M. Rocek, Linearizing the Volkov-Akulov Model

, Phys. Rev. Lett, vol.41, issue.3, p.92, 1978.

U. Lindstrom and &. Rocek, CONSTRAINED LOCAL SUPERFIELDS", Phys. Rev, vol.19, issue.3, p.92, 1979.

R. Casalbuoni, S. Curtis, D. Dominici, F. Feruglio, and &. Gatto, Nonlinear Realization of Supersymmetry Algebra From Supersymmetric Constraint", Phys. Lett, vol.220, issue.3, p.92, 1989.

Z. Komargodski and &. Seiberg, From Linear SUSY to Constrained Superfields

, JHEP, vol.09, p.94, 2009.

S. M. Kuzenko-&-s and . Tyler, On the Goldstino actions and their symmetries

, JHEP 05, vol.8, p.92, 2011.

D. V. Volkov-&-v and . Akulov, Is the Neutrino a Goldstone Particle?, Phys. Lett, vol.46, issue.3, p.92, 1973.

G. Agata, E. Dudas, and &. Farakos, On the origin of constrained superfields

, JHEP 05, vol.9, p.49, 2016.

E. Dudas, G. Gersdorff, D. M. Ghilencea, S. Lavignac, and &. Parmentier, On non-universal Goldstino couplings to matter"; Nucl. Phys. B855, vol.4, p.9, 2012.

I. M. Antoniadis-&-d and . Ghilencea, Low-scale SUSY breaking and the (s)goldstino physics", Nucl. Phys, vol.870, p.9, 2013.

D. M. Ghilencea, Comments on the nilpotent constraint of the goldstino superfield

, Mod. Phys. Lett, vol.31, p.9, 2016.

A. A. Starobinsky, A New Type of Isotropic Cosmological Models Without Singularity", Phys. Lett, vol.91, p.9, 1980.

B. Whitt, Fourth Order Gravity as General Relativity Plus Matter

, Phys. Lett, vol.145, p.9, 1984.

S. Ferrara, R. Kallosh, and &. A. Van-proeyen, On the Supersymmetric Completion of R + R 2 Gravity and, Cosmology, vol.11, p.107, 2013.

I. Antoniadis, E. Dudas, S. Ferrara, and &. Sagnotti, The Volkov-Akulov-Starobinsky supergravity, Phys. Lett, vol.733, p.93, 2014.

I. Antoniadis and &. Markou, The coupling of Non-linear Supersymmetry to Supergravity", Eur. Phys. J. C75, vol.4, p.9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01242943

S. Sugimoto, Anomaly cancellations in type I D-9 -anti-D-9 system and the USp(32) string theory", Prog. Theor. Phys, vol.102, p.9, 1999.

I. Antoniadis, E. Dudas, and &. Sagnotti, Brane supersymmetry breaking", Phys. Lett, vol.464, p.9, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00009510

E. Dudas and &. Mourad, Consistent gravitino couplings in nonsupersymmetric strings, Phys. Lett, vol.514, p.9, 2001.

G. Pradisi and &. Riccioni, Geometric couplings and brane supersymmetry breaking

, Nucl. Phys, vol.615, p.9, 2001.

R. Kallosh, F. &. Quevedo, and . Uranga, String Theory Realizations of the Nilpotent Goldstino, JHEP, vol.12, p.9, 2015.

B. Vercnocke and &. Wrase, Constrained superfields from an anti-D3-brane in KKLT"; JHEP 08, vol.4, p.9, 2016.

R. Kallosh, B. Vercnocke, and &. Wrase, String Theory Origin of Constrained Multiplets"; JHEP 09, vol.4, p.9, 2016.

I. Bandos, M. Heller, S. M. Kuzenko, L. Martucci, and &. Sorokin, The Goldstino brane, the constrained superfields and matter in N = 1 supergravity, vol.4, p.9, 2016.

P. Fayet, . Fermi-bose, and . Hypersymmetry,

, Nucl. Phys, vol.113, issue.9, p.28, 1976.

I. Antoniadis, H. &. Partouche, and . Taylor, Spontaneous breaking of N=2 global supersymmetry, hep-th/9512006. 4, 5, 9, vol.372, p.35, 1996.

J. Bagger and &. Galperin, A New Goldstone multiplet for partially broken supersymmetry", Phys. Rev, vol.55, p.45, 1997.

E. A. Ivanov-&-b and . Zupnik, Modified N=2 supersymmetry and Fayet-Iliopoulos terms

, Phys. Atom. Nucl, vol.62, p.1110, 1999.

I. Antoniadis, J. P. Derendinger, and &. Maillard, Nonlinear N=2 Supersymmetry, Effective Actions and Moduli Stabilization"; Nucl. Phys. B808, vol.5, p.41, 2009.

N. Ambrosetti, I. Antoniadis, J. P. Derendinger, and &. Tziveloglou, Nonlinear Supersymmetry, Brane-bulk Interactions and Super-Higgs without Gravity"; Nucl. Phys. B835, vol.46, p.49, 2010.

P. Fayet and &. Iliopoulos, Spontaneously Broken Supergauge Symmetries and Goldstone Spinors", Phys. Lett, vol.51, p.11, 1974.

J. Bagger and &. Galperin, Matter couplings in partially broken extended supersymmetry", Phys. Lett, vol.336, p.11, 1994.

J. Bagger and &. Galperin, The Tensor Goldstone multiplet for partially broken supersymmetry, Phys. Lett, vol.412, p.45, 1997.

B. De-wit and &. J. Van-holten, Multiplets of Linearized SO, issue.2

, Nucl. Phys, vol.155, p.24, 1979.

U. Lindstrom and &. Rocek, Scalar Tensor Duality and N=1, N=2 Nonlinear Sigma Models"; Nucl. Phys. B222, vol.5, p.29, 1983.

A. Karlhede, U. Lindstrom, and &. Rocek, Selfinteracting Tensor Multiplets in N = 2 Superspace, Phys. Lett, vol.147, p.24, 1984.

N. J. Hitchin, A. Karlhede, U. Lindstrom, and &. Rocek, Hyperkahler Metrics and Supersymmetry

, Commun. Math. Phys, vol.108, p.24, 1987.

I. Antoniadis, J. Derendinger, and &. Markou, Nonlinear N = 2 global supersymmetry"; JHEP 06, vol.29, p.33, 2017.

A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, and &. E. Sokatchev, Unconstrained N=2 Matter, Yang-Mills and Supergravity Theories in Harmonic Superspace

, Class. Quant. Grav, vol.1, p.127, 1984.

A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky-&-e, and . Sokatchev, , vol.13, p.28, 2001.

S. Ferrara-&-p.-van-nieuwenhuizen, Noether Coupling of Massive Gravitinos to N = 1 Supergravity, vol.127, p.46, 1983.

S. Ferrara, L. Girardello, and &. Porrati, Minimal Higgs branch for the breaking of half of the supersymmetries in N=2 supergravity

, Phys. Lett, vol.366, p.14, 1996.

S. Ferrara, L. Girardello, and &. Porrati, Spontaneous breaking of N=2 to N=1 in rigid and local supersymmetric theories", Phys. Lett, vol.376, p.35, 1996.

P. Fre, L. Girardello, I. Pesando, and &. Trigiante, Spontaneous N=2 -> N=1 local supersymmetry breaking with surviving compact gauge group

, Nucl. Phys, vol.493, p.14, 1997.

J. Louis, P. Smyth, and &. Triendl, Spontaneous N=2 to N=1 Supersymmetry Breaking in Supergravity and Type II String Theory"; JHEP 02, vol.6, p.14, 2010.

J. Louis, P. Smyth, and &. Triendl, The N=1 Low-Energy Effective Action of Spontaneously Broken N=2 Supergravities", JHEP, vol.10, p.14, 2010.

T. Hansen and &. J. Louis, Examples of N = 2 to N = 1 supersymmetry breaking

, JHEP, vol.11, p.14, 2013.

I. Antoniadis, J. Derendinger, and &. Markou, , vol.6, p.14

K. H. Choi-&-s and . Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry"; JHEP 01, vol.15, p.64, 2016.

D. E. Kaplan and &. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev, vol.93, p.64, 2016.

G. F. Giudice and &. Mccullough, A Clockwork Theory"; JHEP 02, vol.15, p.64, 2017.

N. Craig, I. G. Garcia, and &. D. Sutherland, Disassembling the Clockwork Mechanism", JHEP, vol.10, p.15, 2017.

G. F. Giudice and &. Mccullough, , vol.6, p.15

K. Choi, S. H. Im-&-c, and . Shin, General Continuum Clockwork, vol.6, p.15, 2017.

G. F. Giudice, Y. Kats, M. Mccullough, R. Torre, and &. A. Urbano, Clockwork / Linear Dilaton: Structure and Phenomenology, vol.6, p.15, 2017.

I. Antoniadis, A. Arvanitaki, S. Dimopoulos, and &. Giveon, Phenomenology of TeV Little String Theory from Holography", Phys. Rev. Lett, vol.108, p.63, 2012.

O. Aharony, M. Berkooz, D. Kutasov, and &. Seiberg, Linear dilatons, NS fivebranes and holography", JHEP, vol.10, p.63, 1998.

A. Giveon, D. Kutasov, and &. Pelc, Holography for noncritical superstrings", JHEP, vol.10, p.61, 1999.

A. Giveon and &. Kutasov, Little string theory in a double scaling limit", JHEP, vol.10, p.61, 1999.

O. Aharony, A. Giveon, and &. Kutasov, LSZ in LST"; Nucl. Phys. B691, vol.15, p.61, 2004.

N. Seiberg, New theories in six-dimensions and matrix description of M theory on T**5 and T**, vol.5

, Phys. Lett, vol.408, p.61, 1997.

M. Berkooz, M. Rozali, and &. Seiberg, Matrix description of M theory on T**4 and T**5", Phys. Lett, vol.408, p.61, 1997.

I. Antoniadis, A. Delgado, C. Markou, and &. S. Pokorski, The effective supergravity of Little String Theory", Eur. Phys. J. C78, vol.7, p.15, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01719687

A. Kehagias and &. Riotto, The Clockwork Supergravity"; JHEP 02, vol.7, p.15, 2018.

A. H. Chamseddine and &. Nicolai, Coupling the SO(2) Supergravity Through Dimensional Reduction", Phys. Lett. 96B, vol.7, p.54, 1980.

E. Cremmer, Proceedings, Superspace and supergravity* 267-282) and Paris Ec. Norm. Sup. -LPTENS 80-17 (80,rec, Supergravities in diverse dimensions, vol.1, p.54, 1980.

R. Auria, E. Maina, T. Regge, and &. Fre, Geometrical First Order Supergravity in Five Space-time Dimensions", Annals Phys, vol.135, p.54, 1981.

M. Gunaydin, G. K. Sierra-&-p, and . Townsend, The Geometry of N=2 Maxwell-Einstein Supergravity and Jordan Algebras"; Nucl. Phys. B242, vol.7, p.55, 1984.

M. Gunaydin, G. K. Sierra-&-p, and . Townsend, Gauging the d = 5 Maxwell-Einstein Supergravity Theories: More on Jordan Algebras

, Nucl. Phys, vol.253, issue.7, p.60, 1984.

M. Gunaydin, G. K. Sierra-&-p, and . Townsend, Vanishing Potentials in Gauged N = 2 Supergravity: An Application of Jordan Algebras", Phys. Lett, vol.144, p.60, 1984.

I. Antoniadis, A. Delgado, C. Markou, and &. S. Pokorski, , vol.7, p.16

A. Salam and J. A. Strathdee, Supersymmetry and Nonabelian Gauges

, Phys. Lett, vol.51, p.21, 1974.

R. Grimm, M. Sohnius, and &. Wess, Extended Supersymmetry and Gauge Theories

, Nucl. Phys, vol.133, p.18, 1978.

J. P. Derendinger, Lecture Notes on Globally Supersymmetric Theories in Four and Two Dimensions, p.19

S. Ferrara, J. Wess, and &. Zumino, Supergauge Multiplets and Superfields", Phys. Lett, vol.51, p.21, 1974.

W. Siegel, Gauge Spinor Superfield as a Scalar Multiplet, Phys. Lett, vol.85, p.21, 1979.

P. Fayet, Spontaneous Generation of Massive Multiplets and Central Charges in Extended Supersymmetric Theories"; Nucl. Phys. B149, p.28, 1979.

L. Alvarez-gaume and &. D. Freedman, Geometrical Structure and Ultraviolet Finiteness in the Supersymmetric Sigma Model

, Commun. Math. Phys, vol.80, p.29, 1981.

E. Witten, Dynamical Breaking of Supersymmetry"; Nucl. Phys. B188, p.34, 1981.

J. Hughes, J. Liu, and &. Polchinski, Supermembranes"; Phys. Lett, vol.180, p.34, 1986.

J. Hughes and &. Polchinski, Partially Broken Global Supersymmetry and the Superstring"; Nucl. Phys. B278, p.34, 1986.

M. A. Rocek-&-a and . Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions, Phys. Rev, vol.59, p.106001, 1999.

H. Partouche and &. Pioline, Partial spontaneous breaking of global supersymmetry

, Nucl. Phys. Proc. Suppl, vol.56, pp.322-327, 1997.

K. Fujiwara, H. Itoyama, and &. Sakaguchi, Partial breaking of N=2 supersymmetry and of gauge symmetry in the U(N) gauge model"; Nucl. Phys. B723, pp.33-52, 2005.

S. Ferrara, M. Porrati, and &. Sagnotti, N = 2 Born-Infeld attractors, JHEP, vol.12, p.65, 2014.

S. Ferrara, M. Porrati, A. Sagnotti, R. Stora, and &. Yeranyan, Generalized Born-Infeld Actions and Projective Cubic Curves"; Fortsch. Phys. 63, pp.189-197, 2015.

E. Bergshoeff, S. Cucu, T. Wit, J. Gheerardyn, R. Halbersma et al., Superconformal N=2, D = 5 matter with and without actions", JHEP, vol.10, p.45, 2002.

E. Bergshoeff, S. Cucu, T. De-wit, J. Gheerardyn, S. Vandoren et al., N = 2 supergravity in five-dimensions revisited, Class. Quant

. Grav, Class. Quant. Grav, vol.21, pp.3015-3042, 2004.

A. Ceresole-&-g.-dall'agata, General matter coupled N=2, D = 5 gauged supergravity"; Nucl. Phys. B585, pp.143-170, 2000.

M. Gunaydin-&-m.-zagermann, The Gauging of five-dimensional, N=2 Maxwell-Einstein supergravity theories coupled to tensor multiplets"; Nucl. Phys. B572, pp.131-150, 2000.

O. Aharony, A Brief review of 'little string theories, Class. Quant. Grav, vol.17, pp.929-938, 2000.

D. Kutasov, Introduction to little string theory

, ICTP Lect. Notes Ser, vol.7, p.61, 2002.

I. Antoniadis, S. Dimopoulos, and &. Giveon, Little string theory at a TeV"; JHEP 05, p.55, 2001.

P. Cox and &. Gherghetta, Radion Dynamics and Phenomenology in the Linear Dilaton Model"; JHEP 05, p.149, 2012.

M. Baryakhtar, Graviton Phenomenology of Linear Dilaton Geometries, Phys. Rev, vol.85, p.125019, 2012.

I. Antoniadis, N. Arkani-hamed, S. &. Dimopoulos, and . Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV", Phys. Lett, vol.436, pp.257-263, 1998.

N. Arkani-hamed, S. &. Dimopoulos, and . Dvali, The Hierarchy problem and new dimensions at a millimeter", Phys. Lett, vol.429, pp.263-272, 1998.

L. Randall-&-r and . Sundrum, A Large mass hierarchy from a small extra dimension

, Phys. Rev. Lett, vol.83, pp.3370-3373, 1999.

M. K. Awada-&-p and . Townsend, N = 4 Maxwell-einstein Supergravity in Fivedimensions and Its SU(2) Gauging"; Nucl. Phys. B255, p.64, 1985.

I. Antoniadis, S. R. Ferrara-&-t, and . Taylor, N=2 heterotic superstring and its dual theory in five-dimensions

, Nucl. Phys, vol.460, pp.489-505, 1996.

K. Benakli, (Pseudo)goldstinos, SUSY fluids, Dirac gravitino and gauginos, EPJ Web Conf, vol.71, p.12, 2014.

O. Dewolfe, D. Z. Freedman, S. S. Gubser, and &. Karch, Modeling the fifthdimension with scalars and gravity, Phys. Rev, vol.62, p.46008, 2000.

A. Aurilia, H. &. Nicolai, and . Townsend, Hidden Constants: The Theta Parameter of QCD and the Cosmological Constant of N=8 Supergravity"; Nucl. Phys. B176, p.85, 1980.

S. R. Coleman, More About the Massive Schwinger Model

, Annals Phys, vol.101, p.85, 1976.

R. Kallosh, L. Kofman, A. D. Linde, and &. A. Van-proeyen, Superconformal symmetry, supergravity and cosmology, vol.17, pp.4269-4338, 2000.


C. Markou, , p.92, 2015.

E. Dudas, S. Ferrara, A. Kehagias, and &. Sagnotti, Properties of Nilpotent Supergravity"; JHEP 09, p.217, 2015.

J. Wess and &. Bagger, , p.94, 1992.

S. J. Gates and . Ketov, Superstring-inspired supergravity as the universal source of inflation and quintessence, Phys. Lett, vol.674, pp.59-63, 2009.

S. V. Ketov, Scalar potential in F(R) supergravity", Class. Quant. Grav, vol.26, p.135006, 2009.

S. M. Kuzenko, The Fayet-Iliopoulos term and nonlinear self-duality

, Phys. Rev, vol.81, p.85036, 2010.