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A BSTRACT

T
his thesis aims at describing in detail the design, implementation and
validation of cognitive brain-computer interfaces (BCI). This work
comprises three chapters. Chapter 1 introduces the general concepts

of cognitive BCI design and brain metastability. In chapter 2, a speci�c
cognitive function (Working Memory) is selected for the construction of a
cognitive BCI. In chapter 3, we explore the possibility of using spatio tempo-
ral properties of brain dynamics as biomarkers for cognitive BCIs, and we
address at the same time scienti�c questions concerning cognition-driven
brain metastability.

The goal of the BCI built in chapter 2 is to continuously monitor Working
Memory (WM) load in real-time. The BCI relies on spectral properties of
electroencephalography (EEG) as biomarkers. The usefulness of estimating
WM in real time ranges from learning applications to security in indus-
trial environments. There are several studies in the literature aiming at
estimating the WM load in real time. However, to our knowledge, this
represents the �rst research in which different key elements are included
simultaneously in a study concerning WM load estimation. The BCI was
successfully tested on a cross-task. A cross-task addresses generalizability,
or whether the device could be used in �exible real-world environments,
and not only on the task for which it was conceived. Control tests were
performed to disentangle possible cognitive or motor confounding factors.
These tests address speci�city, or whether the device is targeting the desired
function and not a correlate of it. Finally, neurophenomenological validation
provided an agreement between the objective estimate of WM load and the
subjective WM load reported by the user.

In chapter 3, we develop a data-driven framework for studying the spatio
temporal structure of brain state switches under cognition, with two speci�c
objectives. First, this framework allows us to perform feature engineering
by taking advantage of regularities, or patterns of brain activity, elicited
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by cognition. If cognition produces changes in said patterns, then these
patterns can be used as descriptors, or features, in a cognitive BCI. The
second objective motivating the development of the framework is to answer
scienti�c questions regarding brain organization and brain dynamics. These
questions arose during the construction of the WM BCI. Speci�cally, we aim
at investigating how the brain self-organizes allowing different regions to
engage and disengage in joint activity in a manner driven by cognition. As-
suming brain metastability (in the context of statistical physics), we propose
a set of local variables that are expected to be spatially and temporarily
affected by cognitive states. We support the latter claim by correlating these
variables with cognitive conditions, such as high-WM load, Alzheimer dis-
ease, and positive emotional valence. We also analyse whether the switching
between states occurs at discrete times, as often proposed in the literature,
and �nd evidence challenging the discrete model.

Each of these two chapters is meant to become a journal article, with the
author of this thesis as the main author. In addition, the appendix contains
previously published journal and conference papers.
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I NTRODUCTION

O
ur aim was to design a system to monitor WM in real-time, from

EEG measurements. The developped model was designed using

the paradigm of passive BCI. As will be explained in detail later

in this chapter, the goal of a passive BCI is to improve human—machine

interactions by providing contextual information of the cognitive state of

the user, in a manner not consciously driven by the user. The cognitive

function that we selected for collecting data and building the online BCI

was Working Memory (WM). WM is a general, complex theoretical construct

that encompasses the mechanisms of storing, maintenance and processing

of information while an individual performs any cognitive task. As a speci�c

example, let us analyse an everyday task -driving- as a WM task. While

driving, our sensory information is translated into estimates of the distances

and speeds of relevant objects. This information is held and processed in

WM to take appropriate actions, such as turning, accelerating or braking.

Any activity that involves a cognitive task will then involve the WM system,

from keeping a phone number in mind to engaging in speech comprehen-

sion. Due to this ubiquity, WM is a key element of cognition. Developing a

consistent de�nition of WM with both explanatory and predictive power is a

relevant issue in psychology and in neuroscience, since, by de�nition, it is a
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CHAPTER 1. INTRODUCTION

theoretical construct relevant to all cognitive functions.

1.1 Design of a real time brain–computer

interface to continuously monitor

Working Memory

1.1.1 Models of Working Memory

The time-limited ability to retain information has been described by differ-

ent concepts, such as short-term memory (STM), short term store or primary

memory. While STM is the cognitive system responsible for holding sensory,

motor and cognitive information [ 73], the WM construct has more intrinsic

features [ 2], as it is thought of a whole interface between perception, long

term memory (LTM) and action [ 10]. In addition, the concept of WM stresses

the processing nature of this temporary storage. Miller coined the term

Working Memory while studying the everyday formation, transformation

and execution of plans in the context of behavioural science [ 123]. Even

for simple plans in our everyday life, we need to combine and mentally

manipulate information from different sources, such as our habits, current

context, and expectations. Later, Atkinson and Shiffrin used the term coined

by Miller in their short-term store model [ 9], in�uenced by information �ow

in machines.

Finally, Baddeley and Hitch [ 13] built on Atkinson and Shiffrin's model to

create their multiple-component model of WM. Although it has been further

modi�ed since its �rst appearance, Baddeley's model remains the most

in�uential WM model. Several authors, however, have pointed out possible

improvements or limits of its applicability. In the next section, Baddeley's

model and other alternative models developed in Cognitive Psychology are

outlined.

2



1.1. DESIGN OF A REAL TIME BRAIN–COMPUTER INTERFACE TO
CONTINUOUSLY MONITOR WORKING MEMORY

1.1.1.1 Alan D. Baddeley's multiple-component model.

Baddeley's original model included two slave storage subsystems, the phono-

logical loop and the visuospatial sketchpad. The model also included a

coordinating system, the central executive.

The phonological loop is in charge of the storage and maintenance of

auditory information. It is further subdivided into two components, one

responsible for storing memory traces that quickly decay over time and the

other responsible for rehearsal, which helps to actively maintain memory

traces.

The visuospatial sketchpad comprises two other subsystems. These

are the visual cache, holding information concerning shapes and colours,

and the inner scribe, responsible for spatial information, such as location,

trajectories and speed.

The function of the central executive, an attentional-based control sys-

tem, is coordinating the slave subsystems, activating memory traces from

the LTM, selecting coding strategies and shifting attention. Two of the main

criticisms of the idea of a central executive are that it is depicted as a ho-

munculus, an all-powerful person running WM, and that the lack of rigorous

evidence makes it impossible to falsify [ 90]. Parkin argues that the evidence

does not suggest a centralized executive function, but rather a pattern of

executive tasks associated with different neural substrates. To tackle the

homunculous problem, Baddeley [ 11] proposes explicitly characterising all

the executive roles of the homunculus until it becomes redundant.

A new slave system, the episodic buffer, was recently introduced by

Baddeley [ 11]. The episodic buffer is the storage counterpart of the central

executive. Multi dimensional information from different sources, bound by

the central executive, is stored in time-ordered episodes, like the fragment

of a story. These episodes are then linked to multi-dimensional represen-
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CHAPTER 1. INTRODUCTION

tations in LTM. The episodic buffer was mainly proposed to explain how

densely amnesiac patients, with important LTM impairment, can perform

normally in immediate recall tasks. Such tasks, which contain more than

20 elements, and hence, are beyond the capacities of the verbal and spatial

systems, were previously thought to be mediated by LTM.

As multiple components are concerned, the dual task paradigm has

been the main experimental tool for investigating WM under this model.

This paradigm explores the possible interference of two tasks to determine

whether they compete for resources. Two WM subsystems are said to be

independent if they do not compete for resources, like the phonological loop

and the visuospatial sketchpad. An example of interference is the articula-

tory suppression task, where a subject is instructed to speak while trying to

remember a collection of words. Memory is impaired when performing this

task because speech and rehearsal in the phonological loop are expected to

share resources.

1.1.1.2 Nelson Cowan's embedded-process model.

The WM model proposed by Cowan [ 30] outlines more precisely how the

mechanisms underlying attention interact with WM, and it proposes that

the slave subsystems could employ more general types of encoding (other

than auditory and visual ones). In terms of information �ow, Cowan's model

can be characterised as in Figure 1.1.

Information enters the brief sensory store and is retained for several

hundred milliseconds, whereupon LTM representations (sensory or seman-

tic) become active and remain so for a few seconds. Depending on the

salience of the stimuli and/or voluntary attention, the activated memories

may enter into the focus of attention or remain outside of it, while still being

active. The attentional processes are mediated by the central executive,

which can direct attention either outward, to perceived stimuli, or inward,

4



1.1. DESIGN OF A REAL TIME BRAIN–COMPUTER INTERFACE TO
CONTINUOUSLY MONITOR WORKING MEMORY
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Figure 1.1: Information �ow in Cowan's model, modi�ed from Cowan 1988.
Time is represented along the horizontal axis, events are discrete approxima-
tions to continuous processes that may take place in parallel or in cascades.
The focus of attention is represented as a subset of the short-term storage,
which is in turn represented as a subset of the long-term storage. The only
items that enter the focus of attention are changed stimuli, items (sensory
or not) voluntarily selected, and long-term memory items spontaneously
activated based on associations (not shown in the �gure).

to LTM. The processing of activated traces of LTM may lead to controlled

actions, if information passed through the focus of attention, or automatic

actions otherwise. LTM storage of some coded features occurs automatically.

Under this model [ 32], outside the focus of attention, physical encoding of

features is more likely than semantic encoding, except for information that

is highly relevant for the subject. The latter is evidenced by the attentional

switch after hearing one's name in an unattended channel. Experimental ev-

idence [33] suggests that the capacity of the focus of attention is 4 § 1 items,

while the whole number of activated items is 7 § 2. Processing can also be

performed on active items out of the focus of attention, without awareness,

as evidenced by patients with hemispatial neglect able to perform operations

on nonconsciously perceived elements. The main mechanism of information

degradation is interference, and temporal decay probably plays a role in this.
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CHAPTER 1. INTRODUCTION

1.1.1.3 Ericsson and Kintsch's long-term working memory model

The usual models of WM have succeeded in characterizing WM tasks per-

formed in the laboratory. Nevertheless, the large storage required to perform

text comprehension and other skilled activity, like playing chess or becoming

a digit span expert, can not be explained by these models, which rely only

on temporal limited capacity [ 38]. For instance, performance on a speci�c

memory task can imporve tenfold after practice; however, this shows no

correlation with the memory span of a different task [ 37]. Furthermore,

some individuals with STM impairments perform normally during skilled

activities, such as text comprehension. In general, the number of available

items in WM can not explain skilled activity. It is in this context that Erics-

son and Knitsch propossed their long-term Working Memory (LTWM) model.

These researchers proposed that skilled activity in everyday life does

not heavily rely on any temporal storage. In contrast, while developing

skills, semantic structures are built in LTM that allow ef�cient coding and

fast retrieval. Hence, LTM largely mediates expert performance. As these

semantic structures are domain speci�c, skills acquired on a particular

type of task involving memory are not necessarily useful for a different

memory task. Thus, performance is only correlated if new materials can be

meaningfully encoded using the developed semantic structures and retrieval

techniques.

1.1.1.4 Barrouillet et al.'s time-based resource-sharing model

The time-based resource-sharing model (TBRS) [ 17] proposes an interest-

ing way of de�ning cognitive load. Under the TBRS model, attentional

resources are needed not only for the processing of information, but also for

its activation and maintenance. They are required for complex tasks and

for simple activities, such as reading letters or digits.

6



1.1. DESIGN OF A REAL TIME BRAIN–COMPUTER INTERFACE TO
CONTINUOUSLY MONITOR WORKING MEMORY

Attention, a serial resource, is shared among at least three functions:

processing, activation and maintenance of information. Quick pauses are

required during processing to maintain the memory traces, which would

otherwise decay over time. It is important to note that this process does not

necessarily correspond to the rehearsal in the phonological loop proposed by

Baddeley [ 13]. Different mechanisms could occur instead, like the rapid and

covert retrieval process through attentional focusing proposed by Cowan

[31]. As the activation of an element is about to fade away, the processing is

paused, and it can be resumed after maintenance takes place. Attentional

switches may occur constantly and at the micro-level, as described in terms

of the micro-task-switching process proposed by Towse et al. [ 113]. This

process is serial in nature at the micro-level but rapid enough to seem

parallel at the macro-level.

As a consequence of the attentional constraint, it is important to rede-

�ne the concept of cognitive load. A high WM load condition may involve

not only a high number of active items, but also the potentially available

time that can be devoted to attentional switches aiming to refresh memory

traces. If the task allows enough time to ensure a proper maintenance of

memory traces, it is said to correspond to a low cognitive load; conversely, if

high processing demands leave little time for refreshing, the task is said to

impose a high cognitive load. Considering the latter, the concept of load can

be thought of task dependent.

To show how performance depends on cognitive load, de�ned in this way,

Barrouillet et al. [ 19] studied the change in memory span as they changed

the number-of-digits-to-time ratio, which measures both the number of dig-

its and the time available for refreshing memory traces. There is a clear

linear relationship between these two quantities, where the span decreases

as the ratio increases. Hence, performance is impaired by both, increasing

the number of elements and decreasing the available time.

Furthermore, Barrouillet et al. studied how this ability to perform suc-
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CHAPTER 1. INTRODUCTION

cessful attentional switches was consolidated through human development.

They found that it often appears at the age of 7 years and improves during

childhood and adolescence [19].

1.1.2 Why and how can the Working Memory load be

estimated?

To answer the question of why and how the WM load can be estimated, we

must �rst address the consequences of a potential WM overload. According

to Cognitive Load Theory [ 89], the design of instructional material should

aim at imposing the right amount of WM load to attain optimal learning.

In an industrial context, a potential WM overload may lead to accidents.

Especially, WM errors may lead to incidents and accidents in �elds like air

traf�c control[ 105]. WM load estimation might lead to interesting applica-

tions in the context of education or industrial environments. The dif�culty

of instructional materials, and therefore the WM load they impose, might be

adjusted automatically to design adaptive, personalized learning strategies.

When a human operator is in a situation in which WM overload could com-

promise the environment's security, early detection might prevent accidents.

Furthermore, one study has shown that General Fluid Intelligence (Gf),

that is the ability to solve novel problems (as opposed to acquired skills) may

be improved by training WM [ 60]. The study showed that Gf increases with

the amount of training on a multi-modal n-back task. WM monitoring in

real time would therefore facilitate the developing of new neuroeducational

tools to train Gf for cognitive augmentation.

Finally, brain imaging is necessary for investigating the neural corre-

lates of any cognitive function. Several brain imaging techniques, such as

magnetic imaging or electroencephalography (EEG), are used by researchers

to infer structural and functional properties of the brain. The technique cho-

sen to develop this work was EEG. Among its advantages are high temporal
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resolution (making it ideal for real-time applications), non-invasive nature

and low costs. One of its disadvantages is its low spatial resolution.

1.1.2.1 Spectral properties of EEG

EEG recordings consist of a series of measurements of brain electrical activ-

ity, measured in microvolts, over time. Recordings are performed through

electrodes, which can measure the time evolution of voltage amplitude.

Such variations are correlated with changes in the synchronization of the

underlying neural ensembles. Local synchrony produces oscillatory and

phasic patterns, which can be characterized by the way in which power is

distributed over frequencies. A description of power as a function of the

frequency, per unit frequency, is called the power spectral density (PSD).

If we consider, for instance, a pure sinusoidal signal of frequency f0

spanning through an in�nite time, all the power will be concentrated at

f0. Real-life signals however are �nite, and in that case the power is con-

centrated around f0, the longer the signal lasts, the narrower the peak of

the power becomes. A sum of two �nite sinusoids of frequencies f0 and f1,

respectively, will generate a PSD with two peaks, at f0 and f1, of heights

that depend on each signal's amplitude. We used Welch's method [ 124]

for estimating the PSD, a method especially tailored for �nite, noisy data.

Examples of PSD estimation can be seen in Figure 1.2.

The EEG PSD is usually divided into different bands, and it is common

to compute the power at each band. The power at a speci�c band is the inte-

gral of the PSD in the region containing the frequencies of interest. There is

no universal convention for choosing the exact boundaries of the bands; in

our work we use the delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), lower

beta (12–20 Hz), upper beta (20–30 Hz) and lower gamma (30–45 Hz) ranges.

The band's boundaries are partly historical and partly scienti�c: It has been

observed that a change in the power of a band correlates with motor or
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Figure 1.2: Two different power spectral density (PSD) estimations. Top:
constant amplitude, �nite time sinusoid, bottom: sum of two constant
amplitude, �nite time sinusoids. The time series are in the left column, PSD
estimations are in the right column.

cognitive activity. For instance, alpha waves are observed when an indi-

vidual is awake with eyes closed, and they are thought to predict mistakes

[80]. It is a matter of debate, and outside the scope of this work, whether

speci�c oscillations are necessary for brain functioning or a byproduct of it.

However, regarding WM, several types of oscillations have been proposed

as neural correlates by other authors. Sauseng et al. [ 101] report alpha

synchronization (leading to an increase of alpha power) in the prefrontal
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areas, with alpha de-synchronization (decrease in power) in the occipital

areas. In a different study [ 102], they report increased theta long-range

coherence1 and decreased anterior upper-alpha short-range connectivity for

increasing demands on the central executive. Jensen et al. [ 62] �nd that

theta power at the frontal electrodes increases as a function of the number

of items stored in WM. More generally, Antonenko et al. [ 8] review the use

of EEG for measuring cognitive load.

1.1.2.2 Other types of EEG measures

EEG signal processing techniques aim at extracting informative measures,

or features, from the raw recordings. While power at different frequency

bands remains a popular feature choice, there are several alternatives. Un-

like PSD estimations that are timeless, short time Fourier transforms [ 48]

[59] and wavelets [ 6] [3] allow researchers to resolve the temporal evolution

of how power is distributed over frequencies. Complexity measures aim

at estimating how regular, or predictable, a signal is. Multiple complexity

measures have been applied to EEG signal processing, including the correla-

tion dimension in schizophrenia [ 74] and creative thinking [ 83], Lempel–Ziv

complexity for Alzheimer disease [ 1] and depth of anesthesia [ 130], and

multiscale entropy in autism [ 23]. In autoregressive models, future values

of a time series are estimated as a function (weighted sums in general) of

past events. Autoregressive models of EEG signals have been proposed, and

used, for instance, for classifying motor imagery [92] or mental tasks [87].

In chapter 3, we develop a novel set of techniques to extract meaningful

information about cognition from EEG signals. The motivation behind gen-

erating such framework is to assess assumptions about brain dynamics.

1Two regions are said to display coherence if, for a given band, their oscillations entail
a constant phase difference.
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1.1.2.3 A brain–computer interface approach

We developed this WM monitoring system in the brain–computer interface

(BCI) framework. Broadly, a BCI is a device that allows humans to interact

with machines by using brain activity directly, bypassing the motor system

[127]. These devices take neuroimaging signals as an input and generate a

desired output via a translation algorithm. The output is often a command

that helps the user in either conveying a message or controlling an object.

Examples include choosing a letter in the �rst case, or moving a wheelchair

in the second case. A diagram of a typical BCI is shown in Figure 1.3.

Figure 1.3: Figure taken from Allison 2007. The four BCI components
are signal acquisition, signal processing, output applications and operating
environment.
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BCIs were initially designed for patients whose conditions have impaired

their main communication or command channels, such as speech or the

motor system. Locked-in patients [ 57] or paralysed patients [ 86] are typical

examples. In healthy subjects, regular speech is a more ef�cient way of

communication. In addition, the motor system provides a �ne-tuned means

of control with a high number of degrees of freedom. Both the motor system

and speech demand relatively low cognitive effort compared with a BCI.

Nevertheless, BCI systems can go beyond communication and control; they

can also be useful for cognitive monitoring, as suggested in [85].

Zander and Kothe [ 128] conceptualised a new way of using BCI. They

proposed a new classi�cation of BCI by the type of mechanism used to

achieve control of the device, as follows: conscious voluntary control (active

BCI), conscious voluntary control aided by external stimulation (reactive

BCI), or non-intentional control (passive BCI). The system developed here

is a passive interface. The goal of a passive BCI is to improve a system's

performance by obtaining relevant information about the user's cognitive

state. Such information is provided in a way that is non-voluntarily driven

by the user. Having this information, appropriate commands can be trig-

gered, allowing the system to adapt to the user. In the case of healthy users,

passive BCI could be of special interest in improving human–machine in-

teractions. Furthermore, feedback-based learning may greatly bene�t from

neurofeedback protocols based on a precise detection of cognitive states. [ 45].

1.1.2.4 Key properties of the proposed approach

To our knowledge, this is the �rst time that different important elements

have been integrated into a single WM study, namely, neurophenomenologi-

cal validation, a cross-task, and different control tests. Neurophenomeno-

logical validation refers to subjects con�rming the agreement between their

subjective experience and an objective measure proposed as a correlate to

that experience. Although the main goal of neurophenomenology [ 117] is
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beyond the scope of this work, it has interesting proposals regarding the

relationship between subjective experiences and their objective, physical

substrates. Lutz [ 78] provided the �rst case study in which �rst-person

(subjective experience) and third-person (objective measures) data were

related in the context of neurophenomenology.

A cross-task is a task differing from the one used to design the BCI, but

nevertheless mobilizing the very same cognitive function. Testing the model

with a cross-task is a necessary control before we attempt to generalize

our �ndings to real-world environments. A BCI that truly measures the

load of the central executive trained on a given WM task, should be able to

transpose the classi�cation of the same load on a different WM task.

Finally, disentangling confounders through control tests is crucial for

supporting the claim that our EEG biomarkers correspond speci�cally to

WM and not to the correlated electrical activity of brain or muscle origin. For

a discussion of the importance of cross-tasks and disentangling confounders

in a WM BCI, the reader can refer to [ 46]. Our hypothesis in this regard

is that WM-load estimations will not be high when subjects are instructed

to perform actions that are less demanding of WM but induce the presence

of confounders. (More details in section 2.1.3). The confounding factors

controlled in this work were attention, attentional �lters, internal speech,

sub-vocalization, frustration and arousal. Attention and attentional �lters

are indeed part of WM under some models [ 32], but they do not encompass

the whole WM construct. A relevant approach in this regard is that of Vogel

et al. [ 121], who show evidence suggesting that individual differences in

WM capacity may be at least partially explained by individual differences

in �ltering ef�ciency. Individuals with a low WM capacity may have less ef-

�cient �ltering mechanisms, which can lead to de�cient encoding strategies

and the consequent storage and maintenance of irrelevant information. The

tasks developed in this work involved the phonological loop [ 10]; therefore,

we need to disentangle potential correlates of internal speech and subvo-

calization. In addition, frustration is known to be highly correlated with
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mental effort [ 89]. Eye blinks and other visible electromyographic artifacts

were removed from the training set as explain in [ 100] to prevent biasing of

the model. Eye blink removal was performed using the runica function of

EEGLAB [34].

1.2 Brain metastability under cognition

As mentioned in the review of models of WM, the central executive is in

charge of different sub-functions, namely, the maintenance of memory traces

and information processing. In the series of experiments performed for the

BCI, both sub-functions differed in intensity and pace across conditions (low

or high WM load). For instance, refreshing of patterns via the phonological

loop was performed more frequently in the high WM condition. In fact,

according to the TBRS model discussed above, the WM load is not only

determined by the storage requirements, but also by the use of the other

sub-functions.

If we consider the working hypothesis that localised brain structures

are responsible for performing the different sub-functions of the central

executive, then it is reasonable to believe that there may be localised re-

gions where properties of the neural substrates change to support said

sub-functions. In chapter 3, a set of these properties that change across

different WM (and other cognitive) conditions are postulated and studied.

More speci�cally, the transient coordination in the brain under cognition

is investigated borrowing concepts from physics such as metastability, to

derive precise formulations of the above mentioned properties.

1.2.1 Transient coordination in the brain

Perception provides an illustrative background for elaborating on the type

of cognition-driven brain dynamics that we are interested in capturing.
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How do we perceive objects? In the 1960s, Jerome Lettvin coined the term

“grandmother cell,” referring to the idea that the brain has neurons where

the activity is elicited selectively for familiar faces, with a single neuron

for a speci�c person. Later, this view came to be regarded as simplistic.

However, while investigating the degree of selectiveness of neurons, Quian

Quiroga et al. [ 94] found that although we may not have grandmother

cells, neurons �re in a speci�c way for familiar objects. In a patient with

implanted electrodes, they found a neuron that �red when pictures of Halley

Berry were presented. They did not �re when pictures of anyone else were

presented, and they also �red when the patient viewed a drawing of Halley

Berry, the name of Halley Berry, and Halley Berry dressed as catwoman.

They found similar behaviour for other familiar faces and even for buildings.

Later, Chang and Tsao [ 26] decoded the way in which primates encode

faces. They were able to reconstruct any face (not necessarily familiar) with

an impressive accuracy, by recording the joint activity of 205 speci�c cells.

Each cell codes for a speci�c face attribute, so its �ring rate corresponds to

the degree to which the face can be described by the corresponding attribute.

To summarize, familiar objects have a sparse representation, and faces,

perhaps due to evolutionary pressure, are coded in a sparse manner that

involves a few hundreds of cells. However, as neurons do not generally �re

for single objects, how do we integrate low-level information into high-level

categories? The feature binding problem describes the integration of this

type of information.

Feature binding [ 114] refers to the process by which the selection and

integration of the different properties of objects takes place, in the correct

order. Sensory modalities are registered at different brain regions, and

the same modality may even be registered at different locations [ 96]. Con-

sidering vision, the ventral pathway is responsible for registering colours

and shapes, while the dorsal pathway is responsible for registering motion

and space [82]. Our visual �eld is populated by a collection of objects that

usually change over time. Thus, it can be concluded that, as objects or their
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properties change in our visual �eld, different brain regions engage and

disengage in transient states of coordination. In addition, visual perception

does not only involve low-level signals; rather, the mere concept of an object

requires us to identify properties like manipulability or topological connect-

edness [111]. Beyond the visual modality, our perception of the environment

consists of a broadband, high temporal resolution stream of information.

Generally, cognitive functions require the interaction of low- and high-

level information, both external and internal. Emotions, external stimuli,

intentions and memories all interact in a coordinated fashion in our brain,

and the mind can be thought of as the workspace in which these interac-

tions occur. Writing down an idea (in a syllabic writing system), a simple

everyday task, can illustrate this intricate set of interactions. To accomplish

this, an abstract idea needs to be phrased in words in our mind, and further

decomposed into its constituent phonemes. The graphemes corresponding

to the phonemes must be retrieved from memory, and visual, motor, and

haptic information must be integrated to perform the actual writing.

How does the brain manage to self-organise to create and annihilate

these transient coordination involving low- and high-level information? As

early as 1974, Katchalsky et al. (cited in [ 125]) wrote, “waves, oscillations,

macrostates emerging out of cooperative processes, sudden transitions,

patterning, etc. seem made to order to assist in the understanding of

integrative processes of the nervous system”. More recently, the concept of

metastability has attracted attention.

1.2.2 Metastability in the brain

Freeman's [ 43] work regarding perception led to the discovery of cortical

activity that carries perceptual elements [ 44]. Freeman describes metasta-

bility as the recurrence of spatial patterns of phase and amplitude in the

neocortex, that occur in a discrete fashion like frames in a movie. An exam-

ple of these perception frames is displayed in Figure 1.4, adapted from [ 44].
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Figure 1.4: A Freeman frame, taken from Freeman's Scholarpedia article.
Left: 64 EEG signals, from a 8x8 array. Right: contour plot, formed with
the amplitudes of the array. The pattern that arises from the contour plot is
a frame.

Buzsáki [ 24, chapter 5] suggests that the brain is in a high complex-

ity, critical state, as may be evidenced by the power law in the EEG PSD.

He also proposes that the most important property of cortical brain dy-

namics is the ability to rapidly switch between metastable pink noise and

oscillatory behaviour. Under this view, sensory or motor activity represent

perturbations (which we will refer to as disturbances) that can temporarily

reorganize the effective connectivity to induce transient stability by oscilla-

tions. An oscillatory, short-lived regime can hold information required for

psychological constructs, whereas the critical state allows for an ef�cient

switching between states. Coordination dynamics [65] represents a theo-

retical framework in which complex systems theory is used to model this

transient coordination. In this framework, metastability is a dynamical

regime for the relative phase of coupled oscillators in which all stable �xed

points have disappeared. Phase trapping, temporarily convergent dynamics,

and phase scattering, temporarily divergent dynamics, are the result of

competing tendencies: On the one hand, segregation, or modularity, pro-
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motes independent behaviour and local coupling; on the other, integration

represents a global attempt for cooperation. One of the reasons this author

proposes metastability is that, unlike multistability (where stable �xed

points still exist), metastability does not require disengage mechanisms

(such as stochastic noise or energy �ow) for state switching. Tognoli and

Kelso [112] point out that, although the concept of phase locking 2 has gained

increasing relevance in the study of neural assembly synchronization, tran-

sients have not received adequate attention, perhaps due to the lack of truly

dynamical approaches. According to these researchers, metastability has

yet to be demonstrated and fully treated from a spatiotemporal perspective.

To take a further step in that direction, we propose the framework presented

in this study.

We are interested in �nding measurable physiological variables that are

related to brain states, in characterizing the coordination of these variables,

and in correlating this coordination with cognition. We begin by assuming

metastability, not in the dynamical systems context, but rather in that of

physics. Again, a full description of metastability in the context of physics is

out of the scope of this thesis; nevertheless, we can outline it. A metastable

system is a system out of equilibrium, with several available states (for

instance, liquid, solid and gas for water), and near the boundary between a

subset of them. External inputs (energy, noise, matter, etc.) can drive the

system into one state or the other. If the system stays in a given state, the

system's state variables (distribution of molecular velocities in the case of

water) remain stationary. In our case, the state variables will be the output

voltage of the neurons, as measured by EEG (space-averaged). According

to the de�nitions of metastability and stationarity, a system that switches

between metastable states will have constant statistical parameters over

time during the existence of a state. In other words, the entire process

generating the state variables will be piecewise stationary.

2Functionally coupled neurons that spike at a constant delay [116].
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1.2.3 EEG non-stationarity

EEG is known to be non stationary [ 16]. However it is considered to be

composed of concatenated stationary segments. Kaplan et al. [ 64] suggest

that these non stationarities may arise from the switching of the metastable

states of neural assemblies during brain functioning. Thus, the lack of EEG

stationarity is a suitable candidate for studying brain metastability. It is

surprising that, although EEG non stationarity may result from normal

brain functioning, few researchers have directly investigated whether non

stationarities can convey relevant information about cognition, or about

brain functioning in general. Usually, EEG nonstationarity is either not

discussed at all or considered as an issue to overcome, given that many tech-

niques, such as PSD estimations, complexity measures and autoregresive

models require stationarity. Common approaches are signal segmentation

into stationary epochs [ 4] [42] or the use of techniques that do not assume

stationarity [ 55] [76]. To list a few exceptions, Kaplan et al. [ 64] developed

a technique estimating synchrony between any two channels ( operational

synchrony) as the degree to which they undergo simultaneous switches.

Cao and Slobounov [25] studied the change of the dominant frequency of

the EEG signal over time, and they used this measure for detecting resid-

ual abnormalities in concussed individuals. In a study regarding depth of

anaesthesia, Kreuzer et al. [ 75] found that during loss of consciousness,

stationarity is heavily in�uenced by the anaesthetic used. Fingelkurts and

Fingelkurts [ 39] further developed operational synchrony to propose the

framework of operational architectonics , aiming at characterizing the tempo-

ral structure of information �ow in functionally connected neural networks.

Most of the above-cited research assumes discrete timing. Switches

occur in an abrupt manner, and the region remains in the same state until

the next switch. Fingelkurts and Fingelkurts [ 40] discuss the differences

between the concepts of elements of thought and stream of consciousness.

They review psychophysical, electrophysiological, neurophysiological and

computational support for either discreteness or continuity of timing in

20



1.2. BRAIN METASTABILITY UNDER COGNITION

cognition.

1.2.4 A data-driven motivation

For the sake of clarity, the above introduction was presented from a the-

oretical perspective. In our case, however, the original motivation was

data driven. Signal processing techniques involving spectral properties

and complexity measures require the signal to be stationary. In contrast,

as mentioned in the previous section, EEG is non-stationary. Our initial

approach, like the approaches of most researchers who have addressed the

issue, was to segment the signal into stationary epochs. As stationarity

implies constant statistical properties over time by de�nition, we decided

to investigate the time evolution of statistical properties of the EEG signal.

Visual inspection of the WM dataset (seec section 3.1) led us to realise that

there were some patterns of change of the statistical properties that were

more prominent in the high WM condition.

Figure 1.5 shows two valleys, A and B. While visually inspecting the

data, these type of valleys seemed to appear more often in the high WM

condition as compared with the low WM condition, at least for central EEG

channels. We realised then that if the actions performed by the central

executive differed across conditions in nature, intensity or pace, the seg-

mentation process itself could be used to derive a biomarker, provided that

changes in the statistical properties were adequately represented. In addi-

tion, these signal changes, which may re�ect underlying changes to support

different functions, could shed some light on brain dynamics.
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Figure 1.5: Top: typical segment of the EEG signal over time. Bottom:
variance computed over a sliding window. For central channels, during
the visual inspection of the data, valleys like A and B were found more
frequently in the high WM condition than in the low WM condition.

We decided therefore to investigate the spatio temporal structure of

the switches, and more importantly, whether they correlated with WM

enough to be predictors of WM load at the single trial level. After obtaining

successful results, we decided to explore whether the �ndings were WM

speci�c or a more general aspect of cognition. We applied the technique to

a dataset of emotions and an Alzheimer disease dataset with positive results.
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2
WORKING M EMORY LOAD ESTIMATION IN REAL

TIME

2.1 Development of the BCI

2.1.1 Initial WM task

T
he ultimate goal of the present chapter is to reliably and continu-

ously estimate a subject's WM load in real time from EEG recordings

taken during a task. More technically, we need to perform EEG-

based single trial classi�cation of the WM maintenance and processing

load in real time. To achieve this goal, our �rst step was to collect an EEG

database of subjects performing a task with two conditions. Ideally, the

conditions should differ only in the amount of WM load induced. (See section

2.1.3 for a feasibility discussion)

An of�ine analysis of the above database allowed us to design a classi�er

that, given a newly recorded EEG signal, provides real-time estimation

of the posterior probability of the signal belonging to one of two classes,

namely high-WM load and low-WM load. The design and implementation of
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the task, which will be referred to as Task 1, are described as follows:

• Subjects sit in front of a computer screen and are presented with a

collection of �gures that will be used during the experiment. They are

asked to assign a short name to each �gure, to become familiar with

the set. There are different sets of �gures, and each set corresponds

to a different semantic �eld such as animals, vehicles or geometric

shapes (see section 2.3.1);

• The target to be memorised appears on the screen. The target is a

speci�c sequence of the previously displayed �gures. There are two

conditions, one in which the target contains two �gures (low-WM-load

condition) and one in which the target length is �ve or six �gures

(high-WM-load condition). The number of �gures in the high condition

was determined for each subject depending on his or her WM span

after performing 21 preliminary trials;

• The target disappears and a sequence of �gures, generated from the

same semantic �eld, slides from right to left on the screen. The sliding

speed is 222 pixels per second. The subjects must press a button

whenever they �nd the target within the sequence. This is considered

one trial. If the subject presses the button before the target appears

or misses the target, the trial is over and is not analysed. Trials last

25 seconds on average. An example of a low-load trial is shown in

Figure 2.1. Subjective feedback about frustration is collected after

each successful trial by means of an analog Likert scale. The question

was taken from the NASA Task Load Index questionnaire [54]; and

• A new target (belonging to the other WM condition) is shown, and the

whole process repeated. Both conditions are alternated to prevent the

BCI from learning slow EEG drifts that are WM independent.
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(a) Target

(b) Sliding sequence of �gures, where the pattern must found. The
pattern is highlighted in a box.

Figure 2.1: Low-WM task

The fact that subjects were asked to assign a short name to each �gure

induced in them a simple storage-retrieval technique—to internally repeat

(using the phonological loop [ 10]) the names of the elements of the target

and to compare them with the observed sliding items. Subjects were indeed

instructed to do this to ensure a homogeneous encoding strategy.

While it may appear unnecessary or even trivial to impose a storage-

retrieval technique, it is natural for subjects to explore other techniques in

order to perform better. According to [ 63], in a digit span task, the typical

initial strategy is simply to rehearse groups of numbers. As subjects become

familiar with the task and obtain expertise, the encoding strategy moves

towards associating numbers with their own pre-existing knowledge. The

authors describe how a subject with a normal memory span develops a

(task-speci�c) span far beyond the limits of WM. The encoding strategy

exploited information with which the subject was familiar, namely racing

times. (The subject was interested in racing sports, and hence he dealt with

racing times often).

It was crucial in our experiment to prevent subjects from developing such

strategies for several reasons: �rst, to have a constant WM load; second,

to reduce variability, as the potential encoding strategies are as different

as the body of knowledge of every subject; and �nally, because we do not

want to involve LTM. Mnemonic techniques, for instance, use long-term
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WM structures for information retrieval [67].

A speci�c strategy of this kind, observed in preliminary tests, was to

create short stories. Therefore, subjects were speci�cally instructed not

to do so. To further discourage this possibility, all the �gures belonged to

an evident semantic �eld. To reduce habituation, the semantic �eld was

changed.

For estimating the WM span of the subjects and the associated length

of the target, the subjects performed seven trials for each of three different

semantic �elds (section 2.3.1). For the actual recordings, subjects performed

10 trials for each of four different semantic �elds.

WM is a construct that is responsible not only for information storage,

but also for its maintaining and processing [ 12]. While designing the task,

we focused on these three sub-functions of WM. Storage is controlled by the

design of the experiment, as both conditions differ in the number of items to

be remembered. However, the maintaining and processing loads are harder

to impose and monitor without largely complicating the experiment. There-

fore, the subjects were instructed to internally maximise the difference in

both conditions regarding these two remaining aspects. In the high-WM-

load condition, they were asked to internally refresh the items as rapidly as

possible (fast and continuous internal speech) and perform the processing

(�gure comparison) as intensively as possible. An intensive comparison

could be, for example, not only deciding if the items are different, but also

�nding some differences, such as the number of lines. For the low-WM-load

condition, they were asked to do the opposite—slow refreshing and low

processing. Even though the task covered the three sub-functions of WM,

the recordings for both the training and testing sessions were performed

after the subjects memorised the target. Therefore, the recordings corre-

sponded to the maintenance and processing of information with a number

of items varying across conditions. Before the recordings, the subjects were

left to interact with the system to gain familiarity with the instructions,
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especially this maximization strategy. As pointed out by Lotte et al. [ 77], the

effectiveness of feedback partly relies on the clarity of instructions and goals.

Distracters , or sequences similar to the target, prevent the use of mem-

orization strategies focusing on subsets of the target. It is unlikely that

distracters will appear by chance for targets with �ve �gures or more. Hence,

the randomized sequence was generated so that distracters appeared in

exactly 50% of the trials. With distracters appearing only half the time,

subjects do not learn to expect the target after a distracter. A distracter

was de�ned as a pattern similar to the target, differing only in one item

that could be located in any position from the third onwards. The duration

of each trial is a random number between 15 and 30 seconds. A random

value prevents subjects from implicitly learning the task length instead of

performing the task itself, which would severely bias the results.

The area on the screen where the �gures slid was 100 × 300 pixels; the

size of the �gures was 100 × 100 pixels. The small window size reduces eye

movements, which are known to produce artifacts. Because of the size of

the area, size of the �gures, and sliding speed, the subjects could only see

one complete �gure at a time. The experiment was written in Matlab 2015a

using the Psychophysics Toolbox extensions [68].

The distance between the subjects and the screen was 60 centimetres;

the screen model was ProLite E2208HDD. The lighting and noise conditions

were normal of�ce conditions.

A photodiode connected directly to the EEG ampli�er auxiliary input

allowed synchronization between the EEG recordings and visual stimula-

tion. The BPW-21R photodiode was chosen for its sensitivity to visible light

(420–675 nm) and theoretical response time of about 3 ¹ s, lower than any

other time scale in our setup.
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2.1.2 Online tests: BCI validation and cross-task

As online tests are the only means of providing solid support to our working

hypotheses, the present section is devoted to a description of the online

testing of the BCI system. The classi�er C, which is at the core of the BCI

system, was designed and trained of�ine, as described in section 2.3.2, prior

to testing.

The �rst online test was the BCI validation, that is whether the classi�er

correctly predicted the WM load online when subjects were performing Task

1, the task for which the classi�er was trained. Classi�er C was used to

analyse the stream of incoming EEG data. The output of classi�er C was the

estimated probability that the current EEG epoch corresponded to a high-

WM load, which is referred to as the WM-load estimate (WMLE). This value,

being a probability, is a continuous number between 0 and 1, which is small

for a typical low-WM-load EEG epoch, and large for a typical high-WM-load

epoch. With the WMLE values, a receiver operating characteristic (ROC)

curve was computed to assess the classi�er's performance. An ROC curve

is a plot of false-positive versus true-positive rate for different threshold

values (for details see for instance [ 110]). The threshold is the value of

the WMLE above which we consider an EEG epoch as corresponding to a

high-WM-load state. The area under the curve (AUC) of a ROC curve is a

useful indicator of the classi�er's performance. AUC values have a lower

bound of 0.5 for a random classi�er and an upper bound of 1 for a perfect

classi�er; the larger the value, the better the classi�er. Each subject except

one (see section 2.1.4 for details about the subjects) performed 20 trials; the

other due to his time constraints, performed only 6 trials.

The second online test aimed at obtaining neurophenomenological val-

idation on a cross-task. Performing a cross-task is necessary to control

task-related confounders [ 46]. The classi�er C, trained on Task 1, was used

to predict the WM load of the subjects in an entirely different WM-based

task. A mental arithmetic task was chosen as the cross-task. During this
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task, which we will refer to as Task 2, subjects were instructed to perform

arithmetic computations (details in section 2.3.3), while a visual cue was

shown on the screen. After 8.5 seconds, the visual cue disappeared, and

subjects stopped the mental arithmetic; the trial lasted for 11.5 extra sec-

onds after the visual cue disappeared. Classi�er C analysed the stream of

EEG data to provide a WMLE, as in Task 1. Unlike in Task 1, however, the

WMLE was used to display real-time (every 150 ms) continuous feedback,

in the form of a gauge with a height proportional to the WMLE. The gauge

was shown throughout the whole trial (except for the �rst 2.5 seconds, as

the buffer of the classi�er C requires 2.5 seconds of data to produce an

output). The neurophenomenological validation took place after each men-

tal arithmetic trial, where the subjects were asked to decide whether the

feedback provided by the gauge matched the dynamics of their subjectively

perceived WM load. The subjects had to complete the sentence, I believe

that the feedback gauge was... with one of the following: a) correlated with

my WM load, b) not correlated with my WM load, or c) I don't know . To

prevent an optimistic estimation due to a potential obsequiousness bias,

half the time, sham feedback was provided. The subjects were aware that

the aim was to validate whether the feedback indeed re�ected their load,

and that we would provide sham feedback half the time. The sham feed-

back took the form of a reversed estimate, that is, a large bar when the

WMLE was low and a small bar when it was high. A reversed gauge has

the advantage that its dynamical behaviour cannot be distinguished from

the real feedback dynamics. Neither these questions nor the instructions

given to the subjects mentioned that the sham feedback was reversed. This

information was withheld to prevent subjects from being tempted to de-

vote their cognitive resources to inverting their estimations and evaluating

whether they matched the feedback. Ultimately, what we evaluated was

the subjects' ability to identify whether the feedback was real or sham,

which in turn, assesses the reliability of the BCI, provided confounders were

disentangled. Indeed, if the subject is able to recognize the nature of the

feedback (real or sham), then it means that the WMLE signal is matching

with the subject's own internal evaluation of her or his cognitive load. Note
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that in any case, if the subject were able to identify the sham feedback

reversion (which did occur with some subjects) it would even more indicate

a successful neurophenomenological validation: in order to identify that

the signal is reversed, the subject would have to be able to interprete the

information to be reversed (and hence understand its meaning as congruent

to his internal perceptions of WM load). Each subject performed 20 trials,

except for one, who performed only 10 due to personal time limitations.

Before the recordings, there was a training session with three trials using

the real estimation and three trials using the reversed estimation.

2.1.3 Online control tests: Disentanglement of

potential confounding factors

In section 2.1.1, we described the requirement of a task with two conditions,

differing only in the amount of WM load imposed on the subject. In practice,

as WM is a multimodal complex construct, there may be confounding factors

involved, that is, factors unspeci�c to WM, or task-dependent factors, that

change across conditions [46].

Unspeci�c factors can be motor or cognitive confounders, such as frustra-

tion, attentional �lters, eye blinks, subvocalization or muscle contractions.

These confounding factors may or may not be part of the WM construct, but

they do not encompass the whole construct, and basing a classi�er only on

them would be misleading. In contrast, a cross-task is meant to remove

task-dependent factors.

Figure 2.2 is a graphical representation of the process of confounder

disentanglement. The plane containing the ellipses is an abstract plane

representing EEG biomarkers, with no speci�c order within the plane. The

leftmost ellipse represents the set of biomarkers that change across condi-

tions in Task 1. The rightmost ellipse corresponds to biomarkers that change

across conditions in Task 2. The upper vertical ellipse depicts biomarkers
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that change when a subject experiences high WM load, while the remaining

ellipses represent biomarkers that change under the presence of the respec-

tive confounders.

If a classi�er is trained with data from Task 1, and tested with data from

Task 2, the EEG biomarkers that trigger a high response of the classi�er

(with the test data) are represented by the intersection of the leftmost and

rightmost ellipses in Figure 2.2. These biomarkers are ideally task inde-

pendent, due to the difference in nature between the tasks. However, this

set of biomarkers is not free from biomarkers elicited by confounders, and

therefore, we need to disentangle them.

In Figure 2.2, area 1 represents the ideal set of biomarkers. Area 2

contains cognitive activity necessary but not suf�cient for WM, such as

attention, that could potentially be shared by both tasks and change across

conditions. Area 3 contains potential motor confounders that could also be

shared by both tasks and change across conditions, like sub-vocalization.

After all the confounders have been identi�ed, the remaining part of the

ellipse, area 4, should be empty. The recordings of a subject systematically

producing electromyographic artifacts during the high-WM-load condition

of both tasks (see section 2.2.2) belong to this area, and are therefore dis-

carded from the results. According to the embodiment theory [ 118], the

ellipses concerning cognitive activity and motor activity may not be disjoint.

However, we are not considering this hypothesis in the present work.

The last set of online tests comprised control tests aiming at disentan-

gling potential confounding factors. The goal of these tasks was to induce

the identi�ed confounders in a task that created a low WM demand, to

verify whether a high response of classi�er C was observed. (We do not call

this response the WMLE because we are performing control tests). The

confounders analysed were attentional �lters, attention, internal speech,

sub-vocalization, and frustration. Three control tasks, described in the next

paragraph, covered these potential confounders. In addition, arousal was
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2
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Figure 2.2: Confounders to be disentangled. The plane represents EEG
biomarkers. Each ellipse is the set of biomarkers that change across con-
ditions (for Task 1 and Task 2), or that change whenever the associated
notion is present (WM, motor confounders and cognitive confounders). Area
1 represents the ideal WM markers. Area 2 represents (cognitive) activity
necessary but not suf�cient for WM. Area 3 represents potential motor
confounders. Area 4, the remaining part of the crosshatched area, should be
empty if all the potential confounders were correctly identi�ed

analysed of�ine, and eye blinks were removed from the learning database;

see section 2.3.2.

The �rst task was identical to the low-WM-load condition of Task 1, with

one difference. Above the sliding �gures where the target was contained,

the picture of a red �y followed a chaotic trajectory for a random duration

between 1 and 2 seconds. Subsequently, it would spin around for another

random duration between 1 and 2 seconds. The �y alternated between these

behaviours. This extra item, spanning the visual �eld with an unpredictable

motion, forced the subjects to make greater use of their attentional �lters

32



2.1. DEVELOPMENT OF THE BCI

to succeed. The aim of this task was to test whether the attentional �lters

elicited part of the EEG biomarkers found. Twelve trials were performed

for this test.

For the second control task, subjects completed a visual reaction time

test. The goal of the test was to press a key whenever a visual cue appeared

on the screen. As the cue appeared at random times, subjects needed to

be attentive to press the key at the correct time. Therefore, the potential

confounder of interest here was attention. Ten trials of 10 seconds each

were performed.

A third control task involved subjects internally repeating a lengthy

word of their choice slowly and continuously. The elements to be disentan-

gled here were internal speech and sub-vocalization. Ten trials of 10 seconds

each were performed.

At this point, we had already saved the WMLE values of subjects per-

forming Task 1 in the low-WM-load condition. Our null hypothesis was that,

if our EEG biomarkers were speci�c to WM, then potential confounders

would not trigger a high response of classi�er C. Therefore, the null hypothe-

sis translates to the following: The response of the classi�er C from control

tests is not higher than WMLE values from Task 1 in the low-WM-load

condition. Failing to reject the null hypothesis after an adequate statistical

test would then support the claim that our BCI is WM speci�c. This test

was a paired Student t-test, given that the same set of subjects performed

Task 1 and the control tests.

Subjective information about frustration was collected after the Task

1 trials. As mentioned in section 2.1.1, this information was collected via

an analogue Likert scale. For each trial, the mean value of the WMLE

was compared with the subjective frustration level provided by the sub-

ject. A possible correlation between these two values was studied using a

conjunctive analysis, including Bonferroni corrections [ 120]. This method,
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previously proven useful for EEG, assesses statistical signi�cance without

losing statistical power when performing multiple hypothesis testing, each

subject being a test in this case. A lack of correlation would support a lack

of effect of frustration on the WMLE.

2.1.3.1 Potential confounding factor analysed of�ine: arousal

A recording session lasted between 2 and 3 hours. To avoid an adverse effect

of fatigue, we estimated the effect of arousal of�ine. It has been reported in

the literature that an increase in central frontal beta activity [ 51], decrease

in central frontal theta activity [ 109], and increase in global alpha activity

[109] are good markers of arousal. To test the effect of arousal, we decorre-

lated the information contained in these markers from the classi�er's output.

The latter was done by performing Gram–Schmidt orthogonalisation [ 27].

We tested this approach by classifying our of�ine database. If our classi�er

is based on arousal, after decorrelating these markers of arousal we expect

the classi�cation performance to drop to chance levels. If it is not based on

arousal, we expect only a slight variation in the classi�cation accuracy.

2.1.4 Data Acquisition

Brain activity was recorded using a 16-channel EEG device (Brain Products

V-Amp) at a sampling rate of 500 Hz. The ground electrode was AFz and the

reference electrode was FCz. The electrode set-up is shown in Figure 2.3.

The collected data can be divided into two groups, namely the data obtained

of�ine and data obtained online. For the of�ine data, 20 healthy subjects

aged 21–31 years were recorded, including 10 males and 10 females. For

the online tests, nine subjects were recorded, �ve males and four females.

The online BCI validation was performed by all of the participants. Six

of them, three males and three females did the cross task. Confounder

disentanglement tests were performed on 4 subjects, 2 males and 2 females.

Then, the subjects were asked if they had experienced mental fatigue. If
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they responded af�rmatively, the experiment was stopped, which was one

reason why not all the subjects performed the full test battery. In addition,

one subject was lost due to illiteracy after BCI validation (section 2.2.1).

One subject did not perform the neurophenomenological validation (cross-

task) due to cognitive dif�culties manifested while performing the task (see

section 4.1 for more details). All the subjects had normal or corrected to

normal vision and the absence of any brain disorder or drug consumption.

The study followed the principles outlined in the Declaration of Helsinki.

All participants were given explanations about the nature of the experiment

and signed an informed consent form before the experiment started.

Figure 2.3: Electrode setup.

All the EEG epochs analysed were 2.5 seconds long. For the of�ine

training data, a total of 1744 non-overlapping windows were analysed,

59% corresponding to a low-WM load. Online, for each subject, 90 non-

overlapping windows were collected for calibration (see section 2.3.2.3),
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representing 50% of each condition. Online tests were performed on the

continuous stream of EEG data.

2.2 Results

2.2.1 BCI validation

A two-parameter ROC curve for the nine subjects was generated using the

126 artifact-free, successful trials of Task 1 online. The usual parameter in a

ROC curve is the classi�cation threshold; however, an additional parameter

was relevant, namely the required sustained activity. In this work, there is

a continuous estimate, in other words, a set of WMLE values over time for

each trial instead of a global estimate of the WM load. We can, for instance,

classify a trial as corresponding to high-WM load only if the activity stays

above the threshold for a certain duration. Thus, for every threshold and

for every required time (each pair being a possible BCI design) a sensitiv-

ity–speci�city pair is available. Values are displayed in Figure 2.4 for the

whole set of subjects. The curve is thick because of the two parameters.
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Figure 2.4: Two-parameter ROC curve for Task 1 performed online. The
curve has thickness because there are two parameters–the classi�cation
threshold and the required time of sustained activity. Each point represents
a possible BCI design, and the corresponding speci�city–sensitivity pair is
the global value when all the subjects are considered.

For a given speci�city value, for instance, we can �nd the optimum

threshold and required time so that sensitivity is maximised. Each value of

the required time is different, but on average, the best value is 4.84 seconds

of sustained activity. The AUC of the online classi�er was 0.78 ( p Ç 0.0001,

see section 2.3.4 for details on how p-values were computed), well above the

value of 0.5 of a random uniform classi�er (i.e., a classi�er that assigns each

epoch randomly to one of the classes, with probability 0.5).

One subject was not asked to continue the experiment after the BCI

validation due to the classi�er's low performance. The subject may have
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been illiterate . It has been documented that up to 20% of the users [ 7] have

too-high signal variability for using EEG-based BCI systems; this has not

been fully studied for cognitive BCI. Nonetheless, the subject is included in

Figure 2.4.

2.2.2 Confounding factors

We compared the distribution of WMLE values from Task 1 in the low-

WM-load condition, with WMLE values of control tasks 1, 2 and 3. With a

signi�cance level ® Æ0.05, the distribution of the WMLE values of the con-

trol tests was not statistically different (paired t-test) from the distribution

of WMLE values of Task 1 in the low-WM-load condition. The WMLE of

Task 1 in the low and in high conditions were indeed statistically different

(p = 0.037).

Arousal did not show signi�cant effects. The ROC curve obtained after

decorrelating the information contained in markers of arousal is shown in

Figure 2.5. Here, the AUC under the corrected curve is only 7% smaller

than the AUC under the original curve.
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Figure 2.5: Corrected ROC curve, after decorrelating markers of arousal

The conjunctive analysis did not indicate any effect of frustration on the

WMLE. The analysis yielded a value of p ÈÈ 0.1.

To double check for possible motor confounding factors, EEG data from

the online trials were visually inspected at the end of each experiment.

For instance, subject 3 initially had an accuracy of 100%; however, visual

inspection of the EEG signal allowed us to see that the subject consistently

produced electromyographic artifacts in the occipital region in the high-WM-

load condition. All the data were discarded, and the subject repeated the

experiment on a different day without occipital electrodes. The performance

the second time was slightly lower but still well above the chance level (85%

correct classi�cation).
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2.2.3 Neurophenomenological validation

A total of 92 trials were analysed, with the subjects providing the correct

answer 82% of the time. The data for individual subjects are summarized

in Table 2.1.

Subject Trials not
answered

Noisy trials
removed

Total trials
analyzed

Correct answer

1 1 1 18 83%
2 3 0 17 76%
3 0 0 20 85%
4 0 0 10 100%
5 1 0 19 73%
6 7 5 8 75%
TOTAL 12 6 92 82% (p Ç 0.0001)

Table 2.1: Percentage of correct answers, per subject, to the question for
assessing whether the feedback was sham or real. Artifacted trials and
trials where subjects did not answer were not considered.

2.2.4 Temporal behaviour of the WMLE

Half the subjects had a stable WMLE. Figure 2.6 shows the average over

the 20 trials of one of these subjects during Task 2. One can observe that the

WMLE begins to decrease systematically after 10 seconds. It is important to

remember that, during the �rst 8.5 seconds, the subjects performed mental

arithmetic. Afterward, following a visual cue, the subjects stopped the

mental arithmetic. The observed behaviour is consistent with the WM-load

switch expected at 8.5 seconds, plus the BCI delay. The length of such a

delay is less than 2.5 seconds, as the WMLE at time t0 considers all the EEG

activity that took place between t0 ¡ 2.5 and t0. After reaching the lowest

value, the WMLE systematically increases again, this time possibly due to

the feedback information being processed by the subject. Subjects at this

point were still processing information, while performing the comparison

between the WMLE and their subjectively estimated WM load. Indeed, the

new values are relatively high; however, not as high as they were in the

40



2.2. RESULTS

�rst part of the task.

Figure 2.6: Average over trials of the WMLE time evolution of a typical
“good” subject

For the other half of the subjects, the behaviour was not as stable across

trials, and the averages across the trials were �attened, suggesting no sys-

tematic behaviour. Nevertheless, even for these subjects, there was a high

rate of correct answers, which means that the WMLE successfully matched

their subjective perceptions of WM load.

2.2.5 The EEG biomarkers: Spectral EEG changes due

to WM load

After ensuring the reliable single-trial estimation of the WM load, it is

useful to go back to the question of what changes are induced in the brain
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due to WM activity. For a visual representation of these changes, we can

afford windows of 10 seconds instead of 2.5 seconds. Shorter windows are

useful for a low-latency system, while larger windows allow a more accurate

spectral decomposition of the signal.

The power at a certain band for a given channel is a potential biomarker.

We computed the grand average across trials and across subjects for each

biomarker. Changes across conditions of this grand average are displayed

in Figure 2.7, using all the artifact-free trials. A lighter colour corresponds

to biomarkers that had higher values, on average, in the high-WM condi-

tion, whereas a darker colour corresponds to biomarkers where the average

values were lower in the high-WM-load condition. We only used biomarkers

conveying useful information for WM prediction. Due to our multivariable

approach, we are not interested in biomarkers that were statistically dif-

ferent across conditions (see section 4.1 for more details on why this may

not be informative). Instead, we are interested in biomarkers that, when

combined, produce patterns that can be identi�ed as typical low-WM or

high-WM activity. To determine how many biomarkers are relevant, we

ranked them with the Orthogonal Forward Regression (OFR) feature (in this

work, the term “feature” is used interchangeably with “EEG biomarker”)

selection technique (see section 2.3.2.1) and added them to the model one by

one until performance decreased or did not increase signi�cantly.

The biomarkers that were the best predictors of WM load were the

following:

• Relative lower beta power, electrode Fp1;

• Relative lower beta power, electrode Cz;

• Lower gamma power*, electrode Fp1;

• Relative upper beta power, electrode Cz;

• Alpha power, electrode Oz; and
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Figure 2.7: Mean difference between the high- and low-WM-load conditions
for the relevant biomarkers. Light-coloured values are typically higher in
the high-WM-load condition. Dark-coloured values are typically lower in
the high-WM-load condition.

• Alpha power*, electrode CP5.

Biomarkers indicated with a star (*) increased with increasing WM load,

while the others decreased with increasing WM load.

2.3 Additional material

2.3.1 Images used for Task 1

Table 2.2: Figures used to determine the memory span

Geometric Shapes Fruits Landscape

circle apple house
pentagon banana building
square orange church
rhombus pear castle
cross grape bridge
star watermelon tower
triangle pineapple tree
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Table 2.3: Figures used for the test

Animals Vehicles Supplies Clothes

cat plane book trousers
deer train scissors shirt
dog skateboard pen hat
elephant truck ruler shoes
penguin car backpack socks
snake ship compass belt
turtle bicycle set square tie

2.3.2 Design and training of the BCI

2.3.2.1 Of�ine study: Designing the BCI

Twenty subjects performed Task 1 of�ine, which allowed us to collect a WM

database and design a classi�er. In our case, designing the classi�er meant

choosing appropriate parameters ( P1,P2, ...), as explained below. In general,

the classi�cation process takes an EEG epoch as input, extracts meaningful

features sensitive to the cognitive function being classi�ed, and gives as

output the probability (WMLE) that the EEG epoch analysed belongs to the

high-WM class. More speci�cally, the of�ine analysis took place as follows:

1. Subjects performed Task 1 while wearing the EEG set. Frequencies

below 1 Hz and above 45 Hz were removed from the EEG signal with

a third-order Butterworth �lter. The EEG data were segmented into

epochs of P1 seconds. Each epoch was visually inspected, and all the

epochs contaminated with noise or muscular artifacts were rejected.

Especially, epochs with eye blinks or arousal �ags were rejected. An

arousal �ag was placed on an epoch if either a distracter or the target

was displayed during its course. During the preliminary tests, the

subjects had reported an arousal effect due to the appearance of dis-

tracters or targets;
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2. For each epoch, and for each channel, spectral features were extracted

using the Matlab p-Welch function, with a Hamming window of 0.5

seconds. The spectral features were absolute and relative power in the

following bands: delta (1 – 4 Hz), theta (4 – 8 Hz), alpha (8 – 12 Hz),

lower beta (12 – 20 Hz), upper beta (20 – 30 Hz) and lower gamma (30

– 45 Hz). The relative power in a band is the fraction of the total power

in that band. Normalising the latter has the advantage of reducing

inter subject variability. With 16 channels, two features per band, and

six bands, we obtained 192 features for each epoch;

3. For each subject, we performed cross-validation using data from the

other subjects and P2 epochs of the current subject as calibration

data. We expanded the calibration data by adding noisy copies of the

original data with noise parameters P3 and P4 (see section 2.3.2.3). At

this point we had a (192 , M ) matrix of features, where M represents

the number of epochs and an M -vector of binary labels (low-WM load

or high-WM load). The number M depends on the parameters P1, P2

and P3;

4. To select relevant features, OFR [ 108] was performed on the above

matrix, the best P5 features were kept. OFR is a linear regression

technique that can be used as a supervised feature selection approach.

In the �rst step of OFR, features are ranked in order of decreasing

correlation to the classi�er output; the �rst selected feature is the

top-ranking feature. Spatial �lters could have been used at this step

instead of OFR, however as we were interested in complex combina-

tions of biomarkers (such as for instance cross-frequency couplings

between pairs of channels), we preferred this more exhaustive ap-

proach. In the second step, all remaining features, as well as the

output, are orthogonalized with respect to the �rst selected feature,

thereby discarding the part of the output that was explained by that

feature; the projected features are ranked in order of decreasing corre-
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lation to the projected output, and the top-ranking feature is selected.

Orthogonalization, ranking and selection are iterated until P5 fea-

tures are selected; and

5. Finally, a linear discriminant analysis (LDA [ 41]) classi�er was trained

with the selected features and their corresponding labels (high- or

low-WM load). The output of the classi�er is the WMLE.

Epochs containing eye-blinks or with arousal �ags were not included in

the training set to obtain clean markers. Nevertheless, they were included

in the testing set, both online and of�ine.

A speci�c set of parameters ( P1, P2, P3, P4, P5) represents a potential

BCI design. The set of parameters that represented the best trade-off be-

tween classi�cation performance and feasibility was chosen to build the BCI.

The values are shown in the table below:

Table 2.4: Final set of parameters for building the BCI

Parameter Description Value
1 Epoch length 2.5 seconds
2 Calibration epochs 45 per class
3 Subject weight 65%
4 Noise level 1.5
5 Number of features 8

2.3.2.2 Online analysis: From EEG recordings to a WMLE

The online experiments begin with a calibration step. The goal of the cali-

bration is to train a classi�er customised to the subject, but still using the

information of the previous 20 subjects, to obtain robust and reliable results.

Nine new subjects were recorded for online testing. The EEG data were

�ltered from 1 to 45 Hz. Subjects were asked to perform Task 1 until we had
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collected 45 (P2) clean epochs for each condition. The criteria for considering

an epoch as clean included being free from muscular artifacts, eye blinks,

and the arousal �ag. Epochs with a visible excess of electric noise were

also discarded. The epochs lasted 2.5 seconds (P1). Features were extracted

from the 90 epochs, the feature matrix was expanded (using P3 and P4) as

described in section 2.3.2.3, and it was added to the existing of�ine feature

database. With the new, subject-customised database, we performed OFR,

selected the best eight ( P5) features, and trained an LDA classi�er.

Figure 2.8 shows how the information from the previous section (of�ine

study) was integrated with that in this section (calibration) to select a good

set of features and design and train the classi�er.

Figure 2.8: Design methodology

At this point, the BCI is ready to provide a WMLE. A continuous stream

of data is analysed, and a sliding window including the last 2.5 seconds of

EEG is used as input.
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2.3.2.3 Cross-validation and calibration

Cross-validation (see [ 71] for a more detailed description) aims to estimate

the performance of a trained model when presented with new data, to se-

lect a model that has the appropriate complexity given the available data.

One way to achieve this, the leave-one-out method, involves removing one

example (one epoch in this case), training the classi�er with the remaining

examples, and predicting the true class of the removed example. The process

is repeated for all the examples, and the expected error can be computed.

When we test a single model, an LDA in our case, we simply estimate the

average error we would obtain when facing new data. When performing

cross-validation using different models (a linear classi�er, quadratic classi-

�er,arti�cial neural network, etc.) we can choose the one that best captures

the complexity of the data (thereby minimising the cross-validation error).

Some caution is required here in the context of EEG. Due to subject

idiosyncrasies, the features of different epochs of the same subject tend to

be highly correlated; however, they are not necessarily correlated to the fea-

tures of another subject's epochs. Assuming that, during the of�ine analysis,

N epochs of a speci�c subject are available, performing leave-one-epoch-out

would answer the question, “What is the generalization error if the classi�er

is trained on the data from the rest of the subjects plus N ¡ 1 epochs of the

current subject?” The performance computed in such a way is likely to be

an overestimation, as N ¡ 1 epochs from a subject may not, in general, be

available during a real-time experiment.

Removing the subject entirely would lead to the underestimation of the

performance. This is because, in a typical online experiment, we collect data

from the individual before we use the BCI to customise it to the subject

(calibration). The number of calibration epochs required for an acceptable

performance is a parameter itself, referred to as P2 in this case (see section

2.3.2.1).
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To summarise, for a speci�c left-out epoch, we train the classi�er with

P2 epochs from the same subject and all the remaining data from the other

subjects. We test our accuracy on predicting that epoch and repeat the pro-

cess for all the available epochs. The result is an estimate of the classi�er's

performance when using P2 epochs as calibration data.

One problem arises here. The larger our of�ine database, the less in�u-

ence our new subject has on the �nal classi�er. The approach taken was

to add noisy copies of the subject feature matrix to balance the database.

The idea of expanding a dataset with corrupted copies has been developed

before [103, 115] in other �elds. The subject database was expanded with

these copies to a suf�ciently large size so that the data associated with the

subject (subject weight) represented P3 percent of the total database.

For each feature, the noise added to the subject matrix was Gaussian

noise with zero mean and standard deviation equal to P4 times the standard

deviation of the feature. The noise was added directly to the features.

2.3.3 Arithmetic operations in Task 2

A random sequence of digits, d1, d2, ..., dn , was presented to the subjects in

each trial. Three possible ways of manipulating the digits were suggested

to the subjects, who were asked to choose the one that felt more resource

demanding for them, as follows:

• Progressive multiplication. Multiply d1d2 . . . d i until the time is over;

• Pairwise multiplication and successive addition. Multiply d1 and

d2 and store the result. Add the result to the product of d3 and d4,

replace the result. Add the result to the product of d5 and d6, replace

the result. Continue until the time is over; and

• Free choice. Subjects comfortable with their arithmetic skills were left

to choose the structure of the operations, provided they maintained a
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high level of use of their mental resources.

2.3.4 Estimation of statistical signi�cance

We developed a method of analytically estimating the statistical signi�cance

of a two-class classi�er's performance. The null hypothesis is that the results

come from a random classi�er, whereas the alternative hypothesis is that the

classi�er is based on informative features. The �rst step towards estimating

signi�cance, then, is to choose a random classi�er and to determine its

success rate. Let us assume that our dataset consists of N examples, with

N1 examples of class 1 and N ¡ N1 examples of class 2, with N1 ¸ N /2.

The best that a random classi�er can do is to consider the classes' prior

probabilities. Denoting by q the prior probability of class 1, assumed to be

larger than 0.5, and estimated by N1/N , a possible random classi�cation

rule is to assign any object to class 1 with probability q. The probability of

correct classi�cation of this classi�er (which can be estimated by its rate of

correct classi�cation) is given by : c0 Æq2 Å (1 ¡ q)2. Let us de�ne a random

variable where the realisation zi , for example, i , is

zi Æ

8
<

:

1 if the random classi�er classi�ed example i correctly

0 otherwise.

The total number of successes, Z Æ
P N

i Æ1 zi , follows a binomial distribu-

tion Z » B(N , c0), and hence, the probability of obtaining exactly k successes

is

Pr (Z Æk) Æ

Ã
N

k

!

ck
0(1 ¡ c0)N ¡ k

By de�nition, a p-value is the probability of obtaining results at least

as extreme as the observed ones, assuming that the null hypothesis is true.

Our goal is comparing a random classi�er with a speci�c classi�er that

yields c correct answers. In this case, “results as extreme” means observing
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at least c correct answers in a random classi�er. Therefore, the p-value

associated with the null hypothesis de�ned above can be computed as

p Æ
NX

kÆc
Pr (Z Æk)

In general, the use of any other random classi�er would lead to a differ-

ent c0. Especially, the most ef�cient classi�cation rule under a complete lack

of informative predictors is the zero classi�er , which assigns all the objects

to the largest class. In the above notation, the rate of correct classi�cations

of a zero classi�er is c0z Æq. As, by de�nition, 0 .5 Ç q Ç 1, it is easy to

show that c0z È c0 for all q. However, although the zero classi�er is the

best classi�cation rule when no relevant predictors are available, for a zero

classi�er, Pr (Z Æk) Æ0 if k 6ÆN1 (by de�nition, a zero classi�er can correctly

predict only N1 objects). Therefore, for any classi�er with a number of

correct predictions larger than N1, p would be zero. It is a good practice

to compare classi�cation results with those of a zero classi�er when facing

imbalanced datasets. However, a zero classi�er is not useful for computing

p-values.
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3
A FRAMEWORK FOR INVESTIGATING THE

SPATIO TEMPORAL BRAIN ORGANIZATION

UNDER COGNITION

T
he present chapter involves the development of a data-driven frame-

work for investigating how cognition affects the spatio temporal

properties of brain state switches.

3.1 Data acquisition

As mentioned in chapter 1, three datasets were used to investigate whether

the �ndings were WM speci�c or a general property of cognition. We used

WM, Alzheimer's Disease (AD) and emotions-related datasets. All record-

ings performed by us followed the principles outlined in the Declaration of

Helsinki. All the participants were given explanations about the nature of

the experiment and signed an informed consent form before the experiment

started.
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3.1.1 WM dataset

Twenty subjects performed a WM task, as described in [ 99]. The dataset

consisted of 530 trials lasting 10 seconds each. Of these, 281 correspond

to a low WM load and the rest to a high WM load. All the artifacted trials

were discarded, and eye blinks were removed with Independent Component

Analysis [ 20]. The sampling rate was 500 Hz, and 16 channels of the

international 10–20 system were used, as follows: Fp1, Fp2, F7, F3, Fz, F4,

F8, Cz, CP5, CP6, P3, Pz, P4, O1, Oz, and O2. The WM dataset was the

same as in Chapter 2.

3.1.2 AD dataset

We used the same dataset as [ 119]. Recordings from 61 subjects were

collected, 23 of which were AD patients, and the rest were healthy, age-

matched controls. For each subject, 20 seconds of continuous recordings

were available. The data were sampled at 200 Hz, using 21 channels, as

follows: Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T7, T8, P7,

P8, Fz, Cz, Pz, FPz, and Oz. Each 20-seconds recording was divided into

eight epochs. In total, 488 epochs were analysed, 184 corresponding to AD

patients and the rest to healthy controls.

3.1.3 Emotions dataset

We used the processed version of the DEAP dataset for emotions [ 70]. Thirty-

two participants watched videos and rated them based on valence, arousal

and dominance, on an integer scale from 1 to 9. EEG data were recorded

while the subjects watched the videos, and our objective was to classify

valence in two classes, one corresponding to the �rst half of the range of

the scores and the other class corresponding to the second half. The data

were sampled at 128 Hz, using 32 channels, as follows: Fp1, AF3, F3, F7,

FC5, FC1, C3, T7, CP5, CP1, P3, P7, PO3, O1, Oz, Pz, Fp2, AF4, Fz, F4, F8,

FC6, FC2, Cz, C4, T8, CP6, CP2, P4, P8, PO4, and O2. Electrooculographic
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artifacts were removed as indicated in [ 70]. The original 60-second trials

were divided into 10-second epochs, which gave rise to 7680 epochs, 3876 of

which corresponded to negative valence.

3.2 The framework

To be more speci�c about what we mean by the spatio temporal organization

of brain dynamics under cognition, we can imagine dividing the brain into

N regions, r 1, r 2, ..., r N . We consider the state of region r i at time t to be

si (t). Whenever si (t1) 6Æsi (t2), at least one switch is said to have occurred

for a given t in the interval [ t1, t2]. So far, we do not know what these states

are, but we want them to represent a speci�c operation; for the sake of

concreteness, si (t) may be, for instance, registering the colour red in brain

region i at time t. A more speci�c description of the variables proposed to

characterize these states is provided later in this section. Meanwhile, we

can have a graphic intuition of the spatio temporal dynamics. Suppose, for

simplicity, that we study only three regions, time is discrete and region one

has access to states A,B and C; region two has access to states D,E and F ;

and region three has access to states G,H and I . Now imagine two different

cognitive conditions (see the Methods section for more details about what

we call cognitive conditions), for instance, a low WM load and high WM load.

If we follow the dynamics for a few time steps, we could observe something

similar to what is depicted in Figure 3.1.

Evidently, in the brain, the number of accessible states is not necessarily

�nite, and time is not necessarily discrete. Nonetheless, this toy example

allows us to observe the behaviour we expect to capture. We can follow any

of the regions over time, let us take r 1. At the boundary between conditions,

a dynamical change occurs, the succession of states becomes slower, and

more states become available (especially state C). In adition, while r 1 is

engaged with r 3 in condition 1 (they have similar dynamics), in condition 2,

it disengages from r 3 and engages with r 2.
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Figure 3.1: Simpli�ed illustration of the spatio temporal organization that
we expect to capture. There are three regions, r 1, r 2 and r 3. Each region
has three available states. If we follow the state of r 1 over time, we will
observe that, not only did the temporal behaviour change when condition 2
started, but r 1 also engaged in joint activity with a different region.

We ask the following questions:

1. Do regions experience state switches more often in one cognitive

condition than in the other? Do state switches occur in a discrete

manner, or continuously?

2. Are pairs of regions more or less engaged depending on the cognitive

condition?

3. Is there some underlying criticality affecting state switching dynam-

ics? Do critical parameters depend on cognition?

4. Does the cognitive condition affect the available states and the time

spent in each state?
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In the context of this work, the �rst question arose while studying WM,

and it led to the others. Refreshing items in WM is a fundamental compo-

nent of WM [ 95]. Under some models [ 18], the central executive is engaged

alternatively in refreshing and processing, and its limited capacity has a

direct effect on what we call the WM load. If there is a physical, bounded

region that performs the activities of what we call the central executive, it

may be conjectured that its dynamical regime will change to support both

tasks. The current study is based on preliminary results presented in [ 84].

While conducting WM experiments, we collected subjective evidence that re-

freshing occurred at a higher pace in the high-WM condition compared with

the low-WM condition. As mentioned in the introduction, the motivation

behind questions 1, 2 and 3 is to explore whether cognition affects brain

state switching—its dynamics, the spatial coordination across brain regions,

and possibly any critical parameters. In contrast, question 4 is rooted in

the concept of ergodicity, an important notion in dynamical systems. With

this question, we are interested in knowing whether the number of states

available to the brain and the time spent by brain regions in certain states,

change depending on the cognitive conditions.

A way of addressing these questions is constructing spatially localized

variables that represent the time evolution of the states we want to study.

We then derive measurable properties from the above questions.

To construct the desired variables, let us start by assuming metastability.

As mentioned in the introduction, by de�nition, successive state switches

take place in metastability, and each state can be considered stationary. We

take EEG as our brain imaging method and consider that, for the region

being recorded with a speci�c EEG channel, a stationary EEG segment will

be recorded during the time course of a state. Therefore, non-stationarities

can help us track brain state switches.

In this paragraph, we describe how to generate a time series from the

EEG signal, that will hopefully represent the region's underlying state. For
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a stationary process, all the statistical properties remain constant over time.

As any (constant in time) statistical distribution has constant statistical

moments, at any time t, we can compute the statistical moments over a

short window 1 centred at t. Changes in the underlying distribution will

induce changes in its moments. As a graphical example, take a random

variable drawn from a normal distribution N (¡ 3, 1). After a certain time,

t0 Æ0, the underlying distribution changes to N (2, 3), as we observe in

Figure 3.2a. Using a sliding window, we can compute the estimation of the

�rst two statistical moments in �gure 3.2b, where the mean is shown in

blue, and the variance in red. The time series of the estimation of the mean

and variance can be considered a two-dimensional trajectory, as shown in

Figure 3.2c. In this two-dimensional space, a point is a state, and evidently,

there is estimation noise arising from the fact that the window has a �nite

length. If switches occur in a discrete manner, �uctuations in Figure 3.2b

at times other than t0 are artifacts due to this noise only. In section 3.3 we

show that as these �uctuations correlate with cognition, they are not only

estimation noise, thus, the assumption that switches occur at discrete times

must be questioned.

To summarize, we consider the EEG signal to be generated by an un-

derlying process that changes its statistical properties when a brain state

switch occurs. To study these changes in the statistical properties, for a

given channel, at a given time t, we compute v( t), s(t), and k( t)—the esti-

mations of the variance, skewness and kurtosis 2 over a short time window

centred at t. The length of the window depends on the frequencies to be

investigated, as it is explained in the methods section. Given the above

considerations, and the fact that we are not using the in�nite set of sta-

tistical moments, but rather a subset of size three, we hypothesize that

the vector (v( t), s(t), k( t)) 2 R3 can be seen as a third-order estimation of a

multidimensional feature sensitive to brain state switches. For each chan-

1An ensemble of identical brains is clearly impossible; therefore, by taking a time
window, we assume that the process generating the signal is ergodic.

2The EEG time series have been detrended via high pass �ltering, so we do not estimate
the mean.
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Figure 3.2: Top: Synthetic signal. The underlying statistical distribution
changes at time t Æ0. Middle: Time series of the evolution of the estimation
of the two statistical moments over time, when using a window of 50 time
points. Bottom: Process viewed as a trajectory in the space of states. Each
dimension of this space is the estimation of a statistical moment.

nel, if we compute the third-order estimation over a sliding window, we can

create a (vector) time series, that we will call the channel state surrogate

time series ( CSS(t), or simply CSS). It is expected to be an indicator of the

time evolution of brain states in the region of the cortex whose activity was

inferred by the scalp recordings. We suppose, as in [ 122], that changes in

EEG stationarity are already visible in the �rst statistical moments. By

considering n moments, each CSS is a trajectory in an n-dimensional space,

and we expect to test whether cognition affects these trajectories' spatio
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temporal structure. As the signal is sampled at a constant rate, and the

window size remains constant over time, if we de�ne neighbouring states

as states with similar statistical moments, the norm of the velocity of the

CSS (the speed time series), kvel (t)k Æ
°
° d

dt CSS(t)
°
° Æ

p
v0(t)2 Å s0(t)2 Å k0(t)2 ,

is proportional to the distance between states (or switch size) if switching

occurs continuously.

Once a biologically plausible way to numerically characterize states has

been developed, we can return to our questions. All the questions, except

that concerning discreteness or continuity, can be rephrased as, “Does cog-

nition affect property X ?” In the next section, we derive a measurement

or feature (feature being taken here in its machine learning sense, not to

be confused with the feature binding problem discussed above) from each

property X . Then, we study the potential of each of these properties to

correctly classify cognitive conditions.

Regarding the question of continuity versus discreteness, we assume

discreteness and provide inconsistent evidence in the following way: We

only keep the switches considered spurious (due to estimation noise) if dis-

creteness holds, and assess whether we are still able to classify cognitive

conditions with performance above random classi�cation.

For methods 1, 2 and 4 in the methods section, before computing the CSS,

the EEG signal spectrum was segmented into the usual physiological bands:

delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), lower beta (12–20 Hz),

upper beta (20–30 Hz) and lower gamma (30–45 Hz). For bandpass-�ltered

data, we computed the CSS using a sliding window of length L Æ1/ f min

seconds, where f min is the minimum frequency of the corresponding band,

so that each window contains at least one full oscillation of the smallest

frequency. Method 3 did not involve bandpass �ltering, as its purpose was

estimating the shape of the CSS power spectrum. For method 3, the window

length was 0.1 seconds, considering the length of stationary EEG segments

reported in the literature [69].
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The goal is to test the hypotheses that certain measurable quantities,

or features, convey information about cognition. After feature extraction,

relevant features are selected by OFR [ 108], and then feed to an LDA [ 41]

classi�er. The task of the classi�er is to discriminate between cognitive

conditions, namely high versus low WM load in the �rst dataset, AD versus

control in the second dataset, and positive versus negative valence in the

third dataset. If, after cross-validation, the performance of the classi�er is

better than that of a random classi�er, we can conclude that the features

carry information about cognition. The results of the process are the clas-

si�cation performance estimated by cross-validation, and the set of most

informative features.

Due to the imbalance of the AD dataset, the AUC [ 52] of an ROC curve

was used as the measure of classi�cation performance. An ROC curve

is not in�uenced by the imbalance of the classes, and its AUC value is

typically 0.5 for a random classi�er, and 1 for a perfect classi�er. Values

larger than 0.5 indicate performance better than random. The statistical

signi�cance of the performance of the classi�er was estimated by replacing

the features with random numbers and iterating the classi�cation process

300 times. We counted the fraction of times that the performance with the

random features was higher than the observed performance. We decided

not to perform a permutation test or to estimate signi�cance via the ROC

curve because we also wanted to assess the cross-validation procedure. A

wrong cross-validation procedure (for instance, performing feature selection

before the cross-validation loop) or multiple testing (while optimising hyper-

parameters) may arti�cially provide good classi�cation results even if there

is no correlation between the data and the output. For cross-validation

using the AD dataset, when classifying a subject, the whole subject data

was left out of the learning set, given that in a real-life diagnosis task, there

is no available information about the subject to be diagnosed. In contrast,

only half the subject data was left out for the WM and emotions datasets,

simulating the calibration process common in BCIs. Half the subject data
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was left in the learning dataset for calibration; however, classi�cation was

always done on EEG epochs that had not been “seen” by the classi�er. The

analysis was performed as in chapter 2.

Each of the following subsections is an attempt to address one of our

main questions.

3.3 Method 1: Temporal structure of the

switches

The motivation behind Method 1 is the study of the temporal structure of

brain switches. Especially, it aims to consider whether these switches occur

at discrete or continuous times and to what extent cognition affects such

continuous or discrete dynamics.

A way of collecting evidence supporting either the continuous or discrete

hypothesis is pinpointing times at which switches occurred. If switches are

spaced by intervals larger than the period of the studied brain rhythms,

then switching can be considered discrete. Conversely, if the intervals are

smaller than the period, switching can be considered effectively continuous.

Therefore, estimating the number N of switches per second can shed some

light on whether the switching is discrete or continuous.

By de�nition, the switching points will be those at which the statisti-

cal properties of EEG change. The central part of Figure 3.2b shows how

the statistical moments estimated over a window behave near a switch.

Due to the sliding window estimation, the presence of an instantaneous

change of the statistical properties of the signal results in a gradual change

of their estimates. The transient's length should be equal to that of the

sliding window. Real-world measurements are noisy, and there should be

small discontinuities in the estimation of the statistical moments, but we
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expect these noise-related discontinuities to be small compared with the

state-switch-related discontinuities.

To estimate the number of switches occurring per second, it is possible

to consider the speed time series, in which the above-mentioned transients

give rise to non-zero points, which are informative points. Let us denote by

N the mean number of switches per second. We assume that we choose a

window where the duration L is smaller than 1/ N , representing the mean

inter-switch duration (the mean time spent in a particular state); that is,

NL Ç 1. Consequently, a window contains at most 1 switch at any given

time. If this switch is present in the window, it produces non-zero points

during the window's whole duration. As the sampling frequency is constant,

the ratio ½of the number of non-zero (informative) points to the total num-

ber of points is equal to the ratio of the window duration to the inter-switch

duration; therefore, ½ÆL /(1/N ) ÆLN . Alternatively, by estimating ½experi-

mentally, we can infer the value of N , as explained in the next paragraph.

The size of the window should be smaller than the inter-switch duration, but

large enough to contain at least one full oscillation of the smallest frequency

of the band investigated. Therefore, the minimum acceptable value of L is

L Æ1/ f min , as stated in the previous section.

For estimating ½, the speed time series was sorted by amplitude. Only

the fraction F of the samples for which the velocity was smallest was used

to compute the mean speed, and the mean speeds were used as features

for classi�cation. The classi�er's performance was studied as a function

of F . For small values of F , we would only select noise under the assump-

tions of discreteness (and hence, piece-wise stationarity), enough temporal

resolution ( NL Ç 1), and transition size larger than noise. As F increases,

if the above assumptions are true, the classi�cation performance should

start gradually improving and be better than random classi�cation above a

certain threshold value. This threshold value must coincide with 1 ¡ ½, the

fraction of non-informative points: For values of F larger than 1 ¡ ½, there

is a non vanishing probability that some points selected to compute the
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mean are informative points. If this threshold value does not exist, that is,

if all the points are informative regardless of the size of the transition that

originated them, we can argue that cognition-related brain-state switches

occur at intervals smaller than the studied periods, and therefore, they can

be thought of as continuous. As ½ is not de�ned in the continuous case,

neither is N .

For each channel and each band, Method 1 consisted of using the pa-

rameter F that maximises the performance of the classi�er under cross-

validation. In addition, the classi�cation performance as a function of F can

be used to estimate, if it exists, ½, and hence N .

To compare how small transitions behave as compared with large transi-

tions, we also studied the performance of the classi�er when F represents

the fraction of the samples for which the velocity was largest.

3.3.1 Results speci�c to Method 1

Figure 3.3 shows the performance of the classi�er using Method 1, as a

function of the fraction F , for the WM dataset when using only the upper

beta and lower gamma bands (combined, for simplicity, to use a single win-

dow. These bands were chosen to investigate high frequencies and therefore

be able to use small sliding windows). The window size used was L Æ1/20

seconds, or 25 points. Only high frequencies were considered so that a

small sliding window could be used, and only the WM dataset was employed

for this �gure due to its high sampling rate. The blue dots correspond to

the classi�cation performance obtained using only the fraction F of the

transitions that had the smallest velocities. For the red dots, we used the

fraction F that had the largest velocities. A schematic representation of

what would be expected under piecewise stationarity is also displayed. For

every N , there is a threshold value 1 ¡ ½Æ1 ¡ NL of F ; below this threshold

value, the classi�er performs as a random classi�er ( AUC Æ0.5); beyond
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this value, the performance of the classi�er increases until it reaches its

maximum value. It is clear that the experimental results are not consistent

with a discrete model. The latter is discussed in the next section, as well as

in the general discussion in chapter 4.

Figure 3.3: WM dataset using only the upper beta and lower gamma ranges.
The mean speeds of the CSSs were used as features. To compute the mean,
the smallest (blue) and largest (red) F fraction of amplitudes were used.
The classi�cation performance is studied as a function of F . The solid lines
are diagrams of what should be expected under piecewise stationarity, for
different numbers N of switches per second.

Figures 3.4–3.6 show the performance of the classi�er, using Method

1, as a function of the fraction F when using all the bands, for the three

datasets. For each band and each channel, there was a time series where

the amplitudes were sorted by size; hence, the total number of features of

the classi�er in these cases equals the number of channels multiplied by

the number of bands.
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Figure 3.4: WM dataset. Performance of the classi�er as a function of the
fraction of transitions kept. In blue, keeping small transitions only, in red,
keeping large transitions only.

3.3.2 Discussion speci�c to Method 1

In the literature, one of the motivations for proposing switching at discrete

times is the stability required for sustaining oscillations. Thus, we also

proposed that assuming discreteness implies assuming that the duration of

a state should be larger than one oscillation; consequently, we studied the

dynamics with windows as small as one full oscillation. After all, discrete-

ness at intervals smaller than the effective resolution is dif�cult to falsify.

It seems clear that the spatio temporal structure of the statistical prop-

erties of EEG carries information about cognition. This evidence supports

the claim that the proposed variables correspond to brain states driven by
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Figure 3.5: AD dataset. Performance of the classi�er as a function of the
fraction of transitions kept. In blue, only the small transitions were kept, in
red, only the large ones.

cognition. In contrast, as mentioned in the introduction and in the above

paragraph, theoretical considerations led other researchers to postulate

discrete timing. Based on this hypothesis, they found evidence that large

transitions between states, as observed by large changes in the EEG proper-

ties (rapid transition processes or phase resetting events), correlate with

cognition. In this chapter, we provide evidence showing that not only do

small transitions convey information, but indeed, they seem to carry more

information than large ones under certain circumstances. In Figure 3.3,

which concerns only the WM dataset, we use only high frequency bands to

be able to use a small sliding window (a single window of 1/20 s, as both the

bands were merged into one). The classi�cation results are 11% lower than

when using all the bands (see Table 3.3); however, the image reveals an

interesting behaviour that remains when all the bands are used. The �gure

shows how the classi�cation performance varies as a function of the fraction
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Figure 3.6: Emotions dataset. Performance of the classi�er as a function
of the fraction of transitions kept. In blue, small transitions; in red, large
transitions. Due to the large size of the dataset, the performance of the
classi�er was computed for a smaller number of values of F as compared
with the other datasets, and hence the graph is less smooth.

F . The blue curve re�ects the behaviour when the fraction F concerns the

smallest transitions, while for the red curve, the fraction F pertains to the

largest transitions. We can observe two things. First, in the left part of

the blue curve, the classi�cation performance is already above random, and

therefore, small transitions are not noise. Second, and more importantly,

the blue curve is always above the red curve, which means that given any

fraction F , it is always more informative to take the F smallest transitions

than it is to take the F largest transitions. As we gradually increase F

following the blue curve, we select larger transitions and classi�cation per-

formance increases, up to the point at which performance starts decreasing

when we add larger and larger transitions.
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In contrast, in a discrete, piecewise stationary model, we should observe

something similar to the solid lines. For small values of F , the classi�cation

performance should be random (AUC near 0.5) because we are only selecting

noise. As F increases, we should �nd a value at which the classi�cation

suddenly increases, as we start considering transitions that correspond to

actual switches and not spurious changes. With N switches per second, the

expected value of F at which the classi�cation performance starts increasing

should be 1 ¡ ½Æ1 ¡ NL Æ1 ¡ N 1
20 . In the �gure, it is clear that it is only as

N tends towards 20 that we obtain a discrete model in which all transition

sizes are useful. However, it is precisely for N ¸ 20 that we can not resolve

switches with a window of 1/20 s, and states would last less than a full oscil-

lation of the targeted band. Thus, our results seem to contradict the discrete

model. We decided to focus only on high frequencies aiming at contrasting

the results with the reported lengths of stationary segments, usually larger

than 1/20 s. Figure 3.4 reveals that this behaviour is even more obvious

when considering all the bands. Figure 3.6 shows a similar mechanism

for the emotions dataset. The exception was the AD dataset, as shown in

Figure 3.5, suggesting that large transitions are more relevant for diagnos-

ing AD. The latter is compatible with �ndings of a “slowing” of the brain

rhythms found on AD patients, for which a decrease of the alpha power and

an increase in the delta and theta power (slow rhythms) has been reported,

as compared to healthy controls [ 104]. With dominant slower rhythms, it

would be expected that most of the information is carried by slow transitions.

3.4 Method 2: Spatial synchrony between

states

If regions engage and disengage in joint activity depending on cognition, we

can compute synchrony between pairs of CSSs and test whether synchrony

values are different for different cognitive conditions. The CSS is three-

dimensional, and therefore, the norm of the CSS was used as a proxy-
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CSS (pCSS) to have a one-dimensional representation of the state. For

each EEG epoch, we computed the mutual information between pairs of

pCSSs, and these values were used as features for building the classi�er.

Having six series per channel, and 16 (WM dataset), 21 (AD dataset) or

32 (emotions dataset) channels, the potential number of combinations is

in the order of several thousands. To prevent over�tting, only the CSSs

where the time derivatives provided the best features for Method 1 were

considered for measuring the spatial synchrony in terms of their mutual

information estimation. The number of combinations considered was set by

cross-validation, but it was required to be lower than 10. While Method 1

was meant to capture regularities in the temporal structure of the proposed

variables for each condition, Method 2 aimed to capture the spatial structure

by using mutual information between selected pCSSs as features.

3.5 Method 3: Power law of the power

spectra

Power laws are not suf�cient to guarantee criticality [ 88]; however, scale-

free behaviour, like power laws, emerges from self-organized criticality. If

the brain is indeed in a critical state that allows effective switching, we

would expect a power law in the PSD of the pCSS. If there is some functional

meaning of this power law, its properties should be affected by cognition.

An important property to look at is the scaling factor of the power law, as

it determines its memory properties [ 81]—the extent to which past events

affect the present, and hence the extent to which disturbances (sensory or

motor, in this context) propagate.

A power law was �tted to the PSD of the pCSS. The CSS used for the

power law was not �ltered in any speci�c band, as we are studying the whole

spectrum; therefore, there is only one pCSS per channel. A linear �t in a

log-log plot of the PSD of the pCSS was performed, and the slope was used

as a feature. The power law hypothesis was tested using the criteria in [ 28].
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For a given sample, the test �ts the sample to a power law and generates

synthetic samples drawn from the same power-law distribution. Following

this, a Kolmogorov–Smirnov test is used to decide whether the real and

the synthetic samples belong to the same distribution (null hypothesis).

Here, we failed to reject the null hypothesis when the Kolmogorov–Smirnov

test yielded a p-value larger than 0.1. It is important to note that whereas

statistical hypothesis testing does not allow accepting the null hypothesis,

failing to reject it means at least that the null hypothesis is a plausible

explanation. The estimation of the coef�cient suggested by the same article

was not used, given that it provided signi�cant, yet lower classi�cation

performance. As mentioned above, this method is meant to test whether

there is cognitive-driven criticality in the proposed variables, and hence, the

slope of the �t was used to feed the classi�er.

3.5.1 Results speci�c to Method 3

The Kolmogorov–Smirnov test failed to reject the null hypothesis (power

law) 98% of the time for the WM dataset, 83% of the time for the AD dataset,

and 62 % of the time for the emotions dataset. The �t of a randomly chosen

AD trial is shown in Figure 3.7, where x values are the amplitudes of the

PSD of the pCSS.

3.5.2 Discussion speci�c to Method 3

It is important to remember that, for Method 3, we computed the PSD of

the CSS, not that of the raw EEG. Therefore, high frequencies mean small

transitions. EEG is an especially noisy signal, and for high frequencies, the

noise may be larger than the signal. A power-law �t, however, allows us to

infer the behaviour at the tail (large frequencies, or small transitions in this

case) by studying more accessible regions of the system. In addition, the

power-law hypothesis supports the claim of criticality, where information

(such as sensory or motor information) is optimally transferred, as discussed
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Figure 3.7: Power law �t of a randomly selected AD trial. The x values are
the amplitudes of the PSD of the pCSS.

in the introduction.

3.6 Method 4: The most visited states, and

how many of them are available

Having variables that represents local brain states, it is interesting to

ask whether certain cognitive conditions impose a richer set of states, and

whether these states are equally present.

As we are employing a dynamical framework, we can borrow the con-

cept of phase space. For an n-dimensional system, the phase space is a

2n-dimensional space able to express all the possible positions and velocities

of all of the n components. A point in the phase space is a speci�c dynamical
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state—a speci�c value of all the n positions and velocities that completely

captures the instantaneous dynamical properties. We will analyse each

CSS separately, especially the one-dimensional pCSS, so that our phase

space is two dimensional. To clarify, a dynamical state is not exactly the

same as the brain states described above. Here, a dynamical state is the

two-dimensional combination of the pCSS and its time derivative. In other

words, it is the surrogate of the current brain state plus dynamical informa-

tion about it.

We discretized the phase space in the following way: The full range of

the pCSS was divided into 20 bins, with a range of 0—25. Its time derivative

was divided into 20 bins, ranging from –2 to 2. The ranges were chosen

after analysing the intervals in which the pCSS and its time derivative

usually fell. The number of bins was not thoroughly optimized, given that

the results were robust to different numbers of bins. For each pCSS, this

discretization scheme produced a 20x20 grid (see Figure 3.8) spanning the

phase space. The element i , j of the grid is a dynamical state si , j .

With the discretised version of the phase space, we used an entropy

measure to characterize it:

H Æ ¡
20X

i Æ1

20X

jÆ1
p(si , j )log

³
p(si , j )

´

where p(si , j ) is the probability of dynamical state si , j , measured as the

fraction of time that the system spent in dynamical state si , j .

The above measure is small when, for a given period of time, the dynam-

ical system is found only in a small set of dynamical states. In contrast, it is

large when the set of states is large and the probability of observing each

state is similar. The values of H for each pCSS were used as features for

this method.
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3.6.1 Results speci�c to Method 4

Figure 3.8 provides visual information concerning how the dynamical states

were visited for each cognitive condition. For generating the �gure, we

selected only the feature ranked �rst by the OFR algorithm for each dataset,

that is, the feature that carries the largest amount of information about

the output. In this case, it is the speci�c channel and band at which the

entropy measure related to the phase space changed the most across cog-

nitive conditions. For the WM dataset, the best feature was channel F4

�ltered in the lower beta range; for the AD dataset, the best feature was

channel Oz �ltered in the alpha range; and �nally, for the emotions dataset,

the best feature was electrode T8 in the lower gamma range. For a given

condition we performed the grand average with data from all the subjects,

and we plotted how the discretised phase space was visited as a logarithmic

heatmap. Red tones represent states that were more visited. For the sake of

visual clarity, for generating the images, the ranges were slightly modi�ed

as compared with the above description of method 4. The pCSS was divided

into 20 bins as before, but for each dataset, the discretisation range was

chosen as the interval ranging from the minimum to the maximum value of

all the pCSSs (from all the subjects and trials). The discretisation range for

the time derivative of the pCSS was chosen in the same manner.

3.6.2 Discussion speci�c to Method 4

For each dataset, the OFR method selected features consistent with other

studies in the literature. Occipital alpha activity has been reported as a

marker of AD [ 58] [93], as has lateralised activity elicited by valence [ 53]

[66]. However, a dynamical approach allows us to go a bit further. Consider

occipital (probably visual) activity in AD disease. Healthy controls have

access to a richer set of dynamical states. Furthermore, if we ignore the

dynamical part (velocity axis), and observe only how the distribution of

brain states changes across conditions, the available number of states turns

out to be also richer for the healthy controls, suggesting loss of functions
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Figure 3.8: Visual representation of the most visited states of the (dis-
cretized) phase pace for each condition, for each dataset. The feature (a
speci�c channel at a speci�c band) ranked �rst by OFR was selected for
generating the image.

(both dynamic and in terms of available brain states) related to AD disease.

It is important to consider that subjects recorded for this dataset were not

performing any particular task, and therefore, the observed states are due

to spontaneous ongoing activity. By contrast, the other two datasets were

collected while subjects performed speci�c tasks, and therefore, the observed

states may be task speci�c. The WM �gures show that the low WM condition

has a richer set of states. The low WM condition did not require full engage-

ment, and the subjects reported performing various mental activities while
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completing the task, from planning their evening activities to be attentive

to possible background conversations. The high WM-condition, in contrast,

required full engagement, and the small set of states may be speci�cally

related to WM. Regarding valence, let us observe the third row of images,

corresponding to the T8 electrode, located in the right hemisphere. The

dynamical richness of the right hemisphere is much higher for a positive

valence than for negative valence. It has been proposed that negative emo-

tions are processed in the right hemisphere [ 5]. The right hemisphere could

be engaged in a small set of task-speci�c states while exposed to negative

valence material. In contrast, the observed large set of states related to the

positive valence condition could be ongoing activity. Evidently, the right

hemisphere does not devote all its resources to emotion processing. In the

�gures, we observe only the most visited states, not the totality of them. The

same reasoning applies to the WM dataset. The above �ndings can be sum-

marized by stating that task-related activity seems to elicit a small, perhaps

more speci�c set of states. The task-free AD dataset, in contrast, suggests

that AD decreases the dynamical richness of ongoing activity. Steyn-Ross et

al. extended mean-�eld models 3, that consider only chemical synapses, to

include diffusive effects via electrical synapses [ 107]. They found different

patterns of self-organisation depending on the time-scale of somatic and

dendritic dynamics. If soma voltage remains almost constant during den-

dritic integration, their model displays patterns consistent with ongoing

activity. On the other hand, if both time-scales are comparable, they observe

faster dynamics, consistent with cognitive activity. They provide clinical

evidence supporting the �ndings of their model. In their model as well as in

our empirical analysis, patterns of self-organisation are different in nature

for ongoing and for cognitive activity; in addition, cognition-driven activity

exhibits faster dynamics (with small, more frequent transitions being more

informative in our analysis).

3Instead of modelling individual neurons, the mean-�eld approach considers the activity
of space averaged cortical patches. These models are expected to reproduce properties
observed in space-averaged brain imaging techniques, such as EEG, MRI or MEG.
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3.7 Baseline: power spectral density

Although the aim of the study is not to develop a feature extraction method,

but rather to address questions about brain dynamics, spectral features

were used as a baseline for comparing classi�cation performances. The

spectral features included power in the delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), lower beta (12–20 Hz), upper beta (20–30 Hz) and lower gamma

(30–45 Hz) ranges. The frequency bands used were the same as in Methods

1 and 4, which was done to maintain an equal number of features. Table 3.3

shows the comparison between methods, using the power spectral density

as baseline.

3.8 Control tests

3.8.1 Control test 1: Destroying temporal structure

and assessing statistical signi�cance

A large part of the motivation of this work is studying the temporal structure

of brain state switches. To provide more convincing evidence that what we

are measuring is indeed a result of the time organization, we used shuf�ed

variables. We computed the CSS, and before computing its time derivative,

we shuf�ed it. We then applied Methods 1, 3 and 4 and tested whether the

classi�cation power disappeared. Method 4 is a mixture of static (distribu-

tion of states) and dynamic (states with a certain speed) information, and

therefore, using shuf�ed data should not necessarily destroy all the infor-

mation. Method 2 is about spatial synchrony, and thus, is not concerned:

In fact, mutual information is not affected by the temporal structure of the

data. We iterated the above procedure 300 times for each dataset for each

method, and we observed how often the classi�cation results were better

than the ones we observed with no shuf�ing. In addition to the shuf�ed

data, random features drawn from a uniform distribution were used. Three

hundred iterations were performed with random data, and we computed the
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fraction of the iterations for which the classi�cation performance was higher

than the observed results. While random features helped in assessing the

statistical signi�cance of the methods, by shuf�ing the data, we explored

the validity of a speci�c claim, namely that the observed results arise from

the temporal organization of the switches. In the next section, we further

re�ne the control tests by targetting not the general temporal structure of

the variables, but rather, events that may be considered as switches in the

discrete model.

3.8.2 Control test 2: Removing known discrete events

Models based on discrete switches assume that switches between states

occur at precise instants that can be tracked. In Freeman's work, these

points correspond to phase resetting in the original EEG signal [ 98]. In

Kaplan's work, they are the rapid transition processes [ 64]. In general, any

segmentation technique could be used as well. These transitions can be

removed from the time series, to assess their contribution to the classi�ca-

tion performance. If classi�cation is not substantially degraded, we could

be even more con�dent in saying that most information comes from the

small transitions that occur continuously. We removed points associated

with phase resetting and rapid transition processes with severe criteria, in

order to reduce the risk of failing to remove the postulated events. Due to

the latter, more than 80% of the signal was removed, as shown in Table 3.2.

We removed not only the phase resetting points but also their neighbours.

As for the rapid transition processes, the segmentation algorithm proposed

by Kaplan [ 64] �rst �nds a large set of pre candidates to be rapid transition

processes. The elements of this set are further tested and considered rapid

transitions processes only if they ful�l the remaining criteria. We decided to

remove the whole set of pre-candidates for far more certainty. This test was

performed in the WM dataset because it had the highest temporal resolution.
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3.8.3 Results speci�c to control tests

The results concerning control test 1 are shown in Table 3.1. For each cell,

the �rst value corresponds to the percentage of iterations for which random

features outperformed real features. The second number re�ects the per-

centage of the iterations for which shuf�ed data outperformed real data. As

mentioned in section 3.8.1, the shuf�ed data are not expected to completely

destroy all the information provided by Method 4, as it also involves static

information about the distribution of states. Table 3.2 shows the results of

control test 2.

Dataset Method 1 Method 2 Method 3 Method 4*
AD 0% / 0% 0% / NA 89% / 34% 0% / 0%
WM 0% / 18% 0% / NA 0% / 0% 0% / 18%
Emotions 0% / 0% 0% / NA 0% / 0% 0% / 0%

Table 3.1: Results of Control test 1. Out of the 300 iterations, the table shows
the fraction of times in which random features outperformed real data (�rst
number of the cell) and fraction of times in which shuf�ed data outperformed
real data (second number of the cell). Method 2 was not considered for
generating shuf�ed data because it deals with spatial synchrony, not the
temporal structure. *Shuf�ed data are not expected to destroy all the
information provided by Method 4.

Target Percentage of
data removed

Decrease in clas-
si�cation perfor-
mance

Phase resetting points 81 % 4 %
Rapid transition processes 80 % 14 %

Table 3.2: Control test 2. Results of removing known discrete events. Spe-
ci�c points associated with transition events acknowledged in the literature
were removed. The decrease in classi�cation performance is shown in the
third column.
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3.9 Global results

The summary of the performance of all the methods for all the datasets is

presented in this section. Table 3.3 shows classi�cation results reported

as the area under the ROC curve. As a reference, the baseline technique

(spectral properties of the EEG signal) is displayed for comparison. The

performance on the WM and emotions datasets was non-deterministic, as

the calibration step involved adding noisy copies of the data. For all the non-

deterministic estimations of performance, 20 realizations were executed,

and the displayed results correspond to the average. The number of features

encompassed by each method is displayed in parentheses.

Dataset Method
1

Method
2

Method
3

Method
4

Baseline

AD 0.70
(126)

0.71
(126)

0.48
(21)

0.71
(126)

0.54 (126)

WM 0.76
(96)

0.74
(96)

0.68
(16)

0.75
(96)

0.75 (96)

Emotions 0.70
(192)

0.70
(192)

0.64
(32)

0.76
(192)

0.68 (192)

Table 3.3: AUCs for the different methods. Spectral properties of the signal
(power at different frequency ranges) were used as a baseline. The number
of features is indicated in parentheses.
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4.1 Working Memory BCI discussion

W
e developed a cognitive BCI able to perform real-time estimation

of WM load. We validated this model and obtained satisfactory

online results. In addition we controlled the model for potential

cognitive and motor confounders, and we compared the model output with

subjective WM-load estimates of the BCI users.

The successful neurophenomenological [ 117] validation is one of the

main features of this work. Experimenting with human subjects provided

us with the unique possibility of establishing links between subjective states

and objective measures [78]. These links can be meaningfully validated by

the subject only under appropriate experimental conditions. It is necessary,

�rst, to design an adequate online protocol, and second, to perform careful

control tests. We expect our phenomenological validation to encourage re-

searchers interested in rigorous cognitive monitoring and neurofeedback

to pursue such avenues. Narrowing down the gap between the subjective

world and objective measures opens the door to new theoretical approaches

81



CHAPTER 4. DISCUSSION

and practical implementations.

The statistical analysis of the confounders suggests independence be-

tween the EEG biomarkers and the tested potential confounders. This holds

true even for cognitive confounders that are necessarily correlated to WM,

like the attentional �lters or phonological loop. The original WM model from

Baddeley [ 10] considers the phonological loop as a core element of WM, and

the embedded-processes model of WM [32] explicitly refers to attentional

�lters. This independence is a satisfactory result for real-world testing,

given that these confounders, being part of WM under certain models, are

necessary but not suf�cient for an activity to be demanding for WM.

There are several studies on EEG-based WM load estimation; however,

to the best of our knowledge, there are none with all the properties required

for a real-world, real-time continuous monitoring system.

Studies [ 62, 101, 102] describing statistical differences of biomarkers

across WM conditions aim to make general claims about the neural corre-

lates of WM. Nevertheless, statistically signi�cant differences across con-

ditions are not necessarily suf�cient for single-trial classi�cation. Jensen

et al. [ 61], for instance, reported theta activity in frontal areas due to WM

activity. However, their further examination highlighted that the theta

activity revealed by the grand average was the result of the contribution of

a single subject.

Some studies perform single-trial classi�cation, which is a necessary con-

dition for a system to work online. Nevertheless, many of them [ 47, 129] are

of�ine. Online (real-time) neurofeedback experiments have different advan-

tages, from neurophenomenological validation to over�tting prevention. It is

only possible online for subjects to validate in a continuous manner that the

feedback is indeed re�ecting their instantaneous cognitive state, precisely

due to our WM limitations. In general, online approaches allow experi-

menters to interactively redesign experiments until conclusive hypotheses
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are attained [ 100]. Regarding over�tting, an over�tted model will learn

noise and explain the data that was used to train it, but it will be unable to

explain new data. The analysis of brain signals may involve complex models

with many parameters and variables. For these models, there is a high risk

of over�tting. A classi�er with good online performance ensures that no

positive results come from over�tting, as testing data are acquired on the �y.

Other studies [ 36, 49, 50, 56] describe implementations that are suf�-

ciently fast to work in real time; however, no actual real-time testing was

performed. These are useful feasibility studies, but an online validation

would be necessary to assess the prototype reliability.

While studies performed online are indeed an important step towards

a practical implementation of BCIs, there is still signi�cant room for im-

provement, and potential confounders must be controlled for. Wilson et

al. [ 126] train their system with EEG data from subjects performing the

NASA Multi-Attribute Task Battery [ 29]. The task has a motor component

(manipulating a joystick and a mouse), and different cognitive load levels

are imposed by changing the number of events. Hence, with an imbalance

of motor activity across conditions, there is a high risk of motor confounding

factors being learned by the system. It is not clear, then, whether they are

measuring cognitive load or motor activity. The same issue applies to the

study by Berka et al. [ 22]. The system developed by Kohlmorgen et al. [ 72]

seems to have balanced motor components; however, there is no cross-task.

The training session and application session involved the same type of tasks.

Consequently, it is unclear whether their results are general to WM or

task-speci�c. It has been shown [ 15] that accuracies can drop to chance

levels when trying to classify workload using a testing task different from

the training one, even if both address the same cognitive function, the latter

meaning that the system had learned particularities of the task instead

of generalities of the underlying cognitive system. None of these studies

speci�cally disentangled potential confounding factors, and furthermore,

none of them performed neurophenomenological validation.
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In addition to the methodological aspects, there are two factors, at the

level of design, that could explain the success of our prototype. The training

task was de�ned in such a way that the three functions involved in WM

(storing, processing and refreshing) were at full capacity in the high-WM-

load condition. This may be the reason for the good generalizability to

a different task. In contrast, adding noisy copies of subjects' individual

data (calibration data, section 2.3.2.3) allowed us to deal with a necessary

compromise when facing large inter-subject variability—a trade-off between

performance and the need to strictly measure WM activity, irrespective of

subject idiosyncrasies. Training the classi�er with only the data from the

current subject may result in good performance, but there is a risk that

what is ultimately measured will not be WM. By contrast, assigning an

equal weight to all subjects would only detect changes that are common to

all of them, minimising inter-subject differences. Evidently, not all brains

respond in the same way, and we are dealing with this variability in a robust

way. As an example, Grimes et al. [ 49] found that alpha activity increases

with memory load for some subjects, while it decreases for others. This is

an important remark, given that, as mentioned in the introduction, alpha

activity is thought of as a potential WM signature. Addressing this trade-off

allows us to build a BCI that is adapted to the user while ensuring that a

general underlying cognitive function is measured. By adding noisy copies,

we are also making the classi�er more robust to noise.

Aiming at generalizability, an additional source of variability was im-

posed in Task 2. Subjects were able to choose what kind of arithmetic

operations to do. In spite of this imposed variability, subjects consistently

identi�ed the feedback provided as theirs whenever this was the case.

The results of the neurophenomenological validation, although positive,

could be a conservative estimation: Even when using a functional WM BCI,

subjects may fail at the neurophenomenological validation. The reason

is that introducing the feedback gauge and asking subjects for neurophe-
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nomenological validation imposes an additional WM load that cannot be

neglected. Beyond the intrinsic WM load imposed by the task, the neurophe-

nomenological validation adds three additional sources of WM load. The

�rst source arises from the fact that subjects are required to estimate their

own WM load, which imposes an additional load due to introspection. In

addition, subjects need to compare their load estimation with the feedback

provided, making a binary judgement on whether it is correct or incorrect

feedback. Furthermore, as we analyse EEG epochs of 2.5 seconds, our esti-

mate is delayed. Thus, subjects must compare the current feedback with

the WM load they experienced a few instants ago. This comparison is the

second source of WM load. All that is described above is repeated at differ-

ent moments during the trial, and all the partial binary judgements are

stored so that the subject can provide a global decision at the end. Storing

the binary decisions is the third additional source of WM load. As Lutz et

al. [ 79] point out, generating �rst-person reports about an experience can

modify that experience. Due to the additional cognitive resources required,

subjects were given six trials to become familiar with the procedure. After

these trials, one of the subjects expressed feeling unable to perform the

task and did not continue. The subject explained that the information to

be processed was overwhelming. Another subject, subject 6 in table 2.1,

expressed dif�culties providing an answer for the same reason. This issue

is re�ected in the relatively high number of unanswered questions on this

subject. These testimonies suggest that the results in Table 2.1 could be a

conservative estimate of the BCI performance: Subjects required a certain

level of skills and training to perform the neurophenomenological validation,

and before reaching an adequate level of expertise, their answers are error

prone. This task is more demanding than a classical mental calculation

task, which only requires an intrinsic task load. However, once the BCI is

validated by enough subjects to achieve signi�cance, we can hypothesise

that it is usable for all literate subjects (subjects with an adequate perfor-

mance in the BCI validation), regardless of the individual results of the

neurophenomenological validation. In other words, literate subjects who

cannot perform the neurophenomenological validation may still be able to
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use the BCI in a real-world task, in which they are expected to believe the

feedback, not rate it. In an adaptive system, users may not even receive any

feedback, as the feedback could be used for the system to trigger an action

(lower the task dif�culty, start an autopilot, etc.).

The choice of a reversed gauge as sham feedback was made to preserve

the dynamic behaviour of the feedback. Had we presented, random feed-

back, for instance, subjects could have learned that random motion of the

bar implies sham feedback, depending on the underlying distribution and

dynamics. In addition, the choice of a disappearing cue in Task 2 imposed a

time-locked change in the WM load, helping subjects handle BCI delays.

Regarding the WMLE, given that no previous studies had been done

on performing neurophenomenological validation, the dynamics of the WM

load remained an open question. Of our six online subjects doing the cross-

task, two mentioned that it was speci�cally the dynamics of the feedback

gauge that helped them decide whether it was sham or real. In other words,

the most informative event for them was whether the gauge increased or

decreased at key moments, rather than the absolute value of the gauge.

For another two, it was both the absolute value and the dynamics; they

mentioned that it was extremely easy to know when it was real or sham. For

the remaining two, there was no clear distinction. Generally, they all stated

that the (true) feedback was a measure of their WM load, which in turn, was

re�ected in the high rate of correct answers of the neurophenomenological

validation. Furthermore, most of them mentioned spontaneously that it was

clear that the sham feedback signal was the reverse of their WM load. This

information was not disclosed to them in advance.

Although the global mean of the WMLE remained lower for the low-

WM-load condition than for the high-WM-load condition, there were WMLE

peaks in both conditions. Further investigation needs to be carried out for

determining whether these peaks correspond to refreshing, processing, or

simply noise. One subject spontaneously reported that they corresponded to
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processing peaks; however, this was not reported by the other subjects. This

is not surprising, as subjects are generally not used to monitoring their WM

or thinking about it in terms of its subprocesses. Expertise and knowledge

of the WM subprocesses would be required to answer that question, and the

above mentioned subject had some prior knowledge about WM.

It is of theoretical relevance to investigate which aspects of WM induce

more load in the central executive and how these events are temporally

distributed depending on the WM load. In addition, if these peaks represent

true activity and not noise, then they could be used to improve the perfor-

mance of the BCI as well.

Some of the training trials of the low condition will happen to contain

these peaks, although the subject is engaged in the low-WM-load condition.

Peaks in the low-WM-load condition could be present for different reasons.

The subject could have been temporarily allocating mental resources to non-

task-related activities—attending to external stimuli, mind wandering due

to lack of motivation, and so on. In other words, we cannot impose a speci�c,

constant WM load. Moreover, if peaks are refreshing events, they must

occur as well in the low-WM-load condition. Perhaps at a different pace

and/or with different intensity, but they must occur. That being said, if we

have an objective measurement (the WMLE), we could iteratively improve

the quality of our of�ine database. For instance, we could accomplish this

by reallocating peaks in the low-WM-load condition to the other class (high-

WM load), run the algorithm again, and repeat until stability is reached

(the sizes of both classes remaining constant), or alternatively, until another

stopping criterion is met, in the absence of stability. In fact, these peaks of

activity in the low-WM condition may be the reason why the performance of

the neurophenomenological validation seems better than the BCI validation

does. Neurophenomenological validation shows the prediction in real time.

If low-WM-load trials are contaminated with high-WM-load activity (label

noise), the subject may know this and still perform an adequate validation.

However, the label (low WM or high WM) remains constant throughout the
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whole trial, regardless of the subject's state, and the BCI validation perfor-

mance considers the label—rather than the internal state of the subject, as

truth.

As for the biomarkers, we observe different markers where the joint

activity predicts WM load (Figure 2.7). Instead of using single biomarkers

to estimate WM load, we derived composite biomarkers from weighted com-

binations of several biomarkers. Such an estimate is more reliable and more

realistic, considering that WM is a complex cognitive function involving the

coordination of several brain areas. Thus, we are associating patterns of

joint activity with WM conditions. Some of the biomarkers are consistent

with the literature, like the decrease in the alpha power in the occipital

regions mentioned in the introduction. However, it is important to stress

again that considering them as isolated markers of WM activity may be

misleading. Conversely, there are also biomarkers in which the change

across the WM conditions was statistically signi�cant; however, including

them in the analysis decreased the ability of the BCI to correctly estimate

the WM load. One potential explanation for this is that these changes

are due to subject variability and not to a fundamental aspect of WM. The

above mentioned study ([ 61]), in which the grand average showed signi�cant

changes in the theta power because of the contribution of one single subject,

is an example of this. Incidentally, we did not �nd any signi�cant changes

in the theta range. Another explanation is multiple hypothesis testing.

If we test hundreds of biomarkers, by chance some of them will appear

statistically signi�cant, even if there is no real correlation. This illustrates

how multivariable classi�cation techniques can be powerful approaches for

making inferences. Although some changes across both conditions would

appear as statistically signi�cant, their lack of generality renders them

useless for prediction. Thus, we have a simple yet powerful criterion: If, by

adding information (biomarkers), our ability to classify decreases, then it

is not relevant information, although it may seem statistically signi�cant.

In addition, combining several biomarkers into a single score (the WMLE)

reduces the risks associated with multiple hypothesis testing.
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A situation in between may occur. It could be that adding biomarkers

will neither increase nor decrease the classi�cation power. One potential

explanation for this is that these biomarkers are highly correlated with

previously selected biomarkers. Therefore, our list of relevant biomarkers

is by no means exhaustive, as mentioned in section 2.2.5. Biomarkers re-

dundant to the selected ones were not chosen, and this could be the reason

for the apparent asymmetry in Figure 2.7. In fact, running the code with

different parameters would sometimes lead to the selection of the symmetric

electrode, for instance, electrode CP6 instead of electrode CP5. Moreover,

biomarkers that do not increase the classi�cation power may increase it

by using more sophisticated techniques, such as support vector machines

or neural networks, that better capture the complexity of the underlying

system. The latter is further developed at the end of the discussion.

Let us graphically illustrate how joint activity provides a more reliable

estimate. Figure 4.1 shows the �rst selected biomarker, that is, the one

with the highest correlation to the WM load. Each element of the plot is a

trial. Crosses correspond to high-WM-load trials, while circles correspond to

low-WM-load trials. The variable chosen was the relative lower beta power,

at electrode Fp1.
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Figure 4.1: Relative lower beta power at electrode Fp1 for the low-WM-load
condition (circles) and high-WM-load condition (crosses)

As illustrated in the �gure, the distributions of the examples conditioned

to the class have different means; however, they completely overlap, and

hence, class separation for this variable is completely inef�cient. However,

if we add a second variable, the relative lower beta power at electrode Cz, we

start �nding some structure. In Figure 4.2, we already start to distinguish

both conditions.
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Figure 4.2: Relative lower beta power at electrode Fp1 versus relative lower
beta power at electrode Cz. Trials of low-WM-load condition are represented
with circles, high-WM-load trials are crosses

As we add more variables, we continue this process in higher dimensions.

To perform this visually is impossible for the human eye if there are four or

more dimensions; however, this is exactly one of the uses of multivariable

statistical analysis or machine learning. This means that claiming that

beta activity changes at Fp1 due to WM load may be misleading. It is much

more accurate to investigate speci�c multivariable correlates of WM. For

instance, we could hypothesize that our observation of beta-range activity

decrease is a correlate of the cognitive �exibility state induced by the inten-

sive rehearsal strategy used by our subjects, rather than a speci�c correlate

of WM maintenance and processing. Indeed, according to [ 35], beta-range

activity could serve the maintenance of the current cognitive state, and

would decrease when cognitive �exibility is needed, an event which could

occur in any situation where a cognitive load (related or not to WM) occurs.

It is only in the perspective of the other identi�ed features (in our report
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the alpha and gamma range) that we could indeed target WM. This is also

con�rmed in recent publications, for instance Bahramisharif et al. [ 14] have

shown that WM maintenance involves couplings of multiple frequencies

(in their implanted EEG study, the alpha, theta and gamma ranges were

co-organized during WM maintenance, con�rming previous publications in

scalp EEG, such as [97]).

Our approach is still far from conveying a global view. EEG consists of

a few scalp recordings of the activity of an extremely complex underlying

system. Acknowledging our relatively small (for a multivariable analysis)

database, aiming at robustness and as a �rst attempt, we chose a linear

feature-selection technique and linear classi�er. A linear feature-selection

technique may not necessarily work when correlations between features and

the output are not linear. A linear classi�er assumes a certain topology in

the feature space: Classes can be separated with a line, plane or hyperplane.

A larger dataset would allow the use of feature-selection techniques and

classi�ers that better capture the underlying complexity. In addition, we are

ignoring potential neural mechanisms that could be active when subjects

stay at the limit of their WM capacity for a long time. If such mechanisms

exist, the distribution of biomarkers in the feature space could be completely

different. A real-world application should thus explore the extent to which

WM-load-detection protocols may need to be modi�ed when a high WM load

is imposed for long periods.

4.2 Brain metastability discussion

Motivated by the way information is registered and processed in parallel by

different areas of the brain, which engage in joint activity and disengage

on demand, we proposed certain assumptions that we tested. First, like

other authors, we assumed metastability driven by cognition. Following

the de�nition of metastability, we proposed local variables that re�ect the

time evolution of brain states, and developed a framework for studying how
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cognition affects different properties of the spatio temporal organization of

these variables.

By looking at Table 3.3 and Table 3.1, we can easily conclude that the

proposed properties of the spatio temporal structure of the proposed vari-

ables are affected by cognition in a way that cannot be explained by chance.

An exception is Method 3 in the AD dataset. However, it is worth noting that

the number of features computed for Method 3 is six times lower than the

number of features in the other methods, and therefore, we cannot directly

compare them. Furthermore, the AD dataset is much smaller. Although

the number of subjects is larger, the available data for each one and the

sampling rates are much smaller. In the emotions dataset, we did not disen-

tangle interactions from other emotions, which would likely have improved

the classi�cation results. The experiment from which the data were col-

lected involved axis that were not disentangled, namely valence, like/dislike,

dominance and familiarity. The participants rated videos according to these

dimensions, but no material was created for investigating one axis while

controlling for the others. In addition, several parameters like the type of

norm of the velocity or the number of full oscillations considered to �x the

window length could be optimised for each scenario (method and dataset),

with a signi�cant improvement in performance. However, we decided to

keep those parameters �xed to avoid the potential issue of multiple testing

[21], as well as because our main goal was to answer a set of scienti�c

questions.

We can observe in Table 3.2 that targeting speci�c events recognised as

candidates for state switching did not substantially degrade the quality of

the information. Our conservative approach, which removed as well neigh-

bours and false positives, discarded more than 80% of the data, with only

small decreases in the classi�cation performances—3.8% when removing

phase-resetting points and 14.4% when removing rapid-transition-process

points.
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We suggest two possible hypotheses. The �rst is that, although the

spatio temporal structure of the statistical properties of EEG, and espe-

cially their dynamics, are relevant to predict cognitive conditions, timing is

not discrete. The brain undergoes large transitions at seemingly discrete

times, but it keeps �uctuating between neighbouring states in a way that

is affected by cognition. In other words, these small �uctuations are not

artifacts due to any source of noise, but rather they are induced by cogni-

tion. Computations in the brain are analogue, and even under continuous

switching, the neighbourhood of a state could provide enough stability to

induce the oscillations thought to be required for psychological constructs.

Cognition may drive the segregation tendencies considered in the introduc-

tion, which push the dynamics away in a way that depends on the condition.

In this direction, Werner [ 125] suggested that metastability can be given an

operational meaning: Instead of considering integration–segregation as two

poles, a continuous range of tendencies of neural coordination seems more

appropriate. According to this author, the continuum seems to be supported

at the neuronal dynamics level by the �exibility of coupling coef�cients

amongst different neuron groups. Assuming continuity may be thought of

as rejecting the existence of metastable states, as there are no states of

�nite duration with constant statistical properties. It is still possible to

draw on the less restrictive concept of metastable regimes in the dynamical

systems point of view [ 112]: Dynamics takes place in a region where all the

attractors have disappeared.

A second hypothesis is that switches are discrete, but due to volume

conduction, the recordings re�ect the in�uence of neighbouring regions.

Continuity would be then an artifact of the lack of spatial resolution of the

measurements. The further the region, the less its changes in statistical

properties affect the local recording. EEG source localization could be used

to either support or rule out this possibility. The CSS can be computed using

the EEG sources instead of EEG raw recordings. If the timing is discrete

we should observe piecewise continuity in the statistical properties at the

level of the sources.
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An argument favouring the �rst hypothesis is that the power-law �t of

the PSD of the CSS demonstrates a fractal temporal structure of the CSS.

As mentioned above, the power-law coef�cient is a parameter that expresses

the extent to which disturbances propagate. We showed that this parameter

is affected by cognition, which makes sense if we consider, as other authors

have, sensory and motor information as disturbances in this context. The

second hypothesis then requires in turn an extra hypothesis. The inter

switch duration of a speci�c brain source should be in�uenced by the neigh-

bouring sources, as their joint switching dynamics should still be fractal in

time. In other words, we need to translate the fractal time structure of a

single region (�rst hypothesis) into the spatial organization of subregions

(second hypothesis). Postulating the latter should also involve postulating a

mechanism producing this spatial organization. This mechanism should be

at least as parsimonious biologically as that in which dynamics evolve for

allowing an ef�cient propagation of disturbances under the �rst hypothesis.

The above discussion may be theoretically relevant at different levels.

We have discussed the biological implications of continuity and discreteness;

however, other aspects are relevant as well. Phenomenologically, a frag-

mented �ow of perception or consciousness is essentially different from a

continuous �ow. Whereas a thought, an action or perceiving an object might

seem granular after a quick exercise of introspection, “microcognitive sci-

ence”, or neurophenomenology at the sub-second level, suggests otherwise.

Petitmengin et al. [ 91] investigate how elicitation techniques provide access

to micro-states, at the sub-second level, where boundaries across sensory

modalities, and between object and subject, begin to blur. They advocate

for �nding correlations between these sub-second, �rst person experiences

and third-person, objective measurements. The proposed spatiotemporal

analysis of brain-state switches is a possible candidate tool to investigate

such correlations. In addition, regarding the mathematical description of

natural systems, discrete and continuous mathematical models may have

different properties. As a simple case in point, we can consider the logistic

95



CHAPTER 4. DISCUSSION

map, one of the simplest discrete dynamical systems able to exhibit chaos.

Its continuous version, in contrast, is never chaotic. For a discrete system,

there is always a “next” value, whereas this is not the case for a continuous

system. Nevertheless, if continuity is an artifact of volume conduction, the

presented framework has proven useful still. If the temporal organization

turns out to be disguised spatial organization, we have no reason to discard

the information obtained from small (far?) transitions. Evidently, the next

step would be to identify and study the biological mechanisms generating

this spatial organisation.

A view where time is continuous is more compatible with an analogue

computer metaphor, and in this regard, our proposals are compatible with

the work of Spivey [ 106]. He suggests that, if we could take the activity

of single neurons as variables, cognition would be a continuous trajectory

in a high dimensional space, where each coordinate is the activity of a

neuron. In his proposal, a speci�c cognitive task would be a point in this

space, and performing such a task would be a trajectory moving toward this

point. Perceiving a face, for instance, would be moving toward the point

that corresponds to that speci�c face. Interestingly, he claims that we spend

more time near such points than at them. Experimentally, Chang and Tsao

[26] could reconstruct human faces with impressive accuracy by reading the

activity of 205 neurons in primates. Each neuron codes for a speci�c facial

feature, and the joint activity of the 205 neurons, that is, a point in a space

of dimension 205, represents a speci�c face.

While face recognition is so important that evolution may have given

it a sparse representation, in the general case of cognition, we do not have

the experimental and computational means for exploring such points and

trajectories. Nevertheless, using a low (third) order estimation and a few

scalp recordings, we showed that the idea of cognition as a trajectory in an

abstract space is worth further investigation.

In general terms, we have developed a framework that produces evidence
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that aims to enrich theoretical discussions about brain dynamics. As it is

important for us to show that cognition is driving these phenomena, we de-

veloped tools for classifying cognitive conditions on a single-trial basis, and

practical applications, such as BCIs can bene�t too from these methods. In

addition, the predictive power of this framework resides in a signal property

that is often overlooked, or even considered as a problem to overcome—the

lack of stationarity.
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