P. D. Adams, P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution, 2010.

, Acta Cryst, vol.66, pp.213-221

F. Agostini, J. Völler, B. Koksch, C. G. Acevedo-rocha, V. Kubyshkin et al., Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology, vol.56, pp.9680-9703, 2017.

A. Ambrogelly, S. Palioura, and D. Söll, Natural expansion of the genetic code, 2007.

, Nat Chem Biol, vol.3, pp.29-35

L. Amir, S. A. Carnally, J. Rayo, S. Rosenne, S. Melamed-yerushalmi et al., Surface Display of a Redox Enzyme and its Site-Specific Wiring to Gold Electrodes, J Am Chem Soc, vol.135, pp.70-73, 2013.

M. Amiram, A. D. Haimovich, C. Fan, Y. Wang, H. Aerni et al., Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids, Nat Biotechnol, vol.33, pp.1272-1279, 2015.

R. Anand, P. A. Kaminski, and S. E. Ealick, Structures of Purine 2'-Deoxyribosyltransferase, Substrate Complexes, and the Ribosylated Enzyme Intermediate at 2.0 Å Resolution ? , ?, Biochemistry, vol.43, pp.2384-2393, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00166563

J. C. Anderson, N. Wu, S. W. Santoro, V. Lakshman, D. S. King et al., , 2004.

, An expanded genetic code with a functional quadruplet codon, Proc Natl Acad Sci, vol.101, pp.7566-7571

D. H. Appella, L. A. Christianson, I. L. Karle, D. R. Powell, and S. H. Gellman, Peptide Foldamers: Robust Helix Formation in a New Family of ?-Amino Acid Oligomers, 1996.

, J Am Chem Soc, vol.118, pp.13071-13072

S. Armstrong, W. J. Cook, S. A. Short, and S. E. Ealick, Crystal structures of nucleoside 2-deoxyribosyltransferase in native and ligand-bound forms reveal architecture of the active site, Structure, vol.4, pp.97-107, 1996.

S. R. Armstrong, S. Steven, E. Steven, D. J. , and P. , Active Site Amino Acids That Participate in the Catalytic Mechanism of Nucleoside 2`-Deoxyribosyltransferase, J Biol Chem, vol.271, pp.4978-4987, 1996.

J. G. Arnez and D. Moras, Structural and functional considerations of the amineacylatien reaction, TIBS, vol.22, pp.211-216, 1997.

X. Barros-Álvarez, S. Turley, R. M. Ranade, J. R. Gillespie, N. A. Duster et al., The crystal structure of the drug target Mycobacterium tuberculosis methionyl-tRNA synthetase in complex with a catalytic intermediate, Acta Crystallogr Sect F Struct Biol Commun, vol.74, pp.245-254, 2018.

H. Belrhali, A. Yaremchuk, M. Tukalo, C. Berthet-colominas, B. Rasmussen et al., The structural basis for seryl-adenylate and Ap4A synthesis by seryl-tRNA synthetase, Structure, vol.3, pp.341-352, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02002757

?. Berlicki, M. Kaske, R. Gutiérrez-abad, G. Bernhardt, O. Illa et al., Replacement of Thr32 and Gln34 in the C-Terminal Neuropeptide Y Fragment 25-36 by cis-Cyclobutane and cis-Cyclopentane ?-Amino Acids Shifts Selectivity toward the Y4 Receptor, J Med Chem, vol.56, pp.8422-8431, 2013.

A. Bhattacherjee and S. Wallin, Exploring Protein-Peptide Binding Specificity through Computational Peptide Screening, PLoS Comput Biol, vol.9, p.1003277, 2013.

S. Blanquet, T. Crepin, Y. Mechulam, and E. Schmitt, Methionyl-tRNA Synthetases, The aminoacyl-tRNA synthetases, p.420, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00771997

S. Blanquet, P. Dessen, and M. Iwatsubo, Antico-operative binding of bacterial and mammalian initiator tRNAMet to methionyl-tRNA synthetase from Escherichia coli, 1976.

, J Mol Biol, vol.103, pp.765-784

S. Blanquet, G. Fayat, M. Poiret, and J. Waller, The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Inhibition by adenosine and 8-aminoadenosine of the amino-acid activation reaction, Eur J Biochem, vol.51, pp.567-571, 1975.

S. Blanquet, G. Fayat, and J. P. Waller, The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. Mechanism of the amino-acid activation reaction catalyzed by the native and the trypsin-modified enzymes, Eur J Biochem, vol.44, pp.343-351, 1974.

S. Blanquet, G. Fayat, and J. P. Waller, The amino acid activation reaction catalyzed by methionyl-transfer RNA synthetase: evidence for synergistic coupling between the sites for methionine, adenosine and pyrophosphate, J Mol Biol, vol.94, pp.1-15, 1975.

S. Blanquet, G. Fayat, J. Waller, and M. Iwatsubo, The Mechanism of Reaction of Methionyl-tRNA Synthetase from Escherichia coli. Interaction of the Enzyme with Ligands of the Amino-Acid-Activation Reaction, Eur J Biochem, vol.24, pp.461-469, 1972.

S. Blanquet, M. Iwatsubo, and J. Waller, The mechanism of action of methionyl-tRNA synthetase. 1. Fluorescence studies on tRNAMet binding as a function of ligands, ions and pH, Eur J Biochem, vol.36, pp.213-226, 1973.

D. M. Blow, T. N. Bhat, A. Metcalfe, J. L. Risler, S. Brunie et al., Structural homology in the amino-terminal domains of two aminoacyl-tRNA synthetases, J Mol Biol, vol.171, pp.571-576, 1983.

L. Bonnefond, Human mitochondrial TyrRS disobeys the tyrosine identity rules, RNA, vol.11, pp.558-562, 2005.

U. T. Bornscheuer, G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore et al., Engineering the third wave of biocatalysis, Nature, vol.485, pp.185-194, 2012.

A. M. Brückner, P. Chakraborty, S. H. Gellman, and U. Diederichsen, Molecular Architecture with Functionalized ?-Peptide Helices, Angew Chem Int Ed, vol.42, pp.4395-4399, 2003.

A. M. Brückner, M. Garcia, A. Marsh, S. H. Gellman, and U. Diederichsen, Synthesis of Novel Nucleo-?-Amino Acids and Nucleobase-Functionalized?-Peptides, Eur J Org Chem, pp.3555-3561, 2003.

C. J. Bruton and B. S. Hartley, The subunits of methionyl-transfer-ribonucleic acid synthetase, Biochem J, vol.117, pp.18-19, 1970.

D. I. Bryson, C. Fan, L. Guo, C. Miller, D. Söll et al., Continuous directed evolution of aminoacyl-tRNA synthetases, Nat Chem Biol, vol.13, pp.1253-1260, 2017.

N. Budisa, Prolegomena to Future Experimental Efforts on Genetic Code Engineering by Expanding Its Amino Acid Repertoire, Angew Chem Int Ed, vol.43, pp.6426-6463, 2004.

N. Budisa, M. Rubini, J. H. Bae, E. Weyher, W. Wenger et al., Global Replacement of Tryptophan with Aminotryptophans Generates Non-Invasive Protein-Based Optical pH Sensors, Angew Chem Int Ed, vol.41, pp.4066-4069, 2002.

J. J. Burbaum and P. Schimmel, Structural relationships and the classification of aminoacyl-tRNA synthetases, J Biol Chem, vol.266, pp.16965-16968, 1991.

C. Cabrele, T. A. Martinek, O. Reiser, and ?. Berlicki, Peptides Containing ?-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry, J Med Chem, vol.57, pp.9718-9739, 2014.

B. Cahuzac, E. Berthonneau, N. Birlirakis, E. Guittet, and M. Mirande, A recurrent RNA-binding domain is appended to eukaryotic aminoacyl-tRNA synthetases, EMBO J, vol.19, pp.445-452, 2000.

D. Cassio, Etude de la methionyl tRNA synthetase de Escherichia coli. 2. Inactivation selective et reversible de la capacite de charger le tRNA, Eur J Biochem, vol.4, pp.222-224, 1968.

D. Cassio, F. Lemoine, J. Waller, E. Sandrin, and R. A. Boissonnas, Selective Inhibition of Aminoacyl Ribonucleic Acid Synthetases by, Aminoalkyl Adenylates * . Biochemistry, vol.6, pp.827-836, 1967.

D. Cassio and J. Waller, Modification of methionyl-tRNA synthetase by proteolytic cleavage and properties of the trypsin-modified enzyme, Eur J Biochem, vol.20, pp.283-300, 1971.

F. Chapeville, F. Lipmann, G. Vonehrenstein, B. Weisblum, W. J. Ray et al., On the role of soluble ribonucleic acid in coding for aminoacids, Proc Natl Acad Sci, vol.48, pp.1086-1092, 1962.

P. R. Chen, D. Groff, J. Guo, W. Ou, S. Cellitti et al.,

, A Facile System for Encoding Unnatural Amino Acids in Mammalian Cells, Angew Chem Int Ed, vol.48, pp.4052-4055

J. W. Chin, Expanding and reprogramming the genetic code, Nature, vol.550, pp.53-60, 2017.

T. D. Clark, L. K. Buehler, and M. R. Ghadiri, Self-Assembling Cyclic ? 3 -Peptide Nanotubes as Artificial Transmembrane Ion Channels, J Am Chem Soc, vol.120, pp.651-656, 1998.

C. Coulondre and J. H. Miller, Genetic studies of the lac repressor, J Mol Biol, vol.117, pp.525-567, 1977.

D. B. Cowie and G. N. Cohen, Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur, Biochim Biophys Acta, vol.26, pp.252-261, 1957.

V. A. Crécy-lagard, . De, J. Bellalou, R. Mutzel, and P. Marlière, Long term adaptation of a microbial population to a permanent metabolic constraint: overcoming thymineless death by experimental evolution of Escherichia coli, BMC Biotechnol, vol.7, 2001.

T. Crepin, E. Schmitt, S. Blanquet, and Y. Mechulam, Structure and function of the C-terminal domain of methionyl-tRNA synthetase, Biochemistry, vol.41, pp.13003-13014, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00770920

T. Crepin, E. Schmitt, S. Blanquet, and Y. Mechulam, Three-dimensional structure of methionyl-tRNA synthetase from Pyrococcus abyssi, Biochemistry, vol.43, pp.2635-2679, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00770713

T. Crepin, E. Schmitt, Y. Mechulam, P. B. Sampson, M. D. Vaughan et al., Use of Analogues of Methionine and Methionyl Adenylate to Sample Conformational Changes During Catalysis in Escherichia coli Methionyl-tRNA Synthetase, J Mol Biol, vol.332, pp.59-72, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00770917

S. Cusack, C. Berthet-colominas, M. Härtlein, N. Nassar, and R. Leberman, A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å, Nature, vol.347, pp.249-255, 1990.

B. I. Dahiyat and S. L. Mayo, Protein design automation, Protein Sci, vol.5, pp.895-903, 2008.

T. Dale, L. E. Sanderson, and O. C. Uhlenbeck, The Affinity of Elongation Factor Tu for an Aminoacyl-tRNA Is Modulated by the Esterified Amino Acid ?, Biochemistry, vol.43, pp.6159-6166, 2004.

D. S. Daniels, E. J. Petersson, J. X. Qiu, and A. Schepartz, High-Resolution Structure of a ?-Peptide Bundle, J Am Chem Soc, vol.129, pp.1532-1533, 2007.

X. Daura, K. Gademann, H. Schäfer, B. Jaun, D. Seebach et al., ?he ?-Peptide Hairpin in Solution: Conformational Study of a ?-Hexapeptide in Methanol by NMR Spectroscopy and MD Simulation, J Am Chem Soc, vol.123, pp.2393-2404, 2001.

X. Daura, W. F. Gunsteren, . Van, D. Rigo, B. Jaun et al., Studying the Stability of a Helical ?-Heptapeptide by Molecular Dynamics Simulations, Chem -Eur J, vol.3, pp.1410-1417, 1997.

L. M. Dedkova, N. E. Fahmi, R. Paul, M. Rosario, L. Zhang et al., ) ?-Puromycin Selection of Modified Ribosomes for in Vitro Incorporation of ?-Amino Acids, Biochemistry, vol.51, pp.401-415, 2012.

D. Borgo, M. P. Mechler, A. I. Traore, D. Forsyth, C. Wilce et al.,

, Supramolecular Self-Assembly of N -Acetyl-Capped ?-Peptides Leads to Nano-to Macroscale Fiber Formation, Angew Chem Int Ed, vol.52, pp.8266-8270

P. P. Dennis and H. Bremer, Macromolecular Composition During Steady-State Growth of Escherichia coli B/r, J BACTERIOL, vol.119, p.12, 1974.

E. M. Driggers, S. P. Hale, J. Lee, and N. K. Terrett, The exploration of macrocycles for drug discovery -an underexploited structural class, Nat Rev Drug Discov, vol.7, pp.608-624, 2008.

J. W. Ellefson, A. J. Meyer, R. A. Hughes, J. R. Cannon, J. S. Brodbelt et al., Directed evolution of genetic parts and circuits by compartmentalized partnered replication, Nat Biotechnol, vol.32, pp.97-101, 2014.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr, vol.66, pp.486-501, 2010.

G. Eriani, M. Delarue, O. Poch, J. Gangloff, and D. Moras, Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs, Nature, vol.347, pp.203-206, 1990.
URL : https://hal.archives-ouvertes.fr/hal-02465091

K. M. Esvelt, J. C. Carlson, and D. R. Liu, A system for the continuous directed evolution of biomolecules, Nature, vol.472, pp.499-503, 2011.

C. Fan, H. Xiong, N. M. Reynolds, and D. Söll, Rationally evolving tRNA Pyl for efficient incorporation of noncanonical amino acids, Nucleic Acids Res, vol.43, pp.156-156, 2015.

G. Fayat, S. Blanquet, P. Dessen, G. Batelier, and J. Waller, The molecular weight and subunit composition of phenylalanyl-tRNA synthetase from Escherichia coli K-12, Biochimie, vol.56, pp.35-41, 1974.

G. Fayat, M. Fromant, and S. Blanquet, Couplings between the sites for methionine and adenosine 5'-triphosphate in the amino acid activation reaction catalyzed by trypsin-modified methionyl-transfer RNA synthetase from Escherichia coli, Biochemistry, vol.16, pp.2570-2579, 1977.

A. R. Fersht, Relationships between apparent binding energies measured in sitedirected mutagenesis experiments and energetics of binding and catalysis, Biochemistry, vol.27, pp.1577-1580, 1988.

A. R. Fersht and C. Dingwall, Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High binding energy of small groups in specific molecular interactions, Biochemistry, vol.18, pp.1245-1249, 1979.

A. R. Fersht and C. Dingwall, Establishing the misaminoacylation/deacylation of the tRNA pathway for the editing mechanism of prokaryotic and eukaryotic valyl-tRNA synthetases, Biochemistry, vol.18, pp.1238-1245, 1979.

E. A. First and A. R. Fersht, Involvement of threonine 234 in catalysis of tyrosyl adenylate formation by tyrosyl-tRNA synthetase, Biochemistry, vol.32, pp.13644-13650, 1993.

E. A. First and A. R. Fersht, Mutation of lysine 233 to alanine introduces positive cooperativity into tyrosyl-tRNA synthetase, Biochemistry, vol.32, pp.13651-13657, 1993.

E. A. First and A. R. Fersht, Mutational and kinetic analysis of a mobile loop in tyrosyl-tRNA synthetase, Biochemistry, vol.32, pp.13658-13663, 1993.

A. C. Forster, Z. Tan, M. N. Nalam, H. Lin, H. Qu et al., Programming peptidomimetic syntheses by translating genetic codes designed de novo, Proc Natl Acad Sci, vol.100, pp.6353-6357, 2003.

D. Fourmy, Etude du centre catalytique de la methionyl-arnt synthetase, 1993.

D. Fourmy, F. Dardel, and S. Blanquet, Methionyl-tRNA Synthetase Zinc Binding Domain. Three-dimensional Structure and Homology with Rubredoxine and gag Retroviral Proteins, JMolBiol, vol.231, pp.1078-1089, 1993.

D. Fourmy, Y. Mechulam, and S. Blanquet, Crucial role of an idiosyncratic insertion in the Rossmann fold of class1 aminoacyl-tRNA synthetases: The case of methionyl-tRNA synthetase, Biochemistry, vol.34, pp.15681-15688, 1995.

D. Fourmy, T. Meinnel, Y. Mechulam, and S. Blanquet, Mapping of the Zinc Binding Domain of Escherichia coli Methionyl-tRNA Synthetase, JMolBiol, vol.231, pp.1068-1077, 1993.

D. V. Frost and P. M. Lish, Selenium in Biology, Annu Rev Pharmacol, vol.15, pp.259-284, 1975.

T. Fujino, Y. Goto, H. Suga, and H. Murakami, Ribosomal Synthesis of Peptides with Multiple ?-Amino Acids, J Am Chem Soc, vol.138, pp.1962-1969, 2016.

K. Gademann, M. Ernst, D. Hoyer, and D. Seebach, Synthesis and Biological Evaluation of a Cyclo--tetrapeptide as a Somatostatin Analogue, Angew Chem Int Ed, vol.38, pp.1223-1226, 1999.

K. Gademann, T. Kimmerlin, D. Hoyer, and D. Seebach, Peptide Folding Induces High and Selective Affinity of a Linear and Small ?-Peptide to the Human Somatostatin Receptor 4, J Med Chem, vol.44, pp.2460-2468, 2001.

A. J. Gale, J. P. Shi, and P. Schimmel, Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis, Biochemistry, vol.35, pp.608-615, 1996.

R. Gan, J. G. Perez, E. D. Carlson, I. Ntai, F. J. Isaacs et al., Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins: Translation system engineering in Escherichia coli, Biotechnol Bioeng, vol.114, pp.1074-1086, 2017.

A. Gautier, A. Deiters, and J. W. Chin, Light-Activated Kinases Enable Temporal Dissection of Signaling Networks in Living Cells, J Am Chem Soc, vol.133, pp.2124-2127, 2011.

A. Gautier and M. J. Hinner, Site-specific protein labeling: methods and protocols, Humana Pr, 2015.

M. A. Gelman, S. Richter, H. Cao, N. Umezawa, S. H. Gellman et al., Selective Binding of TAR RNA by a Tat-Derived ?-Peptide, Org Lett, vol.5, pp.3563-3565, 2003.

G. Ghosh, H. Y. Kim, J. Demaret, S. Brunie, and L. H. Schulman, Arginine 395 is required for efficient in vivo and in vitro aminoacylation of tRNAs by Escherichia coli methionyl-tRNA synthetase, Biochemistry, vol.30, pp.11567-11574, 1991.

G. Ghosh, H. Pelka, and L. H. Schulman, Identification of the tRNA anticodon recognition site of Escherichia coli methionyl-tRNA synthetase, Biochemistry, vol.29, pp.2220-2225, 1990.

R. Giege, M. Sissler, and C. Florentz, Universal rules and idiosyncratic features in tRNA identity, Nucleic Acids Res, vol.26, pp.5017-5035, 1998.

R. Giegé and M. Springer, Aminoacyl-tRNA Synthetases in the Bacterial World, EcoSal Plus, vol.7, 2016.

,

. Accessed, , 2019.

M. W. Giuliano, W. S. Horne, and S. H. Gellman, An ?/?-Peptide Helix Bundle with a Pure ? 3 -Amino Acid Core and a Distinctive Quaternary Structure, J Am Chem Soc, vol.131, pp.9860-9861, 2009.

R. D. Gopalan, M. P. Borgo, A. I. Mechler, P. Perlmutter, and M. Aguilar, , 2015.

, Geometrically Precise Building Blocks: the Self-Assembly of ?-Peptides, Chem Biol, vol.22, pp.1417-1423

O. W. Griffith, ?-Amino Acids: Mammalian Metabolism and Utility as ?-Amino Acid Analogues, Annu Rev Biochem, vol.55, pp.855-878, 1986.

L. Guillon, E. Schmitt, S. Blanquet, and Y. Mechulam, Initiator tRNA binding by e/aIF5B, the eukaryotic/archaeal homologue of bacterial initiation factor IF2, Biochemistry, vol.44, pp.15594-601, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00502078

J. Guo, C. E. Melançon, H. S. Lee, D. Groff, and P. G. Schultz, Evolution of Amber Suppressor tRNAs for Efficient Bacterial Production of Proteins Containing Nonnatural Amino Acids, Angew Chem Int Ed, vol.48, pp.9148-9151, 2009.

S. M. Hancock, R. Uprety, A. Deiters, and J. W. Chin, Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair, J Am Chem Soc, vol.132, pp.14819-14824, 2010.

M. C. Hartman, K. Josephson, C. Lin, and J. W. Szostak, An Expanded Set of, 2007.

, Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides, PLoS ONE, vol.2, p.972

M. C. Hartman, K. Josephson, and J. W. Szostak, Enzymatic aminoacylation of tRNA with unnatural amino acids, Proc Natl Acad Sci, vol.103, pp.4356-4361, 2006.

C. A. Hauser, R. Deng, A. Mishra, Y. Loo, U. Khoe et al., Natural tri-to hexapeptides self-assemble in water to amyloid ?-type fiber aggregates by unexpected ?-helical intermediate structures, PNAS, vol.108, pp.1361-66, 2011.

S. Hecht, B. Alford, Y. Kuroda, and S. Kitano, Chemical Aminoacylation" of tRNA's, J Biol Chem, vol.10, pp.4517-4520, 1978.

R. L. Heinrikson and B. S. Hartley, Purification and properties of methionyltransfer-ribonucleic acid synthetase from Escherichia coli, Biochem J, vol.105, pp.17-24, 1967.

T. L. Hendrickson, T. K. Nomanbhoy, V. Crécy-lagard, . De, S. Fukai et al., Mutational Separation of Two Pathways for Editing by a Class I tRNA Synthetase, Mol Cell, vol.9, pp.353-362, 2002.

W. A. Hendrickson, DeterminationofMacromolecularStructuresfromAnomalous-DiffractionofSynchrotronRadiation, Science, vol.254, pp.51-58, 1991.

W. A. Hendrickson, J. R. Horton, and D. M. Lemaster, Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three-dimensional structure, EMBO J, vol.9, pp.1665-1672, 1990.

J. C. Hest, . Van, K. L. Kiick, T. , and D. A. , Efficient Incorporation of Unsaturated Methionine Analogues into Proteins in Vivo, J Am Chem Soc, vol.122, pp.1282-1288, 2000.

W. S. Horne, J. L. Price, J. L. Keck, and S. H. Gellman, Helix Bundle Quaternary Structure from ?/?-Peptide Foldamers, J Am Chem Soc, vol.129, pp.4178-4180, 2007.

Y. M. Hou and P. Schimmel, Evidence that a major determinant for the identity of a transfer RNA is conserved in evolution, Biochemistry, vol.28, pp.6800-6804, 1989.

C. Hountondji, S. Blanquet, and F. Lederer, Methionyl-tRNA synthetase from Escherichia coli. Primary structure at the binding site for the 3'-end of tRNAfMet, Biochemistry, vol.24, pp.1175-1180, 1985.

C. Hountondji, P. Dessen, and S. Blanquet, Sequence similarities among the family of aminoacyl-tRNA synthetases, Biochimie, vol.68, pp.1071-1078, 1986.

S. Hunt, The Non-Protein Amino Acids, Chemistry and Biochemistry of the Amino Acids, pp.55-138, 1985.

F. Hyafil, Y. Jacques, G. Fayat, M. Fromant, P. Dessen et al., Methionyl-tRNA synthetase from Escherichia coli: active stoichiometry and stopped-flow analysis of methionyl adenylate formation, Biochemistry, vol.15, pp.3678-3685, 1976.

M. Ibba, Quality Control Mechanisms During Translation, Science, vol.286, pp.1893-1897, 1999.

M. Ibba, J. L. Bono, P. A. Rosa, and D. Soll, Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi, Proc Natl Acad Sci, vol.94, pp.14383-14391, 1997.

M. Ibba and D. Soll, The renaissance of aminoacyl-tRNA synthesis, EMBO Rep, vol.2, pp.382-387, 2001.

Y. Itoh, S. Sekine, S. Suetsugu, Y. , and S. , Tertiary structure of bacterial selenocysteine tRNA, Nucleic Acids Res, vol.41, pp.6729-6738, 2013.

Y. Iwane, A. Hitomi, H. Murakami, T. Katoh, Y. Goto et al., Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes, Nat Chem, vol.8, pp.317-325, 2016.

H. Jakubowski, Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae, EMBO J, vol.10, pp.593-598, 1991.

H. Jakubowski, Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels, FASEB J, vol.13, pp.2277-2283, 1999.

H. Jakubowski, Quality control in tRNA charging --editing of homocysteine, Acta Biochim Pol, vol.58, 2011.

H. Jakubowski and A. R. Fersht, Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases, Nucleic Acids Res, vol.9, pp.3105-3117, 1981.

H. Jakubowski and E. Goldman, Editing of errors in selection of amino acids for protein synthesis, Microbiol Rev, vol.56, pp.412-429, 1992.

D. B. Johnson, J. Xu, Z. Shen, J. K. Takimoto, M. D. Schultz et al., , 2011.

, Nat Chem Biol, vol.7, pp.779-786

K. Josephson, M. C. Hartman, and J. W. Szostak, Ribosomal Synthesis of Unnatural Peptides, J Am Chem Soc, vol.127, pp.11727-11735, 2005.

F. Kaiser, S. Bittrich, S. Salentin, C. Leberecht, V. J. Haupt et al., , 2018.

, Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases, PLOS Comput Biol, vol.14, p.1006101

M. Kaminska, V. Shalak, and M. Mirande, The Appended C-Domain of Human Methionyl-tRNA Synthetase Has a tRNA-Sequestering Function ?, Biochemistry, vol.40, pp.14309-14316, 2001.

T. Katoh and H. Suga, Ribosomal Incorporation of Consecutive ?-Amino Acids, J Am Chem Soc, vol.140, pp.12159-12167, 2018.

T. Katoh, K. Tajima, and H. Suga, Consecutive Elongation of D-Amino Acids in Translation, Cell Chem Biol, vol.24, pp.46-54, 2017.

T. Katoh, I. Wohlgemuth, M. Nagano, M. V. Rodnina, and H. Suga, Essential structural elements in tRNAPro for EF-P-mediated alleviation of translation stalling, Nat Commun, vol.7, 2016.

S. Kawaguchi, The crystal structure of the ttCsaA protein: an export-related chaperone from Thermus thermophilus, EMBO J, vol.20, pp.562-569, 2001.

K. L. Kiick, T. , and D. A. , Protein Engineering by In Vivo Incorporation of Non-Natural Amino Acids: Control of Incorporation of Methionine Analogues by Methionyl-tRNA Synthetase, Tetrahedron, vol.56, pp.9487-9493, 2000.

K. L. Kiick, R. Weberskirch, T. , and D. A. , Identification of an expanded set of translationally active methionine analogues in Escherichia coli, FEBS Lett, vol.502, pp.25-30, 2001.

H. Y. Kim, H. Pelka, S. Brunie, and L. H. Schulman, Two separate peptides in Escherichia coli methionyl-tRNA synthetase form the anticodon binding site for methionine tRNA, Biochemistry, vol.32, pp.10506-10511, 1993.

J. Kim, S. Kwon, S. H. Kim, C. Lee, J. Lee et al., Microtubes with Rectangular Cross-Section by Self-Assembly of a Short ?-Peptide Foldamer, J Am Chem Soc, vol.134, pp.20573-20576, 2012.

W. D. Kingsbury, J. C. Boehm, D. Perry, and C. Gilvarg, Portage of various compounds into bacteria by attachment to glycine residues in peptides, Proc Natl Acad Sci, vol.81, pp.4573-4576, 1984.

M. Kisumi, M. Sugiura, and I. Chibata, Biosynthesis of Norvaline, Norleucine, and Homoisoleucine in Serratia marcescens, J Biochem (Tokyo), vol.80, pp.333-339, 1976.

M. Kisumi, M. Sugiura, J. Kato, I. Chibata, and L. ;-l-norvaline, , 1976.

, Homoisoleucine Formation by Serratia marcescens, J Biochem (Tokyo), vol.79, pp.1021-1028

N. Koglin, C. Zorn, R. Beumer, C. Cabrele, C. Bubert et al., Analogues of Neuropeptide Y Containing ?-Aminocyclopropane Carboxylic Acids are the Shortest Linear Peptides That Are Selective for the Y1 Receptor, Angew Chem Int Ed, vol.42, pp.202-205, 2003.

F. Köhler, A. Zimmermann, M. Hager, and A. E. Sippel, A genetic, nontranscriptional assay for nuclear receptor ligand binding in yeast, Gene, vol.337, pp.113-119, 2004.

J. Kraus, D. Soll, B. Low, and K. , Glutamyl-?-methyl ester acts as a methionine analogue in Escherichia coli: analogue resistant mutants map at the metJ and metK loci, Genet Res, vol.33, p.49, 1979.

F. Kudo, A. Miyanaga, and T. Eguchi, Biosynthesis of natural products containing ?-amino acids, Nat Prod Rep, vol.31, pp.1056-1073, 2014.

S. Kwon, A. Jeon, S. H. Yoo, I. S. Chung, and H. Lee, Unprecedented Molecular Architectures by the Controlled Self-Assembly of a ?-Peptide Foldamer, Angew Chem Int Ed, vol.49, pp.8232-8236, 2010.

M. J. Lajoie, A. J. Rovner, D. B. Goodman, H. Aerni, A. D. Haimovich et al., Genomically Recoded Organisms Expand Biological Functions. Science, vol.342, pp.357-360, 2013.

F. J. Lariviere, A. D. Wolfson, and O. C. Uhlenbeck, Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation, Science, vol.294, pp.165-173, 2001.

E. T. Larson, J. E. Kim, F. H. Zucker, A. Kelley, N. Mueller et al., Structure of Leishmania major methionyl-tRNA synthetase in complex with intermediate products methionyladenylate and pyrophosphate, Biochimie, vol.93, pp.570-582, 2011.

R. J. Leatherbarrow, A. R. Fersht, and G. Winter, Transition-state stabilization in the mechanism of tyrosyl-tRNA synthetase revealed by protein engineering, Proc Natl Acad Sci, vol.82, pp.7840-7844, 1985.

S. Ledoux and O. C. Uhlenbeck, 3?-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation, Methods, vol.44, pp.74-80, 2008.

S. Leduc, La biologie synthétique. A. Poinat, 1912.

B. Lemeignan, P. Sonigo, and P. Marlière, Phenotypic Suppression by Incorporation of an Alien Amino Acid, J Mol Biol, vol.231, pp.161-166, 1993.

O. Leon and L. H. Schulman, tRNA recognition site of Escherichia coli methionyl-tRNA synthetase, Biochemistry, vol.26, pp.5416-5422, 1987.

F. Leveque, P. Plateau, P. Dessen, and S. Blanquet, Homology of lysS and lysU, the two Escherichia coli genes encoding distinct lysyl-tRNA synthetase species, Nucleic Acids Res, vol.8, pp.305-312, 1990.

T. Li, M. Vandesquille, F. Koukouli, C. Dudeffant, I. Youssef et al.,

, Camelid single-domain antibodies: A versatile tool for in vivo imaging of extracellular and intracellular brain targets, J Controlled Release, vol.243, pp.1-10

J. Ling, N. Reynolds, and M. Ibba, Aminoacyl-tRNA Synthesis and Translational Quality Control, Annu Rev Microbiol, vol.63, pp.61-78, 2009.

A. J. Link, M. L. Mock, T. , and D. A. , Non-canonical amino acids in protein engineering, Curr Opin Biotechnol, vol.14, pp.603-609, 2003.

A. J. Link, M. K. Vink, N. J. Agard, J. A. Prescher, C. R. Bertozzi et al., Discovery of aminoacyl-tRNA synthetase activity through cell-surface display of noncanonical amino acids, Proc Natl Acad Sci, vol.103, pp.10180-10185, 2006.

C. C. Liu and P. G. Schultz, Adding New Chemistries to the Genetic Code, Annu Rev Biochem, vol.79, pp.413-444, 2010.

Z. N. Mahmoud, S. B. Gunnoo, A. R. Thomson, J. M. Fletcher, and D. N. Woolfson, Bioorthogonal dual functionalization of self-assembling peptide fibers, Biomaterials, vol.32, pp.3712-3720, 2011.

R. Maini, S. R. Chowdhury, L. M. Dedkova, B. Roy, S. M. Daskalova et al.,

, Protein Synthesis with Ribosomes Selected for the Incorporation of ?-Amino Acids, Biochemistry, vol.54, pp.3694-3706

P. Marlière, J. Patrouix, V. Döring, P. Herdewijn, S. Tricot et al., Chemical Evolution of a Bacterium's Genome, Angew Chem Int Ed, vol.50, pp.7109-7114, 2011.

A. P. Mascarenhas, S. An, A. E. Rosen, S. A. Martinis, and K. Musier-forsyth, Fidelity Mechanisms of the Aminoacyl-tRNA Synthetases, In Protein Engineering. Köhrer, pp.155-203, 2009.

Y. Mechulam, E. Schmitt, L. Maveyraud, C. Zelwer, O. Nureki et al.,

, Crystal structure of escherichia coli methionyl-tRNA synthetase highlights speciesspecific features, J Mol Biol, vol.294, pp.1287-97

Y. Mechulam, E. Schmitt, M. Panvert, J. M. Schmitter, M. Lapadat-tapolsky et al., Methionyl-tRNA synthetase from Bacillus stearothermophilus: structural and functional identities with the Escherichia coli enzyme, Nucleic Acids Res, vol.19, pp.3673-81, 1991.

T. Meinnel, Y. Mechulam, S. Blanquet, and G. Fayat, Binding of the anticodon domain of tRNAfMet to Escherichia coli methionyl-tRNA synthetase, J Mol Biol, vol.220, pp.205-208, 1991.

T. Meinnel, Y. Mechulam, D. Le-corre, M. Panvert, S. Blanquet et al., Selection of suppressor methionyl-tRNA synthetases: mapping the tRNA anticodon binding site, Proc Natl Acad Sci U A, vol.88, pp.291-296, 1991.

P. Mellot, Y. Mechulam, D. Le-corre, S. Blanquet, and G. Fayat, Identification of an amino acid region supporting specific methionyl-tRNA synthetase: tRNA recognition, J Mol Biol, vol.208, pp.429-472, 1989.

M. Czekster, C. Robertson, W. E. Walker, A. S. Söll, D. Schepartz et al., In Vivo Biosynthesis of a ?-Amino Acid-Containing Protein, J Am Chem Soc, vol.138, pp.5194-5197, 2016.

N. Moor, O. Kotik-kogan, D. Tworowski, M. Sukhanova, and M. Safro, The Crystal Structure of the Ternary Complex of Phenylalanyl-tRNA Synthetase with tRNA Phe and a Phenylalanyl-Adenylate Analogue Reveals a Conformational Switch of the CCA End ?, Biochemistry, vol.45, pp.10572-10583, 2006.

A. J. Morales, Structure-specific tRNA-binding protein from the extreme thermophile Aquifex aeolicus, EMBO J, vol.18, pp.3475-3483, 1999.

B. I. Morinaka, E. Lakis, M. Verest, M. J. Helf, T. Scalvenzi et al., Natural noncanonical protein splicing yields products with diverse b-amino acid residues, Science, vol.359, pp.779-782, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02044549

T. Mukai, A. Hayashi, F. Iraha, A. Sato, K. Ohtake et al.,

, Codon reassignment in the Escherichia coli genetic code, Nucleic Acids Res, vol.38, pp.8188-8195

T. Mukai, H. Hoshi, K. Ohtake, M. Takahashi, A. Yamaguchi et al., Highly reproductive Escherichia coli cells with no specific assignment to the UAG codon, 2015.

, Sci Rep, vol.5, 2019.

H. Murakami, D. Kourouklis, and H. Suga, Using a Solid-Phase Ribozyme Aminoacylation System to Reprogram the Genetic Code, Chem Biol, vol.10, pp.1077-1084, 2003.

H. Murakami, A. Ohta, H. Ashigai, and H. Suga, A highly flexible tRNA acylation method for non-natural polypeptide synthesis, Nat Methods, vol.3, pp.357-359, 2006.

H. Murakami, H. Saito, and H. Suga, A Versatile tRNA Aminoacylation Catalyst Based on RNA, Chem Biol, vol.10, pp.655-662, 2003.

R. Mutzel, P. Marlière, D. ;. Mazel, . Method-for, . New et al., , 2007.

K. Nakanishi, Y. Ogiso, T. Nakama, S. Fukai, and O. Nureki, Structural basis for anticodon recognition by methionyl-tRNA synthetase, Nat Struct Mol Biol, vol.12, pp.931-932, 2005.

H. Neumann, Rewiring translation -Genetic code expansion and its applications, FEBS Lett, vol.586, pp.2057-2064, 2012.

H. Neumann, S. Y. Peak-chew, and J. W. Chin, Genetically encoding N?acetyllysine in recombinant proteins, Nat Chem Biol, vol.4, pp.232-234, 2008.

H. Neumann, K. Wang, L. Davis, M. Garcia-alai, and J. W. Chin, Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome, Nature, vol.464, pp.441-444, 2010.

T. Nomanbhoy, A. J. Morales, A. T. Abraham, C. S. Vörtler, R. Giegé et al.,

, Nat Struct Biol, vol.8, p.5

T. K. Nomanbhoy, T. L. Hendrickson, and P. Schimmel, Transfer RNA-Dependent Translocation of Misactivated Amino Acids to Prevent Errors in Protein Synthesis, Mol Cell, vol.4, pp.519-528, 1999.

K. Nozawa, P. O'donoghue, S. Gundllapalli, Y. Araiso, R. Ishitani et al.,

, Pyrrolysyl-tRNA synthetase-tRNAPyl structure reveals the molecular basis of orthogonality, Nature, vol.457, pp.1163-1167

O. Nureki, T. Kohno, K. Sakamoto, T. Miyazawa, Y. et al., Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases, J Biol Chem, vol.268, pp.15368-73, 1993.

O. Nureki, D. Vassylyev, K. Katayanagi, T. Shimizu, S. Sekine et al., Architectures of class-defining and specific domains of glutamyl-tRNA synthetase, Science, vol.267, pp.1958-1965, 1995.

P. O'donoghue and Z. Luthey-schulten, On the Evolution of Structure in Aminoacyl-tRNA Synthetases, Microbiol Mol Biol Rev, vol.67, pp.550-573, 2003.

T. Ohtsuki, H. Yamamoto, Y. Doi, and M. Sisido, Use of EF-Tu mutants for determining and improving aminoacylation efficiency and for purifying aminoacyl tRNAs with non-natural amino acids, J Biochem (Tokyo), vol.148, pp.239-246, 2010.

M. Ohuchi, H. Murakami, and H. Suga, The flexizyme system: a highly flexible tRNA aminoacylation tool for the translation apparatus, Curr Opin Chem Biol, vol.11, pp.537-542, 2007.

K. Oki, K. Sakamoto, T. Kobayashi, H. M. Sasaki, Y. et al., Transplantation of a tyrosine editing domain into a tyrosyl-tRNA synthetase variant enhances its specificity for a tyrosine analog, Proc Natl Acad Sci, vol.105, pp.13298-13303, 2008.

C. Orelle, E. D. Carlson, T. Szal, T. Florin, M. C. Jewett et al., Protein synthesis by ribosomes with tethered subunits, Nature, vol.524, pp.119-124, 2015.

M. S. Packer and D. R. Liu, Methods for the directed evolution of proteins, Nat Rev Genet, vol.16, pp.379-394, 2015.

L. Pauling, The probability of errors in the process of synthesis of protein molecules, pp.597-602, 1957.

J. J. Perona and I. Gruic-sovulj, Synthetic and Editing Mechanisms of Aminoacyl-tRNA Synthetases, Aminoacyl-tRNA Synthetases in Biology and Medicine, pp.1-41, 2013.

, , 2019.

D. Perryt and C. Gilvarg, Spectrophotometric Determination of Affinities of Peptides for Their Transport Systems in Escherichia coli, J BACTERIOL, vol.160, p.6, 1984.

C. L. Pizzey, W. C. Pomerantz, B. Sung, V. M. Yuwono, S. H. Gellman et al., Characterization of nanofibers formed by self-assembly of ?-peptide oligomers using small angle x-ray scattering, J Chem Phys, vol.129, p.95103, 2008.

W. C. Pomerantz, V. M. Yuwono, C. L. Pizzey, J. D. Hartgerink, N. L. Abbott et al., Nanofibers and Lyotropic Liquid Crystals from a Class of Self-Assembling ?-Peptides, Angew Chem Int Ed, vol.47, pp.1241-1244, 2008.

D. J. Porter, B. M. Merrill, and S. A. Short, Identification of the Active Site Nucleophile in Nucleoside 2-Deoxyribosyltransferase as Glutamic Acid 98, J Biol Chem, vol.270, pp.15551-15556, 1995.

J. A. Prescher and C. R. Bertozzi, Chemistry in living systems, Nat Chem Biol, vol.1, pp.13-21, 2005.

S. D. Putney and P. Schimmel, An aminoacyl tRNA synthetase binds to a specific DNA sequence and regulates its gene transcription, Nature, vol.291, pp.632-635, 1981.

T. L. Raguse, J. R. Lai, P. R. Leplae, and S. H. Gellman, Toward ?-Peptide Tertiary Structure: Self-Association of an Amphiphilic 14-Helix in Aqueous Solution, Org Lett, vol.3, pp.3963-3966, 2001.

N. Raynal, Synthèse et caractérisation d'enchaînements de mimespeptidiques triés par modélisation moléculaire :application à la synthèse d'analogues du hCRF, 2002.

N. M. Reynolds, B. A. Lazazzera, and M. Ibba, Cellular mechanisms that control mistranslation, Nat Rev Microbiol, vol.8, pp.849-856, 2010.

M. H. Richmond, The effect of amino acid analogues on growth and protein synthesis in microorganisms, Bacteriol Rev, vol.26, p.398, 1962.

M. G. Rossmann, D. Moras, and K. W. Olsen, Chemical and biological evolution of a nucleotide-binding protein, Nature, vol.250, pp.194-199, 1974.

M. A. Rould, J. J. Perona, D. Söll, and T. A. Steitz, Structure of E.coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution, Science, vol.246, pp.1135-1142, 1989.

M. Ruff, S. Krishnaswamy, M. Boeglin, A. Poterszman, A. Mitschler et al., Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNAAsp, Science, vol.252, pp.1682-1689, 1991.

M. Safro, L. Mosyak, L. Reshetnikova, M. Delarue, and Z. Dauter, X-Ray Studies on the Phenylalanine-tRNA Synthetase from Thermus thermophilus, Cap Agde 15th Int TRNA Workshop, 1993.

A. Sanni, P. Walter, Y. Boulanger, J. Ebel, and F. Fasiolo, Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisiae mitochondrial phenylalanyl-tRNA synthetase, Proc Natl Acad Sci, vol.88, pp.8387-8391, 1991.

E. Schmitt, T. Meinnel, S. Blanquet, and Y. Mechulam, Methionyl-tRNA synthetase needs an intact and mobile 332KMSKS336 motif in catalysis of methionyl adenylate formation, JMolBiol, vol.242, pp.566-577, 1994.

E. Schmitt, T. Meinnel, M. Panvert, Y. Mechulam, and S. Blanquet, Two acidic residues of Escherichia coli methionyl-tRNA synthetase are negative discriminants towards the binding of non-cognate tRNA anticodons, J Mol Biol, vol.233, pp.615-628, 1993.

E. Schmitt, M. Panvert, S. Blanquet, and Y. Mechulam, Transition state stabilization by the "high" motif of class I aminoacyl-tRNA synthetases: the case of Escherichia coli methionyl-tRNA synthetase, Nucleic Acids Res, vol.23, pp.4793-4801, 1995.

E. Schmitt, M. Panvert, S. Blanquet, and Y. Mechulam, Crystal structure of methionyl-tRNAfMet transformylase complexed with the initiator formyl-methionyl-tRNAfMet, EMBO J, vol.17, pp.6819-6826, 1998.

E. Schmitt, M. Panvert, S. Blanquet, and Y. Mechulam, Structural basis for tRNAdependent amidotransferase function, Structure, vol.13, pp.1421-1454, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00770122

E. Schmitt, M. Panvert, Y. Mechulam, and S. Blanquet, General structure/function properties of microbial methionyl-tRNA synthetases, Eur J Biochem, vol.246, pp.539-586, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00788524

E. Schmitt, I. C. Tanrikulu, T. H. Yoo, M. Panvert, D. A. Tirrell et al., Switching from an induced-fit to a lock-and-key mechanism in an aminoacyl-tRNA synthetase with modified specificity, J Mol Biol, vol.394, pp.843-51, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00502032

A. Schön, H. Hottinger, and D. Söll, Misaminoacylation and transamidation are required for protein biosynthesis in lactobacillus bulgaricus, Biochimie, vol.70, pp.391-394, 1988.

A. Schön, C. G. Kannangara, S. Gough, and D. Söll, Protein biosynthesis in organelles requires misaminoacylation of tRNA, Nature, vol.331, pp.187-190, 1988.

J. M. Schrader, S. J. Chapman, and O. C. Uhlenbeck, Tuning the affinity of aminoacyl-tRNA to elongation factor Tu for optimal decoding, Proc Natl Acad Sci, vol.108, pp.5215-5220, 2011.

L. Sedlaczek and L. Smith, BIOTRANSFORMATIONS OF STEROIDS. Crit Rev Biotechnol, vol.7, pp.187-236, 1988.

D. Seebach, S. Abele, K. Gademann, J. , and B. , Pleated Sheets and Turns of?-Peptides with Proteinogenic Side Chains, Angew Chem Int Ed, vol.38, pp.1595-1597, 1999.

D. Seebach, A. K. Beck, and D. J. Bierbaum, The World of?-and?-Peptides Comprised of Homologated Proteinogenic Amino Acids and Other Components, Chem Biodivers, vol.1, pp.1111-1239, 2004.

D. Seebach, E. Dubost, R. I. Mathad, B. Jaun, M. Limbach et al., New Open-Chain and Cyclic Tetrapeptides, Consisting of ? -, ? 2 -, and ? 3 -Amino-Acid Residues, as Somatostatin Mimics -A Survey, Helv Chim Acta, vol.91, pp.1736-1786, 2008.

D. Seebach and J. Gardiner, ) ?-Peptidic Peptidomimetics, Acc Chem Res, vol.41, pp.1366-1375, 2008.

D. Seebach, D. F. Hook, and A. Glättli, Helices and other secondary structures of ?-and ?-peptides, Biopolymers, vol.84, pp.23-37, 2006.

D. Seebach, M. Overhand, F. N. Kühnle, B. Martinoni, L. Oberer et al., ?-Peptides: Synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by Xray crystallography. Helical secondary structure of a ?-hexapeptide in solution and its stability towards pe, Helv Chim Acta, vol.79, pp.913-941, 1996.

D. Seebach, M. Rueping, P. I. Arvidsson, T. Kimmerlin, P. Micuch et al., , 2001.

. Linear, Peptidase-Resistant?2/?3-Di-and?/?3-Tetrapeptide Derivatives with Nanomolar Affinities to a Human Somatostatin Receptor, Preliminary Communication, Helv Chim Acta, vol.84, pp.3503-3510

B. Senger, L. Despons, P. Walter, H. Jakubowski, and F. Fasiolo, Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions, J Mol Biol, vol.311, pp.205-216, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02370141

L. Serre, G. Verdon, T. Choinowski, N. Hervouet, J. Risler et al., How methionyl-tRNA synthetase creates its amino acid recognition pocket upon lmethionine binding, J Mol Biol, vol.306, pp.863-876, 2001.

Y. Shimizu, A. Inoue, Y. Tomari, T. Suzuki, T. Yokogawa et al.,

, Cell-free translation reconstituted with purified components, Nat Biotechnol, vol.19, pp.751-755

Y. Shimizu, Y. Kuruma, B. Ying, S. Umekage, and T. Ueda, Cell-free translation systems for protein engineering, FEBS J, vol.273, pp.4133-4140, 2006.

T. Simonson, T. Gaillard, D. Mignon, . Schmidt, M. Busch et al., Computational protein design: The proteus software and selected applications, J Comput Chem, vol.34, pp.2472-2484, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00868677

M. Sissler, B. Lorber, M. Messmer, A. Schaller, J. Pütz et al., Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization, Methods, vol.44, pp.176-189, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00257430

C. D. Spicer and B. G. Davis, Selective chemical protein modification, Nat Commun, vol.5, 2014.

I. Sugiura, O. Nureki, Y. Ugaji-yoshikawa, S. Kuwabara, A. Shimada et al.,

, The 2.0 Å crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules, Structure, vol.8, pp.197-208

T. Suzuki, C. Miller, L. Guo, J. M. Ho, D. I. Bryson et al., Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase, Nat Chem Biol, vol.13, pp.1261-1266, 2017.

M. A. Swairjo, Crystal structure of Trbp111: a structure-specific tRNA-binding protein, EMBO J, vol.19, pp.6287-6298, 2000.

I. C. Tanrikulu, E. Schmitt, Y. Mechulam, W. A. Goddard, T. et al., Discovery of Escherichia coli methionyl-tRNA synthetase mutants for efficient labeling of proteins with azidonorleucine in vivo, Proc Natl Acad Sci U A, vol.106, pp.15285-90, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00502034

T. Terada, O. Nureki, R. Ishitani, A. Ambrogelly, M. Ibba et al., Functional convergence of two lysyl-tRNA synthetases with unrelated topologies, 2002.

, Nat Struct Biol, vol.9, pp.257-262

P. Tuffery, C. Etchebest, S. Hazout, and R. Lavery, A New Approach to the Rapid Determination of Protein Side Chain Conformations, J Biomol Struct Dyn, vol.8, pp.1267-1289, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00313445

E. Tzima and P. Schimmel, Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase, Trends Biochem Sci, vol.31, pp.7-10, 2006.

O. C. Uhlenbeck and J. M. Schrader, Evolutionary tuning impacts the design of bacterial tRNAs for the incorporation of unnatural amino acids by ribosomes, Curr Opin Chem Biol, vol.46, pp.138-145, 2018.

F. Villa, N. Panel, X. Chen, and T. Simonson, Adaptive landscape flattening in amino acid sequence space for the computational design of protein:peptide binding, J Chem Phys, vol.149, p.72302, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01975456

J. Waller, The NH2-terminal residues of the proteins from cell-free extracts of E. coli, J Mol Biol, vol.7, pp.483-484, 1963.

H. H. Wang, F. J. Isaacs, P. A. Carr, Z. Z. Sun, G. Xu et al., Programming cells by multiplex genome engineering and accelerated evolution, Nature, vol.460, pp.894-898, 2009.

K. Wang, A. Sachdeva, D. J. Cox, N. M. Wilf, K. Lang et al., Optimized orthogonal translation of unnatural amino acids enables spontaneous protein doublelabelling and FRET, Nat Chem, vol.6, pp.393-403, 2014.

L. Wang and P. G. Schultz, Expanding the Genetic Code, Angew Chem Int Ed, vol.44, pp.34-66, 2005.

P. Wang, Y. Tang, T. , and D. A. , Incorporation of Trifluoroisoleucine into Proteins in Vivo, J Am Chem Soc, vol.125, pp.6900-6906, 2003.

P. S. Wang and A. Schepartz, Peptide bundles: Design. Build. Analyze. Biosynthesize, vol.52, pp.7420-7432, 2016.

W. H. Ward, G. A. Holdgate, S. Rowsell, E. G. Mclean, R. A. Pauptit et al.,

, Kinetic and Structural Characteristics of the Inhibition of Enoyl (Acyl Carrier Protein) Reductase by Triclosan ?, Biochemistry, vol.38, pp.12514-12525

L. Wernisch, S. Hery, and S. J. Wodak, Automatic protein design with all atom force-fields by exact and heuristic optimization 1 1Edited by J. Thorton, J Mol Biol, vol.301, pp.713-736, 2000.

Y. I. Wolf, L. Aravind, N. V. Grishin, and E. V. Koonin, Evolution of Aminoacyl-tRNA Synthetases-Analysis of Unique Domain Architectures and Phylogenetic Trees Reveals a Complex History of Horizontal Gene Transfer Events, Genome Res, pp.689-710, 1999.

I. Wu, M. A. Patterson, H. E. Carpenter-desai, R. A. Mehl, G. Giorgi et al., Multiple Site-Selective Insertions of Noncanonical Amino Acids into Sequence-Repetitive Polypeptides, ChemBioChem, vol.14, pp.968-978, 2013.

T. Yasumoto and M. Satake, Bioactive Compounds from Marine Microalgae, Chim Int J Chem, vol.52, pp.63-68, 1998.

F. S. Young and A. V. Furano, Regulation of the synthesis of E. coli elongation factor TU, Cell, vol.24, pp.695-706, 1981.

T. S. Young and P. G. Schultz, Beyond the Canonical 20 Amino Acids: Expanding the Genetic Lexicon, J Biol Chem, vol.285, pp.11039-11044, 2010.

M. S. Zhang, S. F. Brunner, N. Huguenin-dezot, A. D. Liang, W. H. Schmied et al., Biosynthesis and genetic encoding of phosphothreonine through parallel selection and deep sequencing, Nat Methods, vol.14, pp.729-736, 2017.

Y. Zhang, J. L. Ptacin, E. C. Fischer, H. R. Aerni, C. E. Caffaro et al., A semi-synthetic organism that stores and retrieves increased genetic information, Nature, vol.551, pp.644-647, 2017.