. La-?-cd-;-le-c4s, , vol.97, p.6

. 97%) and . Fluka, Les solutions sont préparées par pesée avec de l'eau distillée. Le pH des solutions est fixé à 1 en utilisant une solution de HCl (0.1 mol L ?1 ) et 7 grâce à un tampon phosphate

, Un spectrophotomètre UV-visible (Jasco V650) équipé avec un thermostat Peltier (ETCS-761) a été utilisé pour suivre l'évolution du spectre d'absorption du 4AA en fonction de la concentration en macrocycle dans l'eau. Les mesures ont été faites pour chaque système à quatre températures, vol.15

J. Lehn, Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture), Angew. Chem. Int. Edit, pp.89-112, 2018.

D. J. Cram, The Design of Molecular Hosts, Guests, and Their Complexes (Nobel Lecture), Angew. Chem. Int. Edit, vol.27, issue.8, pp.1009-1020, 1988.

C. J. Pedersen, The Discovery of Crown Ethers (Noble Lecture), Angew. Chem. Int. Edit, vol.27, issue.8, pp.1021-1027, 1988.

E. Weber and H. P. , A proposal for the classification and nomenclature of host-guest-type compounds, J. Inclusion Phenom, vol.1, issue.1, pp.79-85, 1983.

K. M. Kirkland, Optimization of chiral selectivity on cellulose-based highperformance liquid chromatographic columns using aprotic mobile-phase modifiers, J. Chromatogr. A, vol.718, issue.1, pp.9-26, 1995.

V. Mikhail, Y. Rekharsky, and . Inoue, Complexation Thermodynamics of Cyclodextrins, Chem. Rev, vol.98, issue.5, pp.1875-1918, 1998.

R. Guo, R. Wang, J. Yin, T. Jiao, H. Huang et al., Fabrication and Highly Efficient Dye Removal Characterization of Beta-Cyclodextrin-Based Composite Polymer Fibers by Electrospinning, Nanomaterials, vol.9, issue.1, p.127, 2019.

K. Akiyoshi, A. Ueminami, S. Kurumada, and Y. Nomura, Self-Association of Cholesteryl-Bearing Poly(l-lysine) in Water and Control of Its Secondary Structure by Host-Guest Interaction with Cyclodextrin, Macromolecules, vol.33, issue.18, pp.6752-6756, 2000.

X. Luo, C. Ci, J. Li, K. Lin, S. Du et al., 4-aminoazobenzene modified natural glucomannan as a green eco-friendly inhibitor for the mild steel in 0.5 M HCl solution, Corr. Sci, vol.151, pp.132-142, 2019.

J. Szejtli, Introduction and General Overview of Cyclodextrin Chemistry, Chem. Rev, vol.98, issue.5, pp.1743-1754, 1998.

. Bibliographie,

J. Vicens and V. Bohmer, Calixarenes : a versatile class of macrocyclic compounds. Number v. 3 in Topics in inclusion science

. Boston, , 1991.

Y. Ho-ko, E. Kim, I. Hwang, and K. Kim, Supramolecular assemblies built with host-stabilized charge-transfer interactions, Chem. Commun, vol.0, issue.13, pp.1305-1315, 2007.

L. Yuan, R. Wang, and D. H. Macartney, Binding Modes of Cucurbit[6]uril and Cucurbit[7]uril with a Tetracationic Bis(viologen) Guest, J. Org. Chem, vol.72, issue.12, pp.4539-4542, 2007.

C. Márquez, R. R. Hudgins, and W. M. Nau, Mechanism of Host-Guest Complexation by Cucurbituril, J. Am. Chem. Soc, vol.126, issue.18, pp.5806-5816, 2004.

M. L. Bender and M. Komiyama, Cyclodextrin Chemistry. Reactivity and Structure : Concepts in Organic Chemistry, 1978.

J. Szejtli, Cyclodextrin Technology, 1988.

M. Jack, M. Harrowfield, B. J. Mocerino, B. W. Peachey, A. H. Skelton et al., Rare-earth-metal solvent extraction with calixarene phosphates, J. Chem. Soc, vol.0, issue.8, pp.1687-1699, 1996.

A. Pocchini and . Ungaro, Comprehensive Supramolecular Chemistry, 1996.

A. Douhal, Ultrafast Guest Dynamics in Cyclodextrin Nanocavities, Chem. Rev, vol.104, issue.4, pp.1955-1976, 2004.

D. Guo, K. Wang, and Y. Liu, Selective binding behaviors of psulfonatocalixarenes in aqueous solution, J. Incl. Phenom. Macrocycl. Chem, vol.62, issue.1, pp.1-21, 2008.

B. Liu, H. Zhou, S. Zhou, and J. Yuan, Macromolecules based on recognition between cyclodextrin and guest molecules : Synthesis, properties and functions, Eur. Polym. J, vol.65, pp.63-81, 2015.

G. Raffaini and F. Ganazzoli, Hydration and flexibility of ?-, ?-, ?and ?-cyclodextrin : A molecular dynamics study, Chem. Phys, vol.333, issue.2, pp.128-134, 2007.

K. Gessler, I. Usón, T. Takaha, N. Krauss, S. M. Smith et al., V-Amylose at atomic resolution : X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose), pp.4246-4251, 1999.

G. Filippini, Simulation moléculaire de monocouches auto-assemblées sur l'or, 2013.

M. Singh, R. Sharma, and U. Banerjee, Biotechnological applications of cyclodextrins, Biotechnol. Adv, vol.20, issue.5, pp.341-359, 2002.

Z. Liu, F. Wang, J. Ren, and X. Qu, A series of MOF/Cebased nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria, Biomaterials, vol.208, pp.21-31, 2019.

G. Astray, J. C. Mejuto, J. Morales, R. Rial-otero, and J. Simal-gándara, Factors controlling flavors binding constants to cyclodextrins and their applications in foods, Food Res. Int, vol.43, issue.4, pp.1212-1218, 2010.

H. J. Buschmann and S. Eckhard, Applications of cyclodextrins in cosmetic products : A review, J. Cosmet. Sci, issue.53, pp.185-191, 2002.

A. R. Hedges, Industrial Applications of Cyclodextrins, Chem. Rev, vol.98, issue.5, pp.2035-2044, 1998.

D. Guo and Y. Liu, Supramolecular Chemistry of p-Sulfonatocalix[n]arenes and Its Biological Applications, Acc. Chem. Res, vol.47, issue.7, pp.1925-1934, 2014.

A. Zinke and E. Ziegler, Zur Kenntnis des Härtungsprozesses von Phenol-Formaldehyd-Harzen, X. Mitteilung. Ber. Dtsch. Chem. Ges, vol.77, issue.3-4, pp.264-272, 1944.

C. , D. Gutsche, and R. Muthukrishnan, Calixarenes. 1. Analysis of the product mixtures produced by the base-catalyzed condensation of formaldehyde with para-substituted phenols, J. Org. Chem, vol.43, issue.25, pp.4905-4906, 1978.

. David-gutsche, Calixarenes : An Introduction. Monographs in Supramolecular Chemistry, Royal Society of Chemistry, 2008.

C. , D. Gutsche, J. Lorenz, and . Bauer, Calixarenes. 13. The conformational properties of calix, J. Am. Chem. Soc, vol.107, issue.21, pp.6052-6059, 1985.

M. Clément, Calixarènes pour la synthèse radiolytique de nanoparticules métalliques. thesis, 2017.

E. Silva, A. N. Lazar, and A. W. Coleman, Biopharmaceutical applications of calixarenes, J. Drug Deliv. Sci. Tec, vol.14, issue.1, pp.3-20, 2004.

B. Mokhtari and K. Pourabdollah, Applications of calixarene nano-baskets in pharmacology, J. Incl. Phenom. Macrocycl. Chem, vol.73, issue.1, pp.1-15, 2012.

R. Lamartine, M. Tsukada, D. Wilson, and A. Shirata, Antimicrobial activity of calixarenes, Comptes Rendus Chimie, vol.5, issue.3, pp.163-169, 2002.

T. Satish-balasaheb-nimse and . Kim, Biological applications of functionalized calixarenes, Chem. Soc. Rev, vol.42, issue.1, pp.366-386, 2013.

J. W. Cornforth, P. Hart, G. A. Nicholls, R. J. Rees, and J. A. Stock, Antituberculous Effects of Certain Surface-Active Polyoxyethylene Ethers, Brit. J. Pharm. Chemoth, vol.10, issue.1, pp.73-86, 1955.

Y. Liu, B. Han, and Y. Chen, Inclusion Complexation of Acridine Red Dye by Calixarenesulfonates and Cyclodextrins : Opposite Fluorescent Behavior, J. Org. Chem, vol.65, pp.6227-6230, 2000.

S. Shinkai, S. Mori, T. Tsubaki, T. Sone, and O. Manabe, New water-soluble host molecules derived from calix[6]arene, Tetrahedron Lett, vol.25, issue.46, pp.5315-5318, 1984.

G. Arena, R. Cali, G. Gaetano, E. Lombardo, D. Rizzarelli et al., Water soluble calix[4]arenes. A thermodynamic investigation of proton complex formation, Supramol. Chem, vol.1, issue.1, pp.19-24, 1992.

I. Yoshida, N. Yamamoto, F. Sagara, K. Ueno, D. Ishii et al., Calix[4]arene-5,11,17,23-tetrasulfonate as an Analytical Reagent for Cerium(III) Ion, Chem. Lett, vol.20, issue.12, pp.2105-2108, 1991.

Y. Liu, C. Li, D. Guo, Z. Zhong-huai-pan, and . Li, A Comparative Study of Complexation of ?-Cyclodextrin, Calix[4]arenesulfonate and Cucurbit[7]uril with Dye Guests : Fluorescence Behavior and Binding Ability, Supramol. Chem, vol.19, issue.7, pp.517-523, 2007.

D. Guo, V. D. Uzunova, K. I. Assaf, A. I. Lazar, Y. Liu et al., Inclusion of neutral guests by water-soluble macrocyclic hosts -a comparative thermodynamic investigation with cyclodextrins, calixarenes and cucurbiturils, Supramol. Chem, vol.28, pp.384-395, 2016.

N. Delorme, Elaboration de surfaces à mouillabilité photo-contrôlable. thesis, Le Mans, 2004.

R. D. and .. Photoadaptatifs, Chimie macromoléculaire et supramoléculaire, 2007.

G. S. Hartley, The Cis -form of Azobenzene, Nature, vol.140, issue.3537, p.281, 1937.

D. D. Perrin, Dissociation constants of organic bases in aqueous solution, Butterworths, 1965.

E. Diau, A New Trans-to-Cis Photoisomerization Mechanism of Azobenzene on the S1(n,?*) Surface, J. Phys. Chem. A, vol.108, issue.6, pp.950-956, 2004.

N. J. Dunn, W. H. Humphries, A. R. Offenbacher, T. L. King, and J. A. Gray, pH-Dependent cis ? trans Isomerization Rates for Azobenzene Dyes in Aqueous Solution, J. Phys. Chem. A, vol.113, issue.47, pp.13144-13151, 2009.

Y. Wang, N. Ma, Z. Wang, and X. Zhang, Photocontrolled Reversible Supramolecular Assemblies of an Azobenzene-Containing Surfactant with ?-Cyclodextrin, Angew. Chem-Ger edit, vol.119, issue.16, pp.2881-2884, 2007.

J. Griffiths, Photochemistry of azobenzene and its derivatives, Chem. Soc. Rev, vol.1, issue.4, pp.481-493, 1972.

H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume et al., Photoswitchable gel assembly based on molecular recognition, Nat. Commun, vol.3, p.603, 2012.

O. Nachtigall, C. Kördel, L. H. Urner, and R. Haag, Photoresponsive Switches at Surfaces Based on Supramolecular Functionalization with Azobenzene-Oligoglycerol Conjugates, Angew Chem-Int edit, vol.53, issue.36, pp.9669-9673, 2014.

J. Deng, X. Liu, W. Shi, C. Cheng, C. He et al., Light-Triggered Switching of Reversible and Alterable Biofunctionality via ?-Cyclodextrin/Azobenzene-Based Host-Guest Interaction, ACS Macro Lett, vol.3, issue.11, pp.1130-1133, 2014.

D. Patra, H. Zhang, S. Sengupta, and A. Sen, Dual Stimuli-Responsive, Rechargeable Micropumps via "Host-Guest" Interactions, ACS Nano, vol.7, issue.9, pp.7674-7679, 2013.

C. R. Mendonça, A. Dhanabalan, D. T. Balogh, L. Misoguti, D. S. Santos et al., Optically Induced Birefringence and Surface Relief Gratings in Composite Langmuir-Blodgett (LB) Films of Poly[4', HPDR13) and Cadmium Stearate, vol.32, pp.1493-1499, 1999.

R. Klajn, P. J. Wesson, J. M. Kyle, B. A. Bishop, and . Grzybowski, Writing Self-Erasing Images using Metastable Nanoparticle "Inks, Angew. Chem. Int. Edit, vol.48, issue.38, pp.7035-7039, 2009.

S. Serak, N. Tabiryan, R. Vergara, T. J. White, R. A. Vaia et al., Liquid crystalline polymer cantilever oscillators fueled by light, Soft Matter, vol.6, issue.4, pp.779-783, 2010.

F. Vögtle and D. Udelhofen, Sarah Abramson, and Benzion Fuchs. Photoresponsive lower-rim azobenzene substituted and bridged calix[4]arenes, J. Photoch. Photobio. A, vol.131, issue.1, pp.41-48, 2000.

P. A. Bonvallet, M. R. Mullen, P. J. Evans, K. L. Stoltz, and E. N. Story, Improved functionality and control in the isomerization of a calix[4]arenecapped azobenzene, Tetrahedron Lett, vol.52, issue.10, pp.1117-1120, 2011.

G. Venkatesh, A. Antony-muthu-prabhu, and N. Rajendiran, Azonium-Ammonium Tautomerism and Inclusion Complexation of 1-(2,4-diamino phenylazo) Naphthalene and 4-aminoazobenzene, J Fluoresc, vol.21, issue.4, pp.1485-1497, 2011.

A. M. Sanchez and R. H. De-rossi, Effect of ?-Cyclodextrin on the Thermal Cis-Trans Isomerization of Azobenzenes, J. Org. Chem, vol.61, issue.10, pp.3446-3451, 1996.

Y. Sueishi, M. Kasahara, M. Inoue, and K. Matsueda, Effects of Substituent and Solvent on Inclusion Complexation of ?-Cyclodextrins with Azobenzene Derivatives, J. Incl. Phenom. Macro, vol.46, issue.1, pp.71-75, 2003.

Y. Liu, Y. Zhao, Y. Chen, and D. Guo, Assembly behavior of inclusion complexes of ?-cyclodextrin with 4-hydroxyazobenzene and 4-aminoazobenzene, Org. Biomol. Chem, vol.3, issue.4, pp.584-591, 2005.

L. Zhang, H. Zhang, F. Gao, H. Peng, Y. Ruan et al., Host-guest interaction between fluoro-substituted azobenzene derivative and cyclodextrins, RSC Adv, vol.5, issue.16, pp.12007-12014, 2015.

P. , Bortolus and Sandra. Monti. cis .dblharw. trans Photoisomerization of azobenzene-cyclodextrin inclusion complexes, J. Phys. Chem, vol.91, pp.5046-5050, 1987.

J. Wu and L. Isaacs, Cucurbit[7]uril Complexation Drives Thermal trans-cis-Azobenzene Isomerization and Enables Colorimetric Amine Detection, Chem-Eur J, vol.15, issue.43, pp.11675-11680, 2009.

P. Wang, H. Eric, X. Hill, and . Zhang, Interfacial Supramolecular Chemistry for Stimuli-Responsive Functional Surfaces, Prog. Chem, vol.24, issue.1, pp.1-7, 2012.

H. Yang, B. Yuan, X. Zhang, and O. A. Scherman, Supramolecular Chemistry at Interfaces : Host-Guest Interactions for Fabricating Multifunctional Biointerfaces, Acc. Chem. Res, vol.47, issue.7, pp.2106-2115, 2014.

M. T. Rojas, R. Koeniger, J. F. Stoddart, and A. E. Kaifer, Supported Monolayers Containing Preformed Binding Sites. Synthesis and Interfacial Binding Properties of a Thiolated .beta.-Cyclodextrin Derivative, J. Am. Chem. Soc, vol.117, issue.1, pp.336-343, 1995.

V. Jiménez, J. Belmar, and J. B. Alderete, Determination of the Association Constant of 6-Thiopurine and Chitosan Grafted ?-Cyclodextrin, J. Incl. Phenom, vol.47, issue.1, pp.71-75, 2003.

Y. Domi, Y. Yoshinaga, K. Shimazu, and M. D. , Porter. Characterization and Optimization of Mixed Thiol-Derivatized ?-Cyclodextrin/Pentanethiol Monolayers with High-Density Guest-Accessible Cavities, Langmuir, vol.25, issue.14, pp.8094-8100, 2009.

H. Kitano, Y. Taira, and H. Yamamoto, Inclusion of Phthalate Esters by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode, Anal. Chem, vol.72, issue.13, pp.2976-2980, 2000.

H. Kitano and Y. Taira, Inclusion of Bisphenols by a Self-Assembled Monolayer of Thiolated Cyclodextrin on a Gold Electrode, Langmuir, vol.18, issue.15, pp.5835-5840, 2002.

J. Wong, -. , and M. Karttunen, The good, the bad and the user in soft matter simulations, BBA-Biomembranes, vol.1858, issue.10, pp.2529-2538, 2016.

C. Bielow, S. Aiche, S. Andreotti, and K. Reinert, MSSimulator : Simulation of Mass Spectrometry Data, J. Proteome Res, vol.10, issue.7, pp.2922-2929, 2011.

W. P. Van-hoorn and W. L. Jorgensen, Selective Anion Complexation by a Calix[4]pyrrole Investigated by Monte Carlo Simulations, J. Org. Chem, vol.64, issue.20, pp.7439-7444, 1999.

R. U. Lemieux, L. T. Delbaere, H. Beierbeck, and U. Spohr, Involvement of Water in Host-Guest Interactions, pp.231-248, 2007.

Á. Piñeiro, X. Banquy, S. Pérez-casas, E. Tovar, A. García et al., On the Characterization of Host-Guest Complexes : Surface Tension, Calorimetry, and Molecular Dynamics of Cyclodextrins with a Non-ionic Surfactant, J. Phys. Chem. B, vol.111, issue.17, pp.4383-4392, 2007.

A. Ghoufi, L. Pison, J. P. Morel, N. Morel-desrosiers, C. Bonal et al., Computational and Experimental Investigations of Supramolecular Assemblies of p-Sulfonatocalix[4]arene Organized by Weak Forces, J. Phys. Chem. B, vol.111, issue.39, pp.11478-11485, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00293450

G. Filippini, F. Goujon, C. Bonal, and P. Malfreyt, Host-Guest Complexation in the Ferrocenyl Alkanethiols-Thio ?-Cyclodextrin Mixed Self-Assembled Monolayers, J. Phys. Chem. C, vol.118, issue.6, pp.3102-3109, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00987570

Y. Yu, C. Chipot, W. Cai, and X. Shao, Molecular Dynamics Study of the Inclusion of Cholesterol into Cyclodextrins, J. Phys. Chem. B, vol.110, issue.12, pp.6372-6378, 2006.

A. Ghoufi, C. Bonal, J. P. Morel, N. Morel-desrosiers, and P. Malfreyt, Structures and Energetics of Complexes of the p-Sulfonatocalix[4]arene with Ammonium, Alkylammonium, and Tetraalkylammonium Cations in Water Using Molecular Dynamics Simulations, J. Phys. Chem. B, vol.108, issue.16, pp.5095-5104, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00159716

G. Filippini, C. Bonal, and P. Malfreyt, Why is the association of supramolecular assemblies different under homogeneous and heterogeneous conditions ?, Phys. Chem. Chem. Phys, vol.14, issue.29, pp.10122-10124, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00789520

M. Griebel, S. Knapek, and G. Zumbusch, Numerical Simulation in Molecular Dynamics : Numerics, Algorithms, Parallelization, Applications. Texts in Computational Science and Engineering, 2007.

P. Michael, D. J. Allen, and . Tildesley, Computer Simulation of Liquids : Second Edition, 2017.

J. G. Kirkwood, Statistical Mechanics of Fluid Mixtures, J. Chem. Phys, vol.3, issue.5, pp.300-313, 1935.

L. Garnier, J. Devémy, C. Bonal, and P. Malfreyt, Calculations of potential of mean force : application to ion-pairs and host-guest systems, Mol. Phys, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01849616

L. Verlet, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev, vol.159, issue.1, pp.98-103, 1967.

C. William, H. C. Swope, P. H. Andersen, K. R. Berens, and . Wilson, A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules : Application to small water clusters, J. Chem. Phys, vol.76, issue.1, pp.637-649, 1982.

M. Tuckerman, B. J. Berne, and G. J. Martyna, Reversible multiple time scale molecular dynamics, J. Chem. Phys, vol.97, issue.3, pp.1990-2001, 1992.

C. W. Gear, The numerical integration of ordinary differential equations of various orders, 1966.

C. and W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, 1971.

C. W. Gear, Algorithm 407 : DIFSUB for Solution of Ordinary Differential Equations, vol.2

, Commun. ACM, vol.14, issue.3, pp.185-190, 1971.

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, 1988.

T. Darden, D. York, and L. Pedersen, Particle mesh Ewald : An Nlog(N) method for Ewald sums in large systems, J. Chem. Phys, vol.98, issue.12, pp.10089-10092, 1993.

D. M. York, T. A. Darden, and L. G. Pedersen, The effect of long-range electrostatic interactions in simulations of macromolecular crystals : A comparison of the Ewald and truncated list methods, J. Chem. Phys, vol.99, issue.10, pp.8345-8348, 1993.

J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general amber force field, J. Comput. Chem, vol.25, issue.9, pp.1157-1174, 2004.

D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheatham et al., AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Comput. Phys. Commun, vol.91, issue.1, pp.1-41, 1995.

H. A. Lorentz, Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase, Ann. Phys. Berlin, vol.248, issue.1, pp.127-136, 1881.

J. Robert, C. J. Good, and . Hope, New Combining Rule for Intermolecular Distances in Intermolecular Potential Functions, J. Chem. Phys, vol.53, issue.2, pp.540-543, 1970.

H. Sun, COMPASS : An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds, J. Phys. Chem. B, vol.102, issue.38, pp.7338-7364, 1998.

E. L. Pollock and J. Glosli, Comments on P3m, FMM, and the Ewald method for large periodic Coulombic systems, Comput. Phys. Commun, vol.95, issue.2, pp.93-110, 1996.

L. William, C. Jorgensen, and . Ravimohan, Monte Carlo simulation of differences in free energies of hydration, J. Chem. Phys, vol.83, issue.6, pp.3050-3054, 1985.

J. , K. Buckner, and W. L. Jorgensen, Energetics and Hydration of the Constituent Ion Pairs of Tetramethylammonium Chloride, J. Am. Chem. Soc, vol.111, pp.2507-2516, 1989.

T. P. Straatsma and H. J. Berendsen, Free energy of ionic hydration : Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations, J. Chem. Phys, vol.89, issue.9, pp.5876-5886, 1988.

D. A. Pearlman, Determining the contributions of constraints in free energy calculations : Development, characterization, and recommendations, J. Chem. Phys, vol.98, issue.11, pp.8946-8957, 1993.

M. Glenn, J. P. Torrie, and . Valleau, Monte Carlo free energy estimates using non-Boltzmann sampling : Application to the sub-critical Lennard-Jones fluid, Chem. Phys. Lett, vol.28, issue.4, pp.578-581, 1974.

G. M. Torrie and J. P. Valleau, Nonphysical sampling distributions in Monte Carlo free-energy estimation : Umbrella sampling, J. Comput. Phys, vol.23, issue.2, pp.187-199, 1977.

S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, and P. A. Kollman, THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method, J. Comput. Chem, vol.13, issue.8, pp.1011-1021, 1992.

M. Souaille and B. Roux, Extension to the weighted histogram analysis method : combining umbrella sampling with free energy calculations, Comput. Phys. Commun, vol.135, issue.1, pp.40-57, 2001.

L. J. Kingsley, J. Esquivel-rodríguez, Y. Yang, D. Kihara, and M. A. Lill, Ranking protein-protein docking results using steered molecular dynamics and potential of mean force calculations, J. Comput. Chem, vol.37, issue.20, pp.1861-1865, 2016.

Y. Niu, D. Shi, L. Li, J. Guo, H. Liu et al., Revealing inhibition difference between PFI-2 enantiomers against SETD7 by molecular dynamics simulations, binding free energy calculations and unbinding pathway analysis, Sci Rep, vol.7, p.46547, 2017.

Y. Liao and . Chen, Thermodynamic Integration in 3n Dimensions without Biases or Alchemy for Protein Interactions, p.150870, 2017.

M. Lapelosa, Conformational dynamics and free energy of BHRF1 binding to Bim BH3, Biophys. Chem, vol.232, pp.22-28, 2018.

A. Ghoufi, C. Bonal, J. P. Morel, N. Morel-desrosiers, and P. Malfreyt, Gibbs Free Energy Perturbation Calculations : An Application to the Binding of Alkylammonium Cations by a Water-Soluble Calixarene, J. Phys. Chem. B, vol.108, issue.31, pp.11744-11752, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00159714

A. Ghoufi and P. Malfreyt, Calculation of the absolute thermodynamic properties of association of host-guest systems from the intermolecular potential of mean force, J. Chem. Phys, vol.125, issue.22, p.224503, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00342614

A. Ghoufi and P. Malfreyt, Entropy and enthalpy calculations from perturbation and integration thermodynamics methods using molecular dynamics simulations : applications to the calculation of hydration and association thermodynamic properties, Mol. Phys, vol.104, issue.18, pp.2929-2943, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00342612

A. Ghoufi, P. Archirel, and J. Morel, Methodology for the calculation of the potential of mean force for a cation-pi complex in water, Anne Boutin, and Patrice Malfreyt, vol.8, pp.1648-1656, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00187793

G. Filippini, F. Goujon, C. Bonal, and P. Malfreyt, Energetic Competition Effects on Thermodynamic Properties of Association between ?-CD and Fc Group : A Potential of Mean Force Approach, J. Phys. Chem. C, vol.116, issue.42, pp.22350-22358, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00786116

G. Filippini, C. Bonal, and P. Malfreyt, How does the dehydration change the host-guest association under homogeneous and heterogeneous conditions ?, Phys. Chem. Chem. Phys, vol.16, issue.18, pp.8667-8674, 2014.

H. Shinto, S. Morisada, M. Miyahara, and K. Higashitani, A Reexamination of Mean Force Potentials for the Methane Pair and the Constituent Ion Pairs of NaCl in Water, J. Chem. Eng. Jpn, vol.36, issue.1, pp.57-65, 2003.

D. Trzesniak, E. Anna-pitschna, W. F. Kunz, and . Van-gunsteren, A Comparison of Methods to Compute the Potential of Mean Force, ChemPhysChem, vol.8, issue.1, pp.162-169, 2007.

E. Darve, D. Rodríguez-gómez, and A. Pohorille, Adaptive biasing force method for scalar and vector free energy calculations, J. Chem. Phys, vol.128, issue.14, p.144120, 2008.

C. Haydock, J. C. Sharp, and F. G. Prendergast, Tryptophan-47 rotational isomerization in variant-3 scorpion neurotoxin. A combination thermodynamic perturbation and umbrella sampling study, Biophys. J, vol.57, issue.6, pp.1269-1279, 1990.

B. Thomas, B. Woolf, and . Roux, Conformational Flexibility of o-Phosphorylcholine and o-Phosphorylethanolamine : A Molecular Dynamics Study of Solvation Effects, J. Am. Chem. Soc, vol.116, issue.13, pp.5916-5926, 1994.

E. Darve and A. Pohorille, Calculating free energies using average force, J. Chem. Phys, vol.115, issue.20, pp.9169-9183, 2001.

H. Docherty, A. Galindo, C. Vega, and E. Sanz, A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate, J. Chem. Phys, vol.125, issue.7, p.74510, 2006.

M. M. Conde and C. Vega, Determining the three-phase coexistence line in methane hydrates using computer simulations, J. Chem. Phys, vol.133, issue.6, p.64507, 2010.

S. Swaminathan, S. W. Harrison, and D. L. Beveridge, Monte Carlo Studies on the Structure of a Dilute Aqueous Solution of Methane, J. Am. Chem. Soc, vol.100, issue.18, pp.5705-5715, 1978.

W. L. Jorgensen, J. K. Buckner, S. Boudon, and J. Tirado-rives, Efficient computation of absolute free energies of binding by computer simulations. Application to the methane dimer in water, J. Chem. Phys, vol.89, issue.6, pp.3742-3746, 1988.

N. Vilia-ann-payne, L. R. Matubayasi, R. M. Murphy, and . Levy,

, Monte Carlo Study of the Effect of Pressure on Hydrophobic Association, J. Phys. Chem. B, vol.101, issue.11, pp.2054-2060, 1997.

W. S. Young, C. L. Brooks, and I. , A reexamination of the hydrophobic effect : Exploring the role of the solvent model in computing the methane-methane potential of mean force, J. Chem. Phys, vol.106, issue.22, pp.9265-9269, 1997.

S. Shimizu and H. S. Chan, Temperature dependence of hydrophobic interactions : A mean force perspective, effects of water density, and nonadditivity of thermodynamic signatures, J. Chem. Phys, vol.113, issue.11, pp.4683-4700, 2000.

P. L. Geissler, C. Dellago, and D. Chandler, Kinetic Pathways of Ion Pair Dissociation in Water, J. Phys. Chem. B, vol.103, issue.18, pp.3706-3710, 1999.

M. Berkowitz, O. A. Karim, J. Andrew-mccammon, and P. J. Rossky, Sodium chloride ion pair interaction in water : computer simulation, Chem. Phys. Lett, vol.105, issue.6, pp.577-580, 1984.

J. Van-eerden, W. J. Briels, S. Harkema, and D. Feil, Potential of mean force by thermodynamic integration : Molecular-dynamics simulation of decomplexation, Chem. Phys. Lett, vol.164, issue.4, pp.370-376, 1989.

A. C. Belch, M. Berkowitz, and J. A. Mccammon, Solvation structure of a sodium chloride ion pair in water, J. Am. Chem. Soc, vol.108, issue.8, pp.1755-1761, 1986.

C. Bonal, Y. Israëli, J. Morel, and N. Morel-desrosiers, Binding of inorganic and organic cations by p -sulfonatocalix[4]arene in water : a thermodynamic study, J. Chem. Soc, issue.7, pp.1075-1078, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00319214

N. Kahwajy, A. Nematollahi, R. R. Kim, W. B. Church, and N. J. Wheate, Comparative macrocycle binding of the anticancer drug phenanthriplatin by cucurbit[n]urils, ?-cyclodextrin and para-sulfonatocalix[4]arene : a 1h NMR and molecular modelling study, J. Incl. Phenom. Macrocycl. Chem, vol.87, issue.3, pp.251-258, 2017.

Y. Liu, B. Han, and Y. Chen, Molecular Recognition and Complexation Thermodynamics of Dye Guest Molecules by Modified Cyclodextrins and Calixarenesulfonates, J. Phys. Chem. B, vol.106, issue.18, pp.4678-4687, 2002.

N. L. Pacioni, V. N. Sueldo-occello, M. Lazzarotto, and A. V. Veglia, Spectrofluorimetric determination of benzoimidazolic pesticides : Effect of p-sulfonatocalix[6]arene and cyclodextrins, Anal. Chim. Acta, vol.624, issue.1, pp.133-140, 2008.

A. Mendes, C. Bonal, N. Morel-desrosiers, J. P. Morel, and P. Malfreyt, Molecular Dynamics Simulations of p-Sulfonatocalix[4]arene Complexes with Inorganic and Organic Cations in Water : A Structural and Thermodynamic Study, J. Phys. Chem. B, vol.106, issue.17, pp.4516-4524, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00315503

A. José, A. Gámez, W. Koslowski, and . Thiel, Enhanced E ? Z photoisomerisation in 2-aminoazobenzene, RSC Adv, vol.4, issue.4, pp.1886-1889, 2013.

X. Zheng, D. Wang, Z. Shuai, and X. Zhang, Molecular Dynamics Simulations of the Supramolecular Assembly between an Azobenzene-Containing Surfactant and ?-Cyclodextrin : Role of Photoisomerization, J. Phys. Chem. B, vol.116, issue.2, pp.823-832, 2012.

H. Heinz, R. A. Vaia, H. Koerner, and B. L. Farmer, Photoisomerization of Azobenzene Grafted to Layered Silicates : Simulation and Experimental Challenges, Chem. Mater, vol.20, issue.20, pp.6444-6456, 2008.

M. Mccullagh, I. Franco, M. A. Ratner, and G. C. Schatz, DNA-Based Optomechanical Molecular Motor, J. Am. Chem. Soc, vol.133, issue.10, pp.3452-3459, 2011.

D. Barbiric, R. De-rossi, and E. Castro, Inclusion complexes of 1 :2 stoichiometry between azobenzenes and cyclodextrins : a molecular mechanics study, J. Mol. Struc-THEOCHEM, vol.537, issue.1, pp.235-243, 2001.

L. Garnier, S. Sarraute, and Y. Israëli, Christine Bonal, and Patrice Malfreyt. Associations of Water-Soluble Macrocyclic Hosts with 4-Aminoazobenzene : Impact of pH, J. Phys. Chem. B, 2018.

Y. Chen, Y. Zhang, and Y. Liu, Molecular Selective Binding and Nanofabrication of Cucurbituril/Cyclodextrin Pairs, Isr. J. Chem, vol.51, pp.515-524, 2011.

W. Tao and M. Barra, Thermodynamic study of p -sulfonated calixarene complexes in aqueous solution, J. Chem. Soc. Perk. T, vol.2, issue.9, pp.1957-1960, 1998.

E. Wagner-wysiecka, N. ?ukasik, J. F. Biernat, and E. Luboch, Azo group(s) in selected macrocyclic compounds, J. Incl. Phenom. Macrocycl. Chem, vol.90, issue.3, pp.189-257, 2018.

J. E. Prue, Ion pairs and complexes : Free energies, enthalpies, and entropies, J. Chem. Educ, vol.46, issue.1, p.12, 1969.

D. Burshtain and D. Mandler, The effect of surface attachment on ligand binding : studying the association of Mg 2+ , Ca 2+ and Sr 2+ by 1-thioglycerol and 1,4-dithiothreitol monolayers, Phys. Chem. Chem. Phys, vol.8, issue.1, pp.158-164, 2006.

G. Arena, A. Casnati, A. Contino, G. Gaetano, D. Lombardo et al., Water-Soluble Calixarene Hosts that Specifically Recognize the Trimethylammonium Group or the Benzene Ring of Aromatic Ammonium Cations : A Combined 1h NMR, Calorimetric, and Molecular Mechanics Investigation, Chem. Eur. J, vol.5, issue.2, pp.738-744, 1999.

M. José, L. Martínez, and . Martínez, Packing optimization for automated generation of complex system's initial configurations for molecular dynamics and docking, J. Comput. Chem, vol.24, issue.7, pp.819-825, 2003.

L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, PACKMOL : A package for building initial configurations for molecular dynamics simulations, J. Comput. Chem, vol.30, issue.13, pp.2157-2164, 2009.

K. Momma and F. Izumi, VESTA : a three-dimensional visualization system for electronic and structural analysis, J. Appl. Cryst, vol.41, issue.3, pp.653-658, 2008.

K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst, vol.44, issue.6, pp.1272-1276, 2011.

T. Robert, M. Downs, and . Hall-wallace, The American Mineralogist crystal structure database, Am. Mineral, vol.88, issue.1, pp.247-250, 2003.

I. Suh, H. Ohta, and Y. Waseda, High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction, J. Mater. Sci, vol.23, issue.2, pp.757-760, 1988.

. Beena-rai, P. Sathish, P. Chetan, . Malhotra, K. G. Pradip et al., Molecular Dynamic Simulations of Self-Assembled Alkylthiolate Monolayers on an Au(111) Surface, Langmuir, vol.20, issue.8, pp.3138-3144, 2004.

H. J. Kim, M. H. Lee, L. Mutihac, J. Vicens, and J. Kim, Host-guest sensing by calixarenes on the surfaces, Chem. Soc. Rev, vol.41, issue.3, pp.1173-1190, 2012.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys, vol.117, issue.1, pp.1-19, 1995.

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints : molecular dynamics of n-alkanes, J. Comput. Phys, vol.23, issue.3, pp.327-341, 1977.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals : A new molecular dynamics method, J. Appl. Phys, vol.52, issue.12, pp.7182-7190, 1981.

G. J. Martyna, D. J. Tobias, and M. L. Klein, Constant pressure molecular dynamics algorithms, J. Chem. Phys, vol.101, issue.5, pp.4177-4189, 1994.

W. Shinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Phys. Rev. B, vol.69, issue.13, p.134103, 2004.

M. E. Tuckerman, J. Alejandre, R. López-rendón, A. L. Jochim, and G. J. Martyna, A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble, J. Phys. A : Math. Gen, vol.39, issue.19, pp.5629-5651, 2006.

T. Schneider and E. Stoll, Molecular-dynamics study of a three-dimensional onecomponent model for distortive phase transitions, 1978.

B. Dünweg and W. Paul, Brownian dynamics simulations without Gaussian random numbers, 1991.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys, vol.81, issue.8, pp.3684-3690, 1984.

F. Goujon, C. Bonal, B. Limoges, and P. Malfreyt, Molecular simulations of grafted metal-chelating monolayers : methodology, structure and energy, Mol. Phys, vol.106, issue.11, pp.1397-1411, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00513214

I. Yeh and M. L. Berkowitz, Ewald summation for systems with slab geometry, J. Chem. Phys, vol.111, issue.7, pp.3155-3162, 1999.

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water : TIP4p, J. Chem. Phys, vol.123, issue.23, p.234505, 2005.

W. L. Jorgensen, J. D. Madura, and C. J. Swenson, Optimized intermolecular potential functions for liquid hydrocarbons, J. Am. Chem. Soc, vol.106, issue.22, pp.6638-6646, 1984.

A. Prabhu, G. Venkatesh, R. K. Sankaranarayanan, S. Siva, and N. Rajendiran, Azonium-ammonium tautomerism and inclusion complexation of 4-amino-2', 3-dimethylazobenzene, J. Fluoresc, 2010.

J. P. Scharff, M. Mahjoubi, and R. Perrin, Synthesis and Acid-Base Properties of Calix4, Calix6 and Calix8arene p-Sulfonic Acids, vol.15, p.883, 1991.

I. Yoshida, N. Yamamoto, F. Sagara, D. Ishii, K. Ueno et al., Re-evaluation of the Acid Dissociation Constants of the Hydroxyl Groups in Tetrasodium 25, BCSJ, vol.26, issue.4, pp.1012-1015, 1992.

M. Nishida, D. Ishii, I. Yoshida, and S. Shinkai, Molecular Association of Water-Soluble Calixarenes with Several Stilbene Dyes and Its Application to the Facile Determination of Cationic Surfactant Concentrations, BCSJ, vol.70, issue.9, pp.2131-2140, 1997.

M. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwendeman, D. A. Ramsay et al., Molecular structures of gas-phase polyatomic molecules determined by spectroscopic methods, J. Phys. Chem. Ref. Data, vol.8, issue.3, pp.619-722, 1979.

H. Frank, O. Allen, D. G. Kennard, L. Watson, A. G. Brammer et al., Tables of Bond Lengths determined by X-ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds, pp.1-19, 1987.

A. J. Pertsin and M. Grunze, Low-Energy Structures of a Monolayer of Octadecanethiol Self-Assembled on Au, vol.10, issue.111, pp.3668-3674, 1994.

H. A. Benesi and J. H. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc, vol.71, issue.8, pp.2703-2707, 1949.

J. Rudnick and G. Gaspari, The Shapes of Random Walks, Science, vol.237, issue.4813, pp.384-389, 1987.

S. J. Sciutto, Study of the shape of random walks, J. Phys. A : Math. Gen, vol.27, issue.21, p.7015, 1994.

D. C. Rapaport, The Art of Molecular Dynamics Simulation, Google-Books, 2004.

T. Auletta, R. Menno, A. De-jong, . Mulder, C. J. Frank et al., Julius Vancso, and Laurens Kuipers. ?-Cyclodextrin Host-Guest Complexes Probed under Thermodynamic Equilibrium : Thermodynamics and AFM Force Spectroscopy, J. Am. Chem. Soc, vol.126, issue.5, pp.1577-1584, 2004.