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Abstract

One substantial question, that is often argumentative in learning theory, is how to choose

a ‘good’ loss function that measures the fidelity of the reconstruction to the original.

Logarithmic loss is a natural distortion measure in the settings in which the reconstructions

are allowed to be ‘soft’, rather than ‘hard’ or deterministic. In other words, rather than

just assigning a deterministic value to each sample of the source, the decoder also gives an

assessment of the degree of confidence or reliability on each estimate, in the form of weights

or probabilities. This measure has appreciable mathematical properties which establish

some important connections with lossy universal compression. Logarithmic loss is widely

used as a penalty criterion in various contexts, including clustering and classification,

pattern recognition, learning and prediction, and image processing. Considering the high

amount of research which is done recently in these fields, the logarithmic loss becomes a

very important metric and will be the main focus as a distortion metric in this thesis.

In this thesis, we investigate a distributed setup, so-called the Chief Executive Officer

(CEO) problem under logarithmic loss distortion measure. Specifically, K ≥ 2 agents

observe independently corrupted noisy versions of a remote source, and communicate

independently with a decoder or CEO over rate-constrained noise-free links. The CEO also

has its own noisy observation of the source and wants to reconstruct the remote source to

within some prescribed distortion level where the incurred distortion is measured under

the logarithmic loss penalty criterion.

One of the main contributions of the thesis is the explicit characterization of the rate-

distortion region of the vector Gaussian CEO problem, in which the source, observations and

side information are jointly Gaussian. For the proof of this result, we first extend Courtade-

Weissman’s result on the rate-distortion region of the discrete memoryless (DM) K-encoder

CEO problem to the case in which the CEO has access to a correlated side information

iii



ABSTRACT

stream which is such that the agents’ observations are independent conditionally given

the side information and remote source. Next, we obtain an outer bound on the region of

the vector Gaussian CEO problem by evaluating the outer bound of the DM model by

means of a technique that relies on the de Bruijn identity and the properties of Fisher

information. The approach is similar to Ekrem-Ulukus outer bounding technique for the

vector Gaussian CEO problem under quadratic distortion measure, for which it was there

found generally non-tight; but it is shown here to yield a complete characterization of the

region for the case of logarithmic loss measure. Also, we show that Gaussian test channels

with time-sharing exhaust the Berger-Tung inner bound, which is optimal. Furthermore,

application of our results allows us to find the complete solutions of three related problems:

the quadratic vector Gaussian CEO problem with determinant constraint, the vector

Gaussian distributed hypothesis testing against conditional independence problem and

the vector Gaussian distributed Information Bottleneck problem.

With the known relevance of the logarithmic loss fidelity measure in the context

of learning and prediction, developing algorithms to compute the regions provided in

this thesis may find usefulness in a variety of applications where learning is performed

distributively. Motivated from this fact, we develop two type algorithms: i) Blahut-

Arimoto (BA) type iterative numerical algorithms for both discrete and Gaussian models

in which the joint distribution of the sources are known; and ii) a variational inference

type algorithm in which the encoding mappings are parameterized by neural networks

and the variational bound approximated by Monte Carlo sampling and optimized with

stochastic gradient descent for the case in which there is only a set of training data is

available. Finally, as an application, we develop an unsupervised generative clustering

framework that uses the variational Information Bottleneck (VIB) method and models the

latent space as a mixture of Gaussians. This generalizes the VIB which models the latent

space as an isotropic Gaussian which is generally not expressive enough for the purpose

of unsupervised clustering. We illustrate the efficiency of our algorithms through some

numerical examples.

Keywords: Multiterminal source coding, CEO problem, rate-distortion region, loga-

rithmic loss, quadratic loss, hypothesis testing, Information Bottleneck, Blahut-Arimoto

algorithm, distributed learning, classification, unsupervised clustering.
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Notation

Throughout the thesis, we use the following notation. Upper case letters are used to

denote random variables, e.g., X; lower case letters are used to denote realizations of

random variables, e.g., x; and calligraphic letters denote sets, e.g., X . The cardinality

of a set X is denoted by |X |. The closure of a set A is denoted by A . The probability

distribution of the random variable X taking the realizations x over the set X is denoted

by PX(x) = Pr[X = x]; and, sometimes, for short, as p(x). We use P(X ) to denote

the set of discrete probability distributions on X . The length-n sequence (X1, . . . , Xn)

is denoted as Xn; and, for integers j and k such that 1 ≤ k ≤ j ≤ n, the sub-sequence

(Xk, Xk+1, . . . , Xj) is denoted as Xj
k. We denote the set of natural numbers by N, and the

set of positive real numbers by R+. For an integer K ≥ 1, we denote the set of natural

numbers smaller or equal K as K = {k ∈ N : 1 ≤ k ≤ K}. For a set of natural numbers

S ⊆ K, the complementary set of S is denoted by Sc, i.e., Sc = {k ∈ N : k ∈ K \ S}.
Sometimes, for convenience we use S̄ defined as S̄ = {0}∪Sc. For a set of natural numbers

S ⊆ K; the notation XS designates the set of random variables {Xk} with indices in the

set S, i.e., XS = {Xk}k∈S . Boldface upper case letters denote vectors or matrices, e.g., X,

where context should make the distinction clear. The notation X† stands for the conjugate

transpose of X for complex-valued X, and the transpose of X for real-valued X. We denote

the covariance of a zero mean, complex-valued, vector X by Σx = E[XX†]. Similarly, we

denote the cross-correlation of two zero-mean vectors X and Y as Σx,y = E[XY†], and the

conditional correlation matrix of X given Y as Σx|y = E
[
(X− E[X|Y])(X− E[X|Y])†

]
,

i.e., Σx|y = Σx −Σx,yΣ−1
y Σy,x. For matrices A and B, the notation diag(A,B) denotes

the block diagonal matrix whose diagonal elements are the matrices A and B and its

off-diagonal elements are the all zero matrices. Also, for a set of integers J ⊂ N and

a family of matrices {Ai}i∈J of the same size, the notation AJ is used to denote the
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(super) matrix obtained by concatenating vertically the matrices {Ai}i∈J , where the

indices are sorted in the ascending order, e.g, A{0,2} = [A†0,A
†
2]
†. We use N (µ,Σ) to

denote a real multivariate Gaussian random variable with mean µ and covariance matrix

Σ, and CN (µ,Σ) to denote a circularly symmetric complex multivariate Gaussian random

variable with mean µ and covariance matrix Σ.
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Chapter 1

Introduction and Main

Contributions

The Chief Executive Officer (CEO) problem – also called as the indirect multiterminal

source coding problem – was first studied by Berger et al. in [2]. Consider the vector

Gaussian CEO problem shown in Figure 1.1. In this model, there is an arbitrary number

K ≥ 2 of encoders (so-called agents) each having a noisy observation of a vector Gaussian

source X. The goal of the agents is to describe the source to a central unit (so-called

CEO), which wants to reconstruct this source to within a prescribed distortion level. The

incurred distortion is measured according to some loss measure d : X × X̂ → R, where X̂
designates the reconstruction alphabet. For quadratic distortion measure, i.e.,

d(x, x̂) = |x− x̂|2

the rate-distortion region of the vector Gaussian CEO problem is still unknown in general,

except in few special cases the most important of which is perhaps the case of scalar

sources, i.e., scalar Gaussian CEO problem, for which a complete solution, in terms of

characterization of the optimal rate-distortion region, was found independently by Oohama

in [3] and by Prabhakaran et al. in [4]. Key to establishing this result is a judicious

application of the entropy power inequality. The extension of this argument to the case of

vector Gaussian sources, however, is not straightforward as the entropy power inequality is

known to be non-tight in this setting. The reader may refer also to [5, 6] where non-tight

outer bounds on the rate-distortion region of the vector Gaussian CEO problem under

quadratic distortion measure are obtained by establishing some extremal inequalities that

1
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Encoder 2

Encoder K
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Figure 1.1: Chief Executive Officer (CEO) source coding problem with side information.

are similar to Liu-Viswanath [7], and to [8] where a strengthened extremal inequality

yields a complete characterization of the region of the vector Gaussian CEO problem in

the special case of trace distortion constraint.

In this thesis, our focus will be mainly on the memoryless CEO problem with side

information at the decoder of Figure 1.1 in the case in which the distortion is measured

using the logarithmic loss criterion, i.e.,

d(n)(xn, x̂n) =
1

n

n∑

i=1

d(xi, x̂i) ,

with the letter-wise distortion given by

d(x, x̂) = log
( 1

x̂(x)

)
,

where x̂(·) designates a probability distribution on X and x̂(x) is the value of this

distribution evaluated for the outcome x ∈ X . The logarithmic loss distortion measure

plays a central role in settings in which reconstructions are allowed to be ‘soft’, rather

than ‘hard’ or deterministic. That is, rather than just assigning a deterministic value to

each sample of the source, the decoder also gives an assessment of the degree of confidence

or reliability on each estimate, in the form of weights or probabilities. This measure

was introduced in the context of rate-distortion theory by Courtade et al. [9, 10] (see

Chapter 2.1 for a detailed discussion on the logarithmic loss).

1.1 Main Contributions

One of the main contributions of this thesis is a complete characterization of the rate-

distortion region of the vector Gaussian CEO problem of Figure 1.1 under logarithmic

2
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loss distortion measure. In the special case in which there is no side information at the

decoder, the result can be seen as the counterpart, to the vector Gaussian case, of that by

Courtade and Weissman [10, Theorem 10] who established the rate-distortion region of

the CEO problem under logarithmic loss in the discrete memoryless (DM) case. For the

proof of this result, we derive a matching outer bound by means of a technique that relies

of the de Bruijn identity, a connection between differential entropy and Fisher information,

along with the properties of minimum mean square error (MMSE) and Fisher information.

By opposition to the case of quadratic distortion measure, for which the application of

this technique was shown in [11] to result in an outer bound that is generally non-tight,

we show that this approach is successful in the case of logarithmic distortion measure

and yields a complete characterization of the region. On this aspect, it is noteworthy

that, in the specific case of scalar Gaussian sources, an alternate converse proof may be

obtained by extending that of the scalar Gaussian many-help-one source coding problem

by Oohama [3] and Prabhakaran et al. [4] by accounting for side information and replacing

the original mean square error distortion constraint with conditional entropy. However,

such approach does not seem to lead to a conclusive result in the vector case as the entropy

power inequality is known to be generally non-tight in this setting [12, 13]. The proof

of the achievability part simply follows by evaluating a straightforward extension to the

continuous alphabet case of the solution of the DM model using Gaussian test channels

and no time-sharing. Because this does not necessarily imply that Gaussian test channels

also exhaust the Berger-Tung inner bound, we investigate the question and we show that

they do if time-sharing is allowed.

Besides, we show that application of our results allows us to find complete solutions to

three related problems:

1) The first is a quadratic vector Gaussian CEO problem with reconstruction constraint

on the determinant of the error covariance matrix that we introduce here, and for

which we also characterize the optimal rate-distortion region. Key to establishing

this result, we show that the rate-distortion region of vector Gaussian CEO problem

under logarithmic loss which is found in this paper translates into an outer bound

on the rate region of the quadratic vector Gaussian CEO problem with determinant

constraint. The reader may refer to, e.g., [14] and [15] for examples of usage of such

a determinant constraint in the context of equalization and others.
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2) The second is the K-encoder hypothesis testing against conditional independence

problem that was introduced and studied by Rahman and Wagner in [16]. In this

problem, K sources (Y1, . . . ,YK) are compressed distributively and sent to a detector

that observes the pair (X,Y0) and seeks to make a decision on whether (Y1, . . . ,YK)

is independent of X conditionally given Y0 or not. The aim is to characterize all

achievable encoding rates and exponents of the Type II error probability when the

Type I error probability is to be kept below a prescribed (small) value. For both

DM and vector Gaussian models, we find a full characterization of the optimal rates-

exponent region when (X,Y0) induces conditional independence between the variables

(Y1, . . . ,YK) under the null hypothesis. In both settings, our converse proofs show

that the Quantize-Bin-Test scheme of [16, Theorem 1], which is similar to the Berger-

Tung distributed source coding, is optimal. In the special case of one encoder, the

assumed Markov chain under the null hypothesis is non-restrictive; and, so, we find

a complete solution of the vector Gaussian hypothesis testing against conditional

independence problem, a problem that was previously solved in [16, Theorem 7] in the

case of scalar-valued source and testing against independence (note that [16, Theorem

7] also provides the solution of the scalar Gaussian many-help-one hypothesis testing

against independence problem).

3) The third is an extension of Tishby’s single-encoder Information Bottleneck (IB)

method [17] to the case of multiple encoders. Information theoretically, this problem

is known to be essentially a remote source coding problem with logarithmic loss

distortion measure [18]; and, so, we use our result for the vector Gaussian CEO

problem under logarithmic loss to infer a full characterization of the optimal trade-off

between complexity (or rate) and accuracy (or information) for the distributed vector

Gaussian IB problem.

On the algorithmic side, we make the following contributions.

1) For both DM and Gaussian settings in which the joint distribution of the sources

is known, we develop Blahut-Arimoto (BA) [19, 20] type iterative algorithms that

allow to compute (approximations of) the rate regions that are established in this

thesis; and prove their convergence to stationary points. We do so through a

variational formulation that allows to determine the set of self-consistent equations
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that are satisfied by the stationary solutions. In the Gaussian case, we show that the

algorithm reduces to an appropriate updating rule of the parameters of noisy linear

projections. This generalizes the Gaussian Information Bottleneck projections [21]

to the distributed setup. We note that the computation of the rate-distortion

regions of multiterminal and CEO source coding problems is important per-se as

it involves non-trivial optimization problems over distributions of auxiliary random

variables. Also, since the logarithmic loss function is instrumental in connecting

problems of multiterminal rate-distortion theory with those of distributed learning

and estimation, the algorithms that are developed in this paper also find usefulness

in emerging applications in those areas. For example, our algorithm for the DM CEO

problem under logarithm loss measure can be seen as a generalization of Tishby’s IB

method [17] to the distributed learning setting. Similarly, our algorithm for the vector

Gaussian CEO problem under logarithm loss measure can be seen as a generalization

of that of [21, 22] to the distributed learning setting. For other extension of the

BA algorithm in the context of multiterminal data transmission and compression,

the reader may refer to related works on point-to-point [23,24] and broadcast and

multiple access multiterminal settings [25,26].

2) For the cases in which the joint distribution of the sources is not known (instead only

a set of training data is available), we develop a variational inference type algorithm,

so-called D-VIB. In doing so: i) we develop a variational bound on the optimal

information-rate function that can be seen as a generalization of IB method, the

evidence lower bound (ELBO) and the β-VAE criteria [27, 28] to the distributed

setting, ii) the encoders and the decoder are parameterized by deep neural networks

(DNN), and iii) the bound approximated by Monte Carlo sampling and optimized

with stochastic gradient descent. This algorithm makes usage of Kingma et al.’s

reparameterization trick [29] and can be seen as a generalization of the variational

Information Bottleneck (VIB) algorithm in [30] to the distributed case.

Finally, we study an application to the unsupervised learning, which is a generative

clustering framework that combines variational Information Bottleneck and the Gaussian

Mixture Model (GMM). Specifically, we use the variational Information Bottleneck method

and model the latent space as a mixture of Gaussians. Our approach falls into the class

5
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in which clustering is performed over the latent space representations rather than the

data itself. We derive a bound on the cost function of our model that generalizes the

ELBO; and provide a variational inference type algorithm that allows to compute it. Our

algorithm, so-called Variational Information Bottleneck with Gaussian Mixture Model

(VIB-GMM), generalizes the variational deep embedding (VaDE) algorithm of [31] which

is based on variational autoencoders (VAE) and performs clustering by maximizing the

ELBO, and can be seen as a specific case of our algorithm obtained by setting s = 1.

Besides, the VIB-GMM also generalizes the VIB of [30] which models the latent space

as an isotropic Gaussian which is generally not expressive enough for the purpose of

unsupervised clustering. Furthermore, we study the effect of tuning the hyperparameter

s, and propose an annealing-like algorithm [32], in which the parameter s is increased

gradually with iterations. Our algorithm is applied to various datasets, and we observed a

better performance in term of the clustering accuracy (ACC) compared to the state of the

art algorithms, e.g., VaDE [31], DEC [33].

1.2 Outline

The chapters of the thesis and the content in each of them are summarized in what follows.

Chapter 2

The aim of this chapter is to explain some preliminaries for the point-to-point case before

presenting our contributions in the distributed setups. First, we explain the logarithmic

loss distortion measure, which plays an important role on the theory of learning. Then,

the remote source coding problem [34] is presented, which is eventually the Information

Bottleneck problem with the choice of logarithmic loss as a distortion measure. Later,

we explain the Tishby’s Information Bottleneck problem for the discrete memoryless [17]

and Gaussian cases [21], also present the Blahut-Arimoto type algorithms [19, 20] to

compute the IB curves. Besides, there is shown the connections of the IB with some well-

known information-theoretical source coding problems, e.g., common reconstruction [35],

information combining [36–38], the Wyner-Ahlswede-Körner problem [39,40], the efficiency

of investment information [41], and the privacy funnel problem [42]. Finally, we present the

learning via IB section, which includes a brief explanation of representation learning [43],
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finite-sample bound on the generalization gap, as well as, the variational bound method

which leads the IB to a learning algorithm, so-called the variational IB (VIB) [30] with

the usage of neural reparameterization and Kingma et al.’s reparameterization trick [29].

Chapter 3

In this chapter, we study the discrete memoryless CEO problem with side information

under logarithmic loss. First, we provide a formal description of the DM CEO model that

is studied in this chapter, as well as some definitions that are related to it. Then, the

Courtade-Weissman’s result [10, Theorem 10] on the rate-distortion region of the DM K-

encoder CEO problem is extended to the case in which the CEO has access to a correlated

side information stream which is such that the agents’ observations are conditionally

independent given the decoder’s side information and the remote source. This will be

instrumental in the next chapter to study the vector Gaussian CEO problem with side

information under logarithmic loss. Besides, we study a two-encoder case in which the

decoder is interested in estimation of encoder observations. For this setting, we find

the rate-distortion region that extends the result of [10, Theorem 6] for the two-encoder

multiterminal source coding problem with average logarithmic loss distortion constraints

on Y1 and Y2 and no side information at the decoder to the setting in which the decoder

has its own side information Y0 that is arbitrarily correlated with (Y1, Y2). Furthermore, we

study the distributed pattern classification problem as an example of the DM two-encoder

CEO setup and we find an upper bound on the probability of misclassification. Finally,

we look another closely related problem called the distributed hypothesis testing against

conditional independence, specifically the one studied by Rahman and Wagner in [16]. We

characterize the rate-exponent region for this problem by providing a converse proof and

show that it is achieved using the Quantize-Bin-Test scheme of [16].

Chapter 4

In this chapter, we study the vector Gaussian CEO problem with side information under

logarithmic loss. First, we provide a formal description of the vector Gaussian CEO

problem that is studied in this chapter. Then, we present one of the main results of the

thesis, which is an explicit characterization of the rate-distortion region of the vector

Gaussian CEO problem with side information under logarithmic loss. In doing so, we
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use a similar approach to Ekrem-Ulukus outer bounding technique [11] for the vector

Gaussian CEO problem under quadratic distortion measure, for which it was there found

generally non-tight; but it is shown here to yield a complete characterization of the region

for the case of logarithmic loss measure. We also show that Gaussian test channels with

time-sharing exhaust the Berger-Tung rate region which is optimal. In this chapter, we

also use our results on the CEO problem under logarithmic loss to infer complete solutions

of three related problems: the quadratic vector Gaussian CEO problem with a determinant

constraint on the covariance matrix error, the vector Gaussian distributed hypothesis

testing against conditional independence problem, and the vector Gaussian distributed

Information Bottleneck problem.

Chapter 5

This chapter contains a description of two algorithms and architectures that were developed

in [1] for the distributed learning scenario. We state them here for reasons of completeness.

In particular, the chapter provides: i) Blahut-Arimoto type iterative algorithms that allow

to compute numerically the rate-distortion or relevance-complexity regions of the DM and

vector Gaussian CEO problems that are established in previous chapters for the case in

which the joint distribution of the data is known perfectly or can be estimated with a high

accuracy; and ii) a variational inference type algorithm in which the encoding mappings

are parameterized by neural networks and the variational bound approximated by Monte

Carlo sampling and optimized with stochastic gradient descent for the case in which there

is only a set of training data is available. The second algorithm, so-called D-VIB [1], can

be seen as a generalization of the variational Information Bottleneck (VIB) algorithm

in [30] to the distributed case. The advantage of D-VIB over centralized VIB can be

explained by the advantage of training the latent space embedding for each observation

separately, which allows to adjust better the encoding and decoding parameters to the

statistics of each observation, justifying the use of D-VIB for multi-view learning [44,45]

even if the data is available in a centralized manner.

Chapter 6

In this chapter, we study an unsupervised generative clustering framework that combines

variational Information Bottleneck and the Gaussian Mixture Model for the point-to-point

8
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case (e.g., the CEO problem with one encoder). The variational inference type algorithm

provided in the previous chapter assumes that there is access to the labels (or remote

sources), and the latent space therein is modeled with an isotropic Gaussian. Here, we

turn our attention to the case in which there is no access to the labels at all. Besides, we

use a more expressive model for the latent space, e.g., Gaussian Mixture Model. Similar to

the previous chapter, we derive a bound on the cost function of our model that generalizes

the evidence lower bound (ELBO); and provide a variational inference type algorithm

that allows to compute it. Furthermore, we show how tuning the trade-off parameter s

appropriately by gradually increasing its value with iterations (number of epochs) results

in a better accuracy. Finally, our algorithm is applied to various datasets, including the

MNIST [46], REUTERS [47] and STL-10 [48], and it is seen that our algorithm outperforms

the state of the art algorithms, e.g., VaDE [31], DEC [33] in term of clustering accuracy.

Chapter 7

In this chapter, we propose and discuss some possible future research directions.

Publications

The material of the thesis has been published in the following works.

• Yiğit Uğur, Iñaki Estella Aguerri and Abdellatif Zaidi, “Vector Gaussian CEO

Problem Under Logarithmic Loss and Applications,” accepted for publication in

IEEE Transactions on Information Theory, January 2020.

• Yiğit Uğur, Iñaki Estella Aguerri and Abdellatif Zaidi, “Vector Gaussian CEO

Problem Under Logarithmic Loss,” in Proceedings of IEEE Information Theory

Workshop, pages 515 – 519, November 2018.

• Yiğit Uğur, Iñaki Estella Aguerri and Abdellatif Zaidi, “A Generalization of Blahut-

Arimoto Algorithm to Compute Rate-Distortion Regions of Multiterminal Source

Coding Under Logarithmic Loss,” in Proceedings of IEEE Information Theory Work-

shop, pages 349 – 353, November 2017.

• Yiğit Uğur, George Arvanitakis and Abdellatif Zaidi, “Variational Information Bot-

tleneck for Unsupervised Clustering: Deep Gaussian Mixture Embedding,” Entropy,

vol. 22, no. 2, article number 213, February 2020.

9



10



Chapter 2

Logarithmic Loss Compression and

Connections

2.1 Logarithmic Loss Distortion Measure

Shannon’s rate-distortion theory gives the optimal trade-off between compression rate and

fidelity. The rate is usually measured in terms of the bits per sample and the fidelity of the

reconstruction to the original can be measured by using different distortion measures, e.g.,

mean-square error, mean-absolute error, quadratic error, etc., preferably chosen according

to requirements of the setting where it is used. The main focus in this thesis will be

on the logarithmic loss, which is a natural distortion measure in the settings in which

the reconstructions are allowed to be ‘soft’, rather than ‘hard’ or deterministic. That is,

rather than just assigning a deterministic value to each sample of the source, the decoder

also gives an assessment of the degree of confidence or reliability on each estimate, in the

form of weights or probabilities. This measure, which was introduced in the context of

rate-distortion theory by Courtade et al. [9, 10] (see also [49, 50] for closely related works),

has appreciable mathematical properties [51, 52], such as a deep connection to lossless

coding for which fundamental limits are well developed (e.g., see [53] for recent results

on universal lossy compression under logarithmic loss that are built on this connection).

Also, it is widely used as a penalty criterion in various contexts, including clustering and

classification [17], pattern recognition, learning and prediction [54], image processing [55],

secrecy [56] and others.

Let random variable X denote the source with finite alphabet X = {x1, . . . , xn} to
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be compressed. Also, let P(X ) denote the reconstruction alphabet, which is the set

of probability measures on X . The logarithmic loss distortion between x ∈ X and its

reconstruction x̂ ∈ P(X ), llog : X × P(X )→ R+, is given by

llog(x, x̂) = log
1

x̂(x)
, (2.1)

where x̂(·) designates a probability distribution on X and x̂(x) is the value of this

distribution evaluated for the outcome x ∈ X . We can interpret the logarithmic loss

distortion measure as the remaining uncertainty about x given x̂. Logarithmic loss is also

known as the self-information loss in literature.

Motivated by the increasing interest for problems of learning and prediction, a growing

body of works study point-to-point and multiterminal source coding models under loga-

rithmic loss. In [51], Jiao et al. provide a fundamental justification for inference using

logarithmic loss, by showing that under some mild conditions (the loss function satisfying

some data processing property and alphabet size larger than two) the reduction in optimal

risk in the presence of side information is uniquely characterized by mutual information,

and the corresponding loss function coincides with the logarithmic loss. Somewhat related,

in [57] Painsky and Wornell show that for binary classification problems the logarithmic

loss dominates “universally” any other convenient (i.e., smooth, proper and convex) loss

function, in the sense that by minimizing the logarithmic loss one minimizes the regret

that is associated with any such measures. More specifically, the divergence associated

any smooth, proper and convex loss function is shown to be bounded from above by the

Kullback-Leibler divergence, up to a multiplicative normalization constant. In [53], the

authors study the problem of universal lossy compression under logarithmic loss, and

derive bounds on the non-asymptotic fundamental limit of fixed-length universal coding

with respect to a family of distributions that generalize the well-known minimax bounds

for universal lossless source coding. In [58], the minimax approach is studied for a problem

of remote prediction and is shown to correspond to a one-shot minimax noisy source

coding problem. The setting of remote prediction of [58] provides an approximate one-shot

operational interpretation of the Information Bottleneck method of [17], which is also

sometimes interpreted as a remote source coding problem under logarithmic loss [18].

Logarithmic loss is also instrumental in problems of data compression under a mutual

information constraint [59], and problems of relaying with relay nodes that are constrained
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not to know the users’ codebooks (sometimes termed “oblivious” or nomadic processing)

which is studied in the single user case first by Sanderovich et al. in [60] and then by

Simeone et al. in [61], and in the multiple user multiple relay case by Aguerri et al. in [62]

and [63]. Other applications in which the logarithmic loss function can be used include

secrecy and privacy [56,64], hypothesis testing against independence [16,65–68] and others.

Xn PY |X Encoder Decoder
Y n R

X̂n

Figure 2.1: Remote, or indirect, source coding problem.

2.2 Remote Source Coding Problem

Consider the remote source coding problem [34] depicted in Figure 2.1. Let Xn designates

a memoryless remote source sequence, i.e., Xn := {Xi}ni=1, with alphabet X n. An encoder

observes the sequence Y n with alphabet Yn that is a noisy version of Xn and obtained

from Xn passing through the channel PY |X . The encoder describes its observation using

the following encoding mapping

φ(n) : Yn → {1, . . . ,M (n)} , (2.2)

and sends to a decoder through an error-free link of the capacity R. The decoder produces

X̂n with alphabet X̂ n which is the reconstruction of the remote source sequence through

the following decoding mapping

ψ(n) : {1, . . . ,M (n)} → X̂ n . (2.3)

The decoder is interested in reconstructing the remote source Xn to within an average

distortion level D, i.e.,

EPX,Y
[
d(n)(xn, x̂n)

]
≤ D , (2.4)

for some chosen fidelity criterion d(n)(xn, x̂n) obtained from the per-letter distortion

function d(xi, x̂i), as

d(n)(xn, x̂n) =
1

n

n∑

i=1

d(xi, x̂i) . (2.5)

The rate-distortion function is defined as the minimum rate R such that the average

distortion between the remote source sequence and its reconstruction does not exceed D,

as there exists a blocklength n, an encoding function (2.2) and a decoding function (2.3).
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Remote Source Coding Under Logarithmic Loss

Here we consider the remote source coding problem in which the distortion measure is

chosen as the logarithmic loss.

Let ζ(y) = Q(·|y) ∈ P(X ) for every y ∈ Y . It is easy to see that

EPX,Y [llog(X,Q)] =
∑

x

∑

y

PX,Y (x, y) log
1

Q(x|y)

=
∑

x

∑

y

PX,Y (x, y) log
1

PX|Y (x|y)
+
∑

x

∑

y

PX,Y (x, y) log
PX|Y (x|y)

Q(x|y)

= H(X|Y ) +DKL(PY |X‖Q)

≥ H(X|Y ) , (2.6)

with equality if and only of ζ(Y ) = PX|Y (·|y).

Now let the stochastic mapping φ(n) : Yn → Un be the encoder, i.e., ‖φ(n)‖ ≤ nR

for some prescribed complexity value R. Then, Un = φ(n)(Xn). Also, let the stochastic

mapping ψ(n) : Un → X n be the decoder. Thus, the expected logarithmic loss can be

written as

D
(a)

≥ 1

n

n∑

i=1

EPX,Y [llog(Y, ψ(U))]
(b)

≥ H(X|U) , (2.7)

where (a) follows from (2.4) and (2.5), and (b) follows due to (2.6).

Hence, the rate-distortion of the remote source coding problem under logarithmic loss

is given by the union of all pairs (R,D) that satisfy

R ≥ I(U ;Y )

D ≥ H(X|U) ,
(2.8)

where the union is over all auxiliary random variables U that satisfy the Markov chain

U −
− Y −
−X. Also, using the substitution ∆ := H(X)−D, the region can be written

equivalently as the union of all pairs (R,∆) that satisfy

R ≥ I(U ;Y )

∆ ≤ I(U ;X) .
(2.9)

This gives a clear connection between the remote source coding problem under logarithmic

and the Information Bottleneck problem, which will be explained in the next section.
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X PY |X Encoder Decoder
Y U

X̂

Figure 2.2: Information Bottleneck problem.

2.3 Information Bottleneck Problem

Tishby et al. in [17] present the Information Bottleneck (IB) framework, which can

be considered as a remote source coding problem in which the distortion measure is

logarithmic loss. By the choice of distortion metric as the logarithmic loss defined in (2.1),

the connection of the rate-distortion problem with the IB is studied in [18,52,69]. Next,

we explain the IB problem for the discrete memoryless and Gaussian cases.

2.3.1 Discrete Memoryless Case

The IB method depicted in Figure 2.2 formulates the problem of extracting the relevant

information that a random variable Y ∈ Y captures about another one X ∈ X such that

finding a representation U that is maximally informative about X (i.e., large mutual

information I(U ;X)), meanwhile minimally informative about Y (i.e., small mutual

information I(U ;Y )). The term I(U ;X) is referred as relevance and I(U ;Y ) is referred as

complexity. Finding the representation U that maximizes I(U ;X) while keeping I(U ;Y )

smaller than a prescribed threshold can be formulated as the following optimization

problem

∆(R) := max
PU|Y : I(U ;Y )≤R

I(U ;X) . (2.10)

Optimizing (2.10) is equivalent to solving the following Lagrangian problem

LIB
s : max

PU|Y
I(U ;X)− sI(U ;Y ) , (2.11)

where LIB
s can be called as the IB objective, and s designates the Lagrange multiplier.

For a known joint distribution PX,Y and a given trade-off parameter s ≥ 0, the optimal

mapping PU |Y can be found by solving the Lagrangian formulation (2.11). As shown

in [17, Theorem 4], the optimal solution for the IB problem satisfies the self-consistent

equations

p(u|y) = p(u)
exp[−DKL(PX|y‖PX|u)]∑

u p(u) exp[−DKL(PX|y‖PX|u)]
(2.12a)
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p(u) =
∑

y

p(u|y)p(y) (2.12b)

p(x|u) =
∑

y

p(x|y)p(y|u) =
∑

y

p(x, y)
p(u|y)

p(u)
. (2.12c)

The self consistent equations in (2.12) can be iterated, similar to Blahut-Arimoto algo-

rithm1, for finding the optimal mapping PU |Y which maximizes the IB objective in (2.11).

To do so, first PU |Y is initialized randomly, and then self-consistent equations (2.12) are

iterated until convergence. This process is summarized hereafter as

P
(0)
U |Y → P

(1)
U → P

(1)
X|U → P

(1)
U |Y → . . .→ P

(t)
U → P

(t)
X|U → P

(t)
U |Y → . . .→ P ?

U |Y .

2.3.2 Gaussian Case

Chechik et al. in [21] study the Gaussian Information Bottleneck problem (see also [22,

70,71]), in which the pair (X,Y) is jointly multivariate Gaussian variables of dimensions

nx, ny. Let Σx,Σy denote the covariance matrices of X,Y; and let Σx,y denote their

cross-covariance matrix.

It is shown in [21,22,70] that if X and Y are jointly Gaussian, the optimal representation

U is the linear transformation of Y and jointly Gaussian with Y 2. Hence, we have

U = AY + Z , Z ∼ N (0,Σz) . (2.13)

Thus, U ∼ N (0,Σu) with Σu = AΣyA† + Σz.

The Gaussian IB curve defines the optimal trade-off between compression and preserved

relevant information, and is known to have an analytical closed form solution. For a

given trade-off parameter s, the parameters of the optimal projection of the Gaussian IB

1Blahut-Arimoto algorithm [19, 20] is originally developed for computation of the channel capacity and the

rate-distortion function, and for these cases it is known to converge to the optimal solution. These iterative

algorithms can be generalized to many other situations, e.g., including the IB problem. However, it only converges

to stationary points in the context of IB.
2One of the main contribution of this thesis is the generalization of this result to the distributed case. The

distributed Gaussian IB problem can be considered as the vector Gaussian CEO problem that we study in

Chapter 4. In Theorem 4, we show that the optimal test channels are Gaussian when the sources are jointly

multivariate Gaussian variables.
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problem is found in [21, Theorem 3.1], and given by Σz = I and

A =





[
0† ; 0† ; 0† ; . . . ; 0†

]
0 ≤ s ≤ βc

1[
α1v

†
1 ; 0† ; 0† ; . . . ; 0†

]
βc

1 ≤ s ≤ βc
2[

α1v
†
1 ; α2v

†
2 ; 0† ; . . . ; 0†

]
βc

2 ≤ s ≤ βc
3

...
...

, (2.14)

where {v†1, . . . ,v†ny} are the left eigenvectors of Σy|xΣ−1
y sorted by their corresponding

ascending eigenvalues λ1, . . . , λny ; β
c
i = 1

1−λi are critical s values; αi are coefficients defined

by αi =
√

s(1−λi)−1

λiv
†
iΣyvi

; 0† is an ny dimensional row vectors of zeros; and semicolons separate

rows in the matrix A.

Alternatively, we can use a BA-type iterative algorithm to find the optimal relevance-

complexity tuples. By doing so, we leverage on the optimality of Gaussian test channel,

to restrict the optimization of PU|Y to Gaussian distributions, which are represented

by parameters, namely its mean and covariance (e.g., A and Σz). For a given trade-off

parameter s, the optimal representation can be found by finding its representing parameters

iterating over the following update rules

Σzt+1 =

(
Σ−1

ut|x −
(s− 1)

s
Σ−1

ut

)−1

(2.15a)

At+1 = Σzt+1Σ−1
ut|xA

t
(
I−Σx|yΣ−1

y

)
. (2.15b)

2.3.3 Connections

In this section, we review some interesting information theoretic connections that were

reported originally in [72]. For instance, it is shown that the IB problem has strong

connections with the problems of common reconstruction, information combining, the

Wyner-Ahlswede-Körner problem and the privacy funnel problem.

Common Reconstruction

Here we consider the source coding problem with side information at the decoder, also

called the Wyner-Ziv problem [73], under logarithmic loss distortion measure. Specifically,

an encoder observes a memoryless source Y and communicates with a decoder over a

rate-constrained noise-free link. The decoder also observes a statistically correlated side
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information X. The encoder uses R bits per sample to describe its observation Y to the

decoder. The decoder wants to reconstruct an estimate of Y to within a prescribed fidelity

level D. For the general distortion metric, the rate-distortion function of the Wyner-Ziv

problem is given by

RWZ
Y |X(D) = min

PU|Y : E[d(Y,ψ(U,X))]≤D
I(U ;Y |X) , (2.16)

where ψ : U × X → Ŷ is the decoding mapping.

The optimal coding coding scheme utilizes standard Wyner-Ziv compression at the

encoder, and the decoding mapping ψ is given by

ψ(U,X) = Pr[Y = y|U,X] . (2.17)

Then, note that with such a decoding mapping we have

E[llog(Y, ψ(U,X))] = H(Y |U,X) . (2.18)

Now we look at the source coding problem under the requirement such that the

encoder is able to produce an exact copy of the compressed source constructed by the

decoder. This requirement, termed as common reconstruction (CR), is introduced and

studied by Steinberg in [35] for various source coding models, including Wyner-Ziv setup

under a general distortion measure. For the Wyner-Ziv problem under logarithmic loss,

such a common reconstruction constraint causes some rate loss because the reproduction

rule (2.17) is not possible anymore. The Wyner-Ziv problem under logarithmic loss with

common reconstruction constraint can be written as follows

RCR
Y |X(D) = min

PU|Y : H(Y |U)≤D
I(U ;Y |X) , (2.19)

for some auxiliary random variable U for which the Markov chain U −
−Y −
−X holds. Due

to this Markov chain, we have I(U ;Y |X) = I(U ;Y )− I(U ;X). Besides, observe that the

constrain H(Y |U) ≤ D is equivalent to I(U ;Y ) ≥ H(Y )−D. Then, we can rewrite (2.19)

as

RCR
Y |X(D) = min

PU|Y : I(U ;Y )≥H(Y )−D
I(U ;Y )− I(U ;X) . (2.20)

Under the constraint I(U ;Y ) = H(Y )−D, minimizing I(U ;Y |X) is equivalent to maxi-

mizing I(U ;X), which connects the problem of CR readily with the IB.

In the above, the side information X is used for binning but not for the estimation at

the decoder. If the encoder ignores whether X is present at the decoder, the benefit of

binning is reduced – see the Heegard-Berger model with CR [74,75].
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Information Combining

Here we consider the IB problem, in which one seeks to find a suitable representation

U that maximizes the relevance I(U ;X) for a given prescribed complexity level, e.g.,

I(U ;Y ) = R. For this setup, we have

I(Y ;U,X) = I(Y ;U) + I(Y ;X|U)

= I(Y ;U) + I(X;Y, U)− I(X;U)

(a)
= I(Y ;U) + I(X;Y )− I(X;U) (2.21)

where (a) holds due the Markov chain U −
− Y −
−X. Hence, in the IB problem (2.11),

for a given complexity level, e.g., I(U ;Y ) = R, maximizing the relevance I(U ;X) is

equivalent of minimizing I(Y ;U,X). This is reminiscent of the problem of information

combining [36–38], where Y can be interpreted as a source transferred through two channels

PU |Y and PX|Y . The outputs of these two channels are conditionally independent given

Y ; and they should be processed in a manner such that, when combined, they capture as

much as information about Y .

Wyner-Ahlswede-Körner Problem

In the Wyner-Ahlswede-Körner problem, two memoryless sources X and Y are compressed

separately at rates RX and RY , respectively. A decoder gets the two compressed streams

and aims at recovering X in a lossless manner. This problem was solved independently by

Wyner in [39] and Ahlswede and Körner in [40]. For a given RY = R, the minimum rate

RX that is needed to recover X losslessly is given as follows

R?
X(R) = min

PU|Y : I(U ;Y )≤R
H(X|U) . (2.22)

Hence, the connection of Wyner-Ahlswede-Körner problem (2.22) with the IB (2.10) can

be written as

∆(R) = max
PU|Y : I(U ;Y )≤R

I(U ;X) = H(X) +R?
X(R) . (2.23)

Privacy Funnel Problem

Consider the pair (X, Y ) where X ∈ X be the random variable representing the private

(or sensitive) data that is not meant to be revealed at all, or else not beyond some level ∆;
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and Y ∈ Y be the random variable representing the non-private (or nonsensitive) data

that is shared with another user (data analyst). Assume that X and Y are correlated,

and this correlation is captured by the joint distribution PX,Y . Due to this correlation,

releasing data Y is directly to the data analyst may cause that the analyst can draw some

information about the private data X. Therefore, there is a trade-off between the amount

of information that the user keeps private about X and shares about Y . The aim is to find

a mapping φ : Y → U such that U = φ(Y ) is maximally informative about Y , meanwhile

minimally informative about X.

The analyst performs an adversarial inference attack on the private data X from the

disclosed data U . For a given arbitrary distortion metric d : X × X̂ → R+ and the joint

distribution PX,Y , the average inference cost gain by the analyst after observing U can be

written as

∆C(d, PX,Y ) := inf
x̂∈X̂

EPX,Y [d(X, x̂)]− inf
X̂(φ(Y ))

EPX,Y [d(X, X̂)|U ] . (2.24)

The quantity ∆C was proposed as a general privacy metric in [76], since it measures the

improvement in the quality of the inference of the private data X due to the observation

U . In [42] (see also [77]), it is shown that for any distortion metric d, the inference cost

gain ∆C can be upper bounded as

∆C(d, PX,Y ) ≤ 2
√

2L
√
I(U ;X) , (2.25)

where L is a constant. This justifies the use of the logarithmic loss as a privacy metric

since the threat under any bounded distortion metric can be upper bounded by an explicit

constant factor of the mutual information between the private and disclosed data. With

the choice of logarithmic loss, we have

I(U ;X) = H(X)− inf
X̂(U)

EPX,Y [llog(X, X̂)] . (2.26)

Under the logarithmic loss function, the design of the mapping U = φ(Y ) should strike a

right balance between the utility for inferring the non-private data Y as measured by the

mutual information I(U ;Y ) and the privacy threat about the private data X as measured

by the mutual information I(U ;X). That is refereed as the privacy funnel method [42],

and can be formulated as the following optimization

min
PU|Y : I(U ;Y )≥R

I(U ;X) . (2.27)

Notice that this is an opposite optimization to the Information Bottleneck (2.10).
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2.4 Learning via Information Bottleneck

2.4.1 Representation Learning

The performance of learning algorithms highly depends on the characteristics and properties

of the data (or features) on which the algorithms are applied. Due to this fact, feature

engineering, i.e., preprocessing operations – that may include sanitization and transferring

the data on another space – is very important to obtain good results from the learning

algorithms. On the other hand, since these preprocessing operations are both task- and

data-dependent, feature engineering is high labor-demanding and this is one of the main

drawbacks of the learning algorithms. Despite the fact that it can be sometimes considered

as helpful to use feature engineering in order to take advantage of human know-how

and knowledge on the data itself, it is highly desirable to make learning algorithms less

dependent on feature engineering to make progress towards true artificial intelligence.

Representation learning [43] is a sub-field of learning theory which aims at learning

representations by extracting some useful information from the data, possibly without using

any resources of feature engineering. Learning good representations aims at disentangling

the underlying explanatory factors which are hidden in the observed data. It may also be

useful to extract expressive low-dimensional representations from high-dimensional observed

data. The theory behind the elegant IB method may provide a better understanding of

the representation learning.

Consider a setting in which for a given data Y we want to find a representation U,

which is a function of Y (possibly non-deterministic) such that U preserves some desirable

information regarding to a task X in view of the fact that the representation U is more

convenient to work or expose relevant statistics.

Optimally, the representation should be as good as the original data for the task,

however, should not contain the parts that are irrelevant to the task. This is equivalent

finding a representation U satisfying the following criteria [78]:

(i) U is a function of Y, the Markov chain X−
−Y −
−U holds.

(ii) U is sufficient for the task X, that means I(U; X) = I(Y; X).

(iii) U discards all variability in Y that is not relevant to task X, i.e., minimal I(U; Y).

Besides, (ii) is equivalent to I(Y; X|U) = 0 due to the Markov chain in (i). Then, the

optimal representation U satisfying the conditions above can be found by solving the
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following optimization

min
PU|Y : I(Y;X|U)=0

I(U; Y) . (2.28)

However, (2.28) is very hard to solve due to the constrain I(Y; X|U) = 0. Tishby’s IB

method solves (2.28) by relaxing the constraint as I(U; X) ≥ ∆, which stands for that

the representation U contains relevant information regarding the task X larger than a

threshold ∆. Eventually, (2.28) boils down to minimizing the following Lagrangian

min
PU|Y

H(X|U) + sI(U; Y) (2.29a)

= min
PU|Y

EPX,Y

[
EPU|Y [− logPX|U] + sDKL(PU|Y‖PU)

]
. (2.29b)

In representation learning, disentanglement of hidden factors is also desirable in addition

to sufficiency (ii) and minimality (iii) properties. The disentanglement can be measured

with the total correlation (TC) [79,80], defined as

TC(U) := DKL(PU‖
∏

j

PUj) , (2.30)

where Uj denotes the j-th component of U, and TC(U) = 0 when the components of U

are independent.

In order to obtain a more disentangled representation, we add (2.30) as a penalty

in (2.29). Then, we have

min
PU|Y

EPX,Y

[
EPU|Y [− logPX|U] + sDKL(PU|Y‖PU)

]
+ βDKL

(
PU‖

∏

j

PUj

)
, (2.31)

where β is the Lagrangian for TC constraint (2.30). For the case in which β = s, it is easy

to see that the minimization (2.31) is equivalent to

min
PU|Y

EPX,Y

[
EPU|Y [− logPX|U] + sDKL

(
PU|Y‖

∏

j

PUj

)]
. (2.32)

In other saying, optimizing the original IB problem (2.29) with the assumption of inde-

pendent representations, i.e., PU =
∏

j PUj(uj), is equivalent forcing representations to be

more disentangled. Interestingly, we note that this assumption is already adopted for the

simplicity in many machine learning applications.
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2.4.2 Variational Bound

The optimization of the IB cost (2.11) is generally computationally challenging. In the case

in which the true distribution of the source pair is known, there are two notable exceptions

explained in Chapter 2.3.1 and 2.3.2: the source pair (X, Y ) is discrete memoryless [17]

and the multivariate Gaussian [21,22]. Nevertheless, these assumptions on the distribution

of the source pair severely constrain the class of learnable models. In general, only a set of

training samples {(xi, yi)}ni=1 is available, which makes the optimization of the original IB

cost (2.11) intractable. To overcome this issue, Alemi et al. in [30] present a variational

bound on the IB objective (2.11), which also enables a neural network reparameterization

for the IB problem, which will be explained in Chapter 2.4.4.

For the variational distribution QU on U (instead of unknown PU), and a variational

stochastic decoder QX|U (instead of the unknown optimal decoder PX|U), let define

Q := {QX|U , QU}. Besides, for convenience let P := {PU |Y }. We define the variational IB

cost LVIB
s (P,Q) as

LVIB
s (P,Q) := EPX,Y

[
EPU|Y [logQX|U ]− sDKL(PU |Y ‖QU)

]
. (2.33)

Besides, we note that maximizing LIB
s in (2.11) over P is equivalent to maximizing

L̃IB
s (P) := −H(X|U)− sI(U ;Y ) . (2.34)

Next lemma states that LVIB
s (P,Q) is a lower bound on L̃IB

s (P) for all distributions Q.

Lemma 1.

LVIB
s (P,Q) ≤ L̃IB

s (P) , for all pmfs Q .

In addition, there exists a unique Q that achieves the maximum maxQ LVIB
s (P,Q) =

L̃IB
s (P), and is given by

Q∗X|U = PX|U , Q∗U = PU . �

Using Lemma 1, the optimization in (2.11) can be written in term of the variational

IB cost as follows

max
P
LIB
s (P) = max

P
max

Q
LVIB
s (P,Q) . (2.35)
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2.4.3 Finite-Sample Bound on the Generalization Gap

The IB method requires that the joint distribution PX,Y is known, although this is not the

case for most of the time. In fact, there is only access to a finite sample, e.g., {(xi, yi)}ni=1.

The generalization gap is defined as the difference between the empirical risk (average

risk over a finite training sample) and the population risk (average risk over the true joint

distribution).

It has been shown in [81], and revisited in [82], that it is possible to generalize the IB as

a learning objective for finite samples in the course of bounded representation complexity

(e.g., the cardinality of U). In the following, Î(· ; ·) denotes the empirical estimate of the

mutual information based on finite sample distribution P̂X,Y for a given sample size of n.

In [81, Theorem 1], a finite-sample bound on the generalization gap is provided, and we

state it below.

Let U be a fixed probabilistic function of Y , determined by a fixed and known conditional

probability PU |Y . Also, let {(xi, yi)}ni=1 be samples of size n drawn from the joint probability

distribution PX,Y . For given {(xi, yi)}ni=1 and any confidence parameter δ ∈ (0, 1), the

following bounds hold with a probability of at least 1− δ,

|I(U ;Y )− Î(U ;Y )| ≤
(|U| log n+ log |U|)

√
log 4

δ√
2n

+
|U| − 1

n
(2.36a)

|I(U ;X)− Î(U ;X)| ≤
(3|U|+ 2) log n

√
log 4

δ√
2n

+
(|X |+ 1)(|U|+ 1)− 4

n
. (2.36b)

Observe that the generalization gaps decreases when the cardinality of representation U

get smaller. This means the optimal IB curve can be well estimated if the representation

space has a simple model, e.g., |U| is small. On the other hand, the optimal IB curve is

estimated badly for learning complex representations. It is also observed that the bounds

does not depend on the cardinality of Y . Besides, as expected for larger sample size n of

the training data, the optimal IB curve is estimated better.

2.4.4 Neural Reparameterization

The aforementioned BA-type algorithms works for the cases in which the joint distribution

of the data pair PX,Y is known. However, this is a very tight constraint which is very unusual

to meet, especially for real-life applications. Here we explain the neural reparameterization

and evolve the IB method to a learning algorithm to be able to use it with real datasets.
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Let Pθ(u|y) denote the encoding mapping from the observation Y to the bottleneck

representation U, parameterized by a DNN fθ with parameters θ (e.g., the weights

and biases of the DNN). Similarly, let Qφ(x|u) denote the decoding mapping from the

representation U to the reconstruction of the label Y, parameterized by a DNN gφ with

parameters φ. Furthermore, let Qψ(u) denote the prior distribution of the latent space,

which does not depend on a DNN. By using this neural reparameterization of the encoder

Pθ(u|y), decoder Qφ(x|u) and prior Qψ(u), the optimization in (2.35) can be written as

max
θ,φ,ψ

EPX,Y

[
EPθ(U|Y)[logQφ(X|U)]− sDKL(Pθ(U|Y)‖Qψ(U))

]
. (2.37)

Then, for a given dataset consists of n samples, i.e., D := {(xi,yi)}ni=1, the optimization

of (2.37) can be approximated in terms of an empirical cost as follows

max
θ,φ,ψ

1

n

n∑

i=1

Lemp
s,i (θ, φ, ψ) , (2.38)

where Lemp
s,i (θ, φ, ψ) is the empirical IB cost for the i-th sample of the training set D, and

given by

Lemp
s,i (θ, φ, ψ) = EPθ(Ui|Yi)[logQφ(Xi|Ui)]− sDKL(Pθ(Ui|Yi)‖Qψ(Ui)) . (2.39)

Now, we investigate the possible choices of the parametric distributions. The encoder

can be chosen as a multivariate Gaussian, i.e., Pθ(u|y) = N (u;µθ,Σθ). So, it can be

modeled with a DNN fθ, which maps the observation y to the parameters of a multivariate

Gaussian, namely the mean µθ and the covariance Σθ, i.e., (µθ,Σθ) = fθ(y). The decoder

Qφ(x|u) can be a categorical distribution parameterized by a DNN fφ with a softmax

operation in the last layer, which outputs the probabilities of dimension |X |, i.e., x̂ = gφ(u).

The prior of the latent space Qψ(u) can be chosen as a multivariate Gaussian (e.g., N (0, I))

such that the KL divergence DKL(Pθ(U|Y)‖Qψ(U)) has a closed form solution and is easy

to compute.

With the aforementioned choices, the first term of the RHS of (2.39) can be computed

using Monte Carlo sampling and the reparameterization trick [29] as

EPθ(Ui|Yi)[logQφ(Xi|Ui)] =
1

m

m∑

j=1

logQφ(xi|ui,j) , ui,j = µθ,i+Σ
1
2
θ,i·εj , εj ∼ N (0, I) ,

where m is the number of samples for the Monte Carlo sampling step. The second term of

the RHS of (2.39) – the KL divergence between two multivariate Gaussian distributions –
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has a closed form. For convenience, in the specific case in which the covariance matrix is

diagonal, i.e., Σθ,i := diag({σ2
θ,i,k}nuk=1), with nu denoting the latent space dimension, the

RHS of (2.39) can be computed as follows

1

2

nu∑

k=1

[
µθ,i,k − log σ2

θ,i,k − 1 + σ2
θ,i,k

]
. (2.40)

y
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Figure 2.3: Representation learning.

Altogether, we have the following cost to be trained over DNN parameters θ, φ using

stochastic gradient descent methods (e.g., SGD or ADAM [83]),

max
θ,φ

1

m

m∑

j=1

logQφ(xi|ui,j)−
s

2

nu∑

k=1

[
µθ,i,k − log σ2

θ,i,k − 1 + σ2
θ,i,k

]
. (2.41)

Note that, without loss of generality, the prior is fixed to Qψ(u) = N (0, I), hence the

optimization is not over the prior parameter ψ. So the VIB learning algorithm optimizes the

DNN parameters for a given training dataset D and a parameter s. After the convergence

of the parameters to θ?, φ?, the representation U can be inferred by sampling from the

encoder Pθ?(U|Y) and then the soft estimate of the target variable X can be calculated

using the decoder Qφ?(X|U) for a new data Y. An example of learning architecture which

can be trained to minimize cost (2.41) using neural networks is shown in Figure 2.3.

2.4.5 Opening the Black Box

Learning algorithms using DNNs is getting more and more popular due to its remarkable

success in many practical problems. However, it is not well studied how algorithms using

DNNs improves the state of the art, and there is no rigorous understanding about what it

is going inside of DNNs. Due to the lack of this understanding, the DNN is usually treated

as a black box and integrated into various algorithms as a block in which it is not known

exactly what it is going on. Schwartz-Ziv and Tishby in [84] (also Tishby and Zaslavsky
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in a preliminary work [82]) suggested to use an information-theoretical approach to ‘open

the black box’, where the IB principle is used to explain theory of deep learning. In [84],

it is proposed to analyze the information plane – where I(U ;X) versus I(U ;Y ) is plotted

– due to useful insights about the trade-off between prediction and compression.

(a) Tanh activation function. (b) ReLU activation function.

Figure 2.4: The evolution of the layers with the training epochs in the information plane. In the

x-axis, the mutual information between each layer and the input, i.e., I(Uk;Y ), is plotted. In the

y-axis, the mutual information between each layer and the label, i.e., I(Uk;X), is plotted. The

colors indicate training time in epochs. The curve on the far corresponds the mutual information

with the output layer; and the curve on the far right corresponds the mutual information with

the input layer. Figures are taken from [85].

Now consider a NN with K layers and let Uk be a random variable denoting the

representation, which is the output of k-th hidden layer. Then, the Markov chain

X −
− Y −
− U1 −
− · · · −
− UK −
− X̂ holds. In particular, a fully connected NN with

5 hidden layers with dimensions 12 – 10 – 7 – 5 – 4 – 3 – 2 is trained using SGD to make a

binary classification from a 12-dimensional input. All except the last layers are activated

with the hyperbolic tangent function (tanh); and sigmoid function is used for the last

(i.e., output) layer. In order to calculate the mutual information of layers with respect

to input and output variables, neuron’s tanh output activations are binned into 30 equal

intervals between -1 and 1. Then, these discretized values in each layer is used to calculate

the joint distributions PUi,Y and PUi,X over the 212 equally likely input patterns and true

output labels. Using these discrete joint distributions, the mutual informations I(Uk;Y )
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and I(Uk;X) are calculated, and depicted in Figure 2.4a. In Figure 2.4a, a transition is

observed between an initial fitting phase and a subsequent compression phase. In the

fitting phase, the relevance between representations in each layer and label (e.g., the

mutual information I(Uk;X)) increases. The fitting phase is shorter, needs less epochs.

During the compression phase, the mutual information between representations and the

input, i.e., I(Uk;Y ), decreases.

In a recent work [85], Saxe et al. reports that these fitting and compression phases

mentioned in [84] are not observed for all activation functions. To show that, the same

experiment is repeated, however the tanh activations are interchanged with ReLU. The

mutual information between each layer with the input Y and the label X over epochs is

plotted in Figure 2.4b. It is observed that except the curve on the far left in Figure 2.4b

which corresponds the output layer with sigmoid activation, the mutual information with

the input monotonically increases in all ReLU layers, hence the compression phase is not

visible here.

2.5 An Example Application: Text clustering

In this section, we present a deterministic annealing-like algorithm [32, Chapter 3.2], and

also an application of it to the text clustering. The annealing-like IB is an algorithm which

works by tuning the parameter s. First, we recall the IB objective

LIB
s : min

PU|Y
I(U ;Y )− sI(U ;X) . (2.42)

When s→ 0, the representation U is designed with the most compact form, i.e., |U| = 1,

which corresponds the maximum compression. By gradually increasing the parameter s,

the emphasization on the relevance term I(U ;X) increases, and at a critical value of s,

the optimization focuses on not only the compression but also the relevance term. To

fulfill the demand on the relevance term, this results that the cardinality of U bifurcates.

This is referred as a phase transition of the system. The further increases in the value of s

will cause other phase transitions, hence additional splits of U until it reaches the desired

level, e.g., |U| = |X |.
The main difficulty is how to identify these critical phase transition values of s. In [32],

the following procedure offered for detecting phase transition values: At each step, the
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previous solution – which is found for the previous value of s – is taken as an initialization;

and each value of U is duplicated. Let u1 and u2 be such duplicated values of u. Then,

p(u1|y) = p(u|y)

(
1

2
+ α ε̂(u, y)

)

p(u2|y) = p(u|y)

(
1

2
− α ε̂(u, y)

)
,

(2.43)

where ε̂(u, x) is a random noise term uniformly selected in the range [−1/2, 1/2] and α

is a small scalar. Thus, the p(u1|y) and p(u2|y) is slightly perturbed values of p(u|y). If

these perturbed version of distributions are different enough, i.e., D
( 1

2
, 1
2

)

JS (PX|U1‖PX|U2) ≥ τ ,

where τ is a threshold value and DJS is the Jensen - Shannon divergence given by

D
(π1,π2)
JS (PX , QX) = π1DKL(PX‖P̃X) + π2DKL(QX‖P̃X), where P̃X = π1PX + π2QX ,

(2.44)

the corresponding value of s is a phase transition value and u is splitted into u1 and u2.

Otherwise, both perturbed values collapse to the same solution. Finally, the value of s

is increased and the whole procedure is repeated. This algorithm is called deterministic

annealing IB and stated in Algorithm 1. We note that tuning s parameter is very critical,

such that the step size in update of s should be chosen carefully, otherwise cluster splits

(phase transitions) might be skipped.

Algorithm 1 Deterministic annealing-like IB algorithm

1: input: pmf PX,Y , parameters α, τ, εs.

2: output: Optimal P ?U |Y . (soft partitions U of Y into M clusters)

3: initialization Set s→ 0 and |U| = 1, p(u|y) = 1, ∀y ∈ Y.

4: repeat

5: Update s, s = (1 + εs)sold.

6: Duplicate clusters according to (2.43).

7: Apply IB algorithm by using iteration rules (2.12).

8: Check for splits. If D
( 1

2
, 1
2
)

JS (PX|U1
‖PX|U2

) ≥ τ , then U ← {U \ {u}} ∪ {u1, u2}.
9: until |U| ≥M .

Now, we apply the annealing-like algorithm to the 20 newsgroups dataset for word

clustering according to their topics. For convenience, we use a tiny version of 20 newsgroups

dataset, in which the most informative 100 words selected which come from 4 different

topics listed in Table 2.1. By using the the number of occurrences of words in topics, the

joint probability PX,Y is calculated. With the choice of parameters α = 0.005, εs = 0.001
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and τ = 1/s, the annealing IB algorithm is run and Figure 2.5 shows the corresponding IB

curve, as well as, the phase transitions. Besides, the resulting complexity-relevance pairs

are plotted with the application of K-means algorithm for different number of clusters.

The obtained clusters are given in Table 2.2.
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Figure 2.5: Annealing IB algorithm for text clustering.

Topics Sub-Topics

Group 1 (comp) comp.graphics, comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware,

comp.sys.mac.hardware, comp.windows.x

Group 2 (rec) rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey

Group 3 (sci) sci.crypt, sci.electronics, sci.med, sci.spacesci.space

Group 4 (talk) talk.politics.misc, talk.politics.guns, talk.politics.mideast, talk.religion.misc

Table 2.1: The topics of 100 words in the the subgroup of 20 newsgroup dataset.

Words

Cluster 1 card, computer, data, disk, display, dos, drive, driver, email, files,

format, ftp, graphics, help, image, mac, memory, number, pc, phone,

problem, program, scsi, server, software, system, version, video, windows

Cluster 2 baseball, bmw, car, engine, fans, games, hit, hockey,

honda, league, nhl, players, puck, season, team, win, won

Cluster 3 cancer, disease, doctor, insurance, launch, lunar, mars, medicine, mission, moon, msg, nasa,

orbit, patients, research, satellite, science, shuttle, solar, space, studies, technology, vitamin

Cluster 4 aids, bible, case, children, christian, course, dealer, earth, evidence, fact,

food, god, government, gun, health, human, israel, jesus, jews, law, oil,

power, president, question, religion, rights, state, university, war, water, world

Table 2.2: Clusters obtained through the application of the annealing IB algorithm on the

subgroup of 20 newsgroup dataset.
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2.6 Design of Optimal Quantizers

The IB method has been used in many fields, and in this section we present an application

in communications, which is an optimal quantizer design based on the IB method [86, 87].

The main idea is adapted from the deterministic IB, which was first proposed in [32]

for text clustering (which is presented in the previous section). Here, the IB method

compresses an observation Y to a quantized variable U while preserving the relevant

information with a random variable X. We consider the case in which the variable U is

quantized with q ∈ N bits, i.e., |U| = 2q. The aim is to find the deterministic quantizer

mapping PU |Y which maps the discrete observation Y to a quantized variable U which

maximizes the relevance I(U ;X) under a cardinality constraint |U|. This is equivalent to

finding the optimal clustering of Y which maximizes the mutual information I(U ;X).

So we initialize randomly by grouping Y into |U| clusters. The algorithm takes one of

the elements into a new cluster – so-called the singleton cluster. Due to this change, the

probabilities PX|U and PU are changed, and the new values are calculated using the IB

updates rules (2.12). Then, the deterministic IB is applied to decide on which one of the

original |U| clusters that the singleton cluster will be merged. The possible |U| choices

corresponds to merger costs given by

C(Ysing,Yk) = ψD
(π1,π2)
JS (PX|y‖PX|t) , k = 1, . . . , |U| , (2.45)

where D
(π1,π2)
JS is the Jensen - Shannon divergence given in (2.44) and

ψ = Pr(Y = y) + Pr(U = u) (2.46a)

π1 = Pr(Y = y)/ψ (2.46b)

π2 = Pr(U = u)/ψ . (2.46c)

The singleton cluster merges with the one which has a smaller merger cost.

The algorithm is a greedy algorithm, which repeats the draw and merge steps for all Y

until the obtained clusters are the same. Since the IB method does not converge to the

global optimum, it should be run several times and the clustering (quantization) should

be done with the best outcome, i.e., the mapping which maximize the IB cost (2.11).

Now we consider an example of finding the optimum channel quantizers for the binary

input additive white Gaussian noise (AWGN) channel [86, Section III], in which a code
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bit x ∈ {0, 1} from a binary LDPC codeword is transmitted over a binary symmetric

AWGN channel with binary shift keying (BPSK) modulation, i.e., s(x) = −2x + 1.

Symbol s(x) is transmitted over the channel, and the continuous channel output y is

observed. The prior distribution of the code bits is assumed to be Bernoulli-(1/2), i.e.,

p(x = 0) = p(x = 1) = 1/2. Then the joint distribution p(x, y) is given by

p(x, y) =
1

2
√

2πσ2
n

exp

(
−|y − s(x)|2

2σ2
n

)
, (2.47)

where σ2
n is the channel noise variance. We note that the deterministic method offered

for the optimum channel quantizers is valid for only the discrete variables, so Y needs

to be discretized with a fine resolution. The channel output is discretized into uniformly

spaced representation values. Figure 2.6 illustrates an example in which the channel

output interval [−M,M ] is discretized into 20 values, i.e., |Y| = 20, and these values are

represented by using unsigned integers.

−M
|

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
M

Figure 2.6: Discretization of the channel output.

|
0 1 2 3

|
4 5 6 7

|
8 9

|
10 11

|
12 13 14 15

|
16 17 18 19

|
Y0 Y1 Y2 Y3 Y4 Y5

Figure 2.7: Visualization of clusters {Yk}|U|k=1 separated by boundaries |, that are to be optimized.

The idea is to build a quantizer which uses a deterministic mapping PU |Y which maps

from the discrete output Y to the quantized value U , such that the quantized values are as

much as informative about X (i.e., large mutual information I(U : X)) under the resolution

constraint of the quantizer, i.e., |U|. Finding the mapping PU |Y which maximizes I(U ;X)

corresponds to finding the optimum boundaries separating the clusters Yk, as illustrated

in Figure 2.7. For example, after the random initialization of clusters, at the first step,

the rightmost element of Y0 is taken into the singleton cluster, and the merger costs are

calculated for putting it back into Y0 and putting it to its neighbor cluster Y1. The cluster

which makes the merger cost smaller is chosen. At each iteration, an element on the border

is taken into the singleton cluster, which will be merged into the one with a smaller cost

32



CHAPTER 2. LOGARITHMIC LOSS COMPRESSION AND CONNECTIONS

among the original and neighbor clusters. These steps are repeated until the resulting

cluster does not change anymore. This algorithm is detailed in [86, Algorithm 1].

In digital communication systems, a continuous channel output is fed into an analog-

to-digital converter to obtain a discrete valued sample – depicted in Figure 2.8. In theory,

it is assumed that the quantizer has a very high resolution so the effect of quantization is

generally ignored. However, this is not the case in real life. A few bits are desired in the

implementations, hence the quantizer becomes a bottleneck in the communication system.

X PY |X
Quantizer
PU |Y

Y
U

Figure 2.8: Memoryless channel with subsequent quantizer.

The state of the art low-density parity-check (LDPC) decoders execute the node

operations by processing the quasi-continuous LLRs, which makes belief propagation

decoding challenging. The IB method is proposed in [86] to overcome this complexity

issues. The main idea is to pass compressed but highly informative integer-valued messages

along the edges of a Tanner graph. To do so, Lewandowsky and Bauch use the IB

method [86], and construct discrete message passing decoders for LDPC codes; and they

showed that these decoders outperform state of the art decoders.

We close this section by mentioning the implementation issues of DNNs which are used

for many artificial intelligence (AI) algorithms. The superior success of DNNs comes at

the cost of high complexity (computational- and memory-wise). Although the devices,

e.g., smartphones, get more and more powerful compared to a few year ago with the

significant improvement of the chipsets, the implementation of DNNs is still a challenging

task. The proposed approach seems particularly promising for the implementation of DNN

algorithms on chipsets.
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Chapter 3

Discrete Memoryless CEO Problem

with Side Information

In this chapter, we study the K-encoder DM CEO problem with side information shown

in Figure 3.1. Consider a (K + 2)-dimensional memoryless source (X, Y0, Y1, . . . , YK)

with finite alphabet X × Y0 × Y1 × . . .× YK and joint probability mass function (pmf)

PX,Y0,Y1,...,YK (x, y0, y1, . . . , yK). It is assumed that for all S ⊆ K := {1, . . . , K},

YS −
− (X, Y0)−
− YSc , (3.1)

forms a Markov chain in that order. Also, let {(Xi, Y0,i, Y1,i, . . . , YK,i)}ni=1 be a sequence of

n independent copies of (X, Y0, Y1, . . . , YK), i.e., (Xn, Y n
0 , Y

n
1 , . . . , Y

n
K) ∼∏n

i=1 PX,Y0,Y1,...,YK

(xi, y0,i, y1,i, . . . , yK,i). In the model studied in this chapter, Encoder (or agent) k, k ∈ K,

observes the memoryless source Y n
k and uses Rk bits per sample to describe it to the

decoder. The decoder observes a statistically dependent memoryless side information

stream, in the form of the sequence Y n
0 , and wants to reconstruct the remote source Xn

to within a prescribed fidelity level. Similar to [10], in this thesis we take the reproduction

alphabet X̂ to be equal to the set of probability distributions over the source alphabet

X . Thus, for a vector X̂n ∈ X̂ n, the notation X̂j(x) means the jth-coordinate of X̂n,

1 ≤ j ≤ n, which is a probability distribution on X , evaluated for the outcome x ∈ X . In

other words, the decoder generates ‘soft’ estimates of the remote source’s sequences. We

consider the logarithmic loss distortion measure defined as in (2.5), where the letter-wise

distortion measure is given by (2.1).
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Xn PY0,Y1,...,YK |X

Encoder 1

Encoder 2

Encoder K

Yn
1

Yn
2

Yn
K

D
ec
o
d
er

R1

R2

RK

...

X̂n

Yn
0

Figure 3.1: CEO source coding problem with side information.

Definition 1. A rate-distortion code (of blocklength n) for the model of Figure 3.1 consists

of K encoding functions

φ
(n)
k : Ynk → {1, . . . ,M (n)

k } , for k = 1, . . . , K ,

and a decoding function

ψ(n) : {1, . . . ,M (n)
1 } × . . .× {1, . . . ,M (n)

K } × Yn0 → X̂ n . �

Definition 2. A rate-distortion tuple (R1, . . . , RK , D) is achievable for the DM CEO source

coding problem with side information if there exist a blocklength n, encoding functions

{φ(n)
k }Kk=1 and a decoding function ψ(n) such that

Rk ≥
1

n
logM

(n)
k , for k = 1, . . . , K ,

D ≥ E
[
d(n)
(
Xn, ψ(n)(φ

(n)
1 (Y n

1 ), . . . , φ
(n)
K (Y n

K), Y n
0 )
)]
.

The rate-distortion region RD?CEO of the model of Figure 3.1 is defined as the closure of

all non-negative rate-distortion tuples (R1, . . . , RK , D) that are achievable. �

3.1 Rate-Distortion Region

The following theorem gives a single-letter characterization of the rate-distortion region

RD?CEO of the DM CEO problem with side information under logarithmic loss measure.

Definition 3. For given tuple of auxiliary random variables (U1, . . . , UK , Q) with distri-

bution PUK,Q(uK, q) such that PX,Y0,YK,UK,Q(x, y0, yK, uK, q) factorizes as

PX,Y0(x, y0)
K∏

k=1

PYk|X,Y0(yk|x, y0) PQ(q)
K∏

k=1

PUk|Yk,Q(uk|yk, q) , (3.2)
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define RDCEO(U1, . . . , UK , Q) as the set of all non-negative rate-distortion tuples (R1, . . . ,

RK , D) that satisfy, for all subsets S ⊆ K,

∑

k∈S
Rk +D ≥

∑

k∈S
I(Yk;Uk|X, Y0, Q) +H(X|USc , Y0, Q) . �

Theorem 1. The rate-distortion region for the DM CEO problem under logarithmic loss

is given by

RD?CEO =
⋃
RDCEO(U1, . . . , UK , Q) ,

where the union is taken over all tuples (U1, . . . , UK , Q) with distributions that satisfy (3.2).

Proof. The proof of Theorem 1 is given in Appendix A.

Remark 1. To exhaust the region of Theorem 1, it is enough to restrict {Uk}Kk=1 and Q

to satisfy |Uk| ≤ |Yk| for k ∈ K and |Q| ≤ K + 2 (see [10, Appendix A]). �

Remark 2. Theorem 1 extends the result of [10, Theorem 10] to the case in which the

decoder has, or observes, its own side information stream Y n
0 and the agents’ observations

are conditionally independent given the remote source Xn and Y n
0 , i.e., Y n

S −
−(Xn, Y n
0 )−
−Y n

Sc

holds for all subsets S ⊆ K. The rate-distortion region of this problem can be obtained

readily by applying [10, Theorem 10], which provides the rate-distortion region of the model

without side information at decoder, to the modified setting in which the remote source

is X̃ = (X,Y0), another agent (agent K + 1) observes YK+1 = Y0 and communicates

at large rate RK+1 = ∞ with the CEO, which wishes to estimates X̃ to within average

logarithmic distortion D and has no own side information stream1. �

3.2 Estimation of Encoder Observations

In this section, we focus on the two-encoder case, i.e., K = 2. Suppose the decoder wants

to estimate the encoder observations (Y1, Y2), i.e., X = (Y1, Y2). Note that in this case the

side information Y0 can be chosen arbitrarily correlated to (Y1, Y2) and is not restricted to

satisfy any Markov structure, since the Markov chain Y1 −
− (X, Y0)−
− Y2 is satisfied for

all choices of Y0 that are arbitrarily correlated with (Y1, Y2).

1Note that for the modified CEO setting the agents’ observations are conditionally independent given the

remote source X̃.
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If a distortion of D bits is tolerated on the joint estimation of the pair (Y1, Y2), then

the achievable rate-distortion region can be obtained easily from Theorem 1, as a slight

variation of the Slepian-Wolf region, namely the set of non-negative rate-distortion triples

(R1, R2, D) such that

R1 ≥ H(Y1|Y0, Y2)−D (3.3a)

R2 ≥ H(Y2|Y0, Y1)−D (3.3b)

R1 +R2 ≥ H(Y1, Y2|Y0)−D . (3.3c)

The following theorem gives a characterization of the set of rate-distortion quadruples

(R1, R2, D1, D2) that are achievable in the more general case in which a distortion D1 is

tolerated on the estimation of the source component Y1 and a distortion D2 is tolerated

on the estimation of the source component Y2, i.e., the rate-distortion region of the

two-encoder DM multiterminal source coding problem with arbitrarily correlated side

information at the decoder.

Theorem 2. If X = (Y1, Y2), the component Y1 is to be reconstructed to within average

logarithmic loss distortion D1 and the component Y2 is to be reconstructed to within

average logarithmic loss distortion D2, the rate-distortion region RD?MT of the associated

two-encoder DM multiterminal source coding problem with correlated side information at

the decoder under logarithmic loss is given by the set of all non-negative rate-distortion

quadruples (R1, R2, D1, D2) that satisfy

R1 ≥ I(U1;Y1|U2, Y0, Q)

R2 ≥ I(U2;Y2|U1, Y0, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Y0, Q)

D1 ≥ H(Y1|U1, U2, Y0, Q)

D2 ≥ H(Y2|U1, U2, Y0, Q) ,

for some joint measure of the form PY0,Y1,Y2(y0, y1, y2)PQ(q)PU1|Y1,Q(u1|y1, q)PU2|Y2,Q(u2|y2, q).

Proof. The proof of Theorem 2 is given in Appendix B.

Remark 3. The auxiliary random variables of Theorem 2 are such that U1 −
− (Y1, Q)−

− (Y0, Y2, U2) and U2 −
− (Y2, Q)−
− (Y0, Y1, U1) form Markov chains. �
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Remark 4. The result of Theorem 2 extends that of [10, Theorem 6] for the two-encoder

source coding problem with average logarithmic loss distortion constraints on Y1 and Y2

and no side information at the decoder to the setting in which the decoder has its own side

information Y0 that is arbitrarily correlated with (Y1, Y2). It is noteworthy that while the

Berger-Tung inner bound is known to be non-tight for more than two encoders, as it is

not optimal for the lossless modulo-sum problem of Korner and Marton [88], Theorem 2

shows that it is tight for the case of three encoders if the observation of the third encoder

is encoded at large (infinite) rate. �

In the case in which the sources Y1 and Y2 are conditionally independent given Y0, i.e.,

Y1 −
− Y0−
− Y2 forms a Markov chain, it can be shown easily that the result of Theorem 2

reduces to the set of rates and distortions that satisfy

R1 ≥ I(U1;Y1)− I(U1;Y0) (3.4)

R2 ≥ I(U2;Y2)− I(U2;Y0) (3.5)

D1 ≥ H(Y1|U1, Y0) (3.6)

D2 ≥ H(Y2|U2, Y0) , (3.7)

for some measure of the form PY0,Y1,Y2(y0, y1, y2)PU1|Y1(u1|y1)PU2|Y2(u2|y2).

This result can also be obtained by applying [89, Theorem 6] with the reproduction

functions therein chosen as

fk(Uk, Y0) := Pr[Yk = yk|Uk, Y0] , for k = 1, 2 . (3.8)

Then, note that with this choice we have

E[d(Yk, fk(Uk, Y0)] = H(Yk|Uk, Y0) , for k = 1, 2 . (3.9)

3.3 An Example: Distributed Pattern Classification

Consider the problem of distributed pattern classification shown in Figure 3.2. In this

example, the decoder is a predictor whose role is to guess the unknown class X ∈ X of

a measurable pair (Y1, Y2) ∈ Y1 × Y2 on the basis of inputs from two learners as well as

its own observation about the target class, in the form of some correlated Y0 ∈ Y0. It

is assumed that Y1 −
− (X, Y0) −
− Y2. The first learner produces its input based only
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X PY0,Y1,Y2|X

QU1|Y1

QU2|Y2

QX̂|U1,U2,Y0

Y1

Y2

Y0

R1

R2

X̂ ∈ X

Figure 3.2: An example of distributed pattern classification.

on Y1 ∈ Y1; and the second learner produces its input based only on Y2 ∈ Y2. For the

sake of a smaller generalization gap2, the inputs of the learners are restricted to have

description lengths that are no more than R1 and R2 bits per sample, respectively. Let

QU1|Y1 : Y1 −→ P(U1) and QU2|Y2 : Y2 −→ P(U2) be two (stochastic) such learners. Also,

let QX̂|U1,U2,Y0
: U1 ×U2 ×Y0 −→ P(X ) be a soft-decoder or predictor that maps the pair

of representations (U1, U2) and Y0 to a probability distribution on the label space X . The

pair of learners and predictor induce a classifier

QX̂|Y0,Y1,Y2
(x|y0, y1, y2) =

∑

u1∈U1

QU1|Y1(u1|y1)
∑

u2∈U2

QU2|Y2(u2|y2)QX̂|U1,U2,Y0
(x|u1, u2, y0)

= EQU1|Y1
EQU2|Y2

[QX̂|U1,U2,Y0
(x|U1, U2, y0)] , (3.10)

whose probability of classification error is defined as

PE(QX̂|Y0,Y1,Y2
) = 1− EPX,Y0,Y1,Y2

[QX̂|Y0,Y1,Y2
(X|Y0, Y1, Y2)] . (3.11)

Let RD?CEO be the rate-distortion region of the associated two-encoder DM CEO problem

with side information as given by Theorem 1. The following proposition shows that there

exists a classifier Q?
X̂|Y0,Y1,Y2

for which the probability of misclassification can be upper

bounded in terms of the minimal average logarithmic loss distortion that is achievable for

the rate pair (R1, R2) in RD?CEO.

2The generalization gap, defined as the difference between the empirical risk (average risk over a finite training

sample) and the population risk (average risk over the true joint distribution), can be upper bounded using the

mutual information between the learner’s inputs and outputs, see, e.g., [90,91] and the recent [92], which provides a

fundamental justification of the use of the minimum description length (MDL) constraint on the learners mappings

as a regularizer term.
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Proposition 1. For the problem of distributed pattern classification of Figure 3.2, there

exists a classifier Q?
X̂|Y0,Y1,Y2

for which the probability of classification error satisfies

PE(Q
?
X̂|Y0,Y1,Y2

) ≤ 1− exp
(
− inf{D : (R1, R2, D) ∈ RD?CEO}

)
,

where RD?CEO is the rate-distortion region of the associated two-encoder DM CEO problem

with side information as given by Theorem 1.

Proof. Let a triple mappings (QU1|Y1 , QU2|Y2 , QX̂|U1,U2,Y0
) be given. It is easy to see that the

probability of classification error of the classifier QX̂|Y0,Y1,Y2
as defined by (3.11) satisfies

PE(QX̂|Y0,Y1,Y2
) ≤ EPX,Y0,Y1,Y2

[− logQX̂|Y0,Y1,Y2
(X|Y0, Y1, Y2)] . (3.12)

Applying Jensen’s inequality on the right hand side (RHS) of (3.12), using the concavity

of the logarithm function, and combining with the fact that the exponential function

increases monotonically, the probability of classification error can be further bounded as

PE(QX̂|Y0,Y1,Y2
) ≤ 1− exp

(
− EPX,Y0,Y1,Y2

[− logQX̂|Y0,Y1,Y2
(X|Y0, Y1, Y2)]

)
. (3.13)

Using (3.10) and continuing from (3.13), we get

PE(QX̂|Y0,Y1,Y2
) ≤ 1− exp

(
− EPX,Y0,Y1,Y2

[− logEQU1|Y1
EQU2|Y2

[QX̂|U1,U2,Y0
(X|U1, U2, Y0)]]

)

≤ 1− exp
(
− EPX,Y0,Y1,Y2

EQU1|Y1
EQU2|Y2

[− log[QX̂|U1,U2,Y0
(X|U1, U2, Y0)]]

)
,

(3.14)

where the last inequality follows by applying Jensen’s inequality and using the concavity

of the logarithm function.

Noticing that the term in the exponential function in the RHS of (3.14),

D(QU1|Y1 , QU1|Y1 , QX̂|U1,U2,Y0
) := EPXY0Y1Y2

EQU1|Y1
EQU2|Y2

[− logQX̂|U1,U2,Y0
(X|U1, U2, Y0)] ,

is the average logarithmic loss, or cross-entropy risk, of the triple (QU1|Y1 , QU2|Y2 , QX̂|U1,U2,Y0
);

the inequality (3.14) implies that minimizing the average logarithmic loss distortion leads

to classifier with smaller (bound on) its classification error. Using Theorem 1, the min-

imum average logarithmic loss, minimized over all mappings QU1|Y1 : Y1 −→ P(U1)

and QU2|Y2 : Y2 −→ P(U2) that have description lengths no more than R1 and R2 bits

per-sample, respectively, as well as all choices of QX̂|U1,U2,Y0
: U1 × U2 × Y0 −→ P(X ), is

D?(R1, R2) = inf{D : (R1, R2, D) ∈ RD?CEO} . (3.15)
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Thus, the direct part of Theorem 1 guarantees the existence of a classifier Q?
X̂|Y0,Y1,Y2

whose

probability of error satisfies the bound given in Proposition 1.

To make the above example more concrete, consider the following scenario where Y0

plays the role of information about the sub-class of the label class X ∈ {0, 1, 2, 3}. More

specifically, let S be a random variable that is uniformly distributed over {1, 2}. Also,

let X1 and X2 be two random variables that are independent between them and from S,

distributed uniformly over {1, 3} and {0, 2} respectively. The state S acts as a random

switch that connects X1 or X2 to X, i.e.,

X = XS . (3.16)

That is, if S = 1 then X = X1, and if S = 2 then X = X2. Thus, the value of S indicates

whether X is odd- or even-valued (i.e., the sub-class of X). Also, let

Y0 = S (3.17a)

Y1 = XS ⊕ Z1 (3.17b)

Y2 = XS ⊕ Z2 , (3.17c)

where Z1 and Z2 are Bernoulli-(p) random variables, p ∈ (0, 1), that are independent

between them, and from (S,X1, X2), and the addition is modulo 4. For simplification,

we let R1 = R2 = R. We numerically approximate the set of (R,D) pairs such that

(R,R,D) is in the rate-distortion region RD?CEO corresponding to the CEO network of

this example. The algorithm that we use for the computation will be described in detail in

Chapter 5.1.1. The lower convex envelope of these (R,D) pairs is plotted in Figure 3.3a

for p ∈ {0.01, 0.1, 0.25, 0.5}. Continuing our example, we also compute the upper bound

on the probability of classification error according to Proposition 1. The result is given in

Figure 3.3b. Observe that if Y1 and Y2 are high-quality estimates of X (e.g., p = 0.01),

then a small increase in the complexity R results in a large relative improvement of the

(bound on) the probability of classification error. On the other hand, if Y1 and Y2 are

low-quality estimates of X (e.g., p = 0.25) then we require a large increase of R in order

to obtain an appreciable reduction in the error probability. Recalling that larger R implies

lesser generalization capability [90–92], these numerical results are consistent with the

fact that classifiers should strike a good balance between accuracy and their ability to
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generalize well to unseen data. Figure 3.3c quantifies the value of side information S given

to both learners and predictor, none of them, or only the predictor, for p = 0.25.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

D

p = 0.50
p = 0.25
p = 0.10
p = 0.01

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R

U
pp

er
B

ou
nd

on
P
E

p = 0.50
p = 0.25
p = 0.10
p = 0.01

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R

U
pp

er
B

ou
nd

on
P
E

SI nowhere
SI at both Enc. and Dec.
SI at only Dec.

(c)

Figure 3.3: Illustration of the bound on the probability of classification error of Proposition 1 for

the example described by (3.16) and (3.17).

(a) Distortion-rate function of the network of Figure 3.2 computed for p ∈ {0.01, 0.1, 0.25, 0.5}.
(b) Upper bound on the probability of classification error computed according to Proposition 1.

(c) Effect of side information (SI) Y0 when given to both learners and the predictor, only the

predictor or none of them.

3.4 Hypothesis Testing Against Conditional Independence

Consider the multiterminal detection system shown in Figure 3.4, where a memoryless

vector source (X, Y0, Y1, . . . , YK), K ≥ 2, has a joint distribution that depends on two

hypotheses, a null hypothesis H0 and an alternate hypothesis H1. A detector that observes

directly the pair (X, Y0) but only receives summary information of the observations

(Y1, . . . , YK), seeks to determine which of the two hypotheses is true. Specifically, Encoder

k, k = 1, . . . , K, which observes an i.i.d. string Y n
k , sends a message Mk to the detector a

finite rate of Rk bits per observation over a noise-free channel; and the detector makes its

decision between the two hypotheses on the basis of the received messages (M1, . . . ,MK)

as well as the available pair (Xn, Y n
0 ). In doing so, the detector can make two types of

error: Type I error (guessing H1 while H0 is true) and Type II error (guessing H0 while H1

is true). The Type II error probability decreases exponentially fast with the size n of the

i.i.d. strings, say with an exponent E; and, classically, one is interested is characterizing

the set of achievable rate-exponent tuples (R1, . . . , RK , E) in the regime in which the
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Figure 3.4: Distributed hypothesis testing against conditional independence.

probability of the Type I error is kept below a prescribed small value ε. This problem,

which was first introduced by Berger [93], and then studied further in [65,66,94], arises

naturally in many applications (for recent developments on this topic, the reader may refer

to [16,67,68,95–99] and references therein).

In this section, we are interested in a class of the hypothesis testing problem studied

in [16]3 obtained by restricting the joint distribution of the variables to satisfy the Markov

chain

YS −
− (X, Y0)−
− YSc , for all S ⊆ K := {1, . . . , K} , (3.18)

under the null hypothesis H0; and X and (Y1, . . . , YK) are independent conditionally given

Y0 under the alternate hypothesis H1, i.e.,

H0 : PX,Y0,Y1...,YK = PX,Y0

K∏

i=1

PYk|X,Y0 (3.19a)

H1 : QX,Y0,Y1...,YK = PY0PX|Y0PY1,...,YK |Y0 . (3.19b)

Let {(Xi, Y0,i, Y1,i, . . . , YK,i)}ni=1 be an i.i.d. sequence of random vectors with the distribu-

tion at a single stage being the same as the generic vector (X, Y0, Y1, . . . , YK). As shown

in Figure 3.4, Encoder k ∈ K observes Y n
k and then sends a message to the detector using

an encoding function

φ̆
(n)
k : Ynk → {1, . . . ,M (n)

k } . (3.20)

3In fact, the model of [12] also involves a random variable YK+1, which is chosen here to be deterministic as it

is not relevant for the analysis and discussion that will follow in this thesis (see Remark 5).
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The pair (Xn, Y n
0 ) is available at the detector which uses it together with the messages

from the encoders to make a decision between the two hypotheses based on a decision rule

ψ̆(n) : {1, . . . ,M (n)
1 } × . . .× {1, . . . ,M (n)

K } × X n × Yn0 → {H0, H1} . (3.21)

The mapping (3.21) is such that ψ̆(n)(m1, . . . ,mK , x
n, yn0 ) = H0 if (m1, . . . ,mK , x

n, yn0 ) ∈
An and H1 otherwise, with

An ⊆
n∏

k=1

{1, . . . ,M (n)
k } × X n × Yn0 ,

designating the acceptance region for H0. The encoders {φ̆(n)
k }Kk=1 and the detector ψ̆(n)

are such that the Type I error probability does not exceed a prescribed level ε ∈ [0, 1], i.e.,

P
φ̆

(n)
1 (Y n1 ),...,φ̆

(n)
K (Y nK),Xn,Y n0

(Acn) ≤ ε , (3.22)

and the Type II error probability does not exceed β, i.e.,

Q
φ̆

(n)
1 (Y n1 ),...,φ̆

(n)
K (Y nK),Xn,Y n0

(An) ≤ β . (3.23)

Definition 4. A rate-exponent tuple (R1, . . . , RK , E) is achievable for a fixed ε ∈ [0, 1]

and any positive δ if there exist a sufficiently large blocklength n, encoders {φ̆(n)
k }Kk=1 and a

detector ψ̆(n) such that

1

n
logM

(n)
k ≤ Rk + δ , for k = 1, . . . , K , (3.24a)

− 1

n
log β ≥ E − δ . (3.24b)

The rate-exponent region RHT is defined as

RHT :=
⋂

ε>0

RHT,ε , (3.25)

where RHT,ε is the set of all achievable rate-exponent vectors for a fixed ε ∈ (0, 1]. �

We start with an entropy characterization of the rate-exponentRHT as defined by (3.25).

Let

R? =
⋃

n

⋃

{φ̆(n)
k }k∈K

R?
(
n, {φ̆(n)

k }k∈K
)
, (3.26)
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where

R?
(
n, {φ̆(n)

k }k∈K
)

=

{
(R1, . . . , RK , E) s.t.

Rk ≥
1

n
log |φ̆(n)

k (Y n
k )| , for k = 1, . . . , K ,

E ≤ 1

n
I({φ̆(n)

k (Y n
k )}k∈K;Xn|Y n

0 )

}
.

We have the following proposition, whose proof is essentially similar to that of [65, Theorem

5] and, hence, is omitted.

Proposition 2. RHT = R? . �

Now, recall the CEO source coding problem under logarithmic loss of Figure 3.1 and

its rate-distortion region RD?CEO as given by Theorem 1 in the case in which the Markov

chain (3.1) holds. The following proposition states that RHT and RD?CEO can be inferred

from each other.

Proposition 3. (R1, . . . , RK , E) ∈ RHT if and only if (R1, . . . , RK , H(X|Y0) − E) ∈
RD?CEO.

Proof. The proof of Proposition 3 appears in Appendix C.

The result of the next theorem follows easily by using Theorem 1 and Proposition 3.

Theorem 3. [100, Theorem 1] For the distributed hypothesis testing against conditional

independence problem of Figure 3.4, the rate-exponent region is given by the union of all

non-negative tuples (R1, . . . , RK , E) that satisfy, for all subsets S ⊆ K,

E ≤ I(USc ;X|Y0, Q) +
∑

k∈S

(
Rk − I(Yk;Uk|X, Y0, Q)

)
,

for some auxiliary random variables (U1, . . . , UK , Q) with distribution PUK,Q(uK, q) such

that PX,Y0,YK,UK,Q(x, y0, yK, uK, q) factorizes as

PX,Y0(x, y0)
K∏

k=1

PYk|X,Y0(yk|x, y0) PQ(q)
K∏

k=1

PUk|Yk,Q(uk|yk, q) . �
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Remark 5. In [16], Rahman and Wagner study the hypothesis testing problem of Fig-

ure 3.4 in the case in which X is replaced by a two-source (YK+1, X) such that, like in

our setup (which corresponds to YK+1 deterministic), Y0 induces conditional indepen-

dence between (Y1, . . . , YK , YK+1) and X under the alternate hypothesis H1. Under the

null hypothesis H0, however, the model studied by Rahman and Wagner in [16] assumes

a more general distribution than ours in which (Y1, . . . , YK , YK+1) are arbitrarily corre-

lated among them and with the pair (X, Y0). More precisely, the joint distributions of

(X, Y1, . . . , YK , YK+1) under the null and alternate hypotheses as considered in [16] are

H0 : P̃X,Y0,Y1...,YK ,YK+1
= PY0PX,Y1,...,YK ,YK+1|Y0 (3.28a)

H1 : Q̃X,Y0,Y1...,YK ,YK+1
= PY0PX|Y0PY1,...,YK ,YK+1|Y0 . (3.28b)

For this model, they provide inner and outer bounds on the rate-exponent region which

do not match in general (see [16, Theorem 1] for the inner bound and [16, Theorem 2]

for the outer bound). The inner bound of [16, Theorem 1] is based on a scheme, named

Quantize-Bin-Test scheme therein, that is similar to the Berger-Tung distributed source

coding scheme [101, 102]; and whose achievable rate-exponent region can be shown through

submodularity arguments to be equivalent to the region stated in Theorem 3 (with YK+1 set

to be deterministic). The result of Theorem 3 then shows that if the joint distribution of

the variables under the null hypothesis is restricted to satisfy (3.19a), i.e., the encoders’

observations {Yk}k∈K are independent conditionally given (X, Y0), then the Quantize-Bin-

Test scheme of [16, Theorem 1] is optimal. We note that, prior to this work, for general

distributions under the null hypothesis (i.e., without the Markov chain (3.1) under this

hypothesis) the optimality of the Quantize-Bin-Test scheme of [16] for the problem of

testing against conditional independence was known only for the special case of a single

encoder, i.e., K = 1, (see [16, Theorem 3]), a result which can also be recovered from

Theorem 3. �
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Chapter 4

Vector Gaussian CEO Problem with

Side Information

In this chapter, we study the K-encoder vector Gaussian CEO problem with side in-

formation shown in Figure 4.1. The remote vector source X is complex-valued, has

nx-dimensions, and is assumed to be Gaussian with zero mean and covariance matrix

Σx � 0. Xn = (X1, . . . ,Xn) denotes a collection of n independent copies of X. The

agents’ observations are Gaussian noisy versions of the remote vector source, with the

observation at agent k ∈ K given by

Yk,i = HkXi + Nk,i , for i = 1, . . . , n , (4.1)

where Hk ∈ Cnk×nx represents the channel matrix connecting the remote vector source

to the k-th agent; and Nk,i ∈ Cnk is the noise vector at this agent, assumed to be i.i.d.

Gaussian with zero-mean and independent from Xi. The decoder has its own noisy

observation of the remote vector source, in the form of a correlated jointly Gaussian side

information stream Yn
0 , with

Y0,i = H0Xi + N0,i , for i = 1, . . . , n , (4.2)

where, similar to the above, H0 ∈ Cn0×nx is the channel matrix connecting the remote

vector source to the CEO; and N0,i ∈ Cn0 is the noise vector at the CEO, assumed to be

Gaussian with zero-mean and covariance matrix Σ0 � 0 and independent from Xi. In this

chapter, it is assumed that the agents’ observations are independent conditionally given
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Figure 4.1: Vector Gaussian CEO problem with side information.

the remote vector source Xn and the side information Yn
0 , i.e., for all S ⊆ K,

Yn
S −
− (Xn,Yn

0 )−
−Yn
Sc . (4.3)

Using (4.1) and (4.2), it is easy to see that the assumption (4.3) is equivalent to that the

noises at the agents are independent conditionally given N0. For notational simplicity, Σk

denotes the conditional covariance matrix of the noise Nk at the k-th agent given N0, i.e.,

Σk := Σnk|n0 . Recalling that for a set S ⊆ K, the notation NS designates the collection of

noise vectors with indices in the set S, in what follows we denote the covariance matrix of

NS as ΣnS .

4.1 Rate-Distortion Region

We first state the following proposition which essentially extends the result of Theorem 1

to the case of sources with continuous alphabets.

Definition 5. For given tuple of auxiliary random variables (U1, . . . , UK , Q) with distri-

bution PUK,Q(uK, q) such that PX,Y0,YK,UK,Q(x,y0,yK, uK, q) factorizes as

PX,Y0(x,y0)
K∏

k=1

PYk|X,Y0(yk|x,y0) PQ(q)
K∏

k=1

PUk|Yk,Q(uk|yk, q) , (4.4)

define R̃DI

CEO(U1, . . . , UK , Q) as the set of all non-negative rate-distortion tuples (R1, . . . ,

RK , D) that satisfy, for all subsets S ⊆ K,

D +
∑

k∈S
Rk ≥

∑

k∈S
I(Yk;Uk|X,Y0, Q) + h(X|USc ,Y0, Q) . (4.5)
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Also, let R̃DI

CEO :=
⋃ R̃DI

CEO(U1, . . . , UK , Q) where the union is taken over all tuples

(U1, . . . , UK , Q) with distributions that satisfy (4.4). �

Definition 6. For given tuple of auxiliary random variables (V1, . . . , VK , Q
′) with distri-

bution PVK,Q′(vK, q′) such that PX,Y0,YK,VK,Q′(x,y0,yK, vK, q′) factorizes as

PX,Y0(x,y0)
K∏

k=1

PYk|X,Y0(yk|x,y0) PQ′(q′)
K∏

k=1

PVk|Yk,Q′(vk|yk, q′) , (4.6)

define R̃DII

CEO(V1, . . . , VK , Q
′) as the set of all non-negative rate-distortion tuples (R1, . . . ,

RK , D) that satisfy, for all subsets S ⊆ K,

∑

k∈S
Rk ≥ I(YS ;VS |VSc ,Y0, Q

′)

D ≥ h(X|V1, . . . , VK ,Y0, Q
′) .

Also, let R̃DII

CEO :=
⋃ R̃DII

CEO(V1, . . . , VK , Q
′) where the union is taken over all tuples

(V1, . . . , VK , Q
′) with distributions that satisfy (4.6). �

Proposition 4. The rate-distortion region for the vector Gaussian CEO problem under

logarithmic loss is given by

RD?VG-CEO = R̃DI

CEO = R̃DII

CEO .

Proof. The proof of Proposition 4 is given in Appendix D.

For convenience, we now introduce the following notation which will be instrumental in

what follows. Let, for every set S ⊆ K, the set S̄ := {0} ∪ Sc. Also, for S ⊆ K and given

matrices {Ωk}Kk=1 such that 0 � Ωk � Σ−1
k , let ΛS̄ designate the block-diagonal matrix

given by

ΛS̄ :=


0 0

0 diag({Σk −ΣkΩkΣk}k∈Sc)


 , (4.7)

where 0 in the principal diagonal elements is the n0×n0-all zero matrix.

The following theorem gives an explicit characterization of the rate-distortion region of

the vector Gaussian CEO problem with side information under logarithmic loss measure

that we study in this chapter.
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Theorem 4. The rate-distortion region RD?VG-CEO of the vector Gaussian CEO prob-

lem under logarithmic loss is given by the set of all non-negative rate-distortion tuples

(R1, . . . , RK , D) that satisfy, for all subsets S ⊆ K,

D +
∑

k∈S
Rk ≥

∑

k∈S
log

1

|I−ΩkΣk|
+ log

∣∣∣∣(πe)
(
Σ−1

x + H†S̄Σ
−1
nS̄

(
I−ΛS̄Σ

−1
nS̄

)
HS̄

)−1
∣∣∣∣ ,

for matrices {Ωk}Kk=1 such that 0 � Ωk � Σ−1
k , where S̄ = {0} ∪ Sc and ΛS̄ is as defined

by (4.7).

Proof. The proof of the direct part of Theorem 4 follows simply by evaluating the region

R̃DI

CEO as described by the inequalities (4.5) using Gaussian test channels and no time-

sharing. Specifically, we set Q = ∅ and p(uk|yk, q) = CN (yk,Σ
1/2
k (Ωk − I)Σ

1/2
k ), k ∈ K.

The proof of the converse appears in Appendix E.

In the case in which the noises at the agents are independent among them and from

the noise N0 at the CEO, the result of Theorem 4 takes a simpler form which is stated in

the following corollary.

Corollary 1. Consider the vector Gaussian CEO problem described by (4.1) and (4.2) with

the noises (N1, . . . ,NK) being independent among them and with N0. Under logarithmic

loss, the rate-distortion region this model is given by the set of all non-negative tuples

(R1, . . . , RK , D) that satisfy, for all subsets S ⊆ K,

D +
∑

k∈S
Rk ≥

∑

k∈S
log

1

|I−ΩkΣk|
+ log

∣∣∣∣(πe)
(
Σ−1

x + H†0Σ
−1
0 H0 +

∑

k∈Sc
H†kΩkHk

)−1

∣∣∣∣ ,

for some matrices {Ωk}Kk=1 such that 0 � Ωk � Σ−1
k . �

Remark 6. The direct part of Theorem 4 shows that Gaussian test channels and no-time

sharing exhaust the region. For the converse proof of Theorem 4, we derive an outer

bound on the region R̃DI

CEO. In doing so, we use the de Bruijn identity, a connection

between differential entropy and Fisher information, along with the properties of MMSE

and Fisher information. By opposition to the case of quadratic distortion measure for

which the application of this technique was shown in [11] to result in an outer bound that

is generally non-tight, Theorem 4 shows that the approach is successful in the case of

logarithmic loss distortion measure as it yields a complete characterization of the region.

On this aspect, note that in the specific case of scalar Gaussian sources, an alternate
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converse proof may be obtained by extending that of the scalar Gaussian many-help-one

source coding problem by Oohama [3] and Prabhakaran et al. [4] through accounting for

additional side information at CEO and replacing the original mean square error distortion

constraint with conditional entropy. However, such approach does not seem conclusive in

the vector case, as the entropy power inequality is known to be generally non-tight in this

setting [12, 13]. �

Remark 7. The result of Theorem 4 generalizes that of [59] which considers the case of

only one agent, i.e., the remote vector Gaussian Wyner-Ziv model under logarithmic loss,

to the case of an arbitrarily number of agents. The converse proof of [59], which relies

on the technique of orthogonal transform to reduce the vector setting to one of parallel

scalar Gaussian settings, seems insufficient to diagonalize all the noise covariance matrices

simultaneously in the case of more than one agent. The result of Theorem 4 is also

connected to recent developments on characterizing the capacity of multiple-input multiple-

output (MIMO) relay channels in which the relay nodes are connected to the receiver

through error-free finite-capacity links (i.e., the so-called cloud radio access networks). In

particular, the reader may refer to [103, Theorem 4] where important progress is done,

and [62] where compress-and-forward with joint decompression-decoding is shown to be

optimal under the constraint of oblivious relay processing. �

4.2 Gaussian Test Channels with Time-Sharing Exhaust the

Berger-Tung Region

Proposition 4 shows that the union of all rate-distortion tuples that satisfy (4.5) for all

subsets S ⊆ K coincides with the Berger-Tung inner bound in which time-sharing is used.

The direct part of Theorem 4 is obtained by evaluating (4.5) using Gaussian test channels

and no time-sharing, i.e., Q = ∅, not the Berger-Tung inner bound. The reader may

wonder: i) whether Gaussian test channels also exhaust the Berger-Tung inner bound for

the vector Gaussian CEO problem that we study here, and ii) whether time-sharing is

needed with the Berger-Tung scheme. In this section, we answer both questions in the

affirmative. In particular, we show that the Berger-Tung coding scheme with Gaussian

test channels and time-sharing achieves distortion levels that are not larger than any other

coding scheme. That is, Gaussian test channels with time-sharing exhaust the region
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R̃DII

CEO as defined in Definition 6.

Proposition 5. The rate-distortion region for the vector Gaussian CEO problem under

logarithmic loss is given by

RD?VG-CEO =
⋃
R̃DII

CEO(V G
1 , . . . , V

G
K , Q

′) ,

where R̃DII

CEO(·) is as given in Definition 6 and the superscript G is used to denote that

the union is taken over Gaussian distributed V G
k ∼ p(vk|yk, q′) conditionally on (Yk, Q

′).

Proof. For the proof of Proposition 5, it is sufficient to show that, for fixed Gaussian

conditional distributions {p(uk|yk)}Kk=1, the extreme points of the polytopes defined by (4.5)

are dominated by points that are in R̃DII

CEO and which are achievable using Gaussian

conditional distributions {p(vk|yk, q′)}Kk=1. Hereafter, we give a brief outline of proof for

the case K = 2. The reasoning for K ≥ 2 is similar and is provided in Appendix F.

Consider the inequalities (4.5) with Q = ∅ and (U1, U2) := (UG
1 , U

G
2 ) chosen to be Gaussian

(see Theorem 4). Consider now the extreme points of the polytopes defined by the obtained

inequalities:

P1 = (0, 0, I(Y1;UG
1 |X,Y0) + I(Y2;UG

2 |X,Y0) + h(X|Y0))

P2 = (I(Y1;UG
1 |Y0), 0, I(UG

2 ; Y2|X,Y0) + h(X|UG
1 ,Y0))

P3 = (0, I(Y2;UG
2 |Y0), I(UG

1 ; Y1|X,Y0) + h(X|UG
2 ,Y0))

P4 = (I(Y1;UG
1 |Y0), I(Y2;UG

2 |UG
1 ,Y0), h(X|UG

1 , U
G
2 ,Y0))

P5 = (I(Y1;UG
1 |UG

2 ,Y0), I(Y2;UG
2 |Y0), h(X|UG

1 , U
G
2 ,Y0)) ,

where the point Pj is a a triple (R
(j)
1 , R

(j)
2 , D(j)). It is easy to see that each of these

points is dominated by a point in R̃DII

CEO, i.e., there exists (R1, R2, D) ∈ R̃DII

CEO for

which R1 ≤ R
(j)
1 , R2 ≤ R

(j)
2 and D ≤ D(j). To see this, first note that P4 and P5

are both in R̃DII

CEO. Next, observe that the point (0, 0, h(X|Y0)) is in R̃DII

CEO, which

is clearly achievable by letting (V1, V2, Q
′) = (∅, ∅, ∅), dominates P1. Also, by using

letting (V1, V2, Q
′) = (UG

1 , ∅, ∅), we have that the point (I(Y1;U1|Y0), 0, h(X|U1,Y0)) is

in R̃DII

CEO, and dominates the point P2. A similar argument shows that P3 is dominated

by a point in R̃DII

CEO. The proof is terminated by observing that, for all above corner

points, Vk is set either equal UG
k (which is Gaussian distributed conditionally on Yk) or a

constant.
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Remark 8. Proposition 5 shows that for the vector Gaussian CEO problem with side

information under a logarithmic loss constraint, vector Gaussian quantization codebooks

with time-sharing are optimal. In the case of quadratic distortion constraint, however, a

characterization of the rate-distortion region is still to be found in general, and it is not

known yet whether vector Gaussian quantization codebooks (with or without time-sharing)

are optimal, except in few special cases such as that of scalar Gaussian sources or the

case of only one agent, i.e., the remote vector Gaussian Wyner-Ziv problem whose rate-

distortion region is found in [59]. In [59], Tian and Chen also found the rate-distortion

region of the remote vector Gaussian Wyner-Ziv problem under logarithmic loss, which they

showed achievable using Gaussian quantization codebooks that are different from those (also

Gaussian) that are optimal in the case of quadratic distortion. As we already mentioned,

our result of Theorem 4 generalizes that of [59] to the case of an arbitrary number of

agents. �

Remark 9. One may wonder whether giving the decoder side information Y0 to the

encoders is beneficial. Similar to the well known result in Wyner-Ziv source coding of

scalar Gaussian sources, our result of Theorem 4 shows that encoder side information does

not help. �

4.3 Quadratic Vector Gaussian CEO Problem with Determinant

Constraint

We now turn to the case in which the distortion is measured under quadratic loss. In this

case, the mean square error matrix is defined by

D(n) :=
1

n

n∑

i=1

E[(Xi − X̂i)(Xi − X̂i)
†] . (4.8)

Under a (general) error constraint of the form

D(n) � D , (4.9)

where D designates here a prescribed positive definite error matrix, a complete solution is

still to be found in general. In what follows, we replace the constraint (4.9) with one on

the determinant of the error matrix D(n), i.e.,

|D(n)| ≤ D , (4.10)

55



CHAPTER 4. VECTOR GAUSSIAN CEO PROBLEM WITH SIDE INFORMATION

(D is a scalar here). We note that since the error matrix D(n) is minimized by choosing

the decoding as

X̂i = E[Xi|φ̆(n)
1 (Yn

1 ), . . . , φ̆
(n)
K (Yn

K),Yn
0 ] , (4.11)

where {φ̆(n)
k }Kk=1 denote the encoding functions, without loss of generality we can write (4.8)

as

D(n) =
1

n

n∑

i=1

mmse(Xi|φ̆(n)
1 (Yn

1 ), . . . , φ̆
(n)
K (Yn

K),Yn
0 ) . (4.12)

Definition 7. A rate-distortion tuple (R1, . . . , RK , D) is achievable for the quadratic

vector Gaussian CEO problem with determinant constraint if there exist a blocklength n,

K encoding functions {φ̆(n)
k }Kk=1 such that

Rk ≥
1

n
logM

(n)
k , for k = 1, . . . , K,

D ≥
∣∣∣∣
1

n

n∑

i=1

mmse(Xi|φ̆(n)
1 (Yn

1 ), . . . , φ̆
(n)
K (Yn

K),Yn
0 )

∣∣∣∣ .

The rate-distortion region RDdet
VG-CEO is defined as the closure of all non-negative tuples

(R1, . . . , RK , D) that are achievable. �

The following theorem characterizes the rate-distortion region of the quadratic vector

Gaussian CEO problem with determinant constraint.

Theorem 5. The rate-distortion region RDdet
VG-CEO of the quadratic vector Gaussian

CEO problem with determinant constraint is given by the set of all non-negative tuples

(R1, . . . , RK , D) that satisfy, for all subsets S ⊆ K,

log
1

D
≤
∑

k∈S
Rk + log |I−ΩkΣk|+ log

∣∣∣Σ−1
x + H†S̄Σ

−1
nS̄

(
I−ΛS̄Σ

−1
nS̄

)
HS̄

∣∣∣ ,

for matrices {Ωk}Kk=1 such that 0 � Ωk � Σ−1
k , where S̄ = {0} ∪ Sc and ΛS̄ is as defined

by (4.7).

Proof. The proof of Theorem 5 is given in Appendix G.

Remark 10. It is believed that the approach of this section, which connects the quadratic

vector Gaussian CEO problem to that under logarithmic loss, can also be exploited to possibly

infer other new results on the quadratic vector Gaussian CEO problem. Alternatively, it

can also be used to derive new converses on the quadratic vector Gaussian CEO problem.

For example, in the case of scalar sources, Theorem 5, and Lemma 15, readily provide
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an alternate converse proof to those of [3, 4] for this model. Similar connections were

made in [104, 105] where it was observed that the results of [10] can be used to recover

known results on the scalar Gaussian CEO problem (such as the sum rate-distortion region

of [106]) and the scalar Gaussian two-encoder distributed source coding problem. We

also point out that similar information constraints have been applied to log-determinant

reproduction constraints previously in [107]. �

Two-Encoder Rate Region K-Encoder Rate Region

Cooperative bound [trivial] Oohama ’98 [108], Prabhakaran et al. ’04 [4]

scalar

Wagner et al. ’08 [106] Tavildar et al. ’10 [109]

scalar, sum-rate scalar, tree-structure constraint

Rahman and Wagner ’15 [110] Ekrem and Ulukus ’14 [11]

vector vector, outer bound

Ugur et al. ’19

vector, determinant constraint

Table 4.1: Advances in the resolution of the rate region of the quadratic Gaussian CEO problem.

We close this section by presenting Table 4.1, where advances in the resolution of the

rate region of the quadratic Gaussian CEO problem is summarized.

4.4 Hypothesis Testing Against Conditional Independence

In this section we study the continuous case of the hypothesis testing problem presented in

Chapter 3.4. Here, (X,Y0,Y1, . . . ,YK) is a zero-mean Gaussian random vector such that

Y0 = H0X + N0 , (4.13)

where H0 ∈ Cn0×nx , X ∈ Cnx and N0 ∈ Cn0 are independent Gaussian vectors with zero-

mean and covariance matrices Σx � 0 and Σ0 � 0, respectively. The vectors (Y1, . . . ,YK)

and X are correlated under the null hypothesis H0 and are independent under the alternate

hypothesis H1, with

H0 : Yk = HkX + Nk, for all k ∈ K (4.14a)

H1 : (Y1, . . . ,YK) independent from X conditionally given Y0 . (4.14b)
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The noise vectors (N1, . . . ,NK) are jointly Gaussian with zero mean and covariance matrix

ΣnK � 0. They are assumed to be independent from X but correlated among them and

with N0, with for every S ⊆ K,

NS −
−N0 −
−NSc . (4.15)

Let Σk denote the conditional covariance matrix of noise Nk given N0 , k ∈ K. Also, let

RVG-HT denote the rate-exponent region of this vector Gaussian hypothesis testing against

conditional independence problem. The following theorem gives an explicit characterization

of RVG-HT. The proof uses Proposition 3 and Theorem 4 in a manner that is essentially

similar to that in the proof of Theorem 5; and, hence, it is omitted for brevity.

Theorem 6. [100, Theorem 2] The rate-exponent region RVG-HT of the vector Gaussian

hypothesis testing against conditional independence problem is given by the set of all

non-negative tuples (R1, . . . , RK , E) that satisfy, for all subsets S ⊆ K,

E ≤
∑

k∈S

[
Rk + log |I−ΩkΣk|

]
+ log

∣∣∣I + ΣxH†S̄Σ
−1
nS̄

(
I−ΛS̄Σ

−1
nS̄

)
HS̄

∣∣∣

− log
∣∣∣I + ΣxH†0Σ

−1
0 H0

∣∣∣ ,

for matrices {Ωk}Kk=1 such that 0 � Ωk � Σ−1
k , where S̄ = {0} ∪ Sc and ΛS̄ is given

by (4.7). �

Remark 11. An alternate proof of Theorem 6, which is direct, can be obtained by evaluating

the region of Proposition 3 for the model (4.14), and is provided in [100, Section V-B].

Specifically, in the proof of the direct part we set Q = ∅ and p(uk|yk) = CN (yk,Σ
1/2
k (Ωk −

I)Σ
1/2
k ) for k ∈ K. The proof of the converse part follows by using Proposition 3 and

proceeding along the lines of the converse part of Theorem 4 in Appendix E. �

In what follows, we elaborate on two special cases of Theorem 6, i) the one-encoder

vector Gaussian testing against conditional independence problem (i.e., K = 1) and ii) the

K-encoder scalar Gaussian testing against independence problem.

One-encoder vector Gaussian testing against conditional independence problem

Let us first consider the case K = 1. In this case, the Markov chain (4.15) which is to

be satisfied under the null hypothesis is non-restrictive; and Theorem 6 then provides a
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complete solution of the (general) one-encoder vector Gaussian testing against conditional

independence problem. More precisely, in this case the optimal trade-off between rate and

Type II error exponent is given by the set of pairs (R1, E) that satisfy

E ≤ R1 + log |I−Ω1Σ1|

E ≤ log
∣∣∣I + ΣxH†{0,1}Σ

−1
n{0,1}

(
I−Λ{0,1}Σ

−1
n{0,1}

)
H{0,1}

∣∣∣− log
∣∣∣I + ΣxH†0Σ

−1
0 H0

∣∣∣ ,
(4.16)

for some n1×n1 matrix Ω1 such that 0 � Ω1 � Σ−1
1 , where H{0,1} = [H†0,H

†
1]†, Σn{0,1} is

the covariance matrix of noise (N0,N1) and

Λ{0,1} :=


0 0

0 Σ1 −Σ1Ω1Σ1


 , (4.17)

with the 0 in its principal diagonal denoting the n0×n0-all zero matrix. In particular, for

the setting of testing against independence, i.e., Y0 = ∅ and the decoder’s task reduced

to guessing whether Y1 and X are independent or not, the optimal trade-off expressed

by (4.16) reduces to the set of (R1, E) pairs that satisfy, for some n1×n1 matrix Ω1 such

that 0 � Ω1 � Σ−1
1 ,

E ≤ min
{
R1 + log |I−Ω1Σ1| , log

∣∣∣I + ΣxH†1Ω1H1

∣∣∣
}
. (4.18)

Observe that (4.16) is the counter-part, to the vector Gaussian setting, of the result of [16,

Theorem 3] which provides a single-letter formula for the Type II error exponent for the

one-encoder DM testing against conditional independence problem. Similarly, (4.18) is the

solution of the vector Gaussian version of the one-encoder DM testing against independence

problem which is studied, and solved, by Ahlswede and Csiszar in [65, Theorem 2]. Also,

we mention that, perhaps non-intuitive, in the one-encoder vector Gaussian testing against

independence problem swapping the roles of Y1 and X (i.e., giving X to the encoder and

the noisy (under the null hypothesis) Y1 to the decoder) does not result in an increase of

the Type II error exponent which is then identical to (4.18). Note that this is in sharp

contrast with the related1 setting of standard lossy source reproduction, i.e., the decoder

aiming to reproduce the source observed at the encoder to within some average squared

error distortion level using the sent compression message and its own side information,

1The connection, which is sometimes misleading, consists in viewing the decoder in the hypothesis testing

against independence problem considered here as one that computes a binary-valued function of (X,Y1).
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for which it is easy to see that, for given R1 bits per sample, smaller distortion levels

are allowed by having the encoder observe X and the decoder observe Y1, instead of the

encoder observing the noisy Y1 = H1X + N1 and the decoder observing X.

K-encoder scalar Gaussian testing against independence problem

Consider now the special case of the setup of Theorem 6 in which K ≥ 2, Y0 = ∅, and the

sources and noises are all scalar complex-valued, i.e., nx = 1 and nk = 1 for all k ∈ K. The

vector (Y1, . . . , YK) and X are correlated under the null hypothesis H0 and independent

under the alternate hypothesis H1, with

H0 : Yk = X +Nk, for all k ∈ K (4.19a)

H1 : (Y1, . . . , YK) independent from X . (4.19b)

The noises N1, . . . , NK are zero-mean jointly Gaussian, mutually independent and inde-

pendent from X. Also, we assume that the variances σ2
k of noise Nk, k ∈ K, and σ2

x of X

are all positive. In this case, it can be easily shown that Theorem 6 reduces to

RSG-HT =

{
(R1, . . . , RK , E) : ∃ (γ1, . . . , γK) ∈ RK

+ s.t.

γk ≤
1

σ2
k

, ∀ k ∈ K

∑

k∈S
Rk ≥ E − log

(
(1 + σ2

x

∑

k∈Sc
γk)
∏

k∈S
[1− γkσ2

k]
)
, ∀ S ⊆ K

}
.

(4.20)

The region RSG-HT as given by (4.20) can be used to, e.g., characterize the centralized

rate region, i.e., the set of rate vectors (R1, . . . , RK) that achieve the centralized Type II

error exponent

I(Y1, . . . , YK ;X) =
K∑

k=1

log
σ2
x

σ2
k

. (4.21)

We close this section by mentioning that, implicit in Theorem 6, the Quantize-Bin-

Test scheme of [16, Theorem 1] with Gaussian test channels and time-sharing is optimal

for the vector Gaussian K-encoder hypothesis testing against conditional independence

problem (4.14). Furthermore, we note that Rahman and Wagner also characterized
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the optimal rate-exponent region of a different2 Gaussian hypothesis testing against

independence problem, called the Gaussian many-help-one hypothesis testing against

independence problem therein, in the case of scalar valued sources [16, Theorem 7].

Specialized to the case K = 1, the result of Theorem 6 recovers that of [16, Theorem

7] in the case of no helpers; and extends it to vector-valued sources and testing against

conditional independence in that case.

4.5 Distributed Vector Gaussian Information Bottleneck

Consider now the vector Gaussian CEO problem with side information, and let the

logarithmic loss distortion constraint be replaced by the mutual information constraint

I
(
Xn;ψ(n)

(
φ

(n)
1 (Y n

1 ), . . . , φ
(n)
K (Y n

K), Y n
0

))
≥ n∆ . (4.22)

In this case, the region of optimal tuples (R1, . . . , RK ,∆) generalizes the Gaussian Infor-

mation Bottleneck Function of [21,22] as given by (4.24) to the setting in which the decoder

observes correlated side information Y0 and the inference is done in a distributed manner

by K learners. This region can be obtained readily from Theorem 4 by substituting therein

∆ := h(X) − D. The following corollary states the result, which was first established

in [1, 111].

Corollary 2. [111, Theorem 2] For the problem of distributed Gaussian Information

Bottleneck with side information at the predictor, the complexity-relevance region is given

by the union of all non-negative tuples (R1, . . . , RK ,∆) that satisfy, for every S ⊆ K,

∆ ≤
∑

k∈S

[
Rk + log |I−ΩkΣk|

]
+ log

∣∣I + ΣxH†S̄Σ
−1
nS̄

(
I−ΛS̄Σ

−1
nS̄

)
HS̄
∣∣ ,

for matrices {Ωk}Kk=1 such that 0 � Ωk � Σ−1
k , where S̄ = {0} ∪ Sc and ΛS̄ is given

by (4.7). �

In particular, if K = 1 and Y0 = ∅, with the substitutions Y := Y1, R := R1, H := H1,

Σ := Σ1, and Ω1 := Ω, the rate-distortion region of Theorem 4 reduces to the set of

2This problem is related to the Gaussian many-help-one problem [3,4, 106]. Here, different from the setup of

Figure 3.4, the source X is observed directly by a main encoder who communicates with a detector that observes

Y in the aim of making a decision on whether X and Y are independent or not. Also, there are helpers that

observe independent noisy versions of X and communicate with the detector in the aim of facilitating that test.
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rate-distortion pairs (R,D) that satisfy

D ≥ log
∣∣(πe)

(
Σ−1

x + H†ΩH
)−1∣∣ (4.23a)

R +D ≥ log
1

|I−ΩΣ| + log
∣∣(πe)Σx

∣∣ , (4.23b)

for some matrix Ω such that 0 � Ω � Σ−1. Alternatively, by making the substitution

∆ := h(X)−D, the trade-off expressed by (4.23) can be written equivalently as

∆ ≤ log
∣∣I + ΣxH†ΩH

∣∣ (4.24a)

∆ ≤ R + log
∣∣I−ΩΣ

∣∣ , (4.24b)

for some matrix Ω such that 0 � Ω � Σ−1.

Expression (4.24) is known as the Gaussian Information Bottleneck Function [21, 22],

which is the solution of the Information Bottleneck method of [17] in the case of jointly

Gaussian variables. More precisely, using the terminology of [17], the inequalities (4.24)

describe the optimal trade-off between the complexity (or rate) R and the relevance (or

accuracy) ∆. The concept of Information Bottleneck was found useful in various learning

applications, such as for data clustering [112], feature selection [113] and others.

Furthermore, if in (4.1) and (4.2) the noises are independent among them and from N0,

the relevance-complexity region of Corollary 2 reduces to the union of all non-negative

tuples (R1, . . . , RK ,∆) that satisfy, for every S ⊆ K,

∆ ≤
∑

k∈S

[
Rk + log |I−ΩkΣk|

]
+ log

∣∣I + Σx

(
H†0Σ

−1
0 H0 +

∑

k∈Sc
H†kΩkHk

)∣∣ , (4.25)

for some matrices {Ωk}Kk=1 such that 0 � Ωk � Σ−1
k .

Example 1 (Distributed Scalar Gaussian Information Bottleneck). Consider a scalar

instance of the distributed Gaussian Information Bottleneck – that we study in this section

– depicted in Figure 4.2a where there are two agents and no side information, i.e., K = 2,

Y0 = ∅, nx = 1 and n1 = n2 = 1. The relevance-complexity region of this model is

given by (4.25) (wherein with the substitution H0 = 0). In particular, each encoder

observation Yk is the output of a Gaussian channel with SNR ρk, i.e., Yk =
√
ρkX +Nk,

where X ∼ N (0, 1), Nk ∼ N (0, 1), k = 1, 2. Furthermore, the model we consider

62



CHAPTER 4. VECTOR GAUSSIAN CEO PROBLEM WITH SIDE INFORMATION

here is symmetric, i.e., ρ1 = ρ2 = ρ and R1 = R2 = R. For this model, the optimal

relevance-complexity pairs (∆?, R) can be computed from

∆?(R, ρ) =
1

2
log
(

1 + 2ρ exp(−4R)
[
exp(4R) + ρ−

√
ρ2 + (1 + ρ) exp(4R)

])
. (4.26)

X

h1

h2

N1

N2

Encoder 1

Encoder 2

Y1

Y2 D
ec
o
d
er

R

R

X̂

Yk =
√
ρX +Nk

X ∼ N (0, 1), Nk ∼ N (0, 1), k = 1, 2

(a) System model
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(b) Relevance vs. complexity trade-off.

Figure 4.2: Distributed Scalar Gaussian Information Bottleneck.

The Centralized IB (C-IB) upper bound is given by the pairs (∆cIB, R) achievable if (Y1, Y2)

are encoded jointly at a single encoder with complexity 2R, and given by

∆cIB(R, ρ) =
1

2
log (1 + 2ρ)− 1

2
log (1 + 2ρ exp(−4R)) , (4.27)

which is an instance of the scalar Gaussian IB problem in [22].

The lower bound is given by the pairs (∆ind, R) achievable if (Y1, Y2) are encoded indepen-

dently at separate encoders, and given by

∆ind(R, ρ) =
1

2
log (1 + 2ρ− ρ exp(−2R))− 1

2
log (1 + ρ exp(−2R)) . (4.28)

Figure 4.2b shows the optimal relevance-complexity region of tuples (∆?, R) obtained

from (4.26), as well as, the C-IB upper bounds ∆cIB(R, ρ) and ∆cIB(∞, ρ), and the lower

bound ∆ind(R, ρ) for the case in which the channel SNR is 10 dB, i.e., ρ = 10. �
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Chapter 5

Algorithms

This chapter contains a description of two algorithms and architectures that were developed

in [1] for the distributed learning scenario. We state them here for reasons of completeness.

In particular, the chapter provides: i) Blahut-Arimoto type iterative algorithms that allow

to compute numerically the rate-distortion or relevance-complexity regions of the DM and

vector Gaussian CEO problems for the case in which the joint distribution of the data is

known perfectly or can be estimated with a high accuracy; and ii) a variational inference

type algorithm in which the encoding mappings are parameterized by neural networks and

the bound approximated by Monte Carlo sampling and optimized with stochastic gradient

descent for the case in which there is only a set of training data is available.

5.1 Blahut-Arimoto Type Algorithms for Known Models

5.1.1 Discrete Case

Here we develop a BA-type algorithm that allows to compute the convex region RD?CEO

for general discrete memoryless sources. To develop the algorithm, we use the Berger-Tung

form of the region given in Proposition 11 for K = 2. The outline of the proposed method

is as follows. First, we rewrite the rate-distortion region RD?CEO in terms of the union of

two simpler regions in Proposition 6. The tuples lying on the boundary of each region are

parametrically given in Proposition 7. Then, the boundary points of each simpler region

are computed numerically via an alternating minimization method derived and detailed in

Algorithm 2. Finally, the original rate-distortion region is obtained as the convex hull of

the union of the tuples obtained for the two simple regions.
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Equivalent Parameterization

Define the two regions RDkCEO, k = 1, 2, as

RDkCEO = {(R1, R2, D) : D ≥ Dk
CEO(R1, R2)} , (5.1)

with

Dk
CEO(R1, R2) := min H(X|U1, U2, Y0) (5.2)

s.t. Rk ≥ I(Yk;Uk|Uk̄, Y0)

Rk̄ ≥ I(Xk̄;Uk̄|Y0) ,

and the minimization is over set of joint measures PU1,U2,X,Y0,Y1,Y2 that satisfy U1 −
− Y1 −

− (X, Y0)−
− Y2 −
− U2. (We define k̄ := k (mod 2) + 1 for k = 1, 2.)

As stated in the following proposition, the region RD?CEO of Theorem 1 coincides with

the convex hull of the union of the two regions RD1
CEO and RD2

CEO.

Proposition 6. The region RD?CEO is given by

RD?CEO = conv(RD1
CEO ∪RD2

CEO) . (5.3)

Proof. An outline of the proof is as follows. Let PU1,U2,X,Y0,Y1,Y2 and PQ be such that

(R1, R2, D) ∈ RD?CEO. The polytope defined by the rate constraints (A.1), denoted by V ,

forms a contra-polymatroid with 2! extreme points (vertices) [10,114]. Given a permutation

π on {1, 2}, the tuple

R̃π(1) = I(Yπ(1);Uπ(1)|Y0) , R̃π(2) = I(Yπ(2);Uπ(2)|Uπ(1), Y0) ,

defines an extreme point of V for each permutation. As shown in [10], for every extreme

point (R̃1, R̃2) of V, the point (R̃1, R̃2, D) is achieved by time-sharing two successive

Wyner-Ziv (WZ) strategies. The set of achievable tuples with such successive WZ scheme

is characterized by the convex hull of RDπ(1)
CEO. Convexifying the union of both regions as

in (5.3), we obtain the full rate-distortion region RD?CEO.

The main advantage of Proposition 6 is that it reduces the computation of region

RD?CEO to the computation of the two regions RDkCEO, k = 1, 2, whose boundary can be

efficiently parameterized, leading to an efficient computational method. In what follows,

we concentrate on RD1
CEO. The computation of RD2

CEO follows similarly, and is omitted
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for brevity. Next proposition provides a parameterization of the boundary tuples of

the region RD1
CEO in terms, each of them, of an optimization problem over the pmfs

P := {PU1|Y1 , PU2|Y2}.

Proposition 7. For each s := [s1, s2], s1 > 0, s2 > 0, define a tuple (R1,s, R2,s, Ds)

parametrically given by

Ds = −s1R1,s − s2R2,s + min
P
Fs(P) (5.4)

R1,s = I(Y1;U?
1 |U?

2 , Y0) , R2,s = I(Y2;U?
2 |Y0) , (5.5)

where Fs(P) is given as follows

Fs(P) := H(X|U1, U2, Y0) + s1I(Y1;U1|U2, Y0) + s2I(Y2;U2|Y0) , (5.6)

and; P? are the conditional pmfs yielding the minimum in (5.4) and U?
1 , U

?
2 are the auxiliary

variables induced by P?. Then, we have:

1. Each value of s leads to a tuple (R1,s, R2,s, Ds) on the distortion-rate curve Ds =

D1
CEO(R1,s, R2,s).

2. For every point on the distortion-rate curve, there is an s for which (5.4) and (5.5)

hold.

Proof. Suppose that P? yields the minimum in (5.4). For this P, we have I(Y1;U1|U2, Y0) =

R1,s and I(Y2;U2|Y0) = R2,s. Then, we have

Ds = −s1R1,s − s2R2,s + Fs(P
?)

= −s1R1,s − s2R2,s + [H(X|U?
1 , U

?
2 , Y0) + s1R1,s + s2R2,s]

= H(X|U?
1 , U

?
2 , Y0) ≥ D1

CEO(R1,s, R2,s) . (5.7)

Conversely, if P? is the solution to the minimization in (5.2), then I(Y1;U?
1 |U?

2 , Y0) ≤ R1

and I(Y2;U?
2 |Y0) ≤ R2 and for any s,

D1
CEO(R1, R2) = H(X|U?

1 , U
?
2 , Y0)

≥ H(X|U?
1 , U

?
2 , Y0) + s1(I(Y1;U?

1 |U?
2 , Y0)−R1) + s2(I(Y2;U?

2 |Y0)−R2)

= Ds + s1(R1,s −R1) + s2(R2,s −R2) .

Given s, and hence (R1,s, R2,s, Ds), letting (R1, R2) = (R1,s, R2,s) yields D1
CEO(R1,s, R2,s) ≥

Ds, which proves, together with (5.7), statement 1) and 2).
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Next, we show that it is sufficient to run the algorithm for s1 ∈ (0, 1].

Lemma 2. The range of the parameter s1 can be restricted to (0, 1].

Proof. Let F ? = minP Fs(P). If we set U1 = ∅, then we have the relation

F ? ≤ H(X|U2, Y0) + s2I(Y2;U2|Y0) .

For s1 > 1, we have

Fs(P)
(a)

≥ (1− s1)H(X|U1, U2, Y0) + s1H(X|U2, Y0) + s2I(Y2;U2|Y0)

(b)

≥ H(X|U2, Y0) + s2I(Y2;U2|Y0) ,

where (a) follows since mutual information is always positive, i.e., I(Y1;U1|X, Y0) ≥ 0; (b)

holds since conditioning reduces entropy and 1− s1 < 0. Then,

F ? = H(X|U2, Y0) + s2I(Y2;U2|Y0) , for s1 > 1 .

Hence, we can restrict the range of s1 to s1 ∈ (0, 1].

Computation of RD1
CEO

In this section, we derive an algorithm to solve (5.4) for a given parameter value s. To

that end, we define a variational bound on Fs(P), and optimize it instead of (5.4). Let Q

be a set of some auxiliary pmfs defined as

Q := {QU1 , QU2 , QX|U1,U2,Y0 , QX|U1,Y0 , QX|U2,Y0 , QY0|U1 , QY0|U2} . (5.8)

In the following we define the variational cost function Fs(P,Q)

Fs(P,Q) :=− s1H(X|Y0)− (s1 + s2)H(Y0)

+ EPX,Y0,Y1,Y2

[
(1− s1)EPU1|Y1

EPU2|Y2
[− logQX|U1,U2,Y0 ]

+ s1EPU1|Y1
[− logQX|U1,Y0 ] + s1EPU2|Y2

[− logQX|U2,Y0 ]

+ s1DKL(PU1|Y1‖QU1) + s2DKL(PU2|Y2‖QU2)

+ s1EPU1|Y1
[− logQY0|U1 ] + s2EPU2|Y2

[− logQY0|U2 ]
]
. (5.9)

The following lemma states that Ls(P,Q) is an upper bound on Ls(P) for all distribu-

tions Q.
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Lemma 3. For fixed P, we have

Ls(P,Q) ≥ Ls(P) , for all Q .

In addition, there exists a Q that achieves the minimum minQ Fs(P,Q) = Fs(P), given by

QUk = PUk , QX|Uk,Y0 = PX|Uk,Y0 , QY0|Uk = PY0|Uk , for k = 1, 2 ,

QX|U1,U2,Y0 = PX|U1,U2,Y0 .
(5.10)

Proof. The proof of Lemma 3 is given in Appendix H.1.

Using the lemma above, the minimization in (5.4) can be written in terms of the

variational cost function as follows

min
P
Fs(P) = min

P
min

Q
Fs(P,Q) . (5.11)

Motivated by the BA algorithm [19,20], we propose an alternate optimization procedure

over the set of pmfs P and Q as stated in Algorithm 2. The main idea is that at iteration t,

for fixed P(t−1) the optimal Q(t) minimizing Fs(P,Q) can be found analytically; next, for

given Q(t) the optimal P(t) that minimizes Fs(P,Q) has also a closed form. So, starting

with a random initialization P(0), the algorithm iterates over distributions Q and P

minimizing Fs(P,Q) until the convergence, as stated below

P(0) → Q(1) → P(1) → . . .→ P(t) → Q(t) → . . .→ P? → Q? .

At each iteration, the optimal values of P and Q are found by solving a convex optimization

problems. We have the following lemma.

Lemma 4. Fs(P,Q) is convex in P and convex in Q.

Proof. The proof of Lemma 4 follows from the log-sum inequality.

For fixed P(t−1), the optimal Q(t) minimizing the variational bound in (5.9) can be

found from Lemma 3 and given by (5.10). For fixed Q(t), the optimal P(t) minimizing (5.9)

can be found by using the next lemma.

Lemma 5. For fixed Q, there exists a P that achieves the minimum minP Fs(P,Q),

where PUk|Yk is given by

p(uk|yk) = q(uk)
exp[−ψk(uk, yk)]∑

uk
q(uk) exp[−ψk(uk, yk)]

, for k = 1, 2 , (5.12)

69



CHAPTER 5. ALGORITHMS

where ψk(uk, yk), k = 1, 2, are defined as follows

ψk(uk, yk) :=
1− s1

sk
EUk̄,Y0|yk [DKL(PX|yk,Uk̄,Y0‖QX|uk,Uk̄,Y0)]

+
s1

sk
EY0|ykDKL[(PX|yk,Y0‖QX|uk,Y0)] +DKL(PY0|yk‖QY0|uk) . (5.13)

Proof. The proof of Lemma 5 is given in Appendix H.2.

Algorithm 2 BA-type algorithm to compute RD1
CEO

1: input: pmf PX,Y0,Y1,Y2
, parameters 1 ≥ s1 > 0, s2 > 0.

2: output: Optimal P ?U1|Y1
, P ?U2|Y2

; triple (R1,s, R2,s, Ds).

3: initialization Set t = 0. Set P(0) randomly.

4: repeat

5: Update the following pmfs for k = 1, 2

p(t+1)(uk) =
∑

yk
p(t)(uk|yk)p(yk),

p(t+1)(uk|y0) =
∑

yk
p(t)(uk|yk)p(yk|y0),

p(t+1)(uk|x, y0) =
∑

yk
p(t)(uk|yk)p(yk|x, y0),

p(t+1)(x|u1, u2, y0) =
p(t+1)(u1|x, y0)p(t+1)(u2|x, y0)p(x, y0)∑
x p

(t+1)(u1|x, y0)p(t+1)(u2|x, y0)p(x, y0)
.

6: Update Q(t+1) by using (5.10).

7: Update P(t+1) by using (5.12).

8: t← t+ 1.

9: until convergence.

At each iteration of Algorithm 2, Fs(P
(t),Q(t)) decreases until eventually it converges.

However, since Fs(P,Q) is convex in each argument but not necessarily jointly convex,

Algorithm 2 does not necessarily converge to the global optimum. In particular, next

proposition shows that Algorithm 2 converges to a stationary solution of the minimization

in (5.4).

Proposition 8. Every limit point of P(t) generated by Algorithm 2 converges to a stationary

solution of (5.4).

Proof. Algorithm 2 falls into the class of so-called Successive Upper-bound Minimization

(SUM) algorithms [115], in which Fs(P,Q) acts as a globally tight upper bound on Fs(P).

Let Q?(P) := arg minQ Fs(P,Q). From Lemma 3, Fs(P,Q
?(P′)) ≥ Fs(P,Q

?(P)) = Fs(P)

for P′ 6= P. It follows that Fs(P) and Fs(P,Q
?(P′)) satisfy [115, Proposition 1] and thus

70



CHAPTER 5. ALGORITHMS

Fs(P,Q
?(P′)) satisfies (A1)–(A4) in [115]. Convergence to a stationary point of (5.4)

follows from [115, Theorem 1].

Remark 12. Algorithm 2 generates a sequence that is non-increasing. Since this sequence

is lower bounded, convergence to a stationary point is guaranteed. This per-se, however,

does not necessarily imply that such a point is a stationary solution of the original problem

described by (5.4). Instead, this is guaranteed here by showing that the Algorithm 2 is of

SUM-type with the function Fs(P,Q) satisfying the necessary conditions [115, (A1)–(A4)].
�

5.1.2 Vector Gaussian Case

Computing the rate-distortion region RD?VG-CEO of the vector Gaussian CEO problem as

given by Theorem 4 is a convex optimization problem on {Ωk}Kk=1 which can be solved

using, e.g., the popular generic optimization tool CVX [116]. Alternatively, the region can

be computed using an extension of Algorithm 2 to memoryless Gaussian sources as given

in the rest of this section.

Algorithm 3 BA-type algorithm for the Gaussian vector CEO

1: input: Covariance Σ(x,y0,y1,y2), parameters1 ≥ s1 > 0, s2 > 0.

2: output: Optimal pairs (A?
k,Σz?

k
), k = 1, 2.

3: initialization Set t = 0. Set randomly A0
k and Σz0

k
� 0 for k = 1, 2.

4: repeat

5: For k = 1, 2, update the following

Σut
k

= At
kΣyk

At
k
†

+ Σzt
k

Σut
k|(x,y) = At

kΣkA
t
k
†

+ Σzt
k
,

and update Σut
k|(ut

k̄
,y), Σut

2|y and Σyt
k|(ut

k̄
,y) from their definitions by using the following

Σut
1,u

t
2

= At
1H1ΣxH†2A

t†

2

Σut
k,y

= At
kHkΣxH†0

Σyk,ut
k̄

= HkΣxH†
k̄
At
k̄

†
.

6: Compute Σzt+1
k

as in (5.16a) for k = 1, 2.

7: Compute At+1
k as (5.16b) for k = 1, 2.

8: t← t+ 1.

9: until convergence.

For discrete sources with (small) alphabets, the updating rules of Q(t+1) and P(t+1) of
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Algorithm 2 are relatively easy computationally. However, they become computationally

unfeasible for continuous alphabet sources. Here, we leverage on the optimality of Gaussian

test channels as shown by Theorem 4 to restrict the optimization of P to Gaussian

distributions, which allows to reduce the search of update rules to those of the associated

parameters, namely covariance matrices. In particular, we show that if P
(t)
Uk|Yk

, k = 1, 2, is

Gaussian and such that

Ut
k = At

kYk + Zt
k , (5.14)

where Zt
k ∼ CN (0,Σztk

), then P
(t+1)
Uk|Yk

is also Gaussian, with

Ut+1
k = At+1

k Yk + Zt+1
k , (5.15)

where Zt+1
k ∼ CN (0,Σzt+1

k
) and the parameters At+1

k and Σzt+1
k

are given by

Σzt+1
k

=

(
1

sk
Σ−1

utk|(x,y0)
− 1− s1

sk
Σ−1

utk|(utk̄,y0)
+
sk − s1

sk
Σ−1

utk|y0

)−1

(5.16a)

At+1
k = Σzt+1

k

(
1

sk
Σ−1

utk|(x,y0)
At
k(I−Σyk|(x,y0)Σ

−1
yk

)

)

−Σzt+1
k

(
1− s1

sk
Σ−1

utk|(utk̄,y0)
At
k(I−Σyk|(utk̄,y0)Σ

−1
yk

)

− sk − s1

sk
Σ−1

utk|y0
At
k(I−Σyk|y0Σ

−1
yk

)

)
. (5.16b)

The updating steps are provided in Algorithm 3. The proof of (5.16) can be found in

Appendix H.3.

5.1.3 Numerical Examples

In this section, we discuss two examples, a binary CEO example and a vector Gaussian

CEO example.

Example 2. Consider the following binary CEO problem. A memoryless binary source X,

modeled as a Bernoulli-(1/2) random variable, i.e., X ∼ Bern(1/2), is observed remotely

at two agents who communicate with a central unit decoder over error-free rate-limited

links of capacity R1 and R2, respectively. The decoder wants to estimate the remote source

X to within some average fidelity level D, where the distortion is measured under the

logarithmic loss criterion. The noisy observation Y1 at Agent 1 is modeled as the output

of a binary symmetric channel (BSC) with crossover probability α1 ∈ [0, 1], whose input is
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X, i.e., Y1 = X ⊕ S1 with S1 ∼ Bern(α1). Similarly, the noisy observation Y2 at Agent

2 is modeled as the output of a BSC(α2) channel, α2 ∈ [0, 1], whose has input X, i.e.,

Y2 = X ⊕ S2 with S2 ∼ Bern(α2). Also, the central unit decoder observes its own side

information Y0 in the form of the output of a BSC(β) channel, β ∈ [0, 1], whose input is

X, i.e., Y0 = X ⊕ S0 with S0 ∼ Bern(β). It is assumed that the binary noises S0, S1 and

S2 are independent between them and with the remote source X.
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Figure 5.1: Rate-distortion region of the binary CEO network of Example 2, computed using

Algorithm 2. (a): set of (R1, R2, D) triples such (R1, R2, D) ∈ RD1
CEO ∪ RD2

CEO, for α1 =

α2 = 0.25 and β ∈ {0.1, 0.25}. (b): set of (R,D) pairs such (R,R,D) ∈ RD1
CEO ∪RD2

CEO, for

α1 = α2 = 0.01 and β ∈ {0.01, 0.1, 0.25, 0.5}.

We use Algorithm 2 to numerically approximate1 the set of (R1, R2, D) triples such that

(R1, R2, D) is in the union of the achievable regions RD1
CEO and RD2

CEO as given by (5.1).

The regions are depicted in Figure 5.1a for the values α1 = α2 = 0.25 and β ∈ {0.1, 0.25}.
Note that for both values of β, an approximation of the rate-distortion region RDCEO

is easily found as the convex hull of the union of the shown two regions. For simplicity,

Figure 5.1b shows achievable rate-distortion pairs (R,D) in the case in which the rates

of the two encoders are constrained to be at most R bits per channel use each, i.e.,

R1 = R2 = R, higher quality agents’ observations (Y1, Y2) corresponding to α1 = α2 = 0.01

and β ∈ {0.01, 0.1, 0.25, 0.5}. In this figure, observe that, as expected, smaller values of

β correspond to higher quality estimate side information Y0 at the decoder; and lead to

1We remind the reader that, as already mentioned, Algorithm 2 only converges to stationary points of the

rate-distortion region.
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smaller distortion values for given rate R. The choice β = 0.5 corresponds to the case of

no or independent side information at decoder; and it is easy to check that the associated

(R,D) curve coincides with the one obtained through exhaustive search in [10, Figure 3].

�
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Figure 5.2: Rate-information region of the vector Gaussian CEO network of Example 3. Numerical

values are nx = 3 and n0 = n1 = n2 = 4. (a): set of (R1, R2,∆) triples such (R1, R2, h(X) −
∆) ∈ RD1

VG-CEO ∪ RD2
VG-CEO, computed using Algorithm 3. (b): set of (Rsum,∆) pairs such

Rsum = R1 +R2 for some (R1, R2) for which (R1, R2, h(X)−∆) ∈ RD1
VG-CEO ∪RD2

VG-CEO.

Example 3. Consider an instance of the memoryless vector Gaussian CEO problem as

described by (4.1) and (4.2) obtained by setting K = 2, nx = 3 and n0 = n1 = n2 =

4. We use Algorithm 3 to numerically approximate the set of (R1, R2,∆) triples such

(R1, R2, h(X) −∆) is in the union of the achievable regions RD1
VG-CEO and RD2

VG-CEO.

The result is depicted in Figure 5.2a. The figure also shows the set of (R1, R2,∆) triples

such that (R1, R2, h(X) − ∆) lies in the region given by Theorem 4 evaluated for the

example at hand. Figure 5.2b shows the set of (Rsum,∆) pairs such Rsum := R1 +R2 for

some (R1, R2) for which (R1, R2, h(X)−∆) is in the union of RD1
VG-CEO and RD2

VG-CEO.

The region is computed using two different approaches: i) using Algorithm 3 and ii) by

directly evaluating the region obtained from Theorem 4 using the CVX optimization tool

to find the maximizing covariance matrices (Ω1,Ω2) (note that this problem is convex

and so CVX finds the optimal solution). It is worth-noting that Algorithm 3 converges to

the optimal solution for the studied vector Gaussian CEO example, as is visible from the

figure. For comparisons reasons, the figure also shows the performance of centralized or
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joint encoding, i.e., the case both agents observe both Y1 and Y2,

∆(Rsum) = max
PU|Y1,Y2

: I(U ;Y1,Y2|Y0)≤Rsum

I(U,Y0; X) . (5.17)

Finally, we note that the information/sum-rate function (5.17) can be seen an extension of

Chechik et al. Gaussian Information Bottleneck [21] to the case of side information Y0 at

the decoder. Figure 5.2b shows the loss in terms of information/sum-rate that is incurred

by restricting the encoders to operate separately, i.e., distributed Information Bottleneck

with side information at decoder. �

5.2 Deep Distributed Representation Learning

Consider the K-encoder CEO problem under logarithmic loss that we studied in Chapter 3.

In this section, we study the case in which there is no side information, i.e., Y0 = ∅. The

K-encoder CEO source coding problem under logarithmic loss distortion is essentially a

distributed learning model, in which the decoder is interested in a soft estimate of X and

the inference is done in a distributed manner by K learners (encoders).

Let the logarithmic loss distortion constraint of the CEO problem be replaced by the

mutual information constraint

I
(
Xn;ψ(n)

(
φ

(n)
1 (Y n

1 ), . . . , φ
(n)
K (Y n

K)
))
≥ n∆ . (5.18)

In this case, the region RIDIB of optimal relevance-complexity tuples (R1, . . . , RK ,∆)

generalizes the Tishby’s Information Bottleneck [17] to the distributed case, which is called

as Distributed Information Bottleneck (DIB) problem [1]. Since these two problems are

equivalent, the region RIDIB can be characterized using the relevance-complexity region

RD?CEO given in Theorem 1 by substituting therein ∆ := H(X) − D. The following

corollary states the result.

Corollary 3. The relevance-complexity region RIDIB of the distributed learning problem

is given by the set of all non-negative relevance-complexity tuples (R1, . . . , RK ,∆) that

satisfy, for all subsets S ⊆ K,

∆ ≤
∑

k∈S
[Rk − I(Yk;Uk|X,Q)] + I(X;USc , Q) ,
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for some auxiliary random variables (U1, . . . , UK , Q) with distribution PUK,Q(uK, q) such

that PX,YK,UK,Q(x, yK, uK, q) factorizes as

PX(x)
K∏

k=1

PYk|X(yk|x) PQ(q)
K∏

k=1

PUk|Yk,Q(uk|yk, q) . �

Remark 13. The optimal relevance-complexity tuples (R1, . . . , RK ,∆) of the DIB prob-

lem – characterized by Corollary 3 – can be found by solving an optimization problem

on {PUk|Yk,Q}Kk=1 and PQ. Here, PUk|Yk,Q is the k-th stochastic encoding that maps the

observation Yk to a latent representation Uk such that Uk captures the relevant information

about X (similar to the single encoder IB problem), and PQ is the pmf of the time-sharing

variable Q among K encoders. The corresponding optimal decoding mapping is denoted by

PX|U1,...,UK ,Q for given {PUk|Yk,Q}Kk=1 and PQ. �

For simplicity, the relevance is maximized under sum-complexity constraint, i.e., Rsum :=
∑K

k=1Rk. The achievable relevance-complexity region under sum-complexity constraint is

defined by

RIsum
DIB :=

{
(∆,Rsum) ∈ R2

+ : ∃(R1, . . . , RK) ∈ RK
+ s.t.

(R1, . . . , RK ,∆) ∈ RIDIB and
K∑

k=1

Rk = Rsum

}
.

The region RIsum
DIB can be characterized as given in the following proposition.

Proposition 9. [100, Proposition 1] The relevance-complexity region under sum-complexity

constraint RIsum
DIB is given by the convex-hull of all non-negative tuples (∆, Rsum) that satisfy

∆ ≤ ∆sum
DIB(Rsum) where

∆sum
DIB(Rsum) := max

P
min

{
I(X;UK), Rsum −

K∑

k=1

I(Yk;Uk|X)

}
, (5.19)

in which the maximization is over the set of conditional pmfs P := {PU1|Y1 , . . . , PUK |YK}.

Proof. The proof of Proposition 9 is given in Appendix H.4.

Next proposition provides a parameterization of the boundary tuples (∆s, Rs) of the

region RIsum
DIB in terms of a parameter s ≥ 0.

Proposition 10. For each tuple (∆, Rsum) on the boundary of the relevance-complexity

region RIsum
DIB there exists s ≥ 0 such that (∆, Rsum) = (∆s, Rs), where

∆s :=
1

1 + s

[
(1 + sK)H(X) + sRs + max

P
LDIB
s (P)

]
(5.20)
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Rs := I(X;U?
K) +

K∑

k=1

[I(Yk;U
?
k )− I(X;U?

k )] , (5.21)

and P? is the set of pmfs that maximize the cost function

LDIB
s (P) := −H(X|UK)− s

K∑

k=1

[H(X|Uk) + I(Yk;Uk)] . (5.22)

Proof. The proof of Proposition 10 is given in Appendix H.5.

From Proposition 10 it is easy to see that the boundary tuple (∆s, Rs) for a given

parameter s can be computed by finding the encoding mappings {PUk|Yk}Kk=1 that maximizes

the cost function LDIB
s (P) in (5.22). Different boundary tuples of region RIsum

DIB can be

obtained by finding the encoding mappings maximizing (5.22) for different s values, and

computing (5.20) and (5.21) for the resulting solution.

For variational distributions QUk on Uk, k ∈ K (instead of unknown PUk), a variational

stochastic decoder QX|U1,...,UK (instead of the unknown optimal decoder PX|U1,...,UK ), and

K arbitrary decoders QX|Uk , k ∈ K, let define Q as follows

Q :=
{
QX|U1,...,UK , QX|U1 , . . . , QX|UK , QX|U1 , . . . , QX|UK

}
.

In the following we define the variational DIB cost function LVDIB
s (P,Q) as

LVDIB
s (P,Q) := EPX,YK

[
EPU1|Y1

× · · · × EPUK |YK
[logQX|UK ]

+ s
K∑

k=1

(
EPUk|Yk [logQX|Uk ]−DKL(PUk|Yk‖QUk)

)]
.

(5.23)

The following lemma states that LVDIB
s (P,Q) is a variational lower bound on the DIB

objective LDIB
s (P) for all distributions Q.

Lemma 6. For fixed P, we have

LVDIB
s (P,Q) ≤ LDIB

s (P) , for all Q .

In addition, there exists a Q that achieves the maximum maxQ LVDIB
s (P,Q) = LDIB

s (P),

and is given by

Q?
Uk

= PUk , Q?
X|Uk = PX|Uk , k = 1, . . . , K ,

Q?
X|U1,...,UK

= PX|U1,...,UK ,
(5.24)

where PUk , PX|Uk and PX|U1,...,UK are computed from P.
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Proof. The proof of Lemma 6 is given in Appendix H.6.

Using Lemma 6, it is easy to see that

max
P
LDIB
s (P) = max

P
max

Q
LVDIB
s (P,Q) . (5.25)

Remark 14. The variational DIB cost LVDIB
s (P,Q) in (5.23) is composed of the cross-

entropy term that is average logarithmic loss of estimating X from all latent representations

U1, . . . , UK by using the joint decoder QX|U1,...,UK , and a regularization term. The regular-

ization term is consisted of: i) the KL divergence between encoding mapping PUk|Yk and the

prior QUk , that also seems in the single encoder case of the variational bound (see (2.33));

and ii) the average logarithmic loss of estimating X from each latent space Uk using the

decoder QX|Uk , that does not appear in the single encoder case. �

5.2.1 Variational Distributed IB Algorithm

In the first part of this chapter, we present the BA-type algorithms which find P, Q

optimizing (5.25) for the cases in which the joint distribution of the data, i.e., PX,YK , is

known perfectly or can be estimated with a high accuracy. However, this is not the case

in general. Instead only a set of training samples {(xi,y1,i, . . . ,yK,i)}ni=1 is available.

For this case, we develop a method in which the encoding and decoding mappings are

restricted to a family of distributions, whose parameters are the outputs of DNNs. By

doing so, the variational bound (5.23) can be written in terms of the parameters of

DNNs. Furthermore, the bound can be computed using Monte Carlo sampling and the

reparameterization trick [29]. Finally, we use the stochastic gradient descent (SGD)

method to train the parameters of DNNs. The proposed method generalizes the variational

framework in [30,78,117–119] to the distributed case with K learners, and was given in [1].

Let Pθk(uk|yk) denote the encoding mapping from the observation Yk to the latent

representation Uk, parameterized by a DNN fθk with parameters θk. As a common example,

the encoder can be chosen as a multivariate Gaussian, i.e., Pθk(uk|yk) = N (uk;µθk ,Σθk).

That is the DNN fθk maps the observation yk to the parameters of the multivariate

Gaussian, namely the mean µθk and the covariance Σθk , i.e., (µθk ,Σθk) = fθ(yk). Similarly,

let QφK(x|uK) denote the decoding mapping from all latent representations U1, . . . ,UK to

the target variable X, parameterized by a DNN gφK with parameters φK; and let Qφk(x|uk)
denote the regularizing decoding mapping from the k-th latent representations Uk to
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the target variable X, parameterized by a DNN gφk with parameters φk, k = 1, . . . , K.

Furthermore, let Qψk(uk), k = 1, . . . , K, denote the prior of the latent space, which does

not depend on a DNN.

By restricting the coders’ mappings to a family of distributions as mentioned above,

the optimization of the variational DIB cost in (5.25) can be written as follows

max
P

max
Q
LVDIB
s (P,Q) ≥ max

θ,φ,ψ
LNN
s (θ,φ,ψ) , (5.26)

where θ := [θ1, . . . , θK ], φ := [φ1, . . . , φK , φK], ψ := [ψ1, . . . , ψK ] denote the parame-

ters of encoding DNNs, decoding DNNs, prior distributions, respectively; and the cost

LNN
s (θ,φ,ψ) is given as

LNN
s (θ,φ,ψ) := EPX,YK

[
EPθ1 (U1|Y1) × · · · × EPθK (UK |YK)[logQφK(X|UK)]

+ s
K∑

k=1

(
EPθk (Uk|Yk)[logQφk(X|Uk)]−DKL(Pθk(Uk|Yk)‖Qψk(Uk))

)]
.

(5.27)

Furthermore, the cross-entropy terms in (5.27) can be computed using Monte Carlo

sampling and the reparameterization trick [29]. In particular, Pθk(uk|yk) can be sampled

by first sampling a random variable Zk with distribution PZk(zk), i.e., PZk = N (0, I),

then transforming the samples using some function f̃θk : Yk ×Zk → Uk parameterized by

θk, i.e., uk = f̃θk(yk, zk) ∼ Pθk(uk|yk). The reparameterization trick reduces the original

optimization to estimating θk of the deterministic function f̃θk ; hence, it allows us to

compute estimates of the gradient using backpropagation [29]. Thus, we have the empirical

DIB cost for the i-th sample in the training dataset as follows

Lemp
s,i (θ,φ,ψ) =

1

m

m∑

j=1

[
logQφK(xi|u1,i,j, . . . ,uK,i,j) + s

K∑

k=1

logQφk(xi|uk,i,j)
]

− s
K∑

k=1

DKL(Pθk(Uk|yk)‖Qψk(Uk)) .

(5.28)

where m is the number of samples for the Monte Carlo sampling.

Finally, we train DNNs to maximize the empirical DIB cost over the parameters θ,φ

as

max
θ,φ

1

n

n∑

i=1

Lemp
s,i (θ,φ,ψ) . (5.29)
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For the training step, we use the SGD or Adam optimization tool [83]. The training pro-

cedure is detailed in Algorithm 4, so-called variational distributed Information Bottleneck

(D-VIB).

Algorithm 4 D-VIB algorithm for the distributed IB problem [1, Algorithm 3]

1: input: Training dataset D := {(xi,y1,i, . . . ,yK,i)}ni=1, parameter s ≥ 0.
2: output: θ?,φ? and optimal pairs (∆s, Rs).
3: initialization Initialize θ,φ.
4: repeat
5: Randomly select b mini-batch samples {(y1,i, . . . ,yK,i)}bi=1 and the corresponding
{xi}bi=1 from D.

6: Draw m random i.i.d samples {zk,j}mj=1 from PZk , k = 1, . . . , K.

7: Compute m samples uk,i,j = f̃θk(yk,i, zk,j)
8: For the selected mini-batch, compute gradients of the empirical cost (5.29).
9: Update θ,φ using the estimated gradient (e.g. with SGD or Adam).

10: until convergence of θ,φ.

Once our model is trained, with the convergence of the DNN parameters to θ?,φ?, for

new observations Y1, . . . ,YK , the target variable X can be inferred by sampling from the

encoders Pθ?k(Uk|Yk) and then estimating from the decoder Qφ?K(X|U1, . . . ,UK).

Now we investigate the choice of parametric distributions Pθk(uk|yk), Qφk(x|uk),
QφK(x|uK) and Qψk(uk) for the two applications: i) classification, and ii) vector Gaussian

model. Nonetheless, the parametric families of distributions should be chosen to be

expressive enough to approximate the optimal encoders maximizing (5.22) and the optimal

decoders and priors in (5.24) such that the gap between the variational DIB cost (5.23)

and the original DIB cost (5.22) is minimized.

D-VIB Algorithm for Classification

Let us consider a distributed classification problem in which the observations Y1, . . . ,YK

have arbitrary distribution and X has a discrete distribution on some finite set X of class

labels. For this problem, the choice of the parametric distributions can be the following:

• The decoder QφK(x|uK) and decoders used for regularization Qφk(x|uk) can be general

categorical distributions parameterized by a DNN with a softmax operation in the

last layer, which outputs the probabilities of dimension |X |.
• The encoders can be chosen as multivariate Gaussian, i.e. Pθk(uk|yk) = N (uk;µθk ,Σθk).
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• The priors of the latent space Qψk(uk) can be chosen as multivariate Gaussian (e.g.,

N (0, I)) such that the KL divergence DKL(Pθk(Uk|Yk)‖Qψk(Uk)) has a closed form

solution and is easy to compute [29,30]; or more expressive parameterizations can

also be considered [120,121].
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Figure 5.3: An example of distributed supervised learning.

D-VIB Algorithm for Vector Gaussian Model

One of the main results of this thesis is that the optimal test channels are Gaussian for

the vector Gaussian model (see Theorem 4). Due to this, if the underlying data model is

multivariate vector Gaussian, then the optimal distributions P and Q are also multivariate

Gaussian. Hence, we consider the following parameterization, for k ∈ K,

Pθk(uk|yk) = N (uk;µθk ,Σθk) (5.30a)

QφK(x|uK) = N (x;µφK ,ΣφK) (5.30b)

Qφk(x|uk) = N (x;µφk ,Σφk) (5.30c)

Qψk(uk) = N (0, I) , (5.30d)

where µθk ,Σθk are the outputs of a DNN fθk that encodes the input Yk into a nuk-

dimensional Gaussian distribution; µφK ,ΣφK are the outputs of a DNN gφK with inputs
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U1, . . . ,UK , sampled from N (uk;µθk ,Σθk); and µφk ,Σφk are the outputs of a DNN gφk

with the input Uk, k = 1, . . . , K.

5.2.2 Experimental Results

In this section, numerical results on the synthetic and real datasets are provided to

support the efficiency of the D-VIB Algorithm 4. We evaluate the relevance-complexity

trade-offs achieved by the BA-type Algorithm 3 and D-VIB Algorithm 4. The resulting

relevance-complexity pairs are compared to the optimal relevance-complexity trade-offs

and an upper bound, which is denoted by Centralized IB (C-IB). The C-IB bound is given

by the pairs (∆s, Rsum) achievable if (Y1, . . . , YK) are encoded jointly at a single encoder

with complexity Rsum = R1 + · · ·+RK , and can be obtained by solving the centralized IB

problem as follows

∆cIB(Rsum) = max
PU|Y1,...,YK

: I(U ;Y1,...,YK)≤Rsum

I(U ;X) . (5.31)

In the following experiments, the D-VIB Algorithm 4 is implemented by Adam opti-

mizer [29] over 150 epochs and minibatch size of 64. The learning rate is initialized with

0.001 and decreased gradually every 30 epochs with a decay rate of 0.5, i.e., learning rate

at epoch nepoch is given by 0.001 · 0.5bnepoch/30c.

Regression for Vector Gaussian Data Model

Here we consider a real valued vector Gaussian data model as in [1, Section VI-A].

Specifically, K = 2 encoders observe independently corrupted Gaussian noisy versions

of a nx-dimensional vector Gaussian source X ∼ N (x; 0, I), as Yk = HkX + Nk, where

Hk ∈ Rnk×nx represents the channel connecting the source to the k-th encoder and

Nk ∈ Rnk is the noise at this encoder, i.e., Nk ∼ N (0, I), k = 1, 2.

The optimal complexity-relevance trade-off for this model is characterized as in (4.25)

(wherein H0 = 0), and can be computed using two different approaches: i) using Al-

gorithm 3 and ii) by directly evaluating the region obtained from Theorem 4 using the

CVX optimization tool to find the maximizing covariance matrices (Ω1,Ω2) (note that

this problem is convex and so CVX finds the optimal solution). Furthermore, the C-IB

upper bound in (5.31) can be computed analytically (see (2.14)) since it is an instance of

Gaussian Information Bottleneck problem.
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A synthetic dataset of n i.i.d. samples {(xi,y1,i,y2,i)}ni=1 is generated from the afore-

mentioned vector Gaussian model. Then, the proposed BA-type and D-VIB algorithms

are applied on the generated dataset for regression of the Gaussian target variable X. For

the case in which the covariance matrix Σx,y1,y2 of the data model is known, Algorithm 3

is used to compute the relevance-complexity pairs for different values of s. For the case in

which the covariance matrix Σx,y1,y2 is not known, Algorithm 4 is used to train the DNNs

determining the encoders and decoders for different value of s. The encoders and decoders

are parameterized with multivariate Gaussian as in (5.30). We use the following network

architecture: Encoder k, k = 1, 2, is modeled with DNNs with 3 hidden dense layers of 512

neurons with rectified linear unit (ReLU) activations; which is followed by a dense layer

without nonlinear activation to generate the outputs of Encoder k, i.e., µθk and Σθk of

size 512 and 512× 512. Each decoder is modeled with DNNs with 2 hidden dense layers

of 512 neurons with ReLU activations. The output of decoder 1, 2 and K is processed,

each, by a fully connected layer without nonlinear activation to generate µφk and Σφk ,

and µφK and ΣφK , of size 2 and 2× 2.
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Figure 5.4: Relevance vs. sum-complexity trade-off for vector Gaussian data model with K = 2

encoders, nx = 1, n1 = n2 = 3, and achievable pairs with the BA-type and D-VIB algorithms for

n = 40000. Figure is taken from [1].

Figure 5.4 shows the tuples (∆s, Rsum) resulting from the application of the BA-type

Algorithm 3. It is worth-noting that Algorithm 3 converges to the optimal solution obtained

directly by evaluation the region from (4.25). To apply the D-VIB algorithm, a synthetic

dataset of 40000 i.i.d. samples is generated, which is split into a training set of 30000

samples and a test set of 10000 samples. Figure 5.4 also shows the relevance-complexity

pairs resulting form the application of the D-VIB algorithm for different values of s in the

range (0, 10] calculated as in Proposition 10. For comparisons reasons, Figure 5.4 also
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shows the performance of centralized or joint encoding, i.e., the C-IB bounds ∆cIB(Rsum)

and ∆cIB(∞).

0 10 20

0

5

10

15

20

25

0

5

10

15

20

25

Figure 5.5: Two-view handwritten MNIST

dataset. Figure is taken from [1].

DNN Layers

Encoder k conv. [5, 5, 32] – ReLU

maxpool [2, 2, 2]

conv. [5, 5, 64] – ReLU

maxpool [2, 2, 2]

dense [1024] – ReLU

dropout 0.4

dense [256] – ReLU

Latent space k dense [256] – ReLU

Decoder k dense [256] – ReLU

Decoder K dense [256] – ReLU

Table 5.1: DNN architecture for

Figure 5.6.

Classification on the multi-view MNIST dataset

Here the performance of the D-VIB algorithm is evaluated for a classification task on

a multi-view version of the MNIST dataset, consisting of gray-scale images of 70000

handwritten digits with a size of 28× 28 pixels from 0 to 9. In the experiments, we use

the dataset composed of two views, generated as in [1, Section VI-B]. To generate the

view 1, each image in MNIST is rotated by a random angel uniformly selected from the

range [−π/4, π/4], then the pixels in the middle of the image with a size of 25× 25 are

occluded. The view 2 is generated from the same digit as in the view 1 by adding a

uniformly distributed random noise in the range of [0, 3] to each pixel, and then each

pixel value is truncated to [0, 1]. An example of the two-view MNIST dataset is depicted

in Figure 5.5. The view 1 and view 2 are made available to Encoder 1 and Encoder 2,

respectively. Each image is flattened into a vector of length 784, i.e., yk ∈ [0, 1]784, k = 1, 2.

Finally, 70000 two-view samples {xi,y1,i,y2,i}70000
i=1 are separated into training and test

sets of length n and 70000− n, respectively. To understand how difficult the classification

task is on each view, the centralized VIB (C-VIB) algorithm [30] is applied by using a

standard convolutional neural network (CNN) architecture with dropout, which achieves

an accuracy of 99.8% for the original MNIST dataset. The resulting accuracies are 92.3%

for view 1 and 79.68% for view 2. Therefore, the classification on view 1 is easier than

view 2. In other words, view 1 is less noisy.
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Now we apply the D-VIB algorithm to the two-view MNIST dataset generated as

explained above. The CNN architecture is summarized in Table 5.1. For Encoder

k, k = 1, 2, we consider a nuk = 256 dimensional multivariate Gaussian distribution

parameterization, N (µθk ,Σθk), where µθk ,Σθk are the outputs of a DNN fθk consisting

of the concatenation of convolutional, dense and maxpool layers with ReLU activations

and a dropout. For the last layer of the encoder we use a linear activation. Then, the

latent representation uk, k = 1, 2, is sampled from N (µθk ,Σθk). The prior is chosen as

Qψk(uk) = N (0, I). Decoder k, k = 1, 2, and Decoder K takes uk and uK, respectively,

as an input. Each decoder is modeled with a DNN (gφk and gφK) with 2 hidden dense

layers of 256 neurons with ReLU activations. The output of each decoder is processed by

a fully connected layer, followed by a softmax, which outputs a normalized vector x̂ of

size |X | = 10, corresponding to a distribution over the one-hot encoding of the digit labels

{0, 1, . . . , 9} from the K observations, i.e., we have

Qφk(x̂|uk) = softmax(gφk(Uk)) , k = 1, . . . , K ,

QφK(x̂|uK) = softmax(gφK(U1, U2)) ,
(5.32)

where softmax(p) for p ∈ Rd is a vector with i-th entry is calculated as [softmax(p)]i =

exp(pi)/
d∑
j=1

exp(pj), i = 1, . . . , d.

For given parameterization, the log-loss (reconstruction loss) terms are calculated by

using the cross-entropy criterion and the KL divergence terms can be computed as in (I.2).

The relevance-complexity pairs obtained from applying the D-VIB Algorithm 4 on

the two-view MNIST – consisting of a training set of n = 50000 samples – is depicted in

Figure 5.6a for 15 different values of s in the range [10−10, 1]. For comparisons reasons, the

figure also shows the C-IB upper bound for Rsum →∞ assuming that zero classification

error is possible, i.e., ∆cIB(∞) = log 10. During the training phase, it is observed that

higher sum-complexity results higher relevance, and that resulting relevance-complexity

pairs are very close to the theoretical limit. On the other hand, during the test phase,

the achievable relevance decreases for large values of sum-complexity. This is because

of the effect of the regularization such that the complexity constraint results in higher

generalization.

The accuracies of the D-VIB algorithm achieved by the joint (or main) estimator

QX|U1,U2 , as well as the regularizing decoders QX|Uk
, k = 1, 2, are depicted in Figure 5.6b
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Figure 5.6: Distributed representation learning for the two-view MNIST dataset with K = 2

encoders, with D-VIB algorithm for n = 50000 and s ∈ [10−10, 1]. Figures are taken from [1]

with respect to the regularization parameter s. As mentioned previously in this section,

view 1 is less noisy. Therefore, the description U1 from view 1 carries most of the

information about the target variable X. While for the range 10−6 < s < 10−3, both

descriptions U1 and U2 capture the relevant information from the view 1 and view 2,

respectively, and that results an increase in the overall performance for QX|U1,U2 .

D-VIB D-VIB-noReg C-VIB

97.24 96.72 96.68

Table 5.2: Accuracy for different algorithms with CNN architectures

In order to understand the advantages of the D-VIB algorithm, now we look at the

comparison of accuracy of D-VIB with two different algorithms: i) the C-VIB, where

both views are encoded in a centralized manner; and ii) the D-VIB-noReg, where the

DIB cost (5.23) is optimized by considering only the divergence terms in the regularizer,

without the regularizing decoders QX|Uk , k = 1, 2. The D-VIB-noReg can be seen as a

naive direct extension of the VIB of [30] to the distributed case. Table 5.2 states the results,

where it is seen that the D-VIB has the best accuracy compared to the other algorithms.

This justifies that it is better to first partition the data according to its homogeneity, even

if the data is available in a centralized manner. The advantage of D-VIB over C-VIB can

be explained due to that it is better to learn suitable representations from each group,

and optimize the encoding and decoding mappings jointly.

86



Chapter 6

Application to Unsupervised

Clustering

Clustering consists of partitioning a given dataset into various groups (clusters) based

on some similarity metric, such as the Euclidean distance, L1 norm, L2 norm, L∞ norm,

the popular logarithmic loss measure, or others. The principle is that each cluster should

contain elements of the data that are closer to each other than to any other element outside

that cluster, in the sense of the defined similarity measure. If the joint distribution of the

clusters and data is not known, one should operate blindly in doing so, i.e., using only

the data elements at hand; and the approach is called unsupervised clustering [122,123].

Unsupervised clustering is perhaps one of the most important tasks of unsupervised machine

learning algorithms currently, due to a variety of application needs and connections with

other problems.

Clustering can be formulated as follows. Consider a dataset that is composed of N

samples {xi}Ni=1, which we wish to partition into |C| ≥ 1 clusters. Let C = {1, . . . , |C|} be

the set of all possible clusters and C designate a categorical random variable that lies in

C and stands for the index of the actual cluster. If X is a random variable that models

elements of the dataset, given that X = xi induces a probability distribution on C, which

the learner should learn, thus mathematically, the problem is that of estimating the values

of the unknown conditional probability PC|X(·|xi) for all elements xi of the dataset. The

estimates are sometimes referred to as the assignment probabilities.

Examples of unsupervised clustering algorithms include the very popular K-means [124]

and Expectation Maximization (EM) [125]. The K-means algorithm partitions the data
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in a manner that the Euclidean distance among the members of each cluster is minimized.

With the EM algorithm, the underlying assumption is that the data comprise a mixture

of Gaussian samples, namely a Gaussian Mixture Model (GMM); and one estimates the

parameters of each component of the GMM while simultaneously associating each data

sample with one of those components. Although they offer some advantages in the context

of clustering, these algorithms suffer from some strong limitations. For example, it is well

known that the K-means is highly sensitive to both the order of the data and scaling; and

the obtained accuracy depends strongly on the initial seeds (in addition to that, it does

not predict the number of clusters or K-value). The EM algorithm suffers mainly from

slow convergence, especially for high-dimensional data.

Recently, a new approach has emerged that seeks to perform inference on a transformed

domain (generally referred to as latent space), not the data itself. The rationale is that

because the latent space often has fewer dimensions, it is more convenient computationally

to perform inference (clustering) on it rather than on the high-dimensional data directly.

A key aspect then is how to design a latent space that is amenable to accurate low-

complexity unsupervised clustering, i.e., one that preserves only those features of the

observed high-dimensional data that are useful for clustering while removing all redundant

or non-relevant information. Along this line of work, we can mention [126], which utilized

Principal Component Analysis (PCA) [127, 128] for dimensionality reduction followed

by K-means for clustering the obtained reduced dimension data; or [129], which used

a combination of PCA and the EM algorithm. Other works that used alternatives for

the linear PCA include kernel PCA [130], which employs PCA in a non-linear fashion to

maximize variance in the data.

Tishby’s Information Bottleneck (IB) method [17] formulates the problem of finding a

good representation U that strikes the right balance between capturing all information

about the categorical variable C that is contained in the observation X and using the most

concise representation for it. The IB problem can be written as the following Lagrangian

optimization

min
PU|X

I(X; U)− sI(C; U) , (6.1)

where s is a Lagrange-type parameter, which controls the trade-off between accuracy and

regularization. In [32, 131], a text clustering algorithm is introduced for the case in which

the joint probability distribution of the input data is known. This text clustering algorithm
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uses the IB method with an annealing procedure, where the parameter s is increased

gradually. When s→ 0, the representation U is designed with the most compact form,

i.e., |U| = 1, which corresponds to the maximum compression. By gradually increasing

the parameter s, the emphasis on the relevance term I(C; U) increases, and at a critical

value of s, the optimization focuses on not only the compression, but also the relevance

term. To fulfill the demand on the relevance term, this results in the cardinality of U

bifurcating. This is referred as a phase transition of the system. The further increases

in the value of s will cause other phase transitions, hence additional splits of |U| until it

reaches the desired level, e.g., |U| = |C|.

However, in the real-world applications of clustering with large-scale datasets, the

joint probability distributions of the datasets are unknown. In practice, the usage of

Deep Neural Networks (DNN) for unsupervised clustering of high-dimensional data on a

lower dimensional latent space has attracted considerable attention, especially with the

advent of Autoencoder (AE) learning and the development of powerful tools to train them

using standard backpropagation techniques [29, 132]. Advanced forms include Variational

Autoencoders (VAE) [29, 132], which are generative variants of AE that regularize the

structure of the latent space, and the more general Variational Information Bottleneck

(VIB) of [30], which is a technique that is based on the Information Bottleneck method and

seeks a better trade-off between accuracy and regularization than VAE via the introduction

of a Lagrange-type parameter s, which controls that trade-off and whose optimization is

similar to deterministic annealing [32] or stochastic relaxation.

In this chapter, we develop an unsupervised generative clustering framework that

combines VIB and the Gaussian Mixture Model. Specifically, in our approach, we use

the Variational Information Bottleneck method and model the latent space as a mixture

of Gaussians. We derive a bound on the cost function of our model that generalizes the

Evidence Lower Bound (ELBO) and provide a variational inference type algorithm that

allows computing it. In the algorithm, the coders’ mappings are parameterized using

Neural Networks (NN), and the bound is approximated by Markov sampling and optimized

with stochastic gradient descent. Furthermore, we show how tuning the hyperparameter s

appropriately by gradually increasing its value with iterations (number of epochs) results

in a better accuracy. Furthermore, the application of our algorithm to the unsupervised

clustering of various datasets, including the MNIST [46], REUTERS [47], and STL-10 [48],
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allows a better clustering accuracy than previous state-of-the-art algorithms. For instance,

we show that our algorithm performs better than the Variational Deep Embedding (VaDE)

algorithm of [31], which is based on VAE and performs clustering by maximizing the

ELBO. Our algorithm can be seen as a generalization of the VaDE, whose ELBO can be

recovered by setting s = 1 in our cost function. In addition, our algorithm also generalizes

the VIB of [30], which models the latent space as an isotropic Gaussian, which is generally

not expressive enough for the purpose of unsupervised clustering. Other related works,

which are of lesser relevance to the contribution of this paper, are the Deep Embedded

Clustering (DEC) of [33] and the Improved Deep Embedded Clustering (IDEC) of [133]

and [134]. For a detailed survey of clustering with deep learning, the readers may refer

to [135].

To the best of our knowledge, our algorithm performs the best in terms of clustering

accuracy by using deep neural networks without any prior knowledge regarding the labels

(except the usual assumption that the number of classes is known) compared to the

state-of-the-art algorithms of the unsupervised learning category. In order to achieve the

outperforming accuracy: (i) we derive a cost function that contains the IB hyperparameter

s that controls optimal trade-offs between the accuracy and regularization of the model;

(ii) we use a lower bound approximation for the KL term in the cost function, that does

not depend on the clustering assignment probability (note that the clustering assignment

is usually not accurate in the beginning of the training process); and (iii) we tune the

hyperparameter s by following an annealing approach that improves both the convergence

and the accuracy of the proposed algorithm.

Encoder

fθ

Decoder

gφ

U ∼∑c πc N (u;µc,Σc)

X X̂

Figure 6.1: Variational Information Bottleneck with Gaussian Mixtures.
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6.1 Proposed Model

In this section, we explain the proposed model, the so-called Variational Information

Bottleneck with Gaussian Mixture Model (VIB-GMM), in which we use the VIB framework

and model the latent space as a GMM. The proposed model is depicted in Figure 6.1,

where the parameters πc, µc, Σc, for all values of c ∈ C, are to be optimized jointly with

those of the employed DNNs as instantiation of the coders. Furthermore, the assignment

probabilities are estimated based on the values of latent space vectors instead of the

observations themselves, i.e., PC|X = QC|U. In the rest of this section, we elaborate on the

inference and generative network models for our method.

6.1.1 Inference Network Model

We assume that observed data x are generated from a GMM with |C| components. Then,

the latent representation u is inferred according to the following procedure:

1. One of the components of the GMM is chosen according to a categorical variable C.

2. The data x are generated from the c-th component of the GMM, i.e.,

PX|C ∼ N (x; µ̃c, Σ̃c).

3. Encoder maps x to a latent representation u according to PU|X ∼ N (µθ,Σθ).

3.1. The encoder is modeled with a DNN fθ, which maps x to the parameters of a

Gaussian distribution, i.e., [µθ,Σθ] = fθ(x).

3.2. The representation u is sampled from N (µθ,Σθ).

For the inference network, shown in Figure 6.2, the following Markov chain holds

C −
−X−
−U . (6.2)

C X U
PX|C PU|X

Figure 6.2: Inference Network
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6.1.2 Generative Network Model

Since the encoder extracts useful representations of the dataset and we assume that the

dataset is generated from a GMM, we model our latent space also with a mixture of

Gaussians. To do so, the categorical variable C is embedded with the latent variable U.

The reconstruction of the dataset is generated according to the following procedure:

1. One of the components of the GMM is chosen according to a categorical variable C,

with a prior distribution QC .

2. The representation u is generated from the c-th component, i.e., QU|C ∼ N (u;µc,Σc).

3. The decoder maps the latent representation u to x̂, which is the reconstruction of

the source x by using the mapping QX|U.

3.1. The decoder is modeled with a DNN gφ that maps u to the estimate x̂, i.e.,

[x̂] = gφ(u).

For the generative network, shown in Figure 6.3, the following Markov chain holds

C −
−U−
−X . (6.3)

C U X
QU|C QX|U

Figure 6.3: Generative Network

6.2 Proposed Method

In this section, we present our clustering method. First, we provide a general cost function

for the problem of the unsupervised clustering that we study here based on the variational

IB framework; and we show that it generalizes the ELBO bound developed in [31]. We

then parameterize our model using DNNs whose parameters are optimized jointly with

those of the GMM. Furthermore, we discuss the influence of the hyperparameter s that

controls optimal trade-offs between accuracy and regularization.
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6.2.1 Brief Review of Variational Information Bottleneck for Unsupervised

Learning

As described in Chapter 6.1, the stochastic encoder PU|X maps the observed data x to a

representation u. Similarly, the stochastic decoder QX|U assigns an estimate x̂ of x based

on the vector u. As per the IB method [17], a suitable representation U should strike

the right balance between capturing all information about the categorical variable C that

is contained in the observation X and using the most concise representation for it. This

leads to maximizing the following Lagrange problem

Ls(P) = I(C; U)− sI(X; U) , (6.4)

where s ≥ 0 designates the Lagrange multiplier and, for convenience, P denotes the

conditional distribution PU|X.

Instead of (6.4), which is not always computable in our unsupervised clustering setting,

we find it convenient to maximize an upper bound of Ls(P) given by

L̃s(P) := I(X; U)− sI(X; U)
(a)
= H(X)−H(X|U)− s[H(U)−H(U|X)] , (6.5)

where (a) is due to the definition of mutual information (using the Markov chain C−
−X−
−U,

it is easy to see that L̃s(P) ≥ Ls(P) for all values of P). Noting that H(X) is constant

with respect to PU|X, maximizing L̃s(P) over P is equivalent to maximizing

L′s(P) : = −H(X|U)− s[H(U)−H(U|X)] (6.6)

= EPX

[
EPU|X [logPX|U + s logPU − s logPU|X]

]
. (6.7)

For a variational distribution QU on U (instead of the unknown PU) and a variational

stochastic decoder QX|U (instead of the unknown optimal decoder PX|U), let Q :=

{QX|U, QU}. Furthermore, let

LVB
s (P,Q) := EPX

[
EPU|X [logQX|U]− sDKL(PU|X‖QU)

]
. (6.8)

Lemma 7. For given P, we have

LVB
s (P,Q) ≤ L′s(P), for all Q .

In addition, there exists a unique Q that achieves the maximum maxQ LVB
s (P,Q) = L′s(P),

and is given by

Q∗X|U = PX|U , Q∗U = PU .
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Proof. The proof of Lemma 7 is given in Appendix I.1.

Using Lemma 7, maximization of (6.6) can be written in term of the variational IB

cost as follows

max
P
L′s(P) = max

P
max

Q
LVB
s (P,Q) . (6.9)

Remark 15. As we already mentioned in the beginning of this chapter, the related work [31]

performs unsupervised clustering by combining VAE with GMM. Specifically, it maximizes

the following ELBO bound

LVaDE
1 := EPX

[
EPU|X [logQX|U]−DKL(PC|X‖QC)− EPC|X [DKL(PU|X‖QU|C)]

]
. (6.10)

Let, for an arbitrary non-negative parameter s, LVaDE
s be a generalization of the ELBO

bound (6.10) of [31] given by

LVaDE
s := EPX

[
EPU|X [logQX|U]− sDKL(PC|X‖QC)− sEPC|X [DKL(PU|X‖QU|C)]

]
.

(6.11)

Investigating the RHS of (6.11), we get

LVB
s (P,Q) = LVaDE

s + sEPX

[
EPU|X [DKL(PC|X‖QC|U)]

]
, (6.12)

where the equality holds since

LVaDE
s = EPX

[
EPU|X [logQX|U]− sDKL(PC|X‖QC)− sEPC|X [DKL(PU|X‖QU|C)]

]
(6.13)

(a)
= EPX

[
EPU|X [logQX|U]− sDKL(PU|X‖QU)− sEPU|X

[
DKL(PC|X‖QC|U)

]
(6.14)

(b)
= LVB

s (P,Q)− sEPX

[
EPU|X

[
DKL(PC|X‖QC|U)

]]
, (6.15)

where (a) can be obtained by expanding and rearranging terms under the Markov chain

C −
−X−
−U (for a detailed treatment, please look at Appendix I.2); and (b) follows from

the definition of LVB
s (P,Q) in (6.8).

Thus, by the non-negativity of relative entropy, it is clear that LVaDE
s is a lower bound

on LVB
s (P,Q). Furthermore, if the variational distribution Q is such that the conditional

marginal QC|U is equal to PC|X, the bound is tight since the relative entropy term is zero

in this case. �
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6.2.2 Proposed Algorithm: VIB-GMM

In order to compute (6.9), we parameterize the distributions PU|X and QX|U using DNNs.

For instance, let the stochastic encoder PU|X be a DNN fθ and the stochastic decoder

QX|U be a DNN gφ. That is

Pθ(u|x) = N (u;µθ,Σθ) , where [µθ,Σθ] = fθ(x) ,

Qφ(x|u) = gφ(u) = [x̂] ,
(6.16)

where θ and φ are the weight and bias parameters of the DNNs. Furthermore, the latent

space is modeled as a GMM with |C| components with parameters ψ := {πc,µc,Σc}|C|c=1,

i.e.,

Qψ(u) =
∑

c

πc N (u;µc,Σc) . (6.17)

Using the parameterizations above, the optimization of (6.9) can be rewritten as

max
θ,φ,ψ

LNN
s (θ, φ, ψ) (6.18)

where the cost function LNN
s (θ, φ, ψ) given by

LNN
s (θ, φ, ψ) := EPX

[
EPθ(U|X)[logQφ(X|U)]− sDKL(Pθ(U|X)‖Qψ(U))

]
. (6.19)

Then, for a given observations of N samples, i.e., {xi}Ni=1, (6.18) can be approximated in

terms of an empirical cost as follows

max
θ,φ,ψ

1

n

n∑

i=1

Lemp
s,i (θ, φ, ψ) , (6.20)

where Lemp
s,i (θ, φ, ψ) is the empirical cost for the i-th observation xi, and given by

Lemp
s,i (θ, φ, ψ) = EPθ(Ui|Xi)[logQφ(Xi|Ui)]− sDKL(Pθ(Ui|Xi)‖Qψ(Ui)) . (6.21)

Furthermore, the first term of the RHS of (6.21) can be computed using Monte Carlo

sampling and the reparameterization trick [29]. In particular, Pθ(u|x) can be sampled

by first sampling a random variable Z with distribution PZ, i.e., PZ = N (0, I), then

transforming the samples using some function f̃θ : X × Z → U , i.e., u = f̃θ(x, z). Thus,

EPθ(Ui|Xi)[logQφ(Xi|Ui)] =
1

M

M∑

m=1

log qφ(xi|ui,m) ,

with ui,m = µθ,i + Σ
1
2
θ,i · εm , εm ∼ N (0, I) ,
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where M is the number of samples for the Monte Carlo sampling step.

The second term of the RHS of (6.21) is the KL divergence between a single component

multivariate Gaussian and a GMM with |C| components. An exact closed-form solution

for the calculation of this term does not exist. However, a variational lower bound

approximation [136] of it (see Appendix I.4) can be obtained as

DKL(Pθ(Ui|Xi)‖Qψ(Ui)) = − log

|C|∑

c=1

πc exp
(
−DKL(N (µθ,i,Σθ,i)‖N (µc,Σc)

)
. (6.22)

In particular, in the specific case in which the covariance matrices are diagonal, i.e.,

Σθ,i := diag({σ2
θ,i,j}nuj=1) and Σc := diag({σ2

c,j}nuj=1), with nu denoting the latent space

dimension, (6.22) can be computed as follows

DKL(Pθ(Ui|Xi)‖Qψ(Ui))

= − log

|C|∑

c=1

πc exp

(
− 1

2

nu∑

j=1

[(µθ,i,j − µc,j)2

σ2
c,j

+ log
σ2
c,j

σ2
θ,i,j

− 1 +
σ2
θ,i,j

σ2
c,j

])
, (6.23)

where µθ,i,j and σ2
θ,i,j are the mean and variance of the i-th representation in the j-th

dimension of the latent space. Furthermore, µc,j and σ2
c,j represent the mean and variance

of the c-th component of the GMM in the j-th dimension of the latent space.

Finally, we train DNNs to maximize the cost function (6.19) over the parameters θ, φ,

as well as those ψ of the GMM. For the training step, we use the ADAM optimization

tool [83]. The training procedure is detailed in Algorithm 5.

Algorithm 5 VIB-GMM algorithm for unsupervised learning.

1: input: Dataset D := {xi}Ni=1, parameter s ≥ 0.
2: output: Optimal DNN weights θ?, φ? and

GMM parameters ψ? = {π?c , µ?c , Σ?
c}|C|c=1.

3: initialization Initialize θ, φ, ψ.
4: repeat
5: Randomly select b mini-batch samples {xi}bi=1 from D.
6: Draw m random i.i.d samples {zj}mj=1 from PZ.

7: Compute m samples ui,j = f̃θ(xi, zj)
8: For the selected mini-batch, compute gradients of the empirical cost (6.20).
9: Update θ, φ, ψ using the estimated gradient (e.g., with SGD or Adam).

10: until convergence of θ, φ, ψ.
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Once our model is trained, we assign the given dataset into the clusters. As mentioned

in Chapter 6.1, we do the assignment from the latent representations, i.e., QC|U = PC|X.

Hence, the probability that the observed data xi belongs to the c-th cluster is computed

as follows

p(c|xi) = q(c|ui) =
qψ?(c)qψ?(ui|c)

qψ?(ui)
=

π?cN (ui;µ
?
c ,Σ

?
c)∑

c π
?
cN (ui;µ?c ,Σ

∗
c)
, (6.24)

where ? indicates optimal values of the parameters as found at the end of the training

phase. Finally, the right cluster is picked based on the largest assignment probability

value.

Remark 16. It is worth mentioning that with the use of the KL approximation as given

by (6.22), our algorithm does not require the assumption PC|U = QC|U to hold (which is

different from [31]). Furthermore, the algorithm is guaranteed to converge. However, the

convergence may be to (only) local minima; and this is due to the problem (6.18) being

generally non-convex. Related to this aspect, we mention that while without a proper

pre-training, the accuracy of the VaDE algorithm may not be satisfactory, in our case, the

above assumption is only used in the final assignment after the training phase is completed.

�

Remark 17. In [78], it is stated that optimizing the original IB problem with the assump-

tion of independent latent representations amounts to disentangled representations. It is

noteworthy that with such an assumption, the computational complexity can be reduced

from O(n2
u) to O(nu). Furthermore, as argued in [78], the assumption often results only

in some marginal performance loss; and for this reason, it is adopted in many machine

learning applications. �

Effect of the Hyperparameter

As we already mentioned, the hyperparameter s controls the trade-off between the relevance

of the representation U and its complexity. As can be seen from (6.19) for small values of

s, it is the cross-entropy term that dominates, i.e., the algorithm trains the parameters

so as to reproduce X as accurately as possible. For large values of s, however, it is most

important for the NN to produce an encoded version of X whose distribution matches the

prior distribution of the latent space, i.e., the term DKL(Pθ(U|X)‖Qψ(U)) is nearly zero.
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In the beginning of the training process, the GMM components are randomly selected;

and so, starting with a large value of the hyperparameter s is likely to steer the solution

towards an irrelevant prior. Hence, for the tuning of the hyperparameter s in practice, it

is more efficient to start with a small value of s and gradually increase it with the number

of epochs. This has the advantage of avoiding possible local minima, an aspect that is

reminiscent of deterministic annealing [32], where s plays the role of the temperature

parameter. The experiments that will be reported in the next section show that proceeding

in the above-described manner for the selection of the parameter s helps in obtaining

higher clustering accuracy and better robustness to the initialization (i.e., no need for a

strong pretraining). The pseudocode for annealing is given in Algorithm 6.

Algorithm 6 Annealing algorithm pseudocode.

1: input: Dataset D := {xi}ni=1, hyperparameter interval [smin, smax].

2: output: Optimal DNN weights θ?, φ?, GMM parameters ψ? = {π?c , µ?c , Σ?
c}|C|c=1,

assignment probability PC|X.

3: initialization Initialize θ, φ, ψ.

4: repeat

5: Apply VIB-GMM algorithm.

6: Update ψ, θ, φ.

7: Update s, e.g., s = (1 + εs)sold.

8: until s does not exceed smax.

Remark 18. As we mentioned before, a text clustering algorithm is introduced by Slonim et

al. [32, 131], which uses the IB method with an annealing procedure, where the parameter

s is increased gradually. In [32], the critical values of s (so-called phase transitions) are

observed such that if these values are missed during increasing s, the algorithm ends up

with the wrong clusters. Therefore, how to choose the step size in the update of s is very

important. We note that tuning s is also very critical in our algorithm, such that the step

size εs in the update of s should be chosen carefully, otherwise phase transitions might be

skipped that would cause a non-satisfactory clustering accuracy score. However, the choice

of the appropriate step size (typically very small) is rather heuristic; and there exists no

concrete method for choosing the right value. The choice of step size can be seen as a

trade-off between the amount of computational resource spared for running the algorithm

and the degree of confidence about scanning s values not to miss the phase transitions. �
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6.3 Experiments

6.3.1 Description of used datasets

In our empirical experiments, we apply our algorithm to the unsupervised clustering of

the following datasets.

MNIST: A dataset of gray-scale images of 70000 handwritten digits from 0 to 9 of

dimensions 28× 28 pixel each.

STL-10: A dataset of color images collected from 10 categories. Each category consists

of 1300 images of size of 96 × 96 (pixels) ×3 (RGB code). Hence, the original input

dimension nx is 27648. For this dataset, we use a pretrained convolutional NN model, i.e.,

ResNet-50 [137] to reduce the dimensionality of the input. This preprocessing reduces the

input dimension to 2048. Then, our algorithm and other baselines are used for clustering.

REUTERS10K: A dataset that is composed of 810000 English stories labeled with a

category tree. As in [33], 4 root categories (corporate/industrial, government/social,

markets, economics) are selected as labels and all documents with multiple labels are

discarded. Then, tf-idf features are computed on the 2000 most frequently occurring

words. Finally, 10000 samples are taken randomly, which are referred to as REUTERS10K

dataset.

6.3.2 Network settings and other parameters

We use the following network architecture: the encoder is modeled with DNNs with 3

hidden layers with dimensions nx− 500− 500− 2000−nu, where nx is the input dimension

and nu is the dimension of the latent space. The decoder consists of DNNs with dimensions

nu − 2000 − 500 − 500 − nx. All layers are fully connected. For comparison purposes,

we chose the architecture of the hidden layers as well as the dimension of the latent

space nu = 10 to coincide with those made for the DEC algorithm of [33] and the VaDE

algorithm of [31]. All except the last layers of the encoder and decoder are activated with

ReLU function. For the last (i.e., latent) layer of the encoder we use a linear activation;

and for the last (i.e., output) layer of the decoder we use sigmoid function for MNIST and

linear activation for the remaining datasets. The batch size is 100 and the variational

bound (6.20) is maximized by the Adam optimizer of [83]. The learning rate is initialized
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with 0.002 and decreased gradually every 20 epochs with a decay rate of 0.9 until it reaches

a small value (0.0005 is our experiments). The reconstruction loss is calculated by using

the cross-entropy criterion for MNIST and mean squared error function for the other

datasets.

6.3.3 Clustering Accuracy

We evaluate the performance of our algorithm in terms of the so-called unsupervised

clustering accuracy (ACC), which is a widely used metric in the context of unsupervised

learning [135]. For comparison purposes, we also present those of algorithms from the

previous state-of-the-art.

MNIST STL-10

Best Run Average Run Best Run Average Run

GMM 44.1 40.5 (1.5) 78.9 73.3 (5.1)

DEC 80.6†

VaDE 91.8 78.8 (9.1) 85.3 74.1 (6.4)

VIB-GMM 95.1 83.5 (5.9) 93.2 82.1 (5.6)

† Values are taken from VaDE [31]

Table 6.1: Comparison of the clustering accuracy of various algorithms. The algorithms are

run without pretraining. Each algorithm is run ten times. The values in (·) correspond to the

standard deviations of clustering accuracies.

MNIST REURTERS10K

Best Run Average Run Best Run Average Run

DEC 84.3‡ 72.2‡

VaDE 94.2 93.2 (1.5) 79.8 79.1 (0.6)

VIB-GMM 96.1 95.8 (0.1) 81.6 81.2 (0.4)

‡ Values are taken from DEC [33]

Table 6.2: Comparison of the clustering accuracy of various algorithms. A stacked autoencoder

is used to pretrain the DNNs of the encoder and decoder before running algorithms (DNNs are

initialized with the same weights and biases of [31]). Each algorithm is run ten times. The values

in (·) correspond to the standard deviations of clustering accuracies.
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Figure 6.4: Accuracy vs. number of epochs for the STL-10 dataset.

For each of the aforementioned datasets, we run our VIB-GMM algorithm for various

values of the hyperparameter s inside an interval [smin, smax], starting from the smaller

valuer smin and gradually increasing the value of s every nepoch epochs. For the MNIST

dataset, we set (smin, smax, nepoch) = (1, 5, 500); and for the STL-10 dataset and the

REUTERS10K dataset, we choose these parameters to be (1, 20, 500) and (1, 5, 100),

respectively. The obtained ACC accuracy results are reported in Table 6.1 and Table 6.2.

It is important to note that the reported ACC results are obtained by running each

algorithm ten times. For the case in which there is no pretraining1, Table 6.1 states the

accuracies of the best case run and average case run for the MNIST and STL-10 datasets.

It is seen that our algorithm outperforms significantly the DEC algorithm of [33], as well

as the VaDE algorithm of [31] and GMM for both the best case run and average case run.

Besides, in Table 6.1, the values in parentheses correspond to the standard deviations

of clustering accuracies. As seen, the standard deviation of our algorithm VIB-GMM

is lower than the VaDE; which can be expounded by the robustness of VIB-GMM to

non-pretraining. For the case in which there is pretraining, Table 6.2 states the accuracies

of the best case run and average case run for the MNIST and REUTERS10K datasets.

1In [31] and [33], the DEC and VaDE algorithms are proposed to be used with pretraining; more specifically,

the DNNs are initialized with a stacked autoencoder [138].
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A stacked autoencoder is used to pretrain the DNNs of the encoder and decoder before

running algorithms (DNNs are initialized with the same weights and biases of [31]). It is

seen that our algorithm outperforms significantly the DEC algorithm of [33], as well as the

VaDE algorithm of [31] and GMM for both the best case run and average case run. The

effect of pretraining can be observed comparing Table 6.1 and Table 6.2 for MNIST. Using

a stacked autoencoder prior to running the VaDE and VIB-GMM algorithms results in a

higher accuracy, as well as a lower standard deviation of accuracies; therefore, supporting

the algorithms with a stacked autoencoder is beneficial for a more robust system. Finally,

for the STL-10 dataset, Figure 6.4 depicts the evolution of the best case ACC with

iterations (number of epochs) for the four compared algorithms.
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Figure 6.5: Information plane for the STL-10 dataset.

Figure 6.5 shows the evolution of the reconstruction loss of our VIB-GMM algorithm

for the STL-10 dataset, as a function of simultaneously varying the values of the hyperpa-

rameter s and the number of epochs (recall that, as per the described methodology, we

start with s = smin, and we increase its value gradually every nepoch = 500 epochs). As

can be seen from the figure, the few first epochs are spent almost entirely on reducing

the reconstruction loss (i.e., a fitting phase), and most of the remaining epochs are spent

making the found representation more concise (i.e., smaller KL divergence). This is

reminiscent of the two-phase (fitting vs. compression) that was observed for supervised

learning using VIB in [84].
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Remark 19. For a fair comparison, our algorithm VIB-GMM and the VaDE of [31]

are run for the same number of epochs, e.g., nepoch. In the VaDE algorithm, the cost

function (6.11) is optimized for a particular value of hyperparameter s. Instead of running

nepoch epochs for s = 1 as in VaDE, we run nepoch epochs by gradually increasing s to

optimize the cost (6.21). In other words, the computational resources are distributed over

a range of s values. Therefore, the computational complexity of our algorithm and the

VaDE are equivalent. �
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Figure 6.6: Visualization of the latent space before training; and after 1, 5 and 500 epochs.

6.3.4 Visualization on the Latent Space

In this section, we investigate the evolution of the unsupervised clustering of the STL-10

dataset on the latent space using our VIB-GMM algorithm. For this purpose, we find it
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convenient to visualize the latent space through application of the t-SNE algorithm of [139]

in order to generate meaningful representations in a two-dimensional space. Figure 6.6

shows 4000 randomly chosen latent representations before the start of the training process

and respectively after 1, 5 and 500 epochs. The shown points (with a · marker in the figure)

represent latent representations of data samples whose labels are identical. Colors are used

to distinguish between clusters. Crosses (with an x marker in the figure) correspond to

the centroids of the clusters. More specifically, Figure 6.6a shows the initial latent space

before the training process. If the clustering is performed on the initial representations it

allows ACC accuracy of as small as 10%, i.e., as bad as a random assignment. Figure 6.6b

shows the latent space after one epoch, from which a partition of some of the points starts

to be already visible. With five epochs, that partitioning is significantly sharper and the

associated clusters can be recognized easily. Observe, however, that the cluster centers

seem still not to have converged. With 500 epochs, the ACC accuracy of our algorithm

reaches %91.6 and the clusters and their centroids are neater as visible from Figure 6.6d.
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Perspectives

The IB method is connected to many other problems [72], e.g., information combining, the

Wyner-Ahlswede-Körner problem, the efficiency of investment information, the privacy

funnel problem, and these connections are reviewed in Chapter 2.3.3. The distributed IB

problem that we study in this thesis can be instrumental to study the distributed setups

of these connected problems. Let us consider the distributed privacy funnel problem. For

example, a company, which operates over 2 different regions, needs to share some data –

that can be also used to draw some private data – with two different consultants for some

analysis. Instead of sharing all data with a single consultant, sharing the data related to

each region with different consultants who are experts for different regions may provide

better results. The problem is how to share the data with consultants without disclosing

the private data, and can be solved by exploring the connections of the distributed IB

with the privacy funnel.

This thesis covers the topics related to the problem of the source coding. However,

in the information theory it is known that there is a substantial relation – so-called the

duality – between the problems of the source and channel coding. This relation has been

used to infer solutions from one field (in which there are already known working techniques)

to the other one. Now, let consider the CEO problem in a different way, such that the

agents are deployed over an area and connected to the cloud (the central processor, or

the CEO) via finite capacity backhaul links. This problem is called as the Cloud - Radio

Access Networks (C-RAN). The authors in [62,63] utilize useful connections with the CEO

source coding problem under logarithmic loss distortion measure for finding the capacity

region of the C-RAN with oblivious relaying (for the converse proof).
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Considering the high amount of research which is done recently in machine learning field,

the distributed learning may become an important topic in the future. This thesis provides

a theoretical background of distributed learning by presenting an information-theoretical

connections, as well as, some algorithmic contributions (e.g., the inference type algorithms

for classification and clustering). We believe that our contribution can be beneficial to

understand the theory behind in the distributed learning area for the future research.

Like for the single-encoder IB problem of [17] and an increasing number of works that

followed, including [10, Section III-F], in our approach for the distributed learning problem

we adopted we have considered a mathematical formulation that is asymptotic (blocklength

n allowed to be large enough). In addition to that it leads to an exact characterization,

the result also readily provides a lower bound on the performance in the non-asymptotic

setting (e.g., one shot). For the latter setting known approaches (e.g., the functional

representation lemma of [140]) would lead to only non-matching inner and outer bounds

on the region of optimal trade-off pairs, as this is the case even for the single encoder

case [141].

One of the interesting problems left unaddressed in this thesis is the characterization of

the optimal input distributions under rate-constrained compression at the relays, where it

is known that discrete signaling sometimes outperforms Gaussian signaling for single-user

Gaussian C-RAN [60]. One may consider an extension to the frequency selective additive

Gaussian noise channel, in parallel to the Gaussian Information Bottleneck [142]; or

to the uplink Gaussian inference channel with backhaul links of variable connectivity

conditions [143]. Another interesting direction can be to find the worst-case noise for a

given input distribution, e.g., Gaussian, for the case in which the compression rate at each

relay is constrained. Finally, the processing constraint of continuous waveforms, such as

sampling at a given rate [144,145] with a focus on the logarithmic loss, is another aspect to

be mentioned, which in turn boils down to the distributed Information Bottleneck [1, 111].
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Appendix A

Proof of Theorem 1

A.1 Direct Part

For the proof of achievability of Theorem 1, we use a slight generalization of Gastpar’s inner

bound of [146, Theorem 1], which provides an achievable rate region for the multiterminal

source coding model with side information, modified to include time-sharing.

Proposition 11. The rate-distortion vector (R1, . . . , RK , D) is achievable if

∑

k∈S
Rk ≥ I(US ;YS |USc , Y0, Q) , for S ⊆ K , (A.1)

D ≥ E[d(X, f(UK, Y0, Q))] ,

for some joint measure of the form

PX,Y0,Y1,Y2(x, y0, y1, y2)PQ(q)
K∏

k=1

PUk|Yk,Q(uk|yk, q) ,

and a reproduction function

f(UK, Y0, Q) : U1 × · · · × UK × Y0 ×Q −→ X̂ . �

The proof of achievability of Theorem 1 simply follows by a specialization of the result

of Proposition 11 to the setting in which distortion is measured under logarithmic loss.

For instance, we apply Proposition 11 with the reproduction functions chosen as

f(UK, Y0, Q) = Pr[X = x|UK, Y0, Q] .

Then, note that with such a choice we have

E[d(X, f(UK, Y0, Q))] = H(X|UK, Y0, Q) .
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The resulting region can be shown to be equivalent to that given in Theorem 1 using

supermodular optimization arguments. The proof is along the lines of that of [10, Lemma

5] and is omitted for brevity.

A.2 Converse Part

We first state the following lemma, which is an easy extension of that of [10, Lemma 1]

to the case in which the decoder also observes statistically dependent side information.

The proof of Lemma 8 follows along the lines of that of [10, Lemma 1], and is therefore

omitted for brevity.

Lemma 8. Let T := (φ
(n)
1 (Y n

1 ), . . . , φ
(n)
K (Y n

K)). Then for the CEO problem of Figure 1.1

under logarithmic loss, we have nE[d(n)(Xn, X̂n)] ≥ H(Xn|T, Y n
0 ). �

Let S be a non-empty set of K and Jk := φ
(n)
k (Y n

k ) be the message sent by Encoder k,

k ∈ K, where {φ(n)
k }Kk=1 are the encoding functions corresponding to a scheme that achieves

(R1, . . . , RK , D).

Define, for i = 1, . . . , n, the following random variables

Uk,i := (Jk, Y
i−1
k ) , Qi := (X i−1, Xn

i+1, Y
i−1

0 , Y n
0,i+1) . (A.2)

We can lower bound the distortion D as

nD
(a)

≥ H(Xn|JK, Y n
0 )

=
n∑

i=1

H(Xi|JK, X i−1, Y n
0 )

(b)

≥
n∑

i=1

H(Xi|JK, X i−1, Xn
i+1, Y

i−1
K , Y n

0 )

=
n∑

i=1

H(Xi|JK, X i−1, Xn
i+1, Y

i−1
K , Y i−1

0 , Y0,i, Y
n

0,i+1)

(c)
=

n∑

i=1

H(Xi|UK,i, Y0,i, Qi) , (A.3)

where (a) follows due to Lemma 8; (b) holds since conditioning reduces entropy; and (c)

follows by substituting using (A.2).
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Now, we lower bound the rate term as

n
∑

k∈S
Rk

≥
∑

k∈S
H(Jk) ≥ H(JS) ≥ H(JS |JSc , Y n

0 ) ≥ I(JS ;Xn, Y n
S |JSc , Y n

0 )

= I(JS ;Xn|JSc , Y n
0 ) + I(JS ;Y n

S |Xn, JSc , Y
n

0 )

= H(Xn|JSc , Y n
0 )−H(Xn|JK, Y n

0 ) + I(JS ;Y n
S |Xn, JSc , Y

n
0 )

(a)

≥ H(Xn|JSc , Y n
0 )− nD + I(JS ;Y n

S |Xn, JSc , Y
n

0 )

=
n∑

i=1

H(Xi|JSc , X i−1, Y n
0 )− nD + I(JS ;Y n

S |Xn, JSc , Y
n

0 )

(b)

≥
n∑

i=1

H(Xi|JSc , X i−1, Xn
i+1, Y

i−1
Sc , Y n

0 )− nD + I(JS ;Y n
S |Xn, JSc , Y

n
0 )

=
n∑

i=1

H(Xi|JSc , X i−1, Xn
i+1, Y

i−1
Sc , Y i−1

0 , Y0,i, Y
n

0,i+1)− nD + I(JS ;Y n
S |Xn, JSc , Y

n
0 )

(c)
=

n∑

i=1

H(Xi|USc,i, Y0,i, Qi)− nD + Θ , (A.4)

where (a) follows due to Lemma 8; (b) holds since conditioning reduces entropy; and (c)

follows by substituting using (A.2) and Θ := I(JS ;Y n
S |Xn, JSc , Y n

0 ).

To continue with lower-bounding the rate term, we single-letterize the term Θ as

Θ = I(JS ;Y n
S |Xn, JSc , Y

n
0 )

(a)

≥
∑

k∈S
I(Jk;Y

n
k |Xn, Y n

0 )

=
∑

k∈S

n∑

i=1

I(Jk;Yk,i|Y i−1
k , Xn, Y n

0 )

(b)
=
∑

k∈S

n∑

i=1

I(Jk, Y
i−1
k ;Yk,i|Xn, Y n

0 )

=
∑

k∈S

n∑

i=1

I(Jk, Y
i−1
k ;Yk,i|X i−1, Xi, X

n
i+1, Y

i−1
0 , Y0,i, Y

n
0,i+1)

(c)
=
∑

k∈S

n∑

i=1

I(Uk,i;Yk,i|Xi, Y0,i, Qi) , (A.5)

where (a) follows due to the Markov chain Jk−
−Y n
k −
− (Xn, Y n

0 )−
−Y n
S\k−
−JS\k, k ∈ K; (b)

follows due to the Markov chain Yk,i −
− (Xn, Y n
0 )−
− Y i−1

k ; and (c) follows by substituting

using (A.2).
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Then, combining (A.4) and (A.5), we get

n
∑

k∈S
Rk ≥

n∑

i=1

H(Xi|USc,i, Y0,i, Qi)− nD +
∑

k∈S

n∑

i=1

I(Uk,i;Yk,i|Xi, Y0,i, Qi) . (A.6)

Summarizing, we have from (A.3) and (A.6)

nD ≥
n∑

i=1

H(Xi|UK,i, Y0,i, Qi)

nD + n
∑

k∈S
Rk ≥

n∑

i=1

H(Xi|USc,i, Y0,i, Qi) +
∑

k∈S

n∑

i=1

I(Uk,i;Yk,i|Xi, Y0,i, Qi) .

We note that the random variables UK,i satisfy the Markov chain Uk,i −
− Yk,i −
−Xi −
−
YK\k,i −
− UK\k,i, k ∈ K. Finally, a standard time-sharing argument completes the proof.
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Proof of Theorem 2

B.1 Direct Part

For the proof of achievability of Theorem 2, we use a slight generalization of Gastpar’s

inner bound of [89, Theorem 2], which provides an achievable rate-distortion region for the

multiterminal source coding model of Section 3.2 in the case of general distortion measure,

to include time-sharing.

Proposition 12. (Gastpar Inner Bound [89, Theorem 2] with time-sharing) The rate-

distortion vector (R1, R2, D1, D2) is achievable if

R1 ≥ I(U1;Y1|U2, Y0, Q)

R2 ≥ I(U2;Y2|U1, Y0, Q)

R1 +R2 ≥ I(U1, U2;Y1, Y2|Y0, Q)

D1 ≥ E[d(X1, f1(U1, U2, Y0, Q))]

D2 ≥ E[d(X2, f2(U1, U2, Y0, Q))] ,

for some joint measure of the form

PY0,Y1,Y2(y0, y1, y2)PQ(q)PU1|Y1,Q(u1|y1, q)PU2|Y2,Q(u2|y2, q) ,

and reproduction functions

fk : U1 × U2 × Y0 ×Q −→ Ŷk , for k = 1, 2 . �

The proof of achievability of Theorem 2 simply follows by a specialization of the result

of Proposition 12 to the setting in which distortion is measured under logarithmic loss.
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For instance, we apply Proposition 12 with the reproduction functions chosen as

fk(U1, U2, Y0, Q) := Pr[Yk = yk|U1, U2, Y0, Q] , for k = 1, 2 .

Then, note that with such a choice we have

E[d(Yk, fk(U1, U2, Y0, Q)] = H(Yk|U1, U2, Y0, Q) , for k = 1, 2 .

B.2 Converse Part

We first state the following lemma, which is an easy extension of that of [10, Lemma 1]

to the case in which the decoder also observes statistically dependent side information.

The proof of Lemma 9 follows along the lines of that of [10, Lemma 1], and is therefore

omitted for brevity.

Lemma 9. Let T := (φ
(n)
1 (Y n

1 ), φ
(n)
2 (Y n

2 )). Then, for the multiterminal source coding

problem under logarithmic loss measure we have nE[d(Y n
k , Ŷ

n
k )] ≥ H(Y n

k |T, Y n
0 ) for k = 1, 2.

�

The proof of converse of Theorem 2 follows by Lemma 10 and Lemma 11 below, the

proofs of which follow relatively straightforwardly those in the proof of [10, Theorem 12].

Lemma 10. If a rate-distortion quadruple (R1, R2, D̃1, D2) is achievable for the model

of Section 3.2, then there exist a joint measure

PY0,Y1,Y2(y0, y1, y2)PQ(q)PU1|Y1,Q(u1|y1, q)PU2|Y2,Q(u2|y2, q) , (B.1)

and a D1 ≤ D̃1 which satisfies

D1 ≥ H(X1|U1, U2, Y,Q) (B.2a)

D2 ≥ D1 +H(X2|U1, U2, Y,Q)−H(X1|U1, U2, Y,Q) , (B.2b)

and

R1 ≥ H(Y1|U2, Y0, Q)−D1 (B.3a)

R2 ≥ I(U2;Y2|Y1, Y0, Q) +H(Y1|U1, Y0, Q)−D1 (B.3b)

R1 +R2 ≥ I(U2;Y2|Y1, Y0, Q) +H(Y1|Y0)−D1 . (B.3c)
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Proof. Let J1 := φ
(n)
1 (Y n

1 ) and J2 := φ
(n)
2 (Y n

2 ), where the φ
(n)
1 and φ

(n)
2 are the encoding

functions corresponding to a scheme that achieves (R1, R2, D̃1, D2). Define

D1 :=
1

n
H(Y n

1 |J1, J2, Y
n

0 ) .

Also, define, for i = 1, . . . , n, the following random variables

U1,i := J1 , U2,i := (J2, Y
n

2,i+1) , Qi := (Y i−1
1 , Y n

2,i+1, Y
i−1

0 , Y n
0,i+1) . (B.4)

First, note that by Lemma 9 we have nD̃1 ≥ H(Y n
1 |J1, J2, Y

n
0 ); and, so, D1 ≤ D̃1. Also,

we have

nD1 =
n∑

i=1

H(Y1,i|J1, J2, Y
i−1

1 , Y n
0 )

(a)

≥
n∑

i=1

H(Y1,i|J1, J2, Y
i−1

1 , Y n
2,i+1, Y

n
0 )

=
n∑

i=1

H(Y1,i|J1, J2, Y
i−1

1 , Y n
2,i+1, Y

i−1
0 , Y0,i, Y

n
0,i+1)

(b)
=

n∑

i=1

H(X1,i|U1,i, U2,i, Y0,i, Qi) ,

where (a) holds since conditioning reduces entropy; and (b) follows by substituting us-

ing (B.4).

We can lower bound the distortion D2 as

nD2 ≥ H(Y n
2 |J1, J2, Y

n
0 )

= H(Y n
1 |J1, J2, Y

n
0 ) + [H(Y n

2 |J1, J2, Y
n

0 )−H(Y n
1 |J1, J2, Y

n
0 )]

= nD1 + Θ , (B.5)

where Θ := H(Y n
2 |J1, J2, Y

n
0 )−H(Y n

1 |J1, J2, Y
n

0 ).

To continue with lower-bounding the distortion D2, we single-letterize the term Θ as

Θ =H(Y n
2 |J1, J2, Y

n
0 )−H(Y n

1 |J1, J2, Y
n

0 )

=
n∑

i=1

H(Y2,i|J1, J2, Y
n

2,i+1, Y
n

0 )−H(Y1,i|J1, J2, Y
i−1

1 , Y n
0 )

=
n∑

i=1

I(Y i−1
1 ;Y2,i|J1, J2, Y

n
2,i+1, Y

n
0 ) +H(Y2,i|J1, J2, Y

i−1
1 , Y n

2,i+1, Y
n

0 )

−
n∑

i=1

I(Y n
2,i+1;Y1,i|J1, J2, Y

i−1
1 , Y n

0 ) +H(Y1,i|J1, J2, Y
i−1

1 , Y n
2,i+1, Y

n
0 )
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(a)
=

n∑

i=1

H(Y2,i|J1, J2, Y
i−1

1 , Y n
2,i+1, Y

n
0 )−H(Y1,i|J1, J2, Y

i−1
1 , Y n

2,i+1, Y
n

0 ) , (B.6)

where (a) follows by the Csiszár-Körner sum-identity

n∑

i=1

I(Y i−1
1 ;Y2,i|J1, J2, Y

n
2,i+1, Y

n
0 ) =

n∑

i=1

I(Y n
2,i+1;Y1,i|J1, J2, Y

i−1
1 , Y n

0 ) .

Then, combining (B.5) and (B.6), we get

nD2 ≥ nD1 +
n∑

i=1

H(Y2,i|J1, J2, Y
i−1

1 , Y n
2,i+1, Y

n
0 )−H(Y1,i|J1, J2, Y

i−1
1 , Y n

2,i+1, Y
n

0 )

= nD1 +
n∑

i=1

H(Y2,i|J1, J2, Y
i−1

1 , Y n
2,i+1, Y

i−1
0 , Y0,i, Y

n
0,i+1)

−H(Y1,i|J1, J2, Y
i−1

1 , Y n
2,i+1, Y

i−1
0 , Y0,i, Y

n
0,i+1)

= nD1 +
n∑

i=1

H(Y2,i|U1,i, U2,i, Y0,i, Qi)−H(Y1,i|U1,i, U2,i, Y0,i, Qi) ,

where the last equality follows by substituting using (B.4).

Rate R1 can be bounded easily as

nR1 ≥ H(J1) ≥ H(J1|J2, Y
n

0 ) ≥ I(J1;Y n
1 |J2, Y

n
0 ) = H(Y n

1 |J2, Y
n

0 )− nD1

=
n∑

i=1

H(Y1,i|J2, Y
n

1,i+1, Y
n

0 )− nD1

(a)

≥
n∑

i=1

H(Y1,i|J2, Y
n

1,i+1, Y
n

2,i+1, Y
n

0 )− nD1

(b)
=

n∑

i=1

H(Y1,i|J2, Y
n

2,i+1, Y
i−1

0 , Y0,i, Y
n

0,i+1)− nD1

(c)

≥
n∑

i=1

H(Y1,i|J2, Y
i−1

1 , Y n
2,i+1, Y

i−1
0 , Y0,i, Y

n
0,i+1)− nD1

(d)
=

n∑

i=1

H(Y1,i|U2,i, Y0,i, Qi)− nD1 ,

where (a) holds since conditioning reduces entropy; (b) follows since Y1,i−
−(J2, Y
n

2,i+1, Y
n

0 )−

− Y n

1,i+1 forms a Markov chain; (c) holds since conditioning reduces entropy; and (d)

follows by substituting using (B.4).
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Now, we lower bound the rate R2 as

nR2 ≥ H(J2) ≥ H(J2|J1, Y
n

0 ) = H(J2|J1, Y
n

1 , Y
n

0 ) + I(J2;Y n
1 |J1, Y

n
0 )

≥ I(J2;Y n
2 |J1, Y

n
1 , Y

n
0 ) + I(J2;Y n

1 |J1, Y
n

0 )

= I(J2;Y n
2 |J1, Y

n
1 , Y

n
0 ) +H(Y n

1 |J1, Y
n

0 )− nD1

(a)
= I(J2;Y n

2 |Y n
1 , Y

n
0 ) +H(Y n

1 |J1, Y
n

0 )− nD1

=
n∑

i=1

I(J2;Y2,i|Y n
1 , Y

n
2,i+1, Y

n
0 ) +H(Y1,i|J1, Y

i−1
1 , Y n

0 )− nD1

(b)

≥
n∑

i=1

I(J2;Y2,i|Y n
1 , Y

n
2,i+1, Y

n
0 ) +H(Y1,i|J1, Y

i−1
1 , Y n

2,i+1, Y
n

0 )− nD1

(c)
=

n∑

i=1

I(J2, Y
n

1,i+1;Y2,i|Y i−1
1 , Y1,i, Y

n
2,i+1, Y

n
0 ) +H(Y1,i|J1, Y

i−1
1 , Y n

2,i+1, Y
n

0 )− nD1

=
n∑

i=1

I(J2, Y
n

1,i+1, Y
n

2,i+1;Y2,i|Y i−1
1 , Y1,i, Y

n
2,i+1, Y

n
0 ) +H(Y1,i|J1, Y

i−1
1 , Y n

2,i+1, Y
n

0 )− nD1

(d)

≥
n∑

i=1

I(J2, Y
n

2,i+1;Y2,i|Y i−1
1 , Y1,i, Y

n
2,i+1, Y

n
0 ) +H(Y1,i|J1, Y

i−1
1 , Y n

2,i+1, Y
n

0 )− nD1

(e)
=

n∑

i=1

I(U2,i;Y2,i|Y1,i, Y0,i, Qi) +H(Y1,i|U1,i, Y0,i, Qi)− nD1 ,

where (a) holds since J1 is a deterministic function of Y n
1 ; (b) holds since conditioning

reduces the entropy; (c) follows since Y n
1,i+1−
− (Y i−1

1 , Y1,i, Y
n

2,i+1, Y
n

0 )−
−Y2,i forms a Markov

chain; (d) follows since conditioning reduces the entropy; and (e) follows by substituting

using (B.4).

The sum-rate R1 +R2 can be lower bounded similarly, as

n(R1 +R2) ≥ H(J1) +H(J2)

≥ H(J1|J2, Y
n

0 ) +H(J2|Y n
0 )

≥ I(J1;Y n
1 |J2, Y

n
0 ) + I(J2;Y n

1 , Y
n

2 |Y n
0 )

= I(J1;Y n
1 |J2, Y

n
0 ) + I(J2;Y n

1 |Y n
0 ) + I(J2;Y n

2 |Y n
1 , Y

n
0 )

= I(J1, J2;Y n
1 |Y n

0 ) + I(J2;Y n
2 |Y n

1 , Y
n

0 )

= H(Y n
1 |Y n

0 )− nD1 + I(J2;Y n
2 |Y n

1 , Y
n

0 )

(a)
=

n∑

i=1

I(J2;Y2,i|Y n
1 , Y

n
2,i+1, Y

n
0 ) +H(Y1,i|Y0,i)− nD1
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(b)
=

n∑

i=1

I(J2, Y
n

1,i+1;Y2,i|Y i−1
1 , Y1,i, Y

n
2,i+1, Y

n
0 ) +H(Y1,i|Y0,i)− nD1

=
n∑

i=1

I(J2, Y
n

1,i+1, Y
n

2,i+1;Y2,i|Y i−1
1 , Y1,i, Y

n
2,i+1, Y

n
0 ) +H(Y1,i|Y0,i)− nD1

(c)

≥
n∑

i=1

I(J2, Y
n

2,i+1;Y2,i|Y i−1
1 , Y1,i, Y

n
2,i+1, Y

n
0 ) +H(Y1,i|Y0,i)− nD1

(d)
=

n∑

i=1

I(U2,i;Y2,i|Y1,i, Y0,i, Qi) +H(Y1,i|Y0,i)− nD1 ,

where (a) follows since the source (Y n
0 , Y

n
1 , Y

n
2 ) is memoryless; (b) follows since Y n

1,i+1 −
−
(Y i−1

1 , Y1,i, Y
n

2,i+1, Y
n

0 )−
− Y2,i forms a Markov chain; (c) holds since conditioning reduces

the entropy; and (d) follows by substituting using (B.4).

Summarizing, the distortion pair (D1, D2) satisfies

D1 ≥
1

n

n∑

i=1

H(X1,i|U1,i, U2,i, Y0,i, Qi)

D2 ≥ D1 +
1

n

n∑

i=1

H(Y2,i|U1,i, U2,i, Y0,i, Qi)−H(Y1,i|U1,i, U2,i, Y0,i, Qi) ,

and the rate pair (R1, R2) satisfies

R1 ≥
1

n

n∑

i=1

H(Y1,i|U2,i, Y0,i, Qi)−D1

R2 ≥
1

n

n∑

i=1

I(U2,i;Y2,i|Y1,i, Y0,i, Qi) +H(Y1,i|U1,i, Y0,i, Qi)−D1

R1 +R2 ≥
1

n

n∑

i=1

I(U2,i;Y2,i|Y1,i, Y0,i, Qi) +H(Y1,i|Y0,i)−D1 .

It is easy to see that the random variables (U1,i, U2,i, Qi) satisfy that U1,i −
− (Y1,i, Qi)−

− (Y0,i, Y2,i, U2,i) and U2,i −
− (X2,i, Qi)−
− (Y0,i, Y1,i, U1,i) form Markov chains. Finally, a

standard time-sharing argument proves Lemma 10.

The rest of the proof of converse of Theorem 2 follows using the following lemma, the

proof of which is along the lines of that of [10, Lemma 9] and is omitted for brevity.

Lemma 11. Let a rate-distortion quadruple (R1, R2, D1, D2) be given. If there exists a

joint measure of the form (B.1) such that (B.2) and (B.3) are satisfied, then the rate-

distortion quadruple (R1, R2, D1, D2) is in the region described by Theorem 2. �
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Proof of Proposition 3

We start with the proof of the direct part. Let a non-negative tuple (R1, . . . , RK , E) ∈ RHT

be given. Since RHT = R? , then there must exist a series of non-negative tuples

{(R(m)
1 , . . . , R

(m)
K , E(m))}m∈N such that

(R
(m)
1 , . . . , R

(m)
K , E(m)) ∈ R? , for all m ∈ N, and (C.1a)

lim
m→∞

(R
(m)
1 , . . . , R

(m)
K , E(m)) = (R1, . . . , RK , E) . (C.1b)

Fix δ′ > 0. Then, ∃ m0 ∈ N such that for all m ≥ m0, we have

Rk ≥ R
(m)
k − δ′ , for k = 1, . . . , K , (C.2a)

E ≤ E(m) + δ′ . (C.2b)

For m ≥ m0, there exist a series {nm}m∈N and functions {φ̆(nm)
k }k∈K such that

R
(m)
k ≥ 1

nm
log |φ̆(nm)

k | , for k = 1, . . . , K , (C.3a)

E(m) ≤ 1

nm
I({φ̆(nm)

k (Y nm
k )}k∈K;Xnm|Y nm

0 ) . (C.3b)

Combining (C.2) and (C.3) we get that for all m ≥ m0,

Rk ≥
1

nm
log |φ̆(nm)

k (Y nm
k )| − δ′ , for k = 1, . . . , K , (C.4a)

E ≤ 1

nm
I({φ̆(nm)

k (Y nm
k )}k∈K;Xnm|Y nm

0 ) + δ′ . (C.4b)

The second inequality of (C.4) implies that

H(Xnm|{φ̆(nm)
k (Y nm

k )}k∈K, Y nm
0 ) ≤ nm(H(X|Y0)− E) + nmδ

′ . (C.5)
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Now, consider the K-encoder CEO source coding problem of Figure 3.1; and let the

encoding function φ
(nm)
k at Encoder k ∈ K be such that φ

(nm)
k := φ̆

(nm)
k . Also, let the

decoding function at the decoder be

ψ(nm) : {1, . . . ,M (nm)
1 } × . . .× {1, . . . ,M (nm)

K } × Ynm0 −→ X nm (C.6)

(m1, . . . ,mK , y
nm
0 ) −→ p(xnm|m1, . . . ,mK , y

nm
0 ) . (C.7)

With such a choice, the achieved average logarithmic loss distortion is

E[d(nm)(Xnm , ψ(nm)({φ(nm)
k (Y nm

k )}k∈K, Y nm
0 ))] =

1

nm
H(Xnm|{φ(nm)

k (Y nm
k )}k∈K, Y nm

0 ) .

(C.8)

Combined with (C.5), the last equality implies that

E[d(nm)(Xnm , ψ(nm)({φ(nm)
k (Y

(nm)
k )}k∈K, Y nm

0 ))] ≤ nm(H(X|Y0)− E) + δ′ . (C.9)

Finally, substituting φ̆
(nm)
k with φ

(nm)
k in (C.4), and observing that δ′ can be chosen

arbitrarily small in the obtained set of inequalities as well as in (C.9), it follows that

(R1, . . . , RK , H(X|Y0)− E) ∈ RD?CEO.

We now show the reverse implication. Let a non-negative tuple (R1, . . . , RK , H(X|Y0)−
E) ∈ RD?CEO be given. Then, there exist encoding functions {φ(n)}k∈K and a decoding

function ψ(n) such that

Rk ≥
1

n
log |φ(n)

k (Y n
k )| , for k = 1, . . . , K , (C.10a)

H(X|Y0)− E ≥ E[d(n)(Xn, ψ(n)({φ(n)
k (X

(n)
k )}k∈K, Y n

0 ))] . (C.10b)

Using Lemma 8 (see the proof of converse of Theorem 1 in Appendix A), the RHS of the

second inequality of (C.10) can be lower-bounded as

E[d(n)(Xn, ψ(n)({φ(n)
k (X

(n)
k )}k∈K, Y n

0 ))] ≥ 1

n
H(Xn|{φ(n)

k (X
(n)
k )}k∈K, Y n

0 ) . (C.11)

Combining the second inequality of (C.10) and (C.11), we get

H(Xn|ψ(n)({φ(n)
k (X

(n)
k )}k∈K, Y n

0 )) ≤ n(H(X|Y0)− E) , (C.12)

from which it holds that
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I({φ(n)
k (X

(n)
k )}k∈K;Xn|Y n

0 ) = nH(X|Y0)−H(Xn|ψ(n)({φ(n)
k (X

(n)
k )}k∈K, Y n

0 )) (C.13a)

≥ nE , (C.13b)

where the equality follows since (Xn, Y n
0 ) is memoryless and the inequality follows by

using (C.12).

Now, using the first inequality of (C.10) and (C.13), it follows that (R1, . . . , RK , E) ∈
R?
(
n, {φ(n)

k }k∈K
)

. Finally, using Proposition 2, it follows that (R1, . . . , RK , E) ∈ RHT;

and this concludes the proof of the reverse part and the proposition.
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Appendix D

Proof of Proposition 4

First let us define the rate-information region RI?CEO for discrete memoryless vector

sources as the closure of all rate-information tuples (R1, . . . , RK ,∆) for which there exist

a blocklength n, encoding functions {φ(n)
k }Kk=1 and a decoding function ψ(n) such that

Rk ≥
1

n
logM

(n)
k , for k = 1, . . . , K ,

∆ ≤ 1

n
I(Xn;ψ(n)(φ

(n)
1 (Yn

1 ), . . . , φ
(n)
K (Yn

K),Yn
0 )) .

It is easy to see that a characterization of RI?CEO can be obtained by using Theorem 1

and substituting distortion levels D therein with ∆ := H(X)−D. More specifically, the

region RI?CEO is given as in the following theorem.

Proposition 13. The rate-information region RI?CEO of the vector DM CEO problem

under logarithmic loss is given by the set of all non-negative tuples (R1, . . . , RK ,∆) that

satisfy, for all subsets S ⊆ K,

∑

k∈S
Rk ≥

∑

k∈S
I(Yk;Uk|X,Y0, Q)− I(X;USc ,Y0, Q) + ∆ ,

for some joint measure of the form PY0,YK,X(y0,yK,x)PQ(q)
∏K

k=1 PUk|Yk,Q(uk|yk, q). �

The region RI?CEO involves mutual information terms only (not entropies); and, so,

using a standard discretization argument, it can be easily shown that a characterization of

this region in the case of continuous alphabets is also given by Proposition 13.

Let us now return to the vector Gaussian CEO problem under logarithmic loss that

we study in this section. First, we state the following lemma, whose proof is easy and is

omitted for brevity.
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Lemma 12. (R1, . . . , RK , D) ∈ RD?VG-CEO if and only if (R1, . . . , RK , h(X) − D) ∈
RI?CEO. �

For vector Gaussian sources, the region RD?VG-CEO can be characterized using Proposi-

tion 13 and Lemma 12. This completes the proof of first equality RD?VG-CEO = R̃DI

CEO.

To complete the proof of Proposition 4, we need to show that two regions are equivalent,

i.e., R̃DI

CEO = R̃DII

CEO. To do that, it is sufficient to show that, for fixed conditional

distributions {p(uk|yk, q)}Kk=1, the extreme points of the polytope PD defined by (4.5) are

dominated by points that are in R̃DII

CEO that achieves distortion at most D. This is shown

in the proof of Proposition 5 in Appendix F.
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Proof of Converse of Theorem 4

The proof of the converse of Theorem 4 relies on deriving an outer bound on the region

R̃DI

CEO given by Proposition 4. In doing so, we use the technique of [11, Theorem 8]

which relies on the de Bruijn identity and the properties of Fisher information; and extend

the argument to account for the time-sharing variable Q and side information Y0.

We first state the following lemma.

Lemma 13. [11, 147] Let (X,Y) be a pair of random vectors with pmf p(x,y). We have

log |(πe)J−1(X|Y)| ≤ h(X|Y) ≤ log |(πe)mmse(X|Y)| ,

where the conditional Fisher information matrix is defined as

J(X|Y) := E[∇ log p(X|Y)∇ log p(X|Y)†] ,

and the minimum mean squared error (MMSE) matrix is

mmse(X|Y) := E[(X− E[X|Y])(X− E[X|Y])†] . �

Now, we derive an outer bound on (4.5) as follows. For each q ∈ Q and fixed pmf
∏K

k=1 p(uk|yk, q), choose {Ωk,q}Kk=1 satisfying 0 � Ωk,q � Σ−1
k such that

mmse(Yk|X, Uk,q,Y0, q) = Σk −ΣkΩk,qΣk . (E.1)

Such Ωk,q always exists since, for all q ∈ Q, k ∈ K, we have

0 � mmse(Yk|X, Uk,q,Y0, q) � Σyk|(x,y0) = Σnk|n0 = Σk .
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Then, for k ∈ K and q ∈ Q, we have

I(Yk;Uk|X,Y0, Q = q) = h(Yk|X,Y0, Q = q)− h(Yk|X, Uk,q,Y0, Q = q)

(a)

≥ log |(πe)Σk| − log |(πe)mmse(Yk|X, Uk,q,Y0, Q = q)|
(b)
= − log |I−Ωk,qΣk| , (E.2)

where (a) is due to Lemma 13; and (b) is due to (E.1).

For convenience, the matrix ΛS̄,q is defined as follows

ΛS̄,q :=


0 0

0 diag({Σk −ΣkΩk,qΣk}k∈Sc)


 . (E.3)

Then, for q ∈ Q and S ⊆ K, we have

h(X|USc,q,Y0, Q = q)
(a)

≥ log |(πe)J−1(X|USc,q,Y0, q)|
(b)
= log

∣∣∣∣(πe)
(
Σ−1

x + H†S̄Σ
−1
nS̄

(
I−ΛS̄,qΣ

−1
nS̄

)
HS̄

)−1
∣∣∣∣ , (E.4)

where (a) follows from Lemma 13; and for (b), we use the connection of the MMSE and

the Fisher information to show the following equality

J(X|USc,q,Y0, q) = Σ−1
x + H†S̄Σ

−1
nS̄

(
I−ΛS̄,qΣ

−1
nS̄

)
HS̄ . (E.5)

In order to proof (E.5), we use de Bruijn identity to relate the Fisher information with

the MMSE as given in the following lemma.

Lemma 14. [11, 148] Let (V1,V2) be a random vector with finite second moments and

Z ∼ CN (0,Σz) independent of (V1,V2). Then

mmse(V2|V1,V2 + Z) = Σz −ΣzJ(V2 + Z|V1)Σz . �

From MMSE estimation of Gaussian random vectors, for S ⊆ K, we have

X = E[X|YS̄ ] + WS̄ = GS̄YS̄ + WS̄ , (E.6)

where GS̄ := ΣwS̄H†S̄Σ
−1
nS̄

, and WS̄ ∼ CN (0,ΣwS̄ ) is a Gaussian vector that is independent

of YS̄ and

Σ−1
wS̄

:= Σ−1
x + H†S̄Σ

−1
nS̄

HS̄ . (E.7)
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Now we show that the cross-terms of mmse (YSc |X, USc,q,Y0, q) are zero (similarly to [11,

Appendix V]). For i ∈ Sc and j 6= i, we have

E
[
(Yi − E[Yi|X, USc,q,Y0, q])(Yj − E[Yj|X, USc,q,Y0, q])

†]

(a)
= E

[
E
[
(Yi − E[Yi|X, USc,q,Y0, q])(Yj − E[Yj|X, USc,q,Y0, q])

†|X,Y0

]]

(b)
= E

[
E
[
(Yi − E[Yi|X, USc,q,Y0, q])|X,Y0

]
E
[
(Yj − E[Yj|X, USc,q,Y0, q])

†|X,Y0

]]

= 0 , (E.8)

where (a) is due to the law of total expectation; (b) is due to the Markov chain Yk −
−
(X,Y0)−
−YK\k.

Then, for k ∈ K and q ∈ Q, we have

mmse
(
GS̄YS̄

∣∣X, USc,q,Y0, q
)

= GS̄ mmse (YS̄ |X, USc,q,Y0, q) G†S̄

(a)
= GS̄


0 0

0 diag({mmse(Yk|X, USc,q,Y0, q)}k∈Sc)


G†S̄

(b)
= GS̄ΛS̄,qG

†
S̄ , (E.9)

where (a) follows since the cross-terms are zero as shown in (E.8); and (b) follows due

to (E.1) and the definition of ΛS̄,q given in (E.3).

Finally, we obtain the equality (E.5) by applying Lemma 14 and noting (E.6) as follows

J(X|USc,q,Y0, q)
(a)
= Σ−1

wS̄
−Σ−1

wS̄
mmse

(
GS̄YS̄

∣∣X, USc,q,Y0, q
)
Σ−1

wS̄

(b)
= Σ−1

wS̄
−Σ−1

wS̄
GS̄ΛS̄,qG

†
S̄Σ
−1
wS̄

(c)
= Σ−1

x + H†S̄Σ
−1
nS̄

HS̄ −H†S̄Σ
−1
nS̄

ΛS̄,qΣ
−1
nS̄

HS̄

= Σ−1
x + H†S̄Σ

−1
nS̄

(
I−ΛS̄,qΣ

−1
nS̄

)
HS̄ ,

where (a) is due to Lemma 14; (b) is due to (E.9); and (c) follows due to the definitions of

Σ−1
wS̄

and GS̄ .
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Next, we average (E.2) and (E.4) over the time-sharingQ and letting Ωk :=
∑

q∈Q p(q)Ωk,q,

we obtain the lower bound

I(Yk; Uk|X,Y0, Q) =
∑

q∈Q
p(q)I(Yk; Uk|X,Y0, Q = q)

(a)

≥ −
∑

q∈Q
p(q) log |I−Ωk,qΣk|

(b)

≥ − log |I−
∑

q∈Q
p(q)Ωk,qΣk|

= − log |I−ΩkΣk| , (E.10)

where (a) follows from (E.2); and (b) follows from the concavity of the log-determinant

function and Jensen’s Inequality.

Besides, we can derive the following lower bound

h(X|USc ,Y0, Q) =
∑

q∈Q
p(q)h(X|USc,q,Y0, Q = q)

(a)

≥
∑

q∈Q
p(q) log

∣∣∣∣(πe)
(
Σ−1

x + H†S̄Σ
−1
nS̄

(
I−ΛS̄,qΣ

−1
nS̄

)
HS̄

)−1
∣∣∣∣

(b)

≥ log

∣∣∣∣(πe)
(
Σ−1

x + H†S̄Σ
−1
nS̄

(
I−ΛS̄Σ

−1
nS̄

)
HS̄

)−1
∣∣∣∣ , (E.11)

where (a) is due to (E.4); and (b) is due to the concavity of the log-determinant function

and Jensen’s inequality and the definition of ΛS̄ given in (4.7).

Finally, the outer bound on R̃DI

CEO is obtained by applying (E.10) and (E.11) in (4.5),

noting that Ωk =
∑

q∈Q p(q)Ωk,q � Σ−1
k since 0 � Ωk,q � Σ−1

k , and taking the union over

Ωk satisfying 0 � Ωk � Σ−1
k .
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Proof of Proposition 5

(Extension to K Encoders)

For the proof of Proposition 5, it is sufficient to show that, for fixed Gaussian distributions

{p(uk|yk)}Kk=1, the extreme points of the polytope PD defined by (4.5) are dominated by

points that are in R̃DII

CEO and which are achievable using Gaussian conditional distributions

{p(vk|yk, q′)}Kk=1. The proof is similar to [10, Appendix C, Lemma 6].

First, we characterize the extreme points of PD. Let the function f : 2K → R be such that

for all S ⊆ K,

f(S) = I(YS ;US |USc ,Y0, Q) + h(X|U1, . . . , UK ,Y0, Q)−D . (F.1)

It is easy to see that f(·) and the function S → [f(S)]+ := max{f(S), 0} are supermodular

functions. Also, for all subsets S ⊆ K, we have

f(S) = I(YS ;US |USc ,Y0, Q) + h(X|U1, . . . , UK ,Y0, Q)−D

(a)
= I(YS ,X;US |USc ,Y0, Q) + h(X|U1, . . . , UK ,Y0, Q)−D

= I(YS ;US |X, USc ,Y0, Q) + I(X;US |USc ,Y0, Q) + h(X|U1, . . . , UK ,Y0, Q)−D

= I(YS ;US |X, USc ,Y0, Q) + h(X|USc ,Y0, Q)− h(X|US , USc ,Y0, Q)

+ h(X|U1, . . . , UK ,Y0, Q)−D

(b)
=
∑

k∈S
I(Yk;Uk|X,Y0, Q) + h(X|USc ,Y0, Q)−D , (F.2)

where (a) follows using the Markov chain US−
−YS−
−X; and (b) follows by using the chain
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rule and the Markov chain (Uk,Yk)−
− (X,Y0, Q)−
− (UK\k,YK\k). Then, by construction,

we have that PD is given by the set of (R1, . . . , RK) that satisfy for all subsets S ⊆ K,

∑

k∈S
Rk ≥ [f(S)]+ .

Proceeding along the lines of [103, Appendix B], we have that for a linear ordering

i1 ≺ i2 ≺ · · · ≺ iK on the set K, an extreme point of PD can be computed as follows

R̃ik = [f({i1, i2, . . . , ik})]+ − [f({i1, i2, . . . , ik−1})]+ , for k = 1, . . . , K .

All the K! extreme points of PD can be enumerated by looking over all linear orderings

i1 ≺ i2 ≺ · · · ≺ iK of K. Each ordering of K is analyzed in the same manner and, therefore,

for notational simplicity, the only ordering we consider is the natural ordering, i.e., ik = k,

in the rest of the proof. Then, by construction, we have

R̃k =
[ k∑

i=1

I(Yi;Ui|X,Y0, Q) + h(X|UK
k+1,Y0, Q)−D

]+

−
[ k−1∑

i=1

I(Yi;Ui|X,Y0, Q) + h(X|UK
k ,Y0, Q)−D

]+
.

(F.3)

Let j be the first index for which f({1, 2, . . . , j}) > 0. Then it follows from (F.3) that

R̃j =

j∑

k=1

I(Yk;Uk|X,Y0, Q) + h(X|UK
j+1,Y0, Q)−D

= I(Yj;Uj|X,Y0, Q) +

j−1∑

k=1

I(Xk;Uk|X,Y0, Q) + h(X|UK
j+1,Y0, Q)−D

+ h(X|UK
j ,Y0, Q)− h(X|Uj, UK

j+1,Y0, Q)

(a)
= f({1, 2, . . . , j − 1}) + I(Yj;Uj|X, UK

j+1,Y0, Q) + I(X;Uj|UK
j+1,Y0, Q)

= f({1, 2, . . . , j − 1}) + I(Yj,X;Uj|UK
j+1,Y0, Q)

(b)
= f({1, 2, . . . , j − 1}) + I(Yj;Uj|UK

j+1,Y0, Q)

= (1− θ)I(Yj;Uj|UK
j+1,Y0, Q) ,

where (a) follows due to the Markov chain Uj −
−Yj −
−X−
− UK\j and (F.2); (b) follows

due to the Markov chain Uj −
−Yj −
−X; and θ ∈ (0, 1] is defined as

θ :=
−f({1, 2, . . . , j − 1})
I(Yj;Uj|UK

j+1,Y0, Q)
=
D − h(X|UK,Y0, Q)− I(Yj−1

1 ;U j−1
1 |UK

j ,Y0, Q)

I(Yj;Uj|UK
j+1,Y0, Q)

. (F.4)
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Furthermore, for all indices k > j, we have

R̃k = f({1, 2, . . . , k})− f({1, 2, . . . , k − 1})

= I(Yk;Uk|X,Y0, Q) + I(X;Uk|UK
k+1,Y0, Q)

(a)
= I(Yk;Uk|X, UK

k+1,Y0, Q) + I(X;Uk|UK
k+1,Y0, Q)

= I(Yk,X;Uk|UK
k+1,Y0, Q)

(b)
= I(Yk;Uk|UK

k+1,Y0, Q) ,

where (a) follows due to the Markov chain Uk −
−Yk −
−X−
− UK\k; and (b) follows due

to the Markov chain Uk −
−Yk −
−X.

Therefore, for the natural ordering, the extreme point (R̃1, . . . , R̃K) is given as

(R̃1, . . . , R̃K) =

(
0, . . . , 0, (1− θ)I(Yj;Uj|UK

j+1,Y0, Q), I(Yj+1;Uj+1|UK
j+2,Y0, Q),

. . . , I(YK ;UK |Y0, Q)

)
.

Next, we show that (R̃1, . . . , R̃K) ∈ PD is dominated by a point (R1, . . . , RK , D̄) ∈
R̃DII

CEO that achieves a distortion D̄ ≤ D.

We consider an instance of the CEO setup in which for a fraction θ ∈ (0, 1] of the time

the decoder recovers Un
j+1, . . . , U

n
K while encoders k = 1, . . . , j are inactive; and for the

remaining fraction (1 − θ) of the time the decoder recovers Un
j , . . . , U

n
K while encoders

k = 1, . . . , j − 1 are inactive. Then, the source X is decoded. Formally, we consider a pmf

p(q′)
∏K

k=1 p(vk|yk, q′) for the CEO setup as follows. Let B denote a Bernoulli random

variable with parameter θ, i.e., B = 1 with probability θ and B = 0 with probability

1− θ. We let θ as in (F.4) and Q′ := (B,Q). Then, let the tuple of random variables be

distributed as follows

(Q′, VK) =





(
(1, Q), ∅, . . . , ∅, Uj+1, . . . , UK

)
, if B = 1 ,

(
(0, Q), ∅, . . . , ∅, Uj, . . . , UK

)
, if B = 0 .

(F.5)

Using Definition 6, we have (R1, . . . , RK , D̄) ∈ R̃DII

CEO, where

Rk = I(Yk;Vk|Vk+1, . . . , VK ,Y0, Q
′) , for k = 1, . . . , K ,

D̄ = h(X|V1, . . . , VK ,Y0, Q
′) .
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Then, for k = 1, . . . , j − 1, we have

Rk = I(Yk;Vk|Vk+1, . . . , VK ,Y0, Q
′)

(a)
= 0 = R̃k , (F.6)

where (a) follows since Vk = ∅ for k < j independently of B.

For k = j, we have

Rj = I(Yj;Vj|Vj+1, . . . , VK ,Y0, Q
′)

= θI(Yj;Uj|Uj+1, . . . , UK ,Y0, Q,B = 1)

+ (1− θ)I(Yj;Uj|Uj+1, . . . , UK ,Y0, Q,B = 0)

(a)
= (1− θ)I(Yj;Uj|Uj+1, . . . , UK ,Y0, Q) = R̃j , (F.7)

where (a) follows since Vj = ∅ for B = 0 and Vj = Uj for B = 1.

For k = j + 1, . . . , K, we have

Rk = I(Yk;Vk|Vk+1, . . . , VK ,Y0, Q
′)

= θI(Yj;Uj|Uj+1, . . . , UK ,Y0, Q,B = 1)

+ (1− θ)I(Yj;Uj|Uj+1, . . . , UK ,Y0, Q,B = 0)

(a)
= I(Yj;Uj|Uj+1, . . . , UK ,Y0, Q) = R̃k , (F.8)

where (a) is due to Vj = Uj for k > j independently of B.

Besides, the distortion D̄ satisfies

D̄ = h(X|V1, . . . , VK ,Y0, Q
′)

= θh(X|Uj+1, . . . , UK ,Y0, Q,B = 1) + (1− θ)h(X|Uj, . . . , UK ,Y0, Q,B = 0)

= h(X|UK
j ,Y0, Q) + θI(X;Uj|UK

j+1,Y0, Q)

(a)
= h(X|UK

j ,Y0, Q)

+
D − h(X|UK,Y0, Q)− I(Yj−1

1 ;U j−1
1 |UK

j ,Y0, Q)

I(Yj,X;Uj|UK
j+1,Y0, Q)

I(X;Uj|UK
j+1,Y0, Q)

= h(X|UK
j ,Y0, Q)

+
D − h(X|UK,Y0, Q)− I(Yj−1

1 ;U j−1
1 |UK

j ,Y0, Q)

I(X;Uj|UK
j+1,Y0, Q) + I(Yj;Uj|X, UK

j+1,Y0, Q)
I(X;Uj|UK

j+1,Y0, Q)

≤D + h(X|UK
j ,Y0, Q)− h(X|UK,Y0, Q)− I(Yj−1

1 ;U j−1
1 |UK

j ,Y0, Q)
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=D + I(X;U j−1
1 |UK

j ,Y0, Q)− I(Yj−1
1 ;U j−1

1 |UK
j ,Y0, Q)

(b)
= D + I(X;U j−1

1 |UK
j ,Y0, Q)− I(Yj−1

1 ,X;U j−1
1 |UK

j ,Y0, Q)

=D − I(Yj−1
1 ;U j−1

1 |X, UK
j ,Y0, Q) ≤ D , (F.9)

where (a) follows from (F.4) and due to the Markov chain Uj −
−Yj −
−X; and (b) follows

due to the Markov chain US −
−YS −
−X for all subsets S ⊆ K.

Summarizing, using (F.6), (F.7), (F.8) and (F.9), it follows that the extreme point

(R̃1, R̃2, . . . , R̃K) ∈ PD is dominated by the point (R1, . . . , RK , D) ∈ R̃DII

CEO satisfy-

ing D̄ ≤ D. Similarly, by considering all possible orderings each extreme point of PD
can be shown to be dominated by a point which lies in R̃DII

CEO. The proof is terminated

by observing that, for all extreme points, Vk is set either equal UG
k (which is Gaussian

distributed conditionally on Yk) or a constant.
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Appendix G

Proof of Theorem 5

We first present the following lemma, which essentially states that Theorem 4 provides an

outer bound on RDdet
VG-CEO.

Lemma 15. If (R1, . . . , RK , D) ∈ RDdet
VG-CEO, then (R1, . . . , RK , log(πe)nxD) ∈ R̃DI

CEO.

Proof. Let a tuple (R1, . . . , RK , D) ∈ RDdet
VG-CEO be given. Then, there exist a blocklength

n, K encoding functions {φ̆(n)
k }Kk=1 and a decoding function ψ̆(n) such that

Rk ≥
1

n
logM

(n)
k , for k = 1, . . . , K ,

D ≥
∣∣∣∣
1

n

n∑

i=1

mmse(Xi|φ̆(n)
1 (Yn

1 ), . . . , φ̆
(n)
K (Yn

K),Yn
0 )

∣∣∣∣ . (G.1)

We need to show that there exist (U1, . . . , UK , Q) such that

∑

k∈S
Rk + log(πe)nxD ≥

∑

k∈S
I(Yk;Uk|X,Y0, Q) +h(X|USc ,Y0, Q) , for S ⊆ K . (G.2)

Let us define

∆̄(n) :=
1

n
h(Xn|φ̆(n)

1 (Yn
1 ), . . . , φ̆

(n)
K (Yn

K),Yn
0 ) .

It is easy to justify that expected distortion ∆̄(n) is achievable under logarithmic loss (see

Proposition 4). Then, following straightforwardly the lines in the proof of Theorem 1

(see (A.6)), we have

∑

k∈S
Rk ≥

∑

k∈S

1

n

n∑

i=1

I(Yk,i;Uk,i|Xi,Y0,i, Qi) +
1

n

n∑

i=1

h(Xi|USc,i,Y0,i, Qi)− ∆̄(n) . (G.3)
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Next, we upper bound ∆̄(n) in terms of D as follows

∆̄(n) =
1

n
h(Xn|φ̆(n)

1 (Yn
1 ), . . . , φ̆

(n)
K (Yn

K),Yn
0 )

=
1

n

n∑

i=1

h(Xi|Xn
i+1, φ̆

(n)
1 (Yn

1 ), . . . , φ̆
(n)
K (Yn

K),Yn
0 )

=
1

n

n∑

i=1

h(Xi − E[Xi|JK]
∣∣Xn

i+1, φ̆
(n)
1 (Yn

1 ), . . . , φ̆
(n)
K (Yn

K),Yn
0 )

(a)

≤ 1

n

n∑

i=1

h(Xi − E[Xi|φ̆(n)
1 (Yn

1 ), . . . , φ̆
(n)
K (Yn

K),Yn
0 )

(b)

≤ 1

n

n∑

i=1

log(πe)nx
∣∣∣mmse(Xi|φ̆(n)

1 (Yn
1 ), . . . , φ̆

(n)
K (Yn

K),Yn
0 )
∣∣∣

(c)

≤ log(πe)nx
∣∣∣∣
1

n

n∑

i=1

mmse(Xi|φ̆(n)
1 (Yn

1 ), . . . , φ̆
(n)
K (Yn

K),Yn
0 )

∣∣∣∣

(d)

≤ log(πe)nxD , (G.4)

where (a) holds since conditioning reduces entropy; (b) is due to the maximal differential

entropy lemma; (c) is due to the convexity of the log-determinant function and Jensen’s

inequality; and (d) is due to (G.1).

Combining (G.4) with (G.3), and using standard arguments for single-letterization, we

get (G.2); and this completes the proof of the lemma.

The proof of Theorem 5 is as follows. By Lemma 15 and Proposition 5, there must

exist Gaussian test channels (V G
1 , . . . , V

G
K ) and a time-sharing random variable Q′, with

joint distribution that factorizes as

PX,Y0(x,y0)
K∏

k=1

PYk|X,Y0(yk|x,y0) P ′Q(q′)
K∏

k=1

PVk|Yk,Q′(vk|yk, q′) ,

such that the following holds

∑

k∈S
Rk ≥ I(YS ;V G

S |V G
Sc ,Y0, Q

′) , for S ⊆ K , (G.5)

log(πe)nxD ≥ h(X|V G
1 , . . . , V

G
K ,Y0, Q

′) . (G.6)

This is clearly achievable by the Berger-Tung coding scheme with Gaussian test channels

and time-sharing Q′, since the achievable error matrix under quadratic distortion has

determinant that satisfies

log
(

(πe)nx|mmse(X|V G
1 , . . . , V

G
K ,Y0, Q

′)|
)

= h(X|V G
1 , . . . , V

G
K ,Y0, Q

′) .
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The above shows that the rate-distortion region of the quadratic vector Gaussian CEO

problem with determinant constraint is given by (G.6), i.e., R̃DII

CEO (with distortion

parameter log(πe)nxD). Recalling that R̃DII

CEO = R̃DI

CEO = RD?VG-CEO, and substituting

in Theorem 4 using distortion level log(πe)nxD completes the proof.
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Appendix H

Proofs for Chapter 5

H.1 Proof of Lemma 3

First, we rewrite Ls(P) in (5.6). To that end, the second term of the RHS of (5.6) can be

proceeded as

I(Y1;U1|U2, Y0)
(a)
= I(X, Y1;U1|U2, Y0)

= I(X;U1|U2, Y0) + I(Y1;U1|U2, Y0, X)

(b)
= I(X;U1|U2, Y0) + I(Y1;U1|X, Y0)

= I(X;U1|U2, Y0) + I(Y1, X;U1|Y0)− I(X;U1|Y0)

(c)
= I(X;U1|U2, Y0) + I(Y1;U1|Y0)− I(X;U1|Y0)

=H(X|U2, Y0)−H(X|U1, U2, Y0) +H(U1|Y0)−H(U1|Y0, Y1)

−H(X|Y0) +H(X|U1, Y0)

=H(X|U2, Y0)−H(X|U1, U2, Y0) +H(U1)−H(Y0) +H(Y0|U1)

−H(U1|Y0, Y1)−H(X|Y0) +H(X|U1, Y0) , (H.1)

where (a), (b) and (c) follows due to the Markov chain U1 −
− Y1 −
− (X, Y0)−
− Y2 −
− U2.

Besides, the third term of the RHS of (5.6) can be written as

I(Y2;U2|Y0) = H(U2|Y0)−H(U2|Y0, Y2)

(a)
= H(U2|Y0)−H(U2|Y2)

= H(U2)−H(Y0) +H(Y0|U2)−H(U2|Y2) , (H.2)

where (a) follows due to the Markov chain U1 −
− Y1 −
− (X, Y0)−
− Y2 −
− U2.
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By applying (H.1) and (H.2) in (5.6), we have

Fs(P) =− s1H(X|Y0)− (s1 + s2)H(Y0) + (1− s1)H(X|U1, U2, Y0)

+ s1H(X|U1, Y0) + s1H(X|U2, Y0) + s1H(U1)− s1H(U1|Y1)

+ s2H(U2)− s2H(U2|Y2) + s1H(Y0|U1) + s2H(Y0|U2)

=− s1H(X|Y0)− (s1 + s2)H(Y0)

− (1− s1)
∑

u1u2xy0

p(u1, u2, x, y0) log p(x|u1, u2, y0)

− s1

∑

u1xy0

p(u1, x, y0) log p(x|u1, y0)− s1

∑

u2xy0

p(u2, x, y0) log p(x|u2, y0)

− s1

∑

u1

p(u1) log p(u1) + s1

∑

u1y1

p(u1, y1) log p(u1|y1)

− s2

∑

u2

p(u2) log p(u2) + s2

∑

u2y2

p(u2, y2) log p(u2|y2)

− s1

∑

u1y0

p(u1, y0) log p(y0|u1)− s2

∑

u2y0

p(u2, y0) log p(y0|u2) , (H.3)

Then, marginalizing (H.3) over variables X, Y0, Y1, Y2, and using the Markov chain U1 −
−
Y1 −
− (X, Y0)−
− Y2 −
− U2, it is easy to see that Fs(P) can be written as

Fs(P) =− s1H(X|Y0)− (s1 + s2)H(Y0)

+ EPX,Y0,Y1,Y2

[
(1− s1)EPU1|Y1

EPU2|Y2
[− logPX|U1,U2,Y0 ]

+ s1EPU1|Y1
[− logPX|U1,Y0 ] + s1EPU2|Y2

[− logPX|U2,Y0 ]

+ s1DKL(PU1|Y1‖PU1) + s2DKL(PU2|Y2‖PU2)

+ s1EPU1|Y1
[− logPY0|U1 ] + s2EPU2|Y2

[− logPY0|U2 ]
]
. (H.4)

Hence, we have

Fs(P,Q)− Fs(P) = (1− s1)EU1,U2,Y0 [DKL(PX|U1,U2,Y0‖QX|U1,U2,Y0)]

+ s1EU1,Y0 [DKL(PX|U1,Y0‖QX|U1,Y0)] + s1EU2,Y0 [DKL(PX|U2,Y0‖QX|U2,Y0)]

+ s1DKL(PU1‖QU1) + s2DKL(PU2‖QU2)

+ s1EU1 [DKL(PY0|U1‖QY0|U1)] + s2EU2 [DKL(PY0|U2‖QY0|U2)]

≥ 0 ,

where it holds with equality if and only if (5.10) is satisfied. Note that we have the relation

1− s1 ≥ 0 due to Lemma 2. This completes the proof.
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H.2 Proof of Lemma 5

We have that Fs(P,Q) is convex in P from Lemma 4. For a given Q and s, in order

to minimize Fs(P,Q) (given in (H.3)) over the convex set of pmfs P, let us define the

Lagrangian as

Ls(P,Q,λ) := Fs(P,Q) +
∑

y1

λ1(y1)[1−
∑

u1

p(u1|y1)] +
∑

y2

λ2(y2)[1−
∑

u2

p(u2|y2)] ,

where λ1(y1) ≥ 0 and λ2(y2) ≥ 0 are the Lagrange multipliers corresponding the constrains
∑

uk
p(uk|yk) = 1, yk ∈ Yk, k = 1, 2, of the pmfs PU1|Y1 and PU2|Y2 , respectively. Due to

the convexity of Fs(P,Q), the Karush-Kuhn-Tucker (KKT) conditions are necessary and

sufficient for optimality. By applying the KKT conditions

∂Ls(P,Q,λ)

∂p(u1|y1)
= 0 ,

∂Ls(P,Q,λ)

∂p(u2|y2)
= 0 ,

and arranging terms, we obtain

log p(uk|yk)

= log q(uk) +
1− s1

sk

∑

uk̄xy0

p(x, y0|yk)p(uk̄|x, y0) log q(x|uk, uk̄, y0)

+
s1

sk

∑

xy0

p(x, y0|yk) log q(x|uk, y0) +
∑

y0

p(y0|yk) log q(y0|uk) +
λk(yk)

skp(yk)
− 1

= log q(uk) +
1− s1

sk

∑

uk̄y0

p(uk̄, y0|yk)
∑

x

p(x|yk, uk̄, y0) log q(x|uk, uk̄, y0)

+
s1

sk

∑

y0

p(y0|yk)
∑

x

p(x|yk, y0) log q(x|uk, y0) +
∑

y0

p(y0|yk) log q(y0|uk) +
λk(yk)

skp(yk)
− 1

= log q(uk)−
1− s1

sk

∑

uk̄y0

p(uk̄, y0|yk)
∑

x

p(x|yk, uk̄, y0) log
p(x|yk, uk̄, y0)

q(x|uk, uk̄, y0)

1

p(x|yk, uk̄, y0)

− s1

sk

∑

y0

p(y0|yk)
∑

x

p(x|yk, y0) log
p(x|yk, y0)

q(x|uk, y0)

1

p(x|yk, y0)

−
∑

y0

p(y0|yk) log
p(y0|yk)
q(y0|uk)

1

p(y0|yk)
+

λk(yk)

skp(yk)
− 1

= log q(uk)− ψk(uk, yk) + λ̃k(yk) , (H.5)

where ψk(uk, yk), k = 1, 2, are given by (5.13), and λ̃k(yk) contains all terms independent

of uk for k = 1, 2. Then, we proceeded by rearranging (H.5) as follows

p(uk|yk) = eλ̃k(yk)q(uk)e
−ψk(uk,yk) , for k = 1, 2 . (H.6)
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Finally, the Lagrange multipliers λk(yk) satisfying the KKT conditions are obtained by

finding λ̃k(yk) such that
∑

uk
p(uk|yk) = 1, k = 1, 2. Substituting in (H.6), p(uk|yk) can

be found as in (5.12).

H.3 Derivation of the Update Rules of Algorithm 3

In this section, we derive the update rules in Algorithm 3 and show that the Gaussian

distribution is invariant to the update rules in Algorithm 2, in line with Theorem 4.

First, we recall that if (X1,X2) are jointly Gaussian, then

PX2|X1 ∼ CN (µx2|x1
,Σx2|x1) ,

where µx2|x1
:= Kx2|x1x1, Kx2|x1 := Σx2,x1Σ

−1
x1

.

Then, for Q(t+1) computed as in (5.10) from P(t), which is a set of Gaussian distributions,

we have

QX|U1,U2,Y0 ∼ CN (µx|u1,u2,y0
,Σx|u1,u2,y0) , QX|Uk,Y0 ∼ CN (µx|uk,y0

,Σx|uk,y0) ,

QY0|Uk
∼ CN (µy0|uk ,Σy0|uk) , QUk

∼ CN (0,Σuk) .

Next, we look at the update P(t+1) as in (5.12) from given Q(t+1). To compute

ψk(u
t
k,yk), first, we note that

EUk̄,Y0|yk [DKL(PX|yk,Uk̄,Y0‖QX|uk,Uk̄,Y0)]

= DKL(PUk̄,X,Y0|yk‖QUk̄,X,Y0|uk)−DKL(PUk̄,Y0|yk‖QUk̄,Y0|uk) (H.7a)

EY0|yk [DKL(PX|yk,Y0‖QX|uk,Y0)]

= DKL(PX,Y0|yk‖QX,Y0|uk)−DKL(PY0|yk‖QY0|uk) , (H.7b)

and that for two multivariate Gaussian distributions, i.e., PX1 ∼ CN (µx1
,Σx1) and

PX2 ∼ CN (µx2
,Σx2) in CN ,

DKL(PX1‖PX2) = (µx1
−µx2

)†Σ−1
x2

(µx1
−µx2

)+ log |Σx2Σ
−1
x1
|+tr(Σ−1

x2
Σx1)−N . (H.8)

Applying (H.7) and (H.8) in (5.13) and noting that all involved distributions are Gaussian,

it follows that ψk(u
t
k,yk) is a quadratic form. Then, since q(t)(uk) is also Gaussian, the

product log(q(t)(uk) exp(−ψk(utk,yk))) is also a quadratic form, and identifying constant,
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first and second order terms, we can write

log p(t+1)(uk|yk) = −(uk − µut+1
k |yk)

†Σ−1

zt+1
k

(uk − µut+1
k |yk) + Z(yk) ,

where

Σ−1

zt+1
k

= Σ−1
utk

+
1− s1

sk
K†

(ut
k̄
,x,y0)|utk

Σ−1
(ut
k̄
,x,y0)|utk

K(ut
k̄
,x,y0)|utk

− 1− s1

sk
K†

(ut
k̄
,y0)|utk

Σ−1
(ut
k̄
,y0)|utk

K(ut
k̄
,y0)|utk

+
s1

sk
K†

(x,y0)|utk
Σ−1

(x,y0)|utk
K(x,y0)|utk +

sk − s1

sk
K†

y0|utk
Σ−1

y0|utk
Ky0|utk (H.9)

µut+1
k |yk = Σzt+1

k

(
1− s1

sk
K†

(ut
k̄
,x,y0)|utk

Σ−1
(ut
k̄
,x,y0)|utk

K(ut
k̄
,x,y0)|yk

− 1− s1

sk
K†

(ut
k̄
,y0)|utk

Σ−1
(ut
k̄
,y0)|utk

K(ut
k̄
,y0)|yk

+
s1

sk
K†

(x,y0)|utk
Σ−1

(x,y0)|utk
K(x,y0)|yk +

sk − s1

sk
K†

y0|utk
Σ−1

y0|utk
Ky0|yk

)
yk .

(H.10)

This shows that p(t+1)(uk|yk) is a Gaussian distribution and that Ut+1
k is distributed as

Ut+1
k ∼CN (µut+1

k |yk ,Σzt+1
k

).

Next, we simplify (H.9) to obtain the update rule (5.16a). From the matrix inversion

lemma, similarly to [21], for (X1,X2) jointly Gaussian we have

Σ−1
x2|x1

= Σ−1
x2

+ K†x1|x2
Σ−1

x1|x2
Kx1|x2 . (H.11)

Applying (H.11) in (H.9), we have

Σ−1

zt+1
k

= Σ−1
utk

+
1− s1

sk

(
Σ−1

utk|(utk̄,x,y0)
−Σ−1

utk

)
− 1− s1

sk

(
Σ−1

utk|(utk̄,y0)
−Σ−1

utk

)

+
s1

sk

(
Σ−1

utk|(x,y0)
−Σ−1

utk

)
+
sk − s1

sk

(
Σ−1

utk|y0
−Σ−1

utk

)

(a)
=

1

sk
Σ−1

utk|(x,y0)
− 1− s1

sk
Σ−1

utk|(utk̄,y0)
+
sk − s1

sk
Σ−1

utk|y0
,

where (a) is due to the Markov chain U1 −
−X−
−U2. We obtain (5.16a) by taking the

inverse of both sides of (a).
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Also from the matrix inversion lemma [21], for (X1,X2) jointly Gaussian we have

Σ−1
x1

Σx1,x2Σ
−1
x2|x1

= Σ−1
x1|x2

Σx1,x2Σ
−1
x2
. (H.12)

Now, we simplify (H.10) to obtain the update rule (5.16b) as follows

µut+1
k |yk = Σzt+1

k

(
1− s1

sk
Σ−1

utk
Σutk,(u

t
k̄
,x,y0)Σ

−1
(ut
k̄
,x,y0)|utk

Σ(ut
k̄
,x,y0),ykΣ

−1
yk

− 1− s1

sk
Σ−1

utk
Σutk,(u

t
k̄
,y0)Σ

−1
(ut
k̄
,y0)|utk

Σ(ut
k̄
,y0),ykΣ

−1
yk

+
s1

sk
Σ−1

utk
Σutk,(x,y0)Σ

−1
(x,y0)|utk

Σ(x,y0),ykΣ
−1
yk

+
sk − s1

sk
Σ−1

utk
Σutk,y0

Σ−1
y0|utk

Σy0,ykΣ
−1
yk

)
yk

(a)
= Σzt+1

k

(
1− s1

sk
Σ−1

utk|(utk̄,x,y0)
Σutk,(u

t
k̄
,x,y0)Σ

−1
(ut
k̄
,x,y0)

Σ(ut
k̄
,x,y0),ykΣ

−1
yk

− 1− s1

sk
Σ−1

utk|(utk̄,y0)
Σutk,(u

t
k̄
,y0)Σ

−1
(ut
k̄
,y0)

Σ(ut
k̄
,y0),ykΣ

−1
yk

+
s1

sk
Σ−1

utk|(x,y0)
Σutk,(x,y0)Σ

−1
(x,y0)Σ(x,y0),ykΣ

−1
yk

+
sk − s1

sk
Σ−1

utk|y0
Σutk,y0

Σ−1
y0

Σy0,ykΣ
−1
yk

)
yk

(b)
= Σzt+1

k

(
1− s1

sk
Σ−1

utk|(utk̄,x,y0)
At
kΣyk,(u

t
k̄
,x,y0)Σ

−1
(ut
k̄
,x,y0)

Σ(ut
k̄
,x,y0),ykΣ

−1
yk

− 1− s1

sk
Σ−1

utk|(utk̄,y0)
At
kΣyk,(u

t
k̄
,y0)Σ

−1
(ut
k̄
,y0)

Σ(ut
k̄
,y0),ykΣ

−1
yk

+
s1

sk
Σ−1

utk|(x,y0)
At
kΣyk,(x,y0)Σ

−1
(x,y0)Σ(x,y0),ykΣ

−1
yk

+
sk − s1

sk
Σ−1

utk|y0
At
kΣyk,y0Σ

−1
y0

Σy0,ykΣ
−1
yk

)
yk

(c)
= Σzt+1

k

(
1− s1

sk
Σ−1

utk|(utk̄,x,y0)
At
k(Σyk −Σyk|(utk̄,x,y0))Σ

−1
yk

− 1− s1

sk
Σ−1

utk|(utk̄,y0)
At
k(Σyk −Σyk|(utk̄,y0))Σ

−1
yk

+
s1

sk
Σ−1

utk|(x,y0)
At
k(Σyk −Σyk|(x,y0))Σ

−1
yk

+
sk − s1

sk
Σ−1

utk|y0
At
k(Σyk −Σyk|y0)Σ−1

yk

)
yk
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(d)
= Σzt+1

k

(
1

sk
Σ−1

utk|(x,y0)
At
k(I−Σyk|(x,y0)Σ

−1
yk

)

− 1− s1

sk
Σ−1

utk|(utk̄,y0)
At
k(I−Σyk|(utk̄,y0)Σ

−1
yk

)

+
sk − s1

sk
Σ−1

utk|y0
At
k(I−Σyk|y0Σ

−1
yk

)

)
yk ,

where (a) follows from (H.12); (b) follows from the relation Σuk,y0 = AkΣyk,y0 ; (c) is due

the definition of Σx1|x2 ; and (d) is due to the Markov chain U1 −
−X−
−U2. Equation

(5.16b) follows by noting that µut+1
k |yk = At+1

k yk.

H.4 Proof of Proposition 9

For simplicity of exposition, the proof is given for the case K = 2 encoders. The

proof for K > 2 follows similarly. By the definition of RIsum
DIB, the tuple (∆, Rsum) is

achievable if there exists some random variables X, Y1, Y2, U1, U2 with joint distribution

PX(x)
∏K

k=1 PYk|X(yk|x)
∏K

k=1 PUk|Yk(uk|yk) satisfying

∆ ≤ I(X;U1, U2) (H.13a)

∆ ≤ R1 − I(Y1;U1|X) + I(X;U2) (H.13b)

∆ ≤ R2 − I(Y2;U2|X) + I(X;U1) (H.13c)

∆ ≤ R1 +R2 − I(Y1;U1|X)− I(Y2;U2|X) (H.13d)

R1 +R2 ≤ Rsum . (H.13e)

The application of the Fourier-Motzkin elimination to project out R1 and R2 reduces (H.13)

to the following system of inequalities

∆ ≤ I(X;U1, U2) (H.14a)

2∆ ≤ Rsum − I(Y1;U1|X)− I(Y2;U2|X) + I(X;U1) + I(X;U2) (H.14b)

∆ ≤ Rsum − I(Y1;U1|X)− I(Y2;U2|X) . (H.14c)

We note that we have I(X;U1, U2) ≤ I(X;U1) + I(X;U2) due to the Markov chain

U1 −
− Y1 −
−X −
− Y2 −
− U2. Therefore, inequality (H.14b) is redundant as it is implied

by (H.14a) and (H.14c). This completes the proof.
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H.5 Proof of Proposition 10

Suppose that P? yields the maximum in (5.20). Then,

∆s =
1

1 + s

[
(1 + sK)H(X) + sRs + LDIB

s (P?)
]

(a)
=

1

1 + s

[
(1 + sK)H(X) + sRs −H(X|U?

K) + s
K∑

k=1

[−H(X|U?
k )− I(Yk;U

?
k )]

]

=
1

1 + s

[
sRs +H(X)−H(X|U?

K) + s

K∑

k=1

[H(X)−H(X|U?
k )− I(Yk;U

?
k )]

]

=
1

1 + s

[
sRs + I(X;U?

K) + s

K∑

k=1

[I(X;U?
k )− I(Yk;U

?
k )]

]

(b)
=

1

1 + s

[
sRs + I(X;U?

K) + s
(
I(X;U?

K)−Rs

)]

=
1

1 + s

[
sRs + I(X;U?

K) + s
(
I(X;U?

K)−Rs

)]

= I(X;U?
K)

(c)

≥ ∆sum
DIB(Rs) , (H.15)

where (a) follows from the definition of LDIB
s (P) in (5.22); (b) is due to the definition of

Rs in (5.21); (c) follows follows from (5.19).

Conversely, if P? is the solution which maximize ∆sum
DIB(Rsum) in (5.19) such that

∆sum
DIB(Rsum) = ∆s, then the following will be held

∆s ≤ I(X;U?
K) (H.16a)

∆s ≤ Rsum −
K∑

k=1

I(Yk;U
?
k |X) . (H.16b)

Besides, for any s ≥ 0, we have

∆sum
DIB(Rsum) = ∆s

(a)

≤ ∆s +
(
I(X;U?

K)−∆s

)
+ s
(
Rsum −

K∑

k=1

I(Yk;U
?
k |X)−∆s

)

= I(X;U?
K)− s∆s + sRsum − s

K∑

k=1

I(Yk;U
?
k |X)

(b)
= I(X;U?

K)− s∆s + sRsum − s
K∑

k=1

[I(Yk;U
?
k )− I(X;U?

k )]
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= (1 + sK)H(X)− s∆s + sRsum −H(X|U?
K)− s

K∑

k=1

[H(X|U?
k ) + I(Yk;U

?
k )]

(c)

≤ (1 + sK)H(X)− s∆s + sRsum + L?s
(d)

≤ (1 + sK)H(X)− s∆s + sRsum + (1 + s)∆s − (1 + sK)H(X)− sRs

= ∆s + s(Rsum −Rs) , (H.17)

where (a) due to the inequalities (H.16); (b) follows since we have I(Yk;Uk|X) = I(Yk, X;Uk)−
I(X;Uk) = I(Yk;Uk)− I(X;Uk) due to the Markov chain Uk−
−Yk−
−X −
−YK\k−
−UK\k;
(c) follows since L?s is the value maximizing (5.22) over all possible P values (not necessarily

P? maximizing ∆sum
DIB(Rsum)); and (d) is due to (5.20).

Finally, (H.17) is valid for any Rsum ≥ 0 and s ≥ 0. For a given s, letting Rsum =

Rs, (H.17) yields ∆sum
DIB(Rs) ≤ ∆s. Together with (H.15), this completes the proof.

H.6 Proof of Lemma 6

First, we expand LDIB
s (P) in (5.22) as follows

LDIB
s (P) =−H(X|UK)− s

K∑

k=1

[H(X|Uk) +H(Uk)−H(Uk|Yk)]

=
∑

uK

∑

x

p(uK, x) log p(x|uK) + s
K∑

k=1

∑

uk

∑

x

p(uk, x) log p(x|uk)

+ s
K∑

k=1

∑

uk

p(uk) log p(uk)− s
K∑

k=1

∑

uk

∑

yk

p(uk, yk) log p(uk|yk) . (H.18)

Then, LVDIB
s (P,Q) is defined as follows

LVDIB
s (P,Q) =

∑

uK

∑

x

p(uK, x) log q(x|uK) + s

K∑

k=1

∑

uk

∑

x

p(uk, x) log q(x|uk)

+ s
K∑

k=1

∑

uk

p(uk) log q(uk)− s
K∑

k=1

∑

uk

∑

yk

p(uk, yk) log p(uk|yk) . (H.19)
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Hence, from (H.18) and (H.19) we have the following relation

LDIB
s (P)− LVDIB

s (P,Q) = EPUK
[DKL(PX|UK‖QX|UK ]

+ s
K∑

k=1

(
EPUk [DKL(PX|Uk‖QX|Uk ] +DKL(PUk‖QUk)

)

≥0 ,

where it holds with an equality if and only if QX|UK = PX|UK , QX|Uk = PX|Uk , QUk = PUk ,

k = 1, . . . , K. We note that s ≥ 0.

Now, we will complete the proof by showing that (H.19) is equal to (5.23). To do so,

we proceed (H.19) as follows

LVDIB
s (P,Q) =

∑

uK

∑

x

∑

yK

p(uK, x, yK) log q(x|uK)

+ s
K∑

k=1

∑

uk

∑

x

∑

yK

p(uk, x, yK) log q(x|uk)

− s
K∑

k=1

∑

uk

∑

x

∑

yK

p(uk, x, yK) log
p(uk|yk)
q(uk)

(a)
=
∑

x

∑

yK

p(x, yK)
∑

uK

p(u1|y1)× · · · × p(uK |yK) log q(x|uK)

+ s
∑

x

∑

yK

p(x, yK)
K∑

k=1

∑

uk

p(uk|yk) log q(x|uk)

+ s
∑

x

∑

yK

p(x, yK)
K∑

k=1

∑

uk

p(uk|yk) log
p(uk|yk)
q(uk)

= EPX,YK

[
EPU1|Y1

× · · · × EPUK |YK
[logQX|UK ]

+ s

K∑

k=1

(
EPUk|Yk [logQX|Uk ]−DKL(PUk|Yk‖QUk)

)]
,

where (a) follows due to the Markov chain Uk−
−Yk−
−X−
−YK\k−
−UK\k. This completes

the proof.
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I.1 Proof of Lemma 7

First, we expand L′s(P) as follows

L′s(P) =−H(X|U)− sI(X; U)

=−H(X|U)− s[H(U)−H(U|X)]

=

∫∫

ux

p(u,x) log p(x|u) du dx

+ s

∫

u

p(u) log p(u) du− s
∫∫

ux

p(u,x) log p(u|x) du dx.

Then, LVB
s (P,Q) is defined as follows

LVB
s (P,Q) :=

∫∫

ux

p(u,x) log q(x|u) du dx

+ s

∫

u

p(u) log q(u) du− s
∫∫

ux

p(u,x) log p(u|x) du dx. (I.1)

Hence, we have the following relation

L′s(P)− LVB
s (P,Q) = EPX

[DKL(PX|U‖QX|U)] + sDKL(PU‖QU) ≥ 0

where equality holds under equalities QX|U = PX|U and QU = PU. We note that s ≥ 0.
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Now, we complete the proof by showing that (I.1) is equal to (6.8). To do so, we

proceed (I.1) as follows

LVB
s (P,Q) =

∫

x

p(x)

∫

u

p(u|x) log q(x|u) du dx

+ s

∫

x

p(x)

∫

u

p(u|x) log q(u) du− s
∫

x

p(x)

∫

u

p(u|x) log p(u|x) du dx

= EPX

[
EPU|X [logQX|U]− sDKL(PU|X‖QU)

]
.

I.2 Alternative Expression LVaDE
s

Here, we show that (6.13) is equal to (6.14).

To do so, we start with (6.14) and proceed as follows

LVaDE
s = EPX

[
EPU|X [logQX|U]− sDKL(PU|X‖QU)− sEPU|X

[
DKL(PC|X‖QC|U)

]

= EPX
[
EPU|X [logQX|U]

]
− s

∫

x

p(x)

∫

u

p(u|x) log
p(u|x)

q(u)
du dx

− s
∫

x

p(x)

∫

u

p(u|x)
∑

c

p(c|x) log
p(c|x)

q(c|u)
du dx

(a)
= EPX

[
EPU|X [logQX|U]

]
− s

∫∫

ux

p(x)p(u|x) log
p(u|x)

q(u)
du dx

− s
∫∫

ux

∑

c

p(x)p(u|c,x)p(c|x) log
p(c|x)

q(c|u)
du dx

= EPX
[
EPU|X [logQX|U]

]
− s

∫∫

ux

∑

c

p(u, c,x) log
p(u|x)p(c|x)

q(u)q(c|u)
du dx

= EPX
[
EPU|X [logQX|U]

]
− s

∫∫

ux

∑

c

p(u, c,x) log
p(c|x)

q(c)

p(u|x)

q(u|c) du dx

= EPX
[
EPU|X [logQX|U]

]
− s

∫

x

∑

c

p(c,x) log
p(c|x)

q(c)
dx

− s
∫∫

ux

∑

c

p(x)p(c|x)p(u|c,x) log
p(u|x)

q(u|c) du dx

(b)
= EPX

[
EPU|X [logQX|U]− sDKL(PC|X‖QC)− sEPC|X [DKL(PU|X‖QU|C)]

]
,

where (a) and (b) follow due to the Markov chain C −
−X−
−U.
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I.3 KL Divergence Between Multivariate Gaussian Distributions

The KL divergence between two multivariate Gaussian distributions P1 ∼ N (µ1,Σ1) and

P2 ∼ N (µ2,Σ2) in RJ is

DKL(P1‖P2) =
1

2

(
(µ1−µ2)TΣ−1

2 (µ1−µ2) + log |Σ2|− log |Σ1|−J + tr(Σ−1
2 Σ1)

)
. (I.2)

For the case in which Σ1 and Σ2 covariance matrices are diagonal, i.e., Σ1 := diag({σ2
1,j}Jj=1)

and Σ2 := diag({σ2
2,j}Jj=1), (I.2) boils down to the following

DKL(P1‖P2) =
1

2

( J∑

j=1

(µ1,j − µ2,j)
2

σ2
2,j

+ log
σ2

2,j

σ2
1,j

− 1 +
σ2

1,j

σ2
2,j

)
. (I.3)

I.4 KL Divergence Between Gaussian Mixture Models

An exact close form for the calculation of the KL divergence between two Gaussian mixture

models does not exist. In this paper, we use a variational lower bound approximation for

calculations of KL between two Gaussian mixture models. Let f and g be GMMs and the

marginal densities of x under f and g are

f(x) =
M∑

m=1

ωmN (x;µf
m,Σ

f
m) =

M∑

m=1

ωmfm(x)

g(x) =
C∑

C=1

πcN (x;µg
c ,Σ

g
c) =

C∑

c=1

πcgc(x).

The KL divergence between two Gaussian mixtures f an g can be approximated as follows

DvKL(f‖g) :=
M∑

m=1

ωm log

∑
m′∈M\m ωm′ exp (−DKL(fm‖fm′))
∑C

c=1 πc exp (−DKL(fm‖gc))
. (I.4)

In this paper, we are interested, in particular, M = 1. Hence, (I.4) simplifies to

DvKL(f‖g) = − log
C∑

c=1

πc exp (−DKL(f‖gc)) (I.5)

where DKL(·‖·) is the KL divergence between single component multivariate Gaussian

distribution, defined as in (I.2).

151



152



Bibliography

[1] Inaki Estella Aguerri and Abdellatif Zaidi, “Distributed variational representation

learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

[2] Toby Berger, Zhen Zhang, and Harish Viswanathan, “The CEO problem,” IEEE

Transactions on Information Theory, vol. 42, no. 3, pp. 887 – 902, May 1996.

[3] Yasutada Oohama, “Rate-distortion theory for Gaussian multiterminal source cod-

ing systems with several side informations at the decoder,” IEEE Transactions on

Information Theory, vol. 51, no. 7, pp. 2577 – 2593, July 2005.

[4] Vinod Prabhakaran, David Tse, and Kannan Ramachandran, “Rate region of the

quadratic Gaussian CEO problem,” in Proceedings of IEEE International Symposium

on Information Theory, June – July 2004, p. 117.

[5] Jun Chen and Jia Wang, “On the vector Gaussian CEO problem,” in Proceedings of

IEEE International Symposium on Information Theory, July – August 2011, pp. 2050 –

2054.

[6] Jia Wang and Jun Chen, “On the vector Gaussian L-terminal CEO problem,” in

Proceedings of IEEE International Symposium on Information Theory, July 2012, pp.

571 – 575.

[7] Tie Liu and Pramod Viswanath, “An extremal inequality motivated by multiterminal

information-theoretic problems,” IEEE Transactions on Information Theory, vol. 53,

no. 5, pp. 1839 – 1851, May 2007.

[8] Yinfei Xu and Qiao Wang, “Rate region of the vector Gaussian CEO problem with the

trace distortion constraint,” IEEE Transactions on Information Theory, vol. 62, no. 4,

pp. 1823 – 1835, April 2016.

153



BIBLIOGRAPHY

[9] Thomas A. Courtade and Richard D. Wesel, “Multiterminal source coding with an

entropy-based distortion measure,” in Proceedings of IEEE International Symposium

on Information Theory, July – August 2011, pp. 2040 – 2044.

[10] Thomas A. Courtade and Tsachy Weissman, “Multiterminal source coding under

logarithmic loss,” IEEE Transactions on Information Theory, vol. 60, no. 1, pp. 740 –

761, January 2014.

[11] Ersen Ekrem and Sennur Ulukus, “An outer bound for the vector Gaussian CEO

problem,” IEEE Transactions on Information Theory, vol. 60, no. 11, pp. 6870 – 6887,

November 2014.

[12] Saurabha Tavildar and Pramod Viswanath, “On the sum-rate of the vector Gaussian

CEO problem,” in Proceedings of 39-th Asilomar Conference on Signals, Systems, and

Computers, October – November 2005, pp. 3 – 7.

[13] Hanan Weingarten, Yossef Steinberg, and Shlomo Shamai (Shitz), “The capacity region

of the gaussian multiple-input multiple-output broadcast channel,” IEEE Transactions

on Information Theory, vol. 52, no. 9, pp. 3936 – 3964, September 2006.

[14] Daniel Perez Palomar, John M. Cioffi, and Miguel Angel Lagunas, “Joint Tx-Rx

beamforming design for multicarrier MIMO channels: A unified framework for convex

optimization,” IEEE Transactions on Signal Processing, vol. 51, no. 9, pp. 2381 – 2401,

September 2003.

[15] Anna Scaglione, Petre Stoica, Sergio Barbarossa, Georgios B. Giannakis, and Hemanth

Sampath, “Optimal designs for space-time linear precoders and decoders,” IEEE

Transactions on Signal Processing, vol. 50, no. 5, pp. 1051 – 1064, May 2002.

[16] Md. Saifur Rahman and Aaron B. Wagner, “On the optimality of binning for dis-

tributed hypothesis testing,” IEEE Transactions on Information Theory, vol. 58, no. 10,

pp. 6282 – 6303, October 2012.

[17] Naftali Tishby, Fernando C. Pereira, and William Bialek, “The information bottleneck

method,” in Proceedings of the 37-th Annual Allerton Conference on Communication,

Control and Computing, 1999, pp. 368 – 377.

154



BIBLIOGRAPHY

[18] Peter Harremoes and Naftali Tishby, “The information bottleneck revisited or how to

choose a good distortion measure,” in Proceedings of IEEE International Symposium

on Information Theory, June 2007, pp. 566 – 570.

[19] Richard E. Blahut, “Computation of channel capacity and rate-distortion functions,”

IEEE Transactions on Information Theory, vol. IT-18, no. 4, pp. 460 – 473, July 1972.

[20] Suguru Arimoto, “An algorithm for computing the capacity of arbitrary discrete

memoryless channels,” IEEE Transactions on Information Theory, vol. IT-18, no. 1,

pp. 14 – 20, January 1972.

[21] Gal Chechik, Amir Globerson, Naftali Tishby, and Yair Weiss, “Information bottleneck

for Gaussian variables,” Journal of Machine Learning Research, vol. 6, pp. 165 – 188,

January 2005.

[22] Andreas Winkelbauer and Gerald Matz, “Rate-information-optimal Gaussian channel

output compression,” in Proceedings of the 48-th Annual Conference on Information

Sciences and Systems, August 2014.

[23] Samuel Cheng, Vladimir Stankovic, and Zixiang Xiong, “Computing the channel capac-

ity and rate-distortion function with two-sided state information,” IEEE Transactions

on Information Theory, vol. 51, no. 12, pp. 4418 – 4425, December 2005.

[24] Mung Chiang and Stephen Boyd, “Geometric programming duals of channel capacity

and rate distortion,” IEEE Transactions on Information Theory, vol. 50, no. 2, pp. 245

– 258, February 2004.

[25] Frederic Dupuis, Wei Yu, and Frans M. J. Willems, “Blahut-Arimoto algorithms for

computing channel capacity and rate-distortion with side information,” in Proceedings

of IEEE International Symposium on Information Theory, June – July 2004, p. 181.

[26] Mohammad Rezaeian and Alex Grant, “A generalization of Arimoto-Blahut algorithm,”

in Proceedings of IEEE International Symposium on Information Theory, June – July

2004, p. 180.

[27] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner, “β-vae: Learning basic vi-

155



BIBLIOGRAPHY

sual concepts with a constrained variational framework,” in Proceedings of the 5-th

International Conference on Learning Representations, 2017.

[28] Alexander A. Alemi, Ben Poole, Ian Fischer, Ian Fischer, Joshua V. Dillon, Rif A.

Saurous, and Kevin Murphy, “Fixing a broken ELBO,” in Proceedings of the 35-th

International Conference on Machine Learning, 2018.

[29] Diederik P. Kingma and Max Welling, “Auto-encoding variational bayes,” in Proceed-

ings of the 2-nd International Conference on Learning Representations, 2014.

[30] Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy, “Deep

variational information bottleneck,” in Proceedings of the 5-th International Conference

on Learning Representations, 2017.

[31] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou, “Varia-

tional deep embedding: An unsupervised and generative approach to clustering,” in

Proceedings of the 26-th International Joint Conference on Artificial Intelligence, 2017,

pp. 1965 – 1972.

[32] Noam Slonim, The Information Bottleneck: Theory and Applications. PhD disserta-

tion, Hebrew University, 2002.

[33] Junyuan Xie, Ross Girshick, and Ali Farhadi, “Unsupervised deep embedding for

clustering analysis,” in Proceedings of the 33-rd International Conference on Machine

Learning, 2016, pp. 478 – 487.

[34] Hans S. Witsenhausen, “Indirect rate distortion problems,” IEEE Transactions on

Information Theory, vol. IT-26, no. 5, pp. 518 – 521, September 1980.

[35] Yossef Steinberg, “Coding and common reconstruction,” IEEE Transactions on

Information Theory, vol. 55, no. 11, pp. 4995 – 5010, November 2009.

[36] Ilan Sutskover, Shlomo Shamai (Shitz), and Jacob Ziv, “Extremes of information

combining,” IEEE Transactions on Information Theory, vol. 51, no. 4, pp. 1313 – 1325,

April 2005.

[37] Ingmar Land and Johannes Huber, “Information combining,” Foundations and Trends

in Communication and Information Theory, vol. 3, no. 3, pp. 227 – 330, November

2006.

156



BIBLIOGRAPHY

[38] Ingmar Land, Simon Huettinger, Peter A. Hoeher, and Johannes B. Huber, “Bounds

on information combining,” IEEE Transactions on Information Theory, vol. 51, no. 2,

pp. 612 – 619, February 2005.

[39] Aaron D. Wyner, “On source coding with side information at the decoder,” IEEE

Transactions on Information Theory, vol. 21, no. 3, pp. 294 – 300, May 1975.

[40] Rudolf Ahlswede and Janos Korner, “Source coding with side information and a

converse for degraded broadcast channels,” IEEE Transactions on Information Theory,

vol. 21, no. 6, pp. 629 – 637, November 1975.

[41] Elza Erkip and Thomas Cover, “The efficiency of investment information,” IEEE

Transactions on Information Theory, vol. 44, no. 3, pp. 1026 – 1040, May 1998.

[42] Ali Makhdoumi, Salman Salamatian, Nadia Fawaz, and Muriel Medard, “From the

information bottleneck to the privacy funnel,” in Proceedings of IEEE Information

Theory Workshop, November 2014, pp. 501 – 505.

[43] Yoshua Bengio, Aaron Courville, and Pascal Vincent, “Representation learning: A

review and new perspectives,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 8, pp. 1798 – 1828, August 2013.

[44] Chang Xu, Dacheng Tao, and Chao Xu, “A survey on multi-view learning,” arXiv:

1304.5634, 2013.

[45] Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes, “On deep multi-view

representation learning,” in Proceedings of the 32-nd International Conference on

Machine Learning, 2015.

[46] Yann Lecun, Leon Bottou, Yoshua Bengio, and Patrick Haffner, “Gradient-based

learning applied to document recognition,” in Proceedings of the IEEE, vol. 86, no. 11,

1998, pp. 2278 – 2324.

[47] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li, “A new benchmark

collection for text categorization research,” The Journal of Machine Learning Research,

vol. 5, pp. 361 – 397, 2004.

157



BIBLIOGRAPHY

[48] Adam Coates, Andrew Ng, and Honglak Lee, “An analysis of single-layer networks in

unsupervised feature learning,” in Proceedings of the 14-th International Conference

on Artificial Intelligence and Statistics, 2011, pp. 215 – 223.

[49] Georg Pichler, Pablo Piantanida, and Gerald Matz, “Distributed information-theoretic

biclustering,” in Proceedings of IEEE International Symposium on Information Theory,

July 2016, pp. 1083 – 1087.

[50] Georg Pichler, Pablo Piantanida, and Gerald Matz, “A multiple description CEO

problem with log-loss distortion,” in Proceedings of IEEE International Symposium on

Information Theory, June 2017, pp. 111 – 115.

[51] Jiantao Jiao, Thomas A. Courtade, Kartik Venkat, and Tsachy Weissman, “Justifi-

cation of logarithmic loss via the benefit of side information,” IEEE Transactions on

Information Theory, vol. 61, no. 10, pp. 5357 – 5365, October 2015.

[52] Albert No and Tsachy Weissman, “Universality of logarithmic loss in lossy compres-

sion,” in Proceedings of IEEE International Symposium on Information Theory, June

2015, pp. 2166 – 2170.

[53] Yanina Shkel, Maxim Raginsky, and Sergio Verdu, “Universal lossy compression under

logarithmic loss,” in Proceedings of IEEE International Symposium on Information

Theory, June 2017, pp. 1157 – 1161.

[54] Nicolo Cesa-Bianchi and Gabor Lugosi, Prediction, Learning and Games. Cambridge

University Press, 2006.

[55] Thomas Andre, Marc Antonini, Michel Barlaud, and Robert M. Gray, “Entropy-based

distortion measure for image coding,” in Proceedings of IEEE International Conference

on Image Processing, October 2006, pp. 1157 – 1160.

[56] Kittipong Kittichokechai, Yeow-Khiang Chia, Tobias J. Oechtering, Mikael Skoglund,

and Tsachy Weissman, “Secure source coding with a public helper,” IEEE Transactions

on Information Theory, vol. 62, no. 7, pp. 3930 – 3949, July 2016.

[57] Amichai Painsky and Gregory Wornell, “On the universality of the logistic loss

function,” in Proceedings of IEEE International Symposium on Information Theory,

June 2018, pp. 936 – 940.

158



BIBLIOGRAPHY

[58] Cheuk Ting Li, Xiugang Wu, Ayfer Ozgur, and Abbas El Gamal, “Minimax learning

for remote prediction,” in Proceedings of IEEE International Symposium on Information

Theory, June 2018, pp. 541 – 545.

[59] Chao Tian and Jun Chen, “Remote vector Gaussian source coding with decoder side

information under mutual information and distortion constraints,” IEEE Transactions

on Information Theory, vol. 55, no. 10, pp. 4676 – 4680, October 2009.

[60] Amichai Sanderovich, Shlomo Shamai (Shitz), Yossef Steinberg, and Gerhard Kramer,

“Communication via decentralized processing,” IEEE Transactions on Information

Theory, vol. 54, no. 7, pp. 3008 – 3023, July 2008.

[61] Osvaldo Simeone, Elza Erkip, and Shlomo Shamai (Shitz), “On codebook information

for interference relay channels with out-of-band relaying,” IEEE Transactions on

Information Theory, vol. 57, no. 5, pp. 2880 – 2888, May 2011.

[62] Inaki Estella Aguerri, Abdellatif Zaidi, Giuseppe Caire, and Shlomo Shamai (Shitz),

“On the capacity of cloud radio access networks with oblivious relaying,” in Proceedings

of IEEE International Symposium on Information Theory, June 2017, pp. 2068 – 2072.

[63] Inaki Estella Aguerri, Abdellatif Zaidi, Giuseppe Caire, and Shlomo Shamai (Shitz),

“On the capacity of cloud radio access networks with oblivious relaying,” IEEE Trans-

actions on Information Theory, vol. 65, no. 7, pp. 4575 – 4596, July 2019.

[64] Flavio P. Calmon, Ali Makhdoumi, Muriel Medard, Mayank Varia, Mark Christiansen,

and Ken R. Duffy, “Principal inertia components and applications,” IEEE Transactions

on Information Theory, vol. 63, no. 8, pp. 5011 – 5038, July 2017.

[65] Rudolf Ahlswede and Imre Csiszar, “Hypothesis testing with communication con-

straints,” IEEE Transactions on Information Theory, vol. IT - 32, no. 4, pp. 533 – 542,

July 1986.

[66] Te Sun Han, “Hypothesis testing with multiterminal data compression,” IEEE Trans-

actions on Information Theory, vol. IT - 33, no. 6, pp. 759 – 772, November 1987.

[67] Chao Tian and Jun Chen, “Successive refinement for hypothesis testing and lossless

one-helper problem,” IEEE Transactions on Information Theory, vol. 54, no. 10, pp.

4666 – 4681, October 2008.

159



BIBLIOGRAPHY

[68] Sadaf Salehkalaibar, Michele Wigger, and Roy Timo, “On hypothesis testing against

conditional independence with multiple decision centers,” IEEE Transactions on

Communications, vol. 66, no. 6, pp. 2409 – 2420, June 2018.

[69] Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby, “An information theoretic

tradeoff between complexity and accuracy,” in Proceedings of Conference on Learning

Theory, 2003, pp. 595 – 609.

[70] Andreas Winkelbauer, Stefan Farthofer, and Gerald Matz, “The rate-information trade-

off for Gaussian vector channels,” in Proceedings of IEEE International Symposium on

Information Theory, June 2014, pp. 2849 – 2853.

[71] Michael Meidlinger, Andreas Winkelbauer, and Gerald Matz, “On the relation between

the Gaussian information bottleneck and MSE-optimal rate-distortion quantization,”

in Proceedings of IEEE Workshop on Statistical Signal Processing, June 2014, pp. 89 –

92.

[72] Abdellatif Zaidi, Inaki Estella Aguerri, and Shlomo Shamai (Shitz), “On the informa-

tion bottleneck problems: Models, connections, applications and information theoretic

views,” Entropy, vol. 22, no. 2, p. 151, January 2020.

[73] Aaron D. Wyner and Jacob Ziv, “The rate-distortion function for source coding with

side information at the decoder,” IEEE Transactions on Information Theory, vol. IT –

22, no. 1, pp. 1 – 10, January 1976.

[74] Meryem Benammar and Abdellatif Zaidi, “Rate-distortion of a Heegard-Berger prob-

lem with common reconstruction constraint,” in Proceedings of International Zurich

Seminar on Communications, 2016, pp. 150 – 154.

[75] Meryem Benammar and Abdellatif Zaidi, “Rate-distortion function for a Heegard-

Berger problem with two sources and degraded reconstruction sets,” IEEE Transactions

on Information Theory, vol. 62, no. 9, pp. 5080 – 5092, September 2016.

[76] Flavio du Pin Calmon and Nadia Fawaz, “Privacy against statistical inference,” in

Proceedings of the 50-th Annual Allerton Conference on Communication, Control and

Computing, October 2012, pp. 1401 – 1408.

160



BIBLIOGRAPHY

[77] Shahab Asoodeh, Mario Diaz, Fady Alajaji, and Tamas Linder, “Information extrac-

tion under privacy constraints,” Information, vol. 7, no. 15, March 2016.

[78] Alessandro Achille and Stefano Soatto, “Information dropout: Learning optimal

representations through noisy computation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 40, no. 12, pp. 2897 – 2905, December 2018.

[79] Satosi Watanabe, “Information theoretical analysis of multivariate correlation,” IBM

Journal of Research and Development, vol. 4, no. 1, pp. 66 – 82, January 1960.

[80] Ricky T. Q. Chen, Xuechen Li, Roger Grosse, and David Duvenaud, “Isolating

sources of disentanglement in VAEs,” in Proceedings of the 32-nd Conference on Neural

Information Processing Systems, 2018.

[81] Ohad Shamir, Sivan Sabato, and Naftali Tishby, “Learning and generalization with

the information bottleneck,” in Proceedings of the 19-th International Conference on

Algorithmic Learning Theory, October 2008, pp. 92 – 107.

[82] Naftali Tishby and Noga Zaslavsky, “Deep learning and the information bottleneck

principle,” in Proceedings of IEEE Information Theory Workshop, April 2015.

[83] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,”

in Proceedings of the 3-rd International Conference on Learning Representations, 2015.

[84] Ravid Schwartz-Ziv and Naftali Tishby, “Opening the black box of deep neural

networks via information,” arXiv: 1703.00810, 2017.

[85] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchin-

sky, Brendan Daniel Tracey, and David Daniel Cox, “On the information bottleneck

theory of deep learning,” in Proceedings of the 6-th International Conference on Learn-

ing Representations, 2018.

[86] Lewandowsky and Gerhard Bauch, “Information-optimum LDPC decoders based on

the information bottleneck method,” IEEE Access, vol. 6, pp. 4054 – 4071, 2018.

[87] Michael Meidlinger, Alexios Balatsoukas-Stimming, Andreas Burg, and Gerald Matz,

“Quantized message passing for LDPC codes,” in Proceedings of 49-th Asilomar Confer-

ence on Signals, Systems, and Computers, November 2015, pp. 1606 – 1610.

161



BIBLIOGRAPHY

[88] J. Korner and K. Marton, “How to encode the modulo-two sum of binary sources,”

IEEE Transactions on Information Theory, vol. 25, no. 02, pp. 219 – 221, March 1979.

[89] Michael Gastpar, “The Wyner-Ziv problem with multiple sources,” IEEE Transactions

on Information Theory, vol. 50, no. 11, pp. 2762 – 2768, November 2004.

[90] Daniel Russo and James Zou, “How much does your data exploration overfit? Con-

trolling bias via information usage,” arXiv: 1511.05219, 2015.

[91] Aolin Xu and Maxim Raginsky, “Information-theoretic analysis of generalization

capability of learning algorithms,” in Proceedings of the 31-st Conference on Neural

Information Processing Systems, 2017, pp. 2524 – 2533.

[92] Amir R. Asadi, Emmanuel Abbe, and Sergio Verdu, “Chaining mutual information

and tightening generalization bounds,” in Proceedings of the 32-nd Conference on

Neural Information Processing Systems, 2018.

[93] Toby Berger, “Decentralized estimation and decision theory,” in Proceedings of IEEE

Spring Workshop on Information Theory, 1979.

[94] Hossam M. H. Shalaby and Adrian Papamarcou, “Multiterminal detection with zero-

rate data compression,” IEEE Transactions on Information Theory, vol. 38, no. 2, pp.

254 – 267, March 1992.

[95] Wenwen Zhao and Lifeng Lai, “Distributed testing with zero-rate compression,” in

Proceedings of IEEE International Symposium on Information Theory, June 2015, pp.

2792 – 2796.

[96] Pierre Escamilla, Michele Wigger, and Abdellatif Zaidi, “Distributed hypothesis

testing with concurrent detections,” in Proceedings of IEEE International Symposium

on Information Theory, June 2018, pp. 166 – 170.

[97] Pierre Escamilla, Michele Wigger, and Abdellatif Zaidi, “Distributed hypothesis

testing with collaborative detection,” in Proceedings of the 56-th Annual Allerton

Conference on Communication, Control, and Computing, October 2018, pp. 512 – 518.

[98] Jiachun Liao, Lalitha Sankar, Flavio P. Calmon, and Vincent Y. F. Tan, “Hypothesis

testing under maximal leakage privacy constraints,” in Proceedings of IEEE Interna-

tional Symposium on Information Theory, June 2017, pp. 779 – 783.

162



BIBLIOGRAPHY

[99] Sreejith Sreekumar, Asaf Cohen, and Deniz Gunduz, “Distributed hypothesis testing

with a privacy constraint,” in Proceedings of IEEE Information Theory Workshop,

November 2018.

[100] Abdellatif Zaidi and Inaki Estella Aguerri, “Optimal rate-exponent region for a class

of hypothesis testing against conditional independence problems,” in Proceedings of

IEEE Information Theory Workshop, August 2019.

[101] Toby Berger, Multiterminal source coding. The Information Theory Approach to

Communications, CSIM Courses and Lectures, 1978, vol. 229.

[102] S. Y. Tung, Multiterminal source coding. PhD dissertation, Cornell University,

1978.

[103] Yuhan Zhou, Yinfei Xu, Wei Yu, and Jun Chen, “On the optimal fronthaul compres-

sion and decoding strategies for uplink cloud radio access networks,” IEEE Transactions

on Information Theory, vol. 62, no. 12, pp. 7402 – 7418, December 2016.

[104] Thomas A. Courtade, “Gaussian multiterminal source coding through the lens of

logarithmic loss,” in Information Theory and Applications Workshop, 2015.

[105] Thomas A. Courtade, “A strong entropy power inequality,” IEEE Transactions on

Information Theory, vol. 64, no. 4, pp. 2173 – 2192, April 2018.

[106] Aaron B. Wagner, Saurabha Tavildar, and Pramod Viswanath, “Rate region of

the quadratic Gaussian two-encoder source-coding problem,” IEEE Transactions on

Information Theory, vol. 54, no. 5, pp. 1938 – 1961, May 2008.

[107] Thomas A. Courtade and Jiantao Jiao, “An extremal inequality for long Markov

chains,” in Proceedings of the 52-nd Annual Allerton Conference on Communication,

Control and Computing, September 2014, pp. 763 – 770.

[108] Y. Oohama, “The rate-distortion function for the quadratic gaussian ceo problem,”

IEEE Transactions on Information Theory, vol. 44, no. 3, pp. 1057 – 1070, May 1998.

[109] Saurabha Tavildar, Pramod Viswanath, and Aaron B. Wagner, “The gaussian

many-help-one distributed source coding problem,” IEEE Transactions on Information

Theory, vol. 56, no. 1, pp. 564 – 581, January 2010.

163



BIBLIOGRAPHY

[110] Md. Saifur Rahman and Aaron B. Wagner, “Rate region of the vector gaussian

one-helper source-coding problem,” IEEE Transactions on Information Theory, vol. 61,

no. 5, pp. 2708 – 2728, May 2015.

[111] Inaki Estella Aguerri and Abdellatif Zaidi, “Distributed information bottleneck

method for discrete and Gaussian sources,” in Proceedings of International Zurich

Seminar on Information and Communication, February 2018.

[112] Noam Slonim and Naftali Tishby, “The power of word clusters for text classification,”

in Proceedings of 23-rd European Colloquium on Information Retrieval Research, 2001,

pp. 191 – 200.

[113] Yoram Baram, Ran El-Yaniv, and Kobi Luz, “Online choice of active learning

algorithms,” Journal of Machine Learning Research, vol. 5, pp. 255 – 291, March 2004.

[114] Jun Chen and Toby Berger, “Successive Wyner-Ziv coding scheme and its application

to the quadratic Gaussian CEO problem,” IEEE Transactions on Information Theory,

vol. 54, no. 4, pp. 1586 – 1603, April 2008.

[115] Meisam Razaviyayn, Mingyi Hong, and Zhi-Quan Luo, “A unified convergence

analysis of block successive minimization methods for nonsmooth optimization,” SIAM

Journal on Optimization, vol. 23, no. 2, pp. 1126 – 1153, June 2013.

[116] Michael Grant and Stephen Boyd, “CVX: Matlab software for disciplined convex

programming,” http://cvxr.com/cvx, March 2014.

[117] Matthew Chalk, Olivier Marre, and Gasper Tkacik, “Relevant sparse codes with

variational information bottleneck,” in Proceedings of the 30-th Conference on Neural

Information Processing Systems, 2016.

[118] Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine,

“Variational discriminator bottleneck: Improving imitation learning, inverse rl, and gans

by constraining information flow,” in Proceedings of the 7-th International Conference

on Learning Representations, 2019.

[119] Bin Dai, Chen Zhu, and David P. Wipf, “Compressing neural networks using the

variational information bottleneck,” in Proceedings of the 35-th International Conference

on Machine Learning, 2018.

164

http://cvxr.com/cvx


BIBLIOGRAPHY

[120] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and

Max Welling, “Improved variational inference with inverse autoregressive flow,” in

Proceedings of 30-st Conference on Neural Information Processing Systems, 2016.

[121] George Papamakarios, Theo Pavlakou, and Iain Murray, “Masked autoregressive

flow for density estimation,” in Proceedings of 31-st Conference on Neural Information

Processing Systems, 2017.

[122] D. Sculley, “Web-scale K-means clustering,” in Proceedings of the 19-th International

Conference on World Wide Web, April 2010, pp. 1177 – 1178.

[123] Zhexue Huang, “Extensions to the K-means algorithm for clustering large datasets

with categorical values,” Data Mining and Knowledge Discovery, vol. 2, no. 3, pp. 283

– 304, September 1998.

[124] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A k-means clustering algorithm,”

Journal of the Royal Statistical Society, vol. 28, pp. 100 – 108, 1979.

[125] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete

data via the EM algorithm,” Journal of the Royal Statistical Society, vol. 39, pp. 1 –

38, 1977.

[126] Chris Ding and Xiaofeng He, “K-means clustering via principal component analysis,”

in Proceedings of the 21-st International Conference on Machine Learning, 2004.

[127] Karl Pearson, “On lines and planes of closest fit to systems of points in space,”

Philosophical Magazine, vol. 2, no. 11, pp. 559 – 572, November 1901.

[128] Svante Wold, Kim Esbensen, and Paul Geladi, “Principal component analysis,”

Chemometrics and Intelligent Laboratory Systems, vol. 2, pp. 37 – 52, August 1987.

[129] Sam Roweis, “EM algorithms for PCA and SPCA,” in Advances in Neural Informa-

tion Processing Systems 10, 1997, pp. 626 – 632.

[130] Thomas Hofmann, Bernhard Schölkopf, and Alexander J. Smola, “Kernel methods

in machine learning,” The Annals of Statistics, vol. 36, pp. 1171 – 1220, June 2008.

[131] N. Slonim and N. Tishby, “Document clustering using word clusters via the infor-

mation bottleneck method,” in Proceedings of the 23-rd Annual International ACM

165



BIBLIOGRAPHY

SIGIR Conference on Research and Development in Information Retrieval, July 2000,

pp. 208 – 215.

[132] Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra, “Stochastic backpropaga-

tion and approximate inference in deep generative models,” in Proceedings of the 31-st

International Conference on Machine Learning, 2014, pp. 1278 – 1286.

[133] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin, “Improved deep embedded

clustering with local structure preservation,” in Proceedings of the 26-th International

Joint Conference on Artificial Intelligence, 2017, pp. 1753 – 1759.

[134] Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C.H. Lee, Hugh

Salimbeni, Kai Arulkumaran, and Murray Shanahani, “Deep unsupervised clustering

with Gaussian mixture variational autoencoders,” arXiv: 1611.02648, 2017.

[135] Erxue Min, Xifeng Guo, Qiang Liu, Gen Zhang, Jianjing Cui, and Jun Long, “A

survey of clustering with deep learning: From the perspective of network architecture,”

IEEE Access, vol. 6, pp. 39 501 – 39 514, 2018.

[136] John R. Hershey and Peder A. Olsen, “Approximating the Kullback Leibler divergence

between Gaussian mixture models,” in Proceedings of IEEE International Conference

on Acoustics, Speech and Signal Processing, April 2007, pp. 317 – 320.

[137] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun, “Deep residual learning

for image recognition,” in Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 770 – 778.

[138] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine

Manzagol, “Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion,” The Journal of Machine Learning Research,

vol. 11, pp. 3371 – 3408, December 2010.

[139] Laurens van der Maaten and Geoffrey Hinton, “Visualizing data using t-SNE,”

Journal of Machine Learning Research 9, pp. 2579 – 2605, November 2008.

[140] Cheuk Ting Li and Abbas El Gamal, “Strong functional representation lemma and

applications to coding theorems,” IEEE Transactions on Information Theory, vol. 64,

no. 11, pp. 6967 – 6978, November 2018.

166



BIBLIOGRAPHY

[141] Cheuk Ting Li, Xiugang Wu, Ayfer Ozgur, and Abbas El Gama, “Minimax learning

for remote prediction,” arXiv: 1806.00071, 2018.

[142] Adi Homri, Michael Peleg, and Shlomo Shamai (Shitz), “Oblivious fronthaul-

constrained relay for a Gaussian channel,” IEEE Transactions on Communications,

vol. 66, no. 11, pp. 5112 – 5123, November 2018.

[143] Roy Karasik, Osvaldo Simeone, and Shlomo Shamai (Shitz), “Robust uplink commu-

nications over fading channels with variable backhaul connectivity,” IEEE Transactions

on Wireless Communications, vol. 12, no. 11, pp. 5788 – 5799, November 2013.

[144] Yuxin Chen, Andrea J. Goldsmith, and Yonina C. Eldar, “Channel capacity under

sub-nyquist nonuniform sampling,” IEEE Transactions on Information Theory, vol. 60,

no. 8, pp. 4739 – 4756, August 2014.

[145] Alon Kipnis, Yonina C. Eldar, and Andrea J. Goldsmith, “Analog-to-digital com-

pression: A new paradigm for converting signals to bits,” IEEE Signal Processing

Magazine, vol. 35, no. 3, pp. 16 – 39, May 2018.

[146] Michael Gastpar, “On Wyner-Ziv networks,” in Proceedings of 37-th Asilomar

Conference on Signals, Systems, and Computers, November 2003, pp. 855 – 859.

[147] Amir Dembo, Thomas M. Cover, and Joy A. Thomas, “Information theoretic

inequalities,” IEEE Transactions on Information Theory, vol. 37, no. 6, pp. 1501 –

1518, November 1991.

[148] Daniel P. Palomar and Sergio Verdu, “Gradient of mutual information in linear

vector gaussian channels,” IEEE Transactions on Information Theory, vol. 52, no. 1,

pp. 141 – 154, January 2006.

167



168



Publications
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