. Dismuke, M. R. Falvo et al., Biophysical and Ultrastructural Characterization of Adeno-Associated Virus Capsid Uncoating and Genome Release, J. Virol, vol.87, issue.6, pp.2994-3002, 2013.

M. Salganik, F. Aydemir, H. Nam, R. Mckenna, M. Agbandje-mckenna et al., Adeno-Associated Virus Capsid Proteins May Play a Role in Transcription and Second-Strand Synthesis of Recombinant Genomes, J. Virol, vol.88, issue.2, pp.1071-1079, 2014.

J. Zhu, X. Huang, and Y. Yang, The TLR9-MyD88 pathway is critical for adaptive immune responses to adeno-associated virus gene therapy vectors in mice, J. Clin. Invest, vol.119, issue.8, pp.2388-2398, 2009.

G. L. Rogers, M. Suzuki, I. Zolotukhin, D. M. Markusic, L. M. Morel et al., Unique Roles of TLR9-and MyD88-Dependent and -Independent Pathways in Adaptive Immune Responses to AAV-Mediated Gene Transfer, J. Innate Immun, vol.7, issue.3, pp.302-314, 2015.

E. Zinn, S. Pacouret, V. Khaychuk, H. T. Turunen, L. S. Carvalho et al., In Silico Reconstruction of the Viral Evolutionary Lineage Yields a Potent Gene Therapy Vector, Cell Rep, vol.12, issue.6, pp.1056-1068, 2015.

W. Ding, L. Zhang, Z. Yan, and J. F. Engelhardt, Intracellular trafficking of adeno-associated viral vectors, Gene Ther, vol.12, issue.11, pp.873-880, 2005.

C. Summerford and R. J. Samulski, Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J. Virol, vol.72, issue.2, pp.1438-1445, 1998.

A. Kern, K. Schmidt, C. Leder, O. J. Muller, C. E. Wobus et al., Identification of a Heparin-Binding Motif on Adeno-Associated Virus Type 2 Capsids, J. Virol, vol.77, issue.20, pp.11072-11081, 2003.

K. Qing, C. Mah, J. Hansen, S. Zhou, V. Dwarki et al., Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2, Nat. Med, vol.5, issue.1, pp.71-77, 1999.

C. Summerford, J. S. Bartlett, and R. J. Samulski, AlphaVbeta5 integrin: a co-receptor for adenoassociated virus type 2 infection, Nat. Med, vol.5, issue.1, pp.78-82, 1999.

B. Akache, D. Grimm, K. Pandey, S. R. Yant, H. Xu et al., The 37/67-Kilodalton Laminin Receptor Is a Receptor for Adeno-Associated Virus Serotypes 8, 2, 3, and 9, J. Virol, vol.80, issue.19, pp.9831-9836, 2006.

Y. Kashiwakura, K. Tamayose, K. Iwabuchi, Y. Hirai, T. Shimada et al., Hepatocyte Growth Factor Receptor Is a Coreceptor for Adeno-Associated Virus Type 2 Infection, J. Virol, vol.79, issue.1, pp.609-614, 2005.

G. Seisenberger, Real-Time Single-Molecule Imaging of the Infection Pathway of an Adeno-Associated Virus, Science, vol.294, issue.5548, pp.1929-1932, 2001.

H. C. Levy, V. D. Bowman, L. Govindasamy, R. Mckenna, K. Nash et al., Heparin binding induces conformational changes in Adeno-associated virus serotype 2, J. Struct. Biol, vol.165, issue.3, pp.146-156, 2009.

A. Asokan, J. B. Hamra, L. Govindasamy, M. Agbandje-mckenna, and R. J. Samulski, Adeno-Associated Virus Type 2 Contains an Integrin 5 1 Binding Domain Essential for Viral Cell Entry, J. Virol, vol.80, issue.18, pp.8961-8969, 2006.

J. Qiu and K. E. Brown, Integrin ?V?5 Is Not Involved in Adeno-Associated Virus Type 2 (AAV2) Infection, Virology, vol.264, issue.2, pp.436-440, 1999.

D. Duan, Y. Yue, Z. Yan, J. Yang, and J. F. Engelhardt, Endosomal processing limits gene transfer to polarized airway epithelia by adeno-associated virus, J. Clin. Invest, vol.105, issue.11, pp.1573-1587, 2000.

C. Chen, R. L. Jensen, B. C. Schnepp, M. J. Connell, R. Shell et al., Molecular characterization of adeno-associated viruses infecting children, J. Virol, vol.79, issue.23, pp.14781-14792, 2005.

G. J. Doherty and H. T. Mcmahon, Mechanisms of endocytosis, Annu. Rev. Biochem, vol.78, pp.857-902, 2009.

S. Mayor and R. E. Pagano, Pathways of clathrin-independent endocytosis, Nat. Rev. Mol. Cell Biol, vol.8, issue.8, pp.603-612, 2007.

J. S. Blum, P. A. Wearsch, and P. Cresswell, Pathways of Antigen Processing, Annu. Rev. Immunol, vol.31, issue.1, pp.443-473, 2013.

D. Duan, Q. Li, A. W. Kao, Y. Yue, J. E. Pessin et al., Dynamin is required for recombinant adeno-associated virus type 2 infection, J. Virol, vol.73, issue.12, pp.10371-10376, 1999.

S. Uhrig, O. Coutelle, T. Wiehe, L. Perabo, M. Hallek et al., Successful target cell transduction of capsid-engineered rAAV vectors requires clathrin-dependent endocytosis, Gene Ther, vol.19, issue.2, pp.210-218, 2012.

S. Sanlioglu, P. K. Benson, J. Yang, E. M. Atkinson, T. Reynolds et al., Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation, J. Virol, vol.74, issue.19, pp.9184-9196, 2000.

M. Nonnenmacher and T. Weber, Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway, Cell Host Microbe, vol.10, issue.6, pp.563-576, 2011.

G. D. Pasquale, N. Kaludov, M. Agbandje-mckenna, and J. A. Chiorini, BAAV transcytosis requires an interaction with beta-1-4 linked-glucosamine and gp96, PloS One, vol.5, issue.3, p.9336, 2010.

G. , D. Pasquale, and J. A. Chiorini, AAV transcytosis through barrier epithelia and endothelium, Mol. Ther. J. Am. Soc. Gene Ther, vol.13, issue.3, pp.506-516, 2006.

C. Zincarelli, S. Soltys, G. Rengo, and J. E. Rabinowitz, Analysis of AAV Serotypes 1-9 Mediated Gene Expression and Tropism in Mice After Systemic Injection, Mol. Ther, vol.16, issue.6, pp.1073-1080, 2008.

C. Zincarelli, S. Soltys, G. Rengo, W. J. Koch, and J. E. Rabinowitz, Comparative cardiac gene delivery of adeno-associated virus serotypes 1-9 reveals that AAV6 mediates the most efficient transduction in mouse heart, Clin. Transl. Sci, vol.3, issue.3, pp.81-89, 2010.

F. Sonntag, S. Bleker, B. Leuchs, R. Fischer, and J. A. Kleinschmidt, Adeno-Associated Virus Type 2 Capsids with Externalized VP1/VP2 Trafficking Domains Are Generated prior to Passage through the Cytoplasm and Are Maintained until Uncoating Occurs in the Nucleus, J. Virol, vol.80, issue.22, pp.11040-11054, 2006.

B. Akache, D. Grimm, X. Shen, S. Fuess, S. R. Yant et al., A Twohybrid Screen Identifies Cathepsins B and L as Uncoating Factors for Adeno-associated Virus 2 and 8, Mol. Ther, vol.15, issue.2, pp.330-339, 2007.

M. Zerial and H. Mcbride, Rab proteins as membrane organizers, Nat. Rev. Mol. Cell Biol, vol.2, issue.2, pp.107-117, 2001.

S. R. Pfeffer, Rab GTPases: specifying and deciphering organelle identity and function, Trends Cell Biol, vol.11, issue.12, pp.487-491, 2001.

W. Ding, L. Zhang, C. Yeaman, and J. Engelhardt, rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion, Mol. Ther, vol.13, issue.4, pp.671-682, 2006.

M. E. Nonnenmacher, J. Cintrat, D. Gillet, and T. Weber, Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction, J. Virol, vol.89, issue.3, pp.1673-1687, 2015.

W. Xiao, K. H. Warrington, P. Hearing, J. Hughes, and N. Muzyczka, Adenovirus-Facilitated Nuclear Translocation of Adeno-Associated Virus Type 2, J. Virol, vol.76, issue.22, pp.11505-11517, 2002.

P. Xiao and R. J. Samulski, Cytoplasmic Trafficking, Endosomal Escape, and Perinuclear Accumulation of Adeno-Associated Virus Type 2 Particles Are Facilitated by Microtubule Network, J. Virol, vol.86, issue.19, pp.10462-10473, 2012.

S. Chitra, G. Nalini, and G. Rajasekhar, The ubiquitin proteasome system and efficacy of proteasome inhibitors in diseases, Int. J. Rheum. Dis, vol.15, issue.3, pp.249-260, 2012.

L. Zhong, B. Li, G. Jayandharan, C. S. Mah, L. Govindasamy et al., Tyrosinephosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression, Virology, vol.381, issue.2, pp.194-202, 2008.

J. Qiu and K. E. Brown, A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adenoassociated virus type 2 (AAV-2) capsid, Virology, vol.257, issue.2, pp.373-382, 1999.

J. S. Johnson, C. Li, N. Diprimio, M. S. Weinberg, T. J. Mccown et al., Mutagenesis of Adeno-Associated Virus Type 2 Capsid Protein VP1 Uncovers New Roles for Basic Amino Acids in Trafficking and Cell-Specific Transduction, J. Virol, vol.84, issue.17, pp.8888-8902, 2010.

Z. Yan, R. Zak, G. W. Luxton, T. C. Ritchie, U. Bantel-schaal et al., Ubiquitination of both Adeno-Associated Virus Type 2 and 5 Capsid Proteins Affects the Transduction Efficiency of Recombinant Vectors, J. Virol, vol.76, issue.5, pp.2043-2053, 2002.

S. Stahnke, K. Lux, S. Uhrig, F. Kreppel, M. Hösel et al., Intrinsic phospholipase A2 activity of adeno-associated virus is involved in endosomal escape of incoming particles, Virology, vol.409, issue.1, pp.77-83, 2011.

J. S. Bartlett, R. Wilcher, and R. J. Samulski, Infectious Entry Pathway of Adeno-Associated Virus and Adeno-Associated Virus Vectors, J. Virol, vol.74, issue.6, pp.2777-2785, 2000.

K. Lux, N. Goerlitz, S. Schlemminger, L. Perabo, D. Goldnau et al., Green Fluorescent Protein-Tagged Adeno-Associated Virus Particles Allow the Study of Cytosolic and Nuclear Trafficking, J. Virol, vol.79, issue.18, pp.11776-11787, 2005.

J. C. Grieger, S. Snowdy, and R. J. Samulski, Separate Basic Region Motifs within the Adeno-Associated Virus Capsid Proteins Are Essential for Infectivity and Assembly, J. Virol, vol.80, issue.11, pp.5199-5210, 2006.

S. C. Nicolson and R. J. Samulski, Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus, J. Virol, vol.88, issue.8, pp.4132-4144, 2014.

J. M. Kelich, J. Ma, B. Dong, Q. Wang, M. Chin et al., Superresolution imaging of nuclear import of adeno-associated virus in live cells, Mol. Ther. Methods Clin. Dev, vol.2, p.15047, 2015.

S. Cohen, A. K. Marr, P. Garcin, and N. Panté, Nuclear envelope disruption involving host caspases plays a role in the parvovirus replication cycle, J. Virol, vol.85, issue.10, pp.4863-4874, 2011.

M. Porwal, S. Cohen, K. Snoussi, R. Popa-wagner, F. Anderson et al., Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis, PLoS Pathog, vol.9, issue.10, p.1003671, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01101277

J. Hansen, Infection of Purified Nuclei by Adeno-associated Virus 2, Mol. Ther, vol.4, issue.4, pp.289-296, 2001.

C. E. Thomas, T. A. Storm, Z. Huang, and M. A. Kay, Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors, J. Virol, vol.78, issue.6, pp.3110-3122, 2004.

I. Sipo, H. Fechner, S. Pinkert, L. Suckau, X. Wang et al., Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction, Gene Ther, 2007.

J. S. Johnson and R. J. Samulski, Enhancement of Adeno-Associated Virus Infection by Mobilizing Capsids into and Out of the Nucleolus, J. Virol, vol.83, issue.6, pp.2632-2644, 2009.

J. M. Bevington, P. G. Needham, K. C. Verrill, R. F. Collaco, V. Basrur et al., Adenoassociated virus interactions with B23/Nucleophosmin: identification of sub-nucleolar virion regions, Virology, vol.357, issue.1, pp.102-113, 2007.

T. R. Flotte and K. I. Berns, Adeno-Associated Virus: A Ubiquitous Commensal of Mammals, Hum. Gene Ther, vol.16, issue.4, pp.401-407, 2005.

R. M. Kotin, Prospects for the use of adeno-associated virus as a vector for human gene therapy, Hum. Gene Ther, vol.5, issue.7, pp.793-801, 1994.

F. K. Ferrari, T. Samulski, T. Shenk, and R. J. Samulski, Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors, J. Virol, vol.70, issue.5, pp.3227-3234, 1996.

C. R. Parrish, Structures and functions of parvovirus capsids and the process of cell infection, Curr. Top. Microbiol. Immunol, vol.343, pp.149-176, 2010.

R. J. Samulski, X. Zhu, X. Xiao, J. D. Brook, D. E. Housman et al., Targeted integration of adeno-associated virus (AAV) into human chromosome 19, EMBO J, vol.10, issue.12, pp.3941-3950, 1991.

C. C. Yang, X. Xiao, X. Zhu, D. C. Ansardi, N. D. Epstein et al., Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro, J. Virol, vol.71, issue.12, pp.9231-9247, 1997.

B. R. Schultz and J. S. Chamberlain, Recombinant Adeno-associated Virus Transduction and Integration, Mol. Ther, vol.16, issue.7, pp.1189-1199, 2008.

J. R. Brister and N. Muzyczka, Mechanism of Rep-mediated adeno-associated virus origin nicking, J. Virol, vol.74, issue.17, pp.7762-7771, 2000.

B. E. Redemann, E. Mendelson, and B. J. Carter, Adeno-associated virus rep protein synthesis during productive infection, J. Virol, vol.63, issue.2, pp.873-882, 1989.

M. A. Labow, L. H. Graf, and K. I. Berns, Adeno-associated virus gene expression inhibits cellular transformation by heterologous genes, Mol. Cell. Biol, vol.7, issue.4, pp.1320-1325, 1987.

M. Geoffroy and A. Salvetti, Helper functions required for wild type and recombinant adenoassociated virus growth, Curr. Gene Ther, vol.5, issue.3, pp.265-271, 2005.

J. Timpe, J. Bevington, J. Casper, J. D. Dignam, and J. P. Trempe, Mechanisms of adenoassociated virus genome encapsidation, Curr. Gene Ther, vol.5, issue.3, pp.273-284, 2005.

N. Muzyczka and K. H. Warrington, Custom Adeno-Associated Virus Capsids: The Next Generation of Recombinant Vectors with Novel Tropism, Hum. Gene Ther, vol.16, issue.4, pp.408-416, 2005.

C. J. Buchholz, T. Friedel, and H. Büning, Surface-Engineered Viral Vectors for Selective and Cell Type-Specific Gene Delivery, Trends Biotechnol, vol.33, issue.12, pp.777-790, 2015.

T. Wirth, N. Parker, and S. Ylä-herttuala, History of gene therapy, Gene, vol.525, issue.2, pp.162-169, 2013.

L. Roberts, Human gene transfer test approved, Science, vol.243, issue.4890, p.473, 1989.

S. A. Rosenberg, P. Aebersold, K. Cornetta, A. Kasid, R. A. Morgan et al., Gene Transfer into Humans -Immunotherapy of Patients with Advanced Melanoma, Using Tumor-Infiltrating Lymphocytes Modified by Retroviral Gene Transduction, N. Engl. J. Med, vol.323, issue.9, pp.570-578, 1990.

R. M. Blaese, K. W. Culver, A. D. Miller, C. S. Carter, T. Fleisher et al., T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years, Science, vol.270, issue.5235, pp.475-480, 1995.

C. Y. Kuo and D. B. Kohn, Gene Therapy for the Treatment of Primary Immune Deficiencies, Curr. Allergy Asthma Rep, vol.16, issue.5, 2016.

E. L. Scheller and P. H. Krebsbach, Gene Therapy: Design and Prospects for Craniofacial Regeneration, J. Dent. Res, vol.88, issue.7, pp.585-596, 2009.

C. Mueller and T. R. Flotte, Clinical gene therapy using recombinant adeno-associated virus vectors, Gene Ther, vol.15, issue.11, pp.858-863, 2008.

M. L. Hirsch, M. Salganik, and R. J. Samulski, Adeno-associated Virus as a Mammalian DNA Vector, Microbiol. Spectr, vol.3, issue.4, 2015.

F. Mingozzi, X. M. Anguela, G. Pavani, Y. Chen, R. J. Davidson et al.,

K. A. Wright and . High, Overcoming Preexisting Humoral Immunity to AAV Using Capsid Decoys, Sci. Transl. Med, vol.5, issue.194, pp.194-92, 2013.

A. C. Nathwani, E. G. Tuddenham, S. Rangarajan, C. Rosales, J. Mcintosh et al., Adenovirus-Associated Virus Vector-Mediated Gene Transfer in Hemophilia B, N. Engl. J. Med, vol.365, issue.25, pp.2357-2365, 2011.

A. Ploquin, J. Szecsi, C. Mathieu, V. Guillaume, V. Barateau et al., Protection Against Henipavirus Infection by Use of Recombinant Adeno-Associated Virus-Vector Vaccines, J. Infect. Dis, vol.207, issue.3, pp.469-478, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00965033

K. Nieto and A. Salvetti, AAV Vectors Vaccines Against Infectious Diseases, Front. Immunol, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00965088

W. C. Manning, X. Paliard, S. Zhou, M. P. Bland, A. Y. Lee et al., Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D, J. Virol, vol.71, issue.10, pp.7960-7962, 1997.

K. Xin, M. Urabe, J. Yang, K. Nomiyama, H. Mizukami et al., A Novel Recombinant Adeno-Associated Virus Vaccine Induces a Long-Term Humoral Immune Response to Human Immunodeficiency Virus, Hum. Gene Ther, vol.12, issue.9, pp.1047-1061, 2001.

E. Basner-tschakarjan and F. Mingozzi, Cell-Mediated Immunity to AAV Vectors, Evolving Concepts and Potential Solutions, Front. Immunol, vol.5, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01321133

M. L. Hirsch, M. Agbandje-mckenna, and R. J. Samulski, Little Vector, Big Gene Transduction: Fragmented Genome Reassembly of Adeno-associated Virus, Mol. Ther, vol.18, issue.1, pp.6-8, 2010.

Z. Yan, Y. Zhang, D. Duan, and J. F. Engelhardt, Trans-splicing vectors expand the utility of adenoassociated virus for gene therapy, Proc. Natl. Acad. Sci. U. S. A, vol.97, issue.12, pp.6716-6721, 2000.

Z. Wu, H. Yang, and P. Colosi, Effect of Genome Size on AAV Vector Packaging, Mol. Ther, vol.18, issue.1, pp.80-86, 2010.

M. L. Hirsch, S. J. Wolf, and R. J. Samulski, Delivering Transgenic DNA Exceeding the Carrying Capacity of AAV Vectors, Gene Therapy for Neurological Disorders, vol.1382, pp.21-39, 2016.

D. M. Mccarty, P. E. Monahan, and R. J. Samulski, Self-complementary recombinant adenoassociated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis, Gene Ther, vol.8, issue.16, pp.1248-1254, 2001.

J. Wu, W. Zhao, L. Zhong, Z. Han, B. Li et al., Self-Complementary Recombinant Adeno-Associated Viral Vectors: Packaging Capacity And The Role of Rep Proteins in Vector Purity, Hum. Gene Ther, vol.18, issue.2, pp.171-182, 2007.

E. D. Papadakis, S. A. Nicklin, A. H. Baker, and S. J. White, Promoters and control elements: designing expression cassettes for gene therapy, Curr. Gene Ther, vol.4, issue.1, pp.89-113, 2004.

Y. Kim, T. Kim, J. K. Rhee, D. Lee, K. Tanaka-yamamoto et al., Selective transgene expression in cerebellar Purkinje cells and granule cells using adeno-associated viruses together with specific promoters, Brain Res, vol.1620, pp.1-16, 2015.

H. S. Gompf, E. A. Budygin, P. M. Fuller, and C. E. Bass, Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals, Front. Behav. Neurosci, vol.9, 2015.

Q. Lu, T. H. Ganjawala, E. Ivanova, J. G. Cheng, D. Troilo et al., AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates, Gene Ther, 2016.

B. Hauck, L. Chen, and W. Xiao, Generation and characterization of chimeric recombinant AAV vectors, Mol. Ther. J. Am. Soc. Gene Ther, vol.7, issue.3, pp.419-425, 2003.

J. E. Rabinowitz, D. E. Bowles, S. M. Faust, J. G. Ledford, S. E. Cunningham et al., Cross-dressing the virion: the transcapsidation of adeno-associated virus serotypes functionally defines subgroups, J. Virol, vol.78, issue.9, pp.4421-4432, 2004.

D. E. Bowles, J. E. Rabinowitz, and R. J. Samulski, Marker rescue of adeno-associated virus (AAV) capsid mutants: a novel approach for chimeric AAV production, J. Virol, vol.77, issue.1, pp.423-432, 2003.

X. Shen, T. Storm, and M. A. Kay, Characterization of the Relationship of AAV Capsid Domain Swapping to Liver Transduction Efficiency, Mol. Ther, vol.15, issue.11, pp.1955-1962, 2007.

L. Perabo, J. Endell, S. King, K. Lux, D. Goldnau et al., Combinatorial engineering of a gene therapy vector: directed evolution of adeno-associated virus, J. Gene Med, vol.8, issue.2, pp.155-162, 2006.

N. Maheshri, J. T. Koerber, B. K. Kaspar, and D. V. Schaffer, Directed evolution of adenoassociated virus yields enhanced gene delivery vectors, Nat. Biotechnol, vol.24, issue.2, pp.198-204, 2006.

H. Büning, A. Huber, L. Zhang, N. Meumann, and U. Hacker, Engineering the AAV capsid to optimize vector-host-interactions, Curr. Opin. Pharmacol, vol.24, pp.94-104, 2015.

L. Perabo, A. Huber, S. Märsch, M. Hallek, and H. Büning, Artificial evolution with adenoassociated viral libraries, Comb. Chem. High Throughput Screen, vol.11, issue.2, pp.118-126, 2008.

G. L. Rogers, A. T. Martino, G. V. Aslanidi, G. R. Jayandharan, A. Srivastava et al., Innate Immune Responses to AAV Vectors, Front. Microbiol, vol.2, 2011.

E. S. Trombetta and I. Mellman, CELL BIOLOGY OF ANTIGEN PROCESSING IN VITRO AND IN VIVO, Annu. Rev. Immunol, vol.23, issue.1, pp.975-1028, 2005.

G. E. Hammer and A. Ma, Molecular Control of Steady-State Dendritic Cell Maturation and Immune Homeostasis, Annu. Rev. Immunol, vol.31, issue.1, pp.743-791, 2013.

A. Zaiss, Q. Liu, G. P. Bowen, N. C. Wong, J. S. Bartlett et al., Differential activation of innate immune responses by adenovirus and adeno-associated virus vectors, J. Virol, vol.76, issue.9, pp.4580-4590, 2002.

A. K. Zaiss, M. J. Cotter, L. R. White, S. A. Clark, N. C. Wong et al., Complement is an essential component of the immune response to adenoassociated virus vectors, J. Virol, vol.82, issue.6, pp.2727-2740, 2008.

M. Hösel, M. Broxtermann, H. Janicki, K. Esser, S. Arzberger et al., Toll-like receptor 2-mediated innate immune response in human nonparenchymal liver cells toward adenoassociated viral vectors, Hepatology, vol.55, issue.1, pp.287-297, 2012.

A. T. Martino, M. Suzuki, D. M. Markusic, I. Zolotukhin, R. C. Ryals et al., The genome of self-complementary adeno-associated viral vectors increases Toll-like receptor 9-dependent innate immune responses in the liver, Blood, vol.117, issue.24, pp.6459-6468, 2011.

C. Li, Y. He, S. Nicolson, M. Hirsch, M. S. Weinberg et al., Adenoassociated virus capsid antigen presentation is dependent on endosomal escape, J. Clin. Invest, vol.123, issue.3, pp.1390-1401, 2013.

G. C. Pien, E. Basner-tschakarjan, D. J. Hui, A. N. Mentlik, J. D. Finn et al., Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors, J. Clin. Invest, vol.119, issue.6, pp.1688-1695, 2009.

J. D. Finn, D. Hui, H. D. Downey, D. Dunn, G. C. Pien et al., Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC class I following transduction, Mol. Ther. J. Am. Soc. Gene Ther, vol.18, issue.1, pp.135-142, 2010.

L. E. Mays and J. M. Wilson, The complex and evolving story of T cell activation to AAV vectorencoded transgene products, Mol. Ther. J. Am. Soc. Gene Ther, vol.19, issue.1, pp.16-27, 2011.

K. Erles, P. Sebökovà, and J. R. Schlehofer, Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV), J. Med. Virol, vol.59, issue.3, pp.406-411, 1999.

C. Li, N. Narkbunnam, R. J. Samulski, A. Asokan, G. Hu et al., Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia, Gene Ther, vol.19, issue.3, pp.288-294, 2012.

R. Calcedo, H. Morizono, L. Wang, R. Mccarter, J. He et al., Adeno-associated virus antibody profiles in newborns, children, and adolescents, Clin. Vaccine Immunol. CVI, vol.18, issue.9, pp.1586-1588, 2011.

F. Mingozzi and K. A. High, Immune responses to AAV vectors: overcoming barriers to successful gene therapy, Blood, vol.122, issue.1, pp.23-36, 2013.

C. S. Manno, V. R. Arruda, G. F. Pierce, B. Glader, M. Ragni et al., Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response, Nat. Med, vol.12, issue.3, pp.342-347, 2006.

F. Mingozzi and K. A. High, Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges, Nat. Rev. Genet, vol.12, issue.5, pp.341-355, 2011.

A. T. Martino, E. Basner-tschakarjan, D. M. Markusic, J. D. Finn, C. Hinderer et al., Engineered AAV vector minimizes in vivo targeting of transduced hepatocytes by capsid-specific CD8+ T cells, Blood, vol.121, issue.12, pp.2224-2233, 2013.

F. Mingozzi, J. J. Meulenberg, D. J. Hui, E. Basner-tschakarjan, N. C. Hasbrouck et al., AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells, Blood, vol.114, issue.10, pp.2077-2086, 2009.

K. Willett and J. Bennett, Immunology of AAV-Mediated Gene Transfer in the Eye, Front. Immunol, vol.4, 2013.

L. Zhong, B. Li, C. S. Mah, L. Govindasamy, M. Agbandje-mckenna et al., Next generation of adeno-associated virus 2 vectors: Point mutations in tyrosines lead to high-efficiency transduction at lower doses, Proc. Natl. Acad. Sci, vol.105, issue.22, pp.7827-7832, 2008.

D. J. Hui, E. Basner-tschakarjan, Y. Chen, R. J. Davidson, G. Buchlis et al., Modulation of CD8+ T cell responses to AAV vectors with IgG-derived MHC class II epitopes, Mol. Ther, vol.21, issue.9, 2013.

A. S. De-groot, L. Moise, J. A. Mcmurry, E. Wambre, L. Van-overtvelt et al., Activation of natural regulatory T cells by IgG Fc-derived peptide 'Tregitopes, Blood, vol.112, issue.8, pp.3303-3311, 2008.

E. Dobrzynski, Induction of antigen-specific CD4+ T-cell anergy and deletion by in vivo viral gene transfer, Blood, vol.104, issue.4, pp.969-977, 2004.

F. Mingozzi, Y. Liu, E. Dobrzynski, A. Kaufhold, J. H. Liu et al., Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer, J. Clin. Invest, vol.111, issue.9, pp.1347-1356, 2003.

O. Cao, E. Dobrzynski, L. Wang, S. Nayak, B. Mingle et al., Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer, Blood, vol.110, issue.4, pp.1132-1140, 2007.

F. Mingozzi, N. C. Hasbrouck, E. Basner-tschakarjan, S. A. Edmonson, D. J. Hui et al., Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver, Blood, vol.110, issue.7, pp.2334-2341, 2007.

A. W. Thomson and P. A. Knolle, Antigen-presenting cell function in the tolerogenic liver environment, Nat. Rev. Immunol, vol.10, issue.11, pp.753-766, 2010.

L. Franco, B. Sun, X. Yang, A. Bird, H. Zhang et al., Evasion of Immune Responses to Introduced Human Acid ?-Glucosidase by Liver-Restricted Expression in Glycogen Storage Disease Type II, Mol. Ther, vol.12, issue.5, pp.876-884, 2005.

R. Ziegler, AAV2 Vector Harboring a Liver-Restricted Promoter Facilitates Sustained Expression of Therapeutic Levels of ?-Galactosidase A and the Induction of Immune Tolerance in Fabry Mice, Mol. Ther, vol.9, issue.2, pp.231-240, 2004.

J. R. Mendell, K. Campbell, L. Rodino-klapac, Z. Sahenk, C. Shilling et al., Dystrophin Immunity in Duchenne's Muscular Dystrophy, N. Engl. J. Med, vol.363, issue.15, pp.1429-1437, 2010.

V. R. Arruda, J. Schuettrumpf, R. W. Herzog, T. C. Nichols, N. Robinson et al., Safety and efficacy of factor IX gene transfer to skeletal muscle in murine and canine hemophilia B models by adeno-associated viral vector serotype 1, Blood, vol.103, issue.1, pp.85-92, 2004.

R. W. Herzog, P. A. Fields, V. R. Arruda, J. O. Brubaker, E. Armstrong et al., Influence of Vector Dose on Factor IX-Specific T and B Cell Responses in Muscle-Directed Gene Therapy, Hum. Gene Ther, vol.13, issue.11, pp.1281-1291, 2002.

R. Herzog, Muscle-Directed Gene Transfer and Transient Immune Suppression Result in Sustained Partial Correction of Canine Hemophilia B Caused by a Null Mutation, Mol. Ther, vol.4, issue.3, pp.192-200, 2001.

F. Granucci, M. Foti, and P. Ricciardi-castagnoli, Dendritic cell biology, Adv. Immunol, vol.88, pp.193-233, 2005.

R. M. Steinman and H. Hemmi, Dendritic cells: translating innate to adaptive immunity, Curr. Top. Microbiol. Immunol, vol.311, pp.17-58, 2006.

M. F. Lipscomb and B. J. Masten, Dendritic Cells: Immune Regulators in Health and Disease, Physiol. Rev, vol.82, issue.1, pp.97-130, 2002.

P. Veron, V. Allo, C. Riviere, J. Bernard, A. Douar et al., Major Subsets of Human Dendritic Cells Are Efficiently Transduced by Self-Complementary Adeno-Associated Virus Vectors 1 and 2, J. Virol, vol.81, issue.10, pp.5385-5394, 2007.

Y. Zhang, N. Chirmule, G. Gao, and J. Wilson, CD40 ligand-dependent activation of cytotoxic T lymphocytes by adeno-associated virus vectors in vivo: role of immature dendritic cells, J. Virol, vol.74, issue.17, pp.8003-8010, 2000.

S. Ponnazhagan, G. Mahendra, D. T. Curiel, and D. R. Shaw, Adeno-associated virus type 2-mediated transduction of human monocyte-derived dendritic cells: implications for ex vivo immunotherapy, J. Virol, vol.75, issue.19, pp.9493-9501, 2001.

O. Shin, S. J. Kim, W. I. Lee, J. Y. Kim, and H. Lee, Effective transduction by self-complementary adeno-associated viruses of human dendritic cells with no alteration of their natural characteristics, J. Gene Med, vol.10, issue.7, pp.762-769, 2008.

K. Xin, H. Mizukami, M. Urabe, Y. Toda, K. Shinoda et al., Induction of Robust Immune Responses against Human Immunodeficiency Virus Is Supported by the Inherent Tropism of Adeno-Associated Virus Type 5 for Dendritic Cells, J. Virol, vol.80, issue.24, pp.11899-11910, 2006.

G. V. Aslanidi, A. E. Rivers, L. Ortiz, L. Govindasamy, C. Ling et al., High-efficiency transduction of human monocytederived dendritic cells by capsid-modified recombinant AAV2 vectors, Vaccine, vol.30, issue.26, pp.3908-3917, 2012.

R. Sayroo, D. Nolasco, Z. Yin, Y. Colon-cortes, M. Pandya et al., Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells, Gene Ther, vol.23, issue.1, pp.18-25, 2016.

M. Pandya, K. Britt, B. Hoffman, C. Ling, and G. V. Aslanidi, Reprogramming Immune Response With Capsid-Optimized AAV6 Vectors for Immunotherapy of Cancer, J. Immunother, vol.38, issue.7, pp.292-298, 2015.

G. Gernoux, M. Guilbaud, L. Dubreil, T. Larcher, C. Babarit et al., Early Interaction of Adeno-Associated Virus Serotype 8 Vector with the Host Immune System Following Intramuscular Delivery Results in Weak but Detectable Lymphocyte and Dendritic Cell Transduction, Hum. Gene Ther, vol.26, issue.1, pp.1-13, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01734763

L. E. Mays, L. Wang, J. Lin, P. Bell, A. Crawford et al., AAV8 Induces Tolerance in Murine Muscle as a Result of Poor APC Transduction, T Cell Exhaustion, and Minimal MHCI Upregulation on Target Cells, Mol. Ther, vol.22, issue.1, pp.28-41, 2014.

X. Xiao, J. Li, and R. J. Samulski, Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus, J. Virol, vol.72, issue.3, pp.2224-2232, 1998.

A. Salvetti, S. Orève, G. Chadeuf, D. Favre, Y. Cherel et al., Factors Influencing Recombinant Adeno-Associated Virus Production, Hum. Gene Ther, vol.9, issue.5, pp.695-706, 1998.

S. Zolotukhin, B. J. Byrne, E. Mason, I. Zolotukhin, M. Potter et al., Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield, Gene Ther, vol.6, issue.6, pp.973-985, 1999.

. Null-girod, . Ried, . Null-wobus, . Null-lahm, . Null-leike et al., Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2, Nat. Med, vol.5, issue.12, p.1438, 1999.

S. Nicklin, Efficient and Selective AAV2-Mediated Gene Transfer Directed to Human Vascular Endothelial Cells, Mol. Ther, vol.4, issue.3, pp.174-181, 2001.

M. Carpentier, S. Lorain, P. Chappert, M. Lalfer, R. Hardet et al., Intrinsic transgene immunogenicity gears CD8(+) T-cell priming after rAAV-mediated muscle gene transfer, Mol. Ther. J. Am. Soc. Gene Ther, vol.23, issue.4, pp.697-706, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02407918

L. Perabo, In vitro selection of viral vectors with modified tropism: the adeno-associated virus display, Mol. Ther, vol.8, issue.1, pp.151-157, 2003.

C. E. Wobus, B. Hügle-dörr, A. Girod, G. Petersen, M. Hallek et al., Monoclonal antibodies against the adeno-associated virus type 2 (AAV-2) capsid: epitope mapping and identification of capsid domains involved in AAV-2-cell interaction and neutralization of AAV-2 infection, J. Virol, vol.74, issue.19, pp.9281-9293, 2000.

R. Hardet, B. Chevalier, L. Dupaty, Y. Naïmi, G. Riou et al., Oral-tolerization Prevents Immune Responses and Improves Transgene Persistence Following Gene Transfer Mediated by Adeno-associated Viral Vector, Mol. Ther, vol.24, issue.1, pp.87-95, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02377462

K. C. Mccullough, N. Ruggli, and A. Summerfield, Dendritic cells-At the front-line of pathogen attack, Vet. Immunol. Immunopathol, vol.128, issue.1-3, pp.7-15, 2009.

L. Delamarre, Differential Lysosomal Proteolysis in Antigen-Presenting Cells Determines Antigen Fate, Science, vol.307, issue.5715, pp.1630-1634, 2005.

R. Liberman, S. Bond, M. G. Shainheit, M. J. Stadecker, and M. Forgac, Regulated Assembly of Vacuolar ATPase Is Increased during Cluster Disruption-induced Maturation of Dendritic Cells through a Phosphatidylinositol 3-Kinase/mTOR-dependent Pathway, J. Biol. Chem, vol.289, issue.3, pp.1355-1363, 2014.

A. Savina and S. Amigorena, Phagocytosis and antigen presentation in dendritic cells, Immunol. Rev, vol.219, issue.1, pp.143-156, 2007.

A. Savina, C. Jancic, S. Hugues, P. Guermonprez, P. Vargas et al., NOX2 Controls Phagosomal pH to Regulate Antigen Processing during Crosspresentation by Dendritic Cells, Cell, vol.126, issue.1, pp.205-218, 2006.

A. Savina, A. Peres, I. Cebrian, N. Carmo, C. Moita et al., The Small GTPase Rac2 Controls Phagosomal Alkalinization and Antigen Crosspresentation Selectively in CD8+ Dendritic Cells, Immunity, vol.30, issue.4, pp.544-555, 2009.

B. C. Schnepp, K. R. Clark, D. L. Klemanski, C. A. Pacak, and P. R. Johnson, Genetic Fate of Recombinant Adeno-Associated Virus Vector Genomes in Muscle, J. Virol, vol.77, issue.6, pp.3495-3504, 2003.

P. J. De-pablo and M. Carrión-vázquez, Imaging Biological Samples with Atomic Force Microscopy, p. pdb.top080473, vol.2014, 2014.

T. Zhu, Sustained Whole-Body Functional Rescue in Congestive Heart Failure and Muscular Dystrophy Hamsters by Systemic Gene Transfer, Circulation, vol.112, issue.17, pp.2650-2659, 2005.

Z. Wang, T. Zhu, C. Qiao, L. Zhou, B. Wang et al., Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart, Nat. Biotechnol, vol.23, issue.3, pp.321-328, 2005.

K. Inagaki, S. Fuess, T. A. Storm, G. A. Gibson, C. F. Mctiernan et al., Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8, Mol. Ther. J. Am. Soc. Gene Ther, vol.14, issue.1, pp.45-53, 2006.

N. M. Kotchey, K. Adachi, M. Zahid, K. Inagaki, R. Charan et al., A potential role of distinctively delayed blood clearance of recombinant adeno-associated virus serotype 9 in robust cardiac transduction, Mol. Ther. J. Am. Soc. Gene Ther, vol.19, issue.6, pp.1079-1089, 2011.

Y. S. Gwak, J. Kang, J. W. Leem, and C. E. Hulsebosch, Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats, J. Neurosci. Res, vol.85, issue.11, pp.2352-2359, 2007.

M. , A. Ajmone-cat, M. Mancini, R. Simone, P. Cilli et al., Microglial polarization and plasticity: Evidence from organotypic hippocampal slice cultures: Microglial Polarization and Tolerization, Glia, vol.61, issue.10, pp.1698-1711, 2013.

S. Hashemian, F. Marschinke, S. Bjerkén, and I. Strömberg, Degradation of proteoglycans affects astrocytes and neurite formation in organotypic tissue cultures, Brain Res, vol.1564, pp.22-32, 2014.

I. Spitzbarth, A. Cana, K. Hahn, F. Hansmann, and W. Baumgärtner, Associated occurrence of p75 neurotrophin receptor expressing aldynoglia and microglia/macrophages in long term organotypic murine brain slice cultures, Brain Res, vol.1595, pp.29-42, 2015.

W. P. Duprex, F. M. Collins, and B. K. Rima, Modulating the Function of the Measles Virus RNA-Dependent RNA Polymerase by Insertion of Green Fluorescent Protein into the Open Reading Frame, J. Virol, vol.76, issue.14, pp.7322-7328, 2002.

, plus précisément le Dr Cendrine Moskalenko et son équipe qui m'ont permis d'aborder des thématiques transdisciplinaires que je trouve passionnantes. J'aimerais donc remercier Cendrine, Julien Bernaud, Anny Fis et Jorge Rodriguez Ramos pour leur enthousiasme à étudier les propriétés physiques et mécaniques des vecteurs AAV. Je reste convaincu que ces travaux auront d'importantes conséquences sur la manière de designer les vecteurs viraux à l'avenir

, Je souhaite également remercier l'institut de recherche et d'innovation biomédicale (iRiB), plus précisément le Dr Sahil Adriouch et Léa Dupaty pour leur importante contribution dans la caractérisation immunologique in vivo du mutant sélectionné, Je voudrais les remercier pour les différents échanges passionnants que nous avons eus ces derniers mois

, Pour finir je souhaite remercier le collectif Mauvaise Foi, plus précisément Rémy Mattei (qui ne sait peut-être pas encore complètement dans quoi il a mis les pieds) pour notre projet de vulgarisation scientifique, portant sur le transfert de gène médié par les vecteurs viraux en bande dessinée. Je remercie donc Rémy pour son implication. Sa rapidité à comprendre les concepts biologique et son immense talent d'illustrateur permettront, j'en suis sûr, de mener à bien ce projet

, I also want to thank my personal proofreader, Manon Grosmaire for the hard work she have executed to read, understand and correct my manuscript

, plus précisément Thibaut Deschamps, Vincent Grass, Chloé Mengardi et Sonia Assil toujours motivés, disponibles et enthousiastes pour initier de nouvelles collaborations ou se lancer dans des initiatives estudiantines diverses et variées. Leur présence au sein du CIRI a permis, en ce qui me concerne, J'aimerais remercier l'association des doctorants du CIRI (CIRI'Pamp)

J. Mis-sur-mon-chemin, T. Eloise, M. I. , D. B. Jérôme, S. Baptiste et al.,

, Cette liste serait incomplète si je ne remerciais pas les personnes qui compte le plus pour moi, l'ensemble des personnes qui font que je me tiens encore debout aujourd'hui et que j'aime le plus, ma famille et mon « sanctuaire », sans eux qui me suivent depuis plusieurs années, la question de devenir ou non Docteur ne se serait certainement jamais posée

, Je souhaite également remercier l'accueil du Dr Théophile Ohlmann et du Dr François-Loïc Cosset qui m'ont permis de finir ma thèse au sein du CIRI

, J'aimerais finaliser mes remerciements en citant la Région Rhône-Alpes (ARC-1 : Infectiologie) pour avoir financé mon projet de recherche ainsi que mon projet de vulgarisation scientifique