, Méthode Pour déterminer le niveau d'abstraction optimal de ces deux architectures, qui dépend de l'application pour laquelle les réseaux sont entrainés, nous avons fait varier leur nombre de couches

, Celui-ci a progressivement été augmenté en partant d'un U-net 9 couches et d'un V-net 7 couches

. Dans-le-cas-2d, cette augmentation a été réalisée en ajoutant dans le bas du U : -un max-pooling

, Cette méthode est représentée sur la Figure.VI.15 où l'on passe d'un U-net 17 couches à un U-net

V. I. Figure, 15 -Augmentation du nombre de couches (17 (a) à 24 (b)) de l'architecture U-net

. Dans-le-cas-3d, . Le-nombre-de-couches, and . De,

, Combien de volumes d'entrainement sont nécessaires pour que U-net (24 couches) obtienne une bonne précision (Di ce > 0.8) sur l'ensemble d'entrainement

, Quelle est la meilleure stratégie pour améliorer la précision des segmentations : augmenter le nombre de volumes d

, Méthode Créer une base de données annotées nécessite beaucoup d'efforts et de temps, il est donc important d'avoir une idée du nombre de volumes d'entrainement nécessaire pour obtenir des segmentations précises et de savoir quelle stratégie utiliser pour améliorer la performance des réseaux

, VI.1.2) puis nous avons entrainé un réseau U-net (24 couches) en faisant varier le nombre de volumes dans la base d'entrainement. Lors de chaque entrainement, Pour évaluer cela, nous avons fixé un ensemble de validation et un ensemble de test (définis dans la partie

, Les paramètres utilisés pour optimiser U-net ont été décrits dans la partie.VI.3. Résultats et discussion L'évolution du Dice moyen (sur les 10 optimisations) en fonction du nombre de volumes dans la base d'entrainement est montré sur la Figure

V. I. Figure, 24 -Évolution du Dice moyen obtenu sur les jeux d'entrainement et de test en fonction de la

P. Dans-cette, Le premier cas était un cas d'hydrocéphalie et le second une acquisition réalisée avec une sonde Philips PureWave sur un patient dont l'une des corne occipitale était anormalement dilatée. Dans le premier cas, les performances des quatre réseaux ont été moins bonnes qu'en moyenne sur le jeu de test et la corne occipitale dilatée n'a pas été segmentée correctement. Des performances correct (Di ce > 0.7) on néanmoins été obtenues pour certains réseaux. Dans le second cas, aucun des quatre réseaux n'a pu segmenter le SVC avec précision, le meilleur Dice étant de 0.3. Ces résultats montrent que les réseaux n'ont pas la capacité de segmenter des SVC qui n'ont pas une topologie semblable à celles observées dans le jeu d'entrainement. En revanche, ils semblent être en mesure de segmenter correctement des données acquises avec une autre sonde. Ce dernier point devra néanmoins être vérifié sur d'autres acquisitions, mais la segmentation de données provenant d'une sonde différente semble être envisageable, deux cas atypiques ont été segmentés par les réseaux U-net et V-net avec et sans CPPN

P. Dans-cette, U-net et V-net ont été optimisés pour segmenter le SVC et les thalami. Les résultats obtenus ont montrés que V-net était capable de segmenter les thalami avec une excellente précision : Di ce = 0.891 ± 0

, Compte tenu de la difficulté de ces deux problèmes de segmentation et des bonnes performances obtenues par V-net, on peut s'attendre à ce que cette architecture permette d'obtenir de bon résultats pour d'autres structures cérébrales

, La première segmentation automatique des thalami dans des données échographiques 3D, dans un temps clinique

, La modification des architectures de U-net et V-net qui permet à ces réseaux d'encoder la position anatomique du SVC

. Martin, L'estimation du nombre de volumes d'apprentissage nécessaires pour segmenter le SVC avec précision (Dice > 0.8) et la comparaison de plusieurs stratégies d'augmentation artificielle de données, 2019.

. Martin, Les points 1 et 4 ont été valorisés lors de présentations orales au congrès IUS, 2018.

. Martin, Les points 1 et 3 ont été valorisés par un article soumis dans le journal MEDIA, 2019.

, Dans le cas de la segmentation du SVC, plusieurs points pourraient être étudiés : -Enrichir la base de données avec des cas d'hydrocéphalie pour apprendre aux réseaux à traiter ces cas

, Vérifier que des réseaux U-net et V-net, entrainés sur nos données, sont capable de segmenter des données échographiques 3D obtenues à partir d'acquisitions réalisées avec d'autres sondes

, En ce qui concerne les thalami, les points qui pourraient être étudiés sont : -Évaluer l'influence du CPPN, comme cela a été fait pour le SVC. -Déterminer si certaines stratégies d'augmentation artificielle de données permettent d'améliorer la précision des segmentations

, Déterminer si il est possible d'améliorer significativement la précision des segmentations en

, Enfin, la base de données pourraient être enrichie avec des segmentations de nouvelles structures, ce qui permettrait de vérifier que cette architecture est adéquate pour segmenter l'ensemble des structures cérébrales chez le prématuré. De plus, il serait intéressant d'optimiser ou de modifier celle-ci pour qu'elle soit dédiée à ce problème et soit la moins demandeuse en ressources (de manière à être utilisable sur la plupart des GPUs). Pour cela, intégrer le CPPN aux architectures est un bon point de départ car il parait important d'encoder la position anatomique des structures cérébrales pour faciliter leur segmentation

M. C. Allen, Neurodevelopmental outcomes of preterm infants, Current opinion in neurology, vol.21, issue.2, pp.123-128, 2008.

M. Altaye, S. K. Holland, M. Wilke, and C. Gaser, Infant brain probability templates for mri segmentation and normalization, Neuroimage, vol.43, issue.4, pp.721-730, 2008.

P. Anbeek, I. I?gum, B. J. Van-kooij, C. P. Mol, K. J. Kersbergen et al., Automatic segmentation of eight tissue classes in neonatal brain mri, PLoS One, vol.8, issue.12, p.81895, 2013.

P. Anbeek, K. L. Vincken, F. Groenendaal, A. Koeman, M. J. Van-osch et al., Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging, Pediatric research, vol.63, issue.2, p.158, 2008.

P. Ancel and F. Goffinet, Epipage 2 : a preterm birth cohort in france in 2011, BMC pediatrics, vol.14, issue.1, p.97, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00980428

P. Ancel, V. Veronique-pierrat, S. N. Mde, and A. B. Mdg, Cerebral palsy among very preterm children in relation to gestational age and neonatal ultrasound abnormalities : the epipage cohort study, p.91, 2005.

C. Arnaud, L. Daubisse-marliac, M. White-koning, V. Pierrat, B. Larroque et al., Prevalence and associated factors of minor neuromotor dysfunctions at age 5 years in prematurely born children : the epipage study, Archives of pediatrics & adolescent medicine, vol.161, issue.11, pp.1053-1061, 2007.

C. Arpino, E. Compagnone, M. L. Montanaro, D. Cacciatore, A. De-luca et al., Preterm birth and neurodevelopmental outcome : a review, Child's nervous system, vol.26, issue.9, pp.1139-1149, 2010.

X. Artaechevarria, A. Munoz-barrutia, and C. Ortiz-de-solórzano, Combination strategies in multi-atlas image segmentation : application to brain mr data, IEEE transactions on medical imaging, vol.28, issue.8, pp.1266-1277, 2009.

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet : A deep convolutional encoder-decoder architecture for image segmentation, 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet : A deep convolutional encoder-decoder architecture for image segmentation, vol.39, pp.2481-2495, 2017.

C. Barry, C. Allott, N. John, P. Mellor, P. Arundel et al., Threedimensional freehand ultrasound : image reconstruction and volume analysis, Ultrasound in medicine & biology, vol.23, issue.8, pp.1209-1224, 1997.

J. Bax, D. Cool, L. Gardi, K. Knight, D. Smith et al., Mechanically assisted 3d ultrasound guided prostate biopsy system, Medical physics, vol.35, issue.12, pp.5397-5410, 2008.

G. Beaino, B. Khoshnood, M. Kaminski, V. Pierrat, S. Marret et al., Predictors of cerebral palsy in very preterm infants : the epipage prospective population-based cohort study, Developmental Medicine & Child Neurology, vol.52, issue.6, pp.119-125, 2010.

J. L. Bentley, Multidimensional binary search trees used for associative searching, Communications of the ACM, vol.18, issue.9, pp.509-517, 1975.

H. Blencowe, S. Cousens, M. Z. Oestergaard, D. Chou, A. Moller et al., National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries : a systematic analysis and implications, The lancet, vol.379, issue.9832, pp.2162-2172, 2012.

M. Boucher, S. Lippé, A. Damphousse, R. El-jalbout, and S. Kadoury, Dilatation of lateral ventricles with brain volumes in infants with 3d transfontanelle us, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.557-565, 2018.

M. Boucher, S. Lippé, C. Dupont, I. S. Knoth, G. Lopez et al., Computer-aided lateral ventricular and brain volume measurements in 3d ultrasound for assessing growth trajectories in newborns and neonates, Physics in Medicine & Biology, vol.63, issue.22, p.225012, 2018.

M. J. Brouwer, L. S. De-vries, F. Groenendaal, C. Koopman, L. R. Pistorius et al., New reference values for the neonatal cerebral ventricles, Radiology, vol.262, issue.1, pp.224-233, 2012.

J. Burstein, L. Papile, and R. Burstein, Intraventricular hemorrhage and hydrocephalus in premature newborns : a prospective study with ct, American journal of roentgenology, vol.132, issue.4, pp.631-635, 1979.

M. J. Cardoso, A. Melbourne, G. S. Kendall, M. Modat, N. J. Robertson et al., Adapt : an adaptive preterm segmentation algorithm for neonatal brain mri, NeuroImage, vol.65, pp.97-108, 2013.

H. Chen, Q. Dou, L. Yu, J. Qin, and P. Heng, Voxresnet : Deep voxelwise residual networks for brain segmentation from 3d mr images, NeuroImage, vol.170, pp.446-455, 2018.

J. Chen, J. B. Fowlkes, P. L. Carson, and J. M. Rubin, Determination of scan-plane motion using speckle decorrelation : Theoretical considerations and initial test, International Journal of Imaging Systems and Technology, vol.8, issue.1, pp.38-44, 1997.

J. L. Cheong, D. K. Thompson, A. J. Spittle, C. R. Potter, J. M. Walsh et al., Brain volumes at term-equivalent age are associated with 2-year neurodevelopment in moderate and late preterm children, The Journal of pediatrics, vol.174, pp.91-97, 2016.

T. F. Coleman and Y. Li, On the convergence of interior-reflective newton methods for nonlinear minimization subject to bounds, Mathematical programming, vol.67, issue.1-3, pp.189-224, 1994.

T. F. Coleman and Y. Li, An interior trust region approach for nonlinear minimization subject to bounds, SIAM Journal on optimization, vol.6, issue.2, pp.418-445, 1996.

A. De-brebisson and G. Montana, Deep neural networks for anatomical brain segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.20-28, 2015.

M. Delobel-ayoub, M. Kaminski, S. Marret, A. Burguet, L. Marchand et al., Behavioral outcome at 3 years of age in very preterm infants : the epipage study, Pediatrics, vol.117, issue.6, pp.1996-2005, 2006.

F. Destrempes and G. Cloutier, A critical review and uniformized representation of statistical distributions modeling the ultrasound echo envelope, Ultrasound in medicine & biology, vol.36, issue.7, pp.1037-1051, 2010.

C. N. Devi, A. Chandrasekharan, V. Sundararaman, and Z. C. Alex, Neonatal brain mri segmentation : a review, Computers in biology and medicine, vol.64, pp.163-178, 2015.

D. Dewi, M. Wilkinson, T. Mengko, I. Purnama, P. Van-ooijen et al., 3d ultrasound reconstruction of spinal images using an improved olympic holefilling method, International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering, pp.1-5, 2009.

M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal, The importance of skip connections in biomedical image segmentation, Deep Learning and Data Labeling, pp.179-187, 2016.

A. Fenster, D. B. Downey, and H. N. Cardinal, Three-dimensional ultrasound imaging, Physics in medicine & biology, vol.46, issue.5, p.67, 2001.

B. Fischl, D. H. Salat, E. Busa, M. Albert, M. Dieterich et al., Whole brain segmentation : automated labeling of neuroanatomical structures in the human brain, Neuron, vol.33, issue.3, pp.341-355, 2002.

V. S. Fonov, A. C. Evans, R. C. Mckinstry, C. Almli, and D. Collins, Unbiased nonlinear average age-appropriate brain templates from birth to adulthood, NeuroImage, vol.47, p.102, 2009.

I. Fontanarosa, L'intérêt pronostique de l'irm cérébrale chez les prématurés, 2015.

L. M. Fox, P. Choo, S. R. Rogerson, A. J. Spittle, P. J. Anderson et al., The relationship between ventricular size at 1 month and outcome at 2 years in infants less than 30 weeks' gestation, Archives of Disease in Childhood-Fetal and Neonatal Edition, vol.99, issue.3, pp.209-214, 2014.

B. Fuerst, W. Wein, M. Müller, and N. Navab, Automatic ultrasound-mri registration for neurosurgery using the 2d and 3d lc2 metric, Medical image analysis, vol.18, issue.8, pp.1312-1319, 2014.

J. H. Gilmore, G. Gerig, B. Specter, H. C. Charles, J. S. Wilber et al., Infant cerebral ventricle volume : a comparison of 3-d ultrasound and magnetic resonance imaging, Ultrasound in medicine & biology, vol.27, issue.8, pp.1143-1146, 2001.

X. Glorot and Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.249-256, 2010.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, 2016.

I. S. Gousias, A. D. Edwards, M. A. Rutherford, S. J. Counsell, J. V. Hajnal et al., Magnetic resonance imaging of the newborn brain : manual segmentation of labelled atlases in term-born and preterm infants, Neuroimage, vol.62, issue.3, pp.1499-1509, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00797903

I. S. Gousias, A. Hammers, S. J. Counsell, L. Srinivasan, M. A. Rutherford et al., Magnetic resonance imaging of the newborn brain : automatic segmentation of brain images into 50 anatomical regions, PloS one, vol.8, issue.4, p.59990, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00969111

N. Haiden, K. Klebermass, E. Rücklinger, A. Berger, A. R. Prusa et al., 3-d ultrasonographic imaging of the cerebral ventricular system in very low birth weight infants, Ultrasound in medicine & biology, vol.31, issue.1, pp.7-14, 2005.

P. Hassenpflug, R. W. Prager, G. M. Treece, and A. H. Gee, Speckle classification for sensorless freehand 3-d ultrasound, Ultrasound in medicine & biology, vol.31, issue.11, pp.1499-1508, 2005.

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.

R. Housden, A. H. Gee, R. W. Prager, and G. M. Treece, Rotational motion in sensorless freehand three-dimensional ultrasound, Ultrasonics, vol.48, issue.5, pp.412-422, 2008.

R. J. Housden, A. H. Gee, G. M. Treece, and R. W. Prager, Subsample interpolation strategies for sensorless freehand 3d ultrasound, Ultrasound in medicine & biology, vol.32, issue.12, pp.1897-1904, 2006.

R. J. Housden, A. H. Gee, G. M. Treece, and R. W. Prager, Sensorless reconstruction of unconstrained freehand 3d ultrasound data, Ultrasound in medicine & biology, vol.33, issue.3, pp.408-419, 2007.

C. Huang, Y. Yang, R. Chen, C. Lo, C. Lo et al., Whole-breast ultrasound for breast screening and archiving, Ultrasound in medicine & biology, vol.43, issue.5, pp.926-933, 2017.

G. Huang, Z. Liu, L. Van-der-maaten, and K. Q. Weinberger, Densely connected convolutional networks, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.4700-4708, 2017.

Q. Huang, Y. Huang, W. Hu, and X. Li, Bezier interpolation for 3-d freehand ultrasound, IEEE Transactions on Human-Machine Systems, vol.45, issue.3, pp.385-392, 2014.

S. Ioffe and C. Szegedy, Batch normalization : Accelerating deep network training by reducing internal covariate shift, 2015.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros, Image-to-image translation with conditional adversarial networks, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1125-1134, 2017.

T. Y. Jeon, J. H. Kim, S. Yoo, H. Eo, J. Kwon et al., Neurodevelopmental outcomes in preterm infants : comparison of infants with and without diffuse excessive high signal intensity on mr images at near-term-equivalent age, Radiology, vol.263, issue.2, pp.518-526, 2012.

K. Keunen, I. I?gum, B. J. Van-kooij, P. Anbeek, I. C. Van-haastert et al., Brain volumes at term-equivalent age in preterm infants : imaging biomarkers for neurodevelopmental outcome through early school age, The journal of Pediatrics, vol.172, pp.88-95, 2016.

H. Kim, C. Lepage, A. C. Evans, A. J. Barkovich, and D. Xu, Neocivet : Extraction of cortical surface and analysis of neonatal gyrification using a modified civet pipeline, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.571-579, 2015.

D. P. Kingma and J. Ba, Adam : A method for stochastic optimization, 2014.

J. Kishimoto, S. De-ribaupierre, D. Lee, R. Mehta, K. St-lawrence et al., 3d ultrasound system to investigate intraventricular hemorrhage in preterm neonates, Physics in Medicine & Biology, vol.58, issue.21, p.7513, 2013.

J. Kishimoto, S. De-ribaupierre, F. Salehi, W. Romano, D. S. Lee et al., Preterm neonatal lateral ventricle volume from three-dimensional ultrasound is not strongly correlated to twodimensional ultrasound measurements, Journal of Medical Imaging, vol.3, issue.4, p.46003, 2016.

J. Kittler, Combining classifiers : A theoretical framework, Pattern analysis and Applications, vol.1, issue.1, pp.18-27, 1998.

P. Kovesi, Symmetry and asymmetry from local phase, Tenth Australian joint conference on artificial intelligence, vol.190, pp.2-4, 1997.

J. Kurian, S. Sotardi, M. C. Liszewski, W. A. Gomes, T. Hoffman et al., Threedimensional ultrasound of the neonatal brain : technical approach and spectrum of disease, Pediatric radiology, vol.47, issue.5, pp.613-627, 2017.

C. Laporte and T. Arbel, Learning to estimate out-of-plane motion in ultrasound imagery of real tissue, Medical image analysis, vol.15, issue.2, pp.202-213, 2011.

B. Larroque, S. Marret, P. Ancel, C. Arnaud, L. Marpeau et al., White matter damage and intraventricular hemorrhage in very preterm infants : the epipage study, The Journal of pediatrics, vol.143, issue.4, pp.477-483, 2003.

A. Leviton and F. Gilles, Ventriculomegaly, delayed myelination, white matter hypoplasia, and "periventricular" leukomalacia : how are they related ?, Pediatric neurology, vol.15, issue.2, pp.127-136, 1996.

A. Lind, R. Parkkola, L. Lehtonen, P. Munck, J. Maunu et al., Associations between regional brain volumes at term-equivalent age and development at 2 years of age in preterm children, Pediatric radiology, vol.41, issue.8, pp.953-961, 2011.

L. Liu, S. Oza, D. Hogan, Y. Chu, J. Perin et al., Global, regional, and national causes of under-5 mortality in 2000-15 : an updated systematic analysis with implications for the sustainable development goals, The Lancet, vol.388, pp.3027-3035, 2016.

M. Liu, A. Kitsch, S. Miller, V. Chau, K. Poskitt et al., Patchbased augmentation of expectation-maximization for brain mri tissue segmentation at arbitrary age after premature birth, NeuroImage, vol.127, pp.387-408, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01293455

J. Long, E. Shelhamer, and T. Darrell, Fully convolutional networks for semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.3431-3440, 2015.

A. Makropoulos, S. J. Counsell, and D. Rueckert, A review on automatic fetal and neonatal brain mri segmentation, NeuroImage, vol.170, pp.231-248, 2018.

A. Makropoulos, I. S. Gousias, C. Ledig, P. Aljabar, A. Serag et al., Automatic whole brain mri segmentation of the developing neonatal brain, IEEE transactions on medical imaging, vol.33, issue.9, pp.1818-1831, 2014.

M. Martin, B. Sciolla, M. Sdika, P. Quétin, and P. Delachartre, Segmentation of neonates cerebral ventricles with 2d cnn in 3d us data : suitable training-set size and data augmentation strategies, 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, pp.1-4, 2019.

M. Martin, B. Sciolla, M. Sdika, X. Wang, P. Quetin et al., Automatic segmentation of the cerebral ventricle in neonates using deep learning with 3d reconstructed freehand ultrasound imaging, IEEE International Ultrasonics Symposium (IUS), pp.1-4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02043054

J. Maunu, L. Lehtonen, H. Lapinleimu, J. Matomäki, P. Munck et al., Ventricular dilatation in relation to outcome at 2 years of age in very preterm infants : a prospective finnish cohort study, Developmental Medicine & Child Neurology, vol.53, issue.1, pp.48-54, 2011.

C. A. Mazzola, A. F. Choudhri, K. I. Auguste, D. D. Limbrick, M. Rogido et al., Pediatric hydrocephalus : systematic literature review and evidence-based guidelines, Pediatrics, vol.14, issue.Supplement_1, pp.8-23, 2014.

A. Melbourne, M. J. Cardoso, G. S. Kendall, N. J. Robertson, N. Marlow et al., Neo-brains12 challenge : adaptive neonatal mri brain segmentation with myelinated white matter class and automated extraction of ventricles i-iv, MICCAI grand challenge : neonatal brain segmentation (NeoBrainSI2), pp.16-21, 2012.

E. R. Melhem, A. H. Hoon, J. T. Ferrucci, C. B. Quinn, E. M. Reinhardt et al., Periventricular leukomalacia : relationship between lateral ventricular volume on brain mr images and severity of cognitive and motor impairment, Radiology, vol.214, issue.1, pp.199-204, 2000.

L. R. Ment, B. Vohr, W. Allan, M. Westerveld, K. H. Katz et al., The etiology and outcome of cerebral ventriculomegaly at term in very low birth weight preterm infants, Pediatrics, vol.104, issue.2, pp.243-248, 1999.

D. Miller, C. Lippert, F. Vollmer, O. Bozinov, L. Benes et al., Comparison of different reconstruction algorithms for three-dimensional ultrasound imaging in a neurosurgical setting, The International Journal of Medical Robotics and Computer Assisted Surgery, vol.8, issue.3, pp.348-359, 2012.

F. Milletari, S. Ahmadi, C. Kroll, A. Plate, V. Rozanski et al., Hough-cnn : deep learning for segmentation of deep brain regions in mri and ultrasound, Computer Vision and Image Understanding, vol.164, pp.92-102, 2017.

F. Milletari, N. Navab, and S. Ahmadi, V-net : Fully convolutional neural networks for volumetric medical image segmentation, Fourth International Conference on. IEEE, pp.565-571, 2016.

T. M. Mitchell and M. Learning, Mcgraw-hill science, Engineering/Math, vol.1, p.27, 1997.

P. Moeskops, M. J. Benders, S. M. Chi??, K. J. Kersbergen, F. Groenendaal et al., Automatic segmentation of mr brain images of preterm infants using supervised classification, NeuroImage, vol.118, pp.628-641, 2015.

P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. De-vries, M. J. Benders et al., Automatic segmentation of mr brain images with a convolutional neural network, IEEE transactions on medical imaging, vol.35, issue.5, pp.1252-1261, 2016.

M. R. Morgan, J. S. Broder, J. J. Dahl, and C. D. Herickhoff, Versatile low-cost volumetric 3-d ultrasound platform for existing clinical 2-d systems, IEEE transactions on medical imaging, vol.37, issue.10, pp.2248-2256, 2018.

M. H. Mozaffari and W. Lee, Freehand 3-d ultrasound imaging : a systematic review, Ultrasound in medicine & biology, vol.43, issue.10, pp.2099-2124, 2017.

N. Nagdyman, M. M. Walka, W. Kampmann, B. Stöver, and M. Obladen, 3-d ultrasound quantification of neonatal cerebral ventricles in different head positions, Ultrasound in medicine & biology, vol.25, issue.6, pp.895-900, 1999.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th international conference on machine learning (ICML-10), pp.807-814, 2010.

T. R. Nelson and D. H. Pretorius, Interactive acquisition, analysis, and visualization of sonographic volume data, International Journal of Imaging Systems and Technology, vol.8, issue.1, pp.26-37, 1997.

H. Neshat, D. W. Cool, K. Barker, L. Gardi, N. Kakani et al., A 3d ultrasound scanning system for image guided liver interventions, Medical physics, vol.40, issue.11, 2013.

F. H. Netter, Atlas d'anatomie humaine, 2019.

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed : algorithms based on hamilton-jacobi formulations, Journal of computational physics, vol.79, issue.1, pp.12-49, 1988.

S. J. Pan and Q. Yang, A survey on transfer learning, IEEE Transactions on knowledge and data engineering, vol.22, issue.10, pp.1345-1359, 2009.

L. Papile, J. Burstein, R. Burstein, and H. Koffler, Incidence and evolution of subependymal and intraventricular hemorrhage : a study of infants with birth weights less than 1,500 gm, The Journal of pediatrics, vol.92, issue.4, pp.529-534, 1978.

A. Pappas, I. Adams-chapman, S. Shankaran, S. A. Mcdonald, B. J. Stoll et al., Neurodevelopmental and behavioral outcomes in extremely premature neonates with ventriculomegaly in the absence of periventricular-intraventricular hemorrhage, JAMA pediatrics, vol.172, issue.1, pp.32-42, 2018.

V. Pierrat, L. Marchand-martin, C. Arnaud, M. Kaminski, M. Resche-rigon et al., Neurodevelopmental outcome at 2 years for preterm children born at 22 to 34 weeks' gestation in france in 2011 : Epipage-2 cohort study, vol.358, p.3448, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01610207

C. Poulsen, P. C. Pedersen, and T. L. Szabo, An optical registration method for 3d ultrasound freehand scanning, IEEE Ultrasonics Symposium, vol.2, pp.1236-1240, 2005.

R. W. Prager, A. H. Gee, G. M. Treece, C. J. Cash, and L. H. Berman, Sensorless freehand 3-d ultrasound using regression of the echo intensity, Ultrasound in medicine & biology, vol.29, issue.3, pp.437-446, 2003.

M. Prastawa, J. H. Gilmore, W. Lin, and G. Gerig, Automatic segmentation of mr images of the developing newborn brain, Medical image analysis, vol.9, issue.5, pp.457-466, 2005.

R. Prevost, M. Salehi, J. Sprung, A. Ladikos, R. Bauer et al., Deep learning for sensorless 3d freehand ultrasound imaging, International conference on medical image computing and computer-assisted intervention, pp.628-636, 2017.

W. Qiu, Y. Chen, J. Kishimoto, S. De-ribaupierre, B. Chiu et al., Automatic segmentation approach to extracting neonatal cerebral ventricles from 3d ultrasound images, Medical image analysis, vol.35, pp.181-191, 2017.

W. Qiu, J. Yuan, J. Kishimoto, J. Mcleod, Y. Chen et al., Userguided segmentation of preterm neonate ventricular system from 3-d ultrasound images using convex optimization, Ultrasound in medicine & biology, vol.41, issue.2, pp.542-556, 2015.

W. Qiu, J. Yuan, M. Rajchl, J. Kishimoto, Y. Chen et al., 3d mr ventricle segmentation in pre-term infants with post-hemorrhagic ventricle dilatation (phvd) using multi-phase geodesic level-sets, NeuroImage, vol.118, pp.13-25, 2015.

G. Roberts, K. Howard, A. J. Spittle, N. C. Brown, P. J. Anderson et al., Rates of early intervention services in very preterm children with developmental disabilities at age 2 years, Journal of paediatrics and child health, vol.44, issue.5, pp.276-280, 2008.

O. Ronneberger, P. Fischer, and T. Brox, U-net : Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, pp.234-241, 2015.

C. C. Salerno, D. H. Pretorius, S. V. Hilton, M. K. O'boyle, A. D. Hull et al., Three-dimensional ultrasonographic imaging of the neonatal brain in high-risk neonates : preliminary study, Journal of ultrasound in medicine, vol.19, issue.8, pp.549-555, 2000.

S. José-estépar, R. Martin-fernandez, M. Caballero-martínez, P. P. Alberola-lópez, C. Ruiz-alzola et al., A theoretical framework to three-dimensional ultrasound reconstruction from irregularly sampled data, Ultrasound in medicine & biology, vol.29, issue.2, pp.255-269, 2003.

G. Sanroma, O. M. Benkarim, G. Piella, and M. Á. Ballester, Building an ensemble of complementary segmentation methods by exploiting probabilistic estimates, International Workshop on Machine Learning in Medical Imaging, pp.27-35, 2016.

S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, How does batch normalization help optimization ?, Advances in Neural Information Processing Systems, pp.2483-2493, 2018.

B. Sciolla, M. Martin, P. Delachartre, and P. Quetin, Segmentation of the lateral ventricles in 3d ultrasound images of the brain in neonates, 2016 IEEE International Ultrasonics Symposium (IUS). IEEE, pp.1-4, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01938672

L. Sendur and I. W. Selesnick, Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency, IEEE Transactions on signal processing, vol.50, issue.11, pp.2744-2756, 2002.

F. Serenius, K. Källén, M. Blennow, U. Ewald, V. Fellman et al., Neurodevelopmental outcome in extremely preterm infants at 2.5 years after active perinatal care in sweden, Jama, vol.309, issue.17, pp.1810-1820, 2013.

O. V. Solberg, F. Lindseth, H. Torp, R. E. Blake, and T. A. Hernes, Freehand 3d ultrasound reconstruction algorithms-a review, Ultrasound in medicine & biology, vol.33, issue.7, pp.991-1009, 2007.

Z. Song, N. Tustison, B. Avants, and J. C. Gee, Integrated graph cuts for brain mri segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention, 2006.

. Springer, , pp.831-838

A. J. Spittle, J. Cheong, L. W. Doyle, G. Roberts, K. J. Lee et al., Neonatal white matter abnormality predicts childhood motor impairment in very preterm children, Developmental Medicine & Child Neurology, vol.53, issue.11, pp.1000-1006, 2011.

V. Srhoj-egekher, M. J. Benders, M. A. Viergever, and I. I?gum, Automatic neonatal brain tissue segmentation with mri, Medical Imaging 2013 : Image Processing, vol.8669, p.86691, 2013.

K. O. Stanley, Compositional pattern producing networks : A novel abstraction of development. Genetic programming and evolvable machines, vol.8, pp.131-162, 2007.

S. Sun, M. Gilbertson, and B. W. Anthony, 6-dof probe tracking via skin mapping for freehand 3d ultrasound, 2013 IEEE 10th International Symposium on Biomedical Imaging. IEEE, pp.780-783, 2013.

S. Sun, M. Gilbertson, and B. W. Anthony, Probe localization for freehand 3d ultrasound by tracking skin features, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.365-372, 2014.

P. R. Tabrizi, R. Obeid, J. J. Cerrolaza, A. Penn, A. Mansoor et al., Automatic segmentation of neonatal ventricles from cranial ultrasound for prediction of intraventricular hemorrhage outcome, 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp.3136-3139, 2018.

G. M. Treece, A. H. Gee, R. W. Prager, C. J. Cash, and L. H. Berman, High-definition freehand 3-d ultrasound, Ultrasound in medicine & biology, vol.29, issue.4, pp.529-546, 2003.

N. Tusor, M. J. Benders, S. J. Counsell, P. Nongena, M. A. Ederies et al., Punctate white matter lesions associated with altered brain development and adverse motor outcome in preterm infants, Scientific reports, vol.7, issue.1, p.13250, 2017.

K. Van-leemput, F. Maes, D. Vandermeulen, and P. Suetens, Automated model-based tissue classification of mr images of the brain, IEEE transactions on medical imaging, vol.18, issue.10, pp.897-908, 1999.

L. Wang, Y. Gao, F. Shi, G. Li, J. H. Gilmore et al., Links : Learning-based multisource integration framework for segmentation of infant brain images, NeuroImage, vol.108, pp.160-172, 2015.

P. Wang, N. G. Cuccolo, R. Tyagi, I. Hacihaliloglu, and V. M. Patel, Automatic real-time cnn-based neonatal brain ventricles segmentation, 2018 IEEE 15th International Symposium on Biomedical Imaging, pp.716-719, 2018.

N. I. Weisenfeld and S. K. Warfield, Automatic segmentation of newborn brain mri, Neuroimage, vol.47, issue.2, pp.564-572, 2009.

D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE transactions on evolutionary computation, vol.1, issue.1, pp.67-82, 1997.

R. Wright, V. Kyriakopoulou, C. Ledig, M. A. Rutherford, J. V. Hajnal et al., Automatic quantification of normal cortical folding patterns from fetal brain mri, NeuroImage, vol.91, pp.21-32, 2014.

P. Yan, I. Cheeseborough, J. C. Chao, and K. C. , Automatic shape-based level set segmentation for needle tracking in 3-d trus-guided prostate brachytherapy, Ultrasound in medicine & biology, vol.38, issue.9, pp.1626-1636, 2012.

W. Y. Zhang, R. N. Rohling, and D. K. Pai, Surface extraction with a three-dimensional freehand ultrasound system, Ultrasound in medicine & biology, vol.30, issue.11, pp.1461-1473, 2004.

Y. Zhou and R. Chellappa, Computation of optical flow using a neural network, IEEE International Conference on Neural Networks, pp.71-78, 1988.

L. Zubiaurre-elorza, S. Soria-pastor, C. Junqué, D. Fernandez-espejo, D. Segarra et al., Thalamic changes in a preterm sample with periventricular leukomalacia : correlation with white-matter integrity and cognitive outcome at school age, Pediatric research, vol.71, p.354, 2012.