C. De, L. , and .. .. , 103 6.2.4 Impact des combinaisons sur la densité des vecteurs

. .. Tie),

, Anopheles gambiae s.s. en conditions semi-naturelles, Limites de l'efficacité des biolarvicides (Bti et Bs) contre les larves d

L. Défis-de and . .. Au-nord-de-la-côte-d'ivoire, 111 7.2.1 Multiplicité d'espèces vectrices

, Bénéfices et limites des combinaisons évaluées

L. and .. .. ,

R. Adak, T. Mittal, P. K. Raghavendra, K. Subbarao, S. K. Ansari et al., Resistance to Bacillus sphaericus in Culex quinquefasciatus Say 1823, Curr Sci, vol.69, pp.695-703, 1995.

A. M. Adja, . Ek, B. G. Koudou, I. Dia, P. Kengne et al., Contribution of Anopheles funestus, An. gambiae and An. nili (Diptera: Culicidae) to the perennial malaria transmission in the southern and western forest areas of Côte d'Ivoire, Ann Trop Med Parasitol, vol.105, issue.1, pp.13-24, 2011.

Y. A. Afrane, N. G. Mweresa, C. L. Wanjala, I. Gilbreath, . Tm et al., Evaluation of long-lasting microbial larvicide for malaria vector control in Kenya, Malar J, vol.15, issue.1, p.577, 2016.

F. R. Agossa, G. G. Padonou, C. Z. Koukpo, J. Zola-sahossi, R. Azondekon et al., Efficacy of a novel mode of action of an indoor residual spraying product, SumiShield® 50WG against susceptible and resistant populations of Anopheles gambiae (s.l, Parasit Vectors, vol.11, issue.1, p.293, 2018.

R. Andriessen, J. Snetselaar, R. A. Suer, A. J. Osinga, J. Deschietere et al., Electrostatic coating enhances bioavailability of insecticides and breaks pyrethroid resistance in mosquitoes, Proc Natl Acad Sci, vol.112, issue.39, pp.12081-12087, 2015.

A. Animut, M. Balkew, and B. Lindtjørn, Impact of housing condition on indoor-biting and indoorresting Anopheles arabiensis density in a highland area, central Ethiopia, Malar J, vol.12, issue.1, p.393, 2013.

C. Antonio-nkondjio, C. Ment, H. Kerah, F. Dé, R. Simard et al., Complexity of the malaria vectorial system in Cameroon: Contribution of secondary vectors to malaria transmission, J Med Entomol, vol.43, issue.6, pp.1215-1236, 2006.

B. S. Assogba, L. S. Djogbénou, P. Milesi, A. Berthomieu, J. Perez et al., An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito, Sci Rep, vol.5, issue.1, p.14529, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01938129

H. Atieli, D. Menya, A. Githeko, and T. Scott, House design modifications reduce indoor resting malaria vector densities in rice irrigation scheme area in western Kenya, Malar J, vol.8, issue.1, p.108, 2009.

V. Balabanidou, A. Kampouraki, M. Maclean, G. J. Blomquist, C. Tittiger et al., Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae, Proc Natl Acad Sci, vol.113, issue.33, pp.9268-73, 2016.

P. Barreaux, A. Barreaux, E. D. Sternberg, E. Suh, J. L. Waite et al., Priorities for broadening the malaria vector control tool kit, Trends Parasitol, vol.33, issue.10, pp.763-74, 2017.

C. Bass, D. Nikou, M. J. Donnelly, M. S. Williamson, H. Ranson et al., Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods, Malar J, vol.6, issue.1, p.111, 2007.

D. Bates, M. Mächler, B. Bolker, and S. Walker, Fitting linear mixed-effects models using lme4, J Stat Softw, vol.67, pp.1-48, 2015.

E. Batisso, T. Habte, G. Tesfaye, D. Getachew, A. Tekalegne et al., A stitch in time: a cross-sectional survey looking at long lasting insecticide-treated bed net ownership, utilization and attrition in SNNPR, Ethiopia, Malar J, vol.11, issue.1, p.183, 2012.

N. Becker and M. Ludwig, Investigations on possible resistance in Aedes vexans field populations after a 10-year application of Bacillus thuringiensis israelensis, J Am Mosq Control Assoc, vol.9, issue.2, pp.221-225, 1993.

N. Becker, J. Margalit, P. F. Entwistle, J. S. Cory, M. J. Bailey et al., Use of Bacillus thuringiensis israelensis against mosquitoes and blackflies. Bacillus thuringiensis, pp.147-70, 1993.

J. C. Beier, G. F. Killeen, and J. I. Githure, Short report: Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa, Am J Trop Med Hyg, vol.61, issue.1, pp.109-122, 1999.

J. C. Beier, G. C. Müller, W. Gu, K. L. Arheart, and Y. Schlein, Attractive toxic sugar bait (ATSB) methods decimate populations of Anopheles malaria vectors in arid environments regardless of the local availability of favoured sugar-source blossoms, Malar J, vol.11, issue.1, p.31, 2012.

G. Benelli, Research in mosquito control: current challenges for a brighter future, Parasitol Res, vol.114, issue.8, pp.2801-2806, 2015.

S. Bhatt, D. J. Weiss, C. E. Bisanzio, D. Mappin, B. Dalrymple et al., The effect of malaria control on Plasmodium falciparum in Africa between, vol.526, pp.207-218, 2000.

S. Bhatt, D. J. Weiss, B. Mappin, U. Dalrymple, C. E. Bisanzio et al., Coverage and system efficiencies of insecticidetreated nets in Africa from, Elife, vol.4, pp.1-37, 2000.

A. Boissière, G. Gimonneau, M. T. Tchioffo, L. Abate, A. Bayibeki et al., Application of a qPCR assay in the investigation of susceptibility to malaria infection of the M and S molecular forms of An

, PLoS One, vol.8, issue.1, p.54820, 2013.

S. Boyer, M. Paris, S. Jego, G. Lempérière, and P. Ravanel, Influence of insecticide Bacillus thuringiensis subsp. israelensis treatments on resistance and enzyme activities in Aedes rusticus larvae (Diptera: Culicidae), Biol Control, vol.62, issue.2, pp.75-81, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01274596

J. Bradley, A. M. Rehman, C. Schwabe, D. Vargas, F. Monti et al., Reduced prevalence of malaria infection in children living in houses with window screening or closed eaves on Bioko Island, Equatorial Guinea, PLoS One, vol.8, issue.11, p.80626, 2013.

O. Briet, J. Dossou-yovo, E. Akodo, . Giesen-n-van-de, and T. M. Teuscher, The relationship between Anopheles gambiae density and rice cultivation in the savannah zone and forest zone of Cote d'Ivoire, Trop Med Int Heal, vol.8, issue.5, pp.439-487, 2003.

W. G. Brogdon, J. C. Mcallister, A. M. Corwin, and C. Cordon-rosales, Independent selection of multiple mechanisms for pyrethroid resistance in guatemalan Anopheles albimanus (Diptera: Culicidae), J Econ Entomol, vol.92, issue.2, pp.298-302, 1999.

M. Brooks, K. Benthem, V. Koen, J. Magnusson, A. Casper et al., glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, R J, vol.9, issue.2, pp.378-400, 2017.

T. Bukhari, W. Takken, and C. Koenraadt, Biological tools for control of larval stages of malaria vectors -a review, Biocontrol Sci Technol, vol.23, issue.9, pp.987-1023, 2013.

M. Caldas-de-castro, Y. Yamagata, D. Mtasiwa, M. Tanner, J. Utzinger et al., Integrated urban malaria control: a case study in Dar es Salaam, Tanzania, Am J Trop Med Hyg, vol.71, issue.2, pp.103-120, 2004.

S. Camara, A. Alou, L. P. Koffi, A. A. Clegban, Y. Kabran et al., Efficacy of Interceptor® G2, a new long-lasting insecticidal net against wild pyrethroid-resistant Anopheles gambiae s.s. from Côte d'Ivoire: a semi-field trial, Parasite, vol.25, p.42, 2018.

S. Camara, A. A. Koffi, A. Alou, L. P. Koffi, K. Kabran et al., Mapping insecticide resistance in Anopheles gambiae (s.l.) from Côte d'Ivoire, Parasit Vectors, vol.11, issue.1, p.19, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02016628

P. Carnevale, P. Guillet, V. Robert, D. Fontenille, J. Doannio et al., Diversity of malaria in rice growing areas of the Afrotropical region, Parassitologia, vol.41, issue.1-3, pp.273-279, 1999.

P. Carnevale and V. Robert, Les anophèles : biologie, transmission du Plasmodium et lutte antivectorielle. Marseille: IRD Éditions, 2009.

P. Carnevale, V. Robert, C. Boudin, J. M. Halna, L. Pazart et al., Control of malaria using mosquito nets impregnated with pyrethroids in Burkina Faso, Bull Soc Pathol Exot Filiales, vol.81, issue.5, pp.832-878, 1988.

G. C. Carrara, V. Petrarca, M. Niang, and M. Coluzzi, Anopheles pharoensis and transmission of Plasmodium falciparum in the Senegal River delta, West Africa, Med Vet Entomol, vol.4, issue.4, pp.421-425, 1990.

D. Carrasco, T. Lefèvre, N. Moiroux, C. Pennetier, F. Chandre et al., Behavioural adaptations of mosquito vectors to insecticide control, Curr Opin Insect Sci, vol.5745, issue.18, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02411126

J. F. Charles and C. Nielsen-leroux, Mosquitocidal bacterial toxins: diversity, mode of action and resistance phenomena, Mem Inst Oswaldo Cruz, vol.95, issue.1, pp.201-207, 2000.

C. Chevillon, C. Bernard, M. Marquine, and N. Pasteur, Resistance to Bacillus sphaericus in Culex pipiens (Diptera: Culicidae): interaction between recessive mutants and evolution in southern France, J Med Entomol, vol.38, issue.5, pp.657-64, 2001.
URL : https://hal.archives-ouvertes.fr/halsde-00201052

N. J. Chinwe, G. I. Ocheyana, O. P. Ibo, Y. Ide, and L. Eberechukwu, A review of the literature on insecticide treated bed net use , anaemia and malaria parasitaemia in under five children, Am J Pediatr, vol.4, issue.1, pp.6-11, 2018.

K. S. Choi, M. Coetzee, and L. L. Koekemoer, Simultaneous identification of the Anopheles funestus group and Anopheles longipalpis type C by PCR-RFLP, Malar J, vol.9, p.316, 2010.

L. Choi, J. Pryce, and P. Garner, Indoor residual spraying for preventing malaria in communities using insecticide-treated nets, Cochrane database Syst Rev, vol.5, issue.5, p.12688, 2019.

M. Chouaïbou, F. B. Kouadio, T. E. Djogbenou, and L. , First report of the East African kdr mutation in an Anopheles gambiae mosquito in Côte d'Ivoire, Wellcome open Res, vol.2, p.8, 2017.

M. S. Chouaïbou, B. K. Fodjo, G. Fokou, O. F. Allassane, B. G. Koudou et al., Influence of the agrochemicals used for rice and vegetable cultivation on insecticide resistance in malaria vectors in southern Côte d'Ivoire, Malar J, vol.15, issue.1, p.426, 2016.

T. S. Churcher, N. Lissenden, J. T. Griffin, E. Worrall, and H. Ranson, The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in, Africa. Elife, vol.5, p.16090, 2016.

M. Coetzee, R. H. Hunt, R. Wilkerson, D. Torre, A. Coulibaly et al., Anopheles coluzzii and Anopheles amharicus, new members of the Anopheles gambiae complex, Zootaxa, vol.3619, pp.246-74, 2013.

M. Coluzzi, A. Sabatini, V. Petrarca, D. Deco, and M. A. , Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex, Trans R Soc Trop Med Hyg, vol.73, issue.5, pp.483-97, 1979.

V. Corbel, M. Akogbeto, G. B. Damien, A. Djenontin, F. Chandre et al., Combination of malaria vector control interventions in pyrethroid resistance area in Benin: A cluster randomised controlled trial, Lancet Infect Dis, vol.12, issue.8, pp.617-643, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00835684

C. Costantini, N. Sagnon, E. Ilboudo-sanogo, M. Coluzzi, and D. Boccolini, Chromosomal and bionomic heterogeneities suggest incipient speciation in Anopheles funestus from Burkina Faso, Parassitologia, vol.41, issue.4, pp.595-611, 1999.

J. Cox-singh, J. Hiu, S. B. Lucas, P. C. Divis, M. Zulkarnaen et al., Severe malaria -A case of fatal Plasmodium knowlesi infection with post-mortem findings: A case report, Malar J, vol.9, issue.1, p.10, 2010.

F. Darriet, V. Robert, T. Vien, N. Carnevale, and P. , Evaluation de l'efficacité sur les vecteurs du paludisme de la perméthrine en imprégnation sur des moustiquaires intactes et trouées, p.35, 1984.

J. David, H. M. Ismail, A. Chandor-proust, and M. Paine, Role of cytochrome P450s in insecticide resistance: impact on the control of mosquito-borne diseases and use of insecticides on earth, Philos Trans R Soc Lond B Biol Sci, vol.368, p.20120429, 1612.

E. W. Davidson, A. W. Sweeney, and R. Cooper, Comparative field trials of Bacillus sphaericus strain 1593 and B. thuringiensis var. israelensis commercial powder formulations, J Econ Entomol, vol.74, issue.3, pp.350-354, 1981.

G. Davidson, The five mating-types in the Anopheles gambiae complex, Riv Malariol, vol.43, pp.167-83, 1964.

A. Deribew, Z. Birhanu, L. Sena, T. Dejene, A. A. Reda et al., The effect of household heads training on longlasting insecticide-treated bed nets utilization: A cluster randomized controlled trial in Ethiopia, Malar J, vol.11, issue.1, p.99, 2012.

I. Dia, L. Lochouarn, D. Boccolini, C. Costantini, and D. Fontenille, Spatial and temporal variations of the chromosomal inversion polymorphism of Anopheles funestus in Senegal, Parasite, vol.7, issue.3, pp.179-84, 2000.

A. Diabaté, R. K. Dabire, E. H. Kim, R. Dalton, N. Millogo et al., Larval development of the molecular forms of Anopheles gambiae (Diptera: Culicidae) in different habitats: a transplantation experiment, J Med Entomol, vol.42, issue.4, pp.548-53, 2005.

A. Djènontin, C. Pennetier, B. Zogo, K. B. Soukou, M. Ole-sangba et al., Field efficacy of vectobac GR as a mosquito larvicide for the control of anopheline and culicine mosquitoes in natural habitats in, PLoS One, vol.9, issue.2, p.87934, 2014.

L. Djogbenou, F. Chandre, A. Berthomieu, R. Dabire, and A. Koffi, Evidence of introgression of the ace-1 R mutation and of the ace-1 duplication in West African Anopheles gambiae s . s, PLoS One, vol.3, issue.5, pp.1-7, 2008.
URL : https://hal.archives-ouvertes.fr/halsde-00527414

L. Djogbénou, P. Labbé, F. Chandre, N. Pasteur, and M. Weill, Ace-1 duplication in Anopheles gambiae: a challenge for malaria control, Malar J, vol.8, p.70, 2009.

L. Djogbénou, V. Noel, and P. Agnew, Costs of insensitive acetylcholinesterase insecticide resistance for the malaria vector Anopheles gambiae homozygous for the G119S mutation, Malar J, vol.9, p.12, 2010.

J. M. Doannio, J. Dossou-yovo, S. Diarrassouba, M. E. Rakotondraibe, G. Chauvancy et al., La dynamique de la transmission du paludisme à Kafine, un village rizicole en zone de savane humide de Côte d'Ivoire, Bull Soc Pathol Exot, vol.95, issue.1, pp.11-17, 2002.

G. Dolo, O. Briët, A. Dao, S. F. Traoré, M. Bouaré et al., Malaria transmission in relation to rice cultivation in the irrigated Sahel of Mali, Acta Trop, vol.89, issue.2, pp.147-59, 2004.

J. Dossou-yovo, A. Ouattara, J. Doannio, E. Riviere, G. Chauvancy et al., Aspects du paludisme dans un village de savane humide de Côte d 'Ivoire, Médecine Trop, vol.54, pp.331-336, 1994.

J. Dossou-yovo, J. Doannio, F. Rivière, and J. Duval, Rice cultivation and malaria transmission in Bouaké city (Côte d'Ivoire), Acta Trop, vol.57, issue.1, pp.91-95, 1994.

J. Dossou-yoyo, J. Doannio, S. Diarrassouba, and G. Chauvancy, Impact d'aménagements de rizières sur la transmission du paludisme dans la ville de, Bull La Soc Pathol Exot, vol.91, issue.4, pp.327-360, 1998.

G. Duvallet, D. Fontenille, and V. Robert, Entomologie médicale et vétérinaire. Marseille: IRD Éditions, 2017.

, Annual Report : Towards ensuiring food security in West Africa, 2012.

A. Edi, N. 'dri, B. P. Chouaibou, M. Kouadio, F. B. Pignatelli et al., First detection of N1575Y mutation in pyrethroid resistant Anopheles gambiae in Southern Côte d'Ivoire, Wellcome open Res, vol.2, p.71, 2017.

C. V. Edi, L. Djogbénou, A. M. Jenkins, K. Regna, M. Muskavitch et al., CYP6 P450 enzymes and Ace-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae, PLoS Genet, vol.10, issue.3, p.1004236, 2014.

C. Edi, B. G. Koudou, C. M. Jones, D. Weetman, and H. Ranson, Multiple-insecticide resistance in Anopheles gambiae mosquitoes, Emerg Infect Dis, vol.18, issue.9, pp.1508-1519, 2012.

N. Elamathi, V. Verma, P. Sharma, S. Uragayala, and R. Kamaraju, Neonicotinoids in vector control: In silico approach, Asian J Biomed Pharm Sci, vol.4, issue.39, pp.25-34, 2014.

J. Essandoh, A. E. Yawson, and D. Weetman, Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles

C. Garros, L. L. Koekemoer, L. Kamau, T. S. Awolola, W. Van-bortel et al., Restriction fragment length polymorphism method for the identification of major African and Asian malaria vectors within the Anopheles funestus and An. minimus groups, Am J Trop Med Hyg, vol.70, issue.3, pp.260-265, 2004.

Y. Geissbühler, K. Kannady, P. P. Chaki, B. Emidi, N. J. Govella et al., Microbial larvicide application by a large-scale, community-based program reduces malaria infection prevalence in urban, PLoS One, vol.4, issue.3, p.5107, 2009.

G. P. Georghiou and M. C. Wirth, Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae), Appl Environ Microbiol, vol.63, issue.3, pp.1095-101, 1997.

M. Gillies and M. Coetzee, A Supplement to the Anophelinae of the South of the Sahara (Afrotropical Region), Publ South African Inst Med Res, vol.55, p.143, 1987.

M. Gillies and D. De-meillon, The Anophelinae of Africa south of the Sahara, Publ South African Inst Med Res Johannesbg, vol.54, p.343, 1968.

G. Gimonneau, J. Bouyer, S. Morand, N. J. Besansky, A. Diabate et al., A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae, Behav Ecol, vol.21, issue.5, pp.1087-92, 2010.

G. Gimonneau, M. Pombi, M. Choisy, S. Morand, R. K. Dabiré et al., Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa, Med Vet Entomol, vol.26, issue.1, pp.9-17, 2012.

K. D. Glunt, J. I. Blanford, and K. P. Paaijmans, Chemicals, climate, and control: increasing the effectiveness of malaria vector control tools by considering relevant temperatures, PLoS Pathog, vol.9, issue.10, p.1003602, 2013.

K. D. Glunt, M. Coetzee, S. Huijben, A. A. Koffi, P. A. Lynch et al., Empirical and theoretical investigation into the potential impacts of insecticide resistance on the effectiveness of insecticide-treated bed nets, Evol Appl, vol.11, issue.4, pp.431-472, 2018.

P. Guillet, D. Alnwick, M. K. Cham, M. Neira, M. Zaim et al., Long-lasting treated mosquito nets: a breakthrough in malaria prevention, Bull World Health Organ, vol.79, issue.10, p.998, 2001.

B. Hamainza, C. H. Sikaala, H. B. Moonga, C. J. Chinula, D. Mwenda et al., Incremental impact upon malaria transmission of supplementing pyrethroid-impregnated long-lasting insecticidal nets with indoor residual spraying using pyrethroids or the organophosphate, pirimiphos methyl, Malar J, vol.15, issue.1, p.100, 2016.

A. Hammond, R. Galizi, K. Kyrou, A. Simoni, C. Siniscalchi et al., A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae, Nat Biotechnol, vol.34, issue.1, pp.78-83, 2016.

A. M. Hammond, K. Kyrou, M. Bruttini, A. North, R. Galizi et al., The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito, PLoS Genet, vol.13, issue.10, p.1007039, 2017.

J. Hemingway, R. Shretta, T. Wells, D. Bell, A. A. Djimdé et al., Tools and strategies for malaria control and elimination: What do we need to achieve a grand convergence in malaria?, PLoS Biol, vol.14, issue.3, p.1002380, 2016.

M. Henry, C. Rogier, I. Nzeyimana, S. B. Assi, M. Audibert et al., Inland valley rice production systems and malaria infection and disease in the savannah of Côte d'Ivoire, Trop Med Int Heal, vol.8, issue.5, pp.449-58, 2003.

Z. Hongyu, Y. Changju, H. Jingye, and L. Lin, Susceptibility of field populations of Anopheles sinensis (Diptera: Culicidae) to Bacillus thuringiensis subsp. israelensis, Biocontrol Sci Technol, vol.14, issue.3, pp.321-326, 2004.

J. M. Hougard, G. Kohoun, P. Guillet, J. Doannio, J. Duval et al., Évaluation en milieu naturel de l'activité larvicide de Bacillus sphaericus Neide, 1904 souche 1593-4 dans des gîtes larvaires à Culex quinquefasciatus Say, 1823 en Afrique de l'Ouest, Cah ORSTOM, série « Entomol médicale Parasitol », vol.23, pp.35-44, 1985.

R. H. Hunt, M. Coetzee, and M. Fettene, The Anopheles gambiae complex: A new species from Ethiopia, Trans R Soc Trop Med Hyg, vol.92, issue.2, pp.231-236, 1998.

R. H. Hunt, B. L. Spillings, J. Chiphwanya, B. D. Brooke, M. Coetzee et al., A New species concealed by Anopheles funestus Giles, a major malaria vector in Africa, Am J Trop Med Hyg, vol.81, issue.3, pp.510-515, 2009.

J. N. Ijumba and S. W. Lindsay, Impact of irrigation on malaria in Africa: paddies paradox, Med Vet Entomol, vol.15, issue.1, pp.1-11, 2001.

D. Joshi, M. J. Mcfadden, D. Bevins, F. Zhang, and Z. Xi, Wolbachia strain wAlbB confers both fitness costs and benefit on Anopheles stephensi, Parasit Vectors, vol.7, p.336, 2014.

L. Kamau, N. Mulaya, and J. M. Vulule, Evaluation of potential role of Anopheles ziemanni in malaria transmission in Western Kenya, J Med Entomol, vol.43, issue.4, pp.774-780, 2006.

C. Kamdem, T. Fossog, B. Simard, F. Etouna, J. Ndo et al., Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae, PLoS One, vol.7, issue.6, p.39453, 2012.

J. Keiser, D. Castro, M. C. Maltese, M. F. Bos, R. Tanner et al., Effect of irrigation and large dams on the burden of malaria on a global and regional scale, Am J Trop Med Hyg, vol.72, issue.4, pp.392-406, 2005.

O. Kenea, M. Balkew, H. Tekie, W. Deressa, E. Loha et al., Impact of combining indoor residual spraying and long-lasting insecticidal nets on Anopheles arabiensis in Ethiopia: results from a cluster randomized controlled trial, Malar J, vol.18, issue.1, p.182, 2019.

A. Kilian, H. Koenker, E. Baba, E. O. Onyefunafoa, R. A. Selby et al., Universal coverage with insecticide-treated nets -applying the revised indicators for ownership and use to the Nigeria 2010 malaria indicator survey data, Malar J, vol.12, p.314, 2013.

G. F. Killeen, U. Fillinger, I. Kiche, L. C. Gouagna, and B. Knols, Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa?, Lancet Infect Dis, vol.2, issue.10, pp.618-645, 2002.

G. F. Killeen, J. Kihonda, E. Lyimo, F. R. Oketch, M. E. Kotas et al., Quantifying behavioural interactions between humans and mosquitoes: evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania, BMC Infect Dis, vol.6, p.161, 2006.

G. F. Killeen, J. P. Masalu, D. Chinula, E. A. Fotakis, D. R. Kavishe et al., Control of malaria vector mosquitoes by insecticide-treated combinations of window screens and eave baffles, Emerg Infect Dis, vol.23, issue.5, pp.782-791, 2017.

G. F. Killeen and T. A. Smith, Exploring the contributions of bed nets, cattle, insecticides and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality, Trans R Soc Trop Med Hyg, vol.101, issue.9, pp.867-80, 2007.

U. Kitron and A. Spielman, Suppression of transmission of malaria through source reduction: antianopheline measures applied in Israel, the United States, and Italy, Rev Infect Dis, vol.11, issue.3, pp.391-406, 1989.

I. Kleinschmidt, J. Bradley, T. B. Knox, A. P. Mnzava, H. T. Kafy et al., Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study, Lancet Infect Dis, vol.18, pp.640-649, 2018.

I. Kleinschmidt, A. P. Mnzava, H. T. Kafy, C. Mbogo, A. I. Bashir et al., Design of a study to determine the impact of insecticide resistance on malaria vector control: a multi-country investigation, Malar J, vol.14, issue.1, p.282, 2015.

T. B. Knox, E. O. Juma, E. O. Ochomo, P. Jamet, H. Ndungo et al., An online tool for mapping insecticide resistance in major Anopheles vectors of human malaria parasites and review of resistance status for the Afrotropical region, Parasit Vectors, vol.7, issue.1, p.76, 2014.

L. L. Koekemoer, L. Kamau, C. Garros, S. Manguin, R. H. Hunt et al., Impact of the Rift Valley on restriction fragment length polymorphism typing of the major African malaria vector Anopheles funestus (Diptera: Culicidae), J Med Entomol, vol.43, issue.6, pp.1178-84, 2006.

A. Koffi, A. Ludovic, A. A. Maurice, K. Y. Lucien, B. Patrick et al., Rapport sur le profil entomologique de la Côte d'Ivoire de, PNLP, p.67, 1960.

A. A. Koffi, A. Alou, L. P. Kabran, J. , N. 'guessan et al., Re-visiting insecticide resistance status in Anopheles gambiae from Côte d'Ivoire: A nation-wide informative survey, PLoS One, vol.8, issue.12, pp.1-10, 2013.

B. G. Koudou, M. Doumbia, N. Janmohamed, A. B. Tschannen, M. Tanner et al., Effects of seasonality and irrigation on malaria transmission in two villages in Côte d'Ivoire, Ann Trop Med Parasitol, vol.104, issue.2, pp.109-130, 2010.

B. G. Koudou, Y. Tano, M. Doumbia, C. Nsanzabana, G. Cissé et al., Malaria transmission dynamics in central Côte d'Ivoire: The influence of changing patterns of irrigated rice agriculture, Med Vet Entomol, vol.19, issue.1, pp.27-37, 2005.

R. L. Kouznetsov, Malaria control by application of indoor spraying of residual insecticides in tropical Africa and its impact on community health, Trop Doct, vol.7, issue.2, pp.81-91, 1977.

K. Kyrou, A. M. Hammond, R. Galizi, N. Kranjc, A. Burt et al., A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes, Nat Biotechnol, vol.36, issue.11, pp.1062-1068, 2018.

N. De-la-cruz, B. Crookston, K. Dearden, B. Gray, N. Ivins et al., Who sleeps under bednets in Ghana? A doer/non-doer analysis of malaria prevention behaviours, Malar J, vol.5, p.61, 2006.

L. A. Lacey, Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control, J Am Mosq Control Assoc, vol.23, pp.133-63, 2007.

B. Lapied, C. Pennetier, V. Apaire-marchais, P. Licznar, and V. Corbel, Innovative applications for insect viruses: towards insecticide sensitization, Trends Biotechnol, vol.27, issue.4, pp.190-198, 2009.

T. Lefèvre, L. C. Gouagna, K. R. Dabiré, E. Elguero, D. Fontenille et al., Beyond nature and nurture: Phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible, Am J Trop Med Hyg, vol.81, issue.6, pp.1023-1032, 2009.

J. Lines and I. Kleinschmidt, Is malaria control better with both treated nets and spraying?, Lancet, vol.385, issue.9976, pp.1375-1382, 2015.

K. J. Livak, Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis, Genetics, vol.107, issue.4, pp.611-645, 1984.

E. Loha, W. Deressa, T. Gari, M. Balkew, O. Kenea et al., Long-lasting insecticidal nets and indoor residual spraying may not be sufficient to eliminate malaria in a low malaria incidence area: results from a cluster randomized controlled trial in Ethiopia, Malar J, vol.18, issue.1, p.141, 2019.

M. Mabaso, B. Sharp, and C. Lengeler, Historical review of malarial control in southern African with emphasis on the use of indoor residual house-spraying, Trop Med Int Heal, vol.9, issue.8, pp.846-56, 2004.

G. Macdonald, Epidemiological basis of malaria control, Bull World Health Organ, vol.15, issue.3-5, pp.613-639, 1956.

G. Macdonald, The epidemiology and control of malaria, 1957.

A. Magnusson, H. J. Skaug, A. Nielsen, C. W. Berg, K. Kristensen et al., Generalized linear mixed models using template model builder. R package version 0725/r186, 2017.

M. Maheu-giroux and M. C. Castro, Do malaria vector control measures impact disease-related behaviour and knowledge ? Evidence from a large-scale larviciding intervention in Tanzania, Malar J, pp.1-10, 2013.

S. Majambere, S. W. Lindsay, C. Green, B. Kandeh, and U. Fillinger, Microbial larvicides for malaria control in the Gambia, Malar J, vol.6, issue.1, p.76, 2007.

S. Majambere, M. Pinder, U. Fillinger, D. Ameh, D. J. Conway et al., Is mosquito larval source management appropriate for reducing malaria in areas of extensive flooding in the Gambia? A crossover intervention trial, Am J Trop Med Hyg, vol.82, issue.2, pp.176-84, 2010.

H. T. Masendu, R. H. Hunt, J. Govere, B. D. Brooke, T. S. Awolola et al., The sympatric occurrence of two molecular forms of the malaria vector Anopheles gambiae Giles sensu stricto in Kanyemba, in the Zambezi Valley, Zimbabwe. Trans R Soc Trop Med Hyg, vol.98, issue.7, pp.393-399, 2004.

N. Moiroux, G. B. Damien, M. Egrot, A. Djenontin, F. Chandre et al., Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets, PLoS One, vol.9, issue.8, p.104967, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079372

N. Moiroux, A. Djènontin, B. Zogo, A. Bouraima, I. Sidick et al., Small-scale field testing of alpha-cypermethrin water-dispersible granules in comparison with the recommended wettable powder formulation for indoor residual spraying against malaria vectors in Benin, Parasit Vectors, vol.11, issue.1, p.508, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01882506

V. Corbel, Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin, J Infect Dis, vol.206, issue.10, pp.1622-1631, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00742218

A. Monroe, S. Moore, H. Koenker, M. Lynch, and E. Ricotta, Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in sub-Saharan Africa: a review of the published literature, Malar J, vol.18, issue.1, p.6, 2019.

J. Mouchet, P. Carnevale, M. Coosemans, J. Julvez, S. Manguin et al., Biodiversité du paludisme dans le monde, 2004.

R. C. Muirhead-thomson, The significance of irritability, behaviouristic avoidance and allied phenomena in malaria eradication, Bull World Health Organ, vol.22, pp.721-755, 1960.

W. Mukabana, K. Kannady, G. M. Kiama, J. Ijumba, E. Mathenge et al., Ecologists can enable communities to implement malaria vector control in Africa, Malar J, vol.5, issue.1, p.9, 2006.

M. Mulla, H. A. Darwazeh, and M. Zgomba, Effect of some environmental factors on the efficacy of Bacillus sphaericus 2362 and Bacillus thuringiensis (H-14) against mosquitoes, Bull Soc Vector Ecol, vol.15, issue.2, pp.166-75, 1995.

G. C. Müller, J. C. Beier, S. F. Traore, M. B. Toure, M. M. Traore et al., Successful field trial of attractive toxic sugar bait (ATSB) plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa, Malar J, vol.9, issue.1, p.210, 2010.

R. N'guessan, P. Boko, A. Odjo, M. Akogbéto, A. Yates et al., Chlorfenapyr: A pyrrole insecticide for the control of pyrethroid or DDT resistant Anopheles gambiae (Diptera: Culicidae) mosquitoes, Acta Trop, vol.102, issue.1, pp.69-78, 2007.

R. N'guessan, V. Corbel, M. Akogbéto, and M. Rowland, Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis, vol.13, issue.2, pp.199-206, 2007.

J. Najera, Malaria vector control: decision making criteria and procedures for judicious use of insecticides. World Health Organization Pesticide Evaluation Scheme, pp.1-106, 2002.

J. K. Nayar, J. W. Knight, A. Ali, D. B. Carlson, O. 'bryan et al., Laboratory evaluation of biotic and abiotic factors that may influence larvicidal activity of Bacillus thuringiensis serovar. israelensis against two Florida mosquito species, J Am Mosq Control Assoc, vol.15, issue.1, pp.32-42, 1999.

T. Nepomichene, E. Tata, and S. Boyer, Malaria case in Madagascar, probable implication of a new vector, Anopheles coustani. Malar J, vol.14, issue.1, p.475, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01291971

C. Ngufor, A. Fongnikin, M. Rowland, N. 'guessan, and R. , Indoor residual spraying with a mixture of clothianidin (a neonicotinoid insecticide) and deltamethrin provides improved control and long residual activity against pyrethroid resistant Anopheles gambiae sl in Southern Benin, PLoS One, vol.12, issue.12, p.189575, 2017.

L. M. Ngwej, I. Hattingh, G. Mlambo, E. M. Mashat, J. Kashala et al., Indoor residual spray bio-efficacy and residual activity of a clothianidin-based formulation (SumiShield® 50WG) provides long persistence on various wall surfaces for malaria control in the Democratic Republic of the Congo, Malar J, vol.18, issue.1, p.72, 2019.

L. Nicolas, Bacteriological controLof mosquitoes and blackflies: present aspects and perspectives of research. Brasilia: 21eme simposio de controle biologico siconbiol, 1990.

M. Njie, E. Dilger, S. W. Lindsay, and M. J. Kirby, Importance of eaves to house entry by Anopheline, but not Culicine, mosquitoes, J Med Entomol, vol.46, issue.3, pp.505-515, 2009.

D. C. Nwakanma, D. E. Neafsey, M. Jawara, M. Adiamoh, E. Lund et al., Breakdown in the process of incipient speciation in Anopheles gambiae, Genetics, vol.193, issue.4, pp.1221-1252, 2013.

E. O. Ochomo, N. M. Bayoh, E. D. Walker, B. O. Abongo, M. O. Ombok et al., The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance, Malar J, vol.12, issue.1, p.368, 2013.

P. Ojuka, Y. Boum, L. Denoeud-ndam, C. Nabasumba, Y. Muller et al., Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda, Malar J, vol.14, issue.1, pp.1-8, 2015.

B. Olapeju, I. Choiriyyah, M. Lynch, A. Acosta, S. Blaufuss et al., Age and gender trends in insecticide-treated net use in sub-Saharan Africa: a multi-country analysis, Malar J, vol.17, issue.1, p.423, 2018.

B. M. Ondeto, C. Nyundo, L. Kamau, S. M. Muriu, J. M. Mwangangi et al., Current status of insecticide resistance among malaria vectors in Kenya, Parasit Vectors, vol.10, issue.1, p.429, 2017.

I. M. Ondiba, F. A. Oyieke, . Ong'amo, . Go, M. M. Olumula et al., Malaria vector abundance is associated with house structures in Baringo County, PLoS One, vol.13, issue.6, p.198970, 2018.

R. M. Oxborough, A. Seyoum, Y. Yihdego, R. Dabire, V. Gnanguenon et al., Susceptibility testing of Anopheles malaria vectors with the neonicotinoid insecticide clothianidin; results from 16 African countries, in preparation for indoor residual spraying with new insecticide formulations, Malar J, vol.18, issue.1, p.264, 2019.

I. O. Oyewole, T. S. Awolola, C. A. Ibidapo, A. O. Oduola, O. O. Okwa et al., Behaviour and population dynamics of the major anopheline vectors in a malaria endemic area in southern Nigeria, J Vect Borne Dis, vol.44, pp.56-64, 2007.

F. Pages, E. Orlandi-pradines, and V. Corbel, Vecteurs du paludisme : biologie, diversité, contrôle et protection individuelle, Med Mal Infect, vol.37, issue.3, pp.153-61, 2007.

A. Paul, L. C. Harrington, L. Zhang, and J. G. Scott, Insecticide resistance in Culex pipiens from New York, J Am Mosq Control Assoc, vol.21, issue.3, pp.305-314, 2005.

M. Pinder, M. Jawara, L. Jarju, K. Salami, D. Jeffries et al., Efficacy of indoor residual spraying with dichlorodiphenyltrichloroethane against malaria in Gambian communities with high usage of long-lasting insecticidal mosquito nets: A clusterrandomised controlled trial, Lancet, vol.385, issue.9976, pp.1436-1482, 2015.

, Approche stratifiée de mise à l'échelle des interventions de lutte contre le paludisme en Côte d'Ivoire et consolidation des acquis. Abidjan: Ministère de la Santé et l'Hygiène Publique, p.149, 2014.

S. Poopathi, T. R. Mani, D. R. Rao, G. Baskaran, and L. Kabilan, Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B. sphaericus 1593M. Southeast Asian, J Trop Med Public Health, vol.30, issue.3, pp.477-81, 1999.

N. Protopopoff, J. F. Mosha, E. Lukole, J. D. Charlwood, A. Wright et al., Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two fact, Lancet, vol.391, pp.1577-88, 2018.

N. Protopopoff, A. Wright, P. A. West, R. Tigererwa, F. W. Mosha et al., Combination of insecticide treated nets and indoor residual spraying in Northern Tanzania provides additional reduction in vector population density and malaria transmission rates compared to insecticide treated nets alone: A randomised control trial, PLoS One, vol.10, issue.11, p.142671, 2015.

J. Pulford, M. W. Hetzel, M. Bryant, P. M. Siba, and I. Mueller, Reported reasons for not using a mosquito net when one is available: a review of the published literature, Malar J, vol.10, issue.1, p.83, 2011.

. R-core-team, R: A language and environment for statistical computing. R foundation for statistical computing, 2018.

S. Randriamaherijaona, O. Briët, S. Boyer, A. Bouraima, N. 'guessan et al., Do holes in long-lasting insecticidal nets compromise their efficacy against pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus? Results from a releaserecapture study in experimental huts, Malar J, vol.14, issue.1, p.332, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01191561

H. Ranson, L. Rossiter, F. Ortelli, B. Jensen, X. Wang et al., Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae, Biochem J, vol.359, issue.2, pp.295-304, 2001.

D. R. Rao, T. R. Mani, R. Rajendran, A. S. Joseph, A. Gajanana et al., Development of a high level of resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India, J Am Mosq Control Assoc, vol.11, issue.1, pp.1-5, 1995.

M. Raymond and F. Rousset, GENEPOP Version 1.2. A population genetics software for exact tests and ecumenicism, J Hered, vol.26, pp.248-257, 1995.
URL : https://hal.archives-ouvertes.fr/halsde-00186383

L. Regis, M. H. Silva-filha, C. Nielsen-leroux, and J. Charles, Bacteriological larvicides of dipteran disease vectors, Trends Parasitol, vol.17, issue.8, pp.377-80, 2001.

J. M. Riveron, S. S. Ibrahim, C. E. Mzilahowa, T. Cuamba, N. Irving et al., The highly polymorphic CYP6M7 cytochrome P450 gene partners with the directionally selected CYP6P9a and CYP6P9b genes to expand the pyrethroid resistance front in the malaria vector Anopheles funestus in Africa, BMC Genomics, vol.15, issue.1, p.817, 2014.

J. E. Rojas, M. Mazzarri, M. Sojo, -. García, and . Gy, Effectiveness of Bacillus sphaericus strain 2362 on larvae of Anopheles nuñeztovari, Invest Clin, vol.42, issue.2, pp.131-177, 2001.

R. Back-malaria, Seventeenth meeting of the RBM partnership monitoring and evaluation reference group (MERG), 2011.

M. Rowland, P. Boko, A. Odjo, A. Asidi, M. Akogbeto et al., A new long-lasting indoor residual formulation of the organophosphate insecticide pirimiphos methyl for prolonged control of pyrethroid-resistant mosquitoes: An experimental hut trial in Benin, PLoS One, vol.8, issue.7, p.69516, 2013.

R. Sctp, Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial, Lancet, vol.386, issue.9988, pp.31-45, 2015.

A. Saddler and J. C. Koella, Modelling the impact of declining insecticide resistance with mosquito age on malaria transmission, MW J, vol.6, p.13, 2015.

C. Sadia-kacou, L. Alou, A. Edi, C. M. Yobo, M. A. Adja et al., Presence of susceptible wild strains of Anopheles gambiae in a large industrial palm farm located in Aboisso, Malar J, vol.16, issue.1, p.157, 2017.

D. Schorkopf, C. G. Spanoudis, L. Mboera, A. Mafra-neto, R. Ignell et al., Combining attractants and larvicides in biodegradable matrices for sustainable mosquito vector control, PLoS Negl Trop Dis, vol.10, issue.10, pp.1-22, 2016.

J. A. Scott, W. G. Brogdon, and F. H. Collins, Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction, Am J Trop Med Hyg, vol.49, issue.4, pp.520-529, 1993.

E. Sherrard-smith, J. E. Skarp, A. D. Beale, C. Fornadel, L. C. Norris et al., Mosquito feeding behavior and how it influences residual malaria transmission across Africa, Proc Natl Acad Sci, vol.116, issue.30, pp.15086-95, 2019.

A. T. Shousha, Species eradication: The eradication of Anopheles gambiae from Upper Egypt 1942-1945, Bull World Heal Organ, vol.1, issue.2, pp.309-52, 1948.

G. T. Shute, A method of maintaining colonies of East African strains of Anopheles gambiae, Ann Trop Med Parasitol, vol.50, issue.1, pp.92-96, 1956.

F. Simard, La lutte contre les vecteurs : quel avenir ?, Biol Aujourdhui, vol.212, issue.3-4, pp.137-182, 2018.

B. H. Singer, T. A. Smith, J. Keiser, M. C. De-castro, M. Tanner et al., Urbanization in sub-Saharan Africa and implication for malaria control, Am J Trop Med Hyg, vol.71, issue.2, pp.118-145, 2004.

B. Singh, L. K. Sung, A. Matusop, A. Radhakrishnan, S. Shamsul et al., A large focus of naturally acquired Plasmodium knowlesi infections in human beings, Lancet, vol.363, issue.9414, pp.1017-1041, 2004.

M. E. Sinka, M. J. Bangs, S. Manguin, Y. Rubio-palis, T. Chareonviriyaphap et al., A global map of dominant malaria vectors, Parasit Vectors, vol.5, issue.1, p.69, 2012.

H. Skaug, D. Fournier, B. Bolker, A. Magnusson, A. Nielsen et al., Generalized linear mixed models using AD model builder. R package version 0725/r18, 2012.

O. Skovmand and E. Sanogo, Experimental formulations of Bacillus sphaericus and B. thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae (Diptera: Culicidae) in Burkina Faso, J Med Entomol, vol.36, issue.1, pp.62-69, 1999.

D. D. Soma, B. M. Zogo, A. Somé, B. N. Tchiekoi, S. Hien-df-de et al., Anopheles bionomic , insecticide resistance and malaria transmission in southwest Burkina Faso : a pre-intervention study, 2019.

E. D. Sternberg, K. R. Ng'habi, I. N. Lyimo, S. T. Kessy, M. Farenhorst et al., Eave tubes for malaria control in Africa: initial development and semi-field evaluations in Tanzania, Malar J, vol.15, issue.1, p.447, 2016.

Z. P. Stewart, R. M. Oxborough, P. K. Tungu, M. J. Kirby, M. W. Rowland et al., Indoor application of attractive toxic sugar bait (ATSB) in combination with mosquito nets for control of pyrethroid-resistant mosquitoes, PLoS One, vol.8, issue.12, p.8416, 2013.

T. Therneau, Coxme: Mixed effects cox models. R package version 2.2-10, 2018.

M. Thomson, S. Connor, S. Bennett, D. 'alessandro, U. Milligan et al., Geographical perspectives on bednet use and malaria transmission in the Gambia, West Africa, Soc Sci Med, vol.43, issue.1, pp.101-113, 1996.

A. B. Tiono, A. Ouédraogo, D. Ouattara, E. C. Bougouma, S. Coulibaly et al., Efficacy of Olyset Duo , a bednet containing pyriproxyfen and permethrin , versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso : a cluster-randomised controlled trial, Lancet, vol.392, pp.569-80, 2018.

L. Toé, O. Skovmand, K. Dabiré, A. Diabaté, Y. Diallo et al., Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso, Malar J, vol.8, issue.1, p.175, 2009.

L. S. Tusting, J. Thwing, D. Sinclair, U. Fillinger, J. Gimnig et al., Mosquito larval source management for controlling malaria, Cochrane Database Syst Rev, issue.8, p.8923, 2013.

J. Utzinger, Y. Tozan, and B. H. Singer, Efficacy and cost-effectiveness of environmental management for malaria control, Trop Med Int Heal, vol.6, issue.9, pp.677-87, 2001.

M. I. Vasquez, M. Violaris, A. Hadjivassilis, and M. C. Wirth, Susceptibility of Culex pipiens (Diptera: Culicidae) field populations in Cyprus to conventional organic insecticides, Bacillus thuringiensis subsp. israelensis, and methoprene, J Med Entomol, vol.46, issue.4, pp.881-888, 2009.

M. Viana, A. Hughes, J. Matthiopoulos, H. Ranson, and H. M. Ferguson, Delayed mortality effects cut the malaria transmission potential of insecticide-resistant mosquitoes, Proc Natl Acad Sci, vol.113, issue.32, pp.8975-80, 2016.

J. M. Vulule, R. F. Beach, F. K. Atieli, J. C. Mcallister, W. G. Brogdon et al., Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin-impregnated nets, Med Vet Entomol, vol.13, issue.3, pp.239-283, 1999.

K. Walker and M. Lynch, Contribution of Anopheles larvae control to malaria suppression in tropical Africa: review of achievements and potential, Med Vet Entomol, vol.21, issue.1, pp.2-21, 2007.

D. J. Weiss, T. Lucas, M. Nguyen, A. K. Nandi, D. Bisanzio et al., Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000-17: a spatial and temporal modelling study, Lancet, vol.394, pp.322-353, 2019.

P. A. West, N. Protopopoff, A. Wright, Z. Kivaju, R. Tigererwa et al., Indoor residual spraying in combination with insecticide-treated nets compared to insecticide-treated nets alone for protection against malaria: A cluster randomised trial in Tanzania, PLoS Med, vol.11, issue.4, p.1001630, 2014.

G. B. White, Anopheles gambiae complex and disease transmission in Africa, Trans R Soc Trop Med Hyg, vol.68, issue.4, pp.278-98, 1974.

, WHO. Manual on environmental management for mosquito control. World Heal Organ Offset Publ, vol.66, issue.1, p.283, 1982.

, Entomological field techniques for malaria control. World Health Organization, 1992.

, Use of indoor residual spraying for scaling up global malaria control and elimination. WHO Position Statement. Geneva: World Health Organization, 2006.

, The use of DDT in malaria vector control: WHO position statement, 2011.

, WHO position statement on integrated vector management to control malaria and lymphatic filariasis, Relev Epidemiol Hebd, vol.86, issue.13, pp.121-128, 2011.

, Interim Position Statement-the role of larviciding for malaria-control in sub-Saharan africa. Global Malaria Program. Geneva: World Health Organization, 2012.

, Global Plan for Insecticide Resistance Management (GPIRM). Geneva: World Health Organization, 2012.

, Larval source management -a supplementary measure for malaria vector control. An operational manual. Geneva: World Health Organization, 2013.

, Geneva: World Health Organization, WHO. World Malaria Report, 2015.

, Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva: World Health Organization, 2016.

, Geneva: World Health Organization, WHO. World Malaria Report, 2017.

, Geneva: World Health Organization, WHO. World Malaria Report, 2018.

. Who and 5. Who-|-sumishield, World Health Organization, Accessed, 2018.

, World Health Organization, WHO. WHO | Fludora Fusion, 2018.

, World Health Organization, WHO. Global report on insecticide resistance in malaria vectors, pp.2010-2016, 2018.

, List of WHO Prequalified Vector Control Products, 2019.

, Geneva: World Health Organization, WHOPES. Report of the twentieth WHOPES working group meeting, 2017.

A. Wiebe, J. Longbottom, K. Gleave, F. M. Shearer, M. E. Sinka et al., Geographical distributions of African malaria vector sibling species and evidence for insecticide resistance, Malar J, vol.16, issue.1, p.85, 2017.

C. Wondji, S. Frédéric, V. Petrarca, J. Etang, F. Santolamazza et al., Species and populations of the Anopheles gambiae complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s, J Med Entomol, vol.42, issue.6, pp.998-1005, 2005.

C. S. Wondji, M. Coleman, I. Kleinschmidt, T. Mzilahowa, H. Irving et al., Impact of pyrethroid resistance on operational malaria control in Malawi, Proc Natl Acad Sci, vol.109, issue.47, pp.19063-70, 2012.

O. R. Wood, S. Hanrahan, M. Coetzee, L. L. Koekemoer, and B. D. Brooke, Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus, Parasit Vectors, vol.3, issue.1, p.67, 2010.

G. A. Yahouédo, F. Chandre, M. Rossignol, C. Ginibre, V. Balabanidou et al., Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae, Sci Rep, vol.7, issue.1, p.11091, 2017.

A. E. Yawson, D. Weetman, M. D. Wilson, and M. J. Donnelly, Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambiae s.s. in Ghana, Genetics, vol.175, issue.2, pp.751-61, 2007.

Y. Yé, M. Hoshen, V. Louis, S. Séraphin, I. Traoré et al., Housing conditions and Plasmodium falciparum infection: Protective effect of iron-sheet roofed houses, Malar J, vol.5, issue.1, p.8, 2006.

N. S. Zahiri and M. S. Mulla, Susceptibility profile of Culex quinquefasciatus (Diptera: Culicidae) to Bacillus sphaericus on selection with rotation and mixture of B. sphaericus and B. thuringiensis israelensis, J Med Entomol, vol.40, issue.405, pp.672-679, 2003.

M. Zaim, A. Aitio, and N. Nakashima, Safety of pyrethroid-treated mosquito nets, Med Vet Entomol, vol.14, issue.1, pp.1-5, 2000.

L. Zhang, X. Zhang, Y. Zhang, S. Wu, I. Gelbi? et al., A new formulation of Bacillus thuringiensis: UV protection and sustained release mosquito larvae studies, Sci Rep, vol.6, p.39425, 2016.

B. Zogo, A. A. Koffi, L. Alou, F. Fournet, A. Dahounto et al., Identification and characterization of Anopheles spp. breeding habitats in the Korhogo area in northern Côte d'Ivoire: A study prior to a Bti-based larviciding intervention, Parasit Vectors, vol.12, issue.1, pp.1-10, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02434747

B. Zogo, D. D. Soma, B. N. Tchiekoi, A. Somé, A. Alou et al., Anopheles bionomics, insecticide resistance mechanisms, and malaria transmission in the Korhogo area, Parasite, vol.26, p.40, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02434749

D. D. Zoh, A. Alou, L. P. Toure, M. Pennetier, C. Camara et al., The current insecticide resistance status of Anopheles gambiae (s.l.) (Culicidae) in rural and urban areas of, Parasit Vectors, vol.11, issue.1, p.118, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01878627

, Incuber les échantillons sur glace pendant 30 minutes

, Centrifuger à 13,000 rpm pendant 20 minutes à 4°C

, Ajouter 300 ml d'éthanol 100%, centrifuger à 13,000 rpm pendant 15 minutes at 4°C (bien placer les tubes dans la centrifugeuse

, Retirer délicatement le surnageant dans chaque tube (faire attention à ne pas verser le culot)

, Retirer délicatement le surnageant dans chaque tube (faire attention à ne pas verser le culot)

, Conserver l'extrait d'ADN à -20°C

K. J. Livak, Organization and mapping of a sequence on the Drosophila melanogaster X and Y chromosomes that is transcribed during spermatogenesis, Genetics, vol.107, pp.611-634, 1984.

S. Bhatt, D. J. Weiss, C. E. Bisanzio, D. Mappin, B. Dalrymple et al., The effect of malaria control on Plasmodium falciparum in Africa between, Nature, vol.526, pp.207-218, 2000.

, WHO. World malaria report, 2018.

K. R. Dabiré, A. Diabaté, L. Djogbenou, A. Ouari, N. 'guessan et al.,

K. H. Toé, C. M. Jones, N. 'fale, S. Ismai, H. M. Dabiré et al., Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness Burkina Faso, Emerg Infect Dis, vol.20, pp.1691-1697, 2014.

K. H. Toé, N. 'falé, S. Dabiré, R. K. Ranson, H. Jones et al., The recent escalation in strength of pyrethroid resistance in Anopheles coluzzi in West Africa is linked to increased expression of multiple gene families, BMC Genomics, vol.16, pp.1-11, 2015.

P. Ojuka, Y. Boum, L. Denoeud-ndam, C. Nabasumba, Y. Muller et al., Early biting and insecticide resistance in the malaria vector Anopheles might compromise the effectiveness of vector control intervention in Southwestern Uganda, Malar J, vol.14, pp.1-8, 2015.

N. Moiroux, M. B. Gomez, C. Pennetier, E. Elanga, A. Djènontin et al., Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin, J Infect Dis, vol.206, pp.1622-1631, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00742218

C. M. Fornadel, L. C. Norris, G. E. Glass, and D. E. Norris, Analysis of Anopheles arabiensis blood feeding behavior in southern Zambia during the two years after introduction of insecticidetreated bed nets, Am J Trop Med Hyg, vol.83, pp.848-53, 2010.

H. Ranson and N. Lissenden, Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control, Trends Parasitol, vol.32, pp.187-96, 2016.

E. Sherrard-smith, J. E. Skarp, A. D. Beale, C. Fornadel, L. C. Norris et al., Mosquito feeding behavior and how it influences residual malaria transmission across Africa, Proc Natl Acad Sci U S A, p.201820646, 2019.

, Global plan for insecticide resistance management in malaria vectors, World Health Organization, p.13, 2012.

G. F. Killeen, A. Tatarsky, A. Diabate, C. J. Chaccour, J. M. Marshall et al.,

, Developing an expanded vector control toolbox for malaria elimination, BMJ Glob Heal, vol.2, p.211, 2017.

P. Barreaux, A. Barreaux, E. D. Sternberg, E. Suh, J. L. Waite et al., Priorities for broadening the malaria vector control tool kit, Trends Parasitol, vol.33, pp.763-74, 2017.

L. A. Kelly-hope and F. E. Mckenzie, The multiplicity of malaria transmission: A review of entomological inoculation rate measurements and methods across sub-Saharan Africa, Malaria Journal, vol.8, p.19, 2009.

G. F. Killeen, J. Kihonda, E. Lyimo, F. R. Oketch, M. E. Kotas et al., Quantifying behavioural interactions between humans and mosquitoes : Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania, BMC Infect Dis, vol.6, pp.1-10, 2006.

N. Moiroux, G. B. Damien, M. Egrot, A. Djenontin, F. Chandre et al., Human exposure to early morning Anopheles funestus biting behavior and personal protection provided by long-lasting insecticidal nets, PLoS One, vol.9, pp.8-11, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01079372

A. Monroe, S. Moore, H. Koenker, M. Lynch, and E. Ricotta, Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in sub Saharan Africa : a review of the published literature, Malar J, pp.1-12, 2019.

D. D. Soma, B. M. Zogo, A. Somé, B. N. Tchiekoi, S. Hien-df-de et al., Anopheles bionomic , insecticide resistance and malaria transmission in southwest Burkina Faso : a preintervention study, BioRxiv Prepr, 2019.

. Insd, Enquête nationale sur le secteur de l'orpaillage (ENSO), 2017.

P. F. Mattingly, J. Rageau, C. A. La, F. Des, M. Du et al., Contributions de la faune des moustiques du Sud-Est Asiatique. XII. Contrib Am Entomol Inst, vol.7, 1973.

M. T. Gillies and M. Coetzee, A supplement to the Anophelinae of, Africa South of the Sahara (Afrotropical Region). South African Inst Med Res, p.143, 1987.

L. L. Koekemoer, L. Kamau, R. H. Hunt, and M. Coetzee, A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group, Am J Trop Med Hyg, vol.66, pp.804-815, 2002.

A. Cohuet, F. Simard, A. Berthomieu, M. Raymond, D. Fontenille et al., Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles funestus, Mol Ecol Notes, vol.2, pp.498-500, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01946119

F. Santolamazza, E. Mancini, F. Simard, Y. Qi, Z. Tu et al., Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms, Malar J, vol.7, p.163, 2008.

, The R Development Core Team. R : A Language and Environment for Statistical Computing, vol.2, pp.1-2547, 2008.

B. Olapeju, I. Choiriyyah, M. Lynch, A. Acosta, S. Blaufuss et al., Age and gender trends in insecticide-treated net use in sub-Saharan Africa: a multi-country analysis

, Malar J, vol.17, p.423, 2018.

,

P. J. Krezanoski, D. R. Bangsberg, and A. C. Tsai, Quantifying bias in measuring insecticide-treated bednet use: meta-analysis of self-reported vs objectively measured adherence, J Glob Health, vol.8, p.10411, 2018.

B. G. Koudou, D. Malone, and J. Hemingway, The use of motion detectors to estimate net usage by householders, in relation to mosquito density in central Cote d'Ivoire: Preliminary results. Parasites and Vectors, 2014.

P. J. Krezanoski, D. Santorino, A. Agaba, G. Dorsey, D. R. Bangsberg et al., How are insecticide-treated bednets used in Ugandan households? A comprehensive characterization of bednet adherence using a remote monitor, Am J Trop Med Hyg, vol.00, pp.1-8, 2019.

M. K. Cooke, S. C. Kahindi, R. M. Oriango, C. Owaga, E. Ayoma et al., A bite before bed': exposure to malaria vectors outside the times of net use in the highlands of western Kenya, Malar J, vol.14, p.259, 2015.

Y. Geissbühler, P. Chaki, B. Emidi, N. J. Govella, R. Shirima et al., Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania. Malar J, vol.6, p.126, 2007.

A. Kamau, J. M. Mwangangi, M. K. Rono, P. Mogeni, I. Omedo et al., Variation in the effectiveness of insecticide treated nets against malaria and outdoor biting by vectors in

K. Kilifi, Wellcome open Res, vol.2, p.22, 2017.

T. L. Russell, N. J. Govella, S. Azizi, C. J. Drakeley, S. P. Kachur et al., Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania, Malar J, vol.10, p.80, 2011.

S. Bhatt, D. J. Weiss, C. E. Bisanzio, D. Mappin, B. Dalrymple et al., The effect of malaria control on Plasmodium falciparum in Africa between, Nature, vol.526, pp.207-218, 2000.

P. A. West, N. Protopopoff, A. Wright, Z. Kivaju, R. Tigererwa et al., Indoor residual spraying in combination with insecticide-treated nets compared to insecticide-treated nets alone for protection against malaria : A cluster randomised trial in Tanzania, PLOS Med, vol.11, pp.1-12, 2014.

N. Protopopoff, J. F. Mosha, E. Lukole, J. D. Charlwood, A. Wright et al., Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroidresistant mosquitoes: a cluster, randomised controlled, two-by-two fact, Lancet, issue.18, pp.30427-30433, 2018.

H. T. Kafy, B. A. Ismail, A. P. Mnzava, J. Lines, M. Abdin et al., Impact of insecticide resistance in Anopheles arabiensis on malaria incidence and prevalence in Sudan and the costs of mitigation, Proc Natl Acad Sci, vol.114, pp.11267-75, 2017.

V. Corbel, M. Akogbeto, G. B. Damien, A. Djenontin, F. Chandre et al., Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial, Lancet Infect Dis, vol.12, pp.617-643, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00835684

M. Pinder, M. Jawara, L. Jarju, K. Salami, D. Jeffries et al., Efficacy of of long-lasting insecticidal mosquito nets: A cluster-randomised controlled trial, Lancet, vol.385, pp.1436-1482, 2015.

E. Loha, W. Deressa, T. Gari, M. Balkew, O. Kenea et al.,

, Malar J, vol.18, p.141, 2019.

, Control of residual malaria parasite transmission, 2014.

L. S. Tusting, M. M. Ippolito, B. A. Willey, I. Kleinschmidt, G. Dorsey et al., The evidence for improving housing to reduce malaria: A systematic review and meta-analysis

, Malaria Journal, 2015.

J. C. Rek, V. Alegana, E. Arinaitwe, C. E. Kamya, M. R. Katureebe et al., Rapid improvements to rural Ugandan housing and their association with malaria from intense to reduced transmission: a cohort study, Lancet Planet Heal, 2018.

G. F. Killeen, N. J. Govella, Y. P. Mlacha, and P. P. Chaki, Suppression of malaria vector densities and human infection prevalence associated with scale-up of mosquito-proofed housing in Dar es Salaam, Tanzania: re-analysis of an observational series of parasitological and entomological surveys, Lancet Planet Heal, vol.3, pp.132-175, 2019.

S. W. Lindsay, M. Jawara, J. Mwesigwa, J. Achan, N. Bayoh et al., Reduced mosquito survival in metal-roof houses may contribute to a decline in malaria transmission in sub-Saharan, Africa. Sci Rep, vol.9, p.7770, 2019.

B. Huho, O. Briët, A. Seyoum, C. Sikaala, N. Bayoh et al.,

, Int J Epidemiol, vol.42, pp.235-282, 2013.

L. Durnez and M. Coosemans, Residual transmission of malaria: An old issue for new approaches, Anopheles mosquitoes -New insights into malaria vectors, pp.671-704, 2013.

, Anopheles bionomics, insecticide resistance and malaria transmission in southwest Burkina Faso: a pre-intervention study, Plos one

, Alphonsine Amanan Koffi, vol.3

U. Mivegec, . Montpellier, . Cnrs, and . Ird,

R. Institut-pierre,

, These authors contributed equally to this work *Corresponding author Email: dieusoma@yahoo.fr (DDS) Abstract Background: Twenty-seven villages were selected in southwest Burkina Faso to implement new vector control strategies in addition

, Methods: We carried out hourly catches (from 17:00 to 09:00) inside and outside 4 houses in each village using the Human Landing Catch technique. Mosquitoes were identified using morphological taxonomic keys. Specimens belonging to the Anopheles gambiae complex and Anopheles funestus Group were identified using molecular techniques as well as detection of Plasmodium falciparum infection and insecticide resistance target-site mutations. Results: Eight Anopheles species were detected in the area. Anopheles funestus s.s was the main vector during the dry cold season. It was replaced by Anopheles coluzzii during the dry hot season whereas An. coluzzii and An, ) and rainy season, 2017.

, All insecticide resistance mechanisms (kdr-w, kdr-e and ace-1 target site mutations) investigated were found in each members of the An. gambiae complex but at different frequencies. We observed early and late biting phenotypes in the main malaria vector species

, Conclusion: The entomological indicators of malaria transmission were high despite the universal coverage with LLINs. We detected early and late biting phenotypes in the main malaria vector species as well as physiological insecticide resistance mechanisms. These vectors might mediate residual transmission. These data highlight the need to develop complementary tools in order to better control resistant malaria vectors and to monitor insecticide resistance. Keywords: Residual transmission, Entomological inoculation rates were 0.087, 0.089 and 0.375 infected bites per human per night during dry cold season, dry hot season and rainy season, respectively

, We identified 3 Anopheles species in both Nouvielgane and Nipodja villages and 2 Anopheles species in Yelbelela and Niaba. In all other villages, only one Anopheles species was present at low densities. During the rainy season, An. coluzzii remained the major species (65.71%, n=897/1365) followed by An

, During this survey, An. funestus s.s fall under 1% of the total. We collected Anopheles spp. mosquitoes in 25 villages out of the 27 surveyed (Fig 1C). The higher densities were observed in Niaba (n = 264, 4 species), Diagnon (n = 224, 6 species) and Kpédia (n=190, 3 species). We identified 4 Anopheles species in Lobignonao (n=31)

, Kouloh (n=25), Anopheles species in Dangbara (n=31)

, In the remaining villages, 3 Anopheles species was sampled. No Anopheles spp mosquitoes were collected in Sousoubro and Moulé, Tiakiero (n=10), and 1 Anopheles species in Gongombiro (n=3)

, Species composition of the Anopheles population varied significantly among surveys (Pearson's Chi-squared test, ! 2 =1339, vol.7

, Mosquito biting behavior Overall, endophagy rate (ER) of Anopheles spp

, 0005) and An. gambiae s.s. (EMM ER = 83

, EMM ERs of An. funestus s.s and An. gambiae s.s decreased to 56

, During rainy season, the ER of An. coluzzii increased significantly

, The median catching times of An. coluzzii, An. gambiae s.s, and An. pharoensis were recorded between 01:00 and 02:00 while those of An. funestus s.s and An. arabiensis were one hour later (between 02:00 and 03:00; Fig 3). These differences were significant between An. funestus s.s and both An. coluzzii and An

, An. coluzzii, An. gambiae s.s, An. pharoensis and An. funestus s.s showed early biting activity (beginning at 18:00) than An. arabiensis (beginning at 21:00). A late biting activity (after 06:00) was observed with An. coluzzii, An. gambiae s.s and An

, Eleven (11) individuals carried the three mutations (belonging the An. gambiae s.s and An. coluzzii species). References 1. WHO. World malaria report, p.238, 2018.

, World malaria report 2016. World Health Organization, 2016.

M. De and L. Santé, , 2017.

S. Bhatt, D. J. Weiss, B. Mappin, U. Dalrymple, C. E. Bisanzio et al., Coverage and system efficiencies of insecticide-treated nets in Africa from, Elife, vol.4, pp.1-37, 2000.

Z. M. Mboma, H. J. Overgaard, S. Moore, J. Bradley, J. Moore et al., Mosquito net coverage in years between mass distributions : a case study of Tanzania, 2013.

, Malar J. BioMed Central, vol.17, pp.1-14, 2018.

. Insd, Enquête sur les indicateurs du paludisme (EIPBF) au Burkina Faso, 2017.

K. R. Dabiré, A. Diabaté, M. Namountougou, K. H. Toé, A. Ouari et al., Distribution of pyrethroid and DDT resistance and the L1014F kdr mutation in Anopheles gambiae s.l. from Burkina Faso (West Africa), Trans R Soc Trop Med Hyg, vol.103, pp.1113-1120, 2009.

H. Ranson, N. 'guessan, R. Lines, J. Moiroux, N. Nkuni et al., Pyrethroid resistance in African Anopheline mosquitoes: what are the implications for malaria control?, Trends Parasitol, vol.27, pp.91-98, 2011.

S. A. Hien, D. D. Soma, O. Hema, B. Bayili, M. Namountougou et al., Evidence that agricultural use of pesticides selects pyrethroid resistance within Anopheles gambiae s.l. populations from cotton growing areas in Burkina Faso, West Africa, PLoS One, vol.3, pp.1-15, 2017.

N. Moiroux, M. B. Gomez, C. Pennetier, E. Elanga, A. Djènontin et al., Changes in Anopheles funestus biting behavior following universal coverage of longlasting insecticidal nets in Benin, J Infect Dis, vol.206, pp.1622-1629, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00742218

C. Sokhna, M. O. Ndiath, and C. Rogier, The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria, Clin Microbiol Infect. European Society of Clinical Infectious Diseases, vol.19, pp.902-907, 2013.

K. T. Storeng and J. Palmer, Viewpoint When ethics and politics collide in donor-funded global health research, Lancet. Elsevier Ltd, vol.6736, issue.19, pp.30429-30434, 2019.

. Insd, Enquête nationale sur le secteur de l'orpaillage (ENSO), 2017.

J. B. Silver, Sampling adults by animal bait catches and by animal-baited traps, Mosquito Ecology Field Sampling Methods, pp.493-675, 2008.

T. Coffinet, C. Rogier, and F. Pages, Evaluation de l ' agressivité des anophèles et du risque de transmission du paludisme : méthodes utilisées dans les armées françaises, Med Trop, vol.69, pp.109-122, 2009.

M. T. Gillies and M. Coetzee, A supplement to the Anophelinae of Africa south of the Sahara (Afro tropical region). Publications of the South African Institute for Medical Research, SAIMR, Johannesburg: pp143. SAIMR, Joh, 1987.

P. F. Mattingly, J. Rageau, C. A. La, F. Des, M. Du et al., Contributions de la faune des moustiques du Sud-Est Asiatique. XII. Contrib Am Entomol Inst, vol.7, 1973.

T. S. Detinova, Age-grouping methods in Diptera of medical importance with special reference to some vectors of malaria, Monogr Ser World Health Organ. Not Available, vol.47, pp.13-191, 1962.

A. Boissière, G. Gimonneau, M. T. Tchioffo, L. Abate, A. Bayibeki et al., Application of a qPCR assay in the investigation of susceptibility to malaria infection of the M and S molecular forms of An. gambiae s.s. in Cameroon, PLoS One, vol.8, pp.1-10, 2013.

L. L. Koekemoer, L. Kamau, R. H. Hunt, and M. Coetzee, A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group, Am J Trop Med Hyg, vol.66, pp.804-811, 2002.

A. Cohuet, F. Simard, A. Berthomieu, M. Raymond, D. Fontenille et al., Isolation and characterization of microsatellite DNA markers in the malaria vector Anopheles funestus, Mol Ecol Notes, vol.2, pp.498-500, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01946119

F. Santolamazza, E. Mancini, F. Simard, Y. Qi, Z. Tu et al., Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms, Malar J, vol.7, p.163, 2008.

D. Martinez-torres, F. Chandre, M. S. Williamson, F. Darriet, J. B. Berge et al., Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s, Insect Mol Biol, vol.7, pp.179-184, 1998.
URL : https://hal.archives-ouvertes.fr/halsde-00201819

H. Ranson, B. Jensen, J. M. Vulule, X. Wang, J. Hemingway et al., Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids, Insect Mol Biol, vol.9, pp.491-498, 2000.

J. Essandoh, A. E. Yawson, and W. D. Acetylcholinesterase, Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s . and Anopheles coluzzii across southern Ghana, Malar J, vol.12, pp.1-10, 2013.

D. Bates and M. Maechler, Ben Bolker SW. Linear Mixed-Effects Models using "Eigen" and S4, 2019.

, The R Development Core Team. R : A Language and Environment for Statistical Computing, pp.1-2547, 2008.

L. Russell, S. Henrik, J. Love, P. Buerkner, and M. Herve, Estimated Marginal Means, aka Least-Squares Means: Package ' emmeans, pp.216-221, 2019.

A. Dinno, Dunn's Test of Multiple Comparisons Using Rank Sum, pp.1-7, 2017.

J. Goudet and M. Raymond, Testing Differentiation i n Diploid Populations, Genetics, vol.1940, pp.1933-1940, 1996.

F. Rousset, Population genetic data analysis using Genepop, pp.1-16, 2017.

J. Haldane, An exact test for randomness of mating, J Genet, vol.52, pp.631-635, 1954.

M. Raymond and F. Rousset, GENEPOP : Population genetics software for exact tests and ecumenicism, J Hered, vol.86, pp.9-10, 1995.
URL : https://hal.archives-ouvertes.fr/halsde-00186383

F. Pages, E. Orlandi-pradines, and V. Corbel, Vecteurs du paludisme : biologie , diversité , contrôle et protection individuelle vectors of malaria : biology , diversity , prevention , and individual protection, Médecine Mal Infect, vol.37, pp.153-161, 2007.

M. Gillies and B. De-meillon, The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region), Sahara Ethiop Zoogeographical, vol.343, p.pp, 1968.

C. Costantini, N. Sagnon, E. Ilboudo-sanogo, M. Coluzzi, and D. Boccolini, Chromosomal and bionomic heterogeneities suggest incipient speciation in Anopheles funestus from Burkina Faso, Parassitologia, vol.41, pp.595-611, 1999.

W. M. Guelbeogo, N. F. Sagnon, O. Grushko, M. A. Yameogo, D. Boccolini et al., Seasonal distribution of Anopheles funestus chromosomal forms from Burkina Faso

, Malar J, vol.8, pp.1-7, 2009.

A. Diabaté, R. K. Dabiré, K. Heidenberger, J. Crawford, W. O. Lamp et al., Evidence for divergent selection between the molecular forms of Anopheles gambiae: role of predation, BMC Evol Biol, vol.8, p.5, 2008.

G. Gimonneau, M. Pombi, M. Choisy, S. Morand, R. K. Dabire et al., Larval habitat segregation between the molecular forms of the mosquito Anopheles gambiae in a rice field area of Burkina Faso, West Africa, Med Vet Entomol, vol.26, pp.9-17, 2012.

A. Dao, M. Yaro, . Diallo, . Timbiné, Y. Huestis et al., Signatures of aestivation and migration in Sahelian malaria mosquito populations, Nature, vol.516, pp.387-390, 2014.

P. Carnevale, R. V. Les, and . Biologie, , p.1, 2009.

K. R. Dabiré, A. Diabaté, L. Paré-toé, J. Rouamba, A. Ouari et al., Year to year and seasonal variations in vector bionomics and malaria transmission in a humid savannah village in west Burkina Faso, J Vector Ecol, vol.33, pp.70-75, 2008.

K. R. Dabiré, T. Baldet, A. Diabaté, I. Dia, C. Costantini et al., Anopheles funestus (Diptera: Culicidae) in a humid savannah area of Western Burkina Faso: Bionomics, insecticide resistance status, and role in malaria transmission, J Med Entomol, vol.44, pp.990-997, 2007.

P. S. Epopa, C. M. Collins, A. North, A. A. Millogo, M. Q. Benedict et al., Seasonal malaria vector and transmission dynamics in western Burkina Faso, Malar J. BioMed Central, vol.18, pp.1-13, 2019.

P. W. Gething, A. P. Patil, D. L. Smith, C. A. Guerra, I. Elyazar et al., A new world malaria map : Plasmodium falciparum endemicity in 2010, Malar J, vol.10, pp.1-16, 2011.

C. Antonio-nkondjio, C. Kerah-hinzoumbe, and F. Simard, Complexity of the malaria vectorial system in Cameroon : Contribution of secondary vectors to malaria transmission, Trans R Soc Trop Med Hyg, p.43, 2006.

I. Dia, L. Konate, B. Samb, J. Sarr, and A. Diop, Bionomics of malaria vectors and relationship with malaria transmission and epidemiology in three physiographic zones in the Senegal River Basin, Acta Trop, vol.105, pp.145-153, 2008.

R. N. Tabue, P. Awono-ambene, J. Etang, J. Atangana, J. C. Toto et al., Role of Anopheles (Cellia) rufipes (Gough , 1910) and other local anophelines in human malaria transmission in the northern savannah of Cameroon : a cross-sectional survey

, Parasit Vectors, pp.1-11, 2017.

A. M. Adja, E. Goran, B. G. Koudou, I. Dia, and P. Kengne, Contribution of Anopheles funestus, An . gambiae and An . nili (Diptera : Culicidae) to the perennial malaria transmission in the southern and western forest areas of Côte d'Ivoire, Ann Trop Med Parasitol, vol.105, pp.13-24, 2011.

N. Abduselam, A. Zeynudin, N. Berens-riha, D. Seyoum, M. Pritsch et al., Similar trends of susceptibility in Anopheles arabiensis and Anopheles pharoensis to Plasmodium vivax infection in Ethiopia, Parasit Vectors, vol.1, issue.9, 2016.

Y. A. Afrane, M. Bonizzoni, and Y. Guiyun, Secondary malaria vectors of sub-Saharan Africa: Threat to malaria elimination on the continent? Current Topics in Malaria, pp.473-490, 2016.

M. T. Gillies, Observations on nulliparous and parous rates in some common east african mosquitoes, Ann Trop Med Parasitol, vol.57, pp.435-442, 1963.

D. F. Hien, S. R. Yerbanga, D. Da, E. Guissou, K. Y. Bienvenue et al., Competence of the secondary vectors An. coustani, An. squamosus and An. rufipes for Plasmodium falciparum as measured by direct membrane feeding assays, p.7

, Multilateral Initiative on Malaria Panafrican Conference, p.1, 2018.

J. C. Beier, G. F. Killeen, and J. I. Githure, Short Report: Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa, Am J Trop Med Hyg, vol.61, pp.109-113, 1999.

M. T. Gillies and A. Smith, The effect of a residual house-spraying campaign in East Africa on species balance in the Anopheles funestus group. The replacement of A. funestus Giles by A. rivulorum Leeson, Bull Entomol Res, vol.51, pp.243-252, 1960.

M. T. Gillies and M. Furlong, An investigation into the behaviour of Anopheles parensis Gillies at Malindi on the Kenya Coast, Bull Entomol Res, vol.55, pp.1-16, 1964.

H. D. Trung, W. Bortel, . Van, T. Sochantha, K. Kalouna et al., Behavioural heterogeneity of Anopheles species in ecologically different localities in Southeast Asia : a challenge for vector control, Trop Med Int Heal, vol.10, pp.251-262, 2005.

M. N. Bayoh, D. K. Mathias, M. R. Odiere, F. M. Mutuku, L. Kamau et al., Anopheles gambiae : historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J, vol.9, pp.1-12, 2010.

H. M. Ferguson, A. Dornhaus, A. Beeche, C. Borgemeister, M. Gottlieb et al., Ecology : A Prerequisite for malaria elimination and eradication, vol.7, pp.1-7, 2010.

A. Monroe, S. Moore, H. Koenker, M. Lynch, and E. Ricotta, Measuring and characterizing night time human behaviour as it relates to residual malaria transmission in sub Saharan Africa : a review of the published literature, Malar J, pp.1-12, 2019.

G. Duvallet, D. Fontenille, and V. Robert, Entomologie médicale et vétérinaire, 2017.

L. Durnez and M. Coosemans, Residual transmission of malaria: An old issue for new approaches, pp.671-704, 2013.

D. Carrasco, N. Moiroux, and F. Chandre, Behavioural adaptations of mosquito vectors to insecticide control, Curr Opin Insect Sci, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02411126

A. Akono, G. Tcheugoue, J. A. Mbida, and L. G. Lehman, Higher Mosquito aggressiveness and malaria transmission following the distribution of alphacypermethrin impregnated mosquito nets in a district of Douala, Cameroon. African Entomol, vol.26, pp.429-436, 2018.

A. Sovi, R. Azondékon, R. Y. Aïkpon, R. Govoétchan, F. Tokponnon et al., Impact of operational effectiveness of long-lasting insecticidal nets (LLINs) on malaria transmission in pyrethroid-resistant areas, Parasit Vectors, vol.6, pp.1-13, 2013.

A. Diabate, C. Brengues, T. Baldet, K. R. Dabire, J. M. Hougard et al., The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena, Trop Med Int Heal, vol.9, pp.1267-1273, 2004.

, Directives nationales pour la prise en charge du paludisme dans les formations sanitaires du Burkina Faso. Ministère de la Santé/Burkina Faso, PNLP, 2014.

. Insd.-annuaire-statistique, , 2015.

N. Platt, R. M. Kwiatkowska, H. Irving, . Diabaté-a, R. Dabire et al., Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae, Heredity (Edinb), 2015.

H. Ranson and N. Lissenden, Insecticide resistance in African Anopheles mosquitoes: A worsening situation that needs urgent action to maintain malaria control, Trends Parasitol. Elsevier Ltd, vol.32, pp.187-196, 2016.

R. K. Dabiré, M. Namountougou, A. Diabaté, D. D. Soma, J. Bado et al., Distribution and frequency of kdr mutations within Anopheles gambiae s.l. populations and first report of the Ace.1 G119S mutation in Anopheles arabiensis from Burkina Faso (West Africa), PLoS One, vol.9, 2014.

M. O. Ndiath, A. Cailleau, S. M. Diedhiou, A. Gaye, and C. Boudin, Effects of the kdr resistance mutation on the susceptibility of wild Anopheles gambiae populations to Plasmodium falciparum : a hindrance for vector control, Malar J, vol.13, pp.1-8, 2014.

H. Alout, P. Labbé, F. Chandre, and A. Cohuet, Malaria vector control still matters despite insecticide resistance, Trends Parasitol, vol.33, pp.610-618, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01938020

H. Alout, N. T. Ndam, M. M. Sandeu, I. Dje, L. S. Djogbe et al., Insecticide resistance alleles affect vector competence of Anopheles gambiae s.s. for Plasmodium falciparum, PLoS One, vol.8, pp.1-9, 2013.

H. Alout, R. K. Dabiré, L. S. Djogbénou, L. Abate, and V. Corbel, Interactive cost of Plasmodium infection and insecticide resistance in the malaria vector Anopheles gambiae. Sci Rep, vol.6, pp.1-11, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01944457