W. Hittorf, Ueber die Elektricitätsleitung der Gase, Annalen der physik, vol.136, p.1, 1869.

Y. Jiang, Z. Chen, Y. Han, P. Deb, H. Gao et al., Electron ptychography of 2D materials to deep sub-ångström resolution, Nature, vol.559, p.343, 2018.

J. A. Valdmanis, R. L. Fork, and J. P. Gordon, Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain, Opt. Lett, vol.10, p.131, 1985.

A. H. Zewail and J. M. Thomas, 4D electron microscopy: imaging in space and time, World Scientific, 2010.

G. Sciaini and R. J. Miller, Femtosecond electron diffraction: heralding the era of atomically resolved dynamics, Rep. Prog. Phys, vol.74, p.96101, 2011.

J. Maxson, D. Cesar, G. Calmasini, A. Ody, P. Musumeci et al., Direct Measurement of Sub-10 fs Relativistic Electron Beams with Ultralow Emittance, Phys. Rev. Lett, vol.118, p.154802, 2017.

R. P. Chatelain, V. R. Morrison, C. Godbout, and B. J. Siwick, Ultrafast electron diffraction with radio-frequency compressed electron pulses, Applied Physics Letters, vol.101, p.81901, 2012.

A. Gliserin, M. Walbran, and P. Baum, Passive optical enhancement of laser-microwave synchronization, Applied Physics Letters, vol.103, p.31113, 2013.

M. Gao, Y. Jiang, G. H. Kassier, and R. J. Miller, Single shot time stamping of ultrabright radio frequency compressed electron pulses, Applied Physics Letters, vol.103, p.33503, 2013.

J. A. Fülöp, L. Pálfalvi, S. Klingebiel, G. Almási, F. Krausz et al., Generation of sub-mJ terahertz pulses by optical rectification, Opt. Lett, vol.37, p.557, 2012.

A. Fallahi, M. Fakhari, A. Yahaghi, M. Arrieta, and F. X. Kärtner, Short electron bunch generation using single-cycle ultrafast electron guns, Phys. Rev. Accel. Beams, vol.19, p.81302, 2016.

R. K. Li, M. C. Hoffmann, E. A. Nanni, S. H. Glenzer, M. E. Kozina et al., Terahertz-based subfemtosecond metrology of relativistic electron beams, Phys. Rev. Accel. Beams, vol.22, p.12803, 2019.

D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Optics Communications, vol.55, p.447, 1985.

T. Tajima and J. M. Dawson, Laser Electron Accelerator, Phys. Rev. Lett, vol.43, p.267, 1979.

E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys, vol.81, p.1229, 2009.

. Bibliography,

S. P. Mangles, C. D. Murphy, Z. Najmudin, A. G. Thomas, J. L. Collier et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions, Nature, vol.431, p.535, 2004.

C. G. Geddes, C. Tóth, J. Van-tilborg, E. Esarey, C. B. Schroeder et al., High quality electron beams from a laser wakefield accelerator using plasma-channel guiding, Nature, vol.431, p.538, 2004.

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko et al., A laser-plasma accelerator producing monoenergetic electron beams, Nature, vol.431, p.541, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00508775

A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek et al., Petawatt Laser Guiding and Electron Beam Acceleration to 8 GeV in a Laser-Heated Capillary Discharge Waveguide, Phys. Rev. Lett, vol.122, p.84801, 2019.

O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-ismail et al., Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator, Nat. Phys, vol.7, p.219, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00803781

J. Faure, B. Van-der-geer, B. Beaurepaire, G. Gallé, A. Vernier et al., Concept of a laser-plasma-based electron source for sub-10-fs electron diffraction, Phys. Rev. Accel. Beams, vol.19, p.21302, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01403058

Z. He, B. Beaurepaire, J. A. Nees, G. Gallé, S. A. Scott et al., Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a, Laser Wakefield Accelerator. Sci. Rep, vol.6, p.36224, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01403181

M. Thévenet, H. Vincenti, and J. Faure, On the physics of electron ejection from laser-irradiated overdense plasmas, Physics of Plasmas, vol.23, p.63119, 2016.

L. Chopineau, A. Leblanc, G. Blaclard, A. Denoeud, M. Thévenet et al., Identification of Coupling Mechanisms between Ultraintense Laser Light and Dense Plasmas, Phys. Rev. X, vol.9, p.11050, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02090309

C. Thaury, F. Quéré, J. Geindre, A. Levy, T. Ceccotti et al., Plasma mirrors for ultrahigh-intensity optics, Nature Physics, vol.3, p.424, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01166802

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey et al., Direct Observation of Density-Gradient Effects in Harmonic Generation from Plasma Mirrors, Phys. Rev. Lett, vol.110, p.175001, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00853613

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier et al., Vacuum laser acceleration of relativistic electrons using plasma mirror injectors, Article. Bibliography, vol.12, p.355, 2015.

A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys, vol.85, p.751, 2013.

C. Thaury and F. Quéré, High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.43, p.213001, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569857

A. Kemp, F. Fiuza, A. Debayle, T. Johzaki, W. Mori et al., Laser-plasma interactions for fast ignition, Nuclear Fusion, vol.54, p.54002, 2014.

A. E. Siegman, Lasers. Mill Valley, pp.298-301, 1986.

A. Jullien, A. Ricci, F. Böhle, J. Rousseau, S. Grabielle et al., Carrier-envelope-phase stable, high-contrast, double chirped-pulseamplification laser system, Opt. Lett, vol.39, p.3774, 2014.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda et al., Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers, Laser Physics Letters, vol.11, p.95401, 2014.

F. Böhle, Near-single-cycle laser for driving relativistic plasma mirrors at kHz repetition ratedevelopment and application, 2017.

M. Ouillé, A. Vernier, F. Boehle, M. Bocoum, M. Lozano et al., , 2019.

P. Gibbon, Short pulse laser interactions with matter, 2004.

J. Rax, Physique des plasmas: cours et applications (Dunod, 2005.

J. Delcroix and A. Bers, Physique des plasmas, 2 volumes, 1994.

R. O. Dendy, Plasma physics: an introductory course, 1995.

E. Lefebvre and G. Bonnaud, Transparency/Opacity of a Solid Target Illuminated by an Ultrahigh-Intensity Laser Pulse, Phys. Rev. Lett, vol.74, p.2002, 1995.

S. Guérin, P. Mora, J. C. Adam, A. Héron, and G. , Propagation of ultraintense laser pulses through overdense plasma layers, Physics of Plasmas, vol.3, p.2693, 1996.

N. E. Andreev, L. M. Gorbunov, A. A. Pogasova, R. R. Ramazashvili, and V. I. Kirsanov, Resonant excitation of wake fields by a laser pulse in a plasma, Pisma Zh. Eksp. Teor. Fiz, vol.55, p.551, 1992.

V. I. Berezhiani and I. G. Murusidze, Interaction of highly relativistic short laser pulses with plasmas and nonlinear wake-field generation, Physica Scripta, vol.45, 1992.

E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu, Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas, IEEE Transactions on Plasma Science, vol.21, p.95, 1993.

W. Lu, M. Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori et al., Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime, Phys. Rev. ST Accel. Beams, vol.10, p.61301, 2007.

J. Faure, Accélération de faisceaux d'électrons par interaction laser-plasma

J. Faure, 15 pages, contribution to the CAS -CERN Accelerator School: Plasma Wake Acceleration, vol.15, pp.23-29, 2014.

J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec et al., Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses, Nature, vol.444, p.737, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00502237

W. L. Hua and Y. Wu, External injection from a Linac into a LWFA with ?100% capture efficiency, 2019.

C. Mcguffey, A. G. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov et al., Ionization Induced Trapping in a Laser Wakefield Accelerator, Phys. Rev. Lett, vol.104, p.25004, 2010.

A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori et al., Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes, Phys. Rev. Lett, vol.104, p.25003, 2010.

M. Chen, E. Esarey, C. B. Schroeder, C. G. Geddes, and W. P. Leemans, Theory of ionizationinduced trapping in laser-plasma accelerators, Physics of Plasmas, vol.19, p.33101, 2012.

A. V. Brantov, T. Z. Esirkepov, M. Kando, H. Kotaki, V. Y. Bychenkov et al., Controlled electron injection into the wake wave using plasma density inhomogeneity, Phys. Plasmas, vol.15, p.73111, 2008.

M. C. Downer, R. Zgadzaj, A. Debus, U. Schramm, and M. C. Kaluza, Diagnostics for plasma-based electron accelerators, Rev. Mod. Phys, vol.90, p.35002, 2018.

S. Corde, K. T. Phuoc, G. Lambert, R. Fitour, V. Malka et al., Femtosecond x rays from laser-plasma accelerators, Rev. Mod. Phys, vol.85, p.1, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01164031

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle et al., Relativistic electron beams driven by kHz single-cycle light pulses, Nat. Photon, vol.11, p.293, 2017.

D. Gustas, D. Guénot, A. Vernier, S. Dutt, F. Böhle et al., High-charge relativistic electron bunches from a kHz laser-plasma accelerator, Phys. Rev. Accel. Beams, vol.21, p.13401, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01704788

G. G. Scott, V. Bagnoud, C. Brabetz, R. J. Clarke, J. S. Green et al., Optimization of plasma mirror reflectivity and optical quality using double laser pulses, New Journal of Physics, vol.17, p.33027, 2015.

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier et al., Anticorrelated Emission of High Harmonics and Fast Electron Beams From Plasma Mirrors, Phys. Rev. Lett, vol.116, p.185001, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398541

P. Mckenna, D. Carroll, O. Lundh, F. Nürnberg, K. Markey et al., Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets, Laser and Particle Beams, vol.26, pp.591-596, 2008.

M. Thévenet, Modeling the interaction between a few-cycle relativistic laser pulse and a plasma mirror: from electron acceleration to harmonic generation, 2016.

J. P. Geindre, P. Audebert, A. Rousse, F. Falliès, J. C. Gauthier et al., Frequency-domain interferometer for measuring the phase and amplitude of a femtosecond pulse probing a laser-produced plasma, Opt. Lett, vol.19, p.1997, 1994.

M. Bocoum, F. Böhle, A. Vernier, A. Jullien, J. Faure et al., Spatial-domain interferometer for measuring plasma mirror expansion, Optics Letters, vol.40, p.3009, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229263

F. Brunel, Not-so-resonant, resonant absorption, Phys. Rev. Lett, vol.59, p.52, 1987.

W. L. Kruer and K. Estabrook, J×B heating by very intense laser light. The Physics of Fluids, vol.28, p.430, 1985.

D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman, and R. L. Morse, Theory and simulation of resonant absorption in a hot plasma, Phys. Rev. A, vol.11, p.679, 1975.

J. Zhang, J. Zhang, Z. M. Sheng, Y. T. Li, Y. Qiu et al., Emission direction of fast electrons in laser-solid interactions at intensities from the nonrelativistic to the relativistic, Phys. Rev. E, vol.69, p.46408, 2004.

J. P. Geindre, P. Audebert, and R. S. Marjoribanks, Relativistic AC Gyromagnetic Effects in Ultraintense Laser-Matter Interaction, Phys. Rev. Lett, vol.97, p.85001, 2006.

Y. T. Li, J. Zhang, L. M. Chen, Y. F. Mu, T. J. Liang et al., Hot electrons in the interaction of femtosecond laser pulses with foil targets at a moderate laser intensity, Phys. Rev. E, vol.64, p.46407, 2001.

D. F. Cai, Y. Q. Gu, Z. J. Zheng, W. M. Zhou, X. D. Yang et al., Double-peak emission of hot electrons generated by femtosecond laser interaction with solid targets, Phys. Rev. E, vol.70, p.66410, 2004.

Y. T. Li, X. H. Yuan, M. H. Xu, Z. Y. Zheng, Z. M. Sheng et al., Observation of a Fast Electron Beam Emitted along the Surface of a Target Irradiated by Intense Femtosecond Laser Pulses, Phys. Rev. Lett, vol.96, p.165003, 2006.

. Bibliography,

J. Y. Mao, L. M. Chen, K. Huang, Y. Ma, J. R. Zhao et al., Highly collimated monoenergetic target-surface electron acceleration in near-critical-density plasmas, Applied Physics Letters, vol.106, p.131105, 2015.

A. Pukhov, Z. Sheng, and J. Meyer-ter-vehn, Particle acceleration in relativistic laser channels, Physics of Plasmas, vol.6, p.2847, 1999.

T. Toncian, C. Wang, E. Mccary, A. Meadows, A. Arefiev et al., Non-Maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas, vol.1, p.82, 2016.

Y. Ma, J. Zhao, Y. Li, D. Li, L. Chen et al., Ultrahigh-charge electron beams from laser-irradiated solid surface, Proceedings of the National Academy of Sciences, 2018.

I. Tsymbalov, D. Gorlova, S. Shulyapov, V. Prokudin, A. Zavorotny et al., Eremin and A. Savel'ev. Well collimated MeV electron beam generation in the plasma channel from relativistic laser-solid interaction, Plasma Physics and Controlled Fusion, vol.61, p.75016, 2019.

F. V. Hartemann, S. N. Fochs, G. P. Sage, J. N. Luhmann, J. G. Woodworth et al., Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus, Phys. Rev. E, vol.51, p.4833, 1995.

E. Esarey, P. Sprangle, and J. Krall, Laser acceleration of electrons in vacuum, Phys. Rev. E, vol.52, p.5443, 1995.

W. B. Mori and T. Katsouleas, Laser acceleration, AIP Conference Proceedings, vol.335, p.112, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02057367

B. Quesnel and P. Mora, Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum, Phys. Rev. E, vol.58, p.3719, 1998.

W. Yu, M. Y. Yu, J. X. Ma, Z. M. Sheng, J. Zhang et al., Ponderomotive acceleration of electrons at the focus of high intensity lasers, Phys. Rev. E, vol.61, p.2220, 2000.

I. Y. Dodin and N. J. Fisch, Relativistic electron acceleration in focused laser fields after abovethreshold ionization, Phys. Rev. E, vol.68, p.56402, 2003.

G. V. Stupakov and M. S. Zolotorev, Ponderomotive Laser Acceleration and Focusing in Vacuum for Generation of Attosecond Electron Bunches, Phys. Rev. Lett, vol.86, p.5274, 2001.

Y. I. Salamin and C. H. Keitel, Electron Acceleration by a Tightly Focused Laser Beam, Phys. Rev. Lett, vol.88, p.95005, 2002.

J. Pang, Y. K. Ho, X. Q. Yuan, N. Cao, Q. Kong et al., Subluminous phase velocity of a focused laser beam and vacuum laser acceleration, Phys. Rev. E, vol.66, p.66501, 2002.

A. Maltsev and T. Ditmire, Above Threshold Ionization in Tightly Focused, Strongly Relativistic Laser Fields, Phys. Rev. Lett, vol.90, p.53002, 2003.

D. Cline, First Observation of Acceleration of Electrons by a Laser in a Vacuum, Journal of Modern Physics, vol.4, p.1, 2013.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April et al., Direct Electron Acceleration with Radially Polarized Laser Beams, Applied Sciences, vol.3, p.70, 2013.

V. Marceau, C. Varin, T. Brabec, and M. Piché, Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas, Phys. Rev. Lett, vol.111, p.224801, 2013.

P. L. Fortin, M. Piché, and C. Varin, Direct-field electron acceleration with ultrafast radially polarized laser beams: scaling laws and optimization, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.43, p.25401, 2009.

L. J. Wong and F. X. Kärtner, Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam, Opt. Express, vol.18, p.25035, 2010.

S. J. Mcnaught, J. P. Knauer, and D. D. Meyerhofer, Photoelectron initial conditions for tunneling ionization in a linearly polarized laser, Phys. Rev. A, vol.58, p.1399, 1998.

C. I. Moore, A. Ting, S. J. Mcnaught, J. Qiu, H. R. Burris et al., A Laser-Accelerator Injector Based on Laser Ionization and Ponderomotive Acceleration of Electrons, Phys. Rev. Lett, vol.82, p.1688, 1999.

G. Malka, E. Lefebvre, and J. L. Miquel, Experimental Observation of Electrons Accelerated in Vacuum to Relativistic Energies by a High-Intensity Laser, Phys. Rev. Lett, vol.78, p.3314, 1997.

K. T. Mcdonald, Experimental Observation of Electrons Accelerated in Vacuum to Relativistic Energies by a High-Intensity Laser, Phys. Rev. Lett, vol.80, p.1350, 1998.

P. Mora and B. Quesnel, Experimental Observation of Electrons Accelerated in Vacuum to Relativistic Energies by a High-Intensity Laser, Phys. Rev. Lett, vol.80, p.1351, 1998.

C. Varin and M. Piché, Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams, Applied Physics B, vol.74, p.83, 2002.

C. Varin, M. Piché, and M. A. Porras, Acceleration of electrons from rest to GeV energies by ultrashort transverse magnetic laser pulses in free space, Phys. Rev. E, vol.71, p.26603, 2005.

C. Varin and M. Piché, Relativistic attosecond electron pulses from a free-space laser-acceleration scheme, Phys. Rev. E, vol.74, p.45602, 2006.

Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon Gaussian laser beam, Phys. Rev. A, vol.73, p.43402, 2006.

Y. I. Salamin, Mono-energetic GeV electrons from ionization in a radially polarized laser beam, Opt. Lett, vol.32, p.90, 2007.

. Bibliography,

A. Karmakar and A. Pukhov, Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses, Laser and Part. Beams, vol.25, p.371, 2007.

A. Sell and F. X. Kärtner, Attosecond electron bunches accelerated and compressed by radially polarized laser pulses and soft-x-ray pulses from optical undulators, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.47, p.15601, 2013.

A. Martens, K. Dupraz, K. Cassou, N. Delerue, A. Variola et al., Direct electron acceleration with tightly focused TM0,1 beams: boundary conditions and non-paraxial corrections, Opt. Lett, vol.39, p.981, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00966711

V. Marceau, P. Hogan-lamarre, T. Brabec, M. Piché, and C. Varin, Tunable high-repetition-rate femtosecond few-hundred keV electron source, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.48, p.45601, 2015.

C. Varin, V. Marceau, P. Hogan-lamarre, T. Fennel, M. Piché et al., MeV femtosecond electron pulses from direct-field acceleration in low density atomic gases, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.49, p.24001, 2015.

L. J. Wong, K. Hong, S. Carbajo, A. Fallahi, P. Piot et al., Laser-Induced Linear-Field Particle Acceleration in Free Space, Scientific Reports, vol.7, p.11159, 2017.

D. , Operation of a Ruby Laser in the Purely Transverse Electric Mode TE01, Applied Physics Letters, vol.20, p.266, 1972.

F. P. Schäfer, On some properties of axicons, Applied Physics B, vol.39, p.1, 1986.

S. C. Tidwell, D. H. Ford, and W. D. Kimura, Generating radially polarized beams interferometrically, Appl. Opt, vol.29, p.2234, 1990.

E. Churin, J. Hossfeld, and T. Tschudi, Polarization configurations with singular point formed by computer generated holograms, Optics Communications, vol.99, p.13, 1993.

A. V. Nesterov, V. G. Niziev, and V. P. Yakunin, Generation of high-power radially polarized beam, Journal of Physics D: Applied Physics, vol.32, p.2871, 1999.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. Maclean, C. Tchervenkov et al., Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse, Applied Physics Letters, vol.101, p.41105, 2012.

S. Carbajo, E. Granados, D. Schimpf, A. Sell, K. Hong et al., Efficient generation of ultra-intense few-cycle radially polarized laser pulses, Opt. Lett, vol.39, p.2487, 2014.

N. Nakanii, T. Hosokai, N. C. Pathak, S. Masuda, A. G. Zhidkov et al., Decomposition of powerful axisymmetrically polarized laser pulses in underdense plasma, Phys. Rev. E, vol.94, p.63205, 2016.

A. V. Nesterov and V. G. Niziev, Laser beams with axially symmetric polarization, Journal of Physics D: Applied Physics, vol.33, p.1817, 2000.

T. P. Wangler, , 2008.

A. , Nonparaxial TM and TE beams in free space, Opt. Lett, vol.33, p.1563, 2008.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley et al., Direct longitudinal laser acceleration of electrons in free space, Phys. Rev. Accel. Beams, vol.19, p.21303, 2016.

R. Palmer, An introduction to acceleration mechanisms, Frontiers of Particle Beams, pp.607-635, 1988.

J. P. Boris, Relativistic plasma simulation-optimization of a hybrid code, Proc. 4th Conf. Num. Sim. Plasmas pp, pp.3-67, 1970.

J. Vay, Simulation of beams or plasmas crossing at relativistic velocity, Physics of Plasmas, vol.15, p.56701, 2008.

V. Marceau, C. Varin, and M. Piché, Validity of the paraxial approximation for electron acceleration with radially polarized laser beams, Opt. Lett, vol.38, p.821, 2013.

A. Grassi, L. Fedeli, A. Sgattoni, and A. Macchi, Vlasov simulation of laser-driven shock acceleration and ion turbulence, Plasma Physics and Controlled Fusion, vol.58, p.34021, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01299316

R. W. Hockney and J. W. Eastwood, Computer simulation using particles, 1988.

C. K. Birdsall and A. B. Langdon, Plasma physics via computer simulation, 2004.

R. Lehe, C. Thaury, E. Guillaume, A. Lifschitz, and V. Malka, Laser-plasma lens for laser-wakefield accelerators, Phys. Rev. ST Accel. Beams, vol.17, p.121301, 2014.

T. Esirkepov, Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor, Computer Physics Communications, vol.135, p.144, 2001.

K. Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, p.302, 1966.

T. D. Arber, K. Bennett, C. S. Brady, A. Lawrence-douglas, M. G. Ramsay et al., Contemporary particle-in-cell approach to laser-plasma modelling, Plasma Physics and Controlled Fusion, vol.57, p.113001, 2015.

M. Ammosov, N. Delone, and V. Krainov, Tunnel ionization of complex atoms and of atomic ions in an alternating electric field, Sov. Phys. JETP, vol.64, p.1191, 1986.

G. Blaclard, H. Vincenti, R. Lehe, and J. L. Vay, Pseudospectral Maxwell solvers for an accurate modeling of Doppler harmonic generation on plasma mirrors with particle-in-cell codes, Phys. Rev. E, vol.96, p.33305, 2017.

. Bibliography,

H. Vincenti and J. Vay, Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas, Computer Physics Communications, vol.228, p.22, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01894332

A. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin et al., Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition, Journal of Computational Physics, vol.228, p.1803, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00576913

A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech house, 2005.

S. Jalas, I. Dornmair, R. Lehe, H. Vincenti, J. Vay et al., Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods, Physics of Plasmas, vol.24, p.33115, 2017.

B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Mathematics of computation, vol.51, p.699, 1988.

Q. H. Liu, The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microwave and Optical Technology Letters, vol.15, p.158, 1997.

I. Haber, R. Lee, H. Klein, and J. Boris, Advances in electromagnetic simulation techniques, Proc. Sixth Conf. Num. Sim. Plasmas, pp.46-48, 1973.

J. Vay, I. Haber, and B. B. Godfrey, A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas, Journal of Computational Physics, vol.243, p.260, 2013.

Y. Ohmura and Y. Okamura, Staggered grid pseudo-spectral time-domain method for light scattering analysis, Piers Online, vol.6, p.632, 2010.

R. Lehé and J. Vay, Review of Spectral Maxwell Solvers for Electromagnetic Particle-in-Cell: Algorithms and Advantages, Proceedings, 13th International Computational Accelerator Physics Conference, vol.2018, p.5, 2018.

B. Fornberg, High-Order Finite Differences and the Pseudospectral Method on Staggered Grids, SIAM Journal on Numerical Analysis, vol.27, p.904, 1990.

H. Vincenti and J. Vay, Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver, Computer Physics Communications, vol.200, p.147, 2016.

H. Vincenti, Achieving Extreme Light Intensities using Optically Curved Relativistic Plasma Mirrors, Phys. Rev. Lett, vol.123, p.105001, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02284111

P. Yu, X. Xu, V. K. Decyk, W. An, J. Vieira et al., Modeling of laser wakefield acceleration in Lorentz boosted frame using EM-PIC code with spectral solver, Journal of Computational Physics, vol.266, p.124, 2014.

B. B. Godfrey, J. Vay, and I. Haber, Numerical stability analysis of the pseudo-spectral analytical time-domain PIC algorithm, Journal of Computational Physics, vol.258, p.689, 2014.

R. Lehe, M. Kirchen, B. B. Godfrey, A. R. Maier, and J. Vay, Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates, Phys. Rev. E, vol.94, p.53305, 2016.

J. Vay, D. P. Grote, R. H. Cohen, and A. Friedman, Novel methods in the Particle-In-Cell accelerator Code-Framework Warp, Computational Science & Discovery, vol.5, p.14019, 2012.

H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, and J. Vay, An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes, Computer Physics Communications, vol.210, p.145, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01426502

A. , Ultrashort, strongly focused laser pulses in free space, 2010.

A. , Impulsions laser ultrabrèves et fortement focalisées dans le vide, 2012.

G. Deschamps, Gaussian beam as a bundle of complex rays, Electronics Letters, vol.7, p.684, 1971.

R. W. Ziolkowski and J. B. Judkins, Propagation characteristics of ultrawide-bandwidth pulsed Gaussian beams, J. Opt. Soc. Am. A, vol.9, p.2021, 1992.

Y. I. Salamin and S. Carbajo, A Simple Model for the Fields of a Chirped Laser Pulse With Application to Electron Laser Acceleration, Frontiers in Physics, vol.7, issue.2, 2019.

M. A. Porras, Ultrashort pulsed Gaussian light beams, Phys. Rev. E, vol.58, p.1086, 1998.

D. Der-brügge and A. Pukhov, Ultrashort focused electromagnetic pulses, Phys. Rev. E, vol.79, p.16603, 2009.

C. F. Caron and R. M. Potvliege, Free-space propagation of ultrashort pulses: Space-time couplings in Gaussian pulse beams, Journal of Modern Optics, vol.46, p.1881, 1999.

M. Lax, W. H. Louisell, and W. B. Mcknight, From Maxwell to paraxial wave optics, Phys. Rev. A, vol.11, p.1365, 1975.

G. P. Agrawal and D. N. Pattanayak, Gaussian beam propagation beyond the paraxial approximation, J. Opt. Soc. Am, vol.69, p.575, 1979.

L. W. Davis, Theory of electromagnetic beams, Phys. Rev. A, vol.19, p.1177, 1979.

L. W. Davis and G. Patsakos, TM and TE electromagnetic beams in free space, Opt. Lett, vol.6, p.22, 1981.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 2013.

J. D. Jackson, Classical electrodynamics, 1999.

C. J. Sheppard and S. Saghafi, Beam modes beyond the paraxial approximation: A scalar treatment, Phys. Rev. A, vol.57, p.2971, 1998.

P. Mora, Plasma Expansion into a Vacuum, Phys. Rev. Lett, vol.90, p.185002, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01166839

. Bibliography,

W. Kruer, The physics of laser plasma interactions, 2018.

P. Mora, Thin-foil expansion into a vacuum, Phys. Rev. E, vol.72, p.56401, 2005.

M. Bocoum, Harmonic and electron generation from laser-driven plasma mirrors, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01458082

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard et al., Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples, Phys. Rev. B, vol.74, p.224106, 2006.
URL : https://hal.archives-ouvertes.fr/ujm-00122058

P. Grua, D. Hébert, L. Lamaignère, and J. Rullier, Role of suprathermal electrons during nanosecond laser energy deposit in fused silica, Applied Physics Letters, vol.105, p.81902, 2014.

Y. Glinec, J. Faure, A. Guemnie-tafo, V. M. Monard, J. P. Larbre et al., Absolute calibration for a broad range single shot electron spectrometer, Rev. Sci. Instrum, vol.77, p.103301, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00127096

S. Kühn, M. Dumergue, S. Kahaly, S. Mondal, M. Füle et al., The ELI-ALPS facility: the next generation of attosecond sources, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.50, p.132002, 2017.

T. Nakamura, S. V. Bulanov, T. Z. Esirkepov, and M. Kando, High-Energy Ions from Near-Critical Density Plasmas via Magnetic Vortex Acceleration, Phys. Rev. Lett, vol.105, p.135002, 2010.

F. Sylla, A. Flacco, S. Kahaly, M. Veltcheva, A. Lifschitz et al., Short Intense Laser Pulse Collapse in Near-Critical Plasma, Phys. Rev. Lett, vol.110, p.85001, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01164023

N. Zaïm, F. Böhle, M. Bocoum, A. Vernier, S. Haessler et al., Few-cycle laser wakefield acceleration on solid targets with controlled plasma scale length, Physics of Plasmas, vol.26, p.33112, 2019.

V. Marceau, Accélération d'électrons à l'aide d'impulsions laser ultrabrèves et fortement focalisées, 2015.

N. Zaïm, M. Thévenet, A. Lifschitz, and J. Faure, Relativistic Acceleration of Electrons Injected by a Plasma Mirror into a Radially Polarized Laser Beam, Phys. Rev. Lett, vol.119, p.94801, 2017.

A. Lévy, T. Ceccotti, P. Oliveira, F. Réau, M. Perdrix et al., Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses, Opt. Lett, vol.32, p.310, 2007.

S. W. Jolly, Influence of longitudinal chromatism on vacuum acceleration by intense radially polarized laser beams, Opt. Lett, vol.44, p.1833, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01952665

A. Denoeud, L. Chopineau, A. Leblanc, and F. Quéré, Interaction of Ultraintense Laser Vortices with Plasma Mirrors, Phys. Rev. Lett, vol.118, p.33902, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01507005

J. Vieira and J. T. Mendonça, Nonlinear Laser Driven Donut Wakefields for Positron and Electron Acceleration, Phys. Rev. Lett, vol.112, p.215001, 2014.

A. Macchi, Surface plasmons in superintense laser-solid interactions, Physics of Plasmas, vol.25, p.31906, 2018.

S. Monchocé, S. Kahaly, A. Leblanc, L. Videau, P. Combis et al., Optically Controlled Solid-Density Transient Plasma Gratings, Phys. Rev. Lett, vol.112, p.145008, 2014.

N. Zaïm, F. Böhle, M. Bocoum, M. Thévenet, A. Vernier et al., Oral presentation -3ème Réunion plénière du GDR Ultrafast Phenomena, interaction between few-cycle laser pulses and overdense plasmas N. Zaïm, F. Böhle, M. Bocoum, pp.10-11, 2018.

F. Laser-wakefield-;-zaïm, F. Böhle, M. Bocoum, A. Vernier, S. Haessler et al., Faure Oral presentation -SPIE Optics and Electronics, 2019.

N. Zaïm, F. Böhle, M. Bocoum, A. Vernier, S. Haessler et al., This work was granted access to the HPC resources of CINES under the allocation 2017-A0020506057 made by GENCI, ERC Starting Grant FEMTOELEC, and by the Agence Nationale pour la Recherche, 2019.

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong et al., Opt. Express, vol.20, p.10807, 2012.

O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-ismail et al., Nat. Phys, vol.7, p.219, 2011.

A. H. Zewail, Annu. Rev. Phys. Chem, vol.57, p.65, 2006.

G. Sciaini and R. J. Miller, Rep. Prog. Phys, vol.74, p.96101, 2011.

T. Kozawa, Y. Mizutani, M. Miki, T. Yamamoto, S. Suemine et al., Nucl. Instrum. Methods Phys. Res., Sect. A, vol.440, p.251, 2000.

E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys, vol.81, p.1229, 2009.

W. P. Leemans, A. J. Gonsalves, H. Mao, K. Nakamura, C. Benedetti et al., Phys. Rev. Lett, vol.113, p.245002, 2014.

Z. He, B. Hou, J. H. Easter, J. Faure, K. Krushelnick et al., New J. Phys, vol.15, p.53016, 2013.

B. Beaurepaire, A. Vernier, M. Bocoum, F. Böhle, A. Jullien et al., Phys. Rev. X, vol.5, p.31012, 2015.

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk et al., Opt. Lett, vol.42, p.215, 2017.

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle et al., Nat. Photonics, vol.11, p.293, 2017.

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E, vol.52, p.5443, 1995.

S. Bohman, A. Suda, T. Kanai, S. Yamaguchi, and K. Midorikawa, Opt. Lett, vol.35, p.1887, 2010.

F. Böhle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda et al., Laser Phys. Lett, vol.11, p.95401, 2014.

Y. I. Salamin, Phys. Rev. A, vol.73, p.43402, 2006.

A. Karmakar and A. Pukhov, Laser Part. Beams, vol.25, p.371, 2007.

L. J. Wong and F. X. Kärtner, Opt. Express, vol.18, p.25035, 2010.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. Maclean, C. Tchervenkov et al., Appl. Phys. Lett, vol.101, p.41105, 2012.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April et al., Appl. Sci. Res, vol.3, p.70, 2013.

V. Marceau, C. Varin, and M. Piché, Opt. Lett, vol.38, p.821, 2013.

V. Marceau, C. Varin, T. Brabec, and M. Piché, Phys. Rev. Lett, vol.111, p.224801, 2013.

V. Marceau, P. Hogan-lamarre, T. Brabec, M. Piché, and C. Varin, J. Phys. B, vol.48, p.45601, 2015.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley et al., Phys. Rev. Accel. Beams, vol.19, p.21303, 2016.

F. V. Hartemann, S. N. Fochs, G. P. Lesage, J. N. Luhmann, J. G. Woodworth et al., Phys. Rev. E, vol.51, p.4833, 1995.

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier et al., Nat. Phys, vol.12, p.355, 2015.

M. Bocoum, M. Thévenet, F. Böhle, B. Beaurepaire, A. Vernier et al., Phys. Rev. Lett, vol.116, p.185001, 2016.

A. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin et al., J. Comput. Phys, vol.228, p.1803, 2009.

,

A. , Coherence and Ultrashort Pulse Laser Emission, pp.355-382, 2010.

C. F. Caron and R. M. Potvliege, J. Mod. Opt, vol.46, p.1881, 1999.

M. Thévenet, H. Vincenti, and J. Faure, Phys. Plasmas, vol.23, p.63119, 2016.

V. Malka, J. Faure, Y. A. Gauduel, E. Lefebvre, A. Rousse et al., Principles and applications of compact laser-plasma accelerators, Nat. Phys, vol.4, pp.447-453, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00502013

F. Albert and A. G. Thomas, Applications of laser wakefield acceleratorbased light sources, Plasma Phys. Controlled Fusion, vol.58, p.103001, 2016.

O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-ismail et al., Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator, Nat. Phys, vol.7, p.219, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00803781

J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko et al.,

F. Rousseau, V. Burgy, and . Malka, A laser-plasma accelerator producing monoenergetic electron beams, Nature, vol.431, pp.541-544, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00508775

X. Wang, R. Zgadzaj, N. Fazel, Z. Li, S. A. Yi et al.,

T. Shvets, M. C. Ditmire, and . Downer, Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV, Nat. Commun, vol.4, 1988.

W. P. Leemans, A. J. Gonsalves, H. Mao, K. Nakamura, C. Benedetti et al., Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime, Phys. Rev. Lett, vol.113, p.245002, 2014.

D. Gu-enot, D. Gustas, A. Vernier, B. Beaurepaire, F. B?-ohle et al., Relativistic electron beams driven by khz single-cycle light pulses, Nat. Photonics, vol.11, pp.293-296, 2017.

D. Gustas, D. Gu-enot, A. Vernier, S. Dutt, F. B?-ohle et al., High-charge relativistic electron bunches from a kHz laser-plasma accelerator, Phys. Rev. Accel. Beams, vol.21, p.13401, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01704788

F. Salehi, A. J. Goers, G. A. Hine, L. Feder, D. Kuk et al., MeV electron acceleration at 1 kHz with <10 MJ laser pulses, Opt. Lett, vol.42, pp.215-218, 2017.

E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laser-driven plasma-based electron accelerators, Rev. Mod. Phys, vol.81, pp.1229-1285, 2009.

A. Macchi, M. Borghesi, and M. Passoni, Ion acceleration by superintense laser-plasma interaction, Rev. Mod. Phys, vol.85, pp.751-793, 2013.

C. Thaury and F. Qu, High-order harmonic and attosecond pulse generation on plasma mirrors: Basic mechanisms, J. Phys. B: At., Mol. Opt. Phys, vol.43, p.213001, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569857

S. C. Wilks and W. L. Kruer, Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas, IEEE J. Quantum Electron, vol.33, pp.1954-1968, 1997.

Y. Sentoku, V. Bychenkov, K. Flippo, A. Maksimchuk, K. Mima et al., High-energy ion generation in interaction. of short laser pulse with high-density plasma, Appl. Phys. B, vol.74, pp.207-215, 2002.

P. Mckenna, D. Carroll, O. Lundh, F. Urnberg, K. Markey et al., Effects of front surface plasma expansion on proton acceleration in ultraintense laser irradiation of foil targets, Laser Part. Beams, vol.26, pp.591-596, 2008.

A. J. Kemp, Y. Sentoku, and M. Tabak, Hot-electron energy coupling in ultraintense laser-matter interaction, Phys. Rev. E, vol.79, p.66406, 2009.

S. Kahaly, S. Monchoc-e, H. Vincenti, T. Dzelzainis, B. Dromey et al., Direct observation of density-gradient effects in harmonic generation from plasma mirrors, Phys. Rev. Lett, vol.110, p.175001, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00853613

G. G. Scott, V. Bagnoud, C. Brabetz, R. J. Clarke, J. S. Green et al., Optimization of plasma mirror reflectivity and optical quality using double laser pulses, New J. Phys, vol.17, p.33027, 2015.

F. Brunel, Not-so-resonant, resonant absorption, Phys. Rev. Lett, vol.59, pp.52-55, 1987.

A. A. Gonoskov, A. V. Korzhimanov, A. V. Kim, M. Marklund, and A. M. Sergeev, Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses, Phys. Rev. E, vol.84, p.46403, 2011.

M. Th, H. Vincenti, and J. Faure, On the physics of electron ejection from laser-irradiated overdense plasmas, Phys. Plasmas, vol.23, p.63119, 2016.

R. Lichters, J. Meyer-ter-vehn, and A. Pukhov, Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity, Phys. Plasmas, vol.3, pp.3425-3437, 1996.

T. Baeva, S. Gordienko, and A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma, Phys. Rev. E, vol.74, p.46404, 2006.

M. Th, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier et al., Vacuum laser acceleration of relativistic electrons using plasma mirror injectors, Nat. Phys, vol.12, p.355, 2016.

L. Chopineau, A. Leblanc, G. Blaclard, A. Denoeud, M. Th-evenet et al., Identification of coupling mechanisms between ultraintense laser light and dense plasmas, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02090309

, Phys. Rev. X

S. Bastiani, A. Rousse, C. Q. -p.-geindre, P. Audebert, G. Harmoniaux et al., Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scalelengths, Phys. Rev. E, vol.56, pp.7179-7185, 1997.

A. G. Mordovanakis, J. Easter, N. Naumova, K. Popov, P. Masson-laborde et al., Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz, Phys. Rev. Lett, vol.103, p.235001, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00838486

Y. Tian, J. Liu, W. Wang, C. Wang, A. Deng et al., Electron emission at locked phases from the laser-driven surface plasma wave, Phys. Rev. Lett, vol.109, p.115002, 2012.

M. Bocoum, M. Th-evenet, F. B?-ohle, B. Beaurepaire, A. Vernier et al., Anticorrelated emission of high harmonics and fast electron beams from plasma mirrors, Phys. Rev. Lett, vol.116, p.185001, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398541

A. Yogo, H. Daido, S. V. Bulanov, K. Nemoto, Y. Oishi et al., Laser ion acceleration via control of the near-critical density target, Phys. Rev. E, vol.77, p.16401, 2008.

A. Henig, D. Kiefer, K. Markey, D. C. Gautier, K. A. Flippo et al., Enhanced laser-driven ion acceleration in the relativistic transparency regime, Phys. Rev. Lett, vol.103, p.45002, 2009.

J. H. Bin, W. J. Ma, H. Y. Wang, M. J. Streeter, C. Kreuzer et al., Ion acceleration using relativistic pulse shaping in near-critical-density plasmas, Phys. Rev. Lett, vol.115, p.64801, 2015.

H. W. Powell, M. King, R. J. Gray, D. A. Maclellan, B. Gonzalez-izquierdo et al., Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency, New J. Phys, vol.17, p.103033, 2015.

Y. T. Li, J. Zhang, L. M. Chen, Y. F. Mu, T. J. Liang et al., Hot electrons in the interaction of femtosecond laser pulses with foil targets at a moderate laser intensity, Phys. Rev. E, vol.64, p.46407, 2001.

D. F. Cai, Y. Q. Gu, Z. J. Zheng, W. M. Zhou, X. D. Yang et al., Double-peak emission of hot electrons generated by femtosecond laser interaction with solid targets, Phys. Rev. E, vol.70, p.66410, 2004.

G. Malka and J. L. Miquel, Experimental confirmation of ponderomotiveforce electrons produced by an ultrarelativistic laser pulse on a solid target, Phys. Rev. Lett, vol.77, pp.75-78, 1996.

J. Zhang, J. Zhang, Z. M. Sheng, Y. T. Li, Y. Qiu et al., Emission direction of fast electrons in laser-solid interactions at intensities from the nonrelativistic to the relativistic, Phys. Rev. E, vol.69, p.46408, 2004.

R. Tommasini, E. Fill, R. Bruch, and G. Pretzler, Generation of monoenergetic ultrashort electron pulses from a fs laser plasma, Appl. Phys. B, vol.79, pp.923-926, 2004.

S. Feister, D. R. Austin, J. T. Morrison, K. D. Frische, C. Orban et al., Relativistic electron acceleration by MJ-class kHz lasers normally incident on liquid targets, Opt. Express, vol.25, pp.18736-18750, 2017.

Y. T. Li, X. H. Yuan, M. H. Xu, Z. Y. Zheng, Z. M. Sheng et al., Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses, Phys. Rev. Lett, vol.96, p.165003, 2006.

T. Toncian, C. Wang, E. Mccary, A. Meadows, A. Arefiev et al., Non-maxwellian electron distributions resulting from direct laser acceleration in near-critical plasmas, Matter Radiat. Extremes, vol.1, pp.82-87, 2016.

Y. Ma, J. Zhao, Y. Li, D. Li, L. Chen et al., Ultrahigh-charge electron beams from laserirradiated solid surface, Proc. Natl. Acad. Sci, vol.115, p.6980, 2018.

J. Y. Mao, L. M. Chen, K. Huang, Y. Ma, J. R. Zhao et al., Highly collimated monoenergetic target-surface electron acceleration in near-critical-density plasmas, Appl. Phys. Lett, vol.106, p.131105, 2015.

A. Jullien, A. Ricci, F. B?-ohle, J. Rousseau, S. Grabielle et al., Carrier-envelope-phase stable, high-contrast, double chirped-pulse-amplification laser system, Opt. Lett, vol.39, pp.3774-3777, 2014.

F. B?-ohle, M. Kretschmar, A. Jullien, M. Kovacs, M. Miranda et al., Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers, Laser Phys. Lett, vol.11, p.95401, 2014.

M. Ouill-e, F. B?-ohle, A. Vernier, M. Bocoum, A. Jullien et al.,

D. Rousseau, D. Gustas, M. Gu-enot, A. Kovacs, P. Blumenstein et al.,

M. Bocoum, F. B?-ohle, A. Vernier, A. Jullien, J. Faure et al., Spatial-domain interferometer for measuring plasma mirror expansion, Opt. Lett, vol.40, pp.3009-3012, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01229263

J. Vay, D. P. Grote, R. H. Cohen, and A. Friedman, Novel methods in the particle-in-cell accelerator code-framework Warp, Comput. Sci. Discovery, vol.5, p.14019, 2012.

, for more information concerning the high performance PICSAR library

H. Vincenti and J. Vay, Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver, Comput. Phys. Commun, vol.200, pp.147-167, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01426492

H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, and J. Vay, An efficient and portable simd algorithm for charge/current deposition in particle-in-cell codes, Comput. Phys. Commun, vol.210, pp.145-154, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01426502

H. Vincenti and J. Vay, Ultrahigh-order maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas, Comput. Phys. Commun, vol.228, pp.22-29, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01894332

P. Gibbon, Short Pulse Laser Interactions with Matter, 2004.

J. P. Colombier, P. Combis, A. Rosenfeld, I. V. Hertel, E. Audouard et al., Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples, Phys. Rev. B, vol.74, p.224106, 2006.
URL : https://hal.archives-ouvertes.fr/ujm-00122058

W. L. Kruer, The Physics of Laser Plasma Interactions, 1988.

C. Mcguffey, A. G. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov et al., Ionization induced trapping in a laser wakefield accelerator, Phys. Rev. Lett, vol.104, p.25004, 2010.

A. Pak, K. A. Marsh, S. F. Martins, W. Lu, W. B. Mori et al., Injection and trapping of tunnel-ionized electrons into laser-produced wakes, Phys. Rev. Lett, vol.104, p.25003, 2010.

, ANR-14-CE32-0011-03 APERO) and the European Research Council (Contracts No. 306708, ERC Starting Grant FEMTOELEC and No. 694596, Grant ExCoMet). An award of computer time (PlasmInSilico) was provided by the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program. This research used resources of the Argonne Leadership Computing Facility (MIRA), European Union's Horizon 2020 research and innovation programme), the Agence Nationale pour la Recherche (Contract No

. De-ac02-06ch11357,

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong et al., Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification ti:sapphire laser, Optics Express, vol.20, pp.10807-10815, 2012.

T. Tajima and J. M. Dawson, Laser electron accelerator, Physical Review Letters, vol.43, pp.267-270, 1979.

E. Esarey, C. B. Schroeder, and W. P. Leemans, Physics of laserdriven plasma-based electron accelerators, Review of Mordern Physics, vol.81, pp.4833-4843, 2009.

O. Lundh, J. Lim, C. Rechatin, L. Ammoura, A. Ben-ismail et al., Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator, Nat. Phys, vol.7, p.219, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00803781

D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle et al., Relativistic electron beams driven by kHz single-cycle light pulses, Nat. Photon, vol.11, issue.5, pp.293-296, 2017.

A. J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek et al., Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide, Phys. Rev. Lett, vol.122, p.84801, 2019.

F. V. Hartemann, S. N. Fochs, G. P. Le-sage, J. N. Luhmann, J. G. Woodworth et al., Nonlinear ponderomotive scattering of relativistic electrons by an intense laser field at focus, Phys. Rev. E, vol.51, issue.5, pp.4833-4843, 1995.

E. Esarey, P. Sprangle, and J. Krall, Laser acceleration of electrons in vacuum, Phys. Rev. E, vol.52, pp.5443-5453, 1995.

B. Quesnel and P. Mora, Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum, Phys. Rev. E, vol.58, pp.3719-3732, 1998.

W. Yu, M. Y. Yu, J. X. Ma, Z. M. Sheng, J. Zhang et al., Ponderomotive acceleration of electrons at the focus of high intensity lasers, Phys. Rev. E, vol.61, pp.2220-2223, 2000.

I. Y. Dodin and N. J. Fisch, Relativistic electron acceleration in focused laser fields after above-threshold ionization, Phys. Rev. E, vol.68, p.56402, 2003.

G. V. Stupakov and M. S. Zolotorev, Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches, Phys. Rev. Lett, vol.86, pp.5274-5277, 2001.

I. Yousef, C. H. Salamin, and . Keitel, Electron acceleration by a tightly focused laser beam, Phys. Rev. Lett, vol.88, p.95005, 2002.

J. Pang, Y. K. Ho, X. Q. Yuan, N. Cao, Q. Kong et al., Subluminous phase velocity of a focused laser beam and vacuum laser acceleration, Phys. Rev. E, vol.66, p.66501, 2002.

A. Maltsev and T. Ditmire, Above threshold ionization in tightly focused, strongly relativistic laser fields, Phys. Rev. Lett, vol.90, p.53002, 2003.

C. I. Moore, A. Ting, S. J. Mcnaught, J. Qiu, H. R. Burris et al., A laser-accelerator injector based on laser ionization and ponderomotive acceleration of electrons, Phys. Rev. Lett, vol.82, pp.1688-1691, 1999.

S. Payeur, S. Fourmaux, B. E. Schmidt, J. P. Maclean, C. Tchervenkov et al., Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse, Applied Physics Letters, vol.101, issue.4, p.41105, 2012.

D. Cline, First Observation of Acceleration of Electrons by a Laser in a Vacuum, Journal of Modern Physics, vol.4, pp.1-6, 2013.

S. Carbajo, E. A. Nanni, L. J. Wong, G. Moriena, P. D. Keathley et al., Direct longitudinal laser acceleration of electrons in free space, Phys. Rev. Accel. Beams, vol.19, p.21303, 2016.

M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier et al., Vacuum laser acceleration of relativistic electrons using plasma mirror injectors, Nature physics, vol.12, pp.355-360, 2016.

C. Thaury and F. Quéré, High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.43, p.213001, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569857

M. Thévenet, H. Vincenti, and J. Faure, On the physics of electron ejection from laser-irradiated overdense plasmas, Physics of plasmas, vol.23, p.63119, 2016.

L. Chopineau, A. Leblanc, G. Blaclard, A. Denoeud, M. Thévenet et al.,

G. Vay, . Bonnaud, . Ph, H. Martin, F. Vincenti et al., Identification of coupling mechanisms between ultraintense laser light and dense plasmas, Phys. Rev. X, vol.9, p.11050, 2019.
URL : https://hal.archives-ouvertes.fr/cea-02090309

Y. I. Salamin, Electron acceleration from rest in vacuum by an axicon gaussian laser beam, Phys. Rev. A, vol.73, issue.4, p.43402, 2006.

A. Karmakar and A. Pukhov, Collimated attosecond GeV electron bunches from ionization of high-Z material by radially polarized ultra-relativistic laser pulses, Laser and Part. Beams, vol.25, issue.3, pp.371-377, 2007.

C. Varin, S. Payeur, V. Marceau, S. Fourmaux, A. April et al., Direct electron acceleration with radially polarized laser beams, Applied Sciences, vol.3, issue.1, pp.70-93, 2013.

V. Marceau, C. Varin, T. Brabec, and M. Piché, Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas, Phys. Rev. Lett, vol.111, issue.22, p.224801, 2013.

A. Martens, K. Dupraz, K. Cassou, N. Delerue, A. Variola et al., Direct electron acceleration with tightly focused TM01 beams: boundary conditions and non-paraxial corrections, Opt. Lett, vol.39, issue.4, pp.981-984, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00966711

K. Liang-jie-wong, S. Hong, A. Carbajo, P. Fallahi, M. Piot et al., Laser-induced linear-field particle acceleration in free space, Scientific Reports, vol.7, issue.1, p.11159, 2017.

N. Zaim, M. Thévenet, A. Lifschitz, and J. Faure, Relativistic acceleration of electrons injected by a plasma mirror into a radially polarized laser beam, Physical review Letters, vol.119, p.94801, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01582359

N. Nakanii, T. Hosokai, C. Naveen, S. Pathak, A. G. Masuda et al., Decomposition of powerful axisymmetrically polarized laser pulses in underdense plasma, Phys. Rev. E, vol.94, p.63205, 2016.

A. Lévy, T. Ceccotti, P. Oliveira, F. Réau, M. Perdrix et al., Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses, Opt. Lett, vol.32, pp.310-312, 2007.

S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey et al., Direct observation of density-gradient effects in harmonic generation from plasma mirrors, Physical Review Letters, vol.110, p.175001, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00853613

Y. Glinec, J. Faure, A. Tafo, V. Malka, H. Monard et al., Absolute calibration for a broad range single shot electron spectrometer, Review of Scientific Instruments, vol.77, p.103301, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00127096

J. Vay, D. P-grote,-r-h-cohen, and A. Friedman, Novel methods in the particle-in-cell accelerator code-framework WARP, Computational Science & Discovery, vol.5, issue.1, p.14019, 2012.

, for more information concerning the code WARP

H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, and J. Vay, An efficient and portable SIMD algorithm for charge/current deposition in particle-in-cell codes, Computer Physics Communications, vol.210, pp.145-154, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01426502

, for more information concerning the high-performance PICSAR library

J. Vay, I. Haber, and B. B. Godfrey, A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas, Journal of Computational Physics, vol.243, pp.260-268, 2013.

H. Vincenti and J. Vay, Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference maxwell solver, Physics Communications, vol.200, pp.147-167, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01426492

G. Blaclard, H. Vincenti, R. Lehe, and J. L. Vay, Pseudospectral maxwell solvers for an accurate modeling of doppler harmonic generation on plasma mirrors with particle-in-cell codes, Phys. Rev. E, vol.96, p.33305, 2017.

H. Vincenti and J. Vay, Ultrahigh-order maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas, Computer Physics Communications, vol.228, pp.22-29, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01894332

W. Spencer and . Jolly, Influence of longitudinal chromatism on vacuum acceleration by intense radially polarized laser beams, Opt. Lett, vol.44, issue.7, pp.1833-1836, 2019.

A. F. Lifschitz, X. Davoine, E. Lefebvre, J. Faure, C. Rechatin et al., Particle-in-cell modelling of laser-plasma interaction using Fourier decomposition, Journal of Computational Physics, vol.228, issue.5, pp.1803-1814, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00576913

S. Kühn, S. Mathieu-dumergue, S. Kahaly, M. Mondal, T. Füle et al., Katalin Varjú, Károly Osvay, and Giuseppe Sansone. The ELI-ALPS facility: the next generation of attosecond sources, Journal of Physics B: Atomic, Molecular and Optical Physics, vol.50, issue.13, p.132002, 2017.