G. Caprino, I. Visconti, and A. D. Ilio, Composite Materials Response Under Low-Velocity Impact, Composite Structures, vol.2, pp.261-271, 1984.

C. Atas and O. Sayman, An overall view on impact response of woven fabric composite plates, Composite Structures, vol.82, issue.3, pp.336-345, 2008.

G. Kinvi-dossou, R. Boumbimba, N. Bonfoh, Y. Koutsawa, D. Eccli et al., A numerical homogenization of E-glass / acrylic woven composite laminates : Application to low velocity impact, Composite Structures, vol.200, pp.540-554, 2018.

Z. Boufaida, J. Boisse, S. André, and L. Farge, Mesoscopic strain field analysis in a woven composite using a spectral solver and 3D-DIC measurements, Composite Structures, vol.160, pp.604-612, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01943695

L. M. Halary and F. Laupretre, Mécanique des matériaux polymères, 2008.

J. Richeton, S. Ahzi, K. Vecchio, F. Jiang, and R. Adharapurapu, Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress, International Journal of Solids and Structures, vol.43, issue.7-8, pp.2318-2335, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00096988

B. Vieille, J. Aucher, and L. Taleb, Influence of temperature on the behavior of carbon fiber fabrics reinforced PPS laminates, Materials Science and Engineering: A, vol.517, issue.1-2, pp.51-60, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02133227

B. Vieille and L. Taleb, About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and unnotched laminates, Composites Science and Technology, vol.71, issue.7, pp.998-1007, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743445

A. Hassan and B. Haworth, Impact properties of acrylate rubber-modified PVC: Influence of temperature, Journal of Materials Processing Technology, vol.172, issue.3, pp.341-345, 2006.

H. Zabala, L. Aretxabaleta, G. Castillo, and J. Aurrekoetxea, Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites, Composite Structures, vol.121, pp.75-82, 2015.

G. Jacob, J. Starbuck, J. Fellers, S. Simunovic, and R. Boeman, Strain rate effects on the mechanical properties of polymer composite materials, Journal of Applied Polymer Science, vol.94, issue.1, pp.296-301, 2004.

C. A. Sciammarella and A. , Response of Glass-fiber-reinforced Epoxy Specimens to High Rates of Tensile Loading, Experimental Mechanics, pp.433-440, 1973.

G. Staab and A. Gilat, High strain rate response of angle-ply glass/epoxy laminates, Journal of Composite Materials, vol.29, issue.10, pp.1308-1321, 1995.

Z. Boufaida, L. Farge, S. André, and Y. Meshaka, Influence of the fiber / matrix strength on the mechanical properties of a glass fiber / thermoplastic-matrix plain weave fabric composite, Composites Part A: Applied Science and Manufacturing, vol.75, pp.28-38, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01297302

V. Bolotin, Delaminations in composite structures: its origin, buckling, growth and stability, vol.27, pp.129-145, 1996.

V. Bolotin, Mechanics of delamination in laminate composite structures, Mechanics of Composite Materials, vol.37, pp.367-380, 2001.

T. Tay and F. Shen, Analysis of Delamination Growth in Laminated Composites with Consideration for Residual Thermal Stress Effects, Journal of Composite Materials, vol.36, issue.11, pp.1299-1320, 2002.

J. B. Kopp, J. Schmittbuhl, O. Noel, J. Lin, and C. Fond, Fluctuations of the dynamic fracture energy values related to the amount of created fracture surface, Engineering Fracture Mechanics, vol.126, pp.178-189, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02323449

J. B. Kopp, J. Schmittbuhl, O. Noel, and C. Fond, A self-affine geometrical model of dynamic RT-PMMA fractures: implications for fracture energy measurements, International Journal of Fracture, vol.193, issue.2, pp.141-152, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165645

M. T. Dehkordi, H. Nosraty, M. M. Shokrieh, G. Minak, and D. Ghelli, Low velocity impact properties of intra-ply hybrid composites based on basalt and nylon woven fabrics, Materials and Design, vol.31, issue.8, pp.3835-3844, 2010.

A. K. Bandaru, S. Patel, S. Ahmad, and N. Bhatnagar, An experimental and numerical investigation on the low velocity impact response of thermoplastic hybrid composites, Journal of Composite Materials, vol.0, issue.0, pp.1-13, 2017.

R. Boumbimba, M. Coulibaly, A. Khabouchi, G. Kinvi-dossou, N. Bonfoh et al., Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites : Low velocity impact response at various temperatures, Composite Structures, vol.160, pp.939-951, 2016.

, ASTM D 5628-96. Stand Test Method for Impact Resistance of Flat Rigid Plastic Specimens by Means of a Falling Dart, Tup or Falling Mass)

L. Ballère, P. Viot, L. Guillaumat, and S. Cloutet, Damage tolerance of impacted curved panels L, International Journal of Impact Engineering, vol.36, pp.243-253, 2009.

L. Guillaumat, F. Baudou, A. M. De-azevedo, and J. L. Lataillade, Contribution of the experimental designs for a probabilistic dimensioning of impacted composites, International Journal of Impact Engineering, vol.31, issue.6, pp.629-641, 2005.

M. Akta, C. Atas, B. Iten, and R. Karakuzu, An experimental investigation of the impact response of composite laminates, Composite Structures, vol.87, issue.4, pp.307-313, 2009.

D. Doelhert, Uniform shell designs, Applied Statistics, vol.19, issue.3, pp.231-239, 1970.

D. Doelhert and V. Klee, Experimental designs through level reduction of the d-dimensional cuboctahedron, Discrete Math, vol.2, pp.309-334, 1972.

D. Varas, J. Artero-guerrero, J. Pernas-snchez, and J. Lpez-puente, Experimental study of the impactor mass effect on the low velocity impact of carbon/epoxy woven laminates, Composite Structures, vol.133, pp.774-781, 2015.

B. M. Icten, Low temperature effect on single and repeated impact behavior of woven glassepoxy composite plates, Journal of Composite Materials, vol.0, issue.0, pp.1-8, 2014.

G. Caprino, L. Carrino, M. Durante, A. Langella, and V. Lopresto, Low impact behaviour of hemp fibre reinforced epoxy composites, Composite Structures, vol.133, pp.892-901, 2015.

T. Shyr and Y. Pan, Impact resistance and damage characteristics of composite laminates, Composite Structures, vol.62, issue.2, pp.193-203, 2003.

G. Belingardi and R. Vadori, Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates, International Journal of Impact Engineering, vol.27, issue.2, pp.213-229, 2002.

H. Rolland, N. Saintier, and G. Robert, Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests, Composites Part B: Engineering, vol.90, pp.365-377, 2016.

H. Rolland, N. Saintier, P. Wilson, J. Merzeau, and G. Robert, In situ x-ray tomography investigation on damage mechanisms in short glass fibre reinforced thermoplastics: Effects of fibre orientation and relative humidity, Composites Part B: Engineering, vol.109, pp.170-186, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02353859

I. Raphael, N. Saintier, H. Rolland, G. Robert, and L. Laiarinandrasana, A mixed strain rate and energy based fatigue criterion for short fiber reinforced thermoplastics, vol.127, pp.131-143, 2019.

E. Boissin, Etude de l'endommagement et de la tenue en fatigue d'un matériau composite à matrice acrylique et fibres de verre, 2019.

E. Abi-abdallah, C. Bouvet, S. Rivallant, B. Broll, and J. Barrau, Experimental analysis of damage creation and permanent indentation on highly oriented plates, Composites Science and Technology, vol.69, issue.7-8, pp.1238-1245, 2009.

N. Hongkarnjanakul, S. Bouvet, and . Rivallant, Validation of low velocity impact modelling on different stacking sequences of CFRP laminates and influence of fibre failure, Composite Structures, vol.106, pp.549-559, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00858522

M. Bulut, A. Erklig, and E. Yeter, Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates, Composites Part B, 2016.

L. Sorrentino, . Sarasini, . Tirillò, . Touchard, P. Mellier et al., Damage tolerance assessment of the interface strength gradation in thermoplastic composites, Composites Part B, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02336918

G. Caprino, I. C. Visconti, and A. D. Ilio, Composite Materials Response Under Low-Velocity Impact, Composite Structures, vol.2, pp.261-271, 1984.

L. Cadieu, J. B. Kopp, J. Jumel, J. Bega, and C. Froustey, Strain rate effect on the mechanical properties of a glass fibre reinforced acrylic matrix laminate. an experimental approach, Composite Structures, vol.223, p.110952, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02356380

L. Monnerie, J. L. Halary, and F. Laupretre, Mécanique des matériaux polymères, 2008.

G. C. Jacob, J. M. Starbuck, J. F. Fellers, S. Simunovic, and R. G. Boeman, Strain rate effects on the mechanical properties of polymer composite materials, Journal of Applied Polymer Science, vol.94, issue.1, pp.296-301, 2004.

A. Hassan and B. Haworth, Impact properties of acrylate rubber-modified PVC: Influence of temperature, Journal of Materials Processing Technology, vol.172, issue.3, pp.341-345, 2006.

H. Zabala, L. Aretxabaleta, G. Castillo, and J. Aurrekoetxea, Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites, Composite Structures, vol.121, pp.75-82, 2015.

J. Richeton, S. Ahzi, K. S. Vecchio, F. C. Jiang, and R. R. Adharapurapu, Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress, International Journal of Solids and Structures, vol.43, issue.7-8, pp.2318-2335, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00096988

B. William-albouy, L. Vieille, and . Taleb, Composites : Part A Experimental and numerical investigations on the time-dependent behavior of woven-ply PPS thermoplastic laminates at temperatures higher than glass transition temperature, Composites Part A, vol.49, pp.165-178, 2013.

B. Vieille, J. Aucher, and L. Taleb, Influence of temperature on the behavior of carbon fiber fabrics reinforced PPS laminates, Materials Science and Engineering: A, vol.517, issue.1-2, pp.51-60, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02133227

B. Vieille and L. Taleb, About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and unnotched laminates, Composites Science and Technology, vol.71, issue.7, pp.998-1007, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743445

J. Weng, W. Wen, and H. Zhang, Study on low-velocity impact and residual strength at high temperatures of composite laminates, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol.223, issue.3, pp.1071-1088, 2019.

W. Zhao, Mode I Delamination Fracture Characterization of Polymeric Composites under Elevated Temperature, Mechanical And Aerospace Engineering -Dissertations, 2011.

B. P. Jang, C. T. Huang, C. Y. Hsieh, W. Kowbel, and B. Z. Jang, Repeated impact failure of continuous fiber reinforced thermoplastic and thermoset composite, Journal of Composite Materials, vol.25, pp.1171-1203, 1991.

G. A. Bibo and P. J. Hogg, The role of reinforcement architecture on impact damage mechanisms and post-impact compression behaviour, Journal of Materials Science, vol.31, issue.5, pp.1115-1137, 1996.

C. Atas and O. Sayman, An overall view on impact response of woven fabric composite plates, Composite Structures, vol.82, issue.3, pp.336-345, 2008.

B. Vieille, C. V-m-casado, and . Bouvet, About the impact behavior of woven-ply carbon fiberreinforced thermoplastic-and thermosetting-composites : A comparative study, Composite Structures, vol.101, pp.9-21, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00859872

G. Kinvi-dossou, M. Boumbimba, N. Bonfoh, Y. Koutsawa, P. Eccli et al., A numerical homogenization of E-glass / acrylic woven composite laminates : Application to low velocity impact, Composite Structures, vol.200, pp.540-554, 2018.

Z. Boufaida, J. Boisse, S. André, and L. Farge, Mesoscopic strain field analysis in a woven composite using a spectral solver and 3D-DIC measurements, Composite Structures, vol.160, pp.604-612, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01943695

Y. Hirai, H. Hamada, and J. Kim, Impact response of woven glass-fabric composites-II. Effect of Temperature, Composites Science and Technology, vol.58, issue.1, pp.119-128, 1998.

T. Shyr and Y. Pan, Impact resistance and damage characteristics of composite laminates, Composite Structures, vol.62, issue.2, pp.193-203, 2003.

T. Gómez-del-río, R. Zaera, E. Barbero, and C. Navarro, Damage in CFRPs due to low velocity impact at low temperature, Composites Part B: Engineering, vol.36, issue.1, pp.41-50, 2005.

A. Salehi-khojin, R. Bashirzadeh, M. Mahinfalah, and R. , The role of temperature on impact properties of Kevlar/fiberglass composite laminates, Composites Part B: Engineering, vol.37, pp.593-602, 2006.

S. I. Ibekwe, P. F. Mensah, and G. Li, Su Seng Pang, and Michael A. Stubblefield. Impact and post impact response of laminated beams at low temperatures, Composite Structures, vol.79, issue.1, pp.12-17, 2007.

M. Aktas, R. Karakuzu, and B. Murat-icten, Impact Behavior of Glass/Epoxy Laminated Composite Plates at High Temperatures, Journal of Composite Materials, vol.44, issue.19, pp.2289-2300, 2010.

R. Boominathan, C. Arumugam, . Santulli, . Adhithya-plato, A. Sidharth et al., Acoustic emission characterization of the temperature effect on falling weight impact damage in carbon/epoxy laminates, Composites Part B, vol.56, pp.591-598, 2014.

. Bulent-murat-icten, Low temperature effect on single and repeated impact behavior of woven glass-epoxy composite plates, Journal of Composite Materials, vol.49, issue.10, pp.1171-1178, 2014.

D. Garcia-gonzales, M. Rodriguez-milan, A. Rusinek, and A. Arias, Low temperature effect on impact energy absorption capability of PEEK composites, Composite Structures, vol.134, pp.440-449, 2015.

L. Sorrentino, D. Vasconcellos, M. Auria, F. Sarasini, and J. Tirillò, Effect of temperature on static and low velocity impact properties of thermoplastic composites, Composites Part B: Engineering, vol.113, pp.100-110, 2017.

Y. Wang, J. Zhang, G. Fang, J. Zhang, Z. Zhou et al., Influence of temperature on the impact behavior of woven-ply carbon fiber reinforced thermoplastic composites, Composite Structures, pp.435-445, 2017.

B. Alcock, N. Cabrera, Z. Wang, and T. Peijs, The effect of temperature and strain rate on the impact performance of recyclable all-polypropylene composites, Composite Part B: engineering, vol.39, pp.537-547, 2008.

M. R-matadi-boumbimba, . Coulibaly, . Khabouchi, P. Bonfoh, and . Gerard, Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures. Composite Structures, 2016.

M. Karasek, L. Strait, M. Amateau, and J. Runt, Effect of temperature and moisture on the impact behavior of graphite/epoxy composites: Part ii-impact damage, Technology and Research, vol.17, issue.1, pp.11-16, 1995.

, ASTM D 5628-96. Stand Test Method for Impact Resistance of Flat Rigid Plastic Specimens by Means of a Falling Dart, Tup or Falling Mass)

J. N. Baucom and M. A. Zikry, Evolution of failure mechanisms in 2d and 3d woven composite systems under quasi-static perforation, Journal of Composite Materials, vol.37, issue.18, pp.1651-1674, 2003.

G. Caprino, L. Carrino, M. Durante, A. Langella, and V. Lopresto, Low impact behaviour of hemp fibre reinforced epoxy composites, Composite Structures, vol.133, pp.892-901, 2015.

D. Purslow, Matrix fractography of fibre-reinforced epoxy composites, Composites, vol.17, issue.4, pp.289-303, 1986.

C. Chau and J. C. Li, Fracture of shear bands in static polystyrene, Journal of Material Science, vol.16, p.1858, 1981.

E. S. Greenhalgh, C. Rogers, and P. Robinson, Fractographic observations on delamination growth and the subsequent migration through the laminate, Composites Science and Technology, vol.69, issue.14, pp.2345-2351, 2009.

R. J. Gaymans, M. J. Hamberg, and J. P. Inberg, The Brittle-Ductile Transition Temperature of Polycarbonate as a Function of Test Speed, Polymer Engineering and Science, vol.40, issue.1, pp.256-262, 2000.

B. Vieille, J. Aucher, and L. Taleb, Influence of temperature on the behavior of carbon fiber fabrics reinforced PPS laminates, Materials Science and Engineering: A, vol.517, issue.1-2, pp.51-60, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02133227

B. Vieille and L. Taleb, About the influence of temperature and matrix ductility on the behavior of carbon woven-ply PPS or epoxy laminates: Notched and unnotched laminates, Composites Science and Technology, vol.71, issue.7, pp.998-1007, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00743445

W. Albouy, B. Vieille, and L. Taleb, Composites : Part A Experimental and numerical investigations on the time-dependent behavior of woven-ply PPS thermoplastic laminates at temperatures higher than glass transition temperature, Composites Part A, vol.49, pp.165-178, 2013.

S. Bai, K. Cao, J. Chen, and Z. Liu, Tensile properties of rigid glass bead/hdpe composites, Polymers and Polymer Composites, vol.8, issue.6, pp.413-418, 2000.

B. Powers, J. Vinson, I. Hall, and R. Hubbard, High strain rate mechanical properties of cycom 5920/1583, 36th Structures, Structural Dynamics and Materials Conference

B. Powers, J. Vinson, M. Wardle, and B. Scott, High strain rate effects on two graphite fiber k3b polyimide matrix composites, 37th Structure, Structural Dynamics and Materials Conference

A. Vashchenko, I. Spiridonova, and E. Sukhovaya, Deformation and fracture of structural materials under high-rate strain, Metalurgija, vol.39, issue.2, pp.89-92, 2000.

L. Cadieu, J. Kopp, J. Jumel, J. Bega, and C. Froustey, Strain rate effect on the mechanical properties of a glass fibre reinforced acrylic matrix laminate, Composite Structures, vol.223, p.110952, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02356380

P. Davies and A. Brunner, Standard Test Methods for Delamination Resistance of Composite Materials : Current Status, Applied Composite Materials, vol.5, issue.6, pp.345-364, 1998.

A. Brunner, B. Blackman, and P. Davies, A status report on delamination resistance testing of polymer-matrix composites, vol.75, pp.2779-2794, 2008.

V. Bolotin, Delaminations in composite structures: its origin, buckling, growth and stability, vol.27, pp.129-145, 1996.

V. Bolotin, Mechanics of delamination in laminate composite structures, Mechanics of Composite Materials, vol.37, pp.367-380, 2001.

T. Tay and F. Shen, Analysis of Delamination Growth in Laminated Composites with Consideration for Residual Thermal Stress Effects, Journal of Composite Materials, vol.36, issue.11, pp.1299-1320, 2002.

N. Pagano and G. Schoeppner, Delamination of polymer matrix composites: Problems and assessment, Comprehensive Composite Materials, vol.2, pp.433-528, 2000.

. Astm, Annual Book of ASTM Standards, 1997.

. Astm, Annual Book of ASTM Standards, 2003.

M. Y. Shiino, R. C. Alderliesten, M. V. Donadon, H. J. Voorwald, and M. O. Cioffi, Applicability of standard delamination tests (double cantilever beam and end notch flexure) for 5hs fabric-reinforced composites in weft-dominated surface, Journal of Composite Materials, vol.49, issue.21, pp.2557-2565, 2015.

D. Fanteria, L. Lazzeri, E. Panettieri, U. Mariani, and M. Rigamonti, Experimental characterization of the interlaminar fracture toughness of a woven and a unidirectional carbon/epoxy composite, Composites Science and Technology, vol.142, pp.20-29, 2017.

M. May, Measuring the rate-dependent mode I fracture toughness of composites -A review, Composites Part A: Applied Science and Manufacturing, vol.81, pp.1-12, 2016.

B. Blackman, A. Kinloch, F. R. Sanchez, W. Teo, and J. Williams, The fracture behaviour of structural adhesives under high rates of testing, Engineering Fracture Mechanics, vol.76, issue.18, pp.2868-2889, 2009.

C. Fond and R. Schirrer, Dynamic fracture surface energy values and branching instabilities during rapid crack propagation in rubber toughened PMMA, Comptes Rendus de l'Academie des Sciences -Series IIB-Mechanics, vol.329, issue.3, pp.195-200, 2001.

D. Dalmas, C. Guerra, J. Scheibert, and D. Bonamy, Damage mechanisms in the dynamic fracture of nominally brittle polymers, International Journal of Fracture, vol.184, issue.1-2, pp.93-111, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00816513

J. Kopp, J. Schmittbuhl, O. Noel, J. Lin, and C. Fond, Fluctuations of the dynamic fracture energy values related to the amount of created fracture surface, Engineering Fracture Mechanics, vol.126, pp.178-189, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02323449

J. Kopp, J. Schmittbuhl, O. Noel, and C. Fond, A self-affine geometrical model of dynamic RT-PMMA fractures: implications for fracture energy measurements, International Journal of Fracture, vol.193, issue.2, pp.141-152, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01165645

S. Spearing and A. Evans, The role of fiber bridging in the delamination resistance of fiberreinforced composites, Acta Metallurgica et Materialia, vol.40, issue.9, pp.2191-2199, 1992.

M. K. Budzik, H. M. Jensen, and J. , Fracture in the single cantilever beam test with large scale bridging, Advances in Fracture and Damage Mechanics XIII, vol.627, pp.221-224, 2015.

L. Ye, Evaluation of mode-i interlaminar fracture toughness for fiber-reinforced composite materials, Composites Science and Technology, vol.43, issue.1, pp.49-54, 1992.

S. M. Spearing and A. G. Evans, The role of fiber bridging in the delamination resistance of fiber-reinforced composites, Acta Metallurgica Et Materialia, vol.40, issue.9, pp.2191-2199, 1992.

M. Gilchrist and N. Svensson, A Fractographic analysis of delamination within Multidirectional Carbon/Epoxy Laminates, Composites Science and Technology, vol.55, issue.2, pp.195-207, 1995.

M. Kenane, S. Benmedakhene, and Z. Azari, Fracture and fatigue study of unidirectional glass/epoxy laminate under different mode of loading, Fatigue and Fracture of Engineering Materials and Structures, vol.33, issue.5, pp.284-293, 2010.

M. A. Mohsin, L. Iannucci, and E. S. Greenhalgh, Mode I Interlaminar Fracture Toughness Characterisation of Carbon Fibre Reinforced Thermoplastic Composites, ASC) 32nd Annual Technical Conference, 2018.

J. Vina, I. Vina, J. Bonhomme, and A. Arguelles, Fractography and failure mechanisms in static mode I and mode II delamination testing of unidirectional carbon reinforced composites, Polymer Testing, vol.28, pp.612-617, 2009.

E. S. Greenhalgh, C. Rogers, and P. Robinson, Fractographic observations on delamination growth and the subsequent migration through the laminate, Composites Science and Technology, vol.69, issue.14, pp.2345-2351, 2009.

S. Hashemi, A. Kinloch, and J. Williams, The Effects of Geometry, Rate and Temperature on the Mode I, Mode II and Mixed-Mode I/II Interlaminar Fracture of Carbon-Fibre/Poly(ether-ether ketone) Composites, Journal of Composite Materials, vol.24, pp.918-956, 1990.

P. J. Hine, B. Brew, R. A. Duckett, and I. M. Ward, Failure mechanisms in carbon fibre reinforced poly(ether ether ketone). II: Material variables, Composites Science and Technology, vol.40, issue.1, pp.47-67, 1991.

R. Frassine and A. Pavan, Viscoelastic effects on the interlaminar fracture behaviour of themoplastic matrix composites: I. rate and temperature dependence in unidirectional PEI/Carbon-fibre laminates, Composites Science and Technology, vol.54, pp.193-200, 1995.

K. Y. Kim, L. Ye, and K. M. Phoa, Interlaminar fracture toughness of CF/PEI and GF/PEI composites at elevated temperatures, Applied Composite Materials, vol.11, issue.3, pp.173-190, 2004.

M. W. Czabaj and B. D. Davidson, Determination of the mode I, mode II, and mixed-mode I-II delamination toughness of a graphite/polyimide composite at room and elevated temperatures, Journal of Composite Materials, vol.50, issue.16, pp.2235-2253, 2016.

K. K. Kar, S. D. Sharma, and P. Kumar, Effects of temperature on interlaminar fracture toughness of fibre reinforced plastic composites made by newly proposed rubber pressure moulding technique, Plastics, Rubber and Composites, vol.36, issue.6, pp.274-280, 2007.

J. Polaha and B. Davidson, Test procedures for determining the delamination toughness of ceramic matrix composites as a function of mode ratio, temperature, and layup, 1392nd Edition, pp.31-47, 2001.

B. D. Davidson, M. Kumar, and M. A. Soffa, Influence of mode ratio and hygrothermal condition on the delamination toughness of a thermoplastic particulate interlayered carbon/epoxy composite, Composites Part A: Applied Science and Manufacturing, vol.40, issue.1, pp.67-79, 2009.

L. Cadieu, J. Kopp, J. Jumel, J. Bega, and C. Froustey, Temperature effect on the mechanical properties and damage mechanisms of a glass fibre reinforced acrylic matrix laminate, Submitted in Journal of Reinforced Plastics and Composites

J. E. Spruiell and C. J. Janke, A review of the measurement and development of crystallinity and its relation to properties in neat poly(phenylene sulfide) and its fiber reinforced composites, vol.01, 2005.

M. R-matadi-boumbimba, . Coulibaly, . Khabouchi, P. Bonfoh, and . Gerard, Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites : Low velocity impact response at various temperatures. Composite Structures, 2016.

M. R-matadi-boumbimba, . Coulibaly, . Khabouchi, N. Kinvi-dossou, P. Bonfoh et al., Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites : Low velocity impact response at various temperatures Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites : Low velocity impact response at various temperatures, Composite Structures, vol.160, pp.939-951, 2016.

G. Kinvi-dossou, M. Boumbimba, N. Bonfoh, Y. Koutsawa, P. Eccli et al., A numerical homogenization of E-glass / acrylic woven composite laminates : Application to low velocity impact, Composite Structures, vol.200, pp.540-554, 2018.

I. Raphael, N. Saintier, G. Robert, J. Bã©ga, and L. Laiarinandrasana, On the role of the spherulitic microstructure in fatigue damage of pure polymer and glass-fiber reinforced semi-crystalline polyamide 6, vol.6, pp.44-54, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02121931

I. Raphael, N. Saintier, H. Rolland, G. Robert, and L. Laiarinandrasana, A mixed strain rate and energy based fatigue criterion for short fiber reinforced thermoplastics, vol.127, pp.131-143, 2019.

E. Boissin, Etude de l'endommagement et de la tenue en fatigue d'un matériau composite à matrice acrylique et fibres de verre, 2019.

H. Rolland, N. Saintier, P. Wilson, J. Merzeau, and G. Robert, In situ x-ray tomography investigation on damage mechanisms in short glass fibre reinforced thermoplastics : Effects of fibre orientation and relative humidity, Composites Part B : Engineering, vol.109, pp.170-186, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02353859

G. C. Jacob, J. M. Starbuck, J. F. Fellers, S. Simunovic, and R. G. Boeman, Strain rate effects on the mechanical properties of polymer composite materials, Journal of Applied Polymer Science, vol.94, issue.1, pp.296-301, 2004.

A. Rotem and J. M. Lifshitz, Section 10-g, Proceedings of the 26th Annual Tech. Conference, Society for Plastics Industry, Reinforced Plas-tics/Composites Division, pp.1-10, 1971.

O. I. Okoli and G. F. Smith, Advanced Polymer Composites Division, Proceedings of Society of Plastics Engineers Annual Technical Conference (ANTEC), vol.2, pp.2998-3002, 1995.

O. I. Okoli and G. F. Smith, The effect of strain rate and fibre content on the poisson's ratio of glass/epoxy composites, Composite Structures, vol.48, issue.1, pp.157-161, 2000.

O. I. Okoli and G. F. Smith, Aspects of the tensile response of random continuous glass/epoxy composites, Journal of Reinforced Plastics and Composites, vol.18, issue.7, pp.606-613, 1999.

I. Okenwa and . Okoli, The effects of strain rate and failure modes on the failure energy of fibre reinforced composites, Third International Conference on Composite Science and Technology, vol.54, pp.299-303, 2001.

D. Gay, Matériaux composites (5 ? éd, 2005.

S. Metoui, Separated representations for the multiscale simulation of the mechanical behavior and damages of composite materials, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01311101

L. N. Mccartney, Predicting tansverse crack formation in cross-ply laminates, Composites Science and Technology, vol.58, issue.3, pp.1069-1081, 1998.

L. Zubillaga, A. Turon, J. Renart, J. Costa, and P. Linde, An experimental study on matrix crack induced delamination in composite laminates, Composite Structure, vol.127, pp.10-17, 2015.

T. Lorriot, G. Marion, R. Harry, and H. Wargnier, Onset of free-edge delamination in composite laminates under tensile loading, vol.34, pp.459-471, 2003.

L. Lagunegrand, T. Lorriot, R. Harry, H. Wargnier, and J. M. Quenisset, Initiation of freeedge delamination in composite laminates, Composites Science and Technology, vol.66, pp.1315-1327, 2006.

D. J. Bull, S. M. Spearing, and I. Sinclair, Investigation of the response to low velocity impact and quasi-static indentation loading of particle-toughened carbon-fibre composite materials, Composites Part A : Applied Science and Manufacturing, vol.74, pp.38-46, 2015.

N. J. Pagano and G. A. Schoeppner, Delamination of polymer matrix composites : Problems and assessment, Comprehensive Composite Materials, vol.2, pp.433-528, 2000.

V. V. Bolotin, Delaminations in composite structures : its origin, buckling, growth and stability, Composites Part B, vol.27, issue.95, pp.129-145, 1996.

V. V. Bolotin, Mechanics of delamination in laminate composite structures, Mechanics of Composite Materials, vol.37, pp.367-380, 2001.

T. E. Tay and F. Shen, Analysis of Delamination Growth in Laminated Composites with Consideration for Residual Thermal Stress Effects, Journal of Composite Materials, vol.36, issue.11, pp.1299-1320, 2002.

W. Ding, Delamination Analysis of Composite Laminates, 1999.

H. M. Jensen and I. Sheinman, Straight-sided , buckling-driven delamination of thin films at high, International Journal of Fracture, pp.371-385, 1995.

E. H. Glaessgen, I. S. Raju, and C. Poe, Analytical and Experimental Studies of the Debonding of Stitched and Unstitched Composite Joints, Journal of Composite Materials, vol.36, issue.22, pp.2599-2624, 2002.

P. Glaessgen and J. Hodgkinson, Interlaminar fracture toughness. Mechanical Testing of Advanced Fibre Composites, vol.27, pp.170-210, 2000.

V. Tamuzs, S. Tarasovs, and U. Vilks, Progressive delamination and fiber bridging modeling in double cantilever beam composite specimens Energy release rate in double cantilever beam specimens, Engineering Fracture Mechanics, vol.68, issue.5, pp.513-525, 2001.

L. Ye, Evaluation of mode-i interlaminar fracture toughness for fiber-reinforced composite materials, Composites Science and Technology, vol.43, issue.1, pp.49-54, 1992.

X. N. Huang and D. Hull, Effects of Fibre Bridging on G lc of a Unidirectional Glass / Epoxy Composite, Composites Science and Technology, vol.35, pp.283-299, 1989.

A. Airoldi and C. G. Dávila, Identification of material parameters for modelling delamination in the presence of fibre bridging, Composite Structures, vol.94, issue.11, pp.3240-3249, 2012.

. Astm, Annual Book of ASTM Standards, 15.03, 1997.

. Astm, Annual Book of ASTM Standards, 15.03, 2003.

P. Davies, Protocols for interlaminar fracture testing of composites, European Structural Integrity Society (ESIS), 1993.

P. Davies and A. J. Brunner, Standard Test Methods for Delamination Resistance of Composite Materials : Current Status, Applied Composite Materials, vol.5, issue.6, pp.345-364, 1998.

W. D. Bascom, J. L. Bitner, R. J. Ton, and A. R. Siebert, The interlaminar fracture of organic-matrix, woven reinforcement composites, Composites, vol.11, issue.1, pp.9-18, 1980.

D. F. Devitt, R. A. Schapery, and W. L. Bradley, A Method for Determining the Mode I Delamination Fracture Toughness of Elastic and Viscoelastic Composite Materials, Journal of COmposite Materials, vol.14, pp.270-285, 1980.

J. M. Whitney, C. E. Browning, and W. Hoogstedan, A Double Cantilever Beam Test for Mode I Delamination of Composite Materials, Journal of Reinforced Plastics and Composites, vol.1, pp.297-313, 1982.

H. Chai, The characterization of M o d e I delamination failure in non-woven , multidirectional laminates, Composites, vol.15, issue.4, pp.277-290, 1984.

N. Valoroso, S. Sessa, M. Lepore, and G. Cricrì, Identification of mode-I cohesive parameters for bonded interfaces based on DCB test, Engineering Fracture Mechanics, vol.104, pp.56-79, 2013.

M. May, Measuring the rate-dependent mode I fracture toughness of composites -A review, Composites Part A : Applied Science and Manufacturing, vol.81, pp.1-12, 2016.

M. Colin-de-verdiere, A. A. Skordos, A. C. Walton, and M. May, Influence of loading rate on the delamination response of untufted and tufted carbon epoxy non-crimp fabric composites/mode ii, Engineering Fracture Mechanics, vol.96, pp.1-10, 2012.

T. Kusaka, M. Hojo, Y. Mai, T. Kurokawa, T. Nojima et al., Rate dependence of mode i fracture behaviour in carbon-fibre/epoxy composite laminates, Composites Science and Technology, vol.58, issue.3, pp.591-602, 1998.

S. Marzi, A. Rauh, and R. M. Hinterhölzl, Fracture mechanical investigations and cohesive zone failure modelling on automotive composites, Composite Structures, vol.111, pp.324-331, 2014.

B. R. Blackman, A. J. Kinloch, F. S. Sanchez, W. S. Teo, and J. G. Williams, The fracture behaviour of structural adhesives under high rates of testing, Engineering Fracture Mechanics, vol.76, issue.18, pp.2868-2889, 2009.

T. Brussat, S. Chin, and S. Mostovoy, Fracture Mechanics for Structural Adhesive Bonds, 1978.

D. C. Phillips, The fracture mechanics of carbon fibre laminates, Journal of Composite Materials, vol.8, issue.2, pp.130-141, 1974.

D. Gamby and V. Delauménie, Measurement and modelling of crack propagation velocity in a viscoelastic matrix composite, Composites Part A : Applied Science and Manufacturing, vol.28, issue.9, pp.875-881, 1997.

E. Brown, Use of the tapered double-cantilever beam geometry for fracture toughness measurements and its application to the quantification of self-healing, The Journal of Strain Analysis for Engineering Design, vol.46, pp.167-186, 2011.

I. M. Daniel, G. Yaniv, and J. W. Auser, Rate Effects on Delamination Fracture Toughness of Graphite/Epoxy Composites, pp.258-272, 1987.

D. S. Cairns, Nasa-cr-196613, static and dynamic strain energy release rates in toughened thermosetting composite laminates, Nasa Techdocs, pp.1529-1538, 1992.

, ASTM D 5628-96. Stand Test Method for Impact Resistance of Flat Rigid Plastic Specimens by Means of a Falling Dart, Tup or Falling Mass)

F. A. Myers, Stress-state effects on the viscoelastic response of polyphenylene sulfide (PPS) based thermoplastic composites. ASTM special technical publication, pp.154-182, 1044.

G. Caprino, L. Carrino, M. Durante, A. Langella, and V. Lopresto, Low impact behaviour of hemp fibre reinforced epoxy composites, Composite Structures, vol.133, pp.892-901, 2015.

L. Guillaumat, F. Baudou, and A. M. ,

G. D. Azevedo and J. L. Lataillade, Contribution of the experimental designs for a probabilistic dimensioning of impacted composites, International Journal of Impact Engineering, vol.31, issue.6, pp.629-641, 2005.

G. Box and N. Draper, Wiley series in probability and mathematical statistics : Applied probability and statistics, 1987.

D. H. Doelhert, Experimental Designs through level reduction of the d-dimensional cuboctahedron, Discrete Mathematics, vol.2, issue.4, pp.309-334, 1972.

D. Benoist, Y. Tourbier, and S. Germain-tourbier, Plans d'expériences : construction et analyse, 1994.

J. Droesbeke, G. Saporta, J. Fine, S. De-statistique-de, and F. , Plans d'expériences : application à l'entreprise, 1997.

M. Pillet, Les plans d'expériences par méthode Taguchi. Edition d'Organisation, 1997.

L. Cadieu, J. B. Kopp, J. Jumel, J. Bega, and C. Froustey, Strain rate effect on the mechanical properties of a glass fibre reinforced acrylic matrix laminate. an experimental approach, Composite Structures, vol.223, p.110952, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02356380

S. Sehr, S. Amidi, and M. R. Begley, Interface delamination vs. bulk cracking along wavy interfaces, Engineering Fracture Mechanics, 2018.

C. Zhang, J. Zhao, and T. Rabczuk, The interface strength and delamination of fiberreinforced composites using a continuum modeling approach, Composites Part B : Engineering, vol.137, pp.225-234, 2018.

J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of applied mechanics, vol.35, pp.379-386, 1968.

C. P. Cherepanov, Crack propagation in continous media, Journal of Applied Mathematics and Mechanics, vol.31, pp.476-488, 1967.

E. H. Yoffe, The moving griffith crack, Philosophical Magazine, vol.42, issue.7, pp.739-750, 1951.

J. Fineberg, S. P. Gross, M. Marder, and H. Swinney, Instability in the propagation of fast cracks, Physical review B, vol.45, issue.10, pp.5146-5154, 1992.

J. Fineberg and E. Sharon, Confrming the continuum theory of dynamic brittle fracture for fast cracks, Nature, vol.397, pp.333-335, 1999.

D. Dalmas, C. Guerra, J. Scheibert, and D. Bonamy, Damage mechanisms in the dynamic fracture of nominally brittle polymers, International Journal of Fracture, vol.184, issue.1-2, pp.93-111, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00816513

J. B. Kopp, J. Schmittbuhl, O. Noel, J. Lin, and C. Fond, Fluctuations of the dynamic fracture energy values related to the amount of created fracture surface, Engineering Fracture Mechanics, vol.126, pp.178-189, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02323449

M. Bisoffi-sauve, S. Morel, and F. Dubois, Modelling mixed mode fracture of mortar joints in masonry buildings, Engineering Structures, vol.182, pp.316-330, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01973455

C. Fond and R. Schirrer, Dynamic fracture surface energy values and branching instabilities during rapid crack propagation in rubber toughened PMMA, Comptes Rendus de l'Academie des Sciences -Series IIB-Mechanics, vol.329, issue.3, pp.195-200, 2001.

, Illustration des principaux mécanismes d'endommagements dans les matériaux composites stratifiés

, sollicitations d'impact et d'indentation

, Illustration de pontage de fibres

]. .. ,

, Montage DCB adapté à la tour de chute ([44])

J. Intégrale and . En, fonction du déplacement vertical en initiation de fissure (? sur Fig. 1.3.5) pour une sollicitation dynamique (100 mms ?1 )

D. .. Données, 16 2.1.2 Zones endommagées suite à une indentation de 8 mm avec un indenteur de 16 mm de diamètre. Deux profils ressortent : profil en croix (a) ou profil diffus (b), p.17

, Répétabilité des essais d'indentation avec des indenteurs de 16mm et 25mm de diamètre, p.17

. .. De-diamètre, 3.1 Illustration d'une fibre, de son interface fibre matrice et de la matrice environnante, p.67

, 69 3.1.2 Photo de l'injection de la plaque Elium 150 / fibres de verre, p.70

, Schéma de la technique d'injection effectuée pour infuser les plaques, p.70

, Pour une vitesse d'avance 1 aucun endommagement n'est observé et les bords de l'échantillon sont lisses. Pour une vitesse d'avance 2 les bords de l'échantillon sont plus rugueux et quelques fibres de la face inférieure ne sont pas coupées mais arrachées (zone encadrée)

]. .. , , p.91

, Les deux méthodes donnent des résultats identiques

, Influence de la vitesse de sollicitation sur G Ic et le type de propagation de fissure, vol.47, p.93

, Évolution de la vitesse de fissuration en fonction de la vitesse de sollicitation pour différentes géométries (Carrés noirs : HTDCB, ronds rouges : DCB), p.93

, Évolution de G Ic en fonction de la vitesse de fissuration pour différentes géométries (Carrés noirs : HTDCB, ronds rouges : DCB)[47]

, Evolution de la pulsation ?, des vitesses des ondes de flexion c B , de Rayleigh c R et 0, 6c R en fonction de la longueur de fissuration L, Les valeurs des paramètres matériaux sont : E = 47.10 9 P a, ? = 1745 kg.m ?3

, Distribution des contraintes normales a) ? xx et b) ? zz dans un échantillon DCB, vol.16, p.96

, Multi délaminage lors d'un essai DCB sur échantillons fibre de verre / elium150. L'interface médiane sur laquelle est positionnée la pré-entaille fissure sur toute la longueur de l'échantillon. Durant sa propagation, les interfaces proches de l'interface médiane peuvent localement délaminer en amont de la fissure principale, p.97

, Conception assistée par ordinateur du montage SBS pour composite stratifié. Montage de deux échantillons en position tête-bêche. Le système de masse tombante n'est pas illustré pour ne pas surcharger la représentation

, 99 3.4.10 Propagation de fissure en régime quasi-permanent de propagation dynamique dans une plaque de PMMA, Système de raidisseurs bloquant l'ouverture ou la fermeture des bâtis inférieur et supérieur

, Liste des tableaux

, Les vitesses v1 jusqu'à v3 correspondent aux vitesses d'indentation quasi-statiques et la vitesse v4 correspond à la vitesse d'indentation dynamique, Vitesses d'indendation quasi-statiques et dynamique (ms ?1 )