Skip to Main content Skip to Navigation
Theses

Mining useful patterns in attributed graphs

Anes Bendimerad 1, 2
Résumé : Un graphe est une structure qui permet de modéliser efficacement une large variété de données. Par exemple, un réseau social peut être représenté avec un graphe où les personnes sont les sommets, et leurs liens d'amitiés sont les arêtes. Ces graphes peuvent être augmentés avec des attributs décrivant ses sommets. Dans un réseau social, chaque personne peut être décrite par son age, ses centres d'intérêts, etc. C'est ce qu'on appelle un graphe attribué. L'analyse de ce type de graphes peut offrir une grande opportunité pour extraire des informations utiles et actionnables. Cela permet d'identifier des communautés ayant des centres d'intérêts particuliers dans un réseau social, de détecter des évènements à partir des tweets partagés, etc. Dans cette thèse, nous adressons le problème de fouille de graphes attribués. Plus précisément, nous proposons des méthodes qui analysent un graphe pour identifier des motifs : des sous-graphes ayant des caractéristiques particulières. Bien que ce problème a intéressé un grand nombre de chercheurs depuis des années, il reste encore plusieurs défis à relever. Nous adressons les questions : quand est-ce qu'un motif est intéressant pour l'utilisateur ? plusieurs facteurs entrent en jeu. Nous considérons qu'un motif est intéressant : (1) s'il montre une exceptionnalité par rapport au reste du graphe, (2) s'il donne une nouvelle information à l'utilisateur (il est imprévu), (3) s'il communique une information qui fait partie du centre d'intérêt de l'utilisateur (préférences). Pour mesurer la qualité d'un motif, nous proposons des modèles qui prennent en compte un ou plusieurs de ces trois facteur. Nous définissons des algorithmes qui déterminent les meilleurs motifs selon chaque modèle proposé, et nous effectuons des études empiriques pour évaluer l'efficacité de chacun de ces algorithmes.
Document type :
Theses
Complete list of metadatas

Cited literature [241 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-02490868
Contributor : Abes Star :  Contact
Submitted on : Tuesday, February 25, 2020 - 3:40:28 PM
Last modification on : Wednesday, July 8, 2020 - 12:43:52 PM
Document(s) archivé(s) le : Tuesday, May 26, 2020 - 5:43:03 PM

File

these.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02490868, version 1

Citation

Anes Bendimerad. Mining useful patterns in attributed graphs. Other [cs.OH]. Université de Lyon, 2019. English. ⟨NNT : 2019LYSEI058⟩. ⟨tel-02490868⟩

Share

Metrics

Record views

72

Files downloads

63