D. Aldous, Probability Distributions on Cladograms. Random Discrete Structures. The IMA Volumes in Mathematics and Its Applications 76, vol.90, pp.1-18, 1996.

J. Bertoin, Markovian Growth-Fragmentation Processes, Bernoulli, vol.23, issue.2, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01152370

J. Bertoin, Random Fragmentation and Coagulation Processes, vol.117, pp.126-128, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00103015

J. Bertoin, Self-Similar Fragmentations, Ann. Inst. Henri Poincaré Probab. Stat, vol.38, pp.319-340, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00103546

A. Blancas, J. Duchamps, A. Lambert, and A. Siri-jégousse, Trees within Trees: Simple Nested Coalescents. Electron. J. Probab, vol.23, p.0, 2018.

J. Duchamps, Trees within Trees II: Nested Fragmentations, Ann. Inst. Henri Poincaré Probab. Stat, vol.89, issue.11, p.133, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01842036

J. Duchamps and A. Lambert, Mutations on a Random Binary Tree with Measured Boundary, Ann. Appl. Probab, vol.28, pp.2141-2187, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01466831

W. J. Ewens, The Sampling Theory of Selectively Neutral Alleles. Theor, Popul. Biol, vol.3, issue.1, pp.87-112, 1972.

R. Abraham, J. Delmas, and P. Hoscheit, A Note on the Gromov-Hausdorff-Prokhorov Distance between (Locally) Compact Metric Measure Spaces

, J. Probab, issue.14, p.22, 2013.

R. Abraham and L. Serlet, Poisson Snake and Fragmentation, Electron. J. Probab, vol.7, issue.17, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00022233

D. Aldous and J. Pitman, The Standard Additive Coalescent, Ann. Probab, vol.26, issue.4, p.16, 1998.

A. Basdevant and C. Goldschmidt, Asymptotics of the Allele Frequency Spectrum Associated with the Bolthausen-Sznitman Coalescent, Electron. J. Probab, vol.13, p.15, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00156487

J. Berestycki, N. Berestycki, and V. Limic, A Small-Time Coupling between ?-Coalescents and Branching Processes, Ann. Appl. Probab, vol.24, issue.2, p.15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988195

J. Bertoin, Subordinators: Examples and Applications. Lectures on Probability Theory and Statistics: École d'Été de Probabilités de Saint-Flour XXVII, vol.54, p.31, 1997.

J. Bertoin, The Structure of the Allelic Partition of the Total Population for Galton-Watson Processes with Neutral Mutations, Ann. Probab, vol.37, issue.4, pp.1502-1523, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414695

N. Champagnat and A. Lambert, Splitting Trees with Neutral Poissonian Mutations I: Small Families, Stochastic Process. Appl, vol.122, issue.3, p.33, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00515481

N. Champagnat and A. Lambert, Splitting Trees with Neutral Poissonian Mutations II: Largest and Oldest Families, Stochastic Process. Appl, vol.123, p.15, 2013.
URL : https://hal.archives-ouvertes.fr/inria-00616765

N. Champagnat, A. Lambert, and M. Richard, Birth and Death Processes with Neutral Mutations, p.15, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00736036

C. Delaporte, G. Achaz, and A. Lambert, Mutational Pattern of a Sample from a Critical Branching Population, J. Math. Biol, vol.73, issue.3, p.15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01490969

J. Duchamps and A. Lambert, Mutations on a Random Binary Tree with Measured Boundary, Ann. Appl. Probab, vol.28, pp.2141-2187, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01466831

S. N. Evans, Probability and Real Trees. Red, Lecture Notes in Mathematics, vol.1920, p.17, 2008.

W. J. Ewens, The Sampling Theory of Selectively Neutral Alleles. Theor, Popul. Biol, vol.3, issue.1, pp.87-112, 1972.

F. Freund and M. Möhle, On the Number of Allelic Types for Samples Taken from Exchangeable Coalescents with Mutation, Adv. in Appl. Probab, p.15, 2009.

F. Freund, Almost Sure Asymptotics for the Number of Types for Simple ?-Coalescents, Electron. Commun. Probab, p.15, 2012.

R. C. Griffiths and A. G. Pakes, An Infinite-Alleles Version of the Simple Branching Process, Adv. in Appl. Probab, vol.20, issue.3, p.15, 1988.

D. G. Kendall, On the Generalized "Birth-and-Death, Process. Ann. Math. Statist, vol.19, issue.1, p.45, 1948.

J. Kingman, The Coalescent. Stochastic Process. Appl, vol.13, pp.235-248, 1982.

A. Lambert and G. Bravo, The Comb Representation of Compact Ultrametric Spaces, Numbers Ultrametric Anal. Appl, vol.9, issue.1, pp.22-38, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01287143

A. Lambert, The Allelic Partition for Coalescent Point Processes, Markov Process. Related Fields, vol.15, p.33, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00273808

A. Lambert and E. Schertzer, Recovering the Brownian Coalescent Point Process from the Kingman Coalescent by Conditional Sampling, Bernoulli, vol.25, issue.1, p.22, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01394651

P. , Nested Regenerative Sets and Their Associated Fragmentation Process, Mathematics and Computer Science III. Trends in Mathematics. Birkhäuser Basel, vol.29, p.23, 2004.

L. Popovic, Asymptotic Genealogy of a Critical Branching Process, Ann. Appl. Probab, vol.14, issue.4, p.29, 2004.

Z. Taïb, Branching Processes and Neutral Evolution, Lecture Notes in Biomathematics, vol.93, p.15, 1992.

J. Berestycki, N. Berestycki, and V. Limic, A Small-Time Coupling between ?-Coalescents and Branching Processes, Ann. Appl. Probab, vol.24, issue.2, p.15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988195

J. Berestycki, N. Berestycki, and J. Schweinsberg, The Genealogy of Branching Brownian Motion with Absorption, Ann. Probab, vol.41, issue.2, p.60, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843106

J. Bertoin, Random Fragmentation and Coagulation Processes, vol.117, pp.126-128, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00103015

J. Bertoin, The Structure of the Allelic Partition of the Total Population for Galton-Watson Processes with Neutral Mutations, Ann. Probab, vol.37, issue.4, pp.1502-1523, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414695

J. Bertoin and J. Gall, Stochastic Flows Associated to Coalescent Processes, vol.126, p.60, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00103962

J. Bertoin and J. Gall, Stochastic Flows Associated to Coalescent Processes, III. Limit Theorems. Illinois J. Math, vol.50, p.60, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103962

A. Blancas, J. Duchamps, A. Lambert, and A. Siri-jégousse, Trees within Trees: Simple Nested Coalescents. Electron. J. Probab, vol.23, p.0, 2018.

A. Blancas, T. Rogers, J. Schweinsberg, and A. Siri-jégousse, The Nested Kingman Coalescent: Speed of Coming down from Infinity, Ann. Appl. Probab, vol.29, issue.3, pp.1808-1836, 2019.

E. Bolthausen and A. Sznitman, On Ruelle's Probability Cascades and an Abstract Cavity Method, Comm. Math. Phys, vol.197, p.83, 1998.

É. Brunet and B. Derrida, Genealogies in Simple Models of Evolution, J. Stat. Mech. Theory Exp, vol.16, p.60, 2013.

D. A. Dawson, Multilevel Mutation-Selection Systems and Set-Valued Duals, J. Math. Biol, vol.76, pp.295-378, 2018.

J. H. Degnan and N. A. Rosenberg, Gene Tree Discordance, Phylogenetic Inference and the Multispecies Coalescent, Trends Ecol. Evol, vol.24, p.59, 2009.

M. M. Desai, A. M. Walczak, and D. S. Fisher, Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations, Genetics, vol.193, issue.2, p.60, 2013.

J. J. Doyle, Trees within Trees: Genes and Species, Molecules and Morphology

, Syst. Biol, vol.46, issue.3, p.59, 1997.

R. Durrett and J. Schweinsberg, A Coalescent Model for the Effect of Advantageous Mutations on the Genealogy of a Population, Stochastic Process. Appl, vol.115, p.60, 2005.

B. Eldon and J. Wakeley, Coalescent Processes When the Distribution of Offspring Number among Individuals Is Highly Skewed, Genetics, vol.172, p.60, 2006.

A. Etheridge, Some Mathematical Models from Population Genetics: École d'ete de Probabilités de Saint-Flour XXXIX-2009, Lecture Notes in Mathematics, vol.90, p.59, 2011.

, J. Felsenstein. Inferring Phylogenies, vol.2, p.58, 2004.

F. Foutel-rodier, A. Lambert, and E. Schertzer, Exchangeable Coalescents, Ultrametric Spaces, Nested Interval-Partitions: A Unifying Approach, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01841003

B. T. Grenfell, Unifying the Epidemiological and Evolutionary Dynamics of Pathogens, Science, vol.303, p.59, 2004.

J. Heled and A. J. Drummond, Bayesian Inference of Species Trees from Multilocus Data, Mol. Biol. Evol, vol.27, p.59, 2009.

O. Kallenberg, Probabilistic Symmetries and Invariance Principles. Probability and Its Applications, p.74, 2005.

J. Kingman, The Coalescent. Stochastic Process. Appl, vol.13, pp.235-248, 1982.

A. Lambert, Population Dynamics and Random Genealogies. Stoch. Models, vol.24, pp.45-163, 2008.

A. Lambert, Random Ultrametric Trees and Applications, ESAIM Proc. Surveys, vol.60, p.58, 2017.

A. Lambert and E. Schertzer, Coagulation-Transport Equations and the Nested Coalescents. Probab. Theory Related Fields, 2019.

W. P. Maddison, Gene Trees in Species Trees. Syst. Biol, vol.46, issue.3, p.59, 1997.

S. Matuszewski, M. E. Hildebrandt, G. Achaz, and J. D. Jensen, Coalescent Processes with Skewed Offspring Distributions and Nonequilibrium Demography

, Genetics, vol.208, issue.1, p.60, 2017.

R. A. Neher and O. Hallatschek, Genealogies of Rapidly Adapting Populations

, Proc. Natl. Acad. Sci. USA, vol.110, p.60, 2013.

M. Nei and S. Kumar, Molecular Evolution and Phylogenetics, p.58, 2000.

R. D. Page and M. A. Charleston, From Gene to Organismal Phylogeny: Reconciled Trees and the Gene Tree/Species Tree Problem, Mol. Phylogenet. Evol, vol.7, issue.2, p.59, 1997.

R. D. Page and M. A. Charleston, Trees within Trees: Phylogeny and Historical Associations, Trends Ecol. Evol, vol.13, issue.9, p.59, 1998.

J. Pitman, Coalescents with Multiple Collisions, Ann. Probab, vol.27, pp.1870-1902, 1999.

N. A. Rosenberg, The Probability of Topological Concordance of Gene Trees and Species Trees, Theor. Popul. Biol, vol.61, p.59, 2002.

S. Sagitov, The General Coalescent with Asynchronous Mergers of Ancestral Lines

, J. Appl. Probab, vol.36, issue.4, p.65, 1999.

J. Schweinsberg, A Necessary and Sufficient Condition for the ?-Coalescent to Come Down from Infinity, Electron. Commun. Probab, vol.5, p.82, 2000.

J. Schweinsberg, Coalescent Processes Obtained from Supercritical Galton-Watson Processes, vol.106, pp.107-139, 2003.

J. Schweinsberg, Coalescents with Simultaneous Multiple Collisions, Electron. J. Probab, vol.5, p.60, 2000.

J. Schweinsberg, Rigorous Results for a Population Model with Selection II: Genealogy of the Population, Electron. J. Probab, p.60, 2017.

C. Semple and M. Steel, Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications, vol.24, p.58, 2003.

G. J. Szöll?si, E. Tannier, V. Daubin, and B. Boussau, The Inference of Gene Trees with Species Trees, Syst. Biol, vol.64, p.59, 2014.

A. Tellier and C. Lemaire, Coalescence 2.0: A Multiple Branching of Recent Theoretical Developments and Their Applications, Mol. Ecol, vol.23, p.60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209980

E. M. Volz, K. Koelle, and T. Bedford, Viral Phylodynamics, PLoS Comput. Biol, vol.9, p.59, 2013.

D. Aldous, Probability Distributions on Cladograms. Random Discrete Structures. The IMA Volumes in Mathematics and Its Applications 76, vol.90, pp.1-18, 1996.

J. Bertoin, Random Fragmentation and Coagulation Processes, vol.117, pp.126-128, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00103015

J. Bertoin, The Structure of the Allelic Partition of the Total Population for Galton-Watson Processes with Neutral Mutations, Ann. Probab, vol.37, issue.4, pp.1502-1523, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414695

A. Blancas, T. Rogers, J. Schweinsberg, and A. Siri-jégousse, The Nested Kingman Coalescent: Speed of Coming down from Infinity, Ann. Appl. Probab, vol.29, issue.3, pp.1808-1836, 2019.

B. Chen, D. Ford, and M. Winkel, A New Family of Markov Branching Trees: The Alpha-Gamma Model, Electron. J. Probab, vol.14, p.90, 2009.

H. Crane, Generalized Markov Branching Trees, Adv. in Appl. Probab, vol.49, p.90, 2017.

H. Crane and H. Towsner, The Structure of Combinatorial Markov Processes, 2016.

J. J. Doyle, Trees within Trees: Genes and Species, Molecules and Morphology

, Syst. Biol, vol.46, issue.3, p.59, 1997.

J. Duchamps, Trees within Trees II: Nested Fragmentations, Ann. Inst. Henri Poincaré Probab. Stat, vol.89, issue.11, p.133, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01842036

A. Etheridge, Some Mathematical Models from Population Genetics: École d'ete de Probabilités de Saint-Flour XXXIX-2009, Lecture Notes in Mathematics, vol.90, p.59, 2011.

D. J. Ford, Probabilities on Cladograms: Introduction to the Alpha Model, p.90, 2006.

C. Foucart, Distinguished Exchangeable Coalescents and Generalized Fleming-Viot Processes with Immigration, Adv. in Appl. Probab, vol.43, p.113, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00487275

B. Haas, G. Miermont, J. Pitman, and M. Winkel, Continuum Tree Asymptotics of Discrete Fragmentations and Applications to Phylogenetic Models, Ann. Probab, vol.36, issue.5, pp.1790-1837, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00332326

J. F. Kingman, The Representation of Partition Structures, J. Lond. Math. Soc, vol.18, issue.2, p.96, 1978.

J. Kingman, The Coalescent. Stochastic Process. Appl, vol.13, pp.235-248, 1982.

A. Lambert, Population Dynamics and Random Genealogies. Stoch. Models, vol.24, pp.45-163, 2008.

A. Lambert, Probabilistic Models for the (Sub)Tree(s) of Life, Braz. J. Probab. Stat, vol.31, issue.3, p.90, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01288230

A. Lambert and E. Schertzer, Coagulation-Transport Equations and the Nested Coalescents. Probab. Theory Related Fields, 2019.

W. P. Maddison, Gene Trees in Species Trees. Syst. Biol, vol.46, issue.3, p.59, 1997.

R. D. Page and M. A. Charleston, From Gene to Organismal Phylogeny: Reconciled Trees and the Gene Tree/Species Tree Problem, Mol. Phylogenet. Evol, vol.7, issue.2, p.59, 1997.

R. D. Page and M. A. Charleston, Trees within Trees: Phylogeny and Historical Associations, Trends Ecol. Evol, vol.13, issue.9, p.59, 1998.

J. Pitman, Coalescents with Multiple Collisions, Ann. Probab, vol.27, pp.1870-1902, 1999.

S. Sagitov, The General Coalescent with Asynchronous Mergers of Ancestral Lines

, J. Appl. Probab, vol.36, issue.4, p.65, 1999.

C. Semple and M. Steel, Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications, vol.24, p.58, 2003.

S. M. Srivastava, Graduate Texts in Mathematics, A Course on Borel Sets, vol.180, 1998.

D. Aldous and J. Pitman, The Standard Additive Coalescent, Ann. Probab, vol.26, issue.4, p.16, 1998.

J. Berestycki, Ranked Fragmentations, ESAIM Probab. Stat, vol.6, p.126, 2002.

J. Bertoin, Markovian Growth-Fragmentation Processes, Bernoulli, vol.23, issue.2, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01152370

J. Bertoin, Random Fragmentation and Coagulation Processes, vol.117, pp.126-128, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00103015

J. Bertoin, Self-Similar Fragmentations, Ann. Inst. Henri Poincaré Probab. Stat, vol.38, pp.319-340, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00103546

J. Bertoin, The Asymptotic Behavior of Fragmentation Processes, J. Eur. Math. Soc. (JEMS), vol.5, issue.4, p.140, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00104740

J. Bertoin and B. Mallein, Infinitely Ramified Point Measures and Branching Lévy Processes, Ann. Probab, p.126, 2018.

A. Blancas, J. Duchamps, A. Lambert, and A. Siri-jégousse, Trees within Trees: Simple Nested Coalescents. Electron. J. Probab, vol.23, p.0, 2018.

B. Chauvin, Product Martingales and Stopping Lines for Branching Brownian Motion, Ann. Probab, vol.19, issue.3, p.135, 1991.

B. Dadoun, Asymptotics of Self-Similar Growth-Fragmentation Processes, Electron. J. Probab, p.126, 2017.

D. J. Daley and D. Vere-jones, An Introduction to the Theory of Point Processes, II. Probability and Its Applications, p.142, 2008.

J. Duchamps, Trees within Trees II: Nested Fragmentations, Ann. Inst. Henri Poincaré Probab. Stat, vol.89, issue.11, p.133, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01842036

F. G. Ged, Profile of a Self-Similar Growth-Fragmentation, Electron. J. Probab, p.126, 2019.

B. Haas and G. Miermont, The Genealogy of Self-Similar Fragmentations with Negative Index as a Continuum Random Tree, Electron. J. Probab, vol.9, p.126, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00000995

B. Haas, G. Miermont, J. Pitman, and M. Winkel, Continuum Tree Asymptotics of Discrete Fragmentations and Applications to Phylogenetic Models, Ann. Probab, vol.36, issue.5, pp.1790-1837, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00332326

J. F. Kingman, The Representation of Partition Structures, J. Lond. Math. Soc, vol.18, issue.2, p.96, 1978.

N. , Self-Similar Branching Markov Chains, Séminaire de Probabilités XLII, pp.261-280, 1979.

J. Lamperti, Semi-Stable Markov Processes. I. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.22, p.134, 1972.

J. C. Pardo and V. Rivero, Self-Similar Markov Processes, Bol. Soc. Mat. Mex, vol.19, issue.3, p.134, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00005451

K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68, p.159, 1999.

Q. Shi, Growth-Fragmentation Processes and Bifurcators, Electron. J. Probab, p.126, 2017.

S. M. Srivastava, Graduate Texts in Mathematics, A Course on Borel Sets, vol.180, 1998.

R. Abraham, J. Delmas, and P. Hoscheit, A Note on the Gromov-Hausdorff-Prokhorov Distance between (Locally) Compact Metric Measure Spaces

, J. Probab, issue.14, p.22, 2013.

R. Abraham and L. Serlet, Poisson Snake and Fragmentation, Electron. J. Probab, vol.7, issue.17, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00022233

D. Aldous, Probability Distributions on Cladograms. Random Discrete Structures. The IMA Volumes in Mathematics and Its Applications 76, vol.90, pp.1-18, 1996.

D. Aldous and J. Pitman, The Standard Additive Coalescent, Ann. Probab, vol.26, issue.4, p.16, 1998.

A. Basdevant and C. Goldschmidt, Asymptotics of the Allele Frequency Spectrum Associated with the Bolthausen-Sznitman Coalescent, Electron. J. Probab, vol.13, p.15, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00156487

J. Berestycki, Ranked Fragmentations, ESAIM Probab. Stat, vol.6, p.126, 2002.

J. Berestycki, N. Berestycki, and V. Limic, A Small-Time Coupling between ?-Coalescents and Branching Processes, Ann. Appl. Probab, vol.24, issue.2, p.15, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00988195

J. Berestycki, N. Berestycki, and J. Schweinsberg, The Genealogy of Branching Brownian Motion with Absorption, Ann. Probab, vol.41, issue.2, p.60, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843106

J. Bertoin, Markovian Growth-Fragmentation Processes, Bernoulli, vol.23, issue.2, p.12, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01152370

J. Bertoin, Random Fragmentation and Coagulation Processes, vol.117, pp.126-128, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00103015

J. Bertoin, Self-Similar Fragmentations, Ann. Inst. Henri Poincaré Probab. Stat, vol.38, pp.319-340, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00103546

J. Bertoin, Subordinators: Examples and Applications. Lectures on Probability Theory and Statistics: École d'Été de Probabilités de Saint-Flour XXVII, vol.54, p.31, 1997.

J. Bertoin, The Asymptotic Behavior of Fragmentation Processes, J. Eur. Math. Soc. (JEMS), vol.5, issue.4, p.140, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00104740

J. Bertoin, The Structure of the Allelic Partition of the Total Population for Galton-Watson Processes with Neutral Mutations, Ann. Probab, vol.37, issue.4, pp.1502-1523, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00414695

J. Bertoin and J. Gall, Stochastic Flows Associated to Coalescent Processes, vol.126, p.60, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00103962

J. Bertoin and J. Gall, Stochastic Flows Associated to Coalescent Processes, III. Limit Theorems. Illinois J. Math, vol.50, p.60, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00103962

J. Bertoin and B. Mallein, Infinitely Ramified Point Measures and Branching Lévy Processes, Ann. Probab, p.126, 2018.

A. Blancas, J. Duchamps, A. Lambert, and A. Siri-jégousse, Trees within Trees: Simple Nested Coalescents. Electron. J. Probab, vol.23, p.0, 2018.

A. Blancas, T. Rogers, J. Schweinsberg, and A. Siri-jégousse, The Nested Kingman Coalescent: Speed of Coming down from Infinity, Ann. Appl. Probab, vol.29, issue.3, pp.1808-1836, 2019.

E. Bolthausen and A. Sznitman, On Ruelle's Probability Cascades and an Abstract Cavity Method, Comm. Math. Phys, vol.197, p.83, 1998.

É. Brunet and B. Derrida, Genealogies in Simple Models of Evolution, J. Stat. Mech. Theory Exp, vol.16, p.60, 2013.

N. Champagnat and A. Lambert, Splitting Trees with Neutral Poissonian Mutations I: Small Families, Stochastic Process. Appl, vol.122, issue.3, p.33, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00515481

N. Champagnat and A. Lambert, Splitting Trees with Neutral Poissonian Mutations II: Largest and Oldest Families, Stochastic Process. Appl, vol.123, p.15, 2013.
URL : https://hal.archives-ouvertes.fr/inria-00616765

N. Champagnat, A. Lambert, and M. Richard, Birth and Death Processes with Neutral Mutations, p.15, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00736036

B. Chauvin, Product Martingales and Stopping Lines for Branching Brownian Motion, Ann. Probab, vol.19, issue.3, p.135, 1991.

B. Chen, D. Ford, and M. Winkel, A New Family of Markov Branching Trees: The Alpha-Gamma Model, Electron. J. Probab, vol.14, p.90, 2009.

H. Crane, Generalized Markov Branching Trees, Adv. in Appl. Probab, vol.49, p.90, 2017.

H. Crane and H. Towsner, The Structure of Combinatorial Markov Processes, 2016.

B. Dadoun, Asymptotics of Self-Similar Growth-Fragmentation Processes, Electron. J. Probab, p.126, 2017.

D. J. Daley and D. Vere-jones, An Introduction to the Theory of Point Processes, II. Probability and Its Applications, p.142, 2008.

D. A. Dawson, Multilevel Mutation-Selection Systems and Set-Valued Duals, J. Math. Biol, vol.76, pp.295-378, 2018.

J. H. Degnan and N. A. Rosenberg, Gene Tree Discordance, Phylogenetic Inference and the Multispecies Coalescent, Trends Ecol. Evol, vol.24, p.59, 2009.

C. Delaporte, G. Achaz, and A. Lambert, Mutational Pattern of a Sample from a Critical Branching Population, J. Math. Biol, vol.73, issue.3, p.15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01490969

M. M. Desai, A. M. Walczak, and D. S. Fisher, Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations, Genetics, vol.193, issue.2, p.60, 2013.

J. J. Doyle, Trees within Trees: Genes and Species, Molecules and Morphology

, Syst. Biol, vol.46, issue.3, p.59, 1997.

J. Duchamps, Trees within Trees II: Nested Fragmentations, Ann. Inst. Henri Poincaré Probab. Stat, vol.89, issue.11, p.133, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01842036

J. Duchamps and A. Lambert, Mutations on a Random Binary Tree with Measured Boundary, Ann. Appl. Probab, vol.28, pp.2141-2187, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01466831

R. Durrett and J. Schweinsberg, A Coalescent Model for the Effect of Advantageous Mutations on the Genealogy of a Population, Stochastic Process. Appl, vol.115, p.60, 2005.

B. Eldon and J. Wakeley, Coalescent Processes When the Distribution of Offspring Number among Individuals Is Highly Skewed, Genetics, vol.172, p.60, 2006.

A. Etheridge, Some Mathematical Models from Population Genetics: École d'ete de Probabilités de Saint-Flour XXXIX-2009, Lecture Notes in Mathematics, vol.90, p.59, 2011.

S. N. Evans, Probability and Real Trees. Red, Lecture Notes in Mathematics, vol.1920, p.17, 2008.

W. J. Ewens, The Sampling Theory of Selectively Neutral Alleles. Theor, Popul. Biol, vol.3, issue.1, pp.87-112, 1972.

, J. Felsenstein. Inferring Phylogenies, vol.2, p.58, 2004.

D. J. Ford, Probabilities on Cladograms: Introduction to the Alpha Model, p.90, 2006.

C. Foucart, Distinguished Exchangeable Coalescents and Generalized Fleming-Viot Processes with Immigration, Adv. in Appl. Probab, vol.43, p.113, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00487275

F. Foutel-rodier, A. Lambert, and E. Schertzer, Exchangeable Coalescents, Ultrametric Spaces, Nested Interval-Partitions: A Unifying Approach, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01841003

F. Freund and M. Möhle, On the Number of Allelic Types for Samples Taken from Exchangeable Coalescents with Mutation, Adv. in Appl. Probab, p.15, 2009.

F. Freund, Almost Sure Asymptotics for the Number of Types for Simple ?-Coalescents, Electron. Commun. Probab, p.15, 2012.

F. G. Ged, Profile of a Self-Similar Growth-Fragmentation, Electron. J. Probab, p.126, 2019.

B. T. Grenfell, Unifying the Epidemiological and Evolutionary Dynamics of Pathogens, Science, vol.303, p.59, 2004.

R. C. Griffiths and A. G. Pakes, An Infinite-Alleles Version of the Simple Branching Process, Adv. in Appl. Probab, vol.20, issue.3, p.15, 1988.

B. Haas and G. Miermont, The Genealogy of Self-Similar Fragmentations with Negative Index as a Continuum Random Tree, Electron. J. Probab, vol.9, p.126, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00000995

B. Haas, G. Miermont, J. Pitman, and M. Winkel, Continuum Tree Asymptotics of Discrete Fragmentations and Applications to Phylogenetic Models, Ann. Probab, vol.36, issue.5, pp.1790-1837, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00332326

J. Heled and A. J. Drummond, Bayesian Inference of Species Trees from Multilocus Data, Mol. Biol. Evol, vol.27, p.59, 2009.

O. Kallenberg, Probabilistic Symmetries and Invariance Principles. Probability and Its Applications, p.74, 2005.

D. G. Kendall, On the Generalized "Birth-and-Death, Process. Ann. Math. Statist, vol.19, issue.1, p.45, 1948.

J. F. Kingman, The Representation of Partition Structures, J. Lond. Math. Soc, vol.18, issue.2, p.96, 1978.

J. Kingman, The Coalescent. Stochastic Process. Appl, vol.13, pp.235-248, 1982.

N. , Self-Similar Branching Markov Chains, Séminaire de Probabilités XLII, pp.261-280, 1979.

A. Lambert and G. Bravo, The Comb Representation of Compact Ultrametric Spaces, Numbers Ultrametric Anal. Appl, vol.9, issue.1, pp.22-38, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01287143

A. Lambert, Population Dynamics and Random Genealogies. Stoch. Models, vol.24, pp.45-163, 2008.

A. Lambert, Probabilistic Models for the (Sub)Tree(s) of Life, Braz. J. Probab. Stat, vol.31, issue.3, p.90, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01288230

A. Lambert, Random Ultrametric Trees and Applications, ESAIM Proc. Surveys, vol.60, p.58, 2017.

A. Lambert, The Allelic Partition for Coalescent Point Processes, Markov Process. Related Fields, vol.15, p.33, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00273808

A. Lambert and E. Schertzer, Coagulation-Transport Equations and the Nested Coalescents. Probab. Theory Related Fields, 2019.

A. Lambert and E. Schertzer, Recovering the Brownian Coalescent Point Process from the Kingman Coalescent by Conditional Sampling, Bernoulli, vol.25, issue.1, p.22, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01394651

J. Lamperti, Semi-Stable Markov Processes. I. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.22, p.134, 1972.

W. P. Maddison, Gene Trees in Species Trees. Syst. Biol, vol.46, issue.3, p.59, 1997.

P. , Nested Regenerative Sets and Their Associated Fragmentation Process, Mathematics and Computer Science III. Trends in Mathematics. Birkhäuser Basel, vol.29, p.23, 2004.

S. Matuszewski, M. E. Hildebrandt, G. Achaz, and J. D. Jensen, Coalescent Processes with Skewed Offspring Distributions and Nonequilibrium Demography

, Genetics, vol.208, issue.1, p.60, 2017.

R. A. Neher and O. Hallatschek, Genealogies of Rapidly Adapting Populations

, Proc. Natl. Acad. Sci. USA, vol.110, p.60, 2013.

M. Nei and S. Kumar, Molecular Evolution and Phylogenetics, p.58, 2000.

R. D. Page and M. A. Charleston, From Gene to Organismal Phylogeny: Reconciled Trees and the Gene Tree/Species Tree Problem, Mol. Phylogenet. Evol, vol.7, issue.2, p.59, 1997.

R. D. Page and M. A. Charleston, Trees within Trees: Phylogeny and Historical Associations, Trends Ecol. Evol, vol.13, issue.9, p.59, 1998.

J. C. Pardo and V. Rivero, Self-Similar Markov Processes, Bol. Soc. Mat. Mex, vol.19, issue.3, p.134, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00005451

J. Pitman, Coalescents with Multiple Collisions, Ann. Probab, vol.27, pp.1870-1902, 1999.

L. Popovic, Asymptotic Genealogy of a Critical Branching Process, Ann. Appl. Probab, vol.14, issue.4, p.29, 2004.

N. A. Rosenberg, The Probability of Topological Concordance of Gene Trees and Species Trees, Theor. Popul. Biol, vol.61, p.59, 2002.

S. Sagitov, The General Coalescent with Asynchronous Mergers of Ancestral Lines

, J. Appl. Probab, vol.36, issue.4, p.65, 1999.

K. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68, p.159, 1999.

J. Schweinsberg, A Necessary and Sufficient Condition for the ?-Coalescent to Come Down from Infinity, Electron. Commun. Probab, vol.5, p.82, 2000.

J. Schweinsberg, Coalescent Processes Obtained from Supercritical Galton-Watson Processes, vol.106, pp.107-139, 2003.

J. Schweinsberg, Coalescents with Simultaneous Multiple Collisions, Electron. J. Probab, vol.5, p.60, 2000.

J. Schweinsberg, Rigorous Results for a Population Model with Selection II: Genealogy of the Population, Electron. J. Probab, p.60, 2017.

C. Semple and M. Steel, Phylogenetics. Oxford Lecture Series in Mathematics and Its Applications, vol.24, p.58, 2003.

Q. Shi, Growth-Fragmentation Processes and Bifurcators, Electron. J. Probab, p.126, 2017.

S. M. Srivastava, Graduate Texts in Mathematics, A Course on Borel Sets, vol.180, 1998.

G. J. Szöll?si, E. Tannier, V. Daubin, and B. Boussau, The Inference of Gene Trees with Species Trees, Syst. Biol, vol.64, p.59, 2014.

Z. Taïb, Branching Processes and Neutral Evolution, Lecture Notes in Biomathematics, vol.93, p.15, 1992.

A. Tellier and C. Lemaire, Coalescence 2.0: A Multiple Branching of Recent Theoretical Developments and Their Applications, Mol. Ecol, vol.23, p.60, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01209980

E. M. Volz, K. Koelle, and T. Bedford, Viral Phylodynamics, PLoS Comput. Biol, vol.9, p.59, 2013.