, 67: a) Courbes de réexion -M2bis et données expérimentales, 2005.

, Interpolation des paramètres de courant à partir des données expérimentales de

, autres phénomènes de propagation, en trois dimensions notamment, et, pourquoi pas, en proposant cette nouvelle décomposition du potentiel à d'autres modèles océanographiques (météorologie, dimensionnement d'ouvrages

, Les humains sont d'éternels insatisfaits parce qu'ils ne savent pas être patients

T. Moi and . Vois, cahin-caha, en-deçà des philosophes qui frôlent la vérité sans jamais la saisir, des scientiques qui l'expliquent sans jamais la comprendre et en-deçà des artistes qui l'utilisent sans la connaître, je cherche la lumière au fond de ma tanière, Patricia Reining

, 1, sera rappelée, pour faciliter le suivi de l'évolution du prol de courant le long du fond ondulé. Pour avoir une idée assez précise de l'évolution du prol de courant, nous avons décidé de procéder comme suit: cinq prols verticaux par longueur d'onde de fond, sur une longueur d'onde sur deux à partir de la troisième (en partant de la plage). Nous avons donc successivement instrumenté la troisième longueur d'onde, puis la cinquième, la septième et la neuvième. Nous ferons donc référence aux zones de mesure selon les appellation M1L3, Cette annexe est destinée à présenter en détail les mesures de courant relevées sur le fond ondulé. Nous avons numéroté les portions de fond dans le sens du courant

, A.1 Mesures de la première portion de fond (M1L3)

L. Schéma, A.1) nous donne une vision globale des mesures eectuées sur cette portion de fond
URL : https://hal.archives-ouvertes.fr/hal-01645341

, Sur la gure (A.2), on peut observer l'évolution des prols de courant relevés en chaque position, avec et sans houle. Ayant été largement commentés dans le corps du manuscrit (3.31), ils ne sont insérés que pour faciliter la comparaison d'une portion de fond à l'autre. Pour faciliter l'analyse de ces prols -et car nous en avons extrait les vorticités expérimentales à la base des lois d'approximation -nous présentons sur la gure (A.3) les régressions linéaires associées aux prols de la gure (A.2), régressions établies sur les deux-tiers de la colonne d'eau. Nous avons d'ailleurs déjà discuté de ces résultats, On rappelle que le courant s'écoule de la droite vers la gauche alors que la houle se propage dans le sens inverse. Nous sommes sur la troisième longueur d'onde de fond que parcourt le courant, assez loin du bord pour ne plus se préoccuper d'éventuelles turbulences de bord

M. R. Alam, Y. Liu, and D. K. Yue, Chaotic internal wave mo-tion due to multiple Bragg resonances, 2008.

M. R. Alam, Y. Liu, and D. K. Yue, Bragg resonance of waves in a two-layer uid propagating over bottom ripples. Part I. Perturbation analysis, J. Fluid Mech, vol.624, pp.191-224, 2009.

M. R. Alam, Y. Liu, and D. K. Yue, Bragg resonance of waves in a two-layer uid propagating over bottom ripples. Part II. Numerical simulation, J. Fluid Mech, vol.624, pp.225-253, 2009.

M. R. Alam, Y. Liu, and D. K. Yue, Higher order resonant in-teraction of surface waves by undulatory bottom topography, Pro-ceeding of the ASME, 28th International conference on Ocean, Oshore and Artic Engineering, pp.2009-80069, 2009.

O. Andersen and H. Fredsoe, Transport of suspended sediment along the coast, Prog. rep, vol.59, pp.33-46, 1983.

W. Appeltans, The magnitude of global marine species diversity, Current Biology, vol.22, issue.23, pp.2189-2202, 2012.

F. Ardhuin and T. H. Herbers, Bragg scattering of random surface gravity waves by irregular seabed topography, J. Flid Mech, vol.451, pp.1-33, 2002.

R. S. Arthur, Refraction of waves by islands and shoals wth circular bottom contours, Trans. Amer. Geophys. Union, vol.27, issue.2, p.168, 1946.

S. F. Ashby, T. A. Manteuel, and P. E. Saylor, A taxonomy for Conjugate Gradient Methods, SIAM Journal on Numerical Analysis, vol.26, pp.1542-1568, 1990.

G. A. Athanassoulis and K. A. Belibassakis, A consistent coupled-mode theory for the propagation of small-amplitude water waves over variable bathymetry regions, J. Fluid Mech, vol.389, pp.275-301, 1999.

G. A. Athanassoulis and K. A. Belibassakis, A coupled-mode propagation / dissipation model of small amplitude water waves over variable bathymetry regions, J. Costal Engineering, p.99, 1999.

J. A. Bailard, J. W. Devries, and J. T. Kirby, Considerations in using Bragg reection for storm erosion protection, J. Waterway Port Coastal Ocean Engr, vol.118, pp.62-74, 1992.

W. D. Baines and E. G. Peterson, An investigation of ow through screens, Trans. ASME, vol.73, pp.467-480, 1951.

K. A. Belibassakis, G. A. Athanassoulis, and T. P. Gerostathis, A coupled-mode model for the refraction-diraction of linear waves over steep three-dimensional bathymetry, Applied Ocean Research, vol.23, pp.319-336, 2001.

K. A. Belibassakis, A coupled-mode model for the scattering of water waves by shearing currents in variable bathymetry, J. Fluid Mech, vol.578, pp.413-434, 2007.

K. A. Belibassakis and G. A. Athanassoulis, A coupled-mode system with application to nonlinear water waves propagating in nite water depth and in variable bathymetry regions, Coastal Engineering, vol.58, pp.337-350, 2011.

K. A. Belibassakis, B. Simon, J. Touboul, and V. Rey, A coupled-mode model for water wave scattering by vertically sheared currents in variable bathymetry regions, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01731087

K. A. Belibassakis, J. Touboul, E. Latte, and V. Rey, A mild-slope system for Bragg scattering of water waves by sinusoidal bathymetry in the presence of vertically sheared currents, Journal of Marine Science and Engineering (submitted), 2018.
URL : https://hal.archives-ouvertes.fr/hal-02007082

M. Belzons, V. Rey, and E. Guazzelli, Subharmonic Bragg resonance for surface water waves, EuroPhysics Letters, pp.16-18, 1991.

J. C. Berkho, Computation of combined refraction-diraction, proceeding for the 13th Intenational Conference on Coastal Engineering, 1972.

J. C. Berkho, Mathematical Models for simple harmonic linear water waves. Wave refraction and diraction, publ, vol.163, 1976.

J. C. Berkho, N. Booy, and A. C. Radder, A verication of numerical wave propagation models for simple harmonic linear water waves, Coastal Engineering, vol.6, issue.3, pp.255-279, 1982.

B. Boczar-karakiewicz and R. G. Davidson-arnott, Nearshore bar formation by nonlinear wave processes a comparison of model results and eld data, Marine Geoloy, vol.77, pp.287-304, 1987.

N. Booij, Gravity waves on water with non-uniform depth and current, 1981.

N. Booj, A note on the accuracy of the mild-slope equation, Coastal Engineering, vol.7, pp.191-203, 1983.

N. Booij, R. C. Ris, and L. H. Holthuijsen, A third-generation wave model for coastal regions: 1. Model description and validation, 1999.

R. Bonnelle, Cours d'hydrodynamique maritime, 1992.

J. Brossard and M. Chagdali, Experimental investigation of the harmonic generation by waves over a submerged plate, Costal Engineering, vol.42, pp.277-290, 2001.

I. P. Castro, Some problems concerning the production of a linear shear ow using curved wire-gauze screens, J. Fluid Mech, vol.76, pp.689-709, 1976.

M. Chagdali, S. Mordane, and K. L. Maoihi, Une formulation parabolique des équations de propagation des ondes de gravité en surface, VIèmes Journées Nationales Génie Civil-Génie Côtier, 2000.

P. G. Chamberlain and D. Porter, The modied mild-slope equation, J. Fluid Mech, vol.291, pp.3-407, 1995.

C. N. Chandrasekera and K. F. Cheung, Extended linear refraction-diraction model, J. Waterw. Port C, 1997.

J. Charland, Modélisation de la propagation de la houle en présence d'un courant inhomogène et au-dessus d'une topographie variable, 2014.

Y. Chen and R. T. Guza, Resonant scattering of edge waves by longshore periodic topography, J. Fluid Mech, vol.369, pp.91-123, 1998.

Y. S. Cho, J. I. Lee, and J. K. Lee, Bragg reection of shallow-water waves on a sloping beach, proceeding for the 25th international conference on Coastal Engineering, 1996.

Y. S. Cho and C. Lee, Resonant reection of waves over sinusoidally varying topography, J. Coastal Research, vol.16, issue.3, pp.870-876, 2000.

T. Chou, Band structure of surface exural-gravity waves along periodic interfaces, J. Fluid Mech, vol.369, pp.333-350, 1998.

S. L. Coelho, The production of uniformly sheared streams by means of double gauzes in wind tunnels: a mathematical analysis, Exp. Fluids: 8, pp.25-32, 1989.

A. Constantin, Stockes waves in water with a non-at bed, J. Fluid Mech, vol.740, pp.17-27, 2014.

A. Constantin and R. S. Jonhson, The dynamics of waves interacting with the Equatorial Undercurrent, Geophys. Astrophys. Fluid Dynamics, vol.109, 2015.

A. Constantin, Equatorial wave-current interactions, Summer School 'Waves in Flows', 2018.

S. Corrsin, Turbulence: experimental methods, Flugge S (ed) Encyclopedia of physics, pp.521-590, 1963.

R. A. Dalrymple, A nite amplitude wave on a linear shear current, Journal of Geophysical Research, vol.79, issue.30, pp.4498-4504, 1974.

A. G. Davies, The reection of water-wave energy by undulations on the seabed, Dynamics of Atmos. And Oceans, vol.6, pp.207-232, 1982.

A. G. Davies and A. D. Heathershaw, Surface wave propagation over sinusoidally varying topography, J. Fluid Mech, vol.144, pp.419-443, 1984.

M. E. Davies, The eects of turbulent shear ow on the critical Reynolds number of a circular cylinder, NPL Rep. Mar. Sci, vol.151, 1976.

T. Davis, Direct Methods for Sparse Linear Systems, 2006.

J. Dedieu, Points Fixes, Zéros et la Méthode de Newton, Mathématiques et Applications, vol.54, 2006.

P. Deuhard, Newton Methods for Nonlinear Problems, Ane invariance and adaptive algorithms, Springer Series In Computationnal Mathematics, vol.35, 2004.

P. Devillard, F. Dunlop, and B. Souillard, Localization of gravity waves on a channel with random bottom, J. Fluid Mech, vol.186, pp.521-538, 1988.

T. J. Dolan and R. G. Dean, Multiple longshore sand bars in the upper Chesapeake Bay, Estuarine Coastal Shelf Sci, vol.21, pp.727-743, 1985.

I. Du, A. Erisman, and J. Reid, Direct Methods for Sparse Matrices, 1986.

C. Dulou, V. Rey, and M. Belzons, Etude expérimentale de l'évolution spatio-temporelle du couplage onde-fond sédimentaire en zone de déferlement, VIièmes Journées Nationales génie Civil Génie Côtier, pp.17-19, 2000.

W. Dunn and S. Tavoularis, The use od curved screens for generating uniform shear at low Reynolds numbers, Exp Fluids, vol.42, pp.281-290, 2007.

K. Dysthe, Refraction of gravity waves by weak current gradients, J. Fluid mech, vol.442, pp.157-159, 2001.

J. W. Elder, Steady ow through nonuniform gauzes of arbitrary shape, J. Fluid Mech, vol.5, p.355, 1959.

S. Elgar, T. H. Herbers, and R. T. Guza, Reection of ocean surface gravity waves from a natural beach, J. Phys. Oceanolog, vol.24, pp.1503-1511, 1994.

S. Elgar, B. Raubenheimer, and T. H. Herbers, Bragg reection of ocean waves from sandbars, Geophysical research letters, vol.30, p.1016, 2003.

J. Erhel, Résolution itérative de systèmes linéaires, 2014.

J. Erhel and F. Guyomarc'h, An augmented conjugate gradient method for solving consecutive symmetric positive denite systems, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, p.1299, 2000.

D. Euvrard, M. Jami, M. Lenoir, and D. Martin, Recent progress towards an optimal coupling of nite elements and singularity distribution procedures in numerical ship hydrodynamics, Proceedings of 3rd International Conference on Numerical Ship Hydrodynamics Paris, pp.193-210, 1981.

D. V. Evans, The transmission of deep-water waves across a vortex sheet, J. Fluid Mech, vol.68, pp.389-401, 1975.

D. V. Evans and C. M. Linton, On step approximations for water-wave problems, J. Fluid Mech, vol.278, pp.229-249, 1994.

D. V. Evans, N. Kuznetsov, and J. N. Hunt, Gravity waves in water of nite depth, Comp. Mech. Int, pp.127-168, 1997.

O. F. Evans, The low and ball of the east shore of Lake Michigan, J. Geology, vol.48, pp.476-511, 1940.

V. Faber and T. Manteuel, Necessary and sucient conditions for the existence of a conjugate gradient methods, SIAM Journal on numerical anlysis, vol.21, pp.352-362, 1984.

G. F. Fitz-gerald, The reexion of plane gravity waves travelling in water of variable depth, Phil. trans. R. Soc. Lond. A, vol.284, pp.49-89, 1976.

G. F. Fitz-gerald and R. H. Grimshaw, A note on the uniqueness of small-amplitude water waves travelling in a region of varying depth, Mathematical Proceedings of the Cambridge Philosophical Society, pp.511-519, 1979.

T. Fossen and H. Nijmeijer, Parametric resonance in dynamical systems, 2011.

J. C. Gibbings, The pyramid gauze diuser, Ing. Arch, vol.42, pp.25-233, 1973.

Y. Goda and Y. Suzuki, Estimation of incident and reected waves in random wave experiments, Coastal Engineering, pp.828-845, 1976.

Y. Goda, Random Seas and design of Maritime Structures, Advances Series on Ocean Engineering, vol.33, 2000.

. Golub-&-van-loan, Matrix computations, 1996.

D. G. Goring and V. I. Nikora, Despiking acoustic doppler velocimeter data, Journal of Hydraulic Engineering, vol.128, pp.117-126, 2002.

F. Gouaud, Etude de l'évolution du trait de côte à long terme : modélisation physique et numérique, 2007.

J. Grue and E. Palm, Wave radiation and wave diraction from submerged body in a uniform current, J. Fluid Mech, vol.151, 1985.

B. Greenwood and P. D. Osborne, Vertical and horizontal structure in cross-shore ows: an exemple of undertow and wave set-up on a barred beach, Coastal Engineering, vol.14, issue.6, pp.543-580, 1990.

E. Guazzelli, V. Rey, and M. Belzons, Higher-order Bragg reection of gravity surface waves by periodic beds, J. Fluid Mech, vol.245, pp.301-317, 1992.

K. A. Haas and I. A. Svendsen, Laboratory measurements of the vertical structure of rip currents, Journal of Geophysical Research: Oceans, vol.107, issue.C5, 2002.

M. Hached, Methodes de sous-espaces de Krylov matriciels appliquées aux équations aux dérivées partielles, Mathématiques générales, 2012.

T. Hara and C. C. Mei, Bragg scattering of surface waves by periodic bars: theory and experiment, J. Fluid Mech, vol.178, pp.221-241, 1987.

G. H. Hardy and W. W. Rogosinski, Cambridge Tracts in Mathematics and Mathematical Physics, issue.38, 1944.

A. D. Heathershaw, Seabed-wave resonance and sand bar growth, Nature, vol.296, pp.343-345, 1982.

. Horikawa, Nearshore Dynamics and Coastal Processes, Tokyo pess, 1988.

, List of sea-state parameters, Journal of Waterway, Port, Coasral and Ocean Engineering, vol.115, issue.6, pp.793-808, 1989.

A. F. Izmailov and M. V. Solodov, -Type Methods for optimization and variational problems, Springer Series in Operations research and Financial Engineering, 2014.

N. Jarry, V. Rey, F. Gouaud, and D. Lajoie, Gravity wave amplication and phase crest re-organization over a shoal, Nat. Hazards Earth Syst. Sci, vol.11, pp.789-796, 2011.

W. D. Joubert and T. A. Manteuel, Iterative Methods for Nonsymmetric Linear Systems, vol.10, pp.149-171, 1990.

I. G. Jonsson and O. Skovgaard, Wave refraction across a shearing current, 1978.

I. G. Jonsson and J. B. Christoersen, Current depth refraction of regular waves, Coastal Engineering, 1978.

I. G. Jonsson, Wave-current interactions, vol.9, pp.65-120, 1990.

U. Karnik and S. Tavoularis, Generation and manipulation of uniform shear with the use of screens, Exp. Fluids, vol.5, pp.247-254

J. W. Kim and K. J. Bai, A new complementary Mild-slope equation, J. Fluid Mech, vol.511, pp.25-40, 2004.

S. D. Kim and H. J. Lee, Diraction analysis by gap type breakwater using polynomial approximation for Fresnel integral, Eur. J. Scientic Research, vol.37, issue.1, pp.80-88, 2009.

S. D. Kim, The analysis of long wave diractions due to oshore breakwater and seawell, Scientic research and essays, vol.5, issue.4, pp.378-388, 2010.

J. T. Kirby, A note on linear surface wave-current interaction over slowly varying topography, J. Geophys. Res, vol.89, pp.745-747, 1984.

J. T. Kirby, A general wave equation for waves over rippled beds, J. Fluid Mech, vol.162, pp.171-186, 1986.

J. T. Kirby, Higher-order approximations in parabolic equation method for water-waves, Journal of Geophysical research, vol.91, pp.933-952, 1986.

J. T. Kirby, Current eects on resonant reection of surface water waves by sand bars, J. Fluid Mech, vol.186, pp.501-520, 1988.

J. T. Kirby and T. M. Chen, Surface waves on vertically sheared ows: approximate dispersion relations, Journal of Geophysical Research: Oceans, vol.94, issue.C1, pp.1013-1027, 1989.

J. T. Kirby and R. A. Dalrymple, Combined Refraction/Diraction Model: documentation and User's manuel

J. T. Kirby and R. A. Dalrymple, A parabolic equation for the combined refractiondiraction of Stokes waves by mildly varying topography, J. Fluid Mech, vol.136, pp.453-466, 1983.

J. T. Kirby, A note on parabolic radiation boundary conditions for elliptic wave calculations, vol.13, pp.211-218, 1989.

M. Kiya, H. Tamura, and M. Arie, Vortex shedding from a circular cylinder in a moderate Reynolds number shear ow, J. Fluid Mech, vol.141, p.721, 1980.

P. D. Komar, Beach Processes and sedimentation, 1998.

D. R. Kotansky, The use of honeycomb for shear ow generation, p.1490, 1966.

N. Kuznetsov, Trapped modes of internal waves in a channel spanned by a submerged cylinder, J. of Fluid Mech, 1993.

Y. L. Lau and W. D. Baines, Flow of stratied uid through curved screens, J. Fluid Mech, vol.33, pp.721-738, 1968.

I. V. Lavrenov and A. V. Porubov, Three reasons for freak wave generation in the non-uniform current, European Journal of Mechanics-B/Fluids, vol.25, issue.5, pp.574-585, 2006.

E. M. Laws and J. L. Livesey, Flow through screens, Ann. Rev. Fluid Mech, vol.10, p.247, 1978.

P. L. Liu and T. K. Tsay, On weak reection of water waves, J. Fluid Mech, vol.131, pp.59-71, 1983.

P. L. Liu and . -f.-;-p.-l.-f, Resonant reection of water waves in a long channel with corrugated boundaries, J of Geophysical Research: Oceans, vol.88, issue.C7, pp.371-381, 1983.

P. L. Liu and Y. S. Cho, Bragg reection of infragravity waves by sandbards, Journal of Geophysical Research: Oceans, vol.98, issue.C2, pp.22733-22741, 1993.

Y. Liu and D. K. Yue, On generalized Bragg scattering of surface waves by bottom ripples, J. Fluid Mech, vol.356, pp.297-326, 1998.

J. L. Livesey and J. T. Turner, The generation of symmetrical duct velocity proles of high uniform shear, J. Fluid Mech, vol.20, 1964.

M. S. Longuet-higgins and R. W. Stewart, The changes in amplitude of short gravity waves on steady non-uniform currents, J. Fluid Mech, vol.10, issue.4, pp.529-549, 1961.

J. C. Luke, A variational princple for a uid with a free surface, J. Fluid Mech, vol.27, issue.2, pp.395-397, 1967.

R. D. Maciver, R. R. Simons, and G. P. Thomas, Gravity waves interacting with a narrow jet-like current, Journal of Geophysical Research: Oceans, issue.111, 2006.

R. Magne, V. Rey, and F. Ardhuin, Measurement of wave scattering by topography in presence of current, Physic of Fluid, vol.17, pp.126-601, 2005.

R. Magne, K. A. Belibassakis, T. H. Herbers, F. Ardhuin, W. C. O'reilly et al.,

. Rey, Evolution of surface gravity waves over a submarine canyon, Journal of Geophysical Research: Oceans, vol.112, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00089326

W. A. Mair and P. K. Stansby, Vortex wakes of blu cylinders in shear ow, SIAM J. Appl. Maths, vol.28, p.519, 1975.

S. R. Massel, Hydrodynamics of Coastal zones Elsevier oceanography seris, 48k, 1989.

S. R. Massel, Extended refraction-diraction equation for surface waves, J. Coastal Engineering, pp.97-126, 1993.

D. J. Maull, The wake characteristics of a blu body in shear ow, AGARD Conf. Proc. 48, 1968.

D. J. Maull and R. A. Young, Vortex shedding from blu bodies in a shear ow, J. Fluid Mech, vol.60, p.401, 1973.

R. Mayençon and P. Y. Pavec, Météorologie marine. Editions maritimes & d'outremer, 1992.

C. C. Mei, Numerical Methods in Water-Wave Diraction and Radiation, Annual review of Fluid Mechanics, vol.10, pp.393-416, 1978.

C. C. Mei, The applied dynamics of ocean waves, 1983.

C. C. Mei, Resonant reection of surface waves by periodic sand-bars, J. Fluid Mech, vol.152, pp.315-335, 1985.

C. C. Mei, The applied Dynamics of Ocean Surface Waves, 1989.

C. C. Mei, P. Sammarco, E. S. Chan, and C. Procaccini, Subharmonic resonance of proposed storm gates for Venice lagoon, Proc. R. Soc. Lond. A, vol.444, pp.257-265, 1920.

C. C. Mei, Multiplee scattering by an extended region of inhomogeneities, Wave Propagation, Fall, 2004.

C. Mei, M. Stiassnie, and D. K. Yue, Theory and applications of ocean surface waves : Part II : nonlinear aspects, Advanced Series on Ocean Engineering, vol.23, 2005.

G. Meurant, Computer solution of large linear systems, 1999.

M. Miche, Le pouvoir rééchissant des ouvrages maritimes exposés à l'action de la houle, vol.121, pp.285-319, 1951.

J. W. Miles and P. G. Chamberlain, Topographical scattering of gravity waves, J. Fluid Mech, vol.361, pp.175-188, 1998.

A. Mitra and M. D. Greenberg, Slow Interactions of Gravity Waves and a corrugated sea bed, J. Applied Mech, vol.51, issue.2, 1984.

L. Moore, C. Sullivan, and D. Aubrey, Interannual evolution of multiple longshore sand bars in a mesotidal environment, Marine Ge-ology, 2002.

S. Mordane, G. Mangoub, K. L. Maroihi, and M. Chagdali, A parabolic equation based on rational quadratic approximation for surface gravity wave propagation, Coastal Engineering, vol.50, pp.85-95, 2004.

O. G. Nwogu, Interaction of nite-amplitude waves with vertically sheared current elds, J. Fluid Mech, vol.627, pp.179-213, 2009.

D. W. Ostendorf and O. S. Madsen, An analysis of longshore currents and associated sediment transport in the surf zone, Ralph M. Parsons Laboratory for Water Resources and Hydrodynamics, 1979.

P. R. Owen and K. H. Zienkiewicz, The production of uniform shear ow in a wind tunnel, J. Fluid Mech, vol.2, p.521, 1957.

V. Panchang, B. R. Pearce, G. Wei, and B. Cushman-roisin, Solution of the mild-slope wave problem by iteration, Applied Ocean Research, vol.13, issue.4, 1999.

M. Patarapanich, Maximum and zero reection from submerged plate, J. Waterw. Port C.-ASCE, vol.110, issue.2, pp.171-181, 1984.

D. Pauly and D. Zeller, Catch reconstructions reveal that global marine sheries catches are higher than reported and declining, Nature Communications, vol.7, p.10244, 2016.

L. Pengzhi, Numerical Modeling of water waves, 3.9, vol.4, 2008.

W. G. Penney and A. T. Price, The diraction theory of sea waves and the shelter aorded by breakwaters, Phil. Trans. Roy. Soc. London, vol.224, pp.263-253, 1952.

D. H. Peregrine, Equations for water waves and the approximation behind them, Proceedings of the advanced seminar conducted by the Mathemathical Research Center, pp.11-13, 1971.

D. H. Peregrine, Interaction of water waves and currents, Advances in applied mechanics, vol.16, pp.9-117, 1976.

D. Porter and D. J. Staziker, Extension of the mild-slope equation, J. Fluid Mech, vol.300, pp.367-382, 1995.

D. Porter and P. G. Chamberlain, Linear wave scattering by two-dimensional topography, International series on advances in uid mechanics, vol.10, pp.13-54, 1997.

U. Putrevu and I. A. Svendsen, Vertical structure of the undertow outside the surf zone, Journal of Geophysical Research: Oceans, vol.98, issue.C12, pp.22707-22716, 1993.

A. M. Quarteroni, R. Sacco, and F. Saleri, Méthodes numériques : algorithmes, analyse et applications, 2008.

A. C. Radder, On the parabolic equation method for water-wave propagation, J. Fluid Mech, vol.1, pp.159-176, 1979.

V. Rey, Propagation d'ondes de gravité au-dessus de fonds solides ou constitués de sédiments, : application à l'étude d'intéractions dynamiques ondes-sédiments, 1991.

V. Rey, Propagation and local behaviour of normally incident gravity waves over varying topography, Eur. J. Mech. B : Fluids, vol.11, p.213, 1992.

V. Rey, M. Belzons, and E. Guazzelli, Propagation of surface gravity waves over a rectangular submerged bar, J. Fluid Mech, vol.235, pp.453-479, 1992.

V. Rey, A note on the scattering of obliquely incident surface gravity waves by cylindrical obstacles in waters of nite depth, Eur. J. Mech. B-Fluid, vol.14, issue.1, pp.207-216, 1995.

V. Rey, E. Guazzelli, and C. C. Mei, Resonant reection of surface gravity waves by one-dimensional doubly sinusoidal beds, Physics of Fluids, vol.8, issue.6, 1996.

V. Rey, R. Capobianco, and C. Dulou, Wave scattering by a submerged plate in presence of steady uniform current, Coastal Engineering, vol.47, pp.27-34, 2002.

V. Rey and J. Touboul, Forces and moment on a horizontal plate due to regular and irregular waves in the presence of current, Applied Ocean Research, vol.33, issue.2, pp.88-99, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743609

V. Rey, J. Charland, and J. Touboul, Wave-current interaction in the presence of a three-dimensional bathymetry: Deep water wave focusing in opposing current conditions, Physics of Fluids, vol.26, p.96601, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01203303

L. Risser, Dierences nies pour la résolution numérique des équations de la mécanique des uides, 2006.

Y. Saad, Practical use of polynomial preconditionning for the conjugate gradient method, SIAM J. Sci. Stat. Comput, vol.6, issue.4, pp.865-881, 1985.

Y. Saad and H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput, vol.7, pp.856-869, 1986.

Y. Saad, Iterative Methods for Sparse Linear Systems, pp.103-128, 2003.

F. Schreiber, Etude de l'intéraction entre la houle et un courant cisaillé, analyse de données de courant, 2016.

V. I. Shrira, Surface waves on shear currents: solution of the boundary-value problem, J. Fluid Mech, vol.252, pp.565-584, 1993.

J. Shyu and C. Tung, Reection of oblique waves by currents : analytical solutions and their application to numerical computations, J. Fluid Mech, vol.396, pp.143-182, 1999.

B. Simon, Wave-current interaction, experiments with uniform shear, 2016.

M. J. Simon and F. Ursell, Uniqueness in linearized two-dimensional water-wave problems, J. Fluid Mech, 1984.

R. A. Skop, Approximate dispersion relation for wave-current interactions, Journal of Waterway, Port, Coastal, and Ocean Engineering, vol.113, issue.2, pp.187-195, 1987.

O. Skovgaard, I. G. Jonsson, and J. A. Bertelsen, Computation of wave heights due to refraction and friction, J. Waterways, Harbors and Coastal Eng, vol.101, pp.15-32, 1975.

A. Van-der-sluis, H. Van-der, and . Vorst, The rate of convergence of conjugate gradients, Numerische Mathematik, vol.48, pp.543-560, 1986.

R. Smith, Giant waves, J. Fluid Mech, vol.77, issue.3, pp.417-431, 1976.

J. A. Smith, Estimating the upper tail of ood frequency distributions, Water Resources Research, vol.23, issue.8, pp.1657-1666, 1987.

J. A. Smith, Observations and theories of Langmuir circulation: a story of mixing, Fluid mechanics and the Environment: Dynamical Approaches, pp.295-314, 2001.

C. G. Soares and F. L. Pena, Developments in Maritime Transportation and exploitation of sea Resources, IMAM 2013, 2013.

R. L. Soulsby and J. D. Humphery, Field Observations of Wave-current Interaction at the Sea Bed, Water Wave Kinematics. NATO ASI Series (E: Applied Sciences), vol.178, 1990.

J. J. Stamnes, O. Lovhaugen, B. Spjelkavik, C. C. Mei, E. Lo et al., Nonlinear focusing of surface waves by a lens-theory and experiment, J. Fluid Mech, vol.135, pp.71-94, 1983.

P. K. Stansby, The locking-on of vortex shedding due to the cross-stream vibration of circular cylinders in uniform and shear ows, J. Fluid Mech, vol.74, p.641, 1976.

R. H. Stewart and J. W. Joy, HF Radio measurements of surface currents, Deep Sea Research and oceanographic abstracts, pp.1039-1049, 1974.

D. C. Stillinger, M. J. Head, K. N. Helland, and C. W. Van-atta, A closed loop gravitydriven water channel for density-stratied shear ows, J. Fluid Mech, vol.131, pp.73-89, 1983.

K. D. Suh, C. Lee, and W. S. Park, Time-dependant equations for wave propagation on rapidly varying topography, Coastal Engineering, vol.32, pp.91-117, 1997.

K. G. Suh, W. S. Park, and B. S. Park, Separation of incident and reected waves in wave-current umes, Coastal Engineering, pp.149-159, 2001.

C. Swan, I. P. Cummins, and R. L. James, An experimental study of two-dimensional surface water waves propagating on depth-varying currents. paart 1. Regular waves, J. Fluid Mech, vol.428, pp.273-304, 2001.

K. Takano, Eets d'un obstacle parallélépipédique sur la propagation de la houle, vol.15, pp.247-267, 1960.

S. Tavoularis, Measurement in uid mechanics, 2005.

G. P. Thomas and G. Klopman, Wave-current interaction in the nearshore region, Gravity waves in Water of Finite Depth, vol.10, pp.215-319, 1997.

P. D. Thompson, The propagation of small surface disturbances through rotational ow, Annals of the New York Academy of Sciences, vol.51, pp.463-474, 1949.

E. Tobisch, New approaches to nonlinear waves, 3, 2015.

H. L. Tolman, User manual and system documentation of Waewatch III version 3.14, tech. note 276, 2009.

J. Touboul, J. Charland, V. Rey, and K. Belibassakis, Extended mild-slope equation for surface waves interacting with a vertically sheared current, J. Coastal Engineering, vol.116, pp.77-88, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409788

L. H. Tsai, T. W. Hsu, and S. K. Wang, Bragg scattering of water waves by multiple compositions of articial bars, 2008.

J. T. Turner, A computational method for the ow through non-uniform gauzes : the general two dimensional case, J. Fluid Mech, vol.36, p.367, 1969.

G. Vahl-davis and . De, Steady non uniform ow through wire screens, PhD Dissertation, 1957.

B. R. Vainberg and V. G. , Maz'ja, On the problem of the steady state oscillations of a uid layer of variable depth, Trans. Moscow Math. Soc, vol.28, pp.56-73, 1973.

H. A. Van-der-vorst, Iterative Krylov methods for large linear systems, vol.13, 2003.

H. A. Van-der-vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM journal on scientic and statistical computing, vol.13, pp.631-644, 1992.

R. S. Varga, Matrix Iterative Analysis, 1962.

C. L. Vincent and M. J. Briggs, Refraction-diraction of irregular waves over a mound, J. Waterw. Div.-ASCE, vol.115, pp.269-284, 1989.

T. Wahl, Discussions and closures of despiking acoustic doppler velocimeter data, Journal of Hydraulic Engineering, vol.128, pp.117-126, 2002.

S. K. Wang, T. W. Hsu, L. H. Tsai, and S. H. Chen, An application of Mile's Theory to Bragg scattering of water waves by doubly composite articial bars, Ocean Eng, vol.33, issue.3-4, pp.331-349, 2006.

G. B. Whitham, Two-timing, variational principles and waves, J. Fluid Mech, vol.44, issue.2, pp.373-395, 1970.

G. B. Whitham, Dispersive waves and variational principles, Nonlinear waves, pp.139-169, 1974.

H. G. Woo and J. E. Cermak, The production of constant-shear ow, J. Fluid, Mech, vol.234, pp.279-296, 1992.

D. Xu, S. Liao, and Z. Lin, Equilibrium states of class-I Bragg resonant wave system, European Journal of Mechanics B/Fluids, vol.50, pp.38-51, 2014.

R. W. Yeung, Numerical methods in free-surface ows, Annual Review of Fluid Mechanics, vol.14, issue.1, pp.395-442, 1982.

S. B. Yoon and P. L. Liu, Resonant reection of shallow-water waves due to corrugated boundaries, J. Fluid Mech, vol.180, pp.451-469, 1987.

T. J. Ypma, Historical development of the Newton-Raphson method, SIAM Review, vol.37, pp.531-551, 1995.

J. Yu and C. C. Mei, Do longshore bars shelter the shore?, J. Flu-id Mech, vol.404, pp.251-268, 2000.

J. Yu and C. C. Mei, Formation of sand bards under surface waves, J. Fluid Mech, vol.416, pp.315-348, 2000.

L. Zhang, M. H. Kim, J. Zhang, and B. L. Edge, Hybrid model for Bragg scattering of water waves by steep doubly-sinusoidal bars, Journal of Coastal Research, vol.15, issue.2, pp.486-495