J. , Évaluation des données de mesure -guide pour l'expression de l'incertitude de mesure, 2008.

F. O. Akinkunni, D. A. Jahn, and N. Giovambattista, Effects of temperature on the thermodynamic and dynamical properties of glycerol-water mixtures : a computer simulation study of three different force fields, J. Phys. Chem. B, vol.119, pp.6250-6261, 2015.

C. A. Angell, Liquid fragility and the glass transition in water and solutions, Chemical Reviews, vol.102, issue.8, 2002.

I. Avramov, Viscosity in disordered media, Journal of Non Crystalline Solids, vol.351, pp.3163-3173, 2005.

R. J. Bearman, Statistical mechanica theory of the diffusion coefficients in binary liquid solutions, J. Chem. Phys, vol.32, 1960.

S. R. Becker, P. H. Poole, and F. W. Starr, Fractionnal stokes-einstein and debye-stokeseinstein relations in network-forming liquids, Physical Review Letters, vol.97, 2006.

T. Benesch and S. Yiacoumi, Brownian motion in confinement, Physical Review E, 2003.

K. E. Bett and J. B. Cappi, Effect of pressure on the viscosity of water, Nature, 1965.

M. A. Boss and P. C. Hammel, The role of diffusion in feritin-induced relaxation enhancement of protons, Journal of Magnectic Resonance, vol.217, pp.36-40, 2012.

L. E. Bove, S. Klotz, T. Strässle, M. Koza, J. Teizeira et al., Translational and rotation diffusion in water in the gigapascal range, Physical Review Letters, vol.111, 2013.

P. W. Bridgman, The viscosity of liquids under pressure, 1925.

E. J. Cabrita, S. Berger, P. Braüer, and J. Kärger, High-resolution dosy nmr with spins in different chemical surrooundings : influence of particle exchange, Journal of Magnectic Resonance, vol.157, pp.124-131, 2002.

F. Caupin and M. A. Anisimov, Thermodynamics of supercooled and stretched water : unifying two-structure description and liquid-vapor spinodal, J. Chem. Phys, vol.151, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02367697

R. Cerbino, Differential dynamic microscopy : Probing wave vector dependent dynamics with a microscope, Physical Review Letters, 2008.

I. Chang and H. Sillescu, Heterogeneity at glass transition : translation and rotational self-diffusion, J. Phys. Chem. B, vol.101, 1997.

M. Chaplin,

B. Chen, E. E. Sigmund, and W. P. Halperin, Stokes-einstein relation in supercooled aqueous solutions of glycerol, Physical Review Letter, 2006.

C. Chen, W. Z. Li, Y. C. Song, L. D. Weng, and N. Zhang, Concentration dependance of water self-diffusion coefficients in dilute glycerol-water binary and glycerol-watersodium chloride ternary solutions and the insights from hydrogen bonds, Molecular Physics, vol.110, pp.283-291, 2011.

P. G. Debenedetti and F. H. Stilinger, Supercooled liquids and the glass transition, Nature, p.410, 2001.

P. G. Debenedetti and H. E. Stanley, Supercooled and glassy water, Physics Today, pp.40-46, 2003.

A. Dehaoui, Viscosité de l'eau surfondue, 2015.

A. Dehaoui, B. Issenmann, and F. Caupin, Viscosity of deeply supercooled water and its coupling to molecular diffusion, Proceedings of the National Academy of Sciences, vol.112, issue.39, pp.12020-12025, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02308821

G. Errico, O. Ortona, F. Capuano, and V. Vitagliano, Diffusion coefficients for the binary system glycerol+water at 25 celsius. a velocity correlation study, J. Chem. Eng. Data, vol.49, pp.1665-1670, 2004.

B. Diu, C. Guthmann, D. Lederer, B. Roulet, . Thermodynamique et al., , 2007.

A. Einstein, On the motion of small particules suspended in liquids at rest required by the molecular-kinetic theory of heat, Annalen der Physik, vol.17, pp.549-560, 1905.

Y. Elmatad, J. P. Chandler, and . Garrahan, Corresponding states of structural glass formers, Journal of physical chemistry, vol.113, pp.5563-5567, 2009.

M. Findeisen, T. Brand, and S. Berger, A 1h-nmr thermometer suitable for cryoprobes, Magnetic Resonance in Chemistry, vol.45, pp.175-178, 2007.

P. Gallo and M. Rovere, Mode coupling and fragile to strong transition in supercooled tip4p water, J. Chem. Phys, 2012.

P. Gallo, Water : a tale of two liquids, Chemical reviews, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02303923

F. Giavanni and R. Cervino, Scattering information obtained by optical microscopy : Differential dynamic microscopy and beyond, Physical Review, 2009.

K. T. Gillen, D. C. Douglass, and M. J. Hoch, Self-diffusion in liquid water down to 242k, J. Chem. Phys, 1972.

G. Gilli and P. Gilli, The nature of the hydrogen bond, 2009.

A. José, P. Trejo-gonzalez, H. R. Longinotti, and . Corti, The viscosity of glycerolwater mixtures including the supercooled region, Journal of chemical and engineering data, pp.1397-1406, 2011.

C. Goy, Shrinking of rapidly evaporating water microdroplets revealstheir extreme supercooling, Physical Review Letters, 2018.

W. Götze, Complex dynamics of glass-forming liquids : a mode coupling theory, 2009.

H. Günther, La spectroscopie de RMN, 1993.

E. L. Hahn, Spin echoes. Physical Review, 1950.

E. L. Hahn, Free nuclear induction, Physics today, 1953.

J. Happel and H. Brenner, Low reynolds number hydrodynamics, 1965.

D. E. Hare and C. M. Sorensen, The density of supercooled water, J. Chem. Phys, vol.87, pp.4840-4845, 1987.

K. R. Harris and P. J. Newitt, Self-diffusion of water at low temperature and high pressure, J. Chem. Eng. Data, vol.42, 1997.

Y. Hayashi, A. Puzenko, and I. Balin, Relaxation in glycerol-water mixtures.2. mesoscopic feature in water-rich mixtures, J. Chem. Phys, vol.109, pp.9174-9177, 2005.

Y. Hayashi, A. Puzenko, and Y. Feldman, Ice nanocrystals in glycerol-water mixtures, J.Phys.Chem, vol.109, pp.16979-16981, 2005.

N. J. Hestand and J. L. Skinner, Perspective : crossing the widom line in no man's land, J. Chem. Phys, 2018.

R. E. Hoffman, Standardization of chemical shifts of tms and solvent signals in nmr solvents, Magnetic Resonance in Chemistry, vol.44, pp.606-616, 2006.

R. E. Hoffman and E. D. Becker, Temperature dependance of the proton chemical shift of tetramethylsilane in chloroform, methanol and dimethylsulfoxide, Journal of Magnetic Resonance, 2005.

V. Holten and M. A. Anisimov, Entropy-driven liquid-liquid separation in supercooled water, Scientific reports, 2012.

L. F. Hoyt, Determination of refractive index of glycerols by the immersion refractometer, Ind. Eng. Chem, 1933.

K. Ichiro-murata and H. Tanaka, Liquid-liquid transition without macroscopic phase separation in a water-glycerol mixture, Nature Materials, pp.436-443, 2012.

A. Inaba and O. Andersson, Multiple glass transitions and two steps cristallization for the binary system of water and glycerol, Thermochimica Acta, pp.44-49, 2007.

H. Kanno, R. J. Speedy, and C. A. Angell, Supercooling of water to -92c under pressure, Science, p.189, 1975.

N. Kimizuka and T. Suzuki, Supercooling behavior in aqueous solutions, J. Phys. Chem, vol.111, pp.2268-2273, 2007.

S. A. Kivelson, Frustration-limited clusters in liquids, J. Chem. Phys, vol.101, pp.2391-2393, 1994.

D. Klug, Glassy water, Science, vol.294, pp.2305-2306, 2001.

P. Kumar, S. V. Buldyrev, S. R. Becker, P. H. Poole, F. W. Starr et al., Relation between the widom line and the breakdown of the stokes-einstein relation in supercooled water, Proceedings of the National Academy of Sciences, vol.104, issue.23, pp.9575-9579, 2007.

L. B. Lane, Freezing point of glycerol and its aqueous solutions. Industrial and engeneering chemistry, vol.17, p.924, 1923.

F. Mallamace, C. Corsaro, and D. Mallamace, Some considerations on the transport properties of water-glycerol suspensions, Journal of Chemical Physics, vol.144, 2016.

R. Mills, Self-diffusion in normal and heavy water in the range 1-45 celsius, J. Phys. Chem, 1973.

R. Mills and K. R. Harris, The effect of isotopic substitution on diffusion in liquids, Chem. Soc. Rev, pp.215-231, 1976.

P. Montero-de-hijes, E. Sanz, L. Joly, C. Valeriani, and F. Caupin, Viscosity and selfdiffusion of supercooled and stretched water from molecular dynamics simulations, J. Chem. Phys, vol.149, 2018.

G. J. Morris, M. Goodrich, E. Acton, and F. Fonseca, The high viscosity encoutered during freezing in glycerol solutions : effects on cryopreservation, Cryobiology, vol.52, pp.323-334, 2006.

J. S. Murday and R. M. Cotts, J. Chem. Phys, 1970.

A. H. Narten, M. D. Danford, and H. A. Levy, X-ray diffraction study of liquid water in the temperature range 4-200 celsius, Discussion of the Faraday Society, vol.43, 1966.

C. Ngô and H. Ngô, Physique statistique. Dunod, 2008.

O. Mishima, Reversible first-order transition between two h2o amorphs at 0.2 gpa and 135k, Journal of Chemistry and Physics, vol.100, p.5910, 1994.

D. E. O'reilly and E. M. Peterson, J. Chem. Phys, 1971.

J. Perrin, Mouvement brownien et molécules, J. Phys. Theor. Appl, vol.9, pp.5-39, 1910.

H. B. Poole, F. Sciortino, T. Grande, H. E. Stanley, and C. A. Angell, Effect of hydrogen bonds on the thermodynamical behavior of liquid water, Physical review letters, vol.73, issue.12, 1994.

P. Poole, F. Sciortino, U. Essmann, and H. E. Stanley, Phase behavior of metastable water, Nature, 1992.

W. S. Price, H. Ide, and Y. Arata, Self-diffusion of supercooled water to 238k using pgse nmr diffusion measurements, J. Phys. Chem, vol.103, pp.448-450, 1999.

W. S. Price, NMR studies of translational motion, 2009.

F. X. Prielmeier, E. W. Lang, R. J. Speedy, and H. D. Lüdemann, The pressure dependance of self-diffusion of water at low temperature and high pressure, Ber Bunsenges Phys Chem, vol.92, 1988.

A. Puzenko, Y. Hayashi, and Y. Feldman, Space and tome scaling in glycerol-water mixtures, Journal of non-crystalline solids, vol.353, pp.4518-4522, 2007.

K. Rah and B. C. Eu, Free volume and density and temperature dependance of diffusion coefficient of liquid mixtures, Physical Review Letters, vol.88, 2002.

K. Rah, S. Kwak, B. C. Eu, and M. Lafleur, Relation of tracer diffusion coefficient and solvent self-diffusion coefficient, J. Phys. Chem, vol.106, 2002.

D. H. Rasmussen and A. P. Mackenzie, Effect of solute on ice-solution interfacial free energy, Water structure at the water-polymer interface, pp.126-145, 1971.

F. Saglimbeni, S. Bianchi, G. Gibson, R. Bowman, M. Padgett et al., Holographic tracking size and sizing of optically trapped microprobes in diamond anvil cells, vol.24, 2016.

M. A. Saleh, S. Begum, S. K. Begum, and B. A. Begum, Viscosity of dilute aqueous solutions of some diols, Physics and chemistry of liquids, vol.37, pp.785-801, 1999.

S. Sastry, P. Debenedetti, F. Sciortino, and H. E. Stanley, Singularity-free interpretation of the thermodynamics of supercooled water, Phys. Rev. E, vol.53, 1996.

S. G. Schultz and A. K. Solomon, Determination of the effective hydrodynamic radii of small molecules by viscomerty, Journal of general physiology, 1961.

J. B. Segur and H. E. Oberstar, Viscosity of glycerol and its aqueous solutions, Ind. Eng. Chem, vol.43, issue.9, pp.2117-2119, 1951.

L. P. Singh, B. Issenmann, and F. Caupin, Pressure dependance of viscosity in supercooled water and a unified approach for thermodynamic and dynamic anomalies of water, 2017.

D. Sinnaeve, The stejskal-tanner equation generalized for any gradient shape, Concepts in Magnetic Resonance Part A, vol.40, pp.39-65, 2012.

A. Smart, Supercooled water survived no man's land, Physics Today, 2017.

R. J. Speedy, Stability-limit conjecture. an interpretation of the properties of water, J. Phys. Chem, vol.86, 1982.

R. J. Speedy and C. A. Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity, J. Chem. Phys, 1976.

E. O. Stejskal and E. Tanner, Spin diffusion measurements : spin echoes in the presence of a time-dependant field gradient, J. Chem. Phys, vol.42, 1965.

F. H. Stillinger, Improved simulation of liquid water by molecular dynamics, J. Chem. Phys, vol.60, 1974.

Y. Suzuki and O. Mishima, Experimentally proven liquid-liquid critical point of dilute glycerol-water solution at 150k, J. Chem. Phys, vol.141, 2014.

Y. Suzuki and O. Mishima, Effect of polyamorphism on the molecular vibrations of glycerol in its glassy aqueous solutions, J. Chem. Phys, vol.145, 2016.

G. Tarjus and D. Kivelson, Breakdown of the stokes-einstein relation in supercooled liquids, J. Chem. Phys, vol.103, 1995.

J. Taylor, An introduction to error analysis, University Science Books, 1997.

J. J. Towey and L. Dougan, Structural examination of the impact of glycerol on water structure, J. Phys. Chem, vol.116, pp.1633-1641, 2011.

A. L. Van-geet, Calibration of methanol nuclear magnetic resonance thermometer at low temperature, Analytical chemistry, vol.42, issue.6, 1970.

S. Woutersen, M. Ensing, Z. Hilbers, C. A. Zhao, and . Angell, A llt in supercooled aqueous solution related to the hda-lda transition, Science, p.359, 2018.

L. Xu, P. Kumar, and H. E. Stanley, Relation berween the widom line and the dynamic crossover in systems with a llt, vol.102, 2005.

Y. Xu, Growth rate of crystalline ice and diffusivity of supercooled water from 126 to 262 kelvin, 2016.

C. Tableau, 2 -Coefficients d'intra-diffusion (en ?m 2 /s) à w = 1% en glycérol

C. Tableau, 5 -Coefficients d'intra-diffusion (en ?m 2 /s) à w = 50% en glycérol

L. ,

, Ne pas laisser l'eau s'écouler plus bas que la base de l'entonnoir

R. Ouvrir-le,

, Ouvrir la vanne 7. Là encore, veiller à ce qu'il reste de l'eau dans l'entonnoir à tout moment, Au besoin

, Dès que l'eau ne s'écoule plus, fermer la vanne 7 et le robinet

T. Déconnecter-le,

, Une fraction de ce volume finira effectivement dans le montage, mais il faut remplir constamment l'entonnoir et les tuyaux pendant le remplissage, et prévoir un peu plus en cas de fuite ou d'erreur de manipulation. On peut réemployer l'entonnoir utilisé précédemment pour remplir le compartiment d'eau pure

, Ouvrir un peu le robinet pour laisser le liquide s'écouler dans le bas du tuyau jusqu'à un bécher (propre) de récupération. Ne pas le laisser couler plus bas que la base de l'entonnoir

R. Ouvrir-le,

, Ouvrir la vanne 8 pour laisser s'écouler le liquide dans la pompe

. Quand-l'écoulement-cesse,

, Tourner le cabestan et vérifier que la pression augmente bien dans les deux compartiments

T. Déconnecter-le, fermer la vanne 3 pour démonter la vanne 8

, Lorsque le montage est inutilisé pendant plusieurs heures, imposer environ 50 MPa afin d'éviter le développement de micro-organisme dans la pompe

, Afin de rééquilibrer les pressions, on va autoriser une partie du liquide transmetteur de pression (eau pure) à passer dans l'autre compartiment. Cette manoeuvre n'a pour conséquence qu'une faible dilution de la dispersion colloïdale tout en empêchant ces derniers de pénétrer dans un compartiment autre que le leur, Les étapes pour équilibrer la pression sont alors : 1. Vérifier que toutes les vannes sont fermées sauf la 1

, Fermer la vanne 1 et ouvrir la vanne 4

, Faire tourner le cabestan afin de provoquer l'écoulement dans le compartiment contenant la dispersion. La pression du capteur situé au niveau de la vanne 3 doit augmenter et rattraper celle du capteur de la vanne 1. Continuer à faire monter la pression afin de forcer le piston à se déplacer