J. Folkman, Tumor angiogenesis: therapeutic implications, N Engl J Med, vol.285, pp.1182-1188, 1971.

N. Lassau, Standardization of dynamic contrast-enhanced ultrasound for the evaluation of antiangiogenic therapies: the French multicenter Support for Innovative and Expensive Techniques Study, Invest Radiol, vol.47, pp.711-717, 2012.

N. Lassau, Validation of dynamic contrast-enhanced ultrasound in predicting outcomes of antiangiogenic therapy for solid tumors: the French multicenter support for innovative and expensive techniques study, Invest Radiol, vol.49, pp.794-800, 2014.

J. Folkman, Anti-angiogenesis: new concept for therapy of solid tumors, Ann Surg, vol.175, pp.409-425, 1972.

D. M. Mcdonald and P. Baluk, Significance of blood vessel leakiness in cancer, Cancer Res, vol.62, pp.5381-5386, 2002.

G. Bergers, Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis, Nat Cell Biol, vol.2, pp.737-781, 2000.

D. M. Mcdonald and P. L. Choyke, Imaging of angiogenesis: from microscope to clinic, Nat Med, vol.9, pp.713-738, 2003.

P. Baluk, Cellular abnormalities of blood vessels as targets in cancer, Curr Opin Genet Dev, vol.15, pp.102-113, 2005.

J. A. Nagy, Heterogeneity of the tumor vasculature, Semin Thromb Hemost, vol.36, pp.321-352, 2010.

D. Fukumura, Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models, Microcirculation, vol.17, pp.206-231, 2010.

S. K. Stamatelos, A bioimage informatics based reconstruction of breast tumor microvasculature with computational blood flow predictions, Microvasc Res, vol.91, pp.8-21, 2014.

N. Weidner, Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma, N Engl J Med, vol.324, pp.1-8, 1991.

F. Mollica, A model for temporal heterogeneities of tumor blood flow, Microvasc Res, vol.65, pp.56-60, 2003.

P. Therasse, New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada, J Natl Cancer Inst, vol.92, pp.205-221, 2000.

A. R. Padhani and K. A. Miles, Multiparametric imaging of tumor response to therapy, Radiology, vol.256, pp.348-64, 2010.

A. R. Padhani and M. Neeman, Challenges for imaging angiogenesis, Br J Radiol, vol.74, pp.886-90, 2001.

P. S. J-p-b-o'connord, Dynamic contrast-enhanced imaging techniques: CT and MRI, The British Journal of Radiology, vol.84, pp.112-120, 2011.

K. L. Peterson, Quantitative assessment of blood volume, blood flow, and permeability of the brain of clinically normal dogs by use of dynamic contrast-enhanced computed tomography, Am J Vet Res, vol.69, pp.45-50, 2008.

W. Van-elmpt, Multiparametric imaging of patient and tumour heterogeneity in nonsmall-cell lung cancer: quantification of tumour hypoxia, metabolism and perfusion, Eur J Nucl Med Mol Imaging, 2015.

P. G. Qiao, Early evaluation of targeted therapy effectiveness in non-small cell lung cancer by dynamic contrast-enhanced CT, Clin Transl Oncol, 2015.

Y. S. Sung, Dynamic contrast-enhanced MRI for oncology drug development, J Magn Reson Imaging, 2016.

L. A. Brandao, Brain tumors: a multimodality approach with diffusion-weighted imaging, diffusion tensor imaging, magnetic resonance spectroscopy, dynamic susceptibility contrast and dynamic contrast-enhanced magnetic resonance imaging, Magn Reson Imaging Clin N Am, vol.21, pp.199-239, 2013.

K. Chen, Quantitative PET imaging of VEGF receptor expression, Mol Imaging Biol, vol.11, pp.15-22, 2009.

H. Kurihara, Radiolabelled agents for PET imaging of tumor hypoxia, Curr Med Chem, vol.19, pp.3282-3291, 2012.

G. Komar, Decreased blood flow with increased metabolic activity: a novel sign of pancreatic tumor aggressiveness, Clin Cancer Res, vol.15, pp.5511-5518, 2009.

H. Anderson and P. Price, Clinical measurement of blood flow in tumours using positron emission tomography: a review, Nucl Med Commun, vol.23, pp.131-139, 2002.

N. Lassau, New hemodynamic approach to angiogenesis: color and pulsed Doppler ultrasonography, Invest Radiol, vol.34, pp.194-202, 1999.

N. Lassau, Evaluation of contrast-enhanced color Doppler ultrasound for the quantification of angiogenesis in vivo, Invest Radiol, vol.36, pp.50-55, 2001.

R. Gramiak and P. M. Shah, Echocardiography of the aortic root, Invest Radiol, vol.3, pp.356-66, 1968.

D. R. Morel, Human pharmacokinetics and safety evaluation of SonoVue, a new contrast agent for ultrasound imaging, Invest Radiol, vol.35, pp.80-85, 2000.

J. Correas, F. Tranquart, and A. Bouakaz, Echographie de contraste : Méthodologie et applications cliniques, 2007.

M. Krix, A multivessel model describing replenishment kinetics of ultrasound contrast agent for quantification of tissue perfusion, Ultrasound Med Biol, vol.29, pp.1421-1451, 2003.

K. Wei, Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion, Circulation, vol.97, pp.473-83, 1998.

H. Chen, Preliminary observations on the spatial correlation between short-burst microbubble oscillations and vascular bioeffects, Ultrasound Med Biol, vol.38, pp.2151-62, 2012.

J. Eyding, Parameters of cerebral perfusion in phase-inversion harmonic imaging (PIHI) ultrasound examinations, Ultrasound Med Biol, vol.29, pp.1379-85, 2003.

F. Forsberg, Assessment of angiogenesis: implications for ultrasound imaging, Ultrasonics, vol.42, pp.325-355, 2004.

T. Schlosser, Determination of the renal blood flow in macro-and microcirculation by means of pulse inversion imaging, Rofo, vol.176, pp.724-754, 2004.

J. R. Eisenbrey, Recent Experiences and Advances in Contrast-Enhanced Subharmonic Ultrasound, Biomed Res Int, vol.2015, p.640397, 2015.

M. Claudon, Guidelines and good clinical practice recommendations for Contrast Enhanced Ultrasound (CEUS) in the liver -update 2012: A WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS, Ultrasound Med Biol, vol.39, pp.187-210, 2013.

N. Lassau, Gastrointestinal stromal tumors treated with imatinib: monitoring response with contrast-enhanced sonography, AJR Am J Roentgenol, vol.187, pp.1267-73, 2006.

M. Lamuraglia, To predict progression-free survival and overall survival in metastatic renal cancer treated with sorafenib: pilot study using dynamic contrast-enhanced Doppler ultrasound, Eur J Cancer, vol.42, pp.2472-2481, 2006.

N. Lassau, Advanced hepatocellular carcinoma: early evaluation of response to bevacizumab therapy at dynamic contrast-enhanced US with quantification--preliminary results, Radiology, vol.258, pp.291-300, 2011.

N. Lassau, Metastatic renal cell carcinoma treated with sunitinib: early evaluation of treatment response using dynamic contrast-enhanced ultrasonography, Clin Cancer Res, vol.16, pp.1216-1241, 2010.

N. Lassau, Quantitative functional imaging by dynamic contrast enhanced ultrasonography (DCE-US) in GIST patients treated with masatinib, Invest New Drugs, vol.30, pp.765-71, 2012.

V. Lazar, Sorafenib plus dacarbazine in solid tumors: a phase I study with dynamic contrast-enhanced ultrasonography and genomic analysis of sequential tumor biopsy samples, Invest New Drugs, vol.32, pp.312-334, 2014.

E. Frampas, Advanced Hepatocellular Carcinoma: early evaluation of response to targeted therapy and prognostic value of Perfusion CT and Dynamic Contrast Enhanced-Ultrasound. Preliminary results, Eur J Radiol, vol.82, pp.205-216, 2013.

C. F. Dietrich, An EFSUMB introduction into Dynamic Contrast-Enhanced Ultrasound (DCE-US) for quantification of tumour perfusion, Ultraschall Med, vol.33, pp.344-51, 2012.

F. Piscaglia, The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications, Ultraschall Med, vol.33, pp.33-59, 2012.

O. Lucidarme, Validation of ultrasound contrast destruction imaging for flow quantification, Ultrasound Med Biol, vol.29, pp.1697-704, 2003.

J. Eyding, Contrast burst depletion imaging (CODIM): a new imaging procedure and analysis method for semiquantitative ultrasonic perfusion imaging, Stroke, vol.34, pp.77-83, 2003.

J. Eyding, Validation of the depletion kinetic in semiquantitative ultrasonographic cerebral perfusion imaging using 2 different techniques of data acquisition, J Ultrasound Med, vol.23, pp.1035-1075, 2004.

J. M. Hudson, Dynamic contrast enhanced ultrasound for therapy monitoring, Eur J Radiol, vol.84, pp.1650-1657, 2015.

C. Strouthos, Indicator dilution models for the quantification of microvascular blood flow with bolus administration of ultrasound contrast agents, IEEE Trans Ultrason Ferroelectr Freq Control, vol.57, pp.1296-310, 2010.

G. Institut, N. Roussy-;-elie, N. Lassau, P. Peronneau, and V. Rouffiac, Procédé et Système de Quantification de Vascularisation Tumorale, 2008.

P. Peronneau, Contrast ultrasonography: necessity of linear data processing for the quantification of tumor vascularization, Ultraschall Med, vol.31, pp.370-378, 2010.

M. Krix, Comparison of intermittent-bolus contrast imaging with conventional power Doppler sonography: quantification of tumour perfusion in small animals, Ultrasound Med Biol, vol.29, pp.1093-103, 2003.

D. Cosgrove, Quantification of blood flow, Eur Radiol, vol.11, pp.1338-1382, 2001.

P. Ugolini, In vitro flow quantification with contrast power Doppler imaging, Ultrasound Med Biol, vol.26, pp.113-133, 2000.

M. Gauthier, Estimation of intra-operator variability in perfusion parameter measurements using DCE-US, World J Radiol, vol.3, pp.70-81, 2011.

G. M. , Etude de l'influence de l'entrée artérielle tumorale par modélisation numérique et in vitro en imagerie de contraste ultrasonore : application clinique pour l'évaluation des thérapies ciblées en cancérologie, 2011.

T. S. Koh, Assessment of perfusion by dynamic contrast-enhanced imaging using a deconvolution approach based on regression and singular value decomposition, IEEE Trans Med Imaging, vol.23, pp.1532-1574, 2004.

S. Sourbron, Pixel-by-pixel deconvolution of bolus-tracking data: optimization and implementation, Phys Med Biol, vol.52, pp.429-476, 2007.

M. Gauthier, Assessment of quantitative perfusion parameters by dynamic contrastenhanced sonography using a deconvolution method: an in vitro and in vivo study, J Ultrasound Med, vol.31, pp.595-608, 2012.

C. Pozrikidis, Numerical simulation of blood flow through microvascular capillary networks, Bull Math Biol, vol.71, pp.1520-1561, 2009.

A. W. El-kareh and T. W. Secomb, A mathematical model for comparison of bolus injection, continuous infusion, and liposomal delivery of doxorubicin to tumor cells, Neoplasia, vol.2, pp.325-363, 2000.

B. C. Fry, Estimation of blood flow rates in large microvascular networks, Microcirculation, vol.19, pp.530-538, 2012.

J. B. Geddes, Blood flow in microvascular networks: a study in nonlinear biology, Chaos, vol.20, p.45123, 2010.

K. Khanafer and R. Berguer, Fluid-structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection, J Biomech, vol.42, pp.2642-2650, 2009.

D. A. Berdajs, Analysis of flow dynamics in right ventricular outflow tract, J Surg Res, vol.197, pp.50-57, 2015.

J. Lantz, Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation, J Biomech, vol.46, pp.1851-1859, 2013.

L. J. Olivieri, Hemodynamic Modeling of Surgically Repaired Coarctation of the Aorta, Cardiovasc Eng Technol, vol.2, pp.288-295, 2011.

M. Midulla, Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations, Eur Radiol, vol.22, pp.2094-102, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02352442

T. C. Lucas, Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin, Artif Organs, vol.38, pp.556-65, 2014.

C. Karmonik, Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach, ASAIO J, vol.58, pp.562-569, 2012.

E. Sirois and W. Sun, Computational evaluation of platelet activation induced by a bioprosthetic heart valve, Artif Organs, vol.35, pp.157-65, 2011.

I. Borazjani, High-resolution fluid-structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta, Ann Biomed Eng, vol.38, pp.326-370, 2010.

C. Karmonik, Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta, J Thorac Cardiovasc Surg, vol.147, p.1, 2014.

P. G. Menon, Characterization of neonatal aortic cannula jet flow regimes for improved cardiopulmonary bypass, J Biomech, vol.46, pp.362-72, 2013.

A. C. Lesart, On the importance of the submicrovascular network in a computational model of tumour growth, Microvasc Res, vol.84, pp.188-204, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00738177

A. Stéphanou, Mathematical modelling of flow in 2D and 3D vascular networks: Applications to anti-angiogenic and chemotherapeutic drug strategies, Mathematical and Computer Modelling, vol.41, pp.1137-1156, 2005.

J. Wu, Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature, J Biomech, vol.41, pp.996-1004, 2008.

J. Wu, Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature, J Biomech, vol.42, pp.712-733, 2009.

S. J. Chapman, Multiscale modeling of fluid transport in tumors, Bull Math Biol, vol.70, pp.2334-57, 2008.

R. Karshafian, Transit time kinetics in ordered and disordered vascular trees, Phys Med Biol, vol.48, pp.3225-3262, 2003.

G. Brix, On impulse response functions computed from dynamic contrast-enhanced image data by algebraic deconvolution and compartmental modeling, Phys Med, vol.28, pp.119-147, 2012.

P. Meier and K. L. Zierler, On the theory of the indicator-dilution method for measurement of blood flow and volume, J Appl Physiol, vol.6, pp.731-775, 1954.

N. Tateishi, Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance, J Biomech, vol.27, pp.1119-1144, 1994.

S. Yamaguchi, Cell-free plasma layer in cerebral microvessels, Biorheology, vol.29, pp.251-60, 1992.

C. D. Murray, A Relationship between Circumference and Weight in Trees and Its Bearing on Branching Angles, J Gen Physiol, vol.10, pp.725-734, 1927.

H. Mulvana, Temperature dependent behavior of ultrasound contrast agents, Ultrasound Med Biol, vol.36, pp.925-959, 2010.

A. D. Anastasiou, Experimental study of pulsatile blood flow in micro channels, 2010.

P. R. Hoskins, Simulation and validation of arterial ultrasound imaging and blood flow, Ultrasound Med Biol, vol.34, pp.693-717, 2008.

D. M. Brizel, A comparison of tumor and normal tissue microvascular hematocrits and red cell fluxes in a rat window chamber model, Int J Radiat Oncol Biol Phys, vol.25, pp.269-76, 1993.

W. S. Kamoun, Simultaneous measurement of RBC velocity, flux, hematocrit and shear rate in vascular networks, Nat Methods, vol.7, pp.655-60, 2010.

L. Claassen, Quantification of flow rates using harmonic grey-scale imaging and an ultrasound contrast agent: an in vitro and in vivo study, Ultrasound Med Biol, vol.27, pp.83-91, 2001.

P. C. Li, Time-intensity-based volumetric flow measurements: an in vitro study, Ultrasound Med Biol, vol.28, pp.349-58, 2002.

M. Mezl, Absolute ultrasound perfusion parameter quantification of a tissuemimicking phantom using bolus tracking, IEEE Trans Ultrason Ferroelectr Freq Control, vol.62, pp.983-990, 2015.

F. M. Yakes, Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth, Mol Cancer Ther, vol.10, pp.2298-308, 2011.

D. C. Smith, Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial, J Clin Oncol, vol.31, pp.412-421, 2013.

W. K. You, VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer, Cancer Res, vol.71, pp.4758-68, 2011.

F. Bentzien, In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer, Thyroid, vol.23, pp.1569-77, 2013.

J. Dai, Cabozantinib inhibits prostate cancer growth and prevents tumor-induced bone lesions, Clin Cancer Res, vol.20, pp.617-647, 2014.

T. J. Graham, Preclinical evaluation of imaging biomarkers for prostate cancer bone metastasis and response to cabozantinib, J Natl Cancer Inst, vol.106, p.33, 2014.

M. Gauthier, Impact of the arterial input function on microvascularization parameter measurements using dynamic contrast-enhanced ultrasonography, World J Radiol, vol.4, pp.291-301, 2012.

S. Lavisse, Early quantitative evaluation of a tumor vasculature disruptive agent AVE8062 using dynamic contrast-enhanced ultrasonography, Invest Radiol, vol.43, pp.100-111, 2008.

F. Calamante, Quantification of bolus-tracking MRI: Improved characterization of the tissue residue function using Tikhonov regularization, Magn Reson Med, vol.50, pp.1237-1284, 2003.

K. E. Torres, Activated MET is a molecular prognosticator and potential therapeutic target for malignant peripheral nerve sheath tumors, Clin Cancer Res, vol.17, pp.3943-55, 2011.

J. H. Zhou, Contrast-enhanced ultrasonic parametric perfusion imaging in the evaluation of antiangiogenic tumor treatment, Eur J Radiol, vol.81, pp.1360-1365, 2012.

K. Maheo, Non-invasive quantification of tumor vascular architecture during docetaxel-chemotherapy, Breast Cancer Res Treat, vol.134, pp.1013-1038, 2012.

, Liste des congrès/publication/prix ? Communications orales et posters dans des congrès nationaux

L. Boyer, L. Notre, P. Thomas, S. Leguerney, I. Lassau et al., Numerical modeling of the dynamic of ultrasound contrast agents in a vascular network: Validation study

L. Boyer, S. Thomas, I. Leguerney, N. Lassau, and S. Pitre-champagnat, Numerical modeling of the dynamic of ultrasound contrast agents in a vascular network, GDR MecaBio

L. Boyer, S. Thomas, I. Leguerney, N. Lassau, and S. Pitre-champagnat, Numerical modeling of the flow of ultrasound contrast agents in tumor microvasculature

, ? Communications orales et posters dans des congrès internationaux

L. Boyer, L. Notre, P. Thomas, S. Leguerney, I. Lassau et al., Numerical modeling of the dynamic of ultrasound contrast agents in a vascular network: Validation study, IEEE International Ultrasonics Symposium

L. Boyer, L. Notre, P. Thomas, S. Leguerney, I. Lassau et al., Numerical modeling of the dynamic of ultrasound contrast agents in a vascular network: Validation study

L. Boyer, S. Thomas, I. Leguerney, N. Lassau, and S. Pitre-champagnat, Numerical modeling of the dynamic of ultrasound contrast agents in the vascular network

L. Boyer, S. Thomas, I. Leguerney, N. Lassau, and S. Pitre-champagnat, Numerical modeling of the flow of ultrasound contrast agents in tumor microvasculature, American Institute of Ultrasound in Medicine

?. Publication,

L. Boyer, S. Thomas, I. Leguerney, N. Lassau, and S. Pitre-champagnat, Numerical modelling of the flow of the ultrasound contrast agents in tumour microvasculature, Prix : « New Investigator Honorable Mention -Basic Science » Prix décerné par l'AIUM, vol.17, pp.18-27, 2014.