R. Bibliographie-abramoff, X. Xu, M. Hartman, S. O'brien, W. Feng et al., The Millennial model : in search of measurable pools and transformations for modeling soil carbon in the new century, Biogeochemistry, vol.137, pp.51-71, 2018.

M. R. Allen and S. F. Tett, Checking for model consistency in optimal fingerprinting, Climate Dynamics, vol.15, pp.419-434, 1999.

R. Angel, P. Claus, C. , and R. , Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions, The International Society for Microbial Ecology Journal, vol.14, pp.59-72, 2011.

J. R. Arah and K. D. Stephen, A model of the processes leading to methane emission from peatland, Atmospheric Environment, vol.32, pp.3257-3264, 1998.

I. Aselmann and P. J. Crutzen, Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, Journal of Atmospheric Chemistry, vol.8, pp.307-358, 1989.

L. Askaer, B. Elberling, C. J. Jørgensen, H. P. Joensen, M. Kühl et al., Linking Soil O2, CO2, and CH4 Concentrations in a Wetland Soil : Implications for CO2 and CH4 Fluxes, Environmental Science & Technology, vol.45, p.21413790, 2011.

M. Barrere, F. Domine, B. Decharme, S. Morin, V. Vionnet et al., Evaluating the performance of coupled snow-soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geoscientific Model Development, vol.10, pp.3461-3479, 2017.

J. Beringer, A. H. Lynch, F. S. Iii, M. Mack, and G. B. Bonan, The Representation of Arctic Soils in the Land Surface Model : The Importance of Mosses, Journal of Climate, vol.14, pp.3324-3335, 2001.

M. J. Best, M. Pryor, D. B. Clark, G. G. Rooney, R. L. Essery et al., The Joint UK Land Environment Simulator (JULES), model description -Part 1 : Energy and water fluxes, vol.4, pp.677-699, 2011.

K. Beven and M. Kirkby, A physically based, variable contributing area model of basin hydrology / Un modèleà base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences Bulletin, vol.24, pp.43-69, 1979.

G. S. Bhullar, P. J. Edwards, O. Venterink, and H. , Variation in the plant-mediated methane transport and its importance for methane emission from intact wetland peat mesocosms, Journal of Plant Ecology, vol.6, pp.298-304, 2013.

E. Billard, Etude des communautés microbiennes fonctionnelles benthiques impliquées dans le cycle du méthane, 2016.

D. H. Boelter, Physical Properties of Peats as Related to Degree of Decomposi-tion1, Soil Science Society of America Journal, vol.33, 1969.

A. Boone and P. Etchevers, An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model : Local-Scale Evaluation at an Alpine Site, Journal of Hydrometeorology, vol.2, pp.374-394, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02269594

A. Boone, V. Masson, T. Meyers, and J. Noilhan, The Influence of the Inclusion of Soil Freezing on Simulations by a Soil-Vegetation-Atmosphere Transfer Scheme, Journal of Applied Meteorology, vol.39, pp.1544-1569, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02269591

M. C. Braakhekke, C. Beer, M. R. Hoosbeek, M. Reichstein, B. Kruijt et al., SOMPROF : A vertically explicit soil organic matter model, Ecological Modelling, vol.222, pp.1712-1730, 2011.

I. Braud, N. Varado, and A. Olioso, Comparison of root water uptake modules using either the surface energy balance or potential transpiration, Journal of Hydrology, vol.301, pp.267-286, 2005.

S. Bridgham, J. Megonigal, J. Keller, N. Bliss, and C. Trettin, The carbon balance of North American wetlands, Wetlands, vol.26, p.26, 2006.

W. S. Broecker and T. Peng, Gas exchange rates between air and sea, vol.26, pp.21-35, 1974.

R. Brooks and A. Corey, Properties of porous media affecting fluid flow, J. Irrig. Drain. Am. Soc. Civ.il Eng, pp.187-208, 19766.

J. Brown, O. Ferrians, J. A. Heginbottom, and E. Melnikov, Circum-Arctic Map of Permafrost and Ground-Ice Conditions, Version 2, 2002.

A. Budishchev, Y. Mi, J. Van-huissteden, L. Belelli-marchesini, G. Schaepman-strub et al., Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling, Biogeosciences, vol.11, 2014.

E. J. Burke, I. P. Hartley, and C. D. Jones, Uncertainties in the global temperature change caused by carbon release from permafrost thawing, Cryosphere, vol.6, pp.1063-1076, 2012.

E. J. Burke, C. D. Jones, and C. D. Koven, Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach, Journal of Climate, vol.26, pp.4897-4909, 2013.

J. Calvet, J. Noilhan, J. Roujean, P. Bessemoulin, M. Cabelguenne et al., An interactive vegetation SVAT model tested against data from six contrasting sites, Agr. For. Meteorol, pp.92-95, 1998.

J. Calvet, V. Rivalland, C. Picon-cochard, and J. Guehl, Modelling forest transpiration and CO2 fluxes-response to soil moisture stress, Agricultural and Forest Meteorology, vol.124, pp.143-156, 2004.

J. Calvet and J. Soussana, Modelling CO2-enrichment effects using an interactive vegetation SVAT scheme, Agricultural and Forest Meteorology, vol.108, pp.129-152, 2001.

M. Camino-serrano, B. Guenet, S. Luyssaert, P. Ciais, V. Bastrikov et al., ORCHIDEE-SOM : modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe, Geoscientific Model Development, vol.11, pp.937-957, 2018.

E. E. Campbell and K. Paustian, Current developments in soil organic matter modeling and the expansion of model applications : a review, Environmental Research Letters, vol.10, 2015.

J. Canadell, R. B. Jackson, J. B. Ehleringer, H. A. Mooney, O. E. Sala et al., Maximum rooting depth of vegetation types at the global scale, Oecologia, vol.108, pp.583-595, 1996.

M. Cao, S. Marshall, and K. Gregson, Global carbon exchange and methane emissions from natural wetlands : Application of a process-based model, Journal of Geophysical Research : Atmospheres, vol.101, pp.399-413, 1996.

D. Carrer, C. Meurey, X. Ceamanos, J. Roujean, J. Calvet et al., Dynamic mapping of snow-free vegetation and bare soil albedos at global 1km scale from 10-year analysis of MODIS satellite products, Remote Sensing of Environment, vol.140, pp.420-432, 2014.

D. Carrer, J. Roujean, S. Lafont, J. Calvet, A. Boone et al., A canopy radiative transfer scheme with explicit FAPAR for the interactive vegetation model ISBA-A-gs : Impact on carbon fluxes, Journal of Geophysical Research, vol.118, pp.888-903, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02395839

S. E. Chadburn, G. Krinner, P. Porada, A. Bartsch, C. Beer et al., Carbon stocks and fluxes in the high latitudes : using site-level data to evaluate Earth system models, Biogeosciences, vol.14, pp.5143-5169, 2017.

J. P. Chanton, J. E. Bauer, P. A. Glaser, D. I. Siegel, C. A. Kelley et al., Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands, Geochimica et Cosmochimica Acta, vol.59, pp.3663-3668, 1995.

J. Chappellaz, J. M. Barnola, D. Raynaud, Y. S. Korotkevich, and C. Lorius, Ice-core record of atmospheric methane over the past 160,000 years, Nature, vol.345, 1990.

X. Chen and L. Slater, Gas bubble transport and emissions for shallow peat from a northern peatland : The role of pressure changes and peat structure, Water Resources Research, vol.51, pp.151-168, 2015.

Y. Chen and R. G. Prinn, Estimation of atmospheric methane emissions between 1996 and 2001 using a three-dimensional global chemical transport model, Journal of Geophysical Research (Atmospheres), vol.111, 2006.

H. H. Christiansen, C. Sigsgaard, O. Humlum, M. Rasch, and B. U. Hansen, Permafrost and Periglacial Geomorphology at Zackenberg, High-Arctic Ecosystem Dynamics in a Changing Climate, vol.40, pp.7-11, 2008.

P. Ciais, C. Sabine, G. Bala, L. Bopp, V. Brovkin et al., Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp.465-570, 2013.

R. B. Clapp and G. M. Hornberger, Empirical equations for some soil hydraulic properties, Water Resources Research, vol.14, pp.601-604, 1978.

D. B. Clark, L. M. Mercado, S. Sitch, C. D. Jones, N. Gedney et al., The Joint UK Land Environment Simulator (JULES), model description -Part 2 : Carbon fluxes and vegetation dynamics, Geoscientific Model Development, vol.4, pp.701-722, 2011.

T. D. Colmer, Long-distance transport of gases in plants : a perspective on internal aeration and radial oxygen loss from roots, Plant, Cell & Environment, vol.26, pp.17-36, 2003.

R. Conrad and J. Crank, Microbial Ecology of Methanogens and Methanotrophs, vol.96, pp.1-63, 1975.

M. Cui, A. Ma, H. Qi, X. Zhuang, and G. Zhuang, Anaerobic oxidation of methane : An "active" microbial process, 2015.

C. L. Curry, Modeling the soil consumption of methane at the global scale, Global Biogeochemical Cycles, vol.21, 2007.

W. J. D'andrea, Y. Huang, S. C. Fritz, A. , and N. J. , Abrupt Holocene climate change as an important factor for human migration in West Greenland, Proceedings of the National Academy of Sciences, vol.108, pp.9765-9769, 2011.

J. W. Deardorff, Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, Journal of Geophysical Research : Oceans, vol.83, pp.1889-1903, 1978.

B. Decharme, Développement et validation d'une modélisation hydrologique globale incluant les effets sous maille et la représentation des zones inondées, 2005.

B. Decharme, A. Boone, C. Delire, and J. Noilhan, Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions, Journal of Geophysical Research Atmospheres, vol.116, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02395908

B. Decharme, E. Martin, and S. Faroux, Reconciling soil thermal and hydrological lower boundary conditions in land surface models, Journal of Geophysical Research Atmospheres, vol.118, pp.7819-7834, 2013.

B. Decharme, E. Brun, A. Boone, C. Delire, P. Le-moigne et al., Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model, Cryosphere, vol.10, pp.853-877, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02267683

A. Druel, Modelisation de la vegetation boreale et de sa dynamique, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01654663

A. Druel, P. Peylin, G. Krinner, P. Ciais, N. Viovy et al., Towards a more detailed representation of high-latitude vegetation in the global land surface model ORCHIDEE (ORC-HL-VEGv1.0), Geoscientific Model Development, vol.10, pp.4693-4722, 2017.

L. Dutaur and L. V. Verchot, A global inventory of the soil CH4 sink, Global Biogeochemical Cycles, vol.21, 2007.

B. Duval and S. Goodwin, Methane production and release from two New England peatlands, International microbiology : the official journal of the Spanish Society for Microbiology, vol.3, pp.89-95, 2000.

D. Dwivedi, W. Riley, M. Torn, N. Spycher, F. Maggi et al., Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks, Soil Biology and Biochemistry, vol.107, pp.244-259, 2017.

M. Etminan, G. Myhre, E. J. Highwood, and K. P. Shine, Radiative forcing of carbon dioxide, methane, and nitrous oxide : A significant revision of the methane radiative forcing, Geophysical Research Letters, vol.43, pp.614-626, 2016.

Z. Fan, J. C. Neff, M. P. Waldrop, A. P. Ballantyne, and M. R. Turetsky, Transport of oxygen in soil pore-water systems : implications for modeling emissions of carbon dioxide and methane from peatlands, Biogeochemistry, vol.121, pp.455-470, 2014.

I. Fao, I. , and J. , Harmonized World Soil Database (version 1.2). FAO, 2012.

O. Farouki, , 1986.

S. Faroux, A. T. Kaptué-tchuenté, J. Roujean, V. Masson, E. Martin et al., ECOCLIMAP-II/Europe : a twofold database of ecosystems and surface parameters at 1 km resolution based on satellite information for use in land surface, meteorological and climate models, Geoscientific Model Development, vol.6, pp.563-582, 2013.

G. D. Farquhar, S. Von-caemmerer, and J. A. Berry, A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, vol.149, pp.78-90, 1980.

T. Foken, M. Aubinet, R. Leuning, M. Aubinet, T. Vesala et al., The Eddy Covariance Method, in : Eddy Covariance : A Practical Guide to Measurement and Data Analysis, pp.1-19, 2012.

P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts et al., Changes in atmospheric constituents and in radiative forcing, in : Climate change 2007 : The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, pp.129-234, 2013.

K. E. Frey and L. C. Smith, How well do we know northern land cover ? Comparison of four global vegetation and wetland products with a new ground-truth database for West Siberia, Global biogeochemical cycles, vol.21, 2007.

P. Friedlingstein, P. Cox, R. Betts, L. Bopp, W. Von-bloh et al., Climate-Carbon Cycle Feedback Analysis : Results from the C4MIP Model Intercomparison, vol.19, pp.3337-3353, 2006.

S. Garrigues, A. Boone, B. Decharme, A. Olioso, C. Albergel et al., Impacts of the Soil Water Transfer Parameterization on the Simulation of Evapotranspiration over a 14-Year Mediterranean Crop Succession, Journal of Hydrometeorology, vol.19, pp.3-25, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02267632

A. Gibelin, Cycle du carbone dans un modèle de surface continentale : modélisation, validation et mise en oeuvreà l'échelle globale, 2007.

A. L. Gibelin, J. C. Calvet, J. L. Roujean, L. Jarlan, and S. O. Los, Ability of the land surface model ISBA-A-gs to simulate leaf area index at the global scale : Comparison with satellites products, Journal of Geophysical Research Atmospheres, vol.111, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00293363

J. Gibson, P. Kallberg, S. Uppala, A. Hernandez, A. Numura et al., A simple and fast numerical method for the computation of daily totals of crop photosynthesis, Eur. Cent. for Medium-Range Weather Forecasts, vol.1, pp.249-254, 1986.

G. Granberg, C. Mikkelä, I. Sundh, B. H. Svensson, and M. Nilsson, Sources of spatial variation in methane emission from mires in northern Sweden : A mechanistic approach in statistical modeling, Global Biogeochemical Cycles, vol.11, pp.135-150, 1997.

R. Grant, Simulation of methanogenesis in the mathematical model ecosys, Soil Biology and Biochemistry, vol.30, pp.218-224, 1998.

S. Grünfeld and H. Brix, Methanogenesis and methane emissions : Effects of water table, substrate type and presence of Phragmites australis, Aquatic Botany, vol.64, pp.63-75, 1999.

B. Guenet, M. Danger, L. Abbadie, and G. Lacroix, Priming effect : Bridging the gap between terrestrial and aquatic ecology, Ecology, vol.91, pp.2850-2861, 2010.

B. Guenet, T. Eglin, N. Vasilyeva, P. Peylin, P. Ciais et al., The relative importance of decomposition and transport mechanisms in accounting for soil organic carbon profiles, Biogeosciences, vol.10, pp.2379-2392, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01567150

S. Gulde, H. Chung, W. Amelung, C. Chang, and J. Six, Soil Carbon Saturation Controls Labile and Stable Carbon Pool Dynamics, Soil Science Society of America Journal, vol.72, pp.605-612, 2008.

B. U. Hansen, C. Sigsgaard, L. Rasmussen, J. Cappelen, J. Hinkler et al., Present-Day Climate at Zackenberg, Advances in Ecological Research, vol.40, pp.111-149, 2008.

M. Hossain, W. Chen, and Y. Zhang, Bulk density of mineral and organic soils in the Canada's arctic and sub-arctic, Information Processing in Agriculture, vol.2, pp.183-190, 2015.

G. Hugelius, C. Tarnocai, G. Broll, J. G. Canadell, P. Kuhry et al., The northern circumpolar soil carbon database : Spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions, Earth System Science Data, vol.5, pp.3-13, 2013.

G. Hugelius, J. Strauss, S. Zubrzycki, J. W. Harden, E. A. Schuur et al., Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, vol.11, pp.6573-6593, 2014.

, IPCC : Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013.

A. Ito and M. Inatomi, Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty, Biogeosciences, vol.9, pp.759-773, 2012.

R. B. Jackson, J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala et al., A global analysis of root distributions for terrestrial biomes, Oecologia, vol.108, pp.389-411, 1996.

J. Jacobs, Direct impact of atmospheric CO2 enrichment on regional transpiration, 1996.

E. Joetzjer, Causes, impacts et projetions des sécheresses en Amazonie : uneétude numérique des processus et des incertitudes, 2014.

E. Joetzjer, C. Delire, H. Douville, P. Ciais, B. Decharme et al., Improving the ISBA CC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest, Geosci. Model Dev, vol.8, pp.1709-1727, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01557272

H. Johnsson and L. Lundin, Surface runoff and soil water percolation as affected by snow and soil frost, Journal of Hydrology, vol.122, pp.141-159, 1991.

C. J. Jørgensen, K. M. Lund-johansen, A. Westergaard-nielsen, and B. Elberling, Net regional methane sink in High Arctic soils of northeast Greenland, Nature Geoscience, vol.8, pp.20-23, 2015.

E. Justes, B. Mary, J. Meynard, J. Machet, and L. Thelier-huche, Determination of a Critical Nitrogen Dilution Curve for Winter Wheat Crops, Annals of Botany, vol.74, pp.397-407, 1994.

S. Kaiser, M. Göckede, K. Castro-morales, C. Knoblauch, A. Ekici et al., Process-based modelling of the methane balance in periglacial landscapes (JSBACH-methane), Geoscientific Model Development, vol.10, pp.333-358, 2016.

J. O. Kaplan, G. Folberth, and D. A. Hauglustaine, Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations, Global Biogeochemical Cycles, vol.20, 2006.

T. Kätterer, M. Reichstein, O. Andrén, and A. Lomander, Temperature dependence of organic matter decomposition : A critical review using literature data analyzed with different models, Biology and Fertility of Soils, vol.27, pp.258-262, 1998.

M. A. Khalil, Atmospheric Methane : An Introduction, pp.1-8, 2000.

D. V. Khvorostyanov, P. Ciais, G. Krinner, and S. A. Zimov, Vulnerability of east Siberia's frozen carbon stores to future warming, Geophysical Research Letters, vol.35, pp.10-703, 2008.

D. V. Khvorostyanov, G. Krinner, P. Ciais, M. Heimann, and S. A. Zimov, Vulnerability of permafrost carbon to global warming. Part I : Model description and role of heat generated by organic matter decomposition, Tellus, Series B : Chemical and Physical Meteorology, 60 B, pp.250-264, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00378482

S. Kirschke, P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell et al., Three decades of global methane sources and sinks, Nature Geoscience, vol.6, pp.813-823, 2013.

C. Knoblauch, O. Spott, S. Evgrafova, L. Kutzbach, and E. Pfeiffer, Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra, Journal of Geophysical Research : Biogeosciences, vol.120, pp.2525-2541, 2015.

W. Knorr and M. Heimann, Uncertainties in global terrestrial biosphere modeling : 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme, Global Biogeochemical Cycles, vol.15, pp.207-225, 2001.

C. Koven, P. Friedlingstein, P. Ciais, D. Khvorostyanov, G. Krinner et al., On the formation of high-latitude soil carbon stocks : Effects of cryoturbation and insulation by organic matter in a land surface model, Geophysical Research Letters, vol.36, pp.21-501, 2009.
URL : https://hal.archives-ouvertes.fr/insu-00448197

C. D. Koven, B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule et al., Permafrost carbon-climate feedbacks accelerate global warming, Proceedings of the National Academy of Sciences, vol.108, pp.769-783, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00647049

C. D. Koven, W. J. Riley, Z. M. Subin, J. Y. Tang, M. S. Torn et al., The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4, Biogeosciences, vol.10, pp.7109-7131, 2013.

C. D. Koven, E. A. Schuur, C. Schädel, T. J. Bohn, E. J. Burke et al., A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback, Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.373, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01326116

G. Krinner, N. Viovy, N. De-noblet-ducoudré, J. Ogée, J. Polcher et al., A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system, Global Biogeochemical Cycles, vol.19, pp.1-33, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00374606

L. Kutzbach, D. Wagner, and E. Pfeiffer, Effect of microrelief and vegetation on methane emission from wet polygonal tundra, vol.69, pp.341-362, 2004.

N. K. Larsen, A. Strunk, L. B. Levy, J. Olsen, A. Bjørk et al., Strong altitudinal control on the response of local glaciers to Holocene climate change in southwest Greenland, Quaternary Science Reviews, vol.168, pp.69-78, 2017.

D. M. Lawrence and A. G. Slater, Incorporating organic soil into a global climate model, Climate Dynamics, vol.30, pp.145-160, 2008.

L. Fouest, V. Matsuoka, A. Manizza, M. Shernetsky, M. Tremblay et al., Towards an assessment of riverine dissolved organic carbon in surface waters of the western Arctic Ocean based on remote sensing and biogeochemical modeling, Biogeosciences, vol.15, pp.1335-1346, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01727068

L. Mer, J. Roger, P. Provence, D. Luminy, and D. , Production, oxidation and consumption of methane by soils : A review, Archaea, vol.37, pp.25-50, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00745098

B. Lehner and P. Doell, Development and validation of a global database of lakes, reservoirs and wetlands, Journal of Hydrology, 2004.

G. Lemaire and F. Gastal, N Uptake and Distribution in Plant Canopies, pp.3-43, 1997.

A. Lerman, Geochemical processes : Water and sediment environments, 1979.

A. H. Macdougall, C. A. Avis, and A. J. Weaver, Significant contribution to climate warming from the permafrost carbon feedback, Nature Geoscience, vol.5, pp.719-721, 2012.

J. F. Mahfouf and J. Noilhan, Comparative Study of Various Formulations of Evaporations from Bare Soil Using In Situ Data, Journal of Applied Meteorology, vol.30, pp.1354-1365, 1991.

V. Masson, P. Le-moigne, E. Martin, S. Faroux, A. Alias et al., The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes, Geoscientific Model Development, vol.6, pp.929-960, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00968042

M. Mastepanov, C. Sigsgaard, E. J. Dlugokencky, S. Houweling, L. Ström et al., Large tundra methane burst during onset of freezing, Nature, vol.456, 2008.

M. Mastepanov, C. Sigsgaard, T. Tagesson, L. Ström, M. P. Tamstorf et al., Revisiting factors controlling methane emissions from high-Arctic tundra, Biogeosciences, vol.10, pp.5139-5158, 2013.

E. Matthews and I. Fung, Methane emission from natural wetlands : Global distribution, area, and environmental characteristics of sources, Global Biogeochemical Cycles, vol.1, pp.61-86, 1987.

A. D. Mcguire, J. M. Melillo, L. A. Joyce, D. W. Kicklighter, A. L. Grace et al., Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America, Global Biogeochemical Cycles, vol.6, pp.101-124, 1992.

H. Meltofte and M. Rasch, The Study Area at Zackenberg, pp.5-5, 2008.

H. Meltofte and H. Thing, Zackenberg Basic : The Climate Basis and GeoBasis programmes, 1st Annual Report, 1995.

J. R. Melton, R. Wania, E. L. Hodson, B. Poulter, B. Ringeval et al., Present state of global wetland extent and wetland methane modelling : conclusions from a model inter-comparison project (WETCHIMP), Biogeosciences, vol.10, pp.753-788, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01806751

L. Meng, P. G. Hess, N. M. Mahowald, J. B. Yavitt, W. J. Riley et al., Sensitivity of wetland methane emissions to model assumptions : Application and model testing against site observations, Biogeosciences, vol.9, pp.2793-2819, 2012.

R. J. Millington and J. P. Quirk, Permeability of porous solids, Transaction of the Faraday Society, vol.57, pp.1200-1207, 1961.

P. Moldrup, T. Olesen, T. Komatsu, S. Yoshikawa, P. Schjonning et al., Modeling Diffusion and Reaction in Soils : X. A Unifying Model for Solute and Gas Diffusivity in Unsaturated Soil, Soil Science, vol.168, pp.321-337, 2003.

F. Murguia-flores, S. Arndt, A. L. Ganesan, G. N. Murray-tortarolo, and E. R. Hornibrook, Soil Methanotrophy Model (MeMo v1.0) : a process-based model to quantify global uptake of atmospheric methane by soil, Geoscientific Model Development Discussions, pp.1-38, 2017.

G. Myhre, D. Shindell, F. Bréon, W. Collins, J. Fuglestvedt et al., Anthropogenic and Natural Radiative Forcing, Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of, pp.1-44, 2013.

R. Myneni and T. Park, MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, 2015.

C. Nielsen, A. Michelsen, P. Ambus, T. Deepagoda, and B. Elberling, Linking rhizospheric CH4 oxidation and net CH4 emissions in an arctic wetland based on 13CH4 labeling of mesocosms, Plant and Soil, vol.412, pp.201-213, 2017.

K. K. Nielson, V. C. Rogers, and G. W. Gee, Diffusion of Radon through Soils : A Pore Distribution Model, Soil Science Society of America Journal, vol.412, pp.482-487, 1984.

J. Noilhan and P. Lacarrère, GCM Grid-Scale Evaporation from Mesoscale Modeling, Journal of Climate, vol.8, pp.206-223, 1995.

J. Noilhan and S. Planton, A Simple Parameterization of Land Surface Processes for Meteorological Models, Monthly Weather Review, vol.117, pp.536-549, 1989.

J. Palmtag, G. Hugelius, N. Lashchinskiy, M. P. Tamstorf, A. Richter et al., Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost, Arctic, Antarctic, and Alpine Research, vol.47, pp.71-88, 2015.

F. J. Parmentier, J. Van-huissteden, M. K. Van-der-molen, G. Schaepman-strub, S. A. Karsanaev et al., Spatial and temporal dynamics in eddy covariance observations of methane fluxes at a tundra site in northeastern Siberia, Journal of Geophysical Research, vol.116, 2011.

W. J. Parton, J. W. Stewart, C. , C. V. Dynamics-of, C. et al., Biogeochemistry, vol.5, pp.109-131, 1988.

C. D. Peters-lidard, E. Blackburn, X. Liang, and E. F. Wood, The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures, Journal of the Atmospheric Sciences, vol.55, pp.1209-1224, 1998.

A. M. Petrescu, L. P. Van-beek, J. Van-huissteden, C. Prigent, T. Sachs et al., Modeling regional to global CH4 emissions of boreal and arctic wetlands, Global Biogeochemical Cycles, vol.24, 2010.

C. L. Ping, J. D. Jastrow, M. T. Jorgenson, G. J. Michaelson, and Y. L. Shur, Permafrost soils and carbon cycling, SOIL, vol.1, pp.147-171, 2015.

N. Pirk, M. Mastepanov, F. W. Parmentier, M. Lund, P. Crill et al., Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations, Biogeosciences, vol.13, pp.903-912, 2016.

N. Pirk, M. P. Tamstorf, M. Lund, M. Mastepanov, S. H. Pedersen et al., Snowpack fluxes of methane and carbon dioxide from high Arctic tundra, Journal of Geophysical Research, vol.121, pp.2886-2900, 2016.

N. Pirk, M. Mastepanov, E. López-blanco, L. H. Christensen, H. H. Christiansen et al., Toward a statistical description of methane emissions from arctic wetlands, Ambio, vol.46, pp.70-80, 2017.

H. Portner, H. Bugmann, and A. Wolf, Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes, Biogeosciences, vol.7, pp.3669-3684, 2010.

C. Potter, An ecosystem simulation model for methane production and emission from wetlands, Global Biogeochemical Cycles, vol.11, pp.495-506, 1997.

C. Potter and S. Klooster, Global model estimates of carbon and nitrogen storage in litter and soil pools : response to changes in vegetation quality and biomass allocation, Tellus B, vol.49, pp.1-17, 1997.

C. Potter, J. Bubier, P. Crill, and P. Lafleur, Ecosystem modeling of methane and carbon dioxide fluxes for boreal forest sites, Canadian Journal of Forest Research, vol.31, pp.208-223, 2001.

M. J. Prather, C. D. Holmes, and J. Hsu, Reactive greenhouse gas scenarios : Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophysical Research Letters, vol.39, 2012.

I. Preuss, C. Knoblauch, J. Gebert, and E. Pfeiffer, Improved quantification of microbial CH 4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation, Biogeosciences, vol.10, pp.2539-2552, 2013.

C. Prigent, E. Matthews, F. Aires, B. Rossow, and W. , Remote sensing of global wetland dynamics with multiple satellite data sets, Geophysical Research Letters, vol.28, pp.4631-4634, 2001.

C. Prigent, F. Papa, F. Aires, W. B. Rossow, and E. Matthews, Global inundation dynamics inferred from multiple satellite observations, J. Geophys. Res, vol.112, pp.12-107, 1993.

C. Qiu, D. Zhu, P. Ciais, B. Guenet, G. Krinner et al., Geoscientific Model Development, vol.11, pp.497-519, 2018.

J. W. Raich, E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler et al., Potential Net Primary Productivity in South America : Application of a Global Model, vol.1, pp.399-429, 1991.

M. Raivonen, S. Smolander, L. Backman, J. Susiluoto, T. Aalto et al., HIMMELI v1.0 : HelsinkI Model of MEthane buiLdup and emIssion for peatlands, Geoscientific Model Development, vol.10, pp.4665-4691, 2017.

K. Raundrup, P. Aastrup, J. Nyman, T. L. Lauridsen, L. Sander-johannsson et al., NUUK BASIC : The BioBasis programme, 2009.

W. J. Riley, Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn et al., Barriers to predicting changes in global terrestrial methane fluxes : Analyses using CLM4Me, a methane biogeochemistry model integrated in CESM, Biogeosciences, vol.8, 1925.

B. Ringeval, B. Decharme, S. L. Piao, P. Ciais, F. Papa et al., Modelling sub-grid wetland in the ORCHIDEE global land surface model : evaluation against river discharges and remotely sensed data, Geoscientific Model Development, vol.5, pp.941-962, 2012.
URL : https://hal.archives-ouvertes.fr/insu-00844071

N. Roulet, T. Moore, J. Bubier, and P. Lafleur, Northern fens : methane flux and climatic change, Tellus B, vol.44, pp.100-105, 1992.

N. T. Roulet, Peatlands, carbon stoage, greenhouse gases, and the Kyoto protocol : prospects and significance for Canada, Wetlands, vol.20, p.20, 2000.

R. Sander, Compilation of Henry's law constants (version 4.0) for water as solvent, Atmospheric Chemistry and Physics, vol.15, pp.4399-4981, 2015.

M. Saunois, P. Bousquet, B. Poulter, A. Peregon, P. Ciais et al., The global methane budget, vol.8, pp.697-751, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02317451

K. Schaefer, H. Lantuit, V. E. Romanovsky, E. A. Schuur, and R. Witt, The impact of the permafrost carbon feedback on global climate, Environmental Research Letters, vol.9, 2014.

J. P. Scharlemann, E. V. Tanner, R. Hiederer, and V. Kapos, Global soil carbon : understanding and managing the largest terrestrial carbon pool, Carbon Management, vol.5, pp.81-91, 2014.

J. P. Schimel, Plant transport and methane production as controls on methane flux from arctic wet meadow tundra, Biogeochemistry, vol.28, pp.183-200, 1995.

L. Schirrmeister, G. Grosse, S. Wetterich, P. P. Overduin, J. Strauss et al., Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic, Journal of Geophysical Research, vol.116, pp.0-2, 2011.

W. H. Schlesinger and E. S. Bernhardt, Wetland Ecosystems, in : Biogeochemistry, chap. Wetland ec, pp.233-274, 2013.

T. Schneider-von-deimling, G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern et al., Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity, Biogeosciences, vol.12, pp.3469-3488, 2015.

G. Schurgers, P. Dörsch, L. Bakken, P. Leffelaar, and L. E. Haugen, Modelling soil anaerobiosis from water retention characteristics and soil respiration, Soil Biology and Biochemistry, vol.38, pp.2637-2644, 2006.

E. A. Schuur, J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field et al., Vulnerability of Permafrost Carbon to Climate Change : Implications for the Global Carbon Cycle, BioScience, vol.58, pp.701-714, 2008.

E. A. Schuur, A. D. Mcguire, C. Schädel, G. Grosse, J. W. Harden et al., Climate change and the permafrost carbon feedback, Nature, vol.520, pp.171-179, 2015.

R. Séférian, C. Delire, B. Decharme, A. Voldoire, D. Salas-y-melia et al., Development and evaluation of CNRM Earth system model -CNRM-ESM1, Geoscientific Model Development, vol.9, pp.1423-1453, 2016.

R. Segers, Methane production and methane consumption : a review of processes underlying wetland methane fluxes, Biogeochemistry, vol.41, pp.23-51, 1998.

R. Segers and S. Kengen, Methane production as a function of anaerobic carbon mineralization : A process model, Soil Biology and Biochemistry, vol.30, pp.1107-1117, 1998.

N. Serrano-silva, Y. Sarria-guzmán, L. Dendooven, L. , and M. , Methanogenesis and Methanotrophy in Soil : A Review, Pedosphere, vol.24, pp.291-307, 2014.

M. C. Serreze and R. G. Barry, Processes and impacts of Arctic amplification : A research synthesis, Global and Planetary Change, vol.77, pp.85-96, 2011.

W. Shangguan, Y. Dai, Q. Duan, B. Liu, and H. Yuan, A global soil data set for earth system modeling, Journal of Advances in Modeling Earth Systems, vol.6, pp.249-263, 2014.

D. I. Siegel, Evaluating cumulative effects of disturbance on the hydrologic function of bogs, fens, and mires, Environmental Management, vol.12, pp.621-626, 1988.

K. Skov and L. C. Smith, Spatiotemporal variability in methane emission from an Arctic fen over a growing season : dynamics and driving factors, Science, vol.303, pp.353-356, 2004.

R. Spahni, J. Chappellaz, T. F. Stocker, L. Loulergue, G. Hausammann et al., Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores, Science, vol.310, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00374939

R. Spahni, R. Wania, L. Neef, M. Van-weele, I. Pison et al., Constraining global methane emissions and uptake by ecosystems, Biogeosciences, vol.8, pp.1643-1665, 2011.

A. Stams, C. ;. Plugge, P. Smith, and A. Van-amstel, The Microbiology of, in : Methane and climate changes, vol.87, pp.14-27, 2003.

K. Stephen, J. Arah, K. Thomas, J. Benstead, L. et al., Gas diffusion coefficient profile in peat determined by modelling mass spectrometric data : implications for gas phase distribution, Soil Biology and Biochemistry, vol.30, pp.429-431, 1998.

C. E. Stewart, K. Paustian, R. T. Conant, A. F. Plante, and J. Six, Soil carbon saturation : concept, evidence and evaluation, Biogeochemistry, vol.86, pp.19-31, 2007.

D. Stone, M. R. Allen, F. Selten, M. Kliphuis, and P. A. Stott, The Detection and Attribution of Climate Change Using an Ensemble of Opportunity, Journal of Climate, vol.20, pp.504-516, 2007.

M. Tamstorf, K. Iversen, B. Hansen, C. Sigsgaard, M. Fruergaard et al., NUUK BASIC : The GeoBasis programme, in : Nuuk Ecological Research Operations, 1st Annual Report, 2007.

J. Tang, Q. Zhuang, R. D. Shannon, and J. R. White, Quantifying wetland methane emissions with process-based models of different complexities, Biogeosciences, vol.7, pp.3817-3837, 2010.

J. Y. Tang and W. J. Riley, Technical Note : Simple formulations and solutions of the dual-phase diffusive transport for biogeochemical modeling, Biogeosciences, vol.11, pp.3721-3728, 2014.

J. Y. Tang, W. J. Riley, C. D. Koven, and Z. M. Subin, CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4 : model development, evaluation, and application, Geoscientific Model Development, vol.6, pp.127-140, 2013.

P. P. Tans, Oxygen isotopic equilibrium between carbon dioxide and water in soils, Tellus, Series B : Chemical and Physical Meteorology, vol.50, pp.163-178, 1998.

C. Tarnocai, J. G. Canadell, E. A. Schuur, P. Kuhry, G. Mazhitova et al., Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochemical Cycles, vol.23, 2009.

P. Taylor, M. G. Letts, N. T. Roulet, N. T. Comer, M. R. Skarupa et al., Parametrization of peatland hydraulic properties for the Canadian land surface scheme Parametrization of Peatland Hydraulic Properties for the Canadian Land Surface Scheme, Atmosphere -Ocean, vol.38, pp.37-41, 2000.

T. Tokida, T. Miyazaki, M. Mizoguchi, O. Nagata, F. Takakai et al., Falling atmospheric pressure as a trigger for methane ebullition from peatland, Global Biogeochemical Cycles, vol.21, 2007.

C. C. Treat, W. M. Wollheim, R. K. Varner, A. S. Grandy, J. Talbot et al., Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats, Global Change Biology, vol.20, pp.2674-2686, 2014.

C. C. Treat, S. M. Natali, J. Ernakovich, C. M. Iversen, M. Lupascu et al., A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations, Global Change Biology, vol.21, pp.2787-2803, 2015.

P. J. Valdes, D. J. Beerling, J. , C. E. Van-der-molen, M. K. Van-huissteden et al., The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, Biogeosciences, vol.32, pp.985-1003, 2005.

J. Van-huissteden, Methane emission from northern wetlands in Europe during Oxygen Isotope Stage 3, Quaternary Science Reviews, vol.23, 1989.

M. T. Van-wijk, M. Williams, and G. R. Shaver, Tight coupling between leaf area index and foliage N content in arctic plant communities, Oecologia, vol.142, pp.421-427, 2005.

J. Vergnes, Développement d'une modélisation hydrologique incluant la représentation des aquifères :évaluation sur la France età l'échelle globale, 2012.

B. Vinther, S. Buchardt, H. Clausen, D. Dahl-jensen, S. Johnsen et al., Holocene thinning of the Greenland ice sheet, Nature, vol.461, pp.385-388, 2009.

A. Voldoire, B. Decharme, J. Pianezze, C. Lebeaupin-brossier, F. Sevault et al., SURFEX v8.0 interface with OASIS3-MCT to couple atmosphere with hydrology, ocean, waves and sea-ice models, from coastal to global scales, Geoscientific Model Development, vol.10, pp.4207-4227, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02110056

A. Volta, Lettres de M. Alexandre Volta sur l'air inflammable des marais, auxquelles on a ajouté trois lettres du même auteur tirées du journal de Milan, Impr, p.1778

B. P. Walter and M. Heimann, A process-based, climate-sensitive model to derive methane emissions from natural wetlands : Application to five wetland sites, sensitivity to model parameters, and climate, Global Biogeochemical Cycles, vol.14, pp.745-765, 2000.

B. P. Walter, M. Heimann, R. D. Shannon, and J. R. White, A process-based model to derive methane emissions from natural wetlands, Geophysical Research Letters, vol.23, pp.3731-3734, 1996.

B. P. Walter, M. Heimann, and E. Matthews, Modeling modern methane emissions from natural wetlands : 1. Model description and results, Journal of Geophysical Research : Atmospheres, vol.106, pp.189-223, 2001.

B. P. Walter, M. Heimann, and E. Matthews, Modeling modern methane emissions from natural wetlands : 2. Interannual variations 1982-1993, Journal of Geophysical Research : Atmospheres, vol.106, pp.207-241, 2001.

J. Walz, C. Knoblauch, L. Böhme, and E. Pfeiffer, Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils -Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter, Soil Biology and Biochemistry, vol.110, pp.34-43, 2017.

R. Wania, Modelling northern peatland land surface processes, vegetation dynamics and methane emissions, 2007.

R. Wania, I. Ross, P. , and I. C. , Implementation and evaluation of a new methane model within a dynamic global vegetation model : LPJ-WHyMe v1.3.1, Geoscientific Model Development, vol.3, pp.565-584, 2010.

C. M. White, A. R. Kemanian, and J. P. Kaye, Implications of carbon saturation model structures for simulated nitrogen mineralization dynamics, Biogeosciences, vol.11, pp.6725-6738, 2014.

M. Wik, R. K. Varner, K. W. Anthony, S. Macintyre, and D. Bastviken, Climatesensitive northern lakes and ponds are critical components of methane release, Nature Geoscience, vol.9, 2016.

X. Xu, D. A. Elias, D. E. Graham, T. J. Phelps, S. L. Carroll et al., A microbial functional group-based module for simulating methane production and consumption : Application to an incubated permafrost soil, Journal of Geophysical Research, vol.120, pp.1315-1333, 2015.

X. Xu, F. Yuan, P. J. Hanson, S. D. Wullschleger, P. E. Thornton et al., Reviews and syntheses : Four decades of modeling methane cycling in terrestrial ecosystems, Biogeosciences, vol.13, pp.3735-3755, 2016.

W. H. Yang, G. Mcnicol, Y. A. Teh, K. Estera-molina, T. E. Wood et al., Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics, Global Biogeochemical Cycles, vol.31, pp.1435-1453, 2017.

Z. Yu, J. Loisel, D. P. Brosseau, D. W. Beilman, and S. J. Hunt, Global peatland dynamics since the Last Glacial Maximum, Geophysical Research Letters, vol.37, 2010.

Z. C. Yu, Northern peatland carbon stocks and dynamics : a review, Biogeosciences, vol.9, pp.4071-4085, 2012.

Y. Yuan, R. Conrad, and Y. Lu, Responses of methanogenic archaeal community to oxygen exposure in rice field soil, Environmental Microbiology Reports, vol.1, pp.347-354, 2009.

Y. Zhang, C. Li, C. C. Trettin, H. Li, and G. Sun, An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems, Global Biogeochemical Cycles, vol.16, pp.9-10, 2002.

Y. Zhang, T. Sachs, C. Li, and J. Boike, Upscaling methane fluxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model, Global Change Biology, vol.18, pp.1428-1440, 2012.

Q. Zhu, J. Liu, C. Peng, H. Chen, X. Fang et al., Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model, Geoscientific Model Development, vol.7, pp.981-999, 2014.

Q. Zhuang, J. M. Melillo, D. W. Kicklighter, R. G. Prinn, A. D. Mcguire et al., Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century : A retrospective analysis with a process-based biogeochemistry model, Global Biogeochemical Cycles, vol.18, 2004.

S. A. Zimov, Climate Change : Permafrost and the Global Carbon Budget, Science, vol.312, pp.1612-1613, 2006.

D. Zona, B. Gioli, R. Commane, J. Lindaas, S. C. Wofsy et al., Cold season emissions dominate the Arctic tundra methane budget, Proceedings of the National Academy of Sciences, vol.113, pp.40-45, 2016.