. Directeurs-de-thèse,

, Stage de DEA en sciences planétaires : (Service d'aéronomie, France ; Microgravity Research Center

, Thèse de doctorat en Astronomie et Astrophysique

, DEA Astrophysique et Instrumentation Associée (UPMC-Paris 6 ; TB) 1999-02 Elève ingénieur de l'Ecole Polytechnique 1997-99 Classes préparatoires filière Maths-Physique

S. Baccalauréat and . Saint-jude,

, Bourses et distinctions 2018 NASA Award to "MSL Extended Mission-1 Science and Operations Team

, Certificate of outstanding contribution to the ESA Rosetta Mission

, Laurels for Team Achievement to the Philae lander Mission

, NASA Award to "MSL Prime Mission Science and Operations Team

, Prix des Sciences 2015 de l'Académie d'Occitanieà l'IRAP pour sa contributio? a la mission Rosetta

A. Dps, Certificate of outstanding contribution in reviewing" for Icarus

, Neil Armstrong Space Flight Achievement Award for the Curiosity Team

, NASA Award to "MSL ChemCam Instrument Development and Science Team

B. Europlanet, Development of small bodies and dust database

B. Europlanet, Development of cometary thermal model

, Bourse Lavoisier pour doctorat international du Ministère des Affaires Etrangères, 2004.

, Bourse de la Région Ile-de-France pour un stage de DEA international

, Bourse de l'Ecole Polytechnique pour un stage de Master international

J. Lasue, Flattened loose particles from numerical simulations compared to Rosetta collected particles, Astronomy and Astrophysics, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02049272

J. Lasue, Martian Eolian Dust Probed by ChemCam, Geophysical Research Letters, vol.45, issue.20, p.10968, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02327162

J. Lasue, S. Clifford, S. Conway, N. Mangold, and F. E. Butcher, The hydrology of Mars including a potential cryosphere, pp.185-246, 2018.

J. Lasue, S. M. Clegg, O. Forni, A. Cousin, and R. C. Wiens, Observation of >5 wt.% Zinc by ChemCam LIBS at the Kimberley, Gale crater, Mars, J. Geophys. Research, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302528

J. Lasue, Y. Quesnel, B. Langlais, and E. Chassefière, Methane storage capacity of the early martian cryosphere, Icarus, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01251215

J. Lasue, Mars exploration today, Science and Culture, 2015.

J. Lasue, A. C. Levasseur-regourd, A. Lazarian, ;. Kolokolova, A. C. Levasseur-regourd et al., Polarization of the zodiacal light, Polarimetry of Stars and Planetary Systems
URL : https://hal.archives-ouvertes.fr/insu-01782562

. Hough, , 2015.

J. Lasue, Quantitative assessments of the martian hydrosphere, Space Sci. Rev, vol.174, p.155, 2013.

J. Lasue, R. C. Wiens, S. M. Clegg, D. T. Vaniman, and K. H. Joy, Remote Laser-Induced Breakdown Spectroscopy (LIBS) for lunar exploration, J. Geophys. Res, vol.117, p.1, 2012.

J. Lasue, R. Botet, A. C. Levasseur-regourd, E. Hadamcik, and W. Kofman, Appearance of layered structures in numerical simulations of polydisperse bodies accretion : application to cometary nuclei, vol.213, pp.369-381, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00575729

J. Lasue, Nonlinear mapping technique for visual inspection and clustering assessment of LIBS data : application to ChemCam data, Analytical and Bioanalytical Chemistry, vol.400, pp.3247-3260, 2011.

J. Lasue, T. Stepinski, and S. Bell, Automated classification of Interplanetary Dust Particles : JSC Cosmic Dust Catalog Volume, Meteoritics & Planetary Science, vol.15, pp.783-797, 2010.

J. Lasue, R. Botet, A. Levasseur-regourd, and E. Hadamcik, Cometary nuclei internal structure from early aggregation simulations, vol.203, pp.599-609, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00723884

J. Lasue, S. Maurice, P. Y. Meslin, O. Forni, S. Schroder et al., ChemCam analysis of martian fine dust, A. Mezzacappa, H. Newsom, R.C. Wiens and the MSL Science Team Lunar and Planetary Science Conference, 2014.

J. Lasue, S. Maurice, P. Y. Meslin, O. Forni, S. Schroder et al., ChemCam analysis of martian fine dust

R. C. Newsom, Wiens and the MSL Science Team European Planetary Science Congress, 2013.

J. Lasue, E. Hadamcik, J. B. Renard, and A. C. Levasseur-regourd, Thermal Model of Comet Nuclei : Implications for Rosetta, 14th Electromagnetic Light Scattering Conference, 2013.

J. Lasue, M. C. De-sanctis, M. T. Capria, D. Turrini, and A. Coradini, Comet nuclei primordial aggregation effects on their internal structure, Lunar and Planetary Science Conference XLI, vol.13, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00790191

, Compositional classes of the IDPs in the, Europlanet, 2009.

, Thermal simulations of 67P/Churyumov-Gerasimenko : shape and obliquity effects, J

M. C. Lasue, G. De-sanctis, M. T. Magni, A. Capria, and . Coradini, Europlanet, 2009.

J. Lasue and S. M. Clifford, Long-term evolution of the Martian cryosphere

, Europlanet, 2009.

, Quasi 3-D approach for thermal evolution of non-spherically shaped comet

J. De-sanctis, G. Lasue, M. T. Magni, and . Capria, Europlanet, 2009.

J. Lasue and S. M. Clifford, The impact of astronomically induced insolation variations on the extent of the Martian cryosphere, Workshop on Modeling Martian Hydrous Environments, 2009.

, Comet nuclei aggregation and thermal simulations to prepare the Rosetta mission, J

A. C. Lasue, W. Levasseur-regourd, R. Kofman, A. Botet, M. T. Coradini et al.,

C. Desanctis and D. Turrini, , 2008.

J. Lasue, A. Coradini, M. C. Desanctis, A. C. Levasseur-regourd, R. Botet et al., Shape effect in aggregation and thermal evolution of comet nuclei

J. Lasue, . Forni, . Anderson, . Berger, . Clegg et al., RC Wiens, and the MSL Science Team "Partial Least Squares Sensitivity Analysis and Improvements for ChemCam LIBS Data Analysis on Mars, 2013.

J. Lasue, R. C. Wiens, D. Vaniman, S. M. Clegg, J. Barefield et al., ChemCam Mars Science Laboratory Fast Motion Field Test results, 2011.

J. Lasue, R. C. Wiens, O. Forni, and S. M. Clegg, Comparison of Multivariate Data Representation and Quantification Techniques for ChemCam LIBS on Mars, Laser Induced Breakdown Spectroscopy Conference, 2010.

J. Lasue, T. F. Stepinski, and S. W. Bell, Automatic Classification of Interplanetary Dust Particles, Lunar and Planetary Science Conference XLI, 2010.

&. J. Rosetta, A. Lasue, M. C. Coradini, A. C. De-sanctis, R. Levasseur-regourd et al., Journées Jeunes Chercheurs du CNES, 2007.

, Determination of cometary dust physical properties from light scattering observations, Division of Planetary Sciences (DPS), 2006.

J. Lasue, A. C. Levasseur-regourd, E. Hadamcik, and J. Renard, Scattering by coated spheres : experimental results and numerical simulations, Russie), 2006.

J. Lasue, A. C. Levasseur-regourd, E. Hadamcik, and J. B. Renard, Aggregate model of cometary dust : comparison with polarimetric and thermal emission observations, Asteroids, Comets, Meteors

. Société-française-d'astronomie-et-d'astrophysique, , 2005.

, Diffusion lumineuse par des particules solides : simulations par des grains avec manteaux et agrégats" J. Lasue, A.C. Levasseur-Regourd ; at the Workshop Physico-chimie des disques proto-planétaires et couplage grains-gaz at the Astrophysics Laboratory of Marseille, 2005.

, Core-mantle(s) model to simulate cometary dust particles physical properties, Division of Planetary Sciences (DPS), 2004.

C. N. Achilles, Mineralogy of an active eolian sediment from the Namib dune, Journal of Geophysical Research : Planets, vol.122, issue.11, pp.2344-2361, 2017.

R. Anderson and J. F. Bell, Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site., Mars, The International Journal of Mars Science and Exploration, vol.5, pp.76-128, 2010.

R. Anderson, ChemCam Data Processing-Quantitative Calibration, Lunar and Planetary Science Conference, 2015.

J. W. Ashley, Evidence for mechanical and chemical alteration of iron-nickel meteorites on Mars : Process insights for Meridiani Planum, Journal of Geophysical Research, vol.116, issue.E7, 2011.

H. Balsiger, K. Altwegg, W. Huebner, T. Owen, and R. Schulz, Origin and Early Evolution of Comet Nuclei : Workshop honouring Johannes Geiss on the occasion of his 80th birthday, vol.28, 2008.

H. Balsiger, Rosina-Rosetta orbiter spectrometer for ion and neutral analysis, Space Science Reviews, vol.128, issue.1-4, pp.745-801, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00161628

A. Bardyn, Carbon-rich dust in comet 67p/Churyumov-Gerasimenko measured by CO-SIMA/Rosetta, Monthly Notices of the Royal Astronomical Society, vol.469, issue.2, pp.712-722, 2017.

O. S. Barnouin-jha, A. F. Cheng, T. Mukai, S. Abe, N. Hirata et al., Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter, vol.198, pp.108-124, 2008.

C. Baruteau and Z. Zhu, Gas and dust hydrodynamical simulations of massive lopsided transition discs-II. Dust concentration, Monthly Notices of the Royal Astronomical Society, vol.458, issue.4, pp.3927-3941, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02369691

J. F. Bell, M. C. Malin, M. A. Caplinger, M. A. Ravine, A. S. Godber et al., Mastcam multispectral imaging on the Mars Science Laboratory rover : Wavelength coverage and imaging strategies at the Gale Crater field site, vol.43, 2012.

M. J. Belton, The internal structure of Jupiter family cometary nuclei from Deep Impact observations : The "talps" or "layered pile" model, Icarus, vol.187, issue.1, pp.332-344, 2007.

M. Benisty, Asymmetric features in the protoplanetary disk MWC 758, Astronomy & Astrophysics, vol.578, p.6, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01300582

M. S. Bentley, Aggregate dust particles at comet 67p/Churyumov-Gerasimenko, Nature, vol.537, issue.7618, p.73, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01366821

J. A. Berger, A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater, Geophysical Research Letters, vol.43, issue.1, pp.67-75, 2016.

I. Bertini, The scattering phase function of comet 67p/Churyumov-Gerasimenko coma as seen from the Rosetta/OSIRIS instrument, Monthly Notices of the Royal Astronomical Society, vol.469, issue.2, pp.404-415, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01574406

J. Bibring, Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, science, pp.400-404, 2006.

D. L. Bish, X-ray diffraction results from Mars Science Laboratory : Mineralogy of Rocknest at Gale crater, science, vol.341, p.932, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01291799

D. Blake, Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory, Space Science Reviews, vol.170, issue.1-4, pp.341-399, 2012.

D. F. Blake, Curiosity at Gale crater, Mars : Characterization and analysis of the Rocknest sand shadow, Science, vol.341, issue.6153, p.505, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01291798

P. A. Bland and T. B. Smith, Meteorite accumulations on Mars, Icarus, vol.144, issue.1, pp.21-26, 2000.

J. Blum and G. Wurm, The growth mechanisms of macroscopic bodies in protoplanetary disks, Annu. Rev. Astron. Astrophys, vol.46, pp.21-56, 2008.

K. M. Cannon, D. T. Britt, T. M. Smith, R. F. Fritsche, and D. Batcheldor, Mars global simulant MGS-1 : A Rocknest-based open standard for basaltic martian regolith simulants, Icarus, vol.317, pp.470-478, 2019.

F. A. Capaccioni, The organic-rich surface of comet 67p/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta, Science, vol.347, issue.6220, p.628, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02423383

B. Chide, Listening to laser sparks : A link between Laser-Induced Breakdown Spectroscopy, acoustic measurements and crater morphology, Spectrochimica Acta Part B : Atomic Spectroscopy, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02028808

V. Ciarletti, A. C. Levasseur-regourd, J. Lasue, C. Statz, D. Plettemeier et al., CONSERT suggests a change in local properties of 67p/Churyumov-Gerasimenko's nucleus at depth, Astronomy & Astrophysics, vol.583, p.40, 2015.

V. Ciarletti, A. Herique, J. Lasue, A. Levasseur-regourd, D. Plettemeier et al., CONSERT constrains the internal structure of 67p at a few metres size scale, Monthly Notices of the Royal Astronomical Society, vol.469, issue.2, pp.805-817, 2017.

V. Ciarletti, Y. Hervé, A. L. Gall, W. Benedix, and Y. Lu, The radar WISDOM for the ExoMars rover mission Interpretation of the polarimetric data and contribution to the operations, European Planetary Science Congress, vol.12, 2018.

S. M. Clegg, Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database, Spectrochimica Acta Part B : Atomic Spectroscopy, vol.129, pp.64-85, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02343917

N. Fray, High-molecular-weight organic matter in the particles of comet 67p/Churyumov-Gerasimenko, Nature, vol.538, issue.7623, p.72, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01362335

C. Freissinet, Organic molecules in the sheepbed mudstone, gale crater, mars, Journal of Geophysical Research : Planets, vol.120, issue.3, pp.495-514, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01218165

A. Fuente, C. Baruteau, R. Neri, A. Carmona, M. Agúndez et al., Probing the Cold Dust Emission in the AB Aur Disk : A Dust Trap in a Decaying Vortex ?, The Astrophysical Journal Letters, vol.846, issue.1, p.3, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02369649

A. Fujiwara, The rubble-pile asteroid Itokawa as observed by Hayabusa, Science, issue.5778, pp.1330-1334, 2006.

M. Fukagawa, Local enhancement of the surface density in the protoplanetary ring surrounding HD 142527, Publications of the Astronomical Society of Japan, vol.65, issue.6, 2013.

M. Fulle and J. Blum, Fractal dust constrains the collisional history of comets, Monthly Notices of the Royal Astronomical Society, vol.469, issue.2, pp.39-44, 2017.

M. Fulle, The phase function and density of the dust observed at comet 67p/Churyumov-Gerasimenko, Monthly Notices of the Royal Astronomical Society, vol.476, issue.2, pp.2835-2839, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02108705

P. Geladi and B. R. Kowalski, Partial least-squares regression : a tutorial, Analytica chimica acta, vol.185, pp.1-17, 1986.

R. Gellert, Alpha Particle X-ray Spectrometer (APXS) : Results from Gusev crater and calibration report, Journal of Geophysical Research, vol.111, issue.E2, 2006.

W. Goetz, Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust, Nature, vol.436, issue.7047, 2005.

T. I. Gombosi and H. L. Houpis, An icy-glue model of cometary nuclei, Hungarian Academy of Sciences, 1986.

T. A. Goudge, J. F. Mustard, J. W. Head, C. I. Fassett, and S. M. Wiseman, Assessing the mineralogy of the watershed and fan deposits of the Jezero crater paleolake system, Mars, Journal of Geophysical Research : Planets, vol.120, issue.4, pp.775-808, 2015.

H. Graham, Characterization and Development of a Mineralogical and Chemical Analog of Cumberland Drill Sample Sediments for Organic Molecule Identification in Evolved Gas Analysis Experiments, AGU Fall Meeting Abstracts, 2018.

J. M. Greenberg and J. I. Hage, From interstellar dust to comets-A unification of observational constraints, Astrophysical Journal, vol.361, p.260, 1990.

J. Grossman, Meteoritical Bulletin Database, 2011.

J. P. Grotzinger, J. A. Crisp, A. R. Vasavada, and M. S. Team, Curiosity's mission of exploration at Gale Crater, Mars, Elements, vol.11, issue.1, pp.19-26, 2015.

J. P. Grotzinger, A habitable fluvio-lacustrine environment at Yellowknife Bay, Science, vol.343, issue.6169, p.777, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01293840

S. Gulkis, Subsurface properties and early activity of comet 67p/Churyumov-Gerasimenko, Science, vol.347, issue.6220, p.709, 2015.

S. Gupta, Making sense of martian sediments at the Kimberley, Gale crater, AGU Fall Meeting Abstracts, 2014.

V. E. Hamilton, H. Y. Mcsween, and B. Hapke, Mineralogy of Martian atmospheric dust inferred from thermal infrared spectra of aerosols, Journal of Geophysical Research, vol.110, issue.E12, 2005.

S. Hamran, RIMFAX : A GPR for the Mars 2020 rover mission, 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), pp.1-4, 2015.

E. Heggy, G. Scabbia, L. Bruzzone, and R. T. Pappalardo, Radar probing of Jovian icy moons : Understanding subsurface water and structure detectability in the JUICE and Europa missions, vol.285, pp.237-251, 2017.

A. Herique, J. Lasue, Y. Rogez, S. Zine, and W. Kofman, Rosetta rendezvous and CONSERT operations in 2014 : A chimeric surface model of 67p/Churyumov Gerasimenko, Planetary and Space Science, vol.67, issue.1, pp.84-91, 2012.

M. W. Hitzman, N. A. Reynolds, D. F. Sangster, C. R. Allen, and C. E. Carman, Classification, genesis, and exploration guides for nonsulfide zinc deposits, Economic Geology, vol.98, issue.4, pp.685-714, 2003.

M. Hoang, Etude de la coma de la comète 67P/Churyumov-Gerasimenkoà l'aide des données de l'instrument ROSINA/RTOFà bord de Rosetta, 2018.

M. Hoang, The heterogeneous coma of comet 67p/Churyumov-Gerasimenko as seen by ROSINA : H2o, CO2, and CO from, Astronomy & Astrophysics, vol.600, p.77, 2014.

H. H. Hsieh and D. Jewitt, A population of comets in the main asteroid belt, Science, issue.5773, pp.561-563, 2006.

W. F. Huebner, Seismological investigation of asteroid and comet interiors, Mitigation of hazardous comets and asteroids, p.234, 2004.

W. F. Huebner, J. Benkhoff, M. Capria, A. Coradini, C. De et al., Heat and gas diffusion in comet nuclei, 2006.

M. Humayun, Origin and age of the earliest Martian crust from meteorite NWA 7533, Nature, issue.7477, p.513, 2013.

M. Hässig, Time variability and heterogeneity in the coma of 67p/Churyumov-Gerasimenko, Science, vol.347, issue.6220, p.276, 2015.

A. Hérique, Cosmochemical implications of CONSERT permittivity characterization of 67p/CG, Monthly Notices of the Royal Astronomical Society, vol.462, pp.516-532, 2017.

A. Hérique, Direct observations of asteroid interior and regolith structure : science measurement requirements, Advances in Space Research, vol.62, issue.8, pp.2141-2162, 2018.

F. Hörz, Impact features on Stardust : Implications for comet 81p/Wild 2 dust, science, pp.1716-1719, 2006.

C. D. O'connell-cooper, APXS-derived chemistry of the Bagnold dune sands : Comparisons with Gale Crater soils and the global Martian average, Journal of Geophysical Research, vol.122, issue.12, pp.2623-2643, 2017.

L. Ojha, K. Lewis, S. Karunatillake, and M. Schmidt, The Medusae Fossae Formation as the single largest source of dust on Mars, Nature communications, vol.9, issue.1, p.2867, 2018.

A. M. Ollila, J. Lasue, H. E. Newsom, R. A. Multari, R. C. Wiens et al., Comparison of two partial least squares-discriminant analysis algorithms for identifying geological samples with the ChemCam laser-induced breakdown spectroscopy instrument, Applied optics, vol.51, issue.7, pp.130-142, 2012.

A. M. Ollila, Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity's ChemCam : early results for Gale crater from Bradbury landing site to Rocknest, Journal of Geophysical Research, vol.119, issue.1, pp.255-285, 2014.

R. Orosei, Radar evidence of subglacial liquid water on Mars, First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region, pp.490-493, 2015.

S. Potin, O. Brissaud, P. Beck, B. Schmitt, Y. Magnard et al., SHA-DOWS : a spectro-gonio radiometer for bidirectional reflectance studies of dark meteorites and terrestrial analogs : design, calibrations, and performances on challenging surfaces, Applied optics, vol.57, issue.28, pp.8279-8296, 2018.

D. Prialnik, J. Benkhoff, and M. Podolak, Modeling the structure and activity of comet nuclei, vol.359, p.387, 2004.

W. Rapin, Hydratation de la surface de Marsà partir des données du rover Curiosity, vol.3, 2016.

W. Rapin, Hydration state of calcium sulfates in Gale crater, Mars : Identification of bassanite veins, Earth and Planetary Science Letters, vol.452, pp.197-205, 2016.

M. S. Rice, Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Journal of Geophysical Research, vol.122, issue.1, pp.2-20, 2017.

J. Ridley, Ore deposit geology, 2013.

A. Rotundi, Coma dust environment observed by GIADA during the Perihelion of 67p/Churyumov-Gerasimenko, AGU Fall Meeting Abstracts, 2015.

M. Rowan-robinson and B. May, An improved model for the infrared emission from the zodiacal dust cloud : cometary, asteroidal and interstellar dust, Monthly Notices of the Royal Astronomical Society, vol.429, issue.4, pp.2894-2902, 2013.

F. Rull and J. Martinez-frias, , vol.18, pp.18-21, 2006.

V. Sautter, Igneous mineralogy at Bradbury Rise : The first ChemCam campaign at Gale crater, Journal of Geophysical Research : Planets, vol.119, issue.1, pp.30-46, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010113

V. Sautter, Nature Geoscience, vol.8, issue.8, p.605, 2015.

C. Schröder, J. W. Ashley, A. W. Tait, M. A. Velbel, P. J. Boston et al., Meteorites on Mars can help to decipher the Red Planet-should they be considered as samples of opportunity for Mars Sample Return ?, life, vol.22, p.23, 2018.

C. Schröder, Meteorites on Mars observed with the Mars exploration rovers, Journal of Geophysical Research : Planets, vol.113, issue.E6, 2008.

C. Schröder, Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars, Journal of Geophysical Research, vol.115, issue.E7, 2010.

S. Schröder, Hydrogen detection with ChemCam at Gale crater, vol.249, pp.43-61, 2015.

H. Sierks, On the nucleus structure and activity of comet 67p/Churyumov-Gerasimenko, Science, vol.347, issue.6220, p.1044, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01110122

A. H. Sihvola, Electromagnetic mixing formulas and applications, 47, Iet, 1999.

P. D. Spudis, Initial results for the north pole of the Moon from Mini-SAR, Chandrayaan-1 mission, Geophysical Research Letters, vol.37, issue.6, 2010.

B. Sutter, Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars : Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune, Journal of Geophysical Research, vol.122, issue.12, pp.2574-2609, 2017.

S. R. Taylor and S. Mclennan, Planetary crusts : their composition, origin and evolution, vol.10, 2009.

L. M. Thompson, Potassium-rich sandstones within the Gale impact crater, Mars : The APXS perspective, Journal of Geophysical Research : Planets, vol.121, issue.10, 1981.

B. J. Thomson, Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data, Icarus, vol.214, issue.2, pp.413-432, 2011.

A. H. Treiman, Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars : CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater), Journal of Geophysical Research : Planets, vol.121, issue.1, pp.75-106, 2016.

C. Van-cromphaut, V. G. De-resende, E. De-grave, and R. E. Vandenberghe, Mössbauer study of Meridiani Planum, the first iron-nickel meteorite found on the surface of Mars by the MER Opportunity, Meteoritics & Planetary Science, vol.42, issue.12, pp.2119-2123, 2007.

D. T. Vaniman, Mineralogy of a mudstone at Yellowknife Bay, Science, vol.343, issue.6169, p.480, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01303672

S. J. Weidenschilling, The origin of comets in the solar nebula : A unified model, Icarus, vol.127, issue.2, pp.290-306, 1997.

P. R. Weissman, D. F. Wellington, J. F. Bell, J. R. Johnson, K. M. Kinch et al., Are cometary nuclei primordial rubble piles ?, Visible to near-infrared MSL/Mastcam multispectral imaging : Initial results from select high-interest science targets within Gale Crater, vol.320, pp.1202-1217, 1986.

D. F. Wellington, J. R. Johnson, P. Meslin, and J. F. Bell, Iron Meteorite Candidates Within Gale Crater, Mars, from MSL/Mastcam Multispectral Observations, Lunar and Planetary Science Conference, vol.49, 2018.

F. L. Whipple, A comet model. I. The acceleration of Comet Encke, The Astrophysical Journal, vol.111, pp.375-394, 1950.

R. C. Wiens, S. Maurice, and F. Perez, The SuperCam remote sensing instrument suite for the Mars 2020 rover mission : A preview, Spectroscopy, pp.32-49, 2017.

R. C. Wiens, The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover : Body unit and combined system tests, Space science reviews, vol.170, issue.1-4, pp.167-227, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717246

R. C. Wiens, Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover, Spectrochimica Acta Part B : Atomic Spectroscopy, vol.82, pp.1-27, 2013.

R. C. Wiens, Composition and morphology of iron meteorites found in Gale Crater, Mars, 80th Annual Meeting of the Meteoritical Society, vol.1987, 2017.

R. M. Williams, Martian fluvial conglomerates at Gale crater, science, vol.340, pp.1068-1072, 2013.

M. J. Wolff, Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES, Journal of Geophysical Research, vol.111, issue.E12, 2006.

A. S. Yen, An integrated view of the chemistry and mineralogy of Martian soils, Nature, vol.436, issue.7047, p.49, 2005.

A. S. Yen, Nickel on Mars : Constraints on meteoritic material at the surface, Journal of Geophysical Research, vol.111, issue.E12, 2006.

Z. Zhu, R. Dong, J. M. Stone, and R. R. Rafikov, The structure of spiral shocks excited by planetary-mass companions, The Astrophysical Journal, vol.813, issue.2, p.88, 2015.

M. E. Zolensky, Mineralogy and petrology of comet 81p/Wild 2 nucleus samples, Science, issue.5806, pp.1735-1739, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00291519

, Liste de 5 publications jugées essentielles

J. Lasue, Martian Eolian Dust Probed by ChemCam, Geophysical Research Letters, vol.45, issue.20, p.10968, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02327162

J. Lasue, S. M. Clegg, O. Forni, A. Cousin, and R. C. Wiens, Observation of >5 wt.% Zinc by ChemCam LIBS at the Kimberley, Gale crater, Mars, J. Geophys. Research, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01302528

J. Lasue, R. C. Wiens, S. M. Clegg, D. T. Vaniman, and K. H. Joy, Remote Laser-Induced Breakdown Spectroscopy (LIBS) for lunar exploration, J. Geophys. Res, vol.117, p.1, 2012.

W. Kofman, A. Hérique, Y. Barbin, J. Barriot, and V. Ciarletti, Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar, Science, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01182590

J. Lasue, R. Botet, A. Levasseur-regourd, and E. Hadamcik, Cometary nuclei internal structure from early aggregation simulations, Icarus, vol.203, pp.599-609, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00723884

C. N. Achilles, R. T. Downs, D. W. Ming, E. B. Rampe, R. V. Morris et al., Mineralogy of an active eolian sediment from the Namib Dune, Gale Crater Mars, Journal of Geophysical Research: Planets, vol.122, pp.2344-2361, 2017.

R. E. Arvidson, J. L. Gooding, and H. J. Moore, The martian surface as imaged, sampled, and analyzed by the viking landers, Reviews of Geophysics, vol.27, issue.1, pp.39-60, 1989.

J. L. Bandfield, T. D. Glotch, and P. R. Christensen, Spectroscopic identification of carbonate minerals in the martian dust, Science, vol.301, issue.5636, pp.1084-1087, 2003.

P. Beck, A. Fau, P. Meslin, O. Forni, J. Lasue et al., Searching for carbon on mars with MSL/ChemCam, Lunar and Planetary Science Conference, vol.48, p.1216, 2017.

J. A. Berger, P. L. King, R. Gellert, J. L. Campbell, N. I. Boyd et al., MSL-APXS titanium observation tray measurements: Laboratory experiments and results for the rocknest fines at the curiosity field site in Gale Crater, Mars. Journal of Geophysical Research: Planets, vol.119, pp.1046-1060, 2014.

J. A. Berger, M. E. Schmidt, R. Gellert, J. L. Campbell, P. L. King et al., A global mars dust composition refined by the Alpha-Particle X-Ray Spectrometer in Gale Crater: Mars dust composition in Gale Crater, Geophysical Research Letters, vol.43, pp.67-75, 2016.

D. L. Bish, D. F. Blake, D. T. Vaniman, S. J. Chipera, R. V. Morris et al., X-ray diffraction results from Mars, Science Laboratory: Mineralogy of rocknest at Gale Crater, vol.341, p.932, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01291799

D. F. Blake, R. V. Morris, G. Kocurek, S. M. Morrison, R. T. Downs et al., Curiosity at Gale Crater, Mars: Characterization and analysis of the rocknest sand shadow, Science, vol.341, issue.6153, p.1239505, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01291798

D. Blake, D. Vaniman, C. Achilles, R. Anderson, D. Bish et al., Characterization and calibration of the chemin mineralogical instrument on Mars Science Laboratory, Space Science Reviews, vol.170, issue.1-4, pp.341-399, 2012.

J. L. Campbell, G. M. Perrett, R. Gellert, S. M. Andrushenko, N. I. Boyd et al., Calibration of the Mars Science Laboratory Alpha Particle X-Ray Spectrometer, Space Science Reviews, vol.170, issue.1-4, pp.319-340, 2012.

R. T. Clancy, S. W. Lee, G. R. Gladstone, W. W. Mcmillan, and T. Rousch, A new model for mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos, Journal of Geophysical Research, vol.100, issue.E3, p.5251, 1995.

B. C. Clark, A. K. Baird, R. J. Weldon, D. M. Tsusaki, L. Schnabel et al., Chemical composition of martian fines, Journal of Geophysical Research, vol.87, issue.B12, p.67, 1982.

S. M. Clegg, R. C. Wiens, R. Anderson, O. Forni, J. Frydenvang et al., Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.129, pp.64-85, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02343917

A. Cousin, E. Dehouck, P. Meslin, O. Forni, A. Williams et al., Geochemistry of the Bagnold dune field as observed by ChemCam and comparison with other aeolian deposits at Gale Crater, Journal of Geophysical Research: Planets, vol.122, pp.2144-2162, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02343903

A. Cousin, P. Y. Meslin, R. C. Wiens, W. Rapin, N. Mangold et al., Compositions of coarse and fine particles in martian soils at Gale: A window into the production of soils, Icarus, vol.249, pp.22-42, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02373391

E. Dehouck, S. M. Mclennan, P. Meslin, and A. Cousin, Constraints on abundance, composition, and nature of x-ray amorphous components of soils and rocks at Gale Crater, Mars, Journal of Geophysical Research: Planets, vol.119, pp.2640-2657, 2014.

B. L. Ehlmann, K. S. Edgett, B. Sutter, C. N. Achilles, M. L. Litvak et al., Chemistry, mineralogy, and grain properties at Namib and high dunes, Bagnold dune field, Gale Crater Mars: A synthesis of curiosity rover observations, Journal of Geophysical Research: Planets, vol.122, pp.2510-2543, 2017.

C. Fabre, S. Maurice, A. Cousin, R. C. Wiens, O. Forni et al., Onboard calibration igneous targets for the Mars Science Laboratory Curiosity Rover and the Chemistry Camera Laser Induced Breakdown Spectroscopy instrument, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.66, issue.3, pp.280-289, 2011.

O. Forni, S. Maurice, O. Gasnault, R. C. Wiens, A. Cousin et al., Independent component analysis classification of laser induced breakdown spectroscopy spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.86, pp.31-41, 2013.

T. S. Gabriel, C. Hardgrove, S. Czarnecki, W. Rampe, and C. N. Achilles, Water abundance of dunes in Gale crater, Mars from active neutron experiments & implications for amorphous phases, Geophysical Research Letters, vol.45, 2018.

R. Gellert, R. Rieder, J. Brïckner, B. C. Clark, G. Dreibus et al., Alpha Particle X-Ray Spectrometer (APXS): Results from Gusev Crater and calibration report, Journal of Geophysical Research, vol.111, 2006.

W. Goetz, P. Bertelsen, C. S. Binau, H. P. Gunnlaugsson, S. F. Hviid et al., Indication of drier periods on mars from the chemistry and mineralogy of atmospheric dust, Nature, vol.436, issue.7047, p.62, 2005.

J. Gómez-elvira, C. Armiens, L. Castañer, M. Domínguez, M. Genzer et al., REMS: The environmental sensor suite for the Mars Science Laboratory Rover, Space Science Reviews, vol.170, issue.1-4, pp.583-640, 2012.

V. E. Hamilton, H. Y. Mcsween, and B. Hapke, Mineralogy of martian atmospheric dust inferred from thermal infrared spectra of aerosols, Journal of Geophysical Research, vol.110, 2005.

J. R. Johnson, J. F. Bell, . Iii, S. Bender, D. Blaney et al., ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Mars. Icarus, vol.249, pp.74-92, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02373393

A. Kleinböhl, J. T. Schofield, D. M. Kass, W. A. Abdou, C. R. Backus et al., Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity, Journal of Geophysical Research, vol.114, 2009.

G. Klingelhoefer, R. V. Morris, B. Bernhardt, D. Rodionov, J. P. De-souza et al., Athena MIMOS II Mössbauer spectrometer investigation, Journal of Geophysical Research, vol.108, issue.E12, 2003.

N. L. Lanza, A. M. Ollila, A. Cousin, R. C. Wiens, S. Clegg et al., Understanding the signature of rock coatings in Laser-Induced Breakdown Spectroscopy data, Icarus, vol.249, pp.62-73, 2015.

L. Mouélic, S. Gasnault, O. Herkenhoff, K. E. Bridges, N. T. Langevin et al., The ChemCam remote Micro-Imager at Gale Crater: Review of the first year of operations on Mars, Icarus, vol.249, pp.93-107, 2015.

M. T. Lemmon, M. J. Wolff, M. D. Smith, R. T. Clancy, D. Banfield et al., Atmospheric imaging results from the mars exploration rovers: Spirit and opportunity, Science, vol.306, issue.5702, pp.1753-1756, 2004.

L. A. Leshin, P. R. Mahaffy, C. R. Webster, M. Cabane, P. Coll et al., Volatile, isotope, and organic analysis of martian fines with the mars curiosity rover, Science, vol.341, issue.6153, p.1238937, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00922263

M. B. Madsen, P. Bertelsen, W. Goetz, C. S. Binau, M. Olsen et al., Magnetic properties experiments on the Mars Exploration Rover Mission, Journal of Geophysical Research, vol.108, issue.E12, p.8069, 2003.

M. B. Madsen, W. Goetz, P. Bertelsen, C. S. Binau, F. Folkmann et al., Overview of the magnetic properties experiments on the Mars Exploration Rovers, Journal of Geophysical Research, vol.114, 2009.

S. Maurice, R. C. Wiens, M. Saccoccio, B. Barraclough, O. Gasnault et al., The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: Science objectives and mast unit description, Space Science Reviews, vol.170, pp.95-166, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00732883

D. J. Mccleese, J. T. Schofield, F. W. Taylor, S. B. Calcutt, M. C. Foote et al., Mars Climate Sounder: An investigation of thermal and water vapor structure, dust and condensate distributions in the atmosphere, and energy balance of the polar regions, Journal of Geophysical Research, vol.112, 2007.

N. Melikechi, A. Mezzacappa, A. Cousin, N. L. Lanza, J. Lasue et al., Correcting for variable laser-target distances of laser-induced breakdown spectroscopy measurements with ChemCam using emission lines of Martian dust spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.96, pp.51-60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01301692

P. Meslin, O. Ganault, O. Forni, S. Schröder, A. Cousin et al., Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars, Science, vol.341, issue.6153, p.1238670, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01010254

A. Mezzacappa, N. Melikechi, A. Cousin, R. C. Wiens, J. Lasue et al., Application of distance correction to ChemCam Laser-Induced Breakdown Spectroscopy measurements, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.120, pp.19-29, 2016.

D. W. Ming, R. Gellert, R. V. Morris, R. E. Arvidson, J. Brueckner et al., Geochemical properties of rocks and soils in Gusev Crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate, Journal of Geophysical Research, vol.113, 2008.

F. Montmessin, New insights into martian dust distribution and water-ice cloud microphysics, Journal of Geophysical Research, vol.107, issue.E6, 2002.

R. V. Morris, G. Klingelhoefer, C. Schröder, D. S. Rodionov, A. Yen et al., Mössbauer mineralogy of rock, soil, and dust at Gusev Crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, Journal of Geophysical Research, vol.111, 2006.

C. D. O'connell-cooper, J. G. Spray, L. M. Thompson, R. Gellert, J. A. Berger et al., APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global martian average, Journal of Geophysical Research: Planets, vol.122, pp.2623-2643, 2017.

L. Ojha, K. Lewis, S. Karunatillake, and M. Schmidt, The Medusae Fossae Formation as the single largest source of dust on Mars, Nature Communications, vol.9, issue.1, 2018.

A. M. Ollila, J. G. Blank, R. C. Wiens, J. Lasue, H. E. Newsom et al., Preliminary results on the capabilities of the Chem-Cam, Laser-Induced Breakdown Spectroscopy (LIBS) instrument to detect carbon on Mars, Lunar and Planetary Science Conference, vol.42, p.2395, 2011.

A. M. Ollila, H. E. Newsom, R. C. Wiens, J. Lasue, S. M. Clegg et al., Early results from Gale, Crater on ChemCam detections of carbon, lithium, and rubidium, Lunar and Planetary Science Conference, vol.44, p.2188, 2013.

J. B. Pollack, M. E. Ockert-bell, and M. K. Shepard, Viking lander image analysis of martian atmospheric dust, Journal of Geophysical Research, vol.100, issue.E3, p.5235, 1995.

W. Rapin, P. Meslin, S. Maurice, R. C. Wiens, D. Laporte et al., Quantification of water content by Laser Induced Breakdown Spectroscopy on Mars, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.130, pp.82-100, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01636031

R. Rieder, R. Gellert, J. Brückner, G. Klingelhöfer, G. Dreibus et al., The new athena Alpha Particle X-Ray Spectrometer for the Mars Exploration Rovers, Journal of Geophysical Research, vol.108, issue.E12, p.8066, 2003.

S. W. Ruff, Spectral evidence for zeolite in the dust on Mars, Icarus, vol.168, issue.1, pp.131-143, 2004.

. Lasue and . Al,

, Geophysical Research Letters

V. Sautter, C. Fabre, O. Forni, M. J. Toplis, A. Cousin et al., Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale Crater, Journal of Geophysical Research: Planets, vol.119, pp.30-46, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010113

S. Schröder, P. Meslin, O. Gasnault, S. Maurice, A. Cousin et al., Hydrogen detection with ChemCam at Gale Crater, vol.249, pp.43-61, 2015.

E. M. Stolper, M. B. Baker, M. E. Newcombe, M. E. Schmidt, A. H. Treiman et al., The petrochemistry of Jake_m: A martian mugearite, Science, vol.341, issue.6153, p.1239463, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01315524

B. Sutter, A. C. Mcadam, P. R. Mahaffy, D. W. Ming, K. S. Edgett et al., Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity Rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune, Journal of Geophysical Research, vol.122, pp.2574-2609, 2017.

S. R. Taylor and S. Mclennan, Planetary crusts: Their composition, origin and evolution, 2009.

M. G. Tomasko, L. R. Doose, M. Lemmon, P. H. Smith, and E. Wegryn, Properties of dust in the martian atmosphere from the imager on Mars Pathfinder, Journal of Geophysical Research, vol.104, issue.E4, pp.8987-9007, 1999.

O. B. Toon, J. B. Pollack, and C. Sagan, Physical properties of the particles composing the martian dust storm of 1971-1972, Icarus, vol.30, issue.4, pp.663-696, 1977.

D. Vaniman, M. D. Dyar, R. Wiens, A. Ollila, N. Lanza et al., Ceramic ChemCam calibration targets on Mars Science Laboratory, Space Science Reviews, vol.170, pp.229-255, 2012.

A. F. Vaughan, J. R. Johnson, K. E. Herkenhoff, R. Sullivan, G. A. Landis et al., Pancam and microscopic imager observations of dust on the Spirit rover: Cleaning events, spectral properties, and aggregates, Mars, The International Journal of Mars Science and Exploration, vol.5, pp.129-145, 2010.

M. Vincendon, Y. Langevin, F. Poulet, A. Pommerol, M. Wolff et al., Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits, Icarus, vol.200, issue.2, pp.395-405, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00517246

R. C. Wiens, S. Maurice, B. Barraclough, M. Saccoccio, W. C. Barkley et al., The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests, Space Science Reviews, vol.170, issue.1-4, pp.167-227, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717246

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson et al., Pre-flight calibration and initial data processing for the ChemCam Laser-Induced Breakdown Spectroscopy instrument on the Mars Science Laboratory rover, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.82, pp.1-27, 2013.

M. J. Wolff, M. D. Smith, R. T. Clancy, N. Spanovich, B. A. Whitney et al., Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and mini-TES, Journal of Geophysical Research, vol.111, 2006.

A. S. Yen, R. Gellert, C. Schröder, R. V. Morris, J. F. Bell et al., An integrated view of the chemistry and mineralogy of martian soils, Nature, vol.436, issue.7047, pp.49-54, 2005.

R. B. Anderson, J. F. Bell, and I. , Geologic mapping and characterization of Gale crater and implications for its potential as a Mars Science Laboratory landing site, vol.5, pp.76-128, 2010.

R. Anderson, ChemCam results from the Shaler outcrop in Gale crater, Mars, vol.249, pp.2-21, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01122787

J. A. Berger, M. E. Schmidt, R. Gellert, and M. R. Fisk, Zinc enrichments in the rocks of Gale crater, Mars measured by MSL-APXS reflect both high Zn in Jake_M rocks and the concentration of Zn in sedimentary cements, Abstract P51E-3988 presented at 2014 Fall Meeting, 2014.

J. A. Berger, Germanium enrichments in sedimentary rocks in Gale crater, Mars: Constraining the timing of alteration and character of the protolith, Lunar Planet. Sci. Conf, vol.46, p.1564, 2015.

M. Boni, R. Terracciano, G. Balassone, S. A. Gleeson, and A. Matthews, The carbonate-hosted willemite prospects of the Zambezi Metamorphic Belt (Zambia), Miner. Deposita, vol.46, issue.7, pp.707-729, 2011.

G. Borg, K. Kärner, M. Buxton, R. Armstrong, and S. W. Van-der-merwe, Geology of the Skorpion supergene zinc deposit, southern Namibia, Econ. Geol, vol.98, issue.4, pp.749-771, 2003.

J. Brugger, D. C. Mcphail, M. Wallace, and J. Waters, Formation of willemite in hydrothermal environments, Econ. Geol, vol.98, issue.4, pp.819-835, 2003.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques, Spectrochim. Acta, Part B, vol.64, issue.1, pp.79-88, 2009.

A. Cousin, Compositions of coarse and fine particles in Martian soils at Gale: A window into the production of soils, Icarus, vol.249, pp.22-42, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02373391

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2006.

E. T. Degens and D. A. Ross, Hot Brines and Recent Heavy Metal Deposits in the Red Sea: A Geochemical and Geophysical Account, 2013.

C. Fabre, In situ calibration using univariate analyses based on the onboard ChemCam targets: First prediction of Martian rock and soil compositions, Spectrochim. Acta, Part B, vol.99, pp.34-51, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01110952

O. Forni, Fluorine and lithium at the Kimberley outcrop, Gale crater, Lunar Planet. Sci. Conf., XLVI, 2015.

C. Freissinet, Organic molecules in the Sheepbed mudstone, J. Geophys. Res. Planets, vol.120, pp.495-514, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01218165

R. Gellert, Chemistry of rocks and soils in Gusev Crater from the Alpha Particle X-ray Spectrometer, pp.829-832, 2004.

R. Gellert, APXS chemical composition of the Kimberley sandstone in Gale crater, Abstract P34A-05 presented at 2014 Fall Meeting, 2014.

W. Goetz, Mars Science Laboratory mission and science investigation, Copper along the traverse of the Curiosity rover, Gale crater, Mars, Lunar Planet. Sci. Conf., XLVII, vol.170, pp.5-56, 2012.

J. P. Grotzinger, A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars, Science, vol.343, issue.6169, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01293840

J. P. Grotzinger, J. A. Crisp, and A. R. Vasavada, Curiosity's mission of exploration at Gale crater, Mars, Elements, vol.11, issue.1, pp.19-26, 2015.

J. P. Grotzinger, Deposition, exhumation, and paleoclimate of an ancient lake deposit, Science, vol.350, issue.6257, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02334195

M. W. Hitzman, N. A. Reynolds, D. F. Sangster, C. R. Allen, and C. E. Carman, Classification, genesis, and exploration guides for nonsulfide zinc deposits, Econ. Geol, vol.98, issue.4, pp.685-714, 2003.

C. A. Johnson and B. J. Skinner, Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the New Jersey highlands, vol.98, pp.837-854, 2003.

J. R. Johnson, ChemCam passive reflectance spectroscopy of surface materials at the Curiosity landing site, Icarus, vol.249, pp.74-92, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02373393

A. Kramida, Y. Ralchenko, J. Reader, and . Team, NIST atomic spectra database (ver. 5.2), National Institute of Standards and Technology, 2014.

N. L. Lanza, High manganese concentrations in rocks at Gale crater, Mars, Geophys. Res. Lett, vol.41, pp.5755-5763, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131356

D. Large, The geology of non-sulphide zinc deposits-An overview zinc-exploration-calamine, Erzmetall, vol.54, issue.5, pp.264-274, 2001.

L. Deit, L. , E. Hauber, F. Fueten, M. Pondrelli et al., Sequence of infilling events in Gale crater, Mars: Results from morphology, stratigraphy, and mineralogy, J. Geophys. Res. Planets, vol.118, pp.2439-2473, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02359919

L. Deit and N. , The potassic sedimentary rocks in Gale crater, Mars as seen by ChemCam onboard Curiosity, Lunar Planet. Sci. Conf. XLVI, Abstract, 1438.

L. Mouélic and S. , The ChemCam remote micro-imager at Gale crater: Review of the first year of operations on Mars, Icarus, vol.249, pp.93-107, 2015.

K. Lodders, A survey of shergottite, nakhlite and chassigny meteorites whole-rock compositions, Meteorit. Planet. Sci, vol.33, issue.S4, pp.183-190, 1998.

N. Mangold, Chemical variations in Yellowknife Bay formation sedimentary rocks analyzed by ChemCam on board the Curiosity rover on Mars, J. Geophys. Res. Planets, vol.120, pp.452-482, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01281801

N. Mangold, L. Thompson, L. L. Deit, O. Forni, R. Gellert et al., The chemistry of fluvial sediments analyzed by the Curiosity rover, APXS Curiosity teams Team, vol.17, pp.2015-3839, 2015.

D. L. Massart, B. G. Vandginste, L. M. Buydens, and S. D. Jong, Handbook of Chemometrics and Qualimetrics: Part A, 1998.

S. Maurice, The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Science objectives and mast unit description, Space Sci. Rev, vol.170, issue.1-4, pp.95-166, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00732883

S. M. Mclennan, Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars, Science, vol.343, issue.6169, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01303021

P. Y. Meslin, Soil diversity and hydration as observed by ChemCam at Gale crater, Mars, Science, vol.341, issue.6153, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01010254

D. W. Ming, Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Science, vol.343, issue.6169, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01238192

A. W. Miziolek, V. Palleschi, and I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications, 2006.

N. Mondillo, M. Boni, G. Balassone, and I. M. Villa, The Yanque prospect (Peru): From polymetallic Zn-Pb mineralization to a nonsulfide deposit, Econ. Geol, vol.109, issue.6, pp.1735-1762, 2014.

N. Mondillo, F. Nieto, and G. Balassone, Micro-and nano-characterization of Zn-clays in nonsulfide supergene ores of southern Peru, Am. Mineral, vol.100, pp.2484-2496, 2015.

M. Nachon, Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars, J. Geophys. Res. Planets, vol.119, 1991.
URL : https://hal.archives-ouvertes.fr/hal-01301703

M. Nachon, Diagenetic features analyzed by ChemCam/Curiosity at Pahrump Hills, vol.46, p.1524, 2015.

A. M. Ollila, Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity's ChemCam: Early results for Gale crater from Bradbury landing site to Rocknest, J. Geophys. Res. Planets, vol.119, pp.255-285, 2014.

C. ;. Palache and M. C. Palucis, The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, The Minerals of Franklin and Sterling Hill, vol.180, pp.705-728, 1935.

V. Payré, Copper detection in Gale crater: First calibration and quantification using ChemCam data, Lunar Planet. Sci. Conf. XLVII. Ridley, J, 2013.

V. Sautter, Igneous mineralogy at Bradbury Rise: The first ChemCam campaign at Gale crater, J. Geophys. Res. Planets, vol.119, pp.30-46, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010113

V. Sautter, Nat. Geosci, vol.8, issue.8, pp.605-609, 2015.

M. E. Schmidt, Geochemical diversity in first rocks examined by the Curiosity rover in Gale crater: Evidence for and significance of an alkali and volatile-rich igneous source, J. Geophys. Res. Planets, vol.119, pp.64-81, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010023

S. Schröder, Hydrogen detection with ChemCam at Gale crater, vol.249, pp.43-61, 2015.

E. M. Stolper, The petrochemistry of Jake_M: A Martian mugearite, Constraints on the origin and evolution of the layered mound in Gale crater, Mars using Mars Reconnaissance Orbiter data, vol.214, pp.413-432, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01315524

A. H. Treiman, Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample, Journal of Geophysical Research, vol.121, pp.75-106, 2016.

A. L. Lasue, . Zn, . Kimberley, and . Chemcam, , p.351

D. T. Vaniman, Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars, Science, vol.343, issue.6169, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01303672

A. R. Vasavada, Overview of the Mars Science Laboratory mission: Bradbury landing to Yellowknife Bay and beyond, J. Geophys. Res. Planets, vol.119, pp.1134-1161, 2014.

K. H. Wedepohl, The composition of the continental crust, Geochim. Cosmochim. Acta, vol.59, issue.7, pp.1217-1232, 1995.

R. C. Wiens, The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: Body unit and combined system tests, Space Sci. Rev, vol.170, issue.1-4, pp.167-227, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717246

R. C. Wiens, Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover, Spectrochim. Acta, Part B, vol.82, pp.1-27, 2013.

R. M. Williams, Martian fluvial conglomerates at Gale crater, vol.340, pp.1068-1072, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01315518

S. A. Wilson, Data compilation for USGS reference material BHVO-2, Hawaiian Basalt. U.S. Geol. Surv. Open File Rep. Journal of Geophysical Research, 1997.

A. L. Lasue, . Zn, . Kimberley, and . Chemcam, , vol.352

R. Arai, T. , H. Takeda, A. Yamaguchi, and M. Ohtake, A new model of lunar crust: Asymmetry in crustal composition and evolution, Earth Planets Space, vol.60, pp.433-444, 2008.

J. R. Arnold, Ice at the lunar poles revisited, Lunar Planet. Sci., XVIII, pp.29-30, 1987.

Z. A. Arp, D. A. Cremers, R. C. Wiens, D. M. Wayne, B. Sallé et al., Analysis of water and water ice/soil mixtures using laser-induced breakdown spectroscopy: Application to Mars polar exploration, Appl. Spectrosc, vol.58, issue.8, pp.897-909, 2004.

G. J. Black, D. B. Campbell, and J. K. Harmon, Radar measurements of Mercury's north pole at 70 cm wavelength, Icarus, vol.209, issue.1, pp.224-229, 2010.

J. A. Bolger, Semi-quantitative laser-induced breakdown spectroscopy for analysis of mineral drill core, Appl. Spectrosc, vol.54, issue.2, pp.181-189, 2000.

A. G. Cameron and W. R. Ward, The origin of the Moon, Lunar Planet. Sci, vol.VII, pp.120-122, 1976.

J. Carpenter, R. Fisackerly, B. Houdou, A. Pradier, D. De-rossa et al., An ESA precursor mission to human exploration of the Moon, paper B01-0025-10 presented at the 38th COSPAR Scientific Assembly, Comm. on Space Res, pp.18-25, 2010.

S. D. Chevrel, P. C. Pinet, Y. Daydou, S. Maurice, D. J. Lawrence et al., Integration of the Clementine UV-VIS spectral reflectance data and the Lunar Prospector gamma-ray spectrometer data: A global-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances, J. Geophys. Res, vol.107, issue.E12, p.5132, 2002.

S. M. Clegg, R. C. Wiens, D. J. Lawrence, and J. E. Barefield, Lunar elemental analysis with remote laser induced breakdown spectroscopy (LIBS), paper presented at the Workshop on Science Associated with the Lunar Exploration Architecture, Lunar Planet. Inst, 2007.

S. M. Clegg, E. Sklute, M. D. Dyar, J. E. Barefield, and R. C. Wiens, Multivariate analysis of remote laser-induced breakdown spectroscopy spectra using partial least squares, principal component analysis, and related techniques, Spectrochim. Acta B, vol.64, pp.79-88, 2009.

A. Colaprete, Detection of water in the LCROSS ejecta plume, Science, vol.330, pp.463-468, 2010.

A. Cousin, S. Maurice, G. Berger, O. Forni, O. Gasnault et al., Depth profiles studies using ChemCam, Lunar Planet. Sci., XLII, Abstract, 1963.

I. A. Crawford and A. Smith, MoonLITE: A UK-led mission to the Moon, Astron. Geophys, vol.49, 2008.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy, 2006.

G. Crozaz, C. Floss, and M. Wadhwa, Chemical alteration and REE mobilization in meteorites from hot and cold deserts, Geochim. Cosmochim. Acta, vol.67, issue.24, pp.4727-4741, 2003.

J. M. Day, C. Floss, L. A. Taylor, M. Anand, and A. D. Patchen, Evolved mare basalt magmatism, high Mg/Fe feldspathic crust, chondritic impactors, and the petrogenesis of Antarctic lunar breccia meteorites Meteorite Hills 01210 and Pecora Escarpment 02007, Geochim. Cosmochim. Acta, vol.70, pp.5957-5989, 2006.

J. W. Delano, Scientific exploration of the Moon, Elements, vol.5, pp.11-16, 2009.

R. C. Elphic, D. J. Lawrence, W. C. Feldman, B. L. Barraclough, S. Maurice et al., Lunar Fe and Ti abundances: Comparison of Lunar Prospector and Clementine data, Science, vol.281, pp.1493-1496, 1998.

W. C. Feldman, S. Maurice, A. B. Binder, B. L. Barraclough, R. C. Elphic et al., Fluxes of fast and epithermal neutrons from Lunar Prospector: Evidence for water ice at the lunar poles, Science, vol.281, pp.1496-1500, 1998.

W. C. Feldman, D. J. Lawrence, R. C. Elphic, B. L. Barraclough, S. Maurice et al., Polar hydrogen deposits on the Moon, J. Geophys. Res, vol.105, issue.E2, pp.4175-4195, 2000.

W. C. Feldman, Evidence for water ice near the lunar poles, J. Geophys. Res, vol.106, issue.E10, p.251, 2001.

R. M. Fruland, Regolith Breccia Workbook, JSC 19045, Planet. Mater. Branch Publ, vol.66, 1983.

J. P. Greenwood, S. Itoh, N. Sakamoto, P. Warren, L. Taylor et al., Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon, Nat. Geosci, vol.4, pp.79-82, 2011.

W. K. Hartmann and D. R. Davis, Satellite-sized planetesimals and lunar origin, Icarus, vol.24, pp.90070-90076, 1975.

L. Haskin and P. H. Warren, Lunar chemistry, in Lunar Sourcebook: A User's Guide to the Moon, pp.357-474, 1991.

E. H. Hauri, A. E. Saal, J. A. Van-orman, and M. J. Rutherford, Juvenile water in the Moon's interior: New constraints from Apollo 15 lunar volcanic glasses, Abstract P41A-01 presented at 2010 Fall Meeting, pp.13-17, 2010.

G. H. Heiken and D. T. Vaniman, Lunar Sourcebook: A User's Guide to the Moon, Compendium of Chemical Terminology, 1991.

K. Ishibashi, Laser-induced breakdown spectroscopy measurement under low pressure simulating vacuum conditions, Eur. Planet. Network, pp.19-24, 2010.

K. Ishibashi, S. Ohno, T. Arai, K. Wada, S. Kameda et al., Prediction of the elemental composition of olivine by laser-induced breakdown spectroscopy (LIBS), Lunar Planet. Sci, 2011.

E. A. Jerde, P. H. Warren, R. V. Morris, G. H. Heiken, and D. T. Vaniman, New" samples from the Apollo 14, 16, and 17 landing sites, A potpourri of regolith breccias, vol.92, pp.526-536, 1987.

E. A. Jerde, P. H. Warren, and R. V. Morris, In quest of lunar regolith breccias of exotic provenance: A uniquely anorthositic sample from the Fra Mauro (Apollo 14) highlands, Earth Planet. Sci. Lett, vol.98, pp.90-108, 1990.

B. L. Jolliff, Large-scale separation of K-frac and REEP-frac in the source regions of Apollo impact-melt breccias, and a revised estimate of the KREEP composition, Int. Geol. Rev, vol.40, issue.10, pp.916-935, 1998.

B. L. Jolliff, R. L. Korotev, and L. A. Haskin, An iridium-rich iron micrometeorite with silicate inclusions from the moon, Lunar Planet. Sci, 1993.

B. L. Jolliff, J. J. Gillis, L. A. Haskin, R. L. Korotev, and M. A. Wieczorek, Major lunar crustal terranes: Surface expressions and crustmantle origins, J. Geophys. Res, vol.105, issue.E2, pp.4197-4216, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02458514

B. L. Jolliff, M. A. Wieczorek, C. K. Shearer-;-chantilly, . Va, B. L. Jolliff et al., MoonRise: A US robotic sample-return mission to address solar system wide processes, A. Huertas, and the MoonRise Team, vol.60, pp.3-8, 2006.

K. H. Joy, I. A. Crawford, S. S. Russell, and A. T. Kearsley, Lunar meteorite regolith breccias: An in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust, Meteorit. Planet. Sci, vol.45, pp.917-946, 2010.

A. K. Knight, N. L. Scherbarth, D. A. Cremers, and M. J. Ferris, Characterization of laser-induced breakdown spectroscopy (LIBS) for application to space exploration, Appl. Spectrosc, vol.54, pp.331-340, 2000.

R. L. Korotev, The meteorite component of Apollo 16 noritic impact melt breccias, J. Geophys. Res, vol.92, issue.B4, pp.491-512, 1987.

R. L. Korotev, Compositional variation in Apollo 16 impact-melt breccias and inferences for the geology and bombardment history of the Central Highlands of the Moon, Geochim. Cosmochim. Acta, vol.58, pp.3931-3969, 1994.

R. L. Korotev, On the relationship between the Apollo 16 ancient regolith breccias and feldspathic fragmental breccias, and the composition of the prebasin crust in the Central Highlands of the Moon, Meteorit. Planet. Sci, vol.31, pp.403-412, 1996.

R. L. Korotev, Some things we can infer from the Moon from the composition of the Apollo 16 regolith, Meteorit. Planet. Sci, vol.32, pp.447-478, 1997.

R. L. Korotev, Lunar geochemistry as told by lunar meteorites, Chem. Erde, vol.65, pp.297-346, 2005.

R. L. Korotev, B. L. Jolliff, R. A. Zeigler, and L. A. Haskin, Compositional constraints on the launch pairing of three brecciated lunar meteorites of basaltic composition, Antarct. Meteorit. Res, vol.16, pp.152-175, 2003.

R. L. Korotev, R. A. Zeigler, and B. L. Jolliff, Feldspathic lunar meteorites Pecora Escarpment 02007 and Dhofar 489: Contamination of the surface of the lunar highlands by post-basin impacts, Geochim. Cosmochim. Acta, vol.70, pp.5935-5956, 2006.

R. L. Korotev, R. A. Zeigler, B. L. Jolliff, A. J. Irving, and T. E. Bunch, Compositional and lithological diversity among brecciated lunar meteorites of intermediate iron concentration, Meteorit. Planet. Sci, vol.44, pp.1287-1322, 2009.

N. L. Lanza, M. D. Deans, R. C. Wiens, S. M. Clegg, S. D. Humphries et al., Using LIBS to determine composition of natural rock coatings and weathering rinds for planetary exploration, paper P-66 presented at the 6th International Conference on Laser-Induced Breakdown Spectroscopy, pp.13-17, 2010.

D. J. Lawrence, W. C. Feldman, B. L. Barraclough, A. B. Binder, R. C. Elphic et al., High resolution measurements of absolute thorium abundances on the lunar surface, Geophys. Res. Lett, vol.26, issue.17, pp.2681-2684, 1999.

D. J. Lawrence, W. C. Feldman, B. L. Barraclough, A. B. Binder, R. C. Elphic et al., Thorium abundances on the lunar surface, J. Geophys. Res, vol.105, issue.E8, pp.307-327, 2000.

P. G. Lucey, G. J. Taylor, B. R. Hawke, and P. D. Spudis, FeO and TiO 2 concentrations in the South Pole-Aitken basin: Implications for mantle composition and basin formation, J. Geophys. Res, vol.103, issue.E2, pp.3701-3708, 1998.

D. L. Massart, B. G. Vandeginste, L. M. Buydens, and S. D. Jong, Handbook of Chemometrics and Qualimetrics: Part A, 1998.

F. M. Mccubbin, A. Steele, E. H. Hauri, H. Nekvasil, S. Yamashita et al., Nominally hydrous magmatism on the Moon, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.223-234, 2010.

D. S. Mckay, D. D. Bogard, R. V. Morris, R. L. Korotev, P. Johnson et al., 16 regolith breccias: Characterization and evidence for early formation in the mega-regolith, J. Geophys. Res, vol.91, issue.B4, pp.277-303, 1986.

D. S. Mckay, D. D. Bogard, R. V. Morris, R. L. Korotev, S. J. Wentworth et al., Apollo 15 regolith breccias: Windows to a KREEP regolith, Lunar Planet. Sci., XIX, pp.19-41, 1989.

D. S. Mckay, R. V. Morris, and A. J. Jurewicz, Reduction of simulated lunar glass by carbon and hydrogen and its implications for lunar base oxygen production, Lunar Planet. Sci, vol.XXII, pp.881-882, 1991.

D. S. Mckay, J. L. Carter, W. B. Boles, C. C. Hallen, and J. H. Allton, JSC-1: A new lunar regolith simulant, Lunar Planet. Sci., XXIV, pp.963-964, 1993.

D. S. Mckay, J. L. Carter, W. W. Boles, C. C. Allen, and J. H. Allton, JSC-1: A new lunar soil simulant, Eng. Constr. Oper. Space, IV, pp.857-866, 1994.

H. Y. Mcsween and . Jr, A new type of chondritic meteorite found in lunar soil, Earth Planet. Sci. Lett, vol.31, issue.76, pp.90211-90220, 1976.

J. M. Mermet, P. Mauchien, and J. L. Lacour, Processing of shot-toshot raw data to improve precision in laser-induced breakdown spectrometry microprobe, Spectrochim. Acta B, vol.63, pp.999-1005, 2008.

B. Mevik and R. Wehrens, The pls Package: Principal component and partial least squares regression in R, J. Stat. Software, vol.18, issue.2, pp.1-24, 2007.

A. Mezzacappa, L. Nortier, S. Clegg, R. C. Wiens, and N. Melikechi, Investigation of LIBS under low pressure for application to planetary exploration, paper P-82 presented at the Sixth International Conference on Laser-Induced Breakdown Spectroscopy, pp.13-17, 2010.

I. G. Mitrofanov, Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND, Science, vol.330, pp.483-486, 2010.

, Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and applications, 2006.

R. V. Morris, R. Score, C. Dardano, and G. Heiken, The scientific context for the exploration of the Moon, Rep. 11954, Natl, Planet. Mater. Branch Publ, vol.67, 1983.

C. R. Neal and L. A. Taylor, Petrogenesis of mare basalts: A record of lunar volcanism, Geochim. Cosmochim. Acta, vol.56, pp.2177-2211, 1992.

S. Nozette, C. L. Lichtenberg, P. Spudis, R. Bonner, W. Ort et al., The Clementine bistatic radar experiment, Science, vol.274, pp.1495-1498, 1996.

T. Owen, The contributions of comets to planets, atmospheres, and life: Insights from Cassini-Huygens, Gelileo, Giotto, and the inner planet missions, Space Sci. Rev, vol.138, pp.301-316, 2008.

C. M. Pieters, J. W. Head, L. Gaddis, B. Jolliff, and M. Duke, Rock types of South Pole-Aitken basin and extent of basaltic volcanism, J. Geophys. Res, vol.106, issue.E11, pp.1-28, 2001.

Y. Ralchenko, A. E. Kramida, J. Reader, and . Team, R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput, 2010.

J. M. Rhodes and D. P. Blanchard, Apollo11 breccias and soils: Aluminous mare basalts or multi-component mixtures?, Lunar Planet. Sci., XII, pp.607-620, 1982.

S. Rock, A. Marcano, Y. Markushin, C. Sabanayagam, and N. Melikechi, Elemental analysis of laser-induced breakdown spectroscopy aided by an empirical spectral database, Appl. Opt, vol.47, pp.99-104, 2008.

A. E. Rubin, The Hadley Rille enstatite chondrite and its agglutinate-like rim: Impact melting during accretion to the Moon, Meteorit. Planet. Sci, vol.32, pp.135-141, 1997.

G. Ryder, M. Lindstrom, and K. Willis, The reliability of macroscopic identification of lunar coarse fines particles and the petrogenesis of 2-4 mm particles in Apennine front sample 15243, Lunar Planet. Sci, vol.XVIII, pp.219-232, 1988.

B. Sallé, D. A. Cremers, S. Maurice, and R. C. Wiens, Laserinduced breakdown spectroscopy for space exploration applications: Influence of the ambient pressure on the calibration curves prepared from soil and clay samples, Spectrochim. Acta B, vol.60, pp.479-490, 2005.

P. H. Schultz, B. Hermalyn, A. Colaprete, K. Ennico, M. Shirley et al., The LCROSS cratering experiment, Science, vol.330, pp.468-472, 2010.

C. K. Shearer and J. J. Papike, Magmatic evolution of the Moon, Am. Mineral, vol.84, pp.1469-1494, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02458537

R. Shu, H. Qi, G. Lu, D. Ma, Z. He et al., Laser-induced breakdown spectroscopy based detection of lunar soil simulants for moon exploration, Chin. Opt. Lett, vol.5, pp.58-59, 2007.

S. B. Simon, J. J. Papike, D. C. Gosselin, and J. C. Laul, Petrology and chemistry of Apollo 12 regolith breccias, J. Geophys. Res, vol.90, pp.75-86, 1985.

S. B. Simon, J. J. Papike, J. C. Laul, S. S. Hughes, and R. A. Schmitt, Apollo 16 regolith breccias and soils: Recorders of exotic component addition to the Descartes region of the moon, Earth Planet. Sci. Lett, vol.89, pp.90167-90174, 1988.

A. Smith, LunarEx-a proposal to cosmic vision, Exp. Astron, vol.23, pp.711-740, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02458555

T. C. Sorensen and P. D. Spudis, The Clementine mission-A 10-year perspective, J. Earth Syst. Sci, vol.114, pp.645-668, 2005.

R. Sridharan, S. M. Ahmed, T. P. Das, P. Sreelatha, P. Pradeepkumar et al., Direct' evidence for water (H 2 O) in the sunlit lunar ambience from CHACE on MIP of Chandrayaan 1, Planet. Space Sci, vol.58, pp.947-950, 2010.

T. Stehrer, B. Praher, R. Viskup, J. Jasik, H. Wolfmeir et al., Laser-induced breakdown spectroscopy of iron oxide powder, J. Anal. At. Spectrom, vol.24, pp.973-978, 2009.

H. Takeda, A. Yamaguchi, D. D. Bogard, Y. Karouji, M. Ebihara et al., Magnesian anothosites and a deep crustal rock from the farside crust of the Moon, Earth Planet. Sci. Lett, vol.247, pp.171-184, 2006.

S. Tanaka, T. Hashimoto, T. Hoshino, T. Okada, and M. Kato, The next Japanese lunar mission, SELENE-2: Present status and science objective, Abstract 2044 presented at the NLSI Lunar Science Conference, pp.20-23, 2008.

S. R. Taylor, Planetary Science: A Lunar Perspective, Lunar and Planet. Inst, 1982.

S. R. Taylor, C. M. Pieters, and G. J. Macpherson, Earth-Moon system, planetary science, and lessons learned, in New Views of the Moon, Rev. Mineral. Geochem, vol.60, pp.657-704, 2006.

J. R. Thompson, R. C. Wiens, J. E. Barefield, D. T. Vaniman, H. E. Newsom et al., Remote laser-induced breakdown spectroscopy analyses of Dar al Gani 476 and Zagami Martian meteorites, J. Geophys. Res, vol.111, p.5006, 2006.

J. M. Tucker, M. D. Dyar, M. W. Schaefer, S. M. Clegg, and R. C. Wiens, Optimization of laser-induced breakdown spectroscopy for rapid geochemical analysis, Chem. Geol, vol.277, pp.137-148, 2010.

J. M. Vadillo and J. J. Laserna, Laser-induced plasma spectrometry: Truly a surface analytical tool, Spectrochim. Acta B, vol.59, pp.147-161, 2004.

P. H. Warren, KREEP: Major-element diversity, trace-element uniformity (almost), Proceedings of the Workshop on Moon in Transition: Apollo 14, KREEP, and Evolved Lunar Rocks, pp.149-153, 1989.

P. H. Warren and G. W. Kallemeyn, Pristine rocks (8th Foray): "Plagiophile" element ratios, crustal genesis, and the bulk composition of the Moon, Proc. Lunar Planet. Sci. Conf. 15th, Part, vol.1, pp.16-24, 1984.

M. A. Wieczorek, The constitution and structure of the lunar interior, New Views of the Moon, vol.60, pp.221-364, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02458539

R. C. Wiens, Progress on calibration of the ChemCam LIBS instrument for the Mars Science Laboratory (MSL) rover, Lunar Planet. Sci., XLI, Abstract 2205, 2010.

R. C. Wiens, S. Maurice, . The-chemcam, and . Team, The ChemCam instrument suite on the Mars Science Laboratory rover Curiosity: Remote sensing by laser-induced plasmas, Geochem. News, 145, 2011.

B. B. Wilcox, M. S. Robinson, P. C. Thomas, and B. R. Hawke, Constraints on the depth and variability of the lunar regolith, vol.40, pp.695-710, 2005.

L. Xu, V. Bulatov, V. V. Gridin, and I. Schechter, Absolute analysis of particulate materials by laser-induced breakdown spectroscopy, Anal. Chem, vol.69, pp.2103-2108, 1997.

?. Yalçin, Y. Y. Tsui, and R. Fedosejevs, Pressure dependence of emission intensity in femtosecond laser-induced breakdown spectroscopy, J. Analyt. At. Spectrosc, vol.19, pp.1295-1301, 2004.

S. Yamamoto, Possible mantle origin of olivine around lunar impact basins detected by SELENE, Nat. Geosci, vol.3, pp.533-536, 2010.

M. E. Zolensky, Structural water in the Bench Crater chondrite returned from the Moon, Meteorit. Planet. Sci, vol.32, pp.15-18, 1997.

M. E. Zolensky, M. K. Weisberg, P. C. Buchanan, and D. W. Mittlefehldt, Mineralogy of carbonaceous chondrite clasts in howardites, eucrites and the Moon, Meteorit. Planet. Sci, vol.31, pp.518-537, 1996.

M. T. Zuber, D. E. Smith, L. Alkalai, D. H. Lehman, M. M. Watkins et al., Outstanding questions on the internal structure and thermal evolution of the Moon and future prospects from the GRAIL mission, Lunar Planet. Sci, 2008.

S. Bender, J. Lasue, R. C. Wiens-;-s, S. Clegg, R. E. Humphries et al., lasue@lanl.gov), vol.87545, 1200.

A. L. Lasue, REMOTE LIBS FOR LUNAR EXPLORATION E01002 E01002

J. Goutail,

A. Levasseur-regourd, , vol.8

P. Pasquero, , p.1

F. Preusker,

, Christoph Statz, 9 Hakan Svedhem, 10 Iwan Williams, 11 Sonia Zine, 1 Jakob Van Zyl

. Université-grenoble-alpes, F. Ipag, and F. Grenoble, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), F-38000, vol.110, p.98702

T. Faa'a,

. Cnrs/insu;-laboratoire-atmosphéres, O. Milieux, and . Spatiales, LATMOS)-Institut Pierre-Simon Laplace (IPSL), 11 Boulevard d'Alembert, 78280 Guyancourt, France. 5 Lunar and Planetary Institute, 3600 Bay Area Boulevard, p.44780

, Justusvon-Liebig-Weg 3, 37077 Göttingen, Germany. 9 Technische Universitaet Dresden Helmholtzstraße 10 D-01069 Dresden, Institüt fur Sonnensystemforschung (MPS)

, UVSQ (UPSay)

. Cnrs/insu;-latmos-ipsl, BC, vol.102, p.75005

, UPS-OMP; IRAP; (2) CNRS; IRAP, p.9

. Avenue-colonel-roche, Institut Fresnel UMR, vol.44, issue.346, p.13013

F. Marseille, , vol.2, p.12489

, REFERENCES AND NOTES

G. Picardi, Radar soundings of the subsurface of Mars, Science, vol.310, p.16319122, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00356405

J. J. Plaut, Subsurface radar sounding of the south polar layered deposits of Mars, Science, vol.316, p.17363628, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00359627

R. J. Phillips, Massive CO 2 ice deposits sequestered in the south polar layered deposits of Mars, Science, vol.332, p.21512003, 2011.

T. Ono, Instrumentation and observation target of the Lunar Radar Sounder (LRS) experiment on-board the SELENE spacecraft, Earth Planet. Sci, vol.60, pp.321-332, 2008.

W. Kofman, Comet Nucleus Sounding Experiment by Radiowave Transmission, Adv. Space Res, vol.21, pp.1589-1598, 1998.
URL : https://hal.archives-ouvertes.fr/insu-02263091

J. Biele, The landing(s) of Philae and inferences on comet surface mechanical properties, Science, vol.349, p.9816, 2015.

J. Boisson, Radar sounding of temperate permafrost in Alaska: Analogy to the Martian midlatitude to high-latitude ice-rich terrains, J. Geophys. Res, vol.116, p.11003, 2011.

H. Sierks, On the nucleus structure and activity of comet 67P/Churyumov-Gerasimenko, Science, vol.347, p.25613897, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01110122

, Comets II, 2004.

E. Hadamcik, A. K. Sen, A. C. Levasseur-regourd, R. Gupta, and J. Lasue, Polarimetric observations of comet 67P/Churyumov-Gerasimenko during its 2008-2009 apparition, Astron. Astrophys, vol.517, p.86, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00481222

F. Capaccioni, The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta, Science, vol.347, p.25613895, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02423383

R. Schulz, Comet 67P/Churyumov-Gerasimenko sheds dust coat accumulated over the past four years, Nature, vol.518, p.25624103, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01182128

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 2004.

M. Born and E. Wolf, Principles of Optics, 1970.

M. Benna, J. Barriot, W. Kofman, and Y. Barbin, Generation of 3-D synthetic data for the modeling of the CONSERT experiment (the radiotomography of comet 7P/Churyumov Gerasimenko), IEEE Trans. Antenn. Propag, vol.52, pp.709-716, 2004.

A. Herique, W. Kofman, T. Hagfors, G. Caudal, and J. Ayanides, A characterization of a comet nucleus interior: Inversion of simulated radio frequency data, Planet. Space Sci, vol.47, pp.885-904, 1999.

S. R. Gough, A low temperature dielectric cell and the permittivity of hexagonal ice to 2 K, Can. J. Chem, vol.50, pp.3046-3051, 1972.

E. Heggy, Radar properties of comets: Parametric dielectric modeling of Comet 67P/Churyumov-Gerasimenko, Icarus, vol.221, pp.925-939, 2012.

J. Klinger, A. Levasseur-regourd, N. Bouziani, and A. Enzian, Towards a model of cometary nuclei for engineering studies for future space missions to comets, Planet. Space Sci, vol.44, issue.96, pp.67-67, 1996.

O. Andersson, Dielectric relaxation of the amorphous ices, J. Phys. Condens. Matter, vol.20, p.244115, 2008.

E. Pettinelli, Frequency and time domain permittivity measurements on solid CO 2 and solid CO 2 -soil mixtures as Martian soil simulants, J. Geophys. Res, vol.108, issue.E4, p.8029, 2003.

P. Ehrenfreund and S. B. Charnley, Organic molecules in the interstellar medium, comets, and meteorites: A voyage from dark clouds to the early Earth, Annu. Rev. Astron. Astrophys, vol.38, pp.427-483, 2000.

M. S. Hanner, M. S. , and J. P. Bradley, , pp.555-564, 2004.

G. J. Flynn, Elemental compositions of comet 81P/Wild 2 samples collected by Stardust, Science, vol.314, p.17170294, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00138910

T. Stephan, Assessing the elemental composition of comet 81P/Wild 2 by analyzing dust collected by Stardust, Space Sci. Rev, vol.138, pp.247-258, 2008.

D. Brownlee, D. Joswiak, and G. Matrajt, Overview of the rocky component of Wild 2 comet samples: Insight into the early solar system, relationship with meteoritic materials and the differences between comets and asteroids

, Meteorit. Planet. Sci, vol.47, pp.453-470, 2012.

D. J. Joswiak, Comprehensive examination of large mineral and rock fragments in Stardust tracks: Mineralogy, analogous extraterrestrial materials, and source regions

, Meteorit. Planet. Sci, vol.47, pp.471-524, 2012.

P. Kamoun, P. L. Lamy, I. Toth, and A. Herique, Constraints on the subsurface structure and density of the nucleus of Comet 67P/Churyumov-Gerasimenko from Arecibo radar observations, Astron. Astrophys, vol.568, p.21, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01441007

. Keller, A comparison of images of the above-mentioned nuclei reveals a significant diversity in overall shapes, the nuclei of 81P/Wild 2 and 9P/Tempel 1 being much less elongated than those of 1P/Halley and 19/Borrelly. The highest resolution images yet obtained are those of 9P/Tempel 1, which reveal numerous unexpected topographic features such as crater-like depressions, extensive surface erosion, and very smooth terrains, Deep Impact in 2005, 1986.

. Weissman, As far as the density is concerned, 2004.

. Levasseur-regourd, Numerous comets have been observed to fragment, i.e., to disruption (see, e.g., 0019-1035/$ -see front matter Ó, 2009.

M. F. References-a'hearn and M. R. Combi, Introduction, Deep Impact at Comet Tempel 1, Icarus, vol.191, pp.1-3, 2007.

M. F. A'hearn, Deep Impact: Excavating Comet Tempel 1, Science, vol.310, pp.258-264, 2005.

E. Asphaug, Survival of the weakest, Nature, vol.402, pp.127-128, 1999.

E. Asphaug and W. Benz, Density of Comet Shoemaker-Levy 9 deduced by modelling breakup of the parent 'rubble-pile', Nature, vol.370, pp.120-124, 1994.

E. Asphaug and W. Benz, Size, density, and structure of Comet Shoemaker-Levy 9 inferred from the physics of tidal breakup, Icarus, vol.121, pp.225-248, 1996.

M. J. Belton, The internal structure of Jupiter family cometary nuclei from Deep Impact observations: The ''talps" or ''layered pile" model, Icarus, vol.187, pp.332-344, 2007.

J. Blum and G. Wurm, The growth mechanisms of macroscopic bodies in protoplanetary disks, Annu. Rev. Astron. Astrophys, vol.46, pp.21-56, 2008.

J. Blum, R. Schräpler, B. J. Davidsson, and J. M. Trigo-rodríguez, The physics of protoplanetesimal dust agglomerates. I. Mechanical properties and relations to primitive bodies in the Solar System, Astrophys. J, vol.652, pp.1768-1781, 2006.

H. Boehnhardt, Split comets, Comets II, pp.301-316, 2004.

R. Botet and R. Jullien, Fractal aggregates of particles, Phase Transitions, vol.24, pp.691-736, 1990.

F. G. Bridges, D. S. Kimberly, D. N. Lin, R. Knight, and M. Zafra, Energy loss and sticking mechanisms in particle aggregation in planetesimal formation, Icarus, vol.123, pp.422-435, 1996.

D. T. Britt, D. C. Boice, B. J. Buratti, H. Campins, R. M. Nelson et al., The morphology and surface processes of Comet 19P/Borrelly, Icarus, vol.167, pp.45-53, 2004.

D. E. Brownlee, Surface of young Jupiter family Comet 81P/ Wild 2: View from the Stardust spacecraft, Science, vol.304, pp.1764-1769, 2004.

J. Crovisier, D. Bockelée-morvan, E. Gérard, H. Rauer, N. Biver et al., What happened to Comet 73P/Schwassmann-Wachmann 3?, Astron. Astrophys, vol.310, pp.17-20, 1996.

A. Dalis and S. K. Friedlander, Molecular dynamics simulations of the straining of nanoparticle chain aggregates: The case of copper, Nanotechnology, vol.16, pp.626-631, 2005.

B. J. Davidsson, P. J. Guttiérez, and H. Rickman, Nucleus properties of Comet 9P/ Tempel 1 estimated from non-gravitational force modeling, Icarus, vol.187, pp.306-320, 2007.

E. Desvoivres, J. Klinger, A. C. Levasseur-regourd, and G. H. Jones, Modeling the dynamics of fragments of cometary nuclei: Application to Comet C/1996 B2 Hyakutake, Icarus, vol.144, pp.172-181, 2000.

A. R. Dexter, R. Horn, and W. D. Kemper, Two mechanisms for age-hardening of soil, Eur. J. Soil Sci, vol.39, pp.163-175, 1988.

B. D. Donn, The formation and structure of fluffy cometary nuclei from random accumulation of grains, Astron. Astrophys, vol.235, pp.441-446, 1990.

B. D. Donn and J. M. Duva, Formation and properties of fluffy planetesimals, Astrophys. Space Sci, vol.212, pp.43-47, 1994.

B. D. Donn and D. Hughes, A fractal model of a cometary nucleus formed by random accretion, Proceedings of 20th ESLAB Symposium on the Exploration of Halley's Comet, Heidelberg. ESA SP-250, pp.523-524, 1986.

M. Duncan, H. Levison, and L. Dones, Dynamical evolution of ecliptic comets, Comets II, pp.193-204, 2004.

M. H. Ernst, Kinetics of clustering in irreversible aggregation, Fractals in Physics, pp.289-302, 1986.

T. L. Farnham, D. G. Schleicher, L. M. Woodney, P. V. Birch, C. A. Eberhardy et al., Imaging and photometry of Comet C/1999 S4 (LINEAR) before perihelion and after breakup, Science, vol.292, pp.1348-1354, 2001.

S. K. Friedlander, Smoke, Dust and Haze: Fundamentals of Aerosol Dynamics, 2000.

I. Giblin, D. R. Davis, and E. V. Ryan, On the collisional disruption of porous icy targets simulating Kuiper belt objects, Icarus, vol.171, pp.487-505, 2004.

J. D. Goguen, P. C. Thomas, and J. F. Veverka, Comet Tempel 1. Lunar Planet. Sci, vol.39, p.1969, 2008.

A. E. Gonzalez, Universality of colloid aggregation in the reaction limit: The computer simulations, Phys. Rev. Lett, vol.71, pp.2248-2251, 1993.

J. M. Greenberg, H. Mizutani, and T. Yamamoto, A new derivation of the tensile strength of cometary nuclei: Application to Comet Shoemaker-Levy 9, Astron. Astrophys, vol.295, pp.35-38, 1995.

A. Guinier and G. Fournet, Small Angle Scattering of X-rays, 1955.

K. A. Holsapple and K. R. Housen, A crater and its ejecta: An interpretation of Deep Impact, Icarus, vol.191, pp.586-597, 2007.

D. C. Jewitt and K. J. Meech, Optical properties of cometary nuclei and a preliminary comparison with asteroids, Astrophys. J, vol.328, pp.974-986, 1988.

R. Jullien, R. Botet, . Singapore, T. Kadono, S. Sugita et al., The thickness and formation age of the surface layer on Comet 9P/Tempel 1, Astrophys. J, vol.661, pp.89-92, 1987.

H. U. Keller, First Halley multicolour camera imaging results from Giotto, Nature, vol.321, pp.320-326, 1986.

M. R. Kidger, The breakup of C/1999 S4 (LINEAR), days 0-10, Earth Moon Planets, vol.90, pp.157-165, 2002.

W. Kofman, The comet nucleus sounding experiment by radiowave transmission (CONSERT): A short description of the instrument and of the commissioning stages, Space Sci. Rev, vol.128, pp.413-432, 2007.
URL : https://hal.archives-ouvertes.fr/insu-00359410

F. E. Kruis, J. Van-denderen, H. Buurman, and B. Scarlett, Characterization of agglomerated and aggregated aerosol particles using image analysis, Particle Particle Syst. Character, vol.11, pp.426-435, 1994.

M. H. Lee, On the validity of the coagulation equation and the nature of runaway growth, Icarus, vol.143, pp.74-86, 2000.

A. C. Levasseur-regourd, E. Hadamcik, and J. Lasue, Interior structure and surface properties of NEOs: What is known and what should be understood to mitigate potential impacts, Adv. Space Res, vol.37, pp.161-168, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00069149

A. C. Levasseur-regourd, E. Hadamcik, E. Desvoivres, and J. Lasue, Probing the internal structure of the nuclei of comets, Planet. Space Sci, vol.57, pp.221-228, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00359745

M. Y. Lin, H. M. Lindsay, D. A. Weitz, R. C. Ball, R. Klein et al., Universality in colloid aggregation, Nature, vol.339, pp.360-362, 1989.

S. Manley, Time-dependent strength of colloidal gels, Phys. Rev. Lett, vol.95, pp.48302-48303, 2005.

P. Meakin, A historical introduction to computer models for fractal aggregates, J. Sol-Gel Sci. Technol, vol.15, pp.97-117, 1999.

J. J. Petrovic, Review mechanical properties of ice and snow, J. Mater. Sci, vol.38, pp.1-6, 2003.

R. R. Rafikov, Dynamical evolution of planetesimals in protoplanetary disks, Astron. J, vol.126, issue.5, pp.2529-2548, 2003.

P. Rannou, M. Cabane, E. Chassefière, R. Botet, C. P. Mckay et al., Titan's geometric albedo: Role of the fractal structure of the aerosols, Icarus, vol.118, pp.355-372, 1995.

J. E. Richardson, H. J. Melosh, C. M. Lisse, and B. Carcich, A ballistics analysis of the Deep Impact ejecta plume: Determining Comet Tempel 1's gravity, mass, and density, Icarus, vol.190, pp.357-390, 2007.

H. Rickman, L. Kamel, M. C. Festou, and C. L. Froeschle, Estimates of masses, volumes and densities of short-period comet nuclei, Proceedings of the International Symposium on the Diversity and Similarity of Comets, ESA SP-278, pp.471-481, 1987.

R. Z. Sagdeev, Television observations of Comet Halley from VeGa spacecraft, Nature, vol.321, pp.262-266, 1986.

N. H. Samarasinha, A model for the breakup of Comet LINEAR (C/1999 S4), Icarus, vol.154, pp.540-544, 2001.

S. Sirono, Effects by sintering on the energy dissipation efficiency in collisions of grain aggregates, Astron. Astrophys, vol.347, pp.720-723, 1999.

S. Sirono and J. M. Greenberg, Do cometesimal collisions lead to bound rubble piles or to aggregates held together by gravity?, Icarus, vol.145, pp.230-238, 2000.

L. A. Soderblom, Observations of Comet 19P/Borrelly by the miniature integrated camera and spectrometer aboard Deep Space 1, Science, vol.296, pp.1087-1091, 2002.

G. L. Squires, Introduction to the Theory of Thermal Neutron Scattering, 1978.

S. A. Stern and R. P. Weissman, Rapid collisional evolution of comets during the formation of the Oort cloud, Nature, vol.409, pp.589-591, 2001.

A. Thill, S. Moustier, J. Aziz, M. R. Wiesner, and J. Y. Bottero, Flocs restructuring during aggregation: Experimental evidence and numerical simulation, J. Colloid Interface Sci, vol.243, pp.171-182, 2001.

H. Thomas, L. Ratke, and H. Kochan, Crushing strength of porous ice-mineral bodies -Relevance for comets, Adv. Space Res, vol.14, issue.12, pp.207-216, 1994.

P. C. Thomas, The shape, topography, and geology of Tempel 1 from Deep Impact observations, Icarus, vol.187, pp.4-15, 2007.

I. Toth, P. Lamy, and H. A. Weaver, Hubble Space Telescope observations of the nucleus fragment 73P/Schwassmann Wachmann 3-C, Icarus, vol.178, pp.235-247, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017415

J. M. Trigo-rodríguez and J. Llorca, The strength of cometary meteoroids: Clues to the structure and evolution of comets, Mon. Not. R. Astron. Soc, vol.372, pp.655-660, 2006.

J. M. Trigo-rodríguez, J. Llorca, P. G. Van-dongen, and M. H. Ernst, Erratum: The strength of cometary meteoroids: Clues to the structure and evolution of comets, Mon. Not. R. Astron. Soc, vol.375, pp.1396-1399, 1985.

H. A. Weaver, Not a rubble pile, Science, vol.304, pp.1760-1762, 2004.

H. A. Weaver, HST and VLT investigations of the fragments of Comet C/1999 S4 (LINEAR), Science, vol.292, pp.1329-1334, 2001.

S. J. Weidenschilling, The origin of comets in the solar nebula: A unified model, Icarus, vol.127, pp.290-306, 1997.

S. J. Weidenschilling, From icy grains to comets, Comets II, pp.97-104, 2004.

R. P. Weissman, E. Asphaug, and S. C. Lowry, Structure and density of cometary nuclei, Comets II, pp.337-357, 2004.

G. W. Wetherill, Comparison of analytical and physical modeling of planetesimal accumulation, Icarus, vol.88, pp.336-354, 1990.

G. Wurm, G. Paraskov, and O. Krauss, Growth of planetesimals by impacts at $25 m/s, Icarus, vol.178, pp.253-263, 2005.

C. Xiong and S. K. Friedlander, Morphological properties of atmospheric aerosol aggregates, PNAS, vol.98, pp.11851-11856, 2001.