, nous avons effectué à chaque fois la modélisation pour les deux cas. C'est-à-dire lorsque N l est dopé p (dopé n), nous supposons une jonction p-n + (n-p + ) et donc utilisons le modèle Masetti afin de définir la mobilité des PCM donc des électrons (trous)

, Résultats de modélisation : confrontation à l'expérimental Cette sous-section confronte le modèle OCVD développé sous Python à la caractérisation expérimentale d'une diode silicium du commerce (Vishay 1N4007) dont on ne connaît absolument rien du design (épaisseur, dopage, contacts)

, Dans un premier temps, on a fixé R sh et fait varier ? OCVD , N l et V bi

, En regardant les valeurs finales des paramètres d'ajustement données dans le tableau V.10, colonne Si 1 , on observe que ? OCVD et N l restent cohérents (autour de 6 µs et de 1 × 10 12 cm ?3 ), et identiques dans les deux hypothèses. En revanche, le V bi est bien trop important. En effet, d'après l'équation III.11, pour N l = 2 × 10 12 cm ?3 , V bi est maximale pour N h = 5 × 10 20 cm ?3 et vaut 0,766 V<E G(Si) . C'est précisément dans ce cas de figure qu'il serait intéressant d'utiliser un algorithme permettant de borner les variables. De plus, il n'est pas vraiment possible d'après les résultats, 2017.

A. Lemaire, A. Perona, M. Caussanel, and A. Dollet, La "durée de vie" des électrons : un paramètre clef pour l'optimisation des cellules photovoltaïques (PV), congrès doctoral national de l'UPVD, 2017.

A. Lemaire, A. Perona, M. Caussanel, and A. Dollet, Si and GaAs PV junction design influence on lifetime extractions by OCVD TCAD simulation, école thématique internationale "Physics of solar cells : from basics to nanoscience, 2018.

. Bibliographie,

R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey et al., 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Applied Physics Letters, vol.90, issue.18, p.183516, 2007.

,

M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-ebinger et al., Solar cell efficiency tables (Version 53), Progress in Photovoltaics : Research and Applications, vol.27, pp.3-12, 2019.

,

F. Dimroth, T. N. Tibbits, M. Niemeyer, F. Predan, P. Beutel et al., Four-Junction Wafer-Bonded Concentrator Solar Cells, IEEE Journal of Photovoltaics, vol.6, issue.1, pp.343-349, 2016.

S. Parola, A. Vauthelin, F. Martinez, J. Tournet, J. E. Husseini et al., Investigation of antimonide-based semiconductors for high-efficiency multi-junction solar cells, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC, pp.937-0942, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02052823

E. Giudicelli, Evaluation d'une filiere technologique de cellules photovoltaïques multijonctions à base de matériaux antimoniures (III-V)-Sb pour applications aux très fortes concentrations solaires, IES Montpellier, 2016.

Y. Cuminal, E. Giudicelli, and F. Martinez, Multiple-junction photovoltaic cell based on antimonide materials, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02052932

Y. Rouillard, When sun meets antimony : Antimonides-based solar cells," i-PVTC Cassis, 2018.

J. Tournet, S. Parola, A. Vauthelin, D. Cardenes, S. Soresi et al., GaSb-based solar cells for multi-junction integration on Si substrates, Solar Energy Materials and Solar Cells, vol.191, pp.444-450, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02052829

S. , Système solaire, les nouvelles merveilles, Science & Vie, issue.280, 2017.

, International Energy Agency, Tech. Rep, 2018.

A. Becquerel, Mémoire sur les effets électriques produits sous influence des rayons solaires, Tech. Rep, vol.9, p.1839

C. E. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use, American Journal of Science, vol.26, issue.156, pp.465-472, 1883.

, On the fritts selenium cells and batteries, Journal of the Franklin Institute, vol.13, issue.3, pp.221-232, 1885.

W. Shockley, The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors, Bell Labs Technical Journal, vol.28, issue.3, pp.435-489, 1949.

R. L. Easton and M. J. Votaw, Vanguard I IGY Satellite, Review of Scientific Instruments, vol.30, issue.2, pp.70-75, 1958.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy, vol.2, issue.5, p.17032, 2017.

A. Polman, M. Knight, E. C. Garnett, B. Ehrler, and W. C. Sinke, Photovoltaic materials : Present efficiencies and future challenges, Science, vol.352, issue.6283, p.4424, 2016.

W. Shockley, Problems related to PN junctions in silicon, Solid-State Electronics, vol.2, issue.1, pp.35-67, 1961.

, Best Research-Cell Efficiency Chart, 2019.

S. Philipps, B. Burger, K. Kiefer, C. Kost, S. Nold et al., , 2019.

, Electricity statistics, IEA, 2019.

P. Würfel and U. Würfel, Physics of solar cells : from basic principles to advanced concepts, p.936776657, 2016.

U. Würfel, A. Cuevas, and P. Würfel, Charge Carrier Separation in Solar Cells, IEEE Journal of Photovoltaics, vol.5, issue.1, pp.461-469, 2015.

A. Martí and G. L. Araújo, Limiting efficiencies for photovoltaic energy conversion in multigap systems, Solar Energy Materials and Solar Cells, vol.43, issue.2, pp.203-222, 1996.

F. Dimroth and S. Kurtz, High-Efficiency Multijunction Solar Cells, MRS Bulletin, vol.32, issue.3, pp.230-235, 2007.

A. Vossier, A. Riverola, D. Chemisana, A. Dollet, and C. A. Gueymard, Is conversion efficiency still relevant to qualify advanced multi-junction solar cells ?, Progress in Photovoltaics : Research and Applications, vol.25, pp.242-254, 2017.

,

H. Mathieu and H. Fanet, Physique des semiconducteurs et des composants électroniques-6ème édition : Cours et exercices corrigés. Dunod, 2009.

G. Flamant, Fours solaires, 2008.

D. K. Schroder, Carrier lifetimes in silicon, IEEE transactions on Electron Devices, vol.44, issue.1, pp.160-170, 1997.

F. Stern and J. M. Woodall, Photon recycling in semiconductor lasers, Journal of Applied Physics, vol.45, issue.9, pp.3904-3906, 1974.

W. Shockley and W. T. Read, Statistics of the recombinations of holes and electrons, Physical review, vol.87, issue.5, p.835, 1952.

R. N. Hall, Electron-hole recombination in germanium, Physical review, vol.87, issue.2, p.387, 1952.

A. G. Aberle, Surface passivation of crystalline silicon solar cells : a review, Progress in Photovoltaics : Research and Applications, vol.8, issue.5, pp.473-487, 2000.

, , vol.8

Y. R. Nosov, Switching in Semiconductor Diodes, ser. Monographs in Semiconductor Physics, 1969.

F. Feldmann, M. Bivour, C. Reichel, H. Steinkemper, M. Hermle et al., Tunnel oxide passivated contacts as an alternative to partial rear contacts, Solar Energy Materials and Solar Cells, vol.131, pp.46-50, 2014.

J. I. Pankove and M. L. Tarng, Amorphous silicon as a passivant for crystalline silicon, Applied Physics Letters, vol.34, issue.2, p.156, 1979.

M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda et al., Development of new aSi_csi Heterojunction solar cells ACJ_hit.pdf, Applied Physics Letters, 1992.

W. D. Eades and R. M. Swanson, Calculation of surface generation and recombination velocities at the Si-SiO 2 interface, Journal of Applied Physics, vol.58, issue.11, pp.4267-4276, 1985.

M. J. Kerr and A. Cuevas, Very low bulk and surface recombination in oxidized silicon wafers, Semiconductor science and technology, vol.17, p.35, 2001.

M. Levinshtein, S. Rumyantsev, M. Shur, L. M. Rumyantsev, S. Shur et al., Handbook series on semiconductor parameters, ser. Handbook series. World Scientific, vol.1, 1996.

T. Trupke, M. A. Green, P. Würfel, P. P. Altermatt, A. Wang et al., Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon, Journal of Applied Physics, vol.94, issue.8, p.4930, 2003.

J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon, Applied Physics Letters, vol.31, issue.5, pp.346-348, 1977.

,

M. Ochoa, C. Algora, P. Espinet-gonzález, and I. García, 3-D modeling of perimeter recombination in GaAs diodes and its influence on concentrator solar cells, Solar Energy Materials and Solar Cells, vol.120, pp.48-58, 2014.

, Handbook of photovoltaic science and engineering, p.845812578, 2011.

D. K. Schroder, Semiconductor material and device characterization, p.254501000, 2006.

D. T. Stevenson and R. J. Keyes, Measurement of Carrier Lifetimes in Germanium and Silicon, Journal of Applied Physics, vol.26, issue.2, p.190, 1955.

D. Klein, F. Wuensch, and M. Kunst, The determination of charge-carrier lifetime in silicon, physica status solidi (b), vol.245, pp.1865-1876, 2008.

,

R. A. Sinton and T. Mankad, Contactless carrier-lifetime measurement in silicon wafers, ingots, and blocks, Measurement, pp.1-14, 2009.

G. L. Miller, USA Patent US4 286 215, 1981.

T. Tiedje, J. I. Haberman, R. W. Francis, and A. K. Ghosh, An rf bridge technique for contactless measurement of the carrier lifetime in silicon wafers, Journal of Applied Physics, vol.54, issue.5, pp.2499-2503, 1983.

E. Yablonovitch and T. J. Gmitter, A contactless minority lifetime probe of heterostructures, surfaces, interfaces and bulk wafers, Solid-State Electronics, vol.35, issue.3, pp.261-267, 1992.

R. A. Sinton, A. Cuevas, and M. Stuckings, Quasi-steady-state photoconductance, a new method for solar cell material and device characterization, Conference Record of the Twenty Fifth IEEE, pp.457-460, 1996.

R. A. Sinton and A. Cuevas, Contactless determination of current-voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data, Applied Physics Letters, vol.69, issue.17, p.2510, 1996.

,

S. Instruments, User Manual WCT-120 Photoconductance Lifetime Tester, 2016.

D. H. Macdonald, Recombinaison and trapping in multicrystalline silicon solar cells, 2001.

H. Nagel, C. Berge, and A. G. Aberle, Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors, Journal of Applied Physics, vol.86, issue.11, pp.6218-6221, 1999.

M. Kunst and G. Beck, The study of charge carrier kinetics in semiconductors by microwave conductivity measurements, Journal of Applied Physics, vol.60, issue.10, pp.3558-3566, 1986.

P. Grunow and M. Kunst, Optoelectronic characterization by photothermal deflection : Single-crystalline semiconductors, Journal of Applied Physics, vol.77, issue.6, pp.2767-2772, 1995.

J. Schmidt, P. Pohl, K. Bothe, and R. Brendel, Advances in Contactless Silicon Defect and Impurity Diagnostics Based on Lifetime Spectroscopy and Infrared Imaging, Advances in OptoElectronics, pp.1-9, 2007.

M. Boulou and D. Bois, Cathodoluminescence measurements of the minority-carrier lifetime in semiconductors, Journal of Applied Physics, vol.48, issue.11, pp.4713-4721, 1977.

R. K. Ahrenkiel and E. , Minority carriers in III-V semiconductors : physics and applications, ser. Semiconductors and semimetals, p.831927722, 1993.

T. Trupke, R. A. Bardos, M. C. Schubert, and W. Warta, Photoluminescence imaging of silicon wafers, Applied Physics Letters, vol.89, issue.4, p.44107, 2006.

,

S. Shirakata and T. Nakada, Time-resolved photoluminescence in Cu(In,Ga)Se2 thin films and solar cells, Thin Solid Films, vol.515, issue.15, pp.6151-6154, 2007.

R. K. Ahrenkiel, D. J. Dunlavy, and T. Hanak, Photoluminescence lifetime in heterojunctions, Solar Cells, vol.24, issue.3-4, pp.339-352, 1988.

R. K. Ahrenkiel, B. M. Keyes, and D. J. Dunlavy, Intensity-dependent minority-carrier lifetime in III-V semiconductors due to saturation of recombination centers, Journal of applied physics, vol.70, issue.1, pp.225-231, 1991.

R. K. , Measurement of minority-carrier lifetime by time-resolved photoluminescence, Solid-State Electronics, vol.35, issue.3, pp.239-250, 1992.

E. Yablonovitch, T. Gmitter, R. M. Swanson, and Y. H. Kwark, A 720 mV open circuit voltage SiOx : c-Si : SiOx double heterostructure solar cell, Applied Physics Letters, vol.47, issue.11, pp.1211-1213, 1985.

Y. Cheng, J. Ho, and S. Tsai,

K. L. Chang and . Wang, Efficiency improved by acid texturization for multi-crystalline silicon solar cells, Solar Energy, vol.85, issue.1, pp.87-94, 2011.

J. P. Boyeaux, M. Gavand, L. Mayet, H. Soumana, and A. Laugier, Light beam induced current mapping applied to the characterization of tandem and polycrystalline GaAs devices, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference-1991, pp.409-414, 1991.

S. A. Galloway, P. R. Edwards, and K. Durose, Characterisation of thin film CdS/CdTe solar cells using electron and optical beam induced current, Solar Energy Materials and Solar Cells, vol.57, issue.1, pp.61-74, 1999.

L. Lombez, D. Ory, M. Paire, A. Delamarre, G. E. Hajje et al., Micrometric investigation of external quantum efficiency in microcrystalline

(. Cuinga, Se)2 solar cells, Thin Solid Films, vol.565, pp.32-36, 2014.

P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta et al., Diffusion lengths of silicon solar cells from luminescence images, Journal of Applied Physics, vol.101, issue.12, p.123110, 2007.

D. E. Ioannou and C. A. Dimitriadis, A SEM-EBIC minority-carrier diffusion-length measurement technique, IEEE Transactions on Electron Devices, vol.29, issue.3, pp.445-450, 1982.

C. Hu and C. Drowley, Determination of diffusion length and surface recombination velocity by light excitation, Solid-State Electronics, vol.21, issue.7, pp.965-968, 1978.

B. R. Gossick, On the Transient Behavior of Semiconductor Rectifiers, Journal of Applied Physics, vol.26, issue.11, pp.1356-1365, 1955.

S. R. Lederhandler and L. J. Giacoletto, Measurement of minority carrier lifetime and surface effects in junction devices, Proceedings of the IRE, vol.43, issue.4, pp.477-483, 1955.

L. W. Davies, The use of P-L-N structures in investigations of transient recombination from high injection levels in semiconductors, Proceedings of the IEEE, vol.51, issue.11, pp.1637-1642, 1963.

E. M. Pell, Recombination rate in germanium by observation of pulsed reverse characteristic, Physical Review, vol.90, issue.2, p.278, 1953.

A. Quilliet and P. Gosar, L'effet photovoltaique de surface dans le silicium et son application à la mesure de la durée de vie des porteurs minoritaires, Journal de Physique et le Radium, vol.21, issue.7, pp.575-578, 1960.

A. M. Goodman, A Method for the Measurement of Short Minority Carrier Diffusion Lengths in Semiconductors, Journal of Applied Physics, vol.32, issue.12, pp.2550-2552, 1961.

E. O. Johnson, Measurement of Minority Carrier Lifetimes with the Surface Photovoltage, Journal of Applied Physics, vol.28, issue.11, pp.1349-1353, 1957.

B. H. Rose and H. T. Weaver, Determination of effective surface recombination velocity and minority-carrier lifetime in high-efficiency Si solar cells, Journal of Applied Physics, vol.54, issue.1, pp.238-247, 1983.

B. H. Rose, Minority-carrier lifetime measurements on silicon solar cells using I sc and V oc transient decay, IEEE Transactions on Electron Devices, vol.31, issue.5, pp.559-565, 1984.

Y. K. Hsieh and H. C. Card, Recombination in germanium : Voltage-decay experiments on induced-junction devices and validity of the SRH model, Solid-state electronics, vol.27, issue.12, pp.1061-1066, 1984.

R. J. Bassett, W. Eulop, and C. A. Hogarth, Determination of the bulk carrier lifetime in the low-doped region of a silicon power diode, by the method of open circuit voltage decay ?, International Journal of Electronics, vol.35, issue.2, pp.177-192, 1973.

W. B. Berry and P. Longrigg, Open-circuit voltage decay-measures of amorphous silicon material stability and module degradation, Solar cells, vol.24, issue.3-4, pp.321-328, 1988.

J. E. Mahan, T. W. Ekstedt, R. I. Frank, and R. Kaplow, Measurement of minority carrier lifetime in solar cells from photo-induced open-circuit voltage decay, IEEE Transactions on Electron devices, vol.26, issue.5, pp.733-739, 1979.

J. E. Mahan and D. L. Barnes, Depletion layer effects in the open-circuit-voltage-decay lifetime measurement, Solid-State Electronics, vol.24, issue.10, pp.989-994, 1981.

L. Castañer, E. Vilamajo, J. Llaberia, and J. Garrido, Investigations of the OCVD transients in solar cells, Journal of Physics D : applied Physics, p.10, 1981.

,

L. Castañer, J. Llaberia, J. Garrido, and E. Vilamajo, Numerical simulation of solar cell OCVD, Electronics Letters, vol.17, issue.20, pp.745-747, 1981.

S. M. Sze and K. K. Ng, Physics of semiconductor devices, p.255534639, 2007.

R. J. Bassett, Observations on a method of determining the carrier lifetime in p+-v-n+ diodes, Solid-State Electronics, vol.12, issue.5, pp.385-391, 1969.

M. A. Green, Solar cell minority carrier lifetime using open-circuit voltage decay, Solar cells, vol.11, issue.2, pp.147-161, 1984.

M. Derdouri, P. Leturcq, and A. Munoz-yague, A comparative study of methods of measuring carrier lifetime in p-i-n devices, IEEE Transactions on Electron Devices, vol.27, issue.11, pp.2097-2101, 1980.

S. C. Jain, Theory of photo induced open circuit voltage decay in a solar cell, Solid-State Electronics, vol.24, issue.2, pp.179-183, 1981.

J. W. Slotboom and H. C. De-graaff, Measurements of bandgap narrowing in Si bipolar transistors, Solid-State Electronics, vol.19, issue.10, pp.857-862, 1976.

J. W. Slotboom, The pn-product in silicon, Solid-State Electronics, vol.20, issue.4, pp.279-283, 1977.

R. Gopal, R. Dwivedi, and S. K. Srivastava, Theoretical investigations of experimentally-observed Open-Circuit Voltage-Decay (OCVD) curves, Solid-State Electronics, vol.26, issue.11, pp.1101-1109, 1983.

P. G. Wilson, Recombination in silicon p-$\pi$-n diodes, Solid-State Electronics, vol.10, issue.2, pp.145-154, 1967.

S. C. Jain and R. Muralidharan, Effect of emitter recombinations on the open circuit voltage decay of a junction diode, Solid-State Electronics, vol.24, issue.12, pp.1147-1154, 1981.

S. C. Joshi and C. M. Singal, Minority carrier life-time determination from steady state and transient response of a solar cell under illumination, International Journal of Electronics, vol.52, issue.4, pp.381-403, 1982.

M. A. Green, Minority carrier lifetimes using compensated differental open circuit voltage decay, Solid-state electronics, vol.26, issue.11, pp.1117-1122, 1983.

E. K. Banghart and J. L. Gray, Extension of the open-circuit voltage decay technique to include plasma-induced bandgap narrowing, IEEE Transactions on Electron Devices, vol.39, issue.5, pp.1108-1114, 1992.

R. A. Sinton and A. Cuevas, A QSS open circuit voltage method for solar cell characterization, European PV solar energy conference, 2000.

S. Bellone, H. Neitzert, and G. D. Licciardo, Modelling and characterisation of the OCVD response at an arbitrary time and injection level, Solid-State Electronics, vol.48, issue.7, pp.1127-1131, 2004.

S. Bellone, G. D. Licciardo, and H. C. Neitzert, A novel measurement method of the spatial carrier lifetime profile based on the OCVD technique, Proceedings of the, 2004.

, International Conference on Microelectronic Test Structures, pp.111-116, 2004.

P. Dalapati, N. B. Manik, and A. N. Basu, Effect of temperature on the intensity and carrier lifetime of an AlGaAs based red light emitting diode, Journal of Semiconductors, vol.34, issue.9, p.92001, 2013.

J. Pjencak, A. Vrbicky, L. Harmatha, P. Kudela, and M. Tapajna, Application of open circuit voltage decay to the characterization of epitaxial layer, Journal of Electrical Engineering, vol.55, issue.9, pp.239-244, 2004.

M. Caussanel, A. Canals, S. K. Dixit, M. J. Beck, A. D. Touboul et al., Doping-Type Dependence of Damage in Silicon Diodes Exposed to X-Ray, Proton, and He$^{+}$ Irradiations, IEEE Transactions on Nuclear Science, vol.54, issue.6, 1925.

J. Vobecký, P. Hazdra, and V. Záhlava, Open circuit voltage decay lifetime of ion irradiated devices, Microelectronics Journal, vol.30, issue.6, pp.513-520, 1999.

H. G. Bhimnathwala, S. D. Tyagi, S. Bothra, S. K. Ghandi, and J. M. Borrego, Lifetime measurements by open circuit voltage decay in GaAs and InP diodes, Conference Record of the Twenty First IEEE, 1990.

A. Zemel and M. Gallant, Carrier lifetime in InP/InGaAs/InP by open-circuit voltage and photoluminescence decay, Journal of Applied Physics, vol.78, issue.2, pp.1094-1100, 1995.

A. Zaban, M. Greenshtein, and J. Bisquert, Determination of the Electron Lifetime in Nanocrystalline Dye Solar Cells by Open-Circuit Voltage Decay Measurements, ChemPhysChem, vol.4, issue.8, pp.859-864, 2003.

O. Marcelot and P. Magnan, Comparison between TCAD simulated and measured carrier lifetimes in CMOS photodiodes using the Open Circuit Voltage Decay method, Solid-State Electronics, vol.81, pp.135-139, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00935974

D. Kiermasch, A. Baumann, M. Fischer, V. Dyakonov, and K. Tvingstedt, Revisiting lifetimes from transient electrical characterization of thin film solar cells ; a capacitive concern evaluated for silicon, organic and perovskite devices, Energy & Environmental Science, vol.11, issue.3, pp.629-640, 2018.

L. Torto, A. Cester, N. Wrachien, A. Rizzo, D. Gedefaw et al., Application of an Open-Circuit Voltage Decay Model to Compare the Performances of Donor Polymers in Bulk Heterojunction Solar Cells, IEEE Journal of Photovoltaics, vol.8, issue.2, pp.517-524, 2018.

J. Bisquert, A. Zaban, M. Greenshtein, and I. Mora-seró, Determination of Rate Constants for Charge Transfer and the Distribution of Semiconductor and Electrolyte Electronic Energy Levels in Dye-Sensitized Solar Cells by Open-Circuit Photovoltage Decay Method, Journal of the American Chemical Society, vol.126, issue.41, pp.13-550, 2004.

M. Deshmukh and J. Nagaraju, Measurement of CuInSe2 solar cell AC parameters, Solar Energy Materials and Solar Cells, vol.85, issue.3, pp.407-413, 2005.

J. Yang and X. Zhong, CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media, Journal of Materials Chemistry A, vol.4, issue.42, pp.16-553, 2016.

K. Price, K. Cooper, and C. Lacy, Open-circuit voltage decay in CdTe/CdS solar cells, MRS Online Proceedings Library Archive, vol.865, 2005.

M. P. Deshmukh, R. A. Kumar, and J. Nagaraju, Measurement of solar cell ac parameters using the time domain technique, Review of scientific instruments, vol.75, issue.8, pp.2732-2735, 2004.

P. C. Ariel, M. A. Cappelletti, and E. L. Blanca, A computerized method for carrier lifetime measurement in PN junctions at high and low-level injection, Argentine School of Micro-Nanoelectronics, pp.87-93, 2010.

. Synopsys, Sentaurus device user guide, 2015.

L. Nagel, SPICE : Simulation Program With Integrated Circuit Emphasis, 1973.

. Synopsys, TCAD, 2019.

, Device Simulation, 2019.

, Sentaurus Structure Editor, 2019.

A. Vladimirescu and S. Liu, The simulation of MOS integrated circuits using SPICE2, CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB, Tech. Rep, 1980.

. Synopsys, Sentaurus mesh user guide, 2015.

G. Masetti, M. Severi, and S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Transactions on Electron Devices, vol.30, issue.7, pp.764-769, 1983.

J. G. Fossum and D. S. Lee, A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon, Solid-State Electronics, vol.25, issue.8, pp.741-747, 1982.

R. Häcker and A. Hangleiter, Intrinsic upper limits of the carrier lifetime in silicon, Journal of Applied Physics, vol.75, issue.11, pp.7570-7572, 1994.

J. E. Meyer, MOS models and circuit simulation, RCA Review, vol.32, pp.42-64, 1971.

K. R. Mcintosh, Lumps, Humps and Bumps : Three Detrimental Effects in the Current-Voltage Curve of Silicon Solar Cells, 2001.

S. Community, minimize(method='TNC') -SciPy v1.3.0 Reference Guide, 2019.

, Reference Guide, 2019.

, minimize(method='Nelder-Mead') -SciPy v1.3.0 Reference Guide, 2019.

, scipy.integrate.odeint -SciPy v1.3.0 Reference Guide, 2019.

G. Stollwerck, O. V. Sulima, and A. W. Bett, Characterization and simulation of GaSb device-related properties, IEEE Transactions on Electron Devices, vol.47, issue.2, pp.448-457, 2000.

, Electrical properties of Gallium Arsenide (GaAs), 2019.

N. D. Arora, J. R. Hauser, and D. J. Roulston, Electron and hole mobilities in silicon as a function of concentration and temperature, IEEE Transactions on Electron Devices, vol.29, issue.2, p.4, 1982.

P. Espinet, C. Algora, J. R. Gonzalez, N. Nunez, and M. Vazquez, Degradation mechanism analysis in temperature stress tests on III-V ultra-high concentrator solar cells using 3d distributed model, Microelectronics reliability, pp.1875-1879, 2010.

W. Mönch, Springer series in surface sciences, Semiconductor Surfaces and Interfaces, 2001.

W. Bludau, A. Onton, and W. Heinke, Temperature dependence of the band gap of silicon, Journal of Applied Physics, vol.45, issue.4, pp.1846-1848, 1974.

,

S. C. Jain and D. J. Roulston, A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers, Solid-State Electronics, vol.34, issue.5, pp.453-465, 1991.

. Synopsys, Compact models user guide, 2015.

P. Espinet-gonzalez, I. Rey-stolle, M. Ochoa, C. Algora, I. García et al., Analysis of perimeter recombination in the subcells of GaInP/GaAs/Ge triple-junction solar cells, Progress in Photovoltaics : Research and Applications, vol.23, pp.874-882, 2015.

A. Y. Polyakov, M. Stam, A. G. Milnes, and T. E. Schlesinger, Electrical properties of GaSb Schottky diodes and pn junctions, Materials Science and Engineering : B, vol.12, issue.4, pp.337-343, 1992.

J. Colinge and F. Van-de-wiele, Physique des dispositifs semi-conducteurs, p.35186190, 1996.

M. Hermle, G. Létay, S. P. Philipps, and A. W. Bett, Numerical simulation of tunnel diodes for multi-junction solar cells, Progress in Photovoltaics : Research and Applications, vol.16, pp.409-418, 2008.

C. Van-opdorp, Evaluation of doping profiles from capacitance measurements, Solid-State Electronics, vol.11, issue.4, pp.397-406, 1968.

B. R. Chawla and H. K. Gummel, Transition region capacitance of diffused p-n junctions, IEEE Transactions on Electron Devices, vol.18, issue.3, pp.178-195, 1971.

, Nous nous intéressons aux semiconducteurs III-V puisqu'ils sont utilisés dans les cellules multijonctions dédiées au CPV. Afin de déterminer la durée de vie dans ces matériaux, le signal OCVD doit être modélisé. Pour ce faire, nous avons tout d'abord utilisé la simulation TCAD pour étudier l'influence du design (épaisseur du bulk et dopage de l'émetteur) de jonctions p-n en silicium et en GaAs sur le signal OCVD. Nous avons travaillé sur l'extraction de la durée de vie dans une région spécifique : le bulk, Résumé Mesurer la durée de vie des porteurs minoritaires est indispensable pour optimiser les cellules PV

I. Ocvd, Ceci nous a permis de mettre en évidence l'importance de la diode anti-retour dans le circuit OCVD. Son temps de blocage doit être inférieur à la durée de vie à mesurer. Enfin, nous avons développé, sur la base du modèle équivalent à une diode en régime transitoire

. Ocvd and . Sh, Mots clés : porteurs de charge minoritaires, durée de vie, décroissance de la tension en circuit ouvert, OCVD, GaSb, GaAs, silicium, simulation, TCAD, Python, CPV, multijonction. Abstract Minority carrier lifetime measurement is essential to optimize PV solar cells. The OCVD method allows it into p-n junction. Compare to other technics widely used like PCD or TRPL, it is really simple and cheap. However it has been scarcely used for III-V materials mainly due to their low lifetime (< 1 µs). We focus on III-V semiconductors because they are good candidates to multijunction solar cells dedicated to CPV. Nevertheless, the OCVD signal must be simulated in order to extract lifetime in these materials. Therefore, we first used TCAD simulation to study design influence (bulk thickness and emitter doping) of silicon and GaAs p-n junctions on OCVD signal

I. Experimental, O. Curves, and . Gasb, It allowed to highlight the blocking diode is of major importance. Its blocking time has to be shorter than measured lifetime. Finally, we developed a model under Python based on transient single-diode model. It enables first to simulate OCVD signal, then to fit experimental curve with several fitting variables (? OCVD , N l et R sh ). This modelling allowed to study further the variable influences on the signal and thus improved our knowledge on OCVD behaviour. Keywords : minority charge carriers, lifetime, junctions have been fitted by TCAD simulation