I. Hussain, J. Capricho, and M. A. Yawer, Synthesis of Biaryls via Ligand-Free Suzuki-Miyaura Cross-Coupling Reactions: A Review of Homogeneous and Heterogeneous Catalytic Developments, Adv. Synth. Catal, vol.358, pp.3320-3349, 2016.

A. D. Zotto and D. Zuccaccia, Metallic palladium, PdO, and palladium supported on metal oxides for the Suzuki-Miyaura cross-coupling reaction: A unified view of the process of formation of the catalytically active species in solution, Catal. Sci. Technol, vol.7, pp.3934-3951, 2017.

C. Len, S. Bruniaux, F. Delbecq, and V. S. Parmar, Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling in Continuous Flow, vol.7, p.146, 2017.

P. Mpungose, Z. Vundla, G. Maguire, H. Friedrich, P. P. Mpungose et al., The Current Status of Heterogeneous Palladium Catalysed Heck and Suzuki Cross-Coupling Reactions, Molecules, vol.23, p.1676, 2018.

N. Schneider, D. M. Lowe, R. A. Sayle, M. A. Tarselli, and G. A. Landrum, Big Data from Pharmaceutical Patents: A Computational Analysis of Medicinal Chemists' Bread and Butter, J. Med. Chem, vol.59, pp.4385-4402, 2016.

C. Baleizão, A. Corma, H. García, and A. Leyva, An Oxime-Carbapalladacycle Complex Covalently Anchored to Silica as an Active and Reusable Heterogeneous Catalyst for Suzuki Cross-Coupling in Water, Chem. Commun, vol.5, pp.606-607, 2003.

L. Artok and H. Bulut, Heterogeneous Suzuki Reactions Catalyzed by Pd(0)-Y Zeolite, Tetrahedron Lett, vol.45, pp.3881-3884, 2004.

B. Yuan, Y. Pan, Y. Li, B. Yin, and H. Jiang, A Highly Active Heterogeneous Palladium Catalyst for the Suzuki-Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media, Angew. Chem. Int. Ed, vol.49, pp.4054-4058, 2010.

S. M. Islam, P. Mondal, A. S. Roy, S. Mondal, and D. Hossain, Heterogeneous Suzuki and Copper-Free Sonogashira Cross-Coupling Reactions Catalyzed by a Reusable Palladium(II) Complex in Water Medium, Tetrahedron Lett, vol.51, pp.2067-2070, 2010.

F. Siga, H. Temel, M. Aydemir, Y. S. Ocak, S. Pasa et al., Superb Efficient and Recycle Polymer-Anchored Systems for Palladium Catalyzed Suzuki Cross-Coupling Reactions in Water, Appl. Catal. A, vol.449, pp.172-182, 2012.

Y. M. Yamada, S. M. Sarkar, and Y. Uozumi, Self-Assembled Poly(Imidazole-Palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels, J. Am. Chem. Soc, vol.134, pp.3190-3198, 2012.

A. Corma, D. Das, H. García, and A. Leyva, A Periodic Mesoporous Organosilica Containing a Carbapalladacycle Complex as Heterogeneous Catalyst for Suzuki Cross-Coupling, J. Catal, vol.229, pp.322-331, 2005.

T. P. Tran, A. Thakur, D. X. Trinh, A. T. Dao, and T. Taniike, Design of Pd@Graphene Oxide Framework Nanocatalyst with Improved Activity and Recyclability in Suzuki-Miyaura Cross-Coupling Reaction, Appl. Catal. A, vol.549, pp.60-67, 2018.

M. Pérez-lorenzo, Palladium Nanoparticles as Efficient Catalysts for Suzuki Cross-Coupling Reactions, J. Phys. Chem. Lett, vol.3, pp.167-174, 2012.

S. Hübner, J. G. De-vries, and V. Farina, Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts?, Adv. Synth. Catal, vol.358, pp.3-25, 2016.

H. Joshi, O. Prakash, A. K. Sharma, K. N. Sharma, A. K. Singh et al., Coupling Reactions Catalyzed with Palladacycles and Palladium(II) Complexes of 2-Thiophenemethylamine-Based Schiff Bases: Examples of Divergent Pathways for the Same Ligand, Eur. J. Inorg. Chem, pp.1542-1551, 2015.

Q. Deng, Y. Shen, H. Zhu, and T. Tu, A Magnetic Nanoparticle-Supported N-Heterocyclic Carbene-Palladacycle: An Efficient and Recyclable Solid Molecular Catalyst for Suzuki-Miyaura Cross-Coupling of 9-Chloroacridine, Chem. Commun, vol.53, pp.13063-13066, 2017.

T. Baran, I. Sargin, A. Mente¸s, and M. Kaya, Exceptionally high turnover frequencies recorded for a new chitosan-based palladium(II) catalyst, Appl. Catal. A Gen, vol.523, pp.12-20, 2016.

R. K. Arvela, N. E. Leadbeater, and M. J. Collins, Automated Batch Scale-up of Microwave-Promoted Suzuki and Heck Coupling Reactions in Water Using Ultra-Low Metal Catalyst Concentrations, Tetrahedron, vol.61, pp.9349-9355, 2005.

A. Bej, K. Ghosh, A. Sarkar, and D. W. Knight, Palladium nanoparticles in the catalysis of coupling reactions, vol.6, pp.11446-11453, 2016.

C. Deraedt, L. Salmon, L. Etienne, J. Ruiz, and D. Astruc, Click" Dendrimers as Efficient Nanoreactors in Aqueous Solvent: Pd Nanoparticle Stabilization for Sub-Ppm Pd Catalysis of Suzuki-Miyaura Reactions of Aryl Bromides, Chem. Commun, vol.49, pp.8169-8171, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00862726

P. K. Mandali and D. K. Chand, Palladium Nanoparticles Catalyzed Suzuki Cross-Coupling Reactions in Ambient Conditions, Catal. Commun, vol.31, pp.16-20, 2013.

M. T. Reetz and E. Westermann, Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles, Angew. Chem. Int. Ed, vol.39, pp.165-168, 2000.

C. De-bellefon, Catalytic engineering aspects of flow chemistry, Flow Chemistry: Fundamentals, pp.31-61, 2014.

C. Zhou, J. Wang, L. Li, R. Wang, and M. Hong, A Palladium Chelating Complex of Ionic Water-Soluble Nitrogen-Containing Ligand: The Efficient Precatalyst for Suzuki-Miyaura Reaction in Water, Green Chem, vol.13, pp.2100-2106, 2011.

K. Wang, W. Wang, H. Luo, X. Zheng, H. Fu et al., An Easily Prepared Tetraphosphine and Its Use in the Palladium-Catalyzed Suzuki-Miyaura Coupling of Aryl Chlorides, Catal. Lett, vol.143, pp.1214-1219, 2013.

R. B. Bedford, S. L. Hazelwood, and M. E. Limmert, Extremely High Activity Catalysts for the Suzuki Coupling of Aryl Chlorides: The Importance of Catalyst Longevity, Chem. Commun, vol.22, pp.2610-2611, 2002.

M. Feuerstein, H. Doucet, and M. Santelli, Palladium Catalysed Cross-Coupling of Aryl Chlorides with Arylboronic Acids in the Presence of a New Tetraphosphine Ligand, Synlett, pp.1458-1460, 2001.

C. Deraedt and D. Astruc, Homeopathic" Palladium Nanoparticle Catalysis of Cross Carbon-Carbon Coupling Reactions, Acc. Chem. Res, vol.47, pp.494-503, 2014.

C. C. Ho, A. Olding, J. A. Smith, and A. C. Bissember, Nuances in Fundamental Suzuki-Miyaura Cross-Couplings Employing, Poor Reactivity of Aryl Iodides at Lower Temperatures, vol.37, pp.1745-1750, 2018.

A. K. Diallo, C. Ornelas, L. Salmon, J. Ruiz-aranzaes, and D. Astruc, Homeopathic" Catalytic Activity and Atom-Leaching Mechanism in Miyaura-Suzuki Reactions under Ambient Conditions with Precise Dendrimer-Stabilized Pd Nanoparticles, Angew. Chem. Int. Ed, vol.46, pp.8644-8648, 2007.

S. Li, Y. Lin, J. Cao, S. Zhang, and . Guanidine/pd, OAc)2-Catalyzed Room Temperature Suzuki Cross-Coupling Reaction in Aqueous Media under Aerobic Conditions, J. Org. Chem, vol.72, pp.4067-4072, 2007.

F. Puls, N. Richter, O. Kataeva, and H. J. Knölker, Synthesis of Tetranuclear Palladium(II) Complexes and Their Catalytic Activity for Cross-Coupling Reactions, Chem. A Eur. J, vol.23, pp.17576-17583, 2017.

P. Wolfe-john and L. Buchwald-stephen, A Highly Active Catalyst for the Room-Temperature Amination and Suzuki Coupling of Aryl Chlorides, Angew. Chem. Int. Ed, vol.38, pp.2413-2416, 1999.

L. Monnereau, D. Sémeril, D. Matt, and L. Toupet, Cavity-Shaped Ligands: Calix[4]arene-Based Monophosphanes for Fast Suzuki-Miyaura Cross-Coupling, Chem. A Eur. J, vol.16, pp.9237-9247, 2010.

M. Feuerstein, D. Laurenti, H. Doucet, M. Santelli, and . Palladium-tetraphosphine, Complex: An Efficient Catalyst for Allylic Substitution and Suzuki Cross-Coupling, Synthesis, pp.2320-2326, 2001.

H. Doucet, M. Santelli, and C. Cis, Cis-1,2,3,4-Tetrakis(Diphenylphosphinomethyl)Cyclopentane: Tedicyp, an Efficient Ligand in Palladium-Catalysed Reactions, Synlett, 2001.

E. Zaborova, J. Deschamp, S. Guieu, Y. Blériot, G. Poli et al., Cavitand Supported Tetraphosphine: Cyclodextrin Offers a Useful Platform for Suzuki-Miyaura Cross-Coupling, Chem. Commun, vol.47, pp.9206-9208, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00705922

K. V. Luzyanin, A. G. Tskhovrebov, M. C. Carias, M. F. Guedes-da-silva, A. J. Pombeiro et al., Novel Metal-Mediated (M = Pd, Pt) Coupling between Isonitriles and Benzophenone Hydrazone as a Route to Aminocarbene Complexes Exhibiting High Catalytic Activity (M = Pd) in the Suzuki-Miyaura Reaction, vol.28, pp.6559-6566, 2009.

M. Górna, M. S. Szulmanowicz, A. Gniewek, W. Tylus, and A. M. Trzeciak, Recyclable Pd(0)-Pd(II) Composites Formed from Pd(II) Dimers with NHC Ligands under Suzuki-Miyaura Conditions, J. Organomet. Chem, vol.785, pp.92-99, 2015.

Q. Yang, L. Wang, L. Lei, X. L. Zheng, H. Y. Fu et al., PdCl2-2,6-Bis(1,5-Diphenyl-1H-Pyrazol-3-Yl)Pyridine Catalyzed Suzuki-Miyaura Cross-Coupling, Catal. Commun, vol.29, pp.194-197, 2012.

D. B. Eremin and V. P. Ananikov, Understanding Active Species in Catalytic Transformations: From Molecular Catalysis to Nanoparticles, Leaching, Coord. Chem. Rev, vol.346, pp.2-19, 2017.

A. Biffis, P. Centomo, A. Del-zotto, and M. Zecca, Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review, Chem. Rev, vol.118, pp.2249-2295, 2018.

K. Köhler, R. G. Heidenreich, S. S. Soomro, S. Pröckl, and S. , Supported Palladium Catalysts for Suzuki Reactions: Structure-Property Relationships, Optimized Reaction Protocol and Control of Palladium Leaching, Adv. Synth. Catal, vol.350, pp.2930-2936, 2008.

S. S. Soomro, F. L. Ansari, K. Chatziapostolou, and K. Köhler, Palladium Leaching Dependent on Reaction Parameters in Suzuki-Miyaura Coupling Reactions Catalyzed by Palladium Supported on Alumina under Mild Reaction Conditions, J. Catal, vol.273, pp.138-146, 2010.

B. V. Vaerenbergh, K. D. Vlieger, K. Claeys, G. Vanhoutte, J. D. Clercq et al., The Effect of the Hydrotalcite Structure and Nanoparticle Size on the Catalytic Performance of Supported Palladium Nanoparticle Catalysts in Suzuki Cross-Coupling, Appl. Catal. A Gen, vol.550, pp.236-244, 2018.

G. Collins, M. Schmidt, C. O'dwyer, J. D. Holmes, and G. P. Mcglacken, The Origin of Shape Sensitivity in Palladium-Catalyzed Suzuki-Miyaura Cross Coupling Reactions, Angew. Chem. Int. Ed, vol.53, pp.4142-4145, 2014.

A. Ohtaka, E. Sakaguchi, T. Yamaguchi, G. Hamasaka, Y. Uozumi et al., Boomerang" Linear Polystyrene-Stabilized Pd Nanoparticles for the Suzuki Coupling Reaction of Aryl Chlorides in Water, ChemCatChem, vol.5, pp.2167-2169, 2013.

S. Macquarrie, J. H. Horton, J. Barnes, K. Mceleney, H. P. Loock et al., Visual Observation of Redistribution and Dissolution of Palladium during the Suzuki-Miyaura Reaction, Angew. Chem. Int. Ed, vol.47, pp.3279-3282, 2008.

V. P. Ananikov and I. P. Beletskaya, Toward the Ideal Catalyst: From Atomic Centers to a "Cocktail" of Catalysts, Organometallics, vol.31, pp.1595-1604, 2012.

A. S. Kashin, V. P. Ananikov, C. Catalytic, and C. , Bond Formation Reactions: In Situ Generated or Preformed Catalysts? Complicated Mechanistic Picture Behind Well-Known Experimental Procedures, J. Org. Chem, vol.78, pp.11117-11125, 2013.

´. E. Mieczynska, T. Borkowski, M. Cypryk, P. Pospiech, and A. M. Trzeciak, Palladium Supported on Triazolyl-Functionalized Polysiloxane as Recyclable Catalyst for Suzuki-Miyaura Cross-Coupling, Appl. Catal. A Gen, vol.470, pp.24-30, 2014.

Z. Niu, Q. Peng, Z. Zhuang, W. He, and Y. Li, Evidence of an Oxidative-Addition-Promoted Pd-Leaching Mechanism in the Suzuki Reaction by Using a Pd-Nanostructure Design, Chem. A Eur. J, vol.18, pp.9813-9817, 2012.

J. A. Sullivan, K. A. Flanagan, and H. Hain, Suzuki Coupling Activity of an Aqueous Phase Pd Nanoparticle Dispersion and a Carbon Nanotube/Pd Nanoparticle Composite, Catal. Today, vol.145, pp.108-113, 2009.

G. J. Lichtenegger, M. Maier, M. Hackl, J. G. Khinast, W. Gössler et al., Suzuki-Miyaura Coupling Reactions Using Novel Metal Oxide Supported Ionic Palladium Catalysts, J. Mol. Catal. A Chem, vol.426, pp.39-51, 2017.

K. Hiebler, G. J. Lichtenegger, M. C. Maier, E. S. Park, R. Gonzales-groom et al., Heterogeneous Pd Catalysts as Emulsifiers in Pickering Emulsions for Integrated Multistep Synthesis in Flow Chemistry, Beilstein J. Org. Chem, vol.14, pp.648-658, 2018.

A. V. Gaikwad, A. Holuigue, M. B. Thathagar, J. E. Ten-elshof, and G. Rothenberg, Ion-and Atom-Leaching Mechanisms from Palladium Nanoparticles in Cross-Coupling Reactions, Chem. Eur. J, vol.13, pp.6908-6913, 2007.

P. P. Fang, A. Jutand, Z. Q. Tian, and C. Amatore, Au-Pd Core-Shell Nanoparticles Catalyze Suzuki-Miyaura Reactions in Water through Pd Leaching, Angew. Chem. Int. Ed, vol.50, pp.12184-12188, 2011.

M. Al-amin, M. Akimoto, T. Tameno, Y. Ohki, N. Takahashi et al., Suzuki-Miyaura Cross-Coupling Reactions Using a Low-Leaching and Highly Recyclable Gold-Supported Palladium Material and Two Types of Microwave Equipments, Green Chem, vol.15, pp.1142-1145, 2013.

F. Costantino, R. Vivani, M. Bastianini, L. Ortolani, O. Piermatti et al., Accessing stable zirconium carboxy-aminophosphonate nanosheets as support for highly active Pd nanoparticles, Chem. Commun, vol.51, pp.15990-15993, 2015.

V. Kozell, T. Giannoni, M. Nocchetti, R. Vivani, O. Piermatti et al., Immobilized Palladium Nanoparticles on Zirconium Carboxy-Aminophosphonates Nanosheets as an Efficient Recoverable Heterogeneous Catalyst for Suzuki-Miyaura and Heck Coupling, vol.7, p.186, 2017.

C. Pavia, E. Ballerini, L. A. Bivona, F. Giacalone, C. Aprile et al., Palladium Supported on Cross-Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions, Adv. Synth. Catal, vol.355, 2007.

Y. Monguchi, T. Ichikawa, M. Netsu, T. Hattori, T. Mizusaki et al., Tertiary-Amino-Functionalized Resin-Supported Palladium Catalyst for the Heterogeneous Suzuki-Miyaura Reaction of Aryl Chlorides, Synlett, vol.26, pp.2014-2018, 2015.

T. Ichikawa, M. Netsu, M. Mizuno, T. Mizusaki, Y. Takagi et al., Development of a Unique Heterogeneous Palladium Catalyst for the Suzuki-Miyaura Reaction Using (Hetero)Aryl Chlorides and Chemoselective Hydrogenation, Adv. Synth. Catal, vol.359, pp.2269-2279, 2017.

V. Pascanu, Q. Yao, A. B. Gómez, M. Gustafsson, Y. Yun et al., Martín-Matute, B. Sustainable Catalysis: Rational Pd Loading on MIL-101Cr-NH2 for

, More Efficient and Recyclable Suzuki-Miyaura Reactions, Chem. A Eur. J, vol.19, pp.17483-17493, 2013.

V. Pascanu, P. R. Hansen, A. Bermejo-gómez, C. Ayats, A. E. Platero-prats et al., Highly Functionalized Biaryls via Suzuki-Miyaura Cross-Coupling Catalyzed by Pd@MOF under Batch and Continuous Flow Regimes, ChemSusChem, vol.8, pp.123-130, 2015.

F. Carson, V. Pascanu, A. Bermejo-gómez, Y. Zhang, A. E. Platero-prats et al., Martín-Matute, B. Influence of the Base on Pd@MIL-101-NH2(Cr) as Catalyst for the Suzuki-Miyaura Cross-Coupling Reaction, Chem. A Eur. J, vol.21, pp.10896-10902, 2015.

P. Slavík, D. W. Kurka, and D. K. Smith, Palladium-scavenging self-assembled hybrid hydrogels -reusable highly-active green catalysts for Suzuki-Miyaura cross-coupling reactions, Chem. Sci, vol.9, pp.8673-8681, 2018.

Y. Huang, Q. Wei, Y. Wang, and L. Dai, Three-Dimensional Amine-Terminated Ionic Liquid Functionalized Graphene/Pd Composite Aerogel as Highly Efficient and Recyclable Catalyst for the Suzuki Cross-Coupling Reactions, Carbon, vol.136, pp.150-159, 2018.

H. Veisi, S. Najafi, and S. Hemmati, Pd(II)/Pd(0) Anchored to Magnetic Nanoparticles (Fe3O4) Modified with Biguanidine-Chitosan Polymer as a Novel Nanocatalyst for Suzuki-Miyaura Coupling Reactions, Int. J. Biol. Macromol, vol.113, pp.186-194, 2018.

M. Samarasimhareddy, G. Prabhu, T. M. Vishwanatha, V. V. Sureshbabu, and . Pvc-, Supported Palladium Nanoparticles: An Efficient Catalyst for Suzuki Cross-Coupling Reactions at Room Temperature, Synthesis, vol.45, pp.1201-1206, 2013.

D. H. Lee, J. H. Kim, B. H. Jun, H. Kang, J. Park et al., Macroporous Polystyrene-Supported Palladium Catalyst Containing a Bulky N-Heterocyclic Carbene Ligand for Suzuki Reaction of Aryl Chlorides, Org. Lett, vol.10, pp.1609-1612, 2008.

J. Li, P. Huo, J. Zheng, X. Zhou, and W. Liu, Highly Efficient and Recyclable Water-Soluble Fullerene-Supported PdCl2 Nanocatalyst in Suzuki-Miyaura Cross-Coupling Reaction, RSC Adv, vol.8, pp.24231-24235, 2018.

D. Sahu, A. R. Silva, and P. Das, Facile synthesis of palladium nanoparticles supported on silica: An efficient phosphine-free heterogeneous catalyst for Suzuki coupling in aqueous media, Catal. Commun, vol.86, pp.32-35, 2016.

M. P. Lati, M. I. Naeem, M. Alinia-asli, F. Shirini, M. A. Rezvani et al., Palladium Nanoparticles Immobilized on an Aminopropyl-Functionalized Silica-Magnetite Composite as a Recyclable Catalyst for Suzuki-Miyaura Reactions, vol.3, pp.7970-7975, 2018.

A. Pourjavadi and Z. Habibi, Palladium Nanoparticle-Decorated Magnetic Pomegranate Peel-Derived Porous Carbon Nanocomposite as an Excellent Catalyst for Suzuki-Miyaura and Sonogashira Cross-Coupling Reactions, Appl. Organomet. Chem, p.4480, 2018.

H. Goksu, N. Zengin, A. Karaosman, and F. Sen, Highly Active and Reusable Pd/AlO(OH) Nanoparticles for the Suzuki Cross-Coupling Reaction, Curr. Organocatal, vol.5, pp.34-41, 2017.

S. Rohani, G. M. Ziarani, A. Badiei, A. Ziarati, M. Jafari et al., Palladium-Anchored Multidentate SBA-15/Di-Urea Nanoreactor: A Highly Active Catalyst for Suzuki Coupling Reaction, Appl. Organomet. Chem, p.4397, 2018.

A. Monopoli, A. Nacci, V. Calò, F. Ciminale, P. Cotugno et al., Palladium/Zirconium Oxide Nanocomposite as a Highly Recyclable Catalyst for C-C Coupling Reactions in Water, Molecules, vol.15, pp.4511-4525, 2010.

C. Mateos, J. A. Rincón, B. Martín-hidalgo, and J. Villanueva, Green and Scalable Procedure for Extremely Fast Ligandless Suzuki-Miyaura Cross-Coupling Reactions in Aqueous IPA Using Solid-Supported Pd in Continuous Flow, Tetrahedron Lett, vol.55, pp.3701-3705, 2014.

M. Pagliaro, V. Pandarus, F. Beland, R. Ciriminna, G. Palmisano et al., A new class of heterogeneous Pd catalysts for synthetic organic chemistry, Catal. Sci. Technol, vol.1, pp.736-739, 2011.

V. Pandarus, G. Gingras, F. Béland, R. Ciriminna, and M. Pagliaro, Process Intensification of the Suzuki-Miyaura Reaction over Sol-Gel Entrapped Catalyst SiliaCat DPP-Pd Under Conditions of Continuous Flow, Org. Process Res. Dev, vol.18, pp.1550-1555, 2014.

R. Greco, W. Goessler, D. Cantillo, and C. O. Kappe, Benchmarking Immobilized Di-and Triarylphosphine Palladium Catalysts for Continuous-Flow Cross-Coupling Reactions: Efficiency, Durability, and Metal Leaching Studies, ACS Catal, vol.5, pp.1303-1312, 2015.

C. M. Crudden, M. Sateesh, and R. Lewis, Mercaptopropyl-Modified Mesoporous Silica: A Remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions, J. Am. Chem. Soc, vol.127, pp.10045-10050, 2005.

D. Dong, Z. Li, D. Liu, N. Yu, H. Zhao et al., Postsynthetic Modification of Single Pd Sites into Uncoordinated Polypyridine Groups of a MOF as the Highly Efficient Catalyst for Heck and Suzuki Reactions, New J. Chem, vol.42, pp.9317-9323, 2018.

L. Zhong, A. Chokkalingam, W. S. Cha, K. S. Lakhi, X. Su et al., Pd nanoparticles embedded in mesoporous carbon: A highly efficient catalyst for Suzuki-Miyaura reaction, Catal. Today, vol.243, pp.195-198, 2015.

J. Durand, E. Teuma, F. Malbosc, Y. Kihn, and M. Gómez, Palladium Nanoparticles Immobilized in Ionic Liquid: An Outstanding Catalyst for the Suzuki C-C Coupling
URL : https://hal.archives-ouvertes.fr/hal-00266231

, Catal. Commun, vol.9, pp.273-275, 2008.

R. Fareghi-alamdari, M. S. Saeedi, and F. Panahi, New Bis(N-Heterocyclic Carbene) Palladium Complex Immobilized on Magnetic Nanoparticles: As a Magnetic Reusable Catalyst in Suzuki-Miyaura Cross Coupling Reaction, Appl. Organomet. Chem, p.31, 2017.

A. Indra, C. S. Gopinath, S. Bhaduri, and G. K. Lahiri, Hydroxyapatite Supported Palladium Catalysts for Suzuki-Miyaura Cross-Coupling Reaction in Aqueous Medium, Catal. Sci. Technol, vol.3, pp.1625-1633, 2013.

D. H. Lee, M. Choi, B. W. Yu, R. Ryoo, A. Taher et al., Expanded Heterogeneous Suzuki-Miyaura Coupling Reactions of Aryl and Heteroaryl Chlorides under Mild Conditions, Adv. Synth. Catal, vol.351, pp.2912-2920, 2009.

T. Baran and . Solvent-free, Microwave-Assisted Highly Efficient, Rapid and Simple Synthesis of Biphenyl Compounds by Using Silica Based Pd(II) Catalyst, J. Macromol. Sci. Part A, vol.55, pp.280-287, 2018.

I. W. Davies, L. Matty, D. L. Hughes, and P. J. Reider, Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts?, J. Am. Chem. Soc, vol.123, pp.10139-10140, 2001.

M. Chtchigrovsky, Y. Lin, K. Ouchaou, M. Chaumontet, M. Robitzer et al., Dramatic Effect of the Gelling Cation on the Catalytic Performances of Alginate-Supported Palladium Nanoparticles for the Suzuki-Miyaura Reaction, Chem. Mater, vol.24, pp.1505-1510, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00717944

I. Abdellah, P. Kasongo, A. Labattut, R. Guillot, E. Schulz et al., Arene: A New Valuable Support for NHC Palladium Complexes in C-C Suzuki-Miyaura Couplings, vol.47, pp.13843-13848, 2018.

V. Pandarus, D. Desplantier-giscard, G. Gingras, R. Ciriminna, P. Demma-carà et al., Enhanced Heterogeneously Catalyzed Suzuki-Miyaura Reaction over SiliaCat Pd(0), Tetrahedron Lett, vol.54, pp.4712-4716, 2013.

J. A. Bennett, A. J. Kristof, V. Vasudevan, J. Genzer, J. Srogl et al., Microfluidic Synthesis of Elastomeric Microparticles: A Case Study in Catalysis of Palladium-Mediated Cross-Coupling, AIChE J, vol.64, pp.3188-3197, 2018.

J. A. Widegren and R. G. Finke, A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts, J. Mol. Catal, vol.191, pp.187-207, 2003.

N. T. Phan, . Van-der, M. Sluys, and C. W. Jones, On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings-Homogeneous or Heterogeneous Catalysis. A Critical Review, Adv. Synth. Catal, vol.348, pp.609-679, 2006.

A. F. Schmidt, A. A. Kurokhtina, and E. V. Larina, Simple kinetic method for distinguishing between homogeneous and heterogeneous mechanisms of catalysis, illustrated by the example of "ligand-free" Suzuki and Heck reactions of aryl iodides and aryl bromides, Kinet. Catal, vol.53, pp.84-90, 2012.

A. F. Schmidt and A. A. Kurokhtina, Distinguishing between the homogeneous and heterogeneous mechanisms of catalysis in the Mizoroki-Heck and Suzuki-Miyaura reactions: Problems and prospects, Kinet. Catal, vol.53, pp.714-730, 2012.

M. B. Thathagar, J. E. Ten-elshof, and G. Rothenberg, Pd Nanoclusters in C-C Coupling Reactions: Proof of Leaching, Angew. Chem. Int. Ed, vol.45, pp.2886-2890, 2006.

E. M. Barreiro, Z. Hao, L. A. Adrio, J. R. Van-ommen, K. Hellgardt et al., Spatial, temporal and quantitative assessment of catalyst leaching in continuous flow, Catal. Today, vol.308, pp.64-70, 2018.

A. Bourouina, V. Meille, and C. De-bellefon, A flow split test to discriminating between heterogeneous and homogeneous contributions in Suzuki coupling, J. Flow Chem, vol.8, pp.117-121, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094809

G. Budroni, A. Corma, H. García, and A. Primo, Pd Nanoparticles Embedded in Sponge-like Porous Silica as a Suzuki-Miyaura Catalyst: Similarities and Differences with Homogeneous Catalysts, J. Catal, vol.251, pp.345-353, 2007.

J. D. Webb, S. Macquarrie, K. Mceleney, and C. M. Crudden, Mesoporous Silica-Supported Pd Catalysts: An Investigation into Structure, Activity, Leaching and Heterogeneity, J. Catal, vol.252, pp.97-109, 2007.

D. J. Snelders, G. Van-koten, and R. J. Klein-gebbink, Hexacationic Dendriphos Ligands in the Pd-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction: Scope and Mechanistic Studies, J. Am. Chem. Soc, vol.131, pp.11407-11416, 2009.

J. Y. Lee, R. J. Tzeng, M. C. Wang, and H. M. Lee, Application of a zwitterionic palladium complex as a metal precursor of recyclable palladium nanoparticles for catalyzing Suzuki-Miyaura coupling reactions, Inorg. Chim. Acta, vol.464, pp.74-80, 2017.

O. N. Gorunova, I. M. Novitskiy, Y. K. Grishin, I. P. Gloriozov, V. A. Roznyatovsky et al., Applying the Mercury Poisoning Test to Palladacycle-Catalyzed Reactions, One Should Not Consider the Common Misconception of Mercury(0) Selectivity, Organometallics, vol.37, pp.2842-2858, 2018.

S. Phillips and P. Kauppinen, The Use of Metal Scavengers for Recovery of Palladium Catalyst from Solution, Platin. Met. Rev, vol.54, pp.69-70, 2010.

L. Huang, T. P. Ang, Z. Wang, J. Tan, J. Chen et al., On the Roles of Solid-Bound Ligand Scavengers in the Removal of Palladium Residues and in the Distinction between Homogeneous and Heterogeneous Catalysis, Inorg. Chem, vol.50, pp.2094-2111, 2011.

J. M. Richardson and C. W. Jones, Strong Evidence of Solution-Phase Catalysis Associated with Palladium Leaching from Immobilized Thiols during Heck and Suzuki Coupling of Aryl Iodides, Bromides, and Chlorides, J. Catal, vol.251, pp.80-93, 2007.

G. Collins, M. Schmidt, C. O'dwyer, G. Mcglacken, and J. D. Holmes, Enhanced Catalytic Activity of High-Index Faceted Palladium Nanoparticles in Suzuki-Miyaura Coupling Due to Efficient Leaching Mechanism, ACS Catal, vol.4, pp.3105-3111, 2014.

I. P. Beletskaya, A. N. Kashin, I. A. Khotina, and A. R. Khokhlov, Efficient and Recyclable Catalyst of Palladium Nanoparticles Stabilized by Polymer Micelles Soluble in Water for Suzuki-Miyaura Reaction, Ostwald Ripening Process with Palladium Nanoparticles, Synlett, pp.1547-1552, 2008.

J. J. Davis and Y. Hanyu, Mechanistic Studies of AFM Probe-Driven Suzuki and Heck Molecular Coupling, Nanotechnology, p.265302, 2010.

A. F. Lee, P. J. Ellis, I. J. Fairlamb, and K. Wilson, Surface catalysed Suzuki-Miyaura crosscoupling by Pd nanoparticles: An operando XAS study, Dalton Trans, vol.39, pp.10473-10482, 2010.

P. J. Ellis, I. J. Fairlamb, S. F. Hackett, K. Wilson, and A. F. Lee, Evidence for the Surface-Catalyzed Suzuki-Miyaura Reaction over Palladium Nanoparticles: An Operando XAS Study, Angew. Chem. Int. Ed, vol.49, pp.1820-1824, 2010.

J. B. Brazier, B. N. Nguyen, L. A. Adrio, E. M. Barreiro, W. P. Leong et al., Catalysis in flow: Operando study of Pd catalyst speciation and leaching, Catal. Today, vol.229, pp.95-103, 2014.

M. Weck and C. W. Jones, Mizoroki-Heck Coupling Using Immobilized Molecular Precatalysts: Leaching Active Species from Pd Pincers, Entrapped Pd Salts, and Pd NHC Complexes, Inorg. Chem, vol.46, pp.1865-1875, 2007.

, Concentration of 4-iodoacetophenone (mol l -1 ) or A Concentration of Pd(Ar)-(I)(L) 2 (mol l -1 min -1 ) or X2 Concentration of boronate (mol l -1 ) or B Or X3

, Or X4 (mol l -1 ) Concentration of the broric product (mol l -1 ) Or C Concentration of NaI (mol l -1 ) Or I Concentration of the reaction product or P

, Activation energy for each elementary step (J/mol) Kinetic constants of the reaction elementary steps Ideal gas constant (J mol -1 K -1 )

, Reaction rates of elementary steps (mol l -1 min -1 )

, Initial reaction rates of elementary steps (mol l -1 min -1 )

N. Schneider, D. M. Lowe, R. A. Sayle, M. A. Tarselli, and G. A. Landrum, Big Data from Pharmaceutical Patents: A Computational Analysis of Medicinal Chemists' Bread and Butter, J. Med. Chem, vol.59, issue.9, pp.4385-4402, 2016.

R. F. Heck, Palladium-catalyzed reactions of organic halides with olefins, Acc. Chem. Res, vol.12, issue.4, pp.146-151, 1979.

E. Negishi, Magical Power of Transition Metals: Past, Present, and Future (Nobel Lecture), Angew. Chem. Int. Ed, vol.50, issue.30, pp.6738-6764, 2011.

A. Suzuki, Cross-Coupling Reactions Of Organoboranes: An Easy Way To Construct C C Bonds (Nobel Lecture), Angew. Chem. Int. Ed, vol.50, issue.30, pp.6722-6737, 2011.

X. Wu, P. Anbarasan, H. Neumann, and M. Beller, From Noble Metal to Nobel Prize: Palladium-Catalyzed Coupling Reactions as Key Methods in Organic Synthesis, Angew. Chem. Int. Ed, vol.49, issue.48, pp.9047-9050, 2010.

J. A. Widegren and R. G. Finke, A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions, J. Mol. Catal. Chem, vol.198, issue.1, pp.317-341, 2003.

N. T. Phan, M. Van-der, C. W. Sluys, and . Jones, On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings -Homogeneous or Heterogeneous Catalysis, A Critical Review, Adv. Synth. Catal, vol.348, issue.6, pp.609-679, 2006.

M. Pérez-lorenzo, Palladium Nanoparticles as Efficient Catalysts for Suzuki Cross-Coupling Reactions, J. Phys. Chem. Lett, vol.3, issue.2, pp.167-174, 2012.

A. D. Zotto and D. Zuccaccia, Metallic palladium, PdO, and palladium supported on metal oxides for the Suzuki-Miyaura cross-coupling reaction: a unified view of the process of formation of the catalytically active species in solution, Catal. Sci. Technol, vol.7, issue.18, pp.3934-3951, 2017.

C. Len, S. Bruniaux, F. Delbecq, and V. S. Parmar, Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling in Continuous Flow, Catalysts, vol.7, issue.5, p.146, 2017.

I. Hussain, J. Capricho, and M. A. Yawer, Synthesis of Biaryls via Ligand-Free Suzuki-Miyaura Cross-Coupling Reactions: A Review of Homogeneous and Heterogeneous Catalytic Developments, Adv. Synth. Catal, vol.358, issue.21, pp.3320-3349, 2016.

A. Bourouina, V. Meille, and C. De-bellefon, A flow split test to discriminating between heterogeneous and homogeneous contributions in Suzuki coupling, J. Flow Chem, vol.8, issue.3, pp.117-121, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02094809

A. Bourouina, V. Meille, and C. De-bellefon, About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction, Catalysts, vol.9, issue.1, p.60, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02081075

J. Sherwood, J. H. Clark, I. J. Fairlamb, and J. M. Slattery, Solvent effects in palladium catalysed cross-coupling reactions, Green Chem, vol.21, issue.9, pp.2164-2213, 2019.

B. Van-vaerenbergh, J. Lauwaert, J. W. Thybaut, P. Vermeir, and J. De-clercq, Pd nanoparticle and molecular Pd2+ leaching pathways for a strongly acid versus strongly basic resin supported Pd nanoparticle catalyst in Suzuki coupling, Chem. Eng. J, vol.374, pp.576-588, 2019.

C. Amatore, A. Jutand, and G. L. Duc, Kinetic Data for the Transmetalation/Reductive Elimination in Palladium-Catalyzed Suzuki-Miyaura Reactions: Unexpected Triple Role of Hydroxide Ions Used as Base, Chem. -Eur. J, vol.17, issue.8, pp.2492-2503, 2011.

C. Amatore, G. L. Duc, and A. Jutand, Mechanism of Palladium-Catalyzed Suzuki-Miyaura Reactions: Multiple and Antagonistic Roles of Anionic 'Bases' and Their Countercations, Chem. -Eur. J, vol.19, issue.31, pp.10082-10093, 2013.

A. A. Thomas, A. F. Zahrt, C. P. Delaney, and S. E. Denmark, Elucidating the Role of the Boronic Esters in the Suzuki-Miyaura Reaction: Structural, Kinetic, and Computational Investigations, J. Am. Chem. Soc, vol.140, issue.12, pp.4401-4416, 2018.

A. A. Thomas and S. E. Denmark, Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: The missing link, Science, vol.352, issue.6283, pp.329-332, 2016.

K. Matos and J. A. Soderquist, Alkylboranes in the Suzuki?Miyaura Coupling: Stereochemical and Mechanistic Studies, J. Org. Chem, vol.63, issue.3, pp.461-470, 1998.

E. V. Larina, A. A. Kurokhtina, and A. F. Schmidt, Approach to the Determination of Kinetic Order of Catalyst Deactivation: Observation of Unusual Kinetics in the Suzuki -Miyaura Reaction, Mendeleev Commun, vol.2, issue.24, pp.96-97, 2014.

P. and A. Albiñana, A new efficient, highly dispersed, Pd nanoparticulate silica supported catalyst synthesized from an organometallic precursor. Study of the homogeneous vs. heterogeneous activity in the Suzuki-Miyaura reaction, J. Catal, vol.367, pp.283-295, 2018.

G. P. Van-str?donck, M. D. Boele, P. C. Kamer, J. G. De-vries, and P. W. Van-leeuwen, Fast Palladium Catalyzed Arylation of Alkenes Using Bulky Monodentate Phosphorus Ligands, Eur. J. Inorg. Chem, vol.1999, issue.7, pp.1073-1076, 1999.

R. B. Bedford, Orthopalladated and -platinated Bulky Triarylphosphite Complexes: Synthesis, Reactivity and Application as High-Activity Catalysts for Suzuki and Stille Coupling Reactions, Chem. -Eur. J, vol.9, issue.14, pp.3216-3227, 2003.

W. A. Herrmann, V. P. Böhm, and C. Reisinger, Application of palladacycles in Heck type reactions, J. Organomet. Chem, vol.576, issue.1, pp.23-41, 1999.

G. D. Weatherbee and C. H. Bartholomew, Hydrogenation of CO2 on group VIII metals: IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru, J. Catal, vol.87, issue.2, pp.90196-90205, 1984.

M. Ku?mierz, Kinetic study on carbon dioxide hydrogenation over Ru/?-Al2O3 catalysts, Catal. Today, vol.137, issue.2, pp.429-432, 2008.

J. Fauvarque, F. Pflüger, and M. Troupel, Kinetics of oxidative addition of zerovalent palladium to aromatic iodides, J. Organomet. Chem, vol.208, issue.3, pp.86726-86727, 1981.

C. Amatore and F. Pfluger, Mechanism of oxidative addition of palladium(0) with aromatic iodides in toluene, monitored at ultramicroelectrodes, Organometallics, vol.9, issue.8, pp.2276-2282, 1990.

L. A. Perego, P. Payard, B. Haddou, I. Ciofini, and L. Grimaud, Evidence for a Cooperative Mechanism Involving Two Palladium(0) Centers in the Oxidative Addition of Iodoarenes, Chem. -Eur. J, vol.24, issue.9, pp.2192-2199, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02234410

A. A. Thomas, H. Wang, A. F. Zahrt, and S. E. Denmark, Structural, Kinetic, and Computational Characterization of the Elusive Arylpalladium(II)boronate Complexes in the Suzuki-Miyaura Reaction, J. Am. Chem. Soc, vol.139, issue.10, pp.3805-3821, 2017.

A. F. Schmidt, A. A. Kurokhtina, V. V. Smirnov, E. V. Larina, and E. V. Chechil, competing reaction method for identification of fast and slow steps of catalytic cycles: Application to heck and Suzuki reactions, Kinet. Catal, vol.53, issue.2, pp.214-221, 2012.

A. A. Braga, N. H. Morgon, G. Ujaque, and F. Maseras, Computational Characterization of the Role of the Base in the Suzuki?Miyaura Cross-Coupling Reaction, J. Am. Chem. Soc, vol.127, issue.25, pp.9298-9307, 2005.

F. Fu, A Robust and Efficient Pd3 Cluster Catalyst for the Suzuki Reaction and Its Odd Mechanism, ACS Catal, vol.7, issue.3, pp.1860-1867, 2017.

L. P. Yunker, Real-Time Mass Spectrometric Investigations into the Mechanism of the Suzuki-Miyaura Reaction, Organometallics, vol.37, issue.22, pp.4297-4308, 2018.

N. Miyaura, T. Yanagi, and A. Suzuki, The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the Presence of Bases, Synth. Commun, vol.11, issue.7, pp.513-519, 1981.

B. P. Carrow and J. F. Hartwig, Distinguishing Between Pathways for Transmetalation in Suzuki?Miyaura Reactions, J. Am. Chem. Soc, vol.133, issue.7, pp.2116-2119, 2011.

N. Miyaura and A. Suzuki, Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds, Chem. Rev, vol.95, issue.7, pp.2457-2483, 1995.

J. Louie and J. F. Hartwig, A Route to Pdo from PdII Metallacycles in Animation and Cross-Coupling Chemistry, Angew. Chem. Int. Ed. Engl, vol.35, issue.20, pp.2359-2361, 1996.

A. A. Thomas, H. Wang, A. F. Zahrt, and S. E. Denmark, Structural, Kinetic, and Computational Characterization of the Elusive Arylpalladium(II)boronate Complexes in the Suzuki-Miyaura Reaction, J. Am. Chem. Soc, vol.139, issue.10, pp.3805-3821, 2017.

I. P. Beletskaya, A. N. Kashin, N. B. Karlstedt, A. V. Mitin, A. V. Cheprakov et al., NC-palladacycles as highly effective cheap precursors for the phosphine-free Heck reactions, J. Organomet. Chem, vol.622, issue.1, pp.89-96, 2001.

A. H. De-vries, J. M. Mulders, J. H. Mommers, H. J. Henderickx, and J. G. De-vries, Homeopathic Ligand-Free Palladium as a Catalyst in the Heck Reaction. A Comparison with a Palladacycle, Org. Lett, vol.5, issue.18, pp.3285-3288, 2003.

C. G. Hill and T. W. Root, Introduction to Chemical Engineering Kinetics and Reactor Design, Second Edition, 2014.

I. Abdellah, Benzyloxycalix[8]arene: a new valuable support for NHC palladium complexes in C-C Suzuki-Miyaura couplings, Dalton Trans, vol.47, issue.39, pp.13843-13848, 2018.

T. Baran, I. Sargin, A. Mente?, and M. Kaya, Exceptionally high turnover frequencies recorded for a new chitosan-based palladium(II) catalyst, Appl. Catal. Gen, vol.523, pp.12-20, 2016.

M. Al-amin, Suzuki-Miyaura cross-coupling reactions using a low-leaching and highly recyclable gold-supported palladium material and two types of microwave equipments, Green Chem, vol.15, issue.5, pp.1142-1145, 2013.

E. Alvaro and J. F. Hartwig, Resting State and Elementary Steps of the Coupling of Aryl Halides with Thiols Catalyzed by Alkylbisphosphine Complexes of Palladium, J. Am. Chem. Soc, vol.131, issue.22, pp.7858-7868, 2009.

A. D. Zotto and D. Zuccaccia, Metallic palladium, PdO, and palladium supported on metal oxides for the Suzuki-Miyaura cross-coupling reaction: a unified view of the process of formation of the catalytically active species in solution, Catal. Sci. Technol, vol.7, issue.18, pp.3934-3951, 2017.

M. Pérez-lorenzo, Palladium Nanoparticles as Efficient Catalysts for Suzuki Cross-Coupling Reactions, J. Phys. Chem. Lett, vol.3, issue.2, pp.167-174, 2012.

N. T. Phan, M. Van-der, C. W. Sluys, and . Jones, On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings -Homogeneous or Heterogeneous Catalysis, A Critical Review, Adv. Synth. Catal, vol.348, issue.6, pp.609-679, 2006.

J. A. Widegren and R. G. Finke, A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions, J. Mol. Catal. Chem, vol.198, issue.1, pp.317-341, 2003.

A. J. Reay and I. J. Fairlamb, Catalytic C-H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis, Chem. Commun, vol.51, issue.91, pp.16289-16307, 2015.

D. Cantillo and C. O. Kappe, Immobilized Transition Metals as Catalysts for Cross-Couplings in Continuous Flow-A Critical Assessment of the Reaction Mechanism and Metal Leaching, ChemCatChem, vol.6, issue.12, pp.3286-3305, 2014.

C. Len, S. Bruniaux, F. Delbecq, and V. S. Parmar, Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling in Continuous Flow, Catalysts, vol.7, issue.5, p.146, 2017.

J. Lim, S. S. Lee, and J. Y. Ying, Mesoporous silica -supported catalysts for metathesis : application to a circulating flow reactor, Chem. Commun, vol.46, issue.5, pp.806-808, 2010.

J. Liang-cheong, D. Wong, S. Lee, J. Lim, and S. Lee, Role of grafted alkoxybenzylidene ligand in silica-supported Hoveyda-Grubbs-type catalysts, Chem. Commun, vol.51, issue.6, pp.1042-1045, 2015.

A. M. Kluwer, C. Simons, Q. Knijnenburg, J. I. Van-der, B. Vlugt et al., Catalyst recycling via specific non-covalent adsorption on modified silicas, Dalton Trans, vol.42, issue.10, pp.3609-3616, 2013.

A. F. Schmidt and A. A. Kurokhtina, Distinguishing between the homogeneous and heterogeneous mechanisms of catalysis in the Mizoroki-Heck and Suzuki-Miyaura reactions: Problems and prospects, Kinet. Catal, vol.53, issue.6, pp.714-730, 2012.

S. S. Soomro, F. L. Ansari, K. Chatziapostolou, and K. Köhler, Palladium leaching dependent on reaction parameters in Suzuki-Miyaura coupling reactions catalyzed by palladium supported on alumina under mild reaction conditions, J. Catal, vol.273, issue.2, pp.138-146, 2010.

S. J. Broadwater and D. T. Mcquade, Investigating PdEnCat Catalysis, J. Org. Chem, vol.71, issue.5, pp.2131-2134, 2006.

J. Lee, R. Tzeng, M. Wang, and H. M. Lee, Application of a zwitterionic palladium complex as a metal precursor of recyclable palladium nanoparticles for catalyzing Suzuki-Miyaura coupling reactions, Inorganica Chim. Acta, vol.464, pp.74-80, 2017.

A. V. Gaikwad, A. Holuigue, M. B. Thathagar, J. E. Elshof, and G. Rothenberg, Ion-and Atom-Leaching Mechanisms from Palladium Nanoparticles in Cross-Coupling Reactions, Chem. -Eur. J, vol.13, issue.24, pp.6908-6913, 2007.

P. J. Ellis, I. J. Fairlamb, S. F. Hackett, K. Wilson, and A. F. Lee, Evidence for the Surface-Catalyzed Suzuki-Miyaura Reaction over Palladium Nanoparticles: An Operando XAS Study, Angew. Chem. Int. Ed, vol.49, issue.10, pp.1820-1824, 2010.

J. J. Davis and Y. Hanyu, Mechanistic studies of AFM probe-driven Suzuki and Heck molecular coupling, Nanotechnology, vol.21, issue.26, p.265302, 2010.

M. Pérez-lorenzo, Palladium Nanoparticles as Efficient Catalysts for Suzuki Cross-Coupling Reactions, J. Phys. Chem. Lett, vol.3, issue.2, pp.167-174, 2012.

E. M. Barreiro, Z. Hao, L. A. Adrio, J. R. Van-ommen, K. Hellgardt et al., Spatial, temporal and quantitative assessment of catalyst leaching in continuous flow, Catal. Today, vol.308, pp.64-70, 2018.

. Levenspiel, Chemical Reaction Engineering, 1999.

F. Darvas, G. Dorman, V. Hessel, and M. , Flow Chemistry and Process Technology, Flow Chemistry, 2014.

K. Hiebler, Multistep synthesis of a valsartan precursor in continuous flow, J. Flow Chem, 2019.

K. Köhler, R. G. Heidenreich, S. S. Soomro, and S. S. Pröckl, Supported Palladium Catalysts for Suzuki Reactions: Structure Property Relationships, Optimized Reaction Protocol and Control of Palladium Leaching, Adv. Synth. Catal, vol.350, issue.18, pp.2930-2936, 2008.

A. Bourouina, V. Meille, and C. De-bellefon, About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction, Catalysts, vol.9, issue.1, p.60, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02081075

W. Han, C. Liu, and Z. Jin, Aerobic Ligand-Free Suzuki Coupling Reaction of Aryl Chlorides Catalyzed by In Situ Generated Palladium Nanoparticles at Room Temperature, Adv. Synth. Catal, vol.350, issue.3, pp.501-508, 2008.

A. Leyva-pérez, J. Oliver-meseguer, P. R. Marqués, and A. Corma, Water-Stabilized Three-and Four-Atom Palladium Clusters as Highly Active Catalytic Species in Ligand-Free C C Cross-Coupling Reactions, Angew. Chem. Int. Ed, vol.52, issue.44, pp.11554-11559, 2013.

Z. Niu, Q. Peng, Z. Zhuang, W. He, and Y. Li, Evidence of an Oxidative-Addition-Promoted Pd-Leaching Mechanism in the Suzuki Reaction by Using a Pd-Nanostructure Design, Chem. -Eur. J, vol.18, issue.32, pp.9813-9817, 2012.

G. Collins, M. Schmidt, C. O'dwyer, J. D. Holmes, and G. P. Mcglacken, The Origin of Shape Sensitivity in Palladium-Catalyzed Suzuki-Miyaura Cross Coupling Reactions, Angew. Chem. Int. Ed, vol.53, issue.16, pp.4142-4145, 2014.

A. N. Kashin, O. G. Ganina, A. V. Cheprakov, and I. P. Beletskaya, The Direct Non-Perturbing Leaching Test in the Phosphine-Free Suzuki-Miyaura Reaction Catalyzed by Palladium Nanoparticles, ChemCatChem, vol.7, issue.14, pp.2113-2121, 2015.

A. S. Sigeev, A. S. Peregudov, A. V. Cheprakov, and I. P. Beletskaya, The Palladium Slow-Release Pre-Catalysts and Nanoparticles in the 'Phosphine-Free' Mizoroki-Heck and Suzuki-Miyaura Reactions, Adv. Synth. Catal, vol.357, issue.2-3, pp.417-429, 2015.

J. A. Sullivan, K. A. Flanagan, and H. Hain, Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite, Catal. Today, vol.145, issue.1, pp.108-113, 2009.

V. P. Ananikov and I. P. Beletskaya, Toward the Ideal Catalyst: From Atomic Centers to a 'Cocktail' of Catalysts, Organometallics, vol.31, issue.5, pp.1595-1604, 2012.

E. Mieczy?ska, T. Borkowski, M. Cypryk, P. Pospiech, and A. M. Trzeciak, Palladium supported on triazolyl-functionalized polysiloxane as recyclable catalyst for Suzuki-Miyaura cross-coupling, Appl. Catal. Gen, vol.470, pp.24-30, 2014.

B. Van-vaerenbergh, The effect of the hydrotalcite structure and nanoparticle size on the catalytic performance of supported palladium nanoparticle catalysts in Suzuki cross-coupling, Appl. Catal. Gen, vol.550, pp.236-244, 2018.

S. Phillips, D. Holdsworth, P. Kauppinen, and C. M. Namara, Palladium Impurity Removal from Active Pharmaceutical Ingredient Process Streams, Johns. Matthey Technol. Rev, vol.60, issue.4, pp.277-286, 2016.

, Palladium nanoparticles supported on Smopex® metal scavengers as catalyst for carbonylative Sonogashira reactions: Synthesis of ?,?-alkynyl ketones, Appl. Catal. Gen, vol.480, pp.1-9, 2014.

S. Hübner, J. G. De-vries, and V. Farina, Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts?, Adv. Synth. Catal, vol.358, issue.1, pp.3-25, 2016.

G. E. Rindone and J. L. Rhoads, The Colors of Platinum, Palladium, and Rhodium in Simple Glasses, J. Am. Ceram. Soc, vol.39, issue.5, pp.173-180, 1956.

S. Macquarrie, J. H. Horton, J. Barnes, K. Mceleney, H. Loock et al., Visual Observation of Redistribution and Dissolution of Palladium during the Suzuki-Miyaura Reaction, Angew. Chem. Int. Ed, vol.47, issue.17, pp.3279-3282, 2008.

M. Al-amin, Suzuki-Miyaura cross-coupling reactions using a low-leaching and highly recyclable gold-supported palladium material and two types of microwave equipments, Green Chem, vol.15, issue.5, pp.1142-1145, 2013.

C. Pavia, Palladium Supported on Cross-Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions, Adv. Synth. Catal, vol.355, issue.10, 2007.

G. J. Lichtenegger, Suzuki-Miyaura coupling reactions using novel metal oxide supported ionic palladium catalysts, J. Mol. Catal. Chem, vol.426, pp.39-51, 2017.

D. , Palladium catalytic systems with hybrid pyrazole ligands in C-C coupling reactions. Nanoparticles versus molecular complexes, Catal. Sci. Technol, vol.3, issue.2, pp.475-489, 2013.

, List of abbreviations Concentration of 4-iodoacetophenone in liquid phase (mol m -3 ) Concentration of 4-iodoacetophenone on the surface of the catalyst

, Total Pd concentration in the liquid pahse (mol m -3 )

, Active Pd concentration in the liquid pahse (mol m -3 )

, Concentration of total supported Pd on the solid (mol m -3 ) Concentration of active supported Pd on the solid

, Axial dispercion (m 2 s -1 )

, Effective diffusivity (m 2 s -1 ) Internal diameter of the reactor Kinetic constant of Pd adsorption (s -1 )

, Kinetic constant of Pd deactivation (s -1 )

, Kinetic constant of Pd leaching (mol -1 m 3 s -1 )

, Pd Pd mass inside the column (mg) ppm part per million (mg Pd /Kg solution)

, Q Liquid flow rate (ml min -1 )

, Rate of liquid Pd deactivation inside the column (mol 1 m -3 s -1 )

, Rate of liquid Pd deactivation inside the tube (mol 1 m -3 s -1 )

, Pd leaching reaction rate (mol m -3 s -1 )

J. Chen, A. N. Vasiliev, A. P. Panarello, and J. G. Khinast, Pd-leaching and Pdremoval in Pd/C-catalyzed Suzuki couplings, Appl. Catal. Gen, vol.325, issue.1, pp.76-86, 2007.

I. Hussain, J. Capricho, and M. A. Yawer, Synthesis of Biaryls via Ligand-Free Suzuki-Miyaura Cross-Coupling Reactions: A Review of Homogeneous and Heterogeneous Catalytic Developments, Adv. Synth. Catal, vol.358, issue.21, pp.3320-3349, 2016.

M. Pérez-lorenzo, Palladium Nanoparticles as Efficient Catalysts for Suzuki Cross-Coupling Reactions, J. Phys. Chem. Lett, vol.3, issue.2, pp.167-174, 2012.

N. T. Phan, M. Van-der, C. W. Sluys, and . Jones, On the Nature of the Active Species in Palladium Catalyzed Mizoroki-Heck and Suzuki-Miyaura Couplings -Homogeneous or Heterogeneous Catalysis, A Critical Review, Adv. Synth. Catal, vol.348, issue.6, pp.609-679, 2006.

G. Rexwinkel, A. B. Heesink, and W. P. Van-swaaij, Mass transfer in packed beds at low Peclet numbers-wrong experiments or wrong interpretations?, Chem. Eng. Sci, vol.52, issue.21, p.242, 1997.

, Advances in Electrochemistry and Electrochemical Engineering, vol.11, 1978.

V. Pandarus, Enhanced heterogeneously catalyzed Suzuki-Miyaura reaction over SiliaCat Pd(0), Tetrahedron Lett, vol.54, issue.35, pp.4712-4716, 2013.

M. Pagliaro, V. Pandarus, F. Béland, R. Ciriminna, G. Palmisano et al., A new class of heterogeneous Pd catalysts for synthetic organic chemistry, Catal. Sci. Technol, vol.1, issue.5, pp.736-739, 2011.

B. Van-vaerenbergh, The effect of the hydrotalcite structure and nanoparticle size on the catalytic performance of supported palladium nanoparticle catalysts in Suzuki cross-coupling, Appl. Catal. Gen, vol.550, pp.236-244, 2018.

M. Al-amin, Suzuki-Miyaura cross-coupling reactions using a low-leaching and highly recyclable gold-supported palladium material and two types of microwave equipments, Green Chem, vol.15, issue.5, pp.1142-1145, 2013.

J. A. Sullivan, K. A. Flanagan, and H. Hain, Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite, Catal. Today, vol.145, issue.1, pp.108-113, 2009.

S. Macquarrie, J. H. Horton, J. Barnes, K. Mceleney, H. Loock et al., Visual Observation of Redistribution and Dissolution of Palladium during the Suzuki-Miyaura Reaction, Angew. Chem. Int. Ed, vol.47, issue.17, pp.3279-3282, 2008.

R. G. Heidenreich, J. G. Krauter, J. Pietsch, and K. Köhler, Control of Pd leaching in Heck reactions of bromoarenes catalyzed by Pd supported on activated carbon, J. Mol. Catal. Chem, pp.499-509, 2002.

V. P. Ananikov and I. P. Beletskaya, Toward the Ideal Catalyst: From Atomic Centers to a 'Cocktail' of Catalysts, Organometallics, vol.31, issue.5, pp.1595-1604, 2012.

F. Dyson, A meeting with Enrico Fermi, Nature, vol.427, 2004.

S. S. Soomro, F. L. Ansari, K. Chatziapostolou, and K. Köhler, Palladium leaching dependent on reaction parameters in Suzuki-Miyaura coupling reactions catalyzed by palladium supported on alumina under mild reaction conditions, J. Catal, vol.273, issue.2, pp.138-146, 2010.

, In order to determine the value of axial dispersion coefficient and the liquid volume in the tracer experiment (uracil (Sigma Aldrich) as a tracer that is not adsorbed by the functionalized C18 Silica), then a dispersive packed bed reactor model was used to estimate the porosity and the axial dispersion, vol.1

, Optimized step response profile of normalized concentration at column outlet Conditions: Q L =0.46 ml/min, Column: length 5 cm

. Levenspiel, Chemical Reaction Engineering, 1999.