H. Afshar and J. Domke, Reflection, refraction, and Hamiltonian Monte Carlo, Advances in Neural Information Processing Systems, pp.3007-3015, 2015.

S. Adams, Lectures on mathematical statistical mechanics, 2006.

W. Atisattapong and P. Maruphanton, Obviating the bin width effect of the 1/t algorithm for multidimensional numerical integration, Applied Numerical Mathematics, vol.104, pp.133-140, 2016.

W. Atisattaponga and P. Marupanthornb, A 1/t algorithm with the density of two states for estimating multidimensional integrals, Computer Physics Communications, vol.220, pp.122-128, 2017.

I. Andricioaei, J. E. Straub, and A. F. Voter, Smart darting Monte Carlo, The Journal of Chemical Physics, vol.114, issue.16, pp.6994-7000, 2001.

I. Emiris-an and V. Fisikopoulos, Efficient random-walk methods for approximating polytope volume, Proceedings of the thirtieth annual symposium on Computational geometry, p.318, 2014.

A. Barp, F. Briol, A. Kennedy, and M. Girolami, Geometry and dynamics for markov chain monte carlo, Annual Review of Statistics and Its Application, vol.5, pp.451-471, 2018.

B. Büeler, A. Enge, and K. Fukuda, Exact volume computation for polytopes: a practical study, Polytopes -combinatorics and computation, pp.131-154, 2000.

M. Betancourt, A conceptual introduction to Hamiltonian Monte Carlo, 2017.

I. Bárány and Z. Füredi, Computing the volume is difficult, Discrete & Computational Geometry, vol.2, issue.4, pp.319-326, 1987.

S. Brooks, A. Gelman, G. Jones, and X. Meng, Handbook of Markov Chain Monte Carlo, 2011.

L. Bornn, P. Jacob, P. D. Moral, and A. Doucet, An adaptive interacting Wang-Landau algorithm for automatic density exploration, Journal of Computational and Graphical Statistics, vol.22, issue.3, pp.749-773, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00634211

R. Belardinelli, S. Manzi, and V. Pereyra, Analysis of the convergence of the 1/ t and Wang-Landau algorithms in the calculation of multidimensional integrals, Physical Review E, vol.78, issue.6, p.67701, 2008.

R. E. Belardinelli and V. D. Pereyra, Fast algorithm to calculate density of states, Physical Review E, vol.75, issue.4, p.46701, 2007.

R. E. Belardinelli and V. D. Pereyra, Wang-Landau algorithm: A theoretical analysis of the saturation of the error, The Journal of chemical physics, vol.127, issue.18, p.184105, 2007.

R. Belardinelli and V. Pereyra, Nonconvergence of the wang-landau algorithms with multiple random walkers, Physical Review E, vol.93, issue.5, p.53306, 2016.

J. V. Burke, Continuity and differentiability of solutions

W. Cai, Me346a introduction to statistical mechanics, 2011.

A. Chevallier and F. Cazals, A generic framework for Wang-Landau type algorithms. NA, 2018.

A. Chevallier and F. Cazals, Wang-landau algorithm: an adapted random walk to boost convergence. NA, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01919860

F. Cazals and T. Dreyfus, The Structural Bioinformatics Library: modeling in biomolecular science and beyond, vol.7, pp.1-8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01379635

. Cgal, Computational Geometry Algorithms Library

B. Cousins and S. Vempala, Bypassing KLS: Gaussian cooling and an O * (n 3 ) volume algorithm, ACM STOC, pp.539-548, 2015.

B. Cousins and S. Vempala, A practical volume algorithm, Mathematical Programming Computation, vol.8, issue.2, pp.133-160, 2016.

B. Cousins and S. Vempala, Gaussian cooling and O * (n 3 ) algorithms for volume and gaussian volume, SIAM Journal on Computing, vol.47, issue.3, pp.1237-1273, 2018.

M. Dyer and A. Frieze, On the complexity of computing the volume of a polyhedron, SIAM Journal on Computing, vol.17, issue.5, pp.967-974, 1988.

M. Dyer, A. Frieze, and R. Kannan, A random polynomial-time algorithm for approximating the volume of convex bodies, Journal of the ACM (JACM), vol.38, issue.1, pp.1-17, 1991.

I. Emiris and V. Fisikopoulos, Practical polytope volume approximation, ACM Trans. on Math. Software, vol.44, issue.4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01897272

G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, and G. Stoltz, Convergence of the wang-landau algorithm. Mathematics of Computation, vol.84, pp.2297-2327, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01238595

A. Farris, Y. Li, and M. Eisenbach, Histogram-free multicanonical monte carlo sampling to calculate the density of states, Computer Physics Communications, vol.235, pp.297-304, 2019.

E. Gryazinaa and B. Polyak, Random sampling: Billiard walk algorithm. arXiv, 2014.

]. H. Hct-+-17, B. Haraldsdóttir, I. Cousins, R. Thiele, S. Fleming et al., CHRR: coordinate hit-and-run with rounding for uniform sampling of constraint-based models, Bioinformatics, vol.33, issue.11, pp.1741-1743, 2017.

W. Janke, Monte carlo simulations in statistical physics: From basic principles to advanced applications. Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory, vol.3, pp.93-166, 2012.

C. Junghans and U. H. Hansmann, Numerical comparison of WANG-LANDAU sampling and parallel tempering for met-enkephalin, International Journal of Modern Physics C, vol.17, issue.06, pp.817-824, 2006.

W. Janke and W. Paul, Thermodynamics and structure of macromolecules from flat-histogram monte carlo simulations, Soft matter, vol.12, issue.3, pp.642-657, 2016.

P. Jacob and R. Ryder, The Wang-Landau algorithm reaches the flat histogram criterion in finite time, The Annals of Applied Probability, vol.24, issue.1, pp.34-53, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00633793

R. Kannan, L. Lovász, and M. Simonovits, Random walks and an o*(n5) volume algorithm for convex bodies, Random Structures & Algorithms, vol.11, issue.1, pp.1-50, 1997.

D. Landau and K. Binder, A guide to Monte Carlo simulations in statistical physics, 2014.

F. Lou and P. Clote, Thermodynamics of RNA structures by wang-landau sampling, Bioinformatics, vol.26, issue.12, pp.278-286, 2010.

S. Levy, Flavors of Geometry, 1997.

S. Li, Concise formulas for the area and volume of a hyperspherical cap, Asian Journal of Mathematics and Statistics, vol.4, issue.1, pp.66-70, 2011.

L. Lovász and R. Kannan, Faster mixing via average conductance, Proceedings of the Thirtyfirst Annual ACM Symposium on Theory of Computing, STOC '99, pp.282-287, 1999.

L. László, S. Lovász, and . Vempala, Simulated annealing in convex bodies and an O * (n 4 ) volume algorithm, Journal of Computer and System Sciences, vol.72, issue.2, pp.392-417, 2006.

L. Lovász, Hit-and-run mixes fast, Mathematical Programming, Series B, vol.86, pp.443-461, 1999.

D. Levin and Y. Peres, Markov chains and mixing times, vol.107, 2017.

Z. Li and H. A. Scheraga, Monte Carlo-minimization approach to the multiple-minima problem in protein folding, vol.84, pp.6611-6615, 1987.

T. Lelièvre, G. Stoltz, and M. Rousset, Free energy computations: A mathematical perspective, 2010.

D. Landau, S. Tsai, and M. Exler, A new approach to monte carlo simulations in statistical physics: Wang-landau sampling, American Journal of Physics, vol.72, issue.10, pp.1294-1302, 2004.

L. Lovász and S. Vempala, Hit-and-run is fast and fun. preprint, Microsoft Research, 2003.

L. Lovász and S. Vempala, Hit-and-run from a corner, Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC '04, pp.310-314, 2004.

Y. W. Li, T. Wüst, P. David, . Landau, and . Lin, Numerical integration using wanglandau sampling, Computer physics communications, vol.177, issue.6, pp.524-529, 2007.

+. Mbdd, N. Muller, F. Brunie, C. De-dinechin, M. Jeannerod et al., Handbook of floating-point arithmetic, 2018.

L. Katie-a-maerzke, . Gai, T. Peter, C. Cummings, and . Mccabe, Incorporating configurational-bias monte carlo into the wang-landau algorithm for continuous molecular systems, The Journal of Chemical Physics, vol.137, issue.20, p.204105, 2012.

N. Müller, The iRRAM: Exact arithmetic in C++, Computability and Complexity in Analysis, pp.222-252, 2001.

P. Ojeda, -. May, and M. E. Garcia, Electric field-driven disruption of a native ?-sheet protein conformation and generation of a helix-structure, Biophysical journal, vol.99, issue.2, pp.595-599, 2010.

. Palmer, Broken ergodicity, Advances in Physics, vol.31, issue.6, pp.669-735, 1982.

P. Poulain, F. Calvo, R. Antoine, M. Broyer, and P. Dugourd, Performances of wang-landau algorithms for continuous systems, Physical Review E, vol.73, issue.5, p.56704, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00264367

B. Polyak and E. N. Gryazina, Billiard walk-a new sampling algorithm for control and optimization, IFAC Proceedings Volumes, vol.47, pp.6123-6128, 2014.

A. Pakman and L. Paninski, Exact hamiltonian monte carlo for truncated multivariate gaussians, Journal of Computational and Graphical Statistics, vol.23, issue.2, pp.518-542, 2014.

F. Preparata and M. Shamos, Computational geometry: an introduction, 1985.

N. Radford, MCMC using Hamiltonian Dynamics, Handbook of Markov Chain Monte Carlo, pp.113-162, 2012.

C. Robert and G. Casella, Monte Carlo statistical methods, 2013.

A. Roth, T. Dreyfus, C. H. Robert, and F. Cazals, Hybridizing rapidly growing random trees and basin hopping yields an improved exploration of energy landscapes, J. Comp. Chem, vol.37, issue.8, pp.739-752, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01423282

N. Rathore, T. A. Knotts, I. V. , and J. Pablo, Density of states simulations of proteins, The Journal of chemical physics, vol.118, issue.9, pp.4285-4290, 2003.

G. Roberts and J. Rosenthal, Optimal scaling for various metropolis-hastings algorithms. Statistical science, vol.16, pp.351-367, 2001.

O. Gareth, J. S. Roberts, and . Rosenthal, General state space markov chains and mcmc algorithms, Probability Surveys, 2004.

G. O. Roberts and J. S. Rosenthal, General state space markov chains and MCMC algorithms, Probability Surveys, 2004.

J. S. Rosenthal and G. O. Roberts, Coupling and ergodicity of adaptive MCMC, Journal of Applied Probablity, vol.44, pp.458-475, 2007.

A. Swetnam and M. Allen, Improving the wang-landau algorithm for polymers and proteins, Journal of computational chemistry, vol.32, issue.5, pp.816-821, 2011.

H. Stamati, C. Clementi, and L. Kavraki, Application of nonlinear dimensionality reduction to characterize the conformational landscape of small peptides, Proteins: Structure, Function, and Bioinformatics, vol.78, issue.2, pp.223-235, 2010.

P. Smith, The alanine dipeptide free energy surface in solution, The Journal of chemical physics, vol.111, issue.12, pp.5568-5579, 1999.

H. Shimoyama, H. Nakamura, and Y. Yonezawa, Simple and effective application of the wang-landau method for multicanonical molecular dynamics simulation, The Journal of Chemical Physics, vol.134, issue.2, p.24109, 2011.

C. Sminchisescu and M. Welling, Generalized darting Monte Carlo, Pattern Recognition, vol.44, issue.10, pp.2738-2748, 2011.

S. Somani and D. J. Wales, Energy landscapes and global thermodynamics for alanine peptides, The Journal of Chemical Physics, vol.139, issue.12, 2013.

L. Tierney, A note on Metropolis-Hastings kernels for general state spaces, Annals of applied probability, pp.1-9, 1998.

D. J. Wales, Energy Landscapes, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01423280

F. Wang and D. P. Landau, Efficient, multiple-range random walk algorithm to calculate the density of states, Physical review letters, vol.86, issue.10, p.2050, 2001.

D. Wales and P. Salamon, Observation time scale, free-energy landscapes, and molecular symmetry, Proceedings of the National Academy of Sciences, vol.111, pp.617-622, 2014.

B. Werlich, T. Shakirov, M. Taylor, and W. Paul, Stochastic approximation monte carlo and wang-landau monte carlo applied to a continuum polymer model, Computer Physics Communications, vol.186, pp.65-70, 2015.

C. Yap and T. Dubé, The exact computation paradigm, Computing in Euclidean Geometry, pp.452-492, 1995.