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Abstract
Several decades after the discovery of the first debris disks and exoplanets, lots of
questions remain regarding the mechanisms of formation and evolution of plane-
tary systems. The recent progress of high-resolution high-contrast direct imaging,
illustrated by the instruments VLT/SPHERE and Gemini/GPI, enables the astro-
physicists to unveil the outer architecture (> 5 au) of young (< 200 Myr) extrasolar
systems when the dynamical interactions are frequent. This work sheds light on
the origin and dynamical evolution mechanisms of planetary systems through the
detailed study of key systems resolved with SPHERE and through the developing
of dedicated tools.

The first part of this manuscript tackles the subject of N-body simulations. Nu-
merous algorithms have been proposed and implemented, with different compro-
mises on their speed, accuracy, and versatility. Among these algorithms, SWIFT
HJS allows us to model for secular times architectures that are very different from
our Solar System. It is thus an essential tool to the study of planetary to stellar
companions with non-negligible mass ratio, which are often encountered with direct
imaging. Within my Ph.D., the functionalities of the algorithm were extended to
handle hierarchy changes and close encounters, which can play an important part in
the dynamical history of planetary systems. The code was used to study in detail
the puzzling system HD 106906, in particular, the interactions between its main
components (binary star, planet, debris disk).

In the second part of the manuscript, I introduce the subject of orbital fitting.
The observation of a system at different epochs allows theoretically the retrieval of
the orbital characteristics. However, the problem is often complex and degenerate,
in particular when the observations span a small fraction of the orbital period. The
widely used MCMC statistical approach gives robust estimates in most of the cases.
These estimates are then used to study the history and stability of the system, and
the interactions between orbits and with the environment, notably the disks. This
role of orbital fitting is here illustrated by the study of several benchmark systems
imaged with SPHERE.
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Résumé
Plusieurs décennies après l’identification des premiers disques de débris et des exo-
planètes, les mécanismes de formation et d’évolution des systèmes planétaires sont
encore loin d’être élucidés. Les récents progrès de l’imagerie directe à haute résolu-
tion et haut contraste, illustrés par les instruments VLT/SPHERE et Gemini/GPI,
nous permettent désormais de révéler et d’étudier en détail l’architecture externe (>
5 ua) des systèmes extrasolaires jeunes (< 200 Myr), à un âge où les interactions
dynamiques sont encore fréquentes. Mon travail de thèse apporte un éclairage sur
l’origine et les mécanismes d’évolution dynamique des systèmes planétaires à travers
l’étude détaillée de systèmes clefs résolus par SPHERE et le développement d’outils
de modélisations dédiés.

La première partie de ce manuscrit aborde l’étude dynamique via les simulations
N-corps. De nombreux algorithmes ont été proposés et implémentés, avec des choix
de compromis différents sur leur vitesse, leur précision et leur polyvalence. Parmi
ces algorithmes, SWIFT HJS permet de modéliser des architectures très différentes
de notre Système Solaire sur des temps séculaires. C’est donc un outil essentiel pour
étudier l’influence des planètes massives, naines brunes et compagnons stellaires
souvent rencontrés en imagerie directe. Durant ma thèse, les fonctionnalités de l’al-
gorithme ont été étendues pour pouvoir modéliser les changements de hiérarchie et
les rencontres proches, des aspects de la mécanique orbitale qui ont souvent un rôle
crucial dans l’histoire dynamique des systèmes planétaires. Ce code a notamment
été utilisé pour étudier en profondeur l’énigmatique système HD 106906 et les dif-
férentes interactions entre ses principaux composants (binaire, planète, disque de
débris).

Dans la deuxième partie du manuscrit, j’introduis la problématique de l’ajus-
tement orbital. Si l’observation d’un système à différentes époques permet théori-
quement de retrouver les caractéristiques de son orbite, le problème peut se révéler
complexe et dégénéré, en particulier quand le temps d’observation est insuffisant
pour correctement échantillonner l’orbite. L’approche statistique la plus couram-
ment adoptée, le MCMC, permet d’obtenir des estimations fiables dans la plupart
des cas. Ces estimations sont ensuite exploitées pour étudier l’histoire et la stabilité
du système et les interactions entre orbites et avec l’environnement, notamment les
disques. Ce rôle de l’ajustement orbital est ici illustré dans les études de plusieurs
systèmes de référence, imagés par SPHERE.
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Before entering into the details of my work on the dynamical study of extrasolar
systems, this chapter aims to review the present understanding of extrasolar systems,
the open questions regarding their formation and evolution, and the role taken by
the direct imaging approach. It also introduces the mathematical tools that are
needed to study orbital mechanics, along with the different mechanisms that are
known to significantly excite the orbits.

1 Extrasolar systems
Our knowledge about extrasolar systems has dramatically increased for the last two
decades. The huge samples of stars that were characterized by the latest large
surveys (Hipparcos, 2-MASS, Gaia) enable the computation of robust statistics. On
the other hand, though new planets are discovered on a daily basis, our knowledge
about the architecture of planetary systems is still sparse because a large part of
the planetary population remains undetected by the large-scale surveys. I will here
present an overlook of the present understanding of stellar and sub-stellar objects,
and in particular of the characteristics that are relevant for their dynamical study
(masses, multiplicity, separations, eccentricities...). Because of the observational
constraints induced by direct imaging (angular separation, contrast), most of the
studies that I performed targeted systems in nearby young moving groups. I will
thus begin the introduction with this topic.

1.1 Stars in Moving Groups

Most of the stars form in clusters, as these are the leftovers of the huge molecular
clouds in which star formation takes place (Porras et al. 2003). If the old age of the
Solar System does not provide robust certainties about its conditions of birth, several
features (abundances, architecture) hint for past interactions with neighboring stars,
suggesting a dense native region (Pfalzner et al. 2015). Depending on the density
and structure of these clusters, their evolution and interest significantly differ.

Stellar associations or moving groups are collections of stars that, by their clus-
tering and their similarities (chemical composition, similar velocities), are thought
to originate from a common birth. Contrarily to the globular and open clusters, the
members of moving groups are not bound. The life expectancy of the structure is
thus reduced (often less than 100 Myr). Their density is thought to be only slightly
superior to the density of the field (e.g., Fernández et al. 2008; Rodet et al. 2017).
A variety of comoving stellar groups near the Sun have been identified in the last
decades, such as the ∼ 25 Myr old β Pictoris moving group or the 50− 150 Myr old
AB Doradus moving group (Zuckerman & Song 2004). New members are regularly
added, as more stars have their kinematics unveiled by the various observational
surveys (such as Gaia, Gagné & Faherty 2018)

Very young associations that contain a significant number of the short-lived (10-
100 Myr) O and B-type stars are known as OB associations. The closest one is the
Scorpius-Centaurus (Sco-Cen) association (100 pc, De Zeeuw et al. 1999), which is
actively studied and comprises directly imaged planets, brown dwarfs and debris
disks (e.g.; Bailey et al. 2014; Chauvin et al. 2017; Bonnefoy et al. 2017).
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Because the cluster members are of similar age and chemical composition, their
property (such as distance, age, metallicity, velocity...) are more easily determined
than they are for isolated stars. Moreover, the known moving groups are young
and nearby, which makes them ideal targets for direct imaging, because the angular
separation of the companions is then larger and their contrast is enhanced by the
thermal heat gained at formation. Observing the systems at young age allows putting
constraints on the formation and evolution pathways. The members of young moving
groups are thus a natural target for deep characterization, model calibration and
eventually for the search of exoplanets. Most of the systems studied in this thesis
are members of young moving groups (Sco-Cen, AB Doradus, β Pictoris).

1.2 Multiple systems

Planetary formation is not inhibited by stellar companions, as multiple systems
have been found to host planets. Several of them have been discovered in the last
decade, whether orbiting one star with a distant companion (S-type, e.g., Doyle
et al. 2011) or orbiting the center of mass of a binary (P-type, e.g., Bonavita et al.
2016). Dynamical interactions with the companion might induce eccentricity and
inclination variations. Due to the high proportion of multiple stars and the rich
dynamics within, the study of planets in non-single systems is a growing field (e.g.,
Martin 2018; Asensio-Torres et al. 2018) and takes up a significant part of my work,
from the design of specific numerical tools to the study of the system HD 106906
(Chapter 1).

The multiplicity frequency of the different types of stars is now well constrained
(see Fig. 1), thanks to dedicated surveys using both spectroscopic and visual ob-
servations. A bit less than half of Solar-type stars (Raghavan et al. 2010) and more
than half of higher mass stars are multiple (Duchêne & Kraus 2013). On the other
hand, low-mass stars (< 0.5 M�) are very common, but they appear to have the
lowest fractions of multiple systems, less than a third (Delfosse et al. 2004; Dieterich
et al. 2012). Triple and higher-order systems represent about 25% of all solar-type
multiple systems (Duchêne & Kraus 2013). To maintain their stability, there are
organized within a strictly hierarchical scheme, with high period ratios.

Characterizing the orbital features of multiple stars are important, as eccentric
or inclined stellar companions induce dynamical perturbations in planetary systems
if the semi-major axes ratio is neither too small nor too large. The orbital features of
binary stars are not strongly constrained, but their eccentricity distribution suggest
a flat distribution (see Fig. 1) and their separation seems to follow the simple Opik’s
law (logarithmically-flat distribution, f(a) ∼ 1/a, Kouwenhoven 2006).

Most of the time, the multiplicity of directly imaged systems is not well con-
strained, because tight binaries are not resolved. Some observational programs are
now dedicated to the radial velocity monitoring of the stars targeted by direct imag-
ing, in search of planetary or stellar companions at close separations (Lagrange et al.
2013). HD 106906 is a perfect example of such case, where the planet was discovered
before the binary status of the host star (Bailey et al. 2014; Lagrange et al. 2019).
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Figure 1 – Multiplicity (blue) and companion (red) frequency with respect to stellar
mass (left) and cumulative eccentricity distribution for various types of stars (Very
Low Mass, M-type, G-type and OB-type), by comparison with a flat (dashes) or
thermal (dots) distribution (right). The figures are from Duchêne & Kraus (2013).

1.3 Planets and Brown Dwarfs

Until 1995 and the discovery of 51 Peg b, the first exoplanet around a main-sequence
star, the Solar System was our only laboratory to comprehend our origins, and in
particular the planets’ formation and dynamical evolution. With almost 4,000 exo-
planets confirmed in more than 2,000 systems to date1, we are now able to apprehend
the planetary population beyond the Solar System framework, and henceforth we
acquired the certainty that planets are ubiquitous, that the Solar System is far from
being the norm among planetary systems, and that planetary systems exhibit an
unexpected diversity (Winn & Fabrycky 2015).

Exoplanets are now mainly revealed by their primary transit detected by space-
based telescopes (Corot, Kepler/K2, TESS). This method enables the retrieval of
robust statistics on the population of (edge-on) short periods planets, from Earths
to giant planets. It also revealed several Earth-sized planets within the habitable
zone of M-dwarf stars (Gillon et al. 2016; Bonfils et al. 2018). The second most
fruitful technique is Doppler spectroscopy, an indirect approach that makes use
of the variation of the host star’s radial velocity to probe the short periods plan-
ets at any inclination (except face-on). Additionally, planets may be detected by
the small gravitational lens effect that they create when transiting a background
star (microlensing), or by the monitoring of the host star’s wobble on the skyplane
(astrometry). Complementary to these indirect methods, direct imaging uniquely
allows the probing of the population of giant planets at large orbital radii where
the indirect techniques are inefficient (> 5 au) and to conduct in-depth spectro-
photometric characterization of their physical and atmospheric properties (see Sec.
3).

Different types of planets have been identified so far: the more numerous small-
mass planets (Earth, Super-Earth and Neptune-mass, with M . 30 M⊕ and
R . 4 R⊕) and the giant planets (Jupiter to Super-Jupiter). Among these, the
distribution of mass is not uniform and is not entirely understood, as for the radius

1according to the extrasolar planets encyclopedia http://exoplanet.eu
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gap evidenced around 2 R⊕ in Kepler data (Fulton et al. 2017).
The latest results of these surveys indicate that the occurrence of planets around

main-sequence stars is high: at least 75 % within 10 yr of orbital period (Mayor
et al. 2011), and about 30 % for Super-Earths (R & 2 R⊕) within 400 days (Zhu
et al. 2018), which do not exist in our Solar System. Low mass planets are mostly
distributed between 10 and 100 days (Mayor et al. 2011). Giant planets are signif-
icantly less abundant than the smaller planets, with a probability of around 10%
within orbital periods of a few years. Though the first detected exoplanet, 51 Peg
b, was a so-called hot Jupiter (with a period shorter than 10 days), this population
appears to be quite rare (. 1%, Mayor et al. 2011).

Correlations between the presence of planets and the property of the host stars
are also being investigated. The studies suggest that giant planets are associated
with higher heavy-element abundance (Fischer & Valenti 2005) and more massive
stellar hosts (Johnson et al. 2010; Nielsen et al. 2019). Such constraints are important
to discriminate different formation pathways (see Sec. 2).

As the orbital characteristics are often not well constrained, the distribution of
the eccentricity and its correlation to the mass and separation is not entirely under-
stood yet. From the radial velocity surveys, it appears that the low eccentricities in
the Solar System are not standard. Exoplanets can orbit on very eccentric orbits (up
to ∼ 0.9!), especially the giant planets that have periods longer than 100 days. On
the other hand, the closest planets have been circularized by tidal effects with the
host stars and exhibit very low eccentricities (Mayor et al. 2011; Winn & Fabrycky
2015).

Similarly, the planetary orbital momentum can be significantly misaligned (even
retrograde) with the stellar axis of rotation (high obliquity, Winn & Fabrycky 2015).
High obliquities are correlated with high temperature of the star and low tidal pa-
rameters, suggesting a complex entanglement of the different physical processes at
stakes (e.g., Lai 2012).

The findings of significantly eccentric planets or planets with high obliquity con-
tradict the expectations from the planetary formation theories, that predict forma-
tion within the stellar rotation plan and circularization of the orbits through inter-
actions with the protoplanetary disk. Therefore, planetary synthesis models are now
taking into account the further dynamical evolution of the system to retrieve the
observed population (see Sec. 2).

Brown dwarfs are substellar objects that fuse deuterium, but cannot sustain the
fusion of ordinary hydrogen. Their masses range from the upper limit of the planet
realm (∼ 13 MJ) to the very-low-mass stars (80 MJ), although the significance of
the mass frontiers is often debated (see Sec. 2). Theoretically predicted by Kumar
(1962), the first companion brown dwarf, GL 229 B, has been discovered in the
same year than 51 Peg b. Since then, the infrared catalogs (2-MASS,...) exhibited
numerous isolated brown dwarfs. The frontier between giant planets and brown
dwarfs is blurred (Chabrier et al. 2014), in particular since the discovery of planetary
mass companions at very wide orbits, companion brown dwarfs with a planetary-like
mass ratio (see Fig. 2) or isolated planetary-mass objects (e.g., Gagné et al. 2018).
The difference between planets and brown dwarfs is also found in the occurrence
rate: brown dwarfs companions are much rarer than their planetary counterpart at
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Figure 2 – Mass ratios with respect to separation for the known companions with
separations greater than 10 au and mass ratios below 0.01. Data taken from ex-
oplanet.eu. Objects below 13 MJ are depicted in blue (planets), those above are
depicted in orange (brown dwarfs).

short separations (< 1% around Solar-type stars). This lack is referred to as the
brown dwarf desert and has been observed in multiple observational surveys. They
suggest separate formation mechanisms between planetary and stellar companions
(Sahlmann et al. 2011; Chabrier et al. 2014).

In my PhD, I was involved in the study of directly imaged companions. I describe
in more details the population observed with this technique in Sec. 3.

1.4 Disks

Protoplanetary disks are circumstellar disks of dense gas and dust that surround
the young stars in the first million years of their life (Haisch et al. 2001). Strong
uncertainties remain regarding their structure, notably their density profile and their
viscous properties (Morbidelli & Raymond 2016). Their study is essential to the
understanding of the formation and early evolution of planetary systems, notably
the accretion process (see Sec. 2) and the interaction between the gas and dust and
the orbits (e.g., migration). Different steps of planetary formation have been imaged
by ALMA (gap carving in HL Tau, Brogan et al. 2015) and SPHERE (accretion in
PDS 70, Keppler et al. 2018)

After a few million years, the gas is progressively accreted by the star or the
planets, or photo-dissociated and dismissed into the interstellar medium. Transition
disks are thought to trace this key step in the disk lifetime. They are characterized
by a gap in the spectral energy distribution, hinting for a large cavity opened within
the disk, that for some systems has been resolved (van der Marel et al. 2018). This is
notably the case of the system 10-Myr system HD 100453, that is characterized in van
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der Plas et al. (2019) (Chapter 2 Sec. 5.4), or of the 5-Myr-old system PDS 70, for
which two planets has been resolved in the cavity (Keppler et al. 2018; Haffert et al.
2019). In the general case, the processes and time necessary for a protoplanetary
disk to loose all its gas and become a debris disk is not well understood yet, as
cavities are not necessarily populated by planets (van der Marel et al. 2018) and as
the collisions of planetesimals are creating gas in parallel (Kral et al. 2017; Hughes
et al. 2018).

Debris disks are the remnants of planet formation processes. They mainly consist
of small dust particles resulting from ongoing collisional cascades from kilometer-
sized parent bodies. Therefore, the presence of these disks indicates that the forma-
tion process led to large bodies, and potentially planets. At least 20 % of Sun-like
exoplanet host stars harbor debris disks (Marshall et al. 2014), including the Solar
System (asteroid and Kuiper belts).

The dust particles composing the disk emit according to their temperature, and
scatter the light of the host star in wavelengths comparable to their size. The
temperatures of the dust ranges from 1500 K (close-in, also called exozodies) to 50
K in the outer parts of the disk. In the visible or near-infrared bands (SPHERE,
...) the stellar flux dominates the thermal emission of the dust, so that the main
contribution of the dust comes from the scattered light of micron-size dust particles.
Infrared excess in the Spectral Energy Distribution (SED) of a system is thus a good
indicator of the presence of debris disks.

Dusty systems are thought to be better candidates to harbor giant planets, so
that some direct imaging surveys are targeting them in priority to improve the yield
(Meshkat et al. 2017), given the low occurrence of giant planets at long separation.
To further increase the occurrence, some surveys aim for debris disks with unusual
features, which are often caused by dynamical interactions with a companion. Eleven
planets or brown dwarfs in eight different systems have been imaged so far around
young stars with debris disks (see Fig. 6), among which the system HD 106906 that
I have been extensively studying (Chapter 1).

The study of debris disks has developed along with the study of exoplanets, as it
allows the probing of the neighborhood of a planet, hints for additional companions,
or give constraints on the mass or orbital elements (Wyatt 2018). Contrary to the
protoplanetary disk case, the interaction between planets and dust can be efficiently
modeled by non-viscous N-body dynamics, and several features can be computed
with analytic or semi-analytic configurations (see Sec. 4.7).

2 Formation and Evolution

2.1 Stars

Stars are thought to form inside giant molecular clouds. Over millions of years, they
gradually collapse and fragment to form small, dense protostars and their accretion
disk. Different collapsing mechanisms take place depending on the density of the
cloud, and the link between the cloud geometry, the core mass function and the
initial mass function is still to be clarified (Motte et al. 2018).
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Figure 3 – Hertzsprung-Russel Diagram: (left) original from Russell (1914) and
(right) derived from Gaia DR2. Picture published by the Gaia Data Processing and
Analysis Consortium.

At the beginning of the 20th century, Ejnar Hertzsprung and Henry Norris Rus-
sell represented the stars on a luminosity-temperature diagram, now called the
Hertzsprung-Russell diagram (HRD), and evidenced a pattern in the distribution:
the main-sequence. Our statistics and understanding of stellar evolution have made
a lot of progress since then (see Fig. 3). The beginning of a star’s life, before
it reaches the zero-age main sequence, has been in particular deeply investigated
through the development of evolutionary models. The latter rely on equations of
state describing the stellar interior structure and can make use of atmospheric mod-
els to define boundary conditions and predict emergent spectra. Different families
of models exist (e.g., Siess et al. 2000; Feiden et al. 2015; Baraffe et al. 2015),
ranging from very low mass (0.01 M�) to massive (7 M�) stars. Some account for
the pre-main sequence phase, but most describe the main-sequence evolution ex-
tending to Gyr time-scales. Their physical and chemical ingredients (e.g., nuclear
rates, opacity, atmospheric parameters) are frequently updated to account for the
newest observations (e.g., Baraffe et al. 2015). The models relate the age and mass
of stellar and substellar objects to the measured broadband photometry, surface
gravity, radius, luminosity, and effective temperature. They are therefore a key tool
for estimating the mass from the measured luminosity of any imaged objet.

The models predictions still need to be calibrated in various mass and age regimes
(e.g., Hillenbrand & White 2004; Mathieu et al. 2007). Uncertainties related to the
object formation process (early accretion history, etc.) exist in the pre-main sequence
(PMS) regime (Baraffe et al. 2002). Further uncertainties may be added for low-mass
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stars, which have strong convection, rotation and magnetic activity (Mathieu et al.
2007; Somers & Pinsonneault 2015). The calibration of models for young low-mass
stars is treated in more details within Rodet et al. (2018) in Chapter 2 Sec. 6. Such
understanding is essential to properly constrain the age and mass of young stars.
Moreover, the evolutionary models of giant planets directly derive from the models
of low-mass stars, so that calibrating the latter can help to constrain the former.

2.2 Planets

The extremely diverse physical and orbital characteristics of exoplanets led to fre-
quently revise the scenarios for planet formation, as most features of their observed
distributions are not yet accounted for.

2.2.1 Formation

Contrary to the stellar formation, which takes place at the center of a collapsing
gas cloud, the planetary formation occurs within the circumstellar disks forming
around the protostar as a consequence of angular momentum conservation. Several
formation paradigms are currently proposed.

The most conventional is the core accretion scenario (Pollack et al. 1996), which
is the privileged choice for the planets of our Solar System. In this model, plan-
ets begin their formation with the settling and growth of dust grains in the disk
mid-plane, that will slowly accrete each other to form planetesimals. When they
reach approximately 1,000 km in diameter, the accretion slows down (oligarchic and
chaotic growth) until the dispersion of the disk gas, and the final formation of rocky
planets or planetary cores (Baruteau et al. 2016). This formation mechanism is con-
sistent with the observed correlations between planets and stellar host metallicity
(Santos et al. 2004; Mulders 2018). If the protoplanets reach sufficiently high mass
(10 − 15 M�) within the lifetime of the protoplanetary disk (. 10 Myr), they can
further accrete gas and become the cores of giant planets. The growth of the core
depends on the separation and disk density, and traditional core accretion fails to
produce planets at large separations, for the formation timescale would then exceed
the lifetime of the protoplanetary disk (Baruteau et al. 2016). Taking into account
migration processes in the core-accretion model has the potential to speed up core
growth (Mordasini et al. 2009). However, this strongly depends on the migration
rate, that is currently poorly constrained (Baruteau et al. 2016). On the other hand,
a new model for the accretion of solids has been recently proposed, called pebble
accretion, which can form planetary cores in a more efficient way (formation of an
earth-mass core in some thousands of orbits, which is less than 1 Myr even at tens
of astronomical units). Still, the processes driving the growth of macroscopic parti-
cles remain poorly understood (boucing barrier, meter-size barrier), which prevents
us to predict effectively when, where and how many protoplanets form in a disk
(Morbidelli & Raymond 2016). Nevertheless, the core accretion scenario predicts
low eccentricities and low inclinations, due to planet-disk interactions. Plus, the
runaway accretion needed to accrete gas on giant planets are though to be possible
only beyond the "snow line", at a few astronomical units, where water exists as a
solid (Winn & Fabrycky 2015).
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On the other hand, the gravitational instability scenario is a faster process (∼
1,000 yr) that is able to form giant planets at large separation from an instability
in the protoplanetary disk (Boss 1997). The relatively recent discoveries of massive
planets at large separations relived this theory, which was otherwise not favored for
the planets of the Solar system. In this model, the protoplanetary disk fragments into
dense clumps in its outer parts (typically 50 to 100 au). This pathway could lead
to the formation of planets in some tens of orbital periods, which is significantly
faster than the core accretion scenario. The so-formed giant planets could have
no solid core. This is a good candidate formation mechanism to account for the
discovery of giant planets and brown dwarfs at tens or hundreds of astronomical
units, although it remains controversial and consistent models are still developing
to include the effects of the magnetic fields (Chabrier et al. 2014). Like the core-
accretion scenario, gravitational instability cannot account for high eccentricities and
inclinations (Winn & Fabrycky 2015). Tidal downsizing scenario has been recently
proposed to form the planets at short separations and to account for the lack of giant
planets at large separations (> 50 au). This theory includes gravitational instability,
strong migration and tidal disruption of the gaseous clumps, and can produce giant
planets as well as stellar companions and rocky planets (Nayakshin 2017).

Finally, collapse within the protostellar core phase, like multiple stars, is a plausi-
ble option to account for the observations of very wide or even isolated brown dwarf
companions and planetary-mass objects, that could have not formed a priori within
the disk of a star (Sumi et al. 2011; Gagné et al. 2014, 2018). The distribution of
masses of such companions would likely resemble the low-mass end of the stellar
initial mass function (Chabrier et al. 2014).

A better description of the mass and separation distribution of planets will help
to discriminate the formation scenarios, although the observed distributions will
reflect both the formation and dynamical evolution of the systems. The system HD
106906 Bailey et al. (2014) is a perfect example of this complexity: the very wide
separation of the planet suggests a star-like formation pathway, but a planet-like
formation might be possible if the planet underwent a dynamical scattering (see
Chapter 1 Sec. 3).

2.2.2 Physical evolution

Much effort has been devoted to the modeling of sub-stellar objects during the
past decades, improving our knowledge of their evolutionary properties and their
atmospheres. Theoretical models can now predict the characteristic properties of
the exoplanets mass, radius and atmospheric signature. Evolutionary tracks have
been computed, adapted to various mass ranges, dust proportions (so-called DUSTY
or COND models), and atmosphere compositions (Chabrier et al. 2000; Baraffe
et al. 2003; Mordasini 2013). Many points remain badly understood, as spread
and discrepancies from the theoretical predictions are regularly observed, such as
inflated radii or spectral reddening (see the study of HD 206893, Chapter 2 Sec. 3)
(Baraffe et al. 2010). For the moment, substellar evolutionary models focus on the
description of giant planets and brown dwarfs, and derive in part from the physics
of stellar models.
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After the accretion, a new-born planet cools down, significantly in the beginning
of its life, in times ranging from 10 Myr for small planets to a few 100 Myr for
the more massive. In principle, we can then derive the mass and the radius from
the spectroscopy and photometry, through comparisons with theoretical spectra.
However, the theoretical models strongly depend on the physics of the gas accretion
phase (e.g., Cumming et al. 2018).
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Figure 4 – Summary of the various pathways to giant planet formation leading to
different post-formation entropies, from Baruteau et al. (2016). Mini denotes the
initial mass of the clump formed by gravitational instability.

The initial (post-accretion) luminosity of young giant planets remains an open
question of giant planet formation. The uncertainty primarily lies in how much en-
ergy is radiated away from the in-falling material during the accretion. The limiting
conditions obtained by adjusting the efficiency of the shocks lead to the so-called
"hot" and "cold" start models (see Fig. 4). At 1 Myr, the luminosity difference
between the two starts for a giant planet can represent a factor of 10 to 1, 000 (Fig.
3, Mordasini 2013). This is particularly problematic for the characterization of
directly imaged planets (generally young), as it leads to high uncertainties in their
mass estimate that prevents a robust dynamical analysis of the system. At later
ages (∼ 100 Myr), the importance of the initial conditions decreases and so does the
distinction between the two start models (Spiegel & Burrows 2012).

2.2.3 Orbital evolution

Over the last decades, planet migration has become an unavoidable ingredient to
explain the configuration of some planetary systems, in particular the mean-motion
resonance chains and giant planets at close separation. The phenomenon occurs
at the beginning of a planet’s life, when it is still embedded in the protoplanetary
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disk. Its orbital motion creates a spiral density wave in the gas distribution, which
in return exerts a torque on the planet. As a result, the angular momentum of the
planet’s orbit changes, and the orbit expands or contracts depending on the sign of
the torque. This leads to radial migration towards or away from the central star.

For low-mass planets, the migration time scale decreases linearly with the planet’s
mass (Lin & Papaloizou 1986), and becomes significant (less than the disk lifetime)
only for planets of a few Earth masses. Until the disk structure is not significantly
perturbed by the planet, we refer to the migration as type I. When the influence of
the planet becomes sufficient to open an annular gap within the disk (mass > 10
M⊕) , the planet is locked in its gap and follows the accretion of the disk gas onto
the star. This is called type II migration (Baruteau et al. 2014).

However, migration depends on a variety of poorly constrained physical charac-
teristics of the protoplanetary disk, such as the viscosity, surface density, or height
profiles (Crida & Morbidelli 2007). The current understanding of the migration the-
ories struggles to reproduce the known planetary population (Mordasini et al. 2009),
essentially because the theory predicts a very efficient migration that pushes most
planets towards the inner zones of the system (Morbidelli & Raymond 2016). As well
as shrinking the separation distribution, this process would give rise to dynamical
interactions between the different objects of a system. This could have possibility
been the case in the binary system HD 106906, where the migration could have
pushed the planet towards the central binary star and lead to an ejection to the
outer parts of the system (see Chapter 1 Sec. 3).

Giant planet migration is thought to be a key mechanism that structured the
architecture of our Solar System. Specificity such as the mass depletion between the
Earth and Jupiter orbits (in particular the low-mass of Mars) can be accounted for
with an early inward migration of Jupiter, which would have reversed when Saturn
formed (Grand Tack, Walsh et al. 2011).

Combined with the physical evolution of their structure and the interaction with
the gaseous disk, planets experience critical orbital evolution after their formation,
through interactions between themselves. The reality of post-gas dynamical evo-
lution is supported by observational evidence,such as the relatively low number of
resonant chains and the common non-zero eccentricities (Morbidelli 2018). In the
Solar System, this led to the so-called Nice model, that accounts for the small body
population in the Solar System by modeling the coupled orbital evolution of Jupiter
and Saturn (Morbidelli et al. 2007; Nesvorný 2018). Hot Jupiters may also originate
from interactions with planetary or stellar companions, through a combination of
processes referred to as high-eccentricity migration (Hamers et al. 2017; Teyssandier
et al. 2019).

3 Direct imaging

Direct imaging is presently the only viable method to complete our view of planetary
systems architectures and to set constraints onto the giant planet formation scenarios
at large (> 5 au) separations. It occupies an important niche with a potential for
growth in the near future, in particular in the coming era of the extremely large
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telescopes (TMT, GMT, E-ELT). The detection of photons from the atmosphere
of planetary companions gives precious information about their composition and
physical properties (effective temperature, surface gravity, atmospheric properties).
Furthermore, direct imaging can detect planets in formation in the primordial gas
disk (such as PDS 70; Keppler et al. 2018; Haffert et al. 2019). On top of constraining
the physics of accretion, this gives valuable inputs on the very young architecture
of planetary systems, which can be then compared to more evolved systems to
investigate the dynamical evolution.

3.1 State of the art

Two main difficulties arise when trying to resolve a planet: its faintness compared to
the stellar luminosity, and its small angular separation from the star. For example,
Jupiter seen from 50 pc away would appear at an angular separation of 100 mas
(3.10−5 degrees), and with a contrast in luminosity of 10−8 (4.5 Gyr). For younger
ages (10 Myr), the intrinsic luminosity increases the contrast to 10−5−10−6 (respec-
tively for hot-start and cold start, Mordasini 2013). These observational specifica-
tions require high-angular resolution high-contrast instruments, and only the highest
performing ones (2nd generation, namely VLT/SPHERE and Gemini South/GPI)
can currently hope to detect young Jupiters at 5 au. To detect a Gyr-old Earth in
the habitable zone of a Solar-type star, a contrast of 10−10 and an angular separation
of 20 mas (at 50 pc) have to be reached. The generation of imaging instruments
on the ELTs will be able to reach that separation, but the limits in contrast will
probably be the main technical hurdle.

The high performance on the 8-10 meter-class telescopes (VLT, Gemini, Subaru,
Keck, LBT) rests upon a set-up that enables for high angular resolution (giant
telescope and adaptative optics), the use of a coronagraph to attenuate the light
from the star, and differential imaging techniques.

The recent refinements of adaptive optics (Extreme-Adaptative Optics) is one of
the key ingredient that accounts for the gain in angular resolution (Chauvin 2016).
Indeed, observations from the ground are strongly hindered by the turbulence in
Earth’s atmosphere, which affects the light propagation, blurring the Point-spread
function (PSF, spread of order 1”). Adaptive optics compensate for this turbulence
through a wavefront sensor, a deformable mirror whose surface shape is controlled by
actuators, and a real-time controller. Extreme-Adaptive Optics are characterized by
a higher frequency of adaptation (> 1 kHz), finer corrections (more than a thousand
actuators) and an enhanced stability of the set-up. SPHERE’s PSF has a typical
size of 0.04”, a gain of more than 10 compared to the seeing-limited case.

Coronagraphs reduce the impact of the quasi-static speckle noise when searching
for faint companions. They achieve this by decreasing the diffracted light of the
star where planets are looked for, and decreasing the intensity of the star to prevent
saturating the detector. It pushes back contrast limits, in particular in the inner
zone of the system, by decreasing by more than 100 the intensity of the stellar light.

Finally, a variety of techniques exists to minimize the residual flux structures
(Speckles), from correction algorithms fine-tuning the deformable mirror (Give’on
et al. 2007) to differential procedures (reference, angular, spectral, polarimetric, e.g.
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Marois et al. 2006).
The implementation of the differential imaging techniques on the planet imager

instruments has been critical to reveal the scattered light emission of planets and
faint disks. Consequently, the morphology of the disks (asymmetries, spirals, carv-
ing...) can be revealed and studied in great details.

3.2 SPHERE

SPHERE2 (Spectro-Polarimetric High-contrast Exoplanet REsearch) is a sec-
ond generation high-angular resolution high-contrast instrument installed on the
UT3/VLT in Chile (Beuzit et al. 2008). It has been developed by a consortium of
11 institutes in 5 European countries, led by IPAG in Grenoble. Since its first-light
in 2014, it has shared its observing time between open-time programs and 260 nights
of Guaranteed Time Observations (GTO), mainly devoted to the search and charac-
terization of exoplanets (Chauvin et al. 2017). SPHERE is designed to give optimal
performance for stellar targets up to 9 mag, which is enough to build a sample of
400 to 600 young stars of the Solar neighborhood (Beuzit et al. 2008).

SPHERE is composed of three modules. The main one, IRDIS, is a near-infrared
dual-beam imaging module that has a wide field of view (11”), and works in a broad
range of near-infrared wavelengths (0.95 to 2.32 μm). The two beams, corresponding
to two neighboring spectral channels, have been carefully chosen so that one of the
two corresponds to a absorption line of companions atmospheres (e.g., methane), to
strengthen the detection. The very high astrometric precision (a few mas) combined
to the large field of view makes IRDIS unique for the characterization of companions
from 10 au to wide orbits (several 100 au). Most of the data used in this thesis were
thus observed with IRDIS.

A second module, the integral field spectrograph (IFS), allows the sampling of
the frequency space at low resolution over a field of view of 1.73”. This module is
used to characterize the spectrum of the companions in the 0.95-1.65 μm range (R
∼ 30) and in the 0.95-1.35 μm range (R ∼ 50). On top of giving precious information
about the composition of the companions, it allows the estimation of their physical
properties (Teff, log g, radius, mass).

Finally, ZIMPOL is a polarimeter working in the visual range (0.6-0.9 μm). The
use of polarimetry singles out the reflected stellar light, which is otherwise extremely
faint. This module is used to resolve debris disks and to detect the reflected emission
of evolved planets (so far unsuccessfully).

All three instruments benefit from a robust image and pupil stability, ensured
through the common path facility, that measure and adjust in real time the differ-
ential image movements. Thanks to its extremely adaptive optics and to the large
diameter of the VLT, the PSF of SPHERE has a a typical size of 40 mas (around
4 pixels square). A good modeling of the PSF then allows the constraints of the
positions of the objects with a precision of 1 to 5 mas (compared to ∼ 10 mas for the
older generation of NaCo or HAO). A good precision on the position is essential to
the orbital monitoring of the detected companions, because it allows the detection
of an orbital motion in a reasonable time (∼ 1 yr) despite their long periods (& 100

2Website: https://sphere.osug.fr/spip.php?rubrique6&lang=en
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yr). The coronagraph is limited to an inner working angle of . 100 mas, preventing
to probe the inner regions around the central star (see Fig. 5).
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Figure 5 – SPHERE/IRDIS image of the brown-dwarf companion HD 206893 in the
H-band filter (1.6255 µm). The cut of the inner zone is due to the coronagraph. The
companion is detected at a separation of 270 mas (∼ 10 au) and has a contrast of
3.6.10−5.

Two quantities are necessary to ensure the consistency of the astrometry along
different epochs : the pixel scale, to derive the separation in arcseconds, and the in-
strument orientation on sky (true North), to allow comparisons between the position
angles. Their calibration is performed based on carefully-chosen astrometric fields
(binaries, clusters) with accurate positions and a good on-sky coverage throughout
the year. The pixel scale exhibits only negligible variations over time for a given
setup (of order 0.01 mas for SPHERE/IRDIS, a hundred times less than the typical
error), so that its calibration is reliable (Maire et al. 2016). On the other hand, the
precise derivation of true North is subject to systematic changes between epochs.
The typical variation for a given setup in SPHERE is of order 0.15 ◦, which is similar
than the typical error (Maire et al. 2016).

3.3 Science: Planets and disks

Several past and ongoing surveys have revealed a scarce but interesting population
of young gas giants on wide orbits, making use of different instruments: VLT/-
NACO (e.g., Rameau et al. 2013; Vigan et al. 2017), VLT/SPHERE (e.g., Chauvin
et al. 2017), Gemini South/GPI (e.g., Nielsen et al. 2019), SUBARU (e.g., Uyama
et al. 2017), Keck II/NICRC2, Gemini North/NIRI and Gemini South/NICI (e.g.,
Galicher et al. 2016), MagAO/Clio2+FIRE (Janson et al. 2013) and other instru-
ments probing the near infrared domain (e.g., Baron et al. 2018). Their results point
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toward a low occurrence (≤ 10 %) of giant planets (> 5 MJ) at separations larger
than 10 au (Nielsen et al. 2019), very low (< 3 %) for very wide separations (1000
to 5000 au, Baron et al. 2018).

The SHINE survey with SPHERE targets 500 young, nearby stars with a 200
nights budget (Chauvin et al. 2017). Each target has to be observed twice within
at least a 1-yr interval in order to distinguish bound companions from background
stars, using their relative proper motion. For now, SHINE has discovered two planets
(HIP 65426 b and PDS 70 b; Chauvin et al. 2017; Keppler et al. 2018) and 2 brown
dwarfs (HD 206893 B and HIP 64892 B; Milli et al. 2017; Cheetham et al. 2018),
although the final statistics are not yet available (the end of the survey is expected
in 2020). SHINE also has contributed significantly to the characterization of most
known imaged companions and, occasionally, debris disks. I have been working on
five of these systems (HD 106906, HR 2562, HIP 206893 and 51 Eri), plus four stellar
systems also imaged by SPHERE (GJ 2060, TWA 22, AB Dor B and HD 100453).
The detailed study of these systems are described in specific sections of this thesis
in Chapter 2.

The SPHERE consortium also performs the DISKS survey to look for disks (of
gas and/or debris). Around 40 gas disks and 30 debris disks have been detected for
the first time in scattered light since the beginning of the survey. The observations
already enabled a taxonomical study of protoplanetary disks brightness, extension
and morphology (Garufi et al. 2018).

Fig. 6 sums up the directly imaged companions at the time of the writing of this
thesis, according to exoplanet.eu (I corrected the catalog to account for numerous
unrecorded updates). HR 8799 and PDS 70 are the only imaged systems with
multiple companions. The detection of brown dwarfs at thousands of au (or even
isolated) suggests that they can form from their own cloud collapse. The very wide
orbit of giant planets such as HD 106906 is not well accounted for. This is a reason
why we chose to investigate dynamical scenarios for this system, and we propose a
more complicated formation pathways (see Chapter 1 Sec. 3).

4 Dynamics

This section intends to set the basics of the celestial mechanics used in the thesis.
I will introduce the Hamiltonian framework that is the ground of the symplectic
integrators of Chapter 1. I will then present different aspects of the perturbed 2-
body problem, that will be used in both Chapters 1 and 2. This section makes use
of the online course of Duriez (2002).

4.1 2-body problem: notations and resolution

In a Galilean referential, the equation of motion of the 2-body problem is

r̈ = − µ
r3
r (1)

where r is the position vector between the two bodies and µ the product of the
gravitational constant G and the total mass of the system. Three constant quantities
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HR 2562

51 Eri

HD 206893

GJ 504

HD 106906

Figure 6 – Architecture of the directly imaged main-sequence systems with a planet
or brown dwarf companion. The binary-type mass ratios (> 0.05) and the post-main
sequence systems are not represented. The blue color indicates objects below the 13
MJ mass limit, and the grey rectangles indicates disks (of debris, except from PDS
70). The red names indicate the systems whose studies are depicted in this thesis.
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Figure 7 – (left) Representation of the five angular orbital elements. (right)
Schematic of the true and eccentric anomaly in the orbital plane.

are used to describe the problem:

• The energy E = 1
2
|ṙ|2 − µ

r
;

• The angular momentum C = r ∧ ṙ;

• The eccentricity vector e = ṙ∧C
µ
− r

r
.

The energy controls the size of the orbit described by r. The angular momentum
is normal to the orbital plane (along k in Fig. 7). Finally, the eccentricity vector
points towards the direction of smallest value of r (periastron).

An alternative representation of the trajectory is given by the six orbital elements:

• The semi-major axis a = | µ
2E
|;

• The eccentricity e which is the norm of the eccentricity vector;

• The inclination i = arccos
(
Cz

C

)
;

• The longitude of the ascending node Ω = arctan
(
−Cx

Cy

)
;

• The argument of periastron ω = arctan
(
− ez

(C∧e)z

)
;

• The true anomaly θ, polar angle of r in the plane normal to C, measured from
e.

The two angles i and Ω define the plane of the trajectory, ω its orientation, a
and e its shape and θ the current position on the trajectory (see Fig. 7). It can be
shown (see Appendix) that r follows a conic section of equation:
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r =
C2

1 + e cos(θ)
(2)

with θ̇ =
C

r2
(2nd Kepler law) (3)

When the trajectory is elliptic (e < 1), the period of the orbit is given by:

P 2 =
4π2a3

µ
(3rd Kepler law) (4)

and the orbital elements correspond to the elliptic elements:

a =
ra + rp

2

e =
ra − rp

2a

where rp = r(θ = 0) is the periastron (shortest separation) and ra = r(θ = π) is
the apoastron (largest separation). We may equivalently use the time of periastron
passage tp instead of the true anomaly θ.

To link the time evolution to the geometrical evolution, we define the eccentric
anomaly u, whose geometric representation is presented on Fig. 7. It can be linked
both to the true anomaly θ and to the time, through the mean anomalyM ≡ 2πt/P .
The equations are:

r(θ) = a(1− e cos(u)) (5)
M = u− e sin(u) (Kepler equation) (6)

Similar relations can be derived in the hyperbolic case, with hyperbolic functions
and opposite signs. The solution of the Kepler equation is known as series, but most
of the time, iterative approaches are used (Danby & Burkardt 1983, see Appendix).

4.2 Hamiltonian representation

The orbital elements just described can be introduced with the Hamiltonian mechan-
ics framework. It is particularly useful for the perturbed case (see Sec. 4.4), as it
allows the derivation of the evolution equations of each of the orbital elements, which
are much more workable than the equations of evolution of the classical coordinates.

The Lagrangian (per unit mass) is defined as the difference between the kinetic
energy and the potential energy. In the 2-body problem, with the previously defined
notations, it is

L =
1

2
ṙ2 +

µ

r
, (7)

The conjugate moment p, defined as the derivative of L with respect to ṙ, is:

p ≡ dL
dṙ

= ṙ . (8)
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The Hamiltonian is then defined as

H ≡ pṙ − L (9)

=
1

2
p2 − µ

r
, (10)

and the following equations (Hamilton equations) hold

ṙ =
∂H

∂p
= p , ṗ = −∂H

∂r
= − µ

r3
r (11)

which transform the three-dimension second-order differential equations (Eq. 1) into
two equivalent three-dimension first-order differential equations. When the system
is conservative, as it is here, the Hamiltonian represents the energy and is conserved.

To adopt new coordinates (orbital elements) for the description of the system, we
must check that they are canonic, that is that their evolution follows the structure
of Hamilton equations. This is the case for the Delaunay variables, that we use to
describe the elliptic (bound) case (the quantities on the same line are conjugated) :

M L =
√
µa (12)

ω C =
√
µa(1− e2) (13)

Ω Θ =
√
µa(1− e2) cos(i) (14)

In these new variables, the Hamiltonian writes

H = − µ2

2L2
(15)

and the evolution equations

dM

dt
=
∂H

∂L
=
µ2

L3
=

√
µ

a3

dL

dt
= − ∂H

∂M
= 0 (16)

dω

dt
=
∂H

∂C
= 0

dC

dt
= −∂H

∂ω
= 0 (17)

dΩ

dt
=
∂H

∂Θ
= 0

dΘ

dt
= −∂H

∂Ω
= 0 (18)

We retrieve the conservation of the orbital elements and the third Kepler law.
In the case of a coplanar problem, the mean longitude λ and the plane longitude

of periastron $ are used:

λ = M + ω + Ω L =
√
µa (19)

$ = ω + Ω P = L(
√

1− e2 − 1) (20)
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4.3 Jacobi coordinates

Let there be N bodies of masses (mj)j=1..N , described by their position (rj)j=1..N in
the barycentric coordinates. Alternative coordinates description are used to reduce
the problem to N − 1 two-body problems.

The first alternative is to particularize one of the body, for example the Sun in
the Solar System, and compute the relative position of the other bodies from it. If
the other bodies’ masses are small enough with respect to the Sun’s mass, each body
is following its orbit around the Sun as a 2-body problem.

Barycentric Coordinates Heliocentric Coordinates

Jacobi Coordinates

⃗r1

⃗r2 ⃗r3

⃗r4

⃗r⊙1 ⃗r⊙2

⃗r⊙3

⃗r′�2 ⃗r′�3

⃗r′�4

Figure 8 – Representation of three different descriptions of the N-body problem.

However, in practice, the masses of the bodies are not entirely negligible (and
sometimes not at all). In that case, the referential centered on the Sun is not
Galilean. A more rigorous description is given by the Jacobi coordinates, where
the bodies are first ordered along their distance to a rotation center (Sun, center
of mass) and their relative positions are computed with respect to the successive
centers of mass (see Fig. 8). The new positions (r′j)j=1..N are given by:

r′1 =
1

mtot

N∑

j=1

mjrj (21)

r′j = rj −
j−1∑

k=1

mk

mtot,j-1
rk for j ≥ 2 (22)

where mtot,j designates the total mass of bodies up to j. The position r′0 is the
constant position of the total center of mass, so that the problem can be reduced
to N − 1 two-body problems. The Jacobi coordinates can be generalized for several
centers of rotation by the Hierarchical Jacobi coordinates. This is the basis of my
team’s N-body integrator Swift HJS, which I describe extensively in Chapter 1.

4.4 Perturbed 2-body problem, Lagrange equations

In the ideal 2-body problem, the previously defined orbital elements a, e, i, Ω, ω
and tp remain constant. Most of the time however, additional forces (tidal, viscous
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interactions with the disk) or additional bodies perturb the scheme and the orbital
elements evolve.

The orbital elements are defined from the vectors position and velocity, so that
their definition stands even if the situation does not correspond to an ideal 2-body
problem. In such case, they are not conserved and, at for any given time, they
correspond to the orbital elements of the traced orbit if the problem would suddenly
become Keplerian.

If a perturbative potential U was added to the problem, the Hamiltonian would
become:

H = − µ2

2L2
+ U (23)

and the new equations of motion would write:

dM

dt
=
∂H

∂L
=
µ2

L3
+
∂U

∂L

dL

dt
= − ∂H

∂M
= − ∂U

∂M
(24)

dω

dt
=
∂H

∂C
=
∂U

∂C

dC

dt
= −∂H

∂ω
= −∂U

∂ω
(25)

dΩ

dt
=
∂H

∂Θ
=
∂U

∂Θ

dΘ

dt
= −∂H

∂Ω
= −∂U

∂Ω
(26)

Rewritten with the classical orbital elements, we obtain the Lagrange equations:

√
µa

da

dt
= −2a

∂U

∂M
(27)

√
µae

de

dt
= −(1− e2)

∂U

∂M
+
√

1− e2
∂U

∂ω
(28)

C sin(i)
di

dt
= − cos(i)

∂U

∂ω
+
∂U

∂Ω
(29)

C sin(i)
dΩ

dt
= −∂U

∂i
(30)

Ce sin(i)
dω

dt
= −(1− e2) sin(i)

∂U

∂e
+ e cos(i)

∂U

∂i
(31)

dM

dt
= n+

1√
µa

(
2a
∂U

∂a
− C(

dω

dt
+ cos(i)

dΩ

dt
)

)
(32)

Even with the simplest form of perturbative potential U , these equations can
often not be solved. To simplify their resolution, we often develop them in per-
turbative series (of the semi-major axes, masses or eccentricities ratios typically),
and/or we average the Hamiltonian over the fast rotating variables. The latter ap-
proach is called secular approximation, and is used when the studied perturbations
happen on a time scale significantly larger than the orbital periods.

4.5 Secular approximation and Hamiltonian maps

In practice, the Lagrange equations are too complex to solve exactly, even for the
simplest perturbative potential (remote third body for example). The secular ap-
proximation is a method valid for lightly perturbed Keplerian motion. It consists
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in dividing the problem into two time-scales: the small time-scales (comparable to
the orbital period), and the longer (secular) time-scales. The potential U is then
expressed as a function of both rapidly oscillating variables (θ) and slowly-varying
variables (the other orbital elements). We then average over θ and replace the or-
bital elements by their averaged value. We can then study the evolution of these
averages. Rigorous mathematical derivations of the correctness of this approach are
given in Morbidelli (2002), using series of Fourier coefficients. If several orbits are
considered, the integration is performed independently on each rapidly oscillating
terms, if the periods are not commensurable. Otherwise, we are in a situation of
mean-motion resonance (see Sec. 4.6).

In the secular approximation, the semi-major axis a is always constant, as it
is the conjugate of the mean anomaly (which is rapidly oscillating). The stability
of the semi major axis is thus a condition sine qua none for the use of the secular
approach. This is true as soon as the energy perturbation from the Keplerian case
is small with respect to the Keplerian energy.
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(a) Semi-analytical secular approach
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(b) Analytical secular approach
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(c) Numerical approach

Figure 9 – Hamiltionian maps for the evolution of an outer body (2) perturbed by
an inner companion (1).

When the problem is coplanar, the secular Hamiltonian has only two degrees
of freedom: the average eccentricity e and argument of periastron ω. The problem
can then be represented by a contour map (see Fig. 9). As the Hamiltonian is
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conserved, the evolution of the system must follow the iso-energy lines. On Fig.
9, I used three different approaches to compute the Hamiltonian map for an orbit
perturbed by an inner planetary companion. Such a perturbation will induce pre-
cession (in around 500 orbital periods for a semi-major axes ratio of 3), as well as
secular eccentricity variations. Map (a) is obtained through a semi-analytical ap-
proach: the secular Hamiltonian is computed numerically for every couple (e, ω),
without any approximation, to obtain an exact secular energy map. On map (b),
I superposed to the semi-analytical map the complete analytical resolution e(ω) for
small e and high semi-major axis ratio with the companion (the resolution is de-
tailed in the Appendix). This resolution follows very faithfully the map (a), even for
moderate eccentricities. Finally, I superposed to the analytical lines the outcome of
two different simulations with the N-body code Swift HJS (see Chapter 1), with
two different initial eccentricities and running for 10 precession periods. Both sim-
ulations follow the theoretical predictions. The red zone labeled chaos corresponds
to the numerical estimate of the chaotic zone from Petrovich (2015), for which the
secular approximation does not hold.

In the secular theory, the displacement on the equi-energy lines on the Hamilto-
nian maps is performed at the rate of the precession. The low eccentricity approx-
imation predicts a homogeneous precession, which gives a good estimate. In some
cases, where the two orbits are initially nearly aligned and the outer orbit has low
eccentricity, the longitude of the periastron is confined to and oscillates within a
part of the parameter space. This situation is called libration.

4.6 Mean-Motion Resonances (MMR)

Two orbits are said to be in a mean-motion resonance configuration when their
periods are commensurable. In that case, we cannot average the Hamiltonian over
the two orbital motions independently in the secular approach. Instead, the average
is made over the least common multiple of the two periods, and the relative positions
of each bodies is computed directly from the time. MMRs are usually noted p+q : p,
meaning that the body we study undergoes p + q revolutions while the perturber
does p, where p and q are integers. |q| is the order of the resonance, positive when
the perturber is an outer body and negative otherwise. The lower the order, the
greater the effect of the resonance. The commensurability of the periods leads
to fixed conjunctions localization, and the order |q| also represents the number of
conjunctions (see Fig. 10).

The secular Hamiltonian can no longer be computed analytically for any eccen-
tricity, because of the resolution of the Kepler equation to derive the positions of
each bodies with time. Thus, we analyze the problem using the semi-analytical
Hamiltonian map, as in Fig. 9 (a). In the MMR case, the Hamiltonian depends of
one more parameter: the initial relative position of the bodies, or equivalently the
longitude of the conjunctions σ. This longitude is often computed with respect to
the longitude of periastron of the body of interest. It can be written as a function
of the mean longitudes:

σ =
p+ q

q
λ1 −

p

q
λ2 −$2 (33)
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Conjunction Conjunction

t = 0 t = P1 t = 2P1 = P2

Figure 10 – Example of a stable 1:2 MMR. The conjunctions occur only when the
bodies are at apoastron, which guaranties the stability of the system.

Given that (p+ q)P2 = pP1, σ is constant on the short time scales. On secular time
scale, the mean-motion resonance is characterized by the libration of σ around an
equilibrium value (Morbidelli & Moons 1993).
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Figure 11 – Hamiltionian maps for the evolution of an outer body (2) perturbed by
an inner companion (1), in a 1:5 MMR.

One can note that σ represents the longitude of the conjunctions of the mean
longitude, which may be different from the true geometrical longitude. The more
stable case is when the conjunction occurs at apoastron, that is when σ = π. As σ
is defined modulo 2π/|q| (there are |q| conjunctions), it is equivalent to σ = 0 for
even |q|, σ = π/|q| for odd |q|.

Let us consider our previous example of an inner eccentric giant planet perturbing
a lighter body, which is studied in Fig. 9. If instead the semi-major axis ratio is 2.924
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instead of 3, it is in a configuration of 1:5 MMR. The corresponding Hamiltonian
map is drawn on Fig. 11 for σ = π/4 (neglecting its libration). We see that the
resonance induces strong eccentricity variation, except in some localized zones of
low eccentricities.

Because it induced such raises of eccentricity in otherwise stable configurations,
mean motion resonances are thought to be a factor of destabilization in planetary
systems (Beust & Morbidelli 1996). Various studies showed that disk-induced migra-
tion is creating naturally resonant chains, as resonant configurations are relatively
robust and can stop the planetary migration (resonance capture, e.g. Snellgrove
et al. 2001). In Rodet et al. (2017), we used MMR to suggest an early ejection of
the planet in system HD 106906 by a 1 : 6 resonance with its host binary (Chapter 1
Sec. 3). However, resonance capture depends on a variety of parameters (migration
rate, eccentricity damping time scale, mass ratios...), which could account for the
lack of observed MMR in Kepler data (Xu & Lai 2017).

On the other hand, MMR can be a stabilizing factor if the eccentricity of the
larger body is small. Such configurations can be observed in the Solar System, where
the non-stable MMR configurations have long been ejected. The more illustrative
case is the 3 : 2 resonance between Neptune and Pluto, that ensures that the bodies
never encounter when their orbits are close.

4.7 Perturbation in a debris disk

The general theories described above give the tools to study the relative influence of
companions on each other, but also the effect of a companion on a debris disk. The
Hamiltonian maps portraying the effect of an inner companion on outer orbits can
be used to model the structures induced in outer belts of debris. A similar analysis
allows the computation of the effect of an outer companion on an inner belt, or to
compute the perturbation induced by an inclined companion. For sufficient relative
inclination between two orbits (∼ 40 ◦), the eccentricity can reach extremely high
values, the inclination varies significantly, and there may be libration of anti-aligned
orbits. This configuration is called Lidov-Kozai resonance (Kozai 1962).

The coupling between eccentricity and precession in debris disk creates large scale
structures that can change significantly their shape and brightness distribution. In
the transient state from a circular shape and a homogeneous density distribution, the
different precession rates of each zones of the disk (depending on their separation)
naturally creates spiral features. After several precession periods, the longitudes of
periastron are randomized and the disk appears eccentric, with periastron grouped
around the periastron of the perturber. This phenomenon is called pericenter glow
by Wyatt et al. (1999).

In a less subtle fashion, perturbers can deplete significantly parts of debris disks.
First, they create a cavity at the location of their orbit, of a width depending strongly
on the semi-major axis and eccentricity, and moderately on the mass ratio. The size
and features of this so-called chaotic zone have been thoroughly studied during
the last decades, both analytically and numerically. The overlapping of first-orders
MMRs gives a theoretical estimate in the circular case (around 2 Hill radii, Wisdom
1980, see Fig. 13), that can be then extended to the eccentric case (Mustill &

34



HR 4796A HD 202628

HD 61005

HD 107146

 Pic

HD 141569

HD 53143

a) Narrow ring b) Broad, eccentric ring c) Radial gap d) Arc

e) Warp

g) Clump

h) Swept-back wings i) Spiral arm

 Pic

Structural Diversity in Debris Disks

HD 106906

f) Asymmetry

NIR Vis mm Vis

NIRVis

VisVis
mm

Figure 12 – Mosaic of debris disks observations, taken from Hughes et al. (2018)
(references therein). The scale bars represent 50 au. The images were taken with
SPHERE (a), HST/STIS (b, d, e, h, i), ALMA (c, g) and GPI (f).

Wyatt 2012). Numerical tables and fits are computed for different mass ratios and
eccentricities (Holman & Wiegert 1999; Lazzoni et al. 2018; Regály et al. 2018).

Similarly to the transition disks case, planetary perturbers may not be the only
possible causes of the asymmetries and perturbations observed in debris disks (e.g.,
Moór et al. 2014). Among the possible sources are the stellar fly-bys (see next sub-
section) and the self-stirring mechanism (Kenyon & Bromley 2004). In the latter,
the emergent largest planetesimals (Pluto-size objects) perturb the orbits of neigh-
boring smaller bodies, increasing their inclination and eccentricities. This results in
destructive collisions and initiates a collisional cascade through the disk. The rela-
tive contributions of self-stirring and planetary stirring in observed debris systems
is an issue that is still being investigated (Kennedy & Wyatt 2010).

Direct imaging is the only technique that can resolve the features of the disk and
use them to probe their environment. The sample of observed debris disk indicates
that large cavities and asymmetries are common. Examples of such cases are shown
on Fig. 12. Some of the few cases where a companion was also resolved (HD 106906,
HR 2562) are presented in the next chapters.

4.8 Stellar fly-by

In the course of their long life, stars are bound to encounter occasionally other stars.
Most of the time, such encounters (or fly-bys) do not significantly impact the ar-
chitecture of the systems. However, in some cases, they lead to dramatic changes:
carving of the debris belts, excitation of the planetary eccentricities and inclina-
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Figure 13 – Representation of the MMRs of orders q ≤ 4 around Jupiter (in black).
The strength of the lines represents the order of the resonance (1 is strong, 4 is
weak). It creates a chaotic zone around Jupiter, that shapes the asteroid belt.

tions, or even planetary captures in some rare cases. The study of the consequences
of stellar fly-bys is important, as it could account for some puzzling observed archi-
tectures, such as wide separations or retrograde orbits. This is particularly relevant
for planetary systems in stellar clusters, as the high stellar density increases the
chances of consequential encounters.

The secular theory can be extended to hyperbolic Keplerian trajectories. The
average is then performed over all the infinite trajectory and not only over one orbit.
Such approach was adopted first in Heggie & Rasio (1996), and was used in Rodet
et al. (2019), when studying the effect of the fly-bys on the planet in system HD
106906 (Chapter 1 Sec. 3).

On the other hand, the analytic computation shows that the consequences of the
encounters depend strongly on its geometric characteristics, through multiple fac-
tors. To account for this diversity, most of the studies choose a numerical approach,
where they compute the dynamical evolution of numerous systems and study the
statistics of the final population. They could compute survival rates, eccentricity
raises, and reproduce captures and retrograde orbits (Malmberg et al. 2011; Li et al.
2019). The consequences of the stellar fly-bys may be cumulative, or even indirect, as
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the excitation of the eccentricities in planetary systems can lead to close encounters
and scattering (Cai et al. 2017).

If the fly-by hypothesis is sometimes considered to explain the specificity of a
system (Pfalzner et al. 2018), no planetary systems are known to have undergone
a fly-by. HD 106906 is currently the most serious contender, since the discovery of
two fly-bys candidates. The system HD 141569 may be currently experiencing a
close fly-by that is shaping a massive debris disk (Reche et al. 2009). This is also
possibly the case for several protostellar disks in star-forming regions (e.g., RW Aur,
Rodriguez et al. 2018).

4.9 Close encounters

Finally, when the eccentricities in a multiplanetary system becomes critical, or if the
migration changes the semi-major axis ratios to unsafe values, a body can be caught
in a close encounter with another body, where the trajectories of at least one of the
bodies is suddenly strongly disturbed from its Keplerian orbit. Close encounters will
almost always lead to a definitive ejection from the system. Indeed, if both bodies
remain bound, the periodicity of the orbits implies that they will meet again in the
treacherous terrain. Thus, if the first close encounter does not immediately provoke
an ejection, the subsequent encounters will do so.

As the close encounters are sudden (compared to the orbital period), the proba-
bility of observing a system experiencing one is very low. Even the complete ejection
to the outer limit of the system takes around 1,000 yr, a very short time interval
compared to the million to billion years-old systems that we observe. However, the
observation of wide companions with high relative velocities could still reveal them-
selves to be ejected bodies (Beust et al. 2016). In our Solar system, we regularly
observe close encounters between the massive planets and the asteroids or comets.
This is why the handling of close encounters was one of the first features imple-
mented in the N-body integrators designed to model the Solar System (see Chapter
1). The implementation of close encounters in my team’s code Swift HJS is one of
the issue tackled in this thesis (Chapter 1 Sec. 2.3).

5 Summarized Context
In summary, my thesis takes place in the context of a massive flow of observational
inputs yielded by SPHERE. We are on the verge of unveiling the key characteristics
of the architectures of extrasolar systems, and with it, to understand the formation
and evolution processes. The dynamical analysis is an essential part to achieve this
understanding from the observations.

The relative positions are fitted by a Keplerian orbit to determine the orbital
elements of the system. This requires powerful statistical procedure, because of the
relatively high number of parameters (> 6) and the sometimes poor constraints.
The procedure, as well as its applications to eight different systems, is described
in Chapter 2. The statistics of the orbital elements are essential to characterize
the architectures. The sample of directly imaged planet is still too small to draw
statistical conclusions on the orbital elements distribution. However, the presence of
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wide giant planets and the eccentricity of some fitted orbits are already meaningful
inputs concerning the formation and evolution pathways. Moreover, the dynamical
mass can be computed from the orbital elements, and is valuable to the calibration
of evolutionary models, especially for young low-mass stars. The analysis of two
such astrometric binaries led to a first-author paper, reproduced in Chapter 2.

N-body simulations can then be used to refine the orbital constraints or inves-
tigate unexpected features. As seen above, the stability of N-body systems with
N ≥ 3 is not ensured, and the influence of companions on each other and on their
environment are often not negligible. In Chapter 1, I present the current N-body
integrators available in the literature, and the new version I designed of the team
code Swift HJS to take into account hierarchy changes and close encounters. This
part of my thesis rests principally upon the study of system HD 106906, a rare sys-
tem with a potentially rich dynamical history. Its analysis led to two first-author
papers (one just submitted), reproduced in Chapter 1.
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Chapter 1

N-body simulations of extrasolar
systems
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In the Introduction, we reviewed the formalism of the N-body problem and saw
that the analytical approach is limited as soon as 3 bodies are involved. Average
evolutions (secular) or strong instabilities can be determined from a detailed study
of the equations, but N-body dynamics is strongly chaotic for N > 2 and thus do
not allow for precise conclusions most of the time.

Numerical simulations are a natural approach when studying N-body dynamics,
because of the simplicity of the equations of motion and the complexity of their
analytical resolution. They allow for the study of evolutions on multiple time-scales
(from fractions of an orbital period to secular times) and are not limited by the
number of bodies. In the study of extrasolar systems, they are used to predict the
stability of the companions, their past and future evolution or some observational
features that will help to constrain the rest of the system (disk carving, transit
timing variation...).

However, numerical simulations imply approximation errors, if only the computer
round-off errors (15 significant decimal digits precision in double precision), that
accumulates at each operation. When the implementation is unbiased, this evolves
at minimum with the square root of the number of steps (Brouwer 1937). On the
other hand, when the resolution of the problem is approximated, the error piles
up along the integration. For example, the Runge-Kutta framework in N-body
dynamics induces an energy error that evolves linearly with the number of steps
(Rein & Spiegel 2014).

In orbital mechanics, we are often interested in long-term evolution of orbits, that
corresponds to several thousands to million time-steps. To model the Solar System
4.5 billion years evolution for example, one needs a time step an order of magnitude
lower than Mercury’s orbit, so that 400 billion time steps are needed. At each time
steps, multiple calculations are performed, so that the total energy error becomes
quickly so important that the accuracy of the integration becomes questionable and
the planets orbital stability is not ensured.

Thus, the design and coding of an optimal scheme to integrate the motion in
N-body problems is a complex and active branch in astrophysics. The optimization
criteria generally chosen is the energy error, as the stability of an orbit is determined
by its energy. Different schemes might be optimal depending on the problem, and
I will first review the existing integrators before introducing the code at the cen-
ter of my PhD, Swift HJS, the new versions I developed, and the corresponding
astrophysical applications.

1 State of the art

1.1 Available codes

N-body simulations were developed during the 20th century, along with the progress
of computer science. The first approach was naturally to use truncated series of the
position, using the derivatives, to integrate the evolution of the bodies. Varying the
order, the numbers of iterations, the time step or the structure of the equations, the
possibilities are large and the codes highly adaptable. I regroup this approach under
the category "Classical integrators" in Sec. 1.2, and give an overview of the most
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widely-used set-ups in celestial dynamics. The most famous ones are the Runge-
Kutta methods (Sec. 1.2.1), which combine the derivatives at different fractions of
the time-step to reduce the error. They have been upgraded and refined over the
years, but a significant improvement of the precision can be reached by opting for
the Bulirsch-Stoer approach, which adds an extrapolation step (Sec. 1.2.2). The
implementation of these approaches is described in Press et al. (1989), and can be
found in most computational languages. But if a Bulirsch-Stoer algorithm is quicker
than the equivalent (in accuracy) Runge-Kutta method, it is still computationaly
costly, and the time step must be small enough to capture precisely the features of
the trajectory.

In the 1990s, the necessity to integrate systems for a gigantic number of time
steps with a constraint of stable energy gave birth to the symplectic integrators.
They allow the integration of a problem with larger time steps without endangering
the conservation of the energy, as long as the problem is similar to an exactly solvable
problem. Luckily, that is the case in orbital dynamics, for the computation of a Ke-
plerian motion is analytically known. Symplectic integrators are thus highly specific
to the problem they model, but increase the speed of several orders of magnitude
with no concession on the energy stability. Different mappings (depending on the
choice for the reference Keplerian orbits) are used in the literature, and I describe
them quickly in Sec.1.3. Three implementations have been developed before 2000,
that are still available and used today: SWIFT RMVS (Sec. 1.3.4), SymBa and Mercury
(Sec. 1.3.3). All can integrate Solar-System-like architectures and resist to close en-
counters, so that preferring one or another is more of a personal choice (although
Mercury is probably the most widely-used). Facing with the dynamical study of
extrasolar systems with possible non-Solar-System types architectures, Beust (2003)
introduced SWIFT HJS (Sec. 1.3.5). I used this integrator for most of my work, and
it is the basis of the new code ODEA that I will present below (Sec. 2).

Recently, the development of super computers and the complexity of the pro-
cesses studied, that often include additional forces (collisions, tidal forces, interac-
tions with the gaseous environment...), led Rein & Spiegel (2014) to advocate for
the return to classical integrators with variable time-steps. Indeed, if the implemen-
tation is of sufficiently high-order, then classical integrators might be stable enough
to ensure the conservation of the energy for billions of time-scale. To support their
claim, Rein & Spiegel (2014) introduced the IAS15 integrator, a 15th order Gauss-
Radau algorithm, that inspires from the classical integrator RADAU (Sec. 1.2.3). This
code is embedded into a multi-purpose Python package, REBOUND (Rein & Liu 2012),
designed specifically for N-body dynamics. However, although IAS15 might be the
natural choice for high-precision N-body simulations with strongly pertubed Kep-
lerian motions, the symplectic integrators remain the most efficient choice for very
long-term integrations when the Keplerian motion is dominant.

41



1.2 Classical integrators

In the barycentric referential frame, N-body dynamics is controlled by the following
Hamiltonian (see Introduction Sec. 4.2):

H =
N∑

i=1

p2
i

2mi

−
∑

1≤i<j≤N

Gmimj

rij
, (1.1)

where (mi) are the masses of the bodies, (ri) their positions, (pi) their momenta,
and rij = rj − ri the relative positions.

In this framework, the equations of motion (Hamilton equations) of body i writes

ṙi =
∂H

∂pi
=
pi
mi

; (1.2)

ṗi = −∂H
∂ri

=
∑

j 6=i

Gmimj

r3
ij

rij , (1.3)

or simply

r̈i =
∑

j 6=i

Gmj

r3
ij

rij . (1.4)

These differential equations are not solvable for N > 2, but they can be solved by
computation within classical numerical integration schemes of arbitrary order. For
the following introductions to the algorithms, the handbook of Press et al. (1989)
has been used.

1.2.1 Runge-Kutta

The Runge-Kutta scheme of integration is a family of simple and well-known iterative
methods to give approximate solutions of ordinary differential equations of the form
ẏ = f(t, y). In our case, y = (r1,v1, ..., rN ,vN ) is a 6N dimension vector. Given
a time-step h, the Runge-Kutta method evaluates f at fractions of h and sums the
results with coefficients chosen to optimize the error on y.

If the most simple Runge-Kutta schemes are the first order Euler method (one
sub-step) and the second order leap-frog method (three sub-steps), the most widely
used is generally referred to as RK4, as it is a fourth order method (error on the
order h5). These simple schemes are often not sufficient for orbital dynamics, as the
errors pile up and induce drifts in the constants of the problem (see Fig. 1.1).

In order to improve the precision of classical algorithms, the first option is to
increase their orders, for example by adding more steps in the Runge-Kutta frame-
works. This generally guarantees a better precision, although it is not ensured (high
coefficients can make the high-order terms not negligible). However, the compu-
tation time becomes increasingly long when the order of the algorithm increases.
Another option is to consider adaptive time-steps. Adaptive time-steps indubitably
add some complexity to the algorithm, but it gives a much better control on the
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Figure 1.1 – Second order Runge-Kutta model of an orbit (2-body problem) after
100 periods P , with a time step of P/100. The semi-major axis is not conserved,
and the orbit artifically precesses.

accuracy and speed of the scheme, by decreasing or increasing the time-step accord-
ing to the behavior of the function to probe. In orbital mechanics, it would ensure
the robustness of the algorithm at periastron passage or in case of close encounters
between two bodies on different orbits.

Adaptive time-steps can be implemented from the Runge-Kutta approach. The
simplest possibility is to compare the outputs of the Runge-Kutta algorithm with
time steps h and h/2, and then adjusting h so that the difference between the two
outputs is below our accuracy goal. Other schemes compare the outputs of two
different Runge-Kutta-like formula.

1.2.2 Bulirsch-Stoer

The Bulirsch-Stoer algorithm is a robust integrator that pushes to its limit the
idea of adaptive time-steps (Bulirsch & Stoer 1966). This algorithm is both precise
and flexible, and is often used in so-called hybrid symplectic integrators to handle
strongly perturbed Keplerian motions, as will be developed in Sec. 1.3. I chose this
algorithm to implement new features in Swift HJS, detailed in Sec. 2.3.

The idea of the Bulirsch-Stoer approach is to compute the next value of y with
decreasing values of the time-step h. Decreasing h produces more and more precise
estimates of y. When enough values have been computed (minimum 3), we fit a
rational function to probe the evolution of the prediction with respect to the time
step. We then evaluate the limit when h tends to 0 (see Fig. 1.2), with an arbitrary
precision (estimated from the goodness of the fit) with a much smaller number of
steps that would be theoretically required.

Let is be H the initial time step and yn the current value of y. The successive
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Figure 1.2 – Bulirsch-Stoer method to solve the differential equation of y. The left
image is taken from Press et al. (1989). A large interval H is spanned by different
sequences of finer and finer substeps. A rational extrapolation then gives an answer
that is supposed to correspond to infinitely fine substeps.

time steps from which the limit will be retrieved have the form h = H/j, where j is
an increasing even number. To compute the value of y after a time H (yn+1), the
Bulirsch-Stoer algorithm then calls j times a simple routine with time step h. We
use a second order scheme designed to call the function f only once at each substep
(to limit the computational cost).

Given yn and H, a sequence of outputs (yjn+1)j is then computed. Each time a
new j is computed, a rational fitting is performed to estimate the limit when j tends
to infinity and its uncertainty. Until this uncertainty does not match our precision
goal (defined beforehand) we go higher in j. Thus, we do not know in advance how
many time steps will be necessary.

To interpolate the sequence with a rational function and extrapolate its value at
0, Neville’s algorithm is used, where the extrapolation is recursively updated each
time a new point is added, and that naturally provides an estimate of its error. The
next H will be scaled according to the previous number of substeps j.

1.2.3 Gauss-Radau and IAS15

Another approach is to fix the timesteps, but iterate on the results with a predictor-
corrector scheme. We define an ensemble of substeps (hj) spanning a step H, and
compute the respective values yj = y(hj). At first, the derivative of y is supposed
constant throughout H and a simple integration gives the (yj). Then, the (yj) are
used to compute better estimates of themselves. With a proper truncation of the
serial expansion of ẏ, it is possible to express each yj as a function of (yk) where
k ≤ j only. Then, the updates can be made progressively

The role of the hj is essential here. To optimize the method, Everhart (1985)
thought of using the Gaussian spacings traditionally used to compute integrals,
which are not equally spaced. The peculiar scheme where the computation makes
use of the lower bound of the interval (i.e. the initial conditions) is called Gauss-
Radau integration.

In Everhart (1985), the quadrature uses 4 substeps (9th order) and the predictor-
corrector scheme uses a fixed number of iterations to optimize the (yj). The overall
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algorithm is called the RADAU code.
More recently, Rein & Spiegel (2014) presented the IAS15 algorithm, that takes

over the RADAU code, but uses 8 substeps (15th order integrator) and a dynamic
predictor-corrector scheme to adapt the number of iterations to the desired precision.
Moreover, they added a module to automatically set and adapt the large time-step
H. It is chosen smaller than the typical time-scale of the problem, and is obtained
by a rescaling of the last term of the expansion of ẏ. Finally, they optimize their
algorithm to limit the computer round-off errors to there minimal increment. It is
accessible within the Rebound Python package.

1.2.4 Hermite scheme

Finally, time-symmetric schemes can be used to minimize the error on the energy.
An algorithm is time-symmetric if an integration for ∆t then −∆t returns exactly
to the initial situation. This property theoretically guaranties energy conservation.
An algorithm based on Hermite interpolation of the acceleration has been proposed
by Kokubo et al. (1998) (P(EC)n Hermite scheme). The algorithm is fourth
order, but uses an iterative process to improve the accuracy. The formula depends
symmetrically on the times before and after the steps. The time step is updated
after each step, and is different for each body.

In any case, classical integrators rely on the time-step or on the number of iter-
ations to gain in precision. Such an approach is computationally costly, especially
since the algorithms must resolve at each time the curvature of the Keplerian motion.
Symplectic integrators adopted a more specific approach to integrate the problem,
based on the analytic resolution of a surrogate problem.

1.3 Symplectic integration

To solve the equations of motion in orbital mechanics and keep the error low on the
energy, a different line of integrators appeared in the 1980s, symplectic integrators.
Instead of lowering fiercely the order of magnitude of the positions uncertainty, these
integrators adopt a different approach, that is to solve analytically/to machine-
precision a surrogate problem similar to the real problem. For this method to be
useful, this surrogate problem must be simple to solve (not computationally costly)
and have an energy close to the real Hamiltonian. Due to the nature of the time
evolution of Hamilton’s equation, not only symplectic integrators do not accumulate
errors on H, but they also conserve the differential volume dr ∧ dp.

Symplectic integrators can be substantially faster than classical integrators in
celestial dynamics, because the time step does not need to be as small to conserve
the energy. On the other hand, symplectic integrators lack flexibility, in particular
for the adaptation of the time step. Indeed, the time step is part of the scheme, and
changing it will break the symplecticity if no special care is given. This problem and
some strategies to handle it will be introduced within the following presentation of
the mappings.
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1.3.1 General theory

Let us call the surrogate Hamiltonian H̃. If it is exactly solvable, the algorithm is
symplectic: it exactly preserves the areas in phase space and exhibit no long-term
drift of the energy.

In order to design a proper H̃ in orbital mechanics, the key idea is to split the
Hamiltonian into two integrable parts:

H = HA +HB . (1.5)

Several splittings are possible, depending on the problem at hand. Both parts
should be integrable within computer round-off errors. H̃ corresponds to the suc-
cessive integration of these parts separately.

To understand the error that we introduce by integrating the surrogate Hamil-
tonian, a bit of theory on the evolution of Hamiltonian systems is needed. In that
framework, the evolution of any variable y(t, (ri), (pi)) is given by:

dy

dt
= {y,H}+

∂y

∂t
, (1.6)

where the Poisson brackets are defined as follows: {f, g} =
∑

i
∂f
∂ri

∂g
∂pi
− ∂f

∂pi

∂g
∂ri

.
Let us define the operators A = {., HA} and B = {., HB}. Let us suppose that

y does not depend directly on time (for example y = ri or pi). Then its evolution
writes:

ẏ = (A+B)y . (1.7)

This differential equation is formally solvable:

y(t+ ∆t) = e∆t(A+B)y(t) (1.8)

However, in most cases, the effect of the operator exp (∆t(A+B)) is not ex-
actly or easily calculable to computer round-off limits. By choosing HA and HB

that are exactly solvable, we ensure that we are able to compute the evolution un-
der exp(∆tA) and exp(∆tB) alone, and thus the evolution of their composition
exp(∆tB) exp(∆tA).

Let us define S as the operator corresponding to the evolution of the surrogate
Hamiltonian S = {., H̃}, where H̃ consists in an evolution along HA followed by
an evolution along HB. The product of the exponential of two operators can be
computed as a series of commutators, with the Baker-Campbell-Hausdorff formula.
Thus, we can express the first orders of S as a function of ∆t, A and B:

S = A+B − ∆t

2
[A,B] +O(∆t2) . (1.9)

Finally, it can be shown that [A,B] = −{., {HA, HB}}. The surrogate Hamilto-
nian is therefore:

H̃ = H +
∆t

2
{HA, HB}+O(∆t2) . (1.10)
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Eq. 1.8 tells us that if HB is not explicitly time-dependent, {HA, HB} corresponds
to the time derivative of HB if the Hamiltonian was only HA. Therefore, the leading
term of the energy error scales as the variation of HB and not directly as HB. This
is important to evaluate the relevance of the splitting (see Sec. 2.2).

For a second order symplectic integrator, three steps are used instead of two.
The method consists in integrating HB for ∆t/2 then HA for ∆t, then again HB

for ∆t/2, where ∆t is the time step. A similar analysis than above shows that the
surrogate Hamiltonian then writes:

H̃ = H − ∆t2

12
{{HA, HB}, HA +

1

2
HB}+O(∆t4) . (1.11)

Exchanging HA and HB gives a non equivalent second-order scheme. Second
order integrators are often enough when H̃ is designed to be close to H. A good
way to ensure that is to make HB small (perturbative part). Higher order integrators
are nevertheless possible (Yoshida 1990).

1.3.2 Leap-frog mapping

The Leap-frog mapping is the most natural splitting, and can be used for a wide
range of physical problems. It consists in separating the kinetic energy from the
potential energy ("T+V" scheme). In our problem, it gives:

HA =
N∑

i=1

p2
i

2mi

; (1.12)

HB = −
∑

1≤i<j≤N

Gmimj

rij
. (1.13)

An evolution controlled by HA writes (Hamilton equations):

ṙi =
∂HA

∂pi
=
pi
mi

; (1.14)

ṗi = −∂HA

∂ri
= 0 , (1.15)

the momenta are constant and the positions evolve linearly. On the other hand, an
evolution controlled by HB writes:

ṙi =
∂HB

∂pi
= 0 ; (1.16)

ṗi = −∂HB

∂ri
=
∑

j 6=i

Gmimj

r3
ij

rij , (1.17)

the positions are constant and the momenta evolve linearly.
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An evolution controlled by the surrogate Hamiltonian thus corresponds to the
succession of inertial drifts (HA) and velocity kicks (HB). The latter does not cor-
respond to any physical process, but is formally well defined.

We usually call leap-frog the second-order scheme of this splitting, which is a kick
for ∆t/2, a drift for ∆t, and again a kick for ∆t/2. However, this splitting does not
usually have HA � HB, so that the second order scheme is not sufficient to ensure
that the relative steady energy error is small (O(t2)). Higher order leap-frog is used
in N-body dynamics by the integrator Janus in the Python package Rebound (Rein
& Tamayo 2017).

1.3.3 Mixed variable symplectic (MVS)

The leap-frog method is not specific to orbital mechanics, and does not take advan-
tage of the known features of the problem. The main idea of the mixed variable
symplectic mapping is that all the bodies trajectories are lightly perturbed Keple-
rian orbits, and that we know how to compute the exact resolution of the Keplerian
motion to machine precision.

This scheme was first designed when no exoplanet was yet found, so it was meant
exclusively for application to the Solar System. The motion is thus divided into two
parts: Keplerian orbits around the Sun and perturbations by the other planets.

HA =
N∑

i=1

(
p

′2
i

2m′i
− Gmim�

r′i

)
; (1.18)

HB =
N∑

i=1

(
Gmim�

r′i
− Gmim�

ri�

)
−

∑

1≤i<j≤N

Gmimj

rij
. (1.19)

where r′i is the location of body i with respect to the center of mass of the bodies
interior to its orbit (Jacobi coordinates, see Introduction Sec. 4.3), and p′i is the
relative conjugate momentum. An evolution controlled by HA writes:

ṙ′i =
∂HA

∂p′i
=
p′i
mi

; (1.20)

ṗ′i = −∂HA

∂r′i
= −Gmim�

r
′3
i

r′i , (1.21)

which corresponds to a purely Keplerian evolution. On the other hand, an evolution
controlled by HB writes:

ṙ′i =
∂HB

∂p′i
= 0 ; (1.22)

ṗ′i = −∂HB

∂r′i
≡ mia

B
i

(
(r′j)

)
, (1.23)

the positions are constant and the momenta evolve linearly with an acceleration aB.
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Figure 1.3 – Schematic of the kick-drift-kick procedure in the MVS framework.

Assuming that the Sun is the dominant mass (m� � mi) and that there is no
close encounters between the planets, then HB remains significantly smaller than HA

and the second order scheme is accurate enough. Moreover, as each term is exactly
solvable, the time step does not need to be dramatically small. It is generally
assigned to 1/20 of the smaller orbit in the modeled system to ensure 10−6 relative
energy conservation in nominal cases.

This MVS mapping was suggested in Wisdom & Holman (1991), and was imple-
mented three years later in Swift RMVS by Levison & Duncan (1994) (the appella-
tion Mixed Variable Symplectic refers to the frequent switches of the code between
Cartesian coordinates and Keplerian elements, and the R stands for Regularized).
For the first time, it was computationally possible to integrate the Solar System for
the entirety of its lifetime.

The scheme is very efficient for lightly perturbed Keplerian motions, but gives
poor results whenHB becomes large, such as in the case of close encounters (typically
comets entering the 3 Hill Radius zone). In Swift RMVS, Levison & Duncan (1994)
handled the problem by switching scheme (heliocentric to planetocentric) and time
steps whenever a body encounters another. At each of these interventions, however,
energy errors are introduced, so that the algorithm is not truly symplectic anymore.

The scheme was then complexified by Saha & Tremaine (1994) to allow for
individual time steps. It enabled a fastest and more precise integration, for the
evolution of planet Pluto could be computed with a longer time-step than Mercury,
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while Mercury’s orbital evolution could keep its accuracy. However, the time steps
could still not be changed.

1.3.4 Democratic heliocentric: SyMBA and Mercury

In the 1990s, the problem of adapting time steps in symplectic algorithms was a great
issue among dynamicists. In that quest, a new Hamiltonian splitting was introduced,
democratic heliocentric, that kept the idea of Wisdom & Holman (1991)’s mixed
variables.

Duncan et al. (1998) introduced this mapping in their SyMBA integrator (where
SyMBA stands for Symplectic Massive Body Algorithm), designed to adapt individ-
ually the time-steps without losing the symplecticity. Their approach is to define
successive shells around each body, with an associated time step that decreases with
the proximity of the shell. However, these variable individual time-steps does not
behave well in the Jacobi coordinates, because each body revolves around a different
center. Thus, Duncan et al. (1998) introduced the democratic heliocentric method.
In this framework, the Hamiltonian is split in three parts:

HA =
N∑

i=1

(
p2
i

2mi

− Gmim�
ri�

)
; (1.24)

HB = −
∑

1≤i<j≤N

Gmimj

rij
; (1.25)

HC =
1

2m�

(
N∑

i=1

pi

)2

. (1.26)

It consists in a heliocentric coordinates (ri�) and barycentric velocities (momentum
pi) description. To include the shell description and adaptative time steps, the
potential part of HA is decomposed into a sum of potentials different for each shell.
The resulting integrator is truly symplectic, but, according to Chambers (1999), it is
rather cumbersome to implement in practice, and it does not retain the great speed
advantage of the basic symplectic method.

Inspired by the Duncan et al. (1998) approach and using the democratic helio-
centric description, Chambers (1999) created Mercury one year later. Introduced as
a hybrid symplectic integrator, Mercury handles close encounters with a Bulirsch-
Stoer integrator (Sec. 1.2.2). To keep as much as possible the symplecticity of the
integrator, the parts of HB that grow large in case of close encounters is transferred
into HA when it cannot be neglected anymore. It is done so with a smoothing
function, scaled with the Hill radii.

In the original paper and the version that is currently found online, there is a
small mistake in Mercury’s implementation (Wisdom 2016). The derivative of the
smoothing function should have been included in the evolution equations, but it is
not. This error has been corrected in the Mercury implementation in the Rebound
package (Mercurius, Rein et al. 2019).
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1.3.5 Hierarchical Jacobi Symplectic (HJS)

The previously presented mappings have been designed to properly integrate the
Solar System components. All of them have their advantages and disadvantages
depending on the exact nature of the problem to be solved. Though the dedicated
papers are contemporaries with the first exoplanet discoveries, the Solar System
echoes each of the discussions around symplectic codes. The central mass in even
referred to as m� in the papers, and the solar mass is hard-coded in some of the
implementations.

Today, the use of the N-body codes is not restricted to the Solar System anymore.
With the rapid increase of exoplanet discoveries, including multi-planetary systems,
the need for efficient N-body simulations has become strong to model the interaction
between planets or planets and debris disk. However, the architecture of the Solar
System is not universal. From giant planets to multiple stars, the single dominant
mass paradigm is not always the most appropriate description.

In Chambers et al. (2002), the authors develop two new versions of Mercury,
designed for s-type planets in wide binary stars and for p-type planets in tight
binary stars (circumbinary planets). In these versions, the democratic heliocentric
method was modified to take into account the large motions of the stars, but the
philosophy stayed the same.

Yet, as long as there is lightly perturbed Keplerian motion involved, symplectic
integrators can theoretically model efficiently the evolution in any orbital config-
urations, assuming that the proper description is adopted. In Beust (2003), the
Hierarchical Jacobi coordinates are introduced that generalized the Mixed variable
symplectic approach to account for any architecture. They are implemented in the
Swift HJS code.

The Hierarchical Jacobi coordinates description is based on orbits instead of on
bodies. An orbit consists in a collection of two non-empty sets of bodies, the set
of centers and the set of satellites, that have empty intersection. We can chose by
convention to name centers the heaviest set and satellite the lightest. As an example,
the Sun-Earth-Moon problem can be represented by two orbits: the Earth-Moon
orbit, with the Earth as a center and a Moon as a satellite, and the Sun-Earth-
Moon orbit, with the Sun as a center and the Earth and Moon as satellites. Orbits
can be schematized as lines, linking the center of mass of the satellite to the center
of mass of the centers. An example of such representation is shown on Fig. 1.4.

In all problems in orbital mechanics, a hierarchy can then be defined as a collec-
tion of orbits comprising all bodies and satisfying the following rule: for all couples
of orbit k and l 6= k, one of the three subsequent propositions applies

• orbits k and l have no common bodies (orbits k and l are foreign);

• orbit k is comprised in the centers or satellites of orbit l (orbit k is inner to
orbit l);

• orbit l is comprised in the centers or satellites of orbit k (orbit k is outer to
orbit l).
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Figure 1.4 – Schematic of a non-Solar type hierarchy, with 5 bodies and 4 nested
orbits. On the left, the orbits are represented by the trajectory of the centers and
satellites around their center of mass. On the right, they are represented by simple
lines linking the centers of mass of satellites and centers. The letters c and s designate
respectively the centers and satellites of each orbit.

For a given problem numerous hierarchies are possible, but most of the time a natural
hierarchy arises, that decreases to a minimum the perturbations between each orbit,
so the problem is approximately a set of independent Keplerian motions. As an
example, Fig. 1.4 shows a valid hierarchy defined in a 5-body problem. Orbits 1 is
inner to orbit 2, as the bodies of orbit 1 are entirely within the set of centers of orbit
2. Orbit 2 and 3 are foreign, as they have no bodies in common. Finally, orbit 4 is
outer to orbits 1, 2 and 3 are inner to orbit, because they are each embedded in one
of the sets of orbit 4.

During my PhD, I worked extensively on this orbital representation, to work on
the new versions of Swift HJS. Several results come directly from the rules defined
above.

First, a hierarchy of N bodies is made of exactly N − 1 orbits. This can be
proved by mathematical induction. The reasoning is represented on Fig. 1.5. From
two bodies, only one orbit can be defined. Supposing that the proposition is true
for n− 1 bodies, then let us consider n bodies and define an arbitrary orbit with c
centers and s satellites. As c, s and n − s − c are both inferior or equal to n, then
the total number of orbits is the sum of s − 1, c − 1, n − s − c (counting the first
orbit as a body) and 1 (the first orbit). It gives a total of n− 1 orbits.

From this proposition, we derive that there is at least one orbit composed of two
bodies, and one composed of N − 1 bodies. This can be showed by contradiction,
because the contrary would leave room for another orbit, which is not possible given
the fixed number of orbits.

In SWIFT HJS, the orbits are numbered from 2 to N. Finally, we define µk and
ηk as the total mass of the satellites and centers respectively of orbit k. The total
dynamical mass in orbit k is thenMk = µk+ηk and the reduced massm′k = µkηk/Mk.

In this formalism, a new set of N coordinates (r′k,p
′
k)i=1,..,N are designed with

a Jacobi-like approach: r′k is the relative position of the center of mass of orbit k’s
satellites with respect to that of its centers (the centers of mass are represented by
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N bodies
(s-1) + (c-1) + (N-s-c) + 1 = N-1 orbits

s bodies
s-1 orbits

c bodies
c-1 orbits

N-s-c+1 objects
N-s-c orbits

Satellites Centers

1 orbit

Figure 1.5 – Illustration of the mathematical induction to show that a N -body
problem admits hierarchies with exactly N − 1 orbits.

crosses in Fig. 1.4, and p′k is the relative conjugate momentum. The first coordinates
r′1 and p′1 are the position and impulsion of the center of mass. These positions and
conjugate momenta derive from a canonical transformation that let the Hamiltonian
invariant. They can be expressed with the bodies coordinates as

r′k =
∑

i, satellites of k

miri
µk
−

∑

i, centers of k

miri
ηk

; (1.27)

p′k = m′k

( ∑

i, satellites of k

pi
µk
−

∑

i, centers of k

pi
ηk

)
. (1.28)

The Hamiltonian can then be split as follows

HA =
N∑

k=2

p′k
2

2m′k
− Gµkηk

r′k
; (1.29)

HB =
N∑

k=2

Gµkηk
r′k

−
∑

1≤i<j<≤N

Gmimj

rij
. (1.30)

The key idea is that HB does not depend on the momenta p′k, and that HA naturally
splits into a sum of independent Keplerian problems. This is a direct consequence
of the fact that the kinetic energy writes as a weighted sum of the p′k

2 terms (no
crossed terms p′kp′l). An evolution controlled by HA writes:
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ṙ′i =
∂HA

∂p′i
=
p′i
m′i

; (1.31)

ṗ′i = −∂HA

∂r′i
= −Gµkηk

r
′3
i

r′i , (1.32)

which corresponds to a purely Keplerian evolution. On the other hand, an evolution
controlled by HB writes:

ṙ′i =
∂HB

∂p′i
= 0 ; (1.33)

ṗ′i = −∂HB

∂r′i
≡ m′ia

B
i

(
(r′j)

)
, (1.34)

the positions are constant and the momenta evolve linearly with an acceleration
denoted aB, that derives from HB.

This description is fully symplectic, and a second-order scheme can be adopted
as HA � HB when the hierarchy is marked, without any condition on dominant
mass ratios. Swift HJS is thus fitted to integrate planetary systems as well as
stellar systems (Beust 2003). An example of non-Solar type hierarchy that can be
integrated with the code is represented on Fig. 1.4.

However, by its very nature, any change of hierarchy (including close encounters)
is not easy to handle in Swift HJS. In its original version, the code does not handle
close encounters. This issue is discussed in 2.2 and 2.3, where new versions of the
algorithm are presented.

1.4 Swift HJS

Swift HJS is an implementation of the Hierarchical Jacobi Symplectic description,
designed by Beust (2003) to model hierarchical systems. It is coded in Fortran, and
keeps the same organization than its ancestor Swift RMVS. The core code, organized
around the module swift_hjs.f, makes use of around 60 sub-modules, that ranges
from the computation of a sine to the performing of a symplectic step. The solving of
the Keplerian part alone requires many of these modules, to properly and efficiently
model elliptic, hyperbolic and parabolic orbits.

1.4.1 Core algorithm

The core of the algorithm is a kick-drift-kick procedure illustrated on Fig. 1.3 and
whose implementation is represented on Fig. 1.6. In this framework, an evolution
for ∆t is made of an evolution controlled by HB for ∆t/2, HA for ∆t, and HB for
∆t/2. Only the velocities evolve during the first and last phase, while both the
position and velocity evolved along a Keplerian orbit in the middle phase. Two
modules require non-trivial computation: the derivation of the acceleration induced
by HB (perturbative acceleration aB), and the computation of the Keplerian drift.
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The acceleration of the Jacobian coordinates of orbit k is given by:

a
′B
k =

∑

i∈Satk
j /∈k

Gmimj

µkr3
ij

rij −
∑

i∈Cenk
j /∈k

Gmimj

ηkr3
ij

rij +
∑

i∈Cenk
j∈Satk

Gmimj

m′k

(
1

r
′3
k

− 1

r3
ij

)
rij (1.35)

For each orbit, it compiles the interactions between the satellites, between the cen-
ters, and with the outer bodies. This operation scales as N3.

To go from the Jacobi coordinates to the barycentric coordinates (and vice-
versa), a transformation matrix is computed from the hierarchy at the beginning of
the simulation. This matrix gives the relative weight of bodies in each orbit, and is
described in Beust (2003).

SWIFT HJS

rj, vj, hierarchy, dt

t, rj, vj 
write 
initial 
frame

Compute or 
remember aj

rj = Jacobi positions

Kick vj → vj + aj dt/2

Keplerian drift for dt
↳ new rj, vj, aj

Kick vj → vj + aj dt/2

t → t + dt
write 
frame

bin
a, e, i, !, ω, M

t = 0

kick drift kick

vj = Jacobi velocity

aj = Jacobi acceleration

Compute aj

Figure 1.6 – Schematic of the core algorithm of Swift HJS.

On the other hand, each orbital evolution is computed independently. First,
the orbital elements are derived from the Jacobi coordinates. Then, the Kepler
equation is solved to derive the new eccentric anomaly using the Danby iterative
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method (see Appendix). The Danby method is optimized so that the computer
accuracy is reached with a small number of iterations (below three for elliptic orbits,
below ten for hyperbolic orbit).

1.4.2 Modules

The core algorithm takes the initial coordinates of the bodies and test particles, their
hierarchy, and returns a binary file comprising the orbital elements with respect to
time. An efficient use of the code involves the design of additional modules, for easy
initialization and analysis of the data. They are summarized in Fig. 1.7.

Using SWIFT HJS

Change of basis 
matrix to the 

invariant plane

matpass.dat

Integrator

swift_hjs.sh
swift_hjs.f

Archive orbital 
elements

bin

extract_hjs.sh, extract_hjs.f

xvbodies.out

Conventions, hierarchy, orbital elements
Massive bodies and test particles

gen.sh, gen.f

Initial barycentric 
coordinates

phjs.in, tphjs.in

Initial, final times
Time step, name

params.in

Archive energy
energy.out

Final save

dump_params.dat
dump_pl.dat
dump_tp.dat

Change of basis matrix
Jacobi → Barycentric

mat.dat

Archive barycentric
Test particles

xvtp.out

Archive orbital elements
Test particles

eltp.out

Archive orbital elements
Massive bodies

elbodies.out

Automatic analysis
Analysis.py

Orbital elements of initial hierarchy
Evolution.png

Creates readable outputs
extract_hjs.sh, extract_hjs.f

Archive barycentric 
coordinates 

Massive bodies

elbodies.out

Figure 1.7 – Schematic of the inputs and outputs of Swift HJS. The user inputs
are filled in gen.sh and params.in.

It is often useful to have an intermediate module to translate our constraints
into acceptable inputs. This is the role of the routine gen, which takes the orbital
elements of the orbits and the hierarchy of the massive bodies and test particles. The
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routine is straightforward for the massive bodies, but involves some computation to
generate a disk of test particles (see below).

Post-processing routines are also needed to makes use of the simulation. First, a
module extracts the desired information from the raw binary output (which contains
the history of the orbital elements of each massive bodies and test particles). Then,
we make use of a more practical langage (Greg or Python for example) to plot the
evolution of the different quantities, or represent the graphical evolution of the disk.

1.4.3 Treatment of test particles

The study of planetary systems often involves the study of debris belts. In N-body
simulations, the dust is modeled at first order by massless bodies (or test particles)
that interact with the massive bodies but not with each other. Test particles are
specifically considered in Swift HJS as the handling of their hierarchy is slightly
different. Indeed, they are the only satellites of their orbit and their orbit is invisible
to the bodies and other test particles evolution.

Their evolution follows the same pattern as the massive bodies, a kick-drift-kick
procedure presented above. However, their perturbative acceleration writes, in the
barycentric coordinates:

aB =
Gη

r′3
r′ +

∑

k with tp∈Satk

Gηk
r′3k
r′k −

∑

k with tp∈Cenk

Gµk
r′3k

r′k −
∑

j∈Centp

Gmj

(r − rj)3
(r − rj)

(1.36)
and in the Jacobi coordinates:

a
′B = aB −

∑

j∈Centp

mj

η
aBj . (1.37)

1.5 Non-Keplerian forces

The study of planetary systems often involve tidal forces or interactions with the
primordial gas (such as migration), so that the possibility of taking into account
these phenomena are essential to a good algorithm. All the integrators presented
above can handle additional non-Keplerian forces.

Let us name F ((qi), (pi)) the sum of non-Keplerian force acting on the system.
If F is not conservative, the Hamiltonian is not conserved anymore. The equations
of motion now read:

ṙi =
∂H

∂pi
=
pi
mi

; (1.38)

ṗi = −∂H
∂pi

=
∑

j 6=i

Gmimj

r3
ij

rij + F , (1.39)

Whatever the dependence of the force, these equations fit into all the frameworks
described previously. The use of the symplectic mappings remains possible, but
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is relevant only if F has a small effect compared to the gravitational forces, and
can thus be integrated as a perturbative effect, similar to the treatment of HB.
Depending on the form of F , the integration may be exact (if it only depends on
the position for example) or approximate.

2 Code development

2.1 Development of surrogate tools for Swift HJS

2.1.1 Analysis and representation of the outputs
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Figure 1.8 – Example of automatic analysis by the module Analysis.py of a simu-
lation with Swift HJS. The evolutions of each orbit orbital elements (columns) of
each orbits (lines) are computed, but only the semi-major axes and eccentricities are
represented here.

Before my PhD, the analysis of the simulation was coded in the GreG language,
that is part of the GILDAS working group software developed by IPAG and IRAM in
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Grenoble. As part of this PhD, I have developed new routines in Python. First, an
extract routine is used to compute the position and orbital elements of the massive
bodies and test particles, inspiring from the output files of the Mercury code. Then,
a first analysis routine is used to plot the overall evolution of the massive bodies
orbital elements, as an overview of the entire integration (see Fig. 1.8).

Figure 1.9 – Snapshots of a simulation of a quadruple system with Swift HJS.

Furthermore, I wrote more complex routines to visualize the evolution of the
bodies and orbits. Examples of visualizations can be seen on Fig. 1.9, whether with
orbits or trajectories. The relevant representation depends on the problem.

2.1.2 The special case of test particle

The analysis of the test particle evolution in the simulations involves different mod-
ules, mostly because test particles are often defined as a group with numerous objects
(1,000 - 10,000). It is practical to set the characteristics of the belt rather than the
individual characteristics of each particles. Such initialization is provided for in the
gen routine. Semi-major axis, eccentricity and inclination ranges must be provided,
along with the plane of reference and the center(s) of rotation. In the course of
my PhD, I worked multiple times with debris disks, the corresponding work being
described in the next sections (HD 106906, HD 206893 and HR 2562). Depending
on the situation, the base plane of the disk was not always the reference plane of the
planets (ecliptic), so that I improved the existing routine to compute a transforma-
tion matrix from the ecliptic to the wanted plane. Then, the characteristics of the
disk (in terms of orbital elements) could be given and retrieved in the desired plane.

Once the simulation is done, the test particles may be simply plotted along with
the massive bodies to have a first overview of the disk geometry (Fig 1.10 left).
However, such representation does not allow grasping the structures that might
appear. The representation can therefore be completed with a density map (2D
histograms, Fig 1.10 right). When we are interested in the secular evolution, the
number of particles can be artificially increased (to get a more precise map) by filling
the orbits of the existing particles.
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Figure 1.10 – Representations of the ouput of the simulation of a circumbinary debris
disk with Swift HJS. The two figures correspond to the same data comprising the
characteristics of 1,000 test particles. In the right figure, the orbits of each test
particles have been artificially filled with 1,000 additional particles, so that a 2D
histogram of the density can be computed.

2.1.3 Treatment of migration

In the study of the extrasolar system HD 106906 (see Sec. 3), we needed to take into
account the effect of migration in the coplanar case. Due to the interaction between
the protoplanetary disk and planets, planetary migration is currently not very well
constrained though it is a crucial ingredient of the early formation and evolution of
systems architecture (see Introduction). The most accurate way to include migration
into a study is to include the gas dynamics, but even then the constraints are always
loose regarding the gas aspect ratio, density and viscosity. Thus, we used an effective
migration force with a constant migration rate vmig = da/dt in case of no additional
perturbation. This assumption is not exactly realistic, but we were interested in
the dynamics of the planet in a specific narrow zone, so that the variation of the
migration rate may be negligible at first order. Assuming a simple form and no
eccentricity change or precession, we then derived theoretically the expression of the
migration force per mass Fmig for each orbit i (the derivation is explained in Rodet
et al. 2017 below):

Fmig =
m′ivmigπ

Pi
√

1− e2
i

(
1 +

1

2
(1− r′i

ai
)

)
eθ , (1.40)

where Pi is the period, ai the semi-major axis and ei the eccentricity of orbit i, and
eθ is the unit vector of the polar base associated with the true anomaly θ. It can
be computed from the Jacobi vector position and velocity at a given time:

eθ =
r′i ∧ ṙ′i
‖r′i ∧ ṙ′i‖

∧ r
′
i

r′i
. (1.41)

Though we use the velocity to compute eθ, the vector depends in fact on the true
anomaly and the orbital plane (fixed in the problem) alone. Thus, F depends only

60



on the position, so that its integration within Swift HJS’s scheme is immediate. Its
effect is accounted for in the kick part, where the position is fixed and the velocity
is linearly increased. The new perturbative evolution of orbit i is then

ṙ′i =
∂HB

∂p′i
= 0 ; (1.42)

ṗ′i = −∂HB

∂r′i
= m′iaBi

(
(r′j)

)
, (1.43)

where aBi
(
(r′j)

)
corresponds to the previously introduced (Eqs. (1.34) and (1.35))

perturbative evolution of orbit i without migration.
This derivation of Fmig is somewhat arbitrary (assumption of a simple form), and

neglects possibly important effects (eccentricity damping, variation of the migration
direction and strength...). However, in the following study, it was used to evaluate
qualitatively the possiblity of a scenario, and a simple approach was adopted to re-
duce computational costs. More complicated effective models were used for example
within Mercury in Xu & Lai (2017).

2.2 Handling hierarchy change

The architecture of planetary systems are subject to constant variations. In an old
system such as the Solar System, the variations of the orbital elements of the planets
are small, so that the global hierarchy of the major planets remains the same, but
the smaller bodies (comets, asteroids) can still be subjected to major changes in case
of close encounter with a planet. In young systems, observations suggest that strong
interactions between planetary bodies are common (Morbidelli 2013). In this thesis,
we refer as close encounter a phenomenon that deviates significantly and over a short
timescale an orbital trajectory from its current Keplerian motion. This definition is
partly arbitrary, as it depends on our accuracy goal to evaluate the significance of
the deviation.

The symplectic mappings that take advantage of the analytic resolution of the
Kepler motion do not handle well close encounters, and even less hierarchy changes.
They are designed for problems where the non-Keplerian parts of the motions (HB)
are small with respect to the Keplerian parts (HA), so that the error becomes out
of control in case of close encounters. This error does not decreases if the hierarchy
has changed after the close encounter, because the splitting of the Hamiltonian is
entirely based on the initial hierarchy.

Handling hierarchy change is not a priority for most of the symplectic integrators,
as they are based on the Solar System architecture and are not fitted to change
the hierarchy whatsoever. However, Swift HJS is designed to work efficiently with
any hierarchy, and it is thus natural to implement the possibility of a hierarchy
change within the algorithm. Strictly speaking, when changing the hierarchy, the
symplectic nature of the algorithm does not hold anymore, as the splitting of the
Hamiltonian changes. This is also true for any change of the time step. A new
approximate Hamitonian is integrated from an already approximated scheme, which
means that the error budget raises potentially at each hierarchy change. However,
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the algorithm is designed for orbital dynamics, where systems are not subject to
frequent reorganization of their architecture.

The new version of Swift HJS that handles hierarchy changes is called ODEA.
It was presented in Rodet et al. (2019) (above), with an application to system HD
106906. In this section, I will introduce the new version with more details.

2.2.1 Criterion to evaluate a hierarchy

Similarly to the handling of close encounters, the computation of a good criterion
to evaluate the relevance of the Hamiltonian splitting is the central point of the
algorithm. Traditionally in a planetary system, the Hill radius around a given planet
is used to scale the bodies relative distances. The Hill radius corresponds to the
position of the first Lagrange point, that is the point between the center and the
satellite where the sum of the gravitational forces and the centripetal force cancel.
At this point, a massless particle is theoretically motionless in the co-rotating frame.
The Hill radius rH from the center (mass η) verifies:

− Gη

(r − rH)2
+
Gµ

r2
H

+
G(µ+ η)

r3
(

η

η + µ
r − rH) = 0 , (1.44)

where r is the distance between the center and the satellite (mass µ). Solving this
equation is equivalent to finding the root of a 5-degree polynomial. An approximated
result can be derived if the satellite’s mass is negligible before the center’s mass:
rH/a = 3

√
µ/3η. However, there is no dominant mass a priori in ODEA, contrary to

Mercury. Moreover, the little eccentricities of the massive bodies in Mercury allow
neglecting the variation of the radius r and replace it by the semi-major axis a.
Again, this is not the case in ODEA, that is fitted to study any orbit, whatever its
eccentricity, including hyperbolic trajectory. Thus, the Hill radius, heavy to compute
and unreliable in the general case, will not be considered here.

We demand the criterion to satisfy two points: being correlated with the error
induced by the symplectic splitting (Eq. 1.11), and being fast to compute. As it
must be computed at each time step, its computation must be fast compared to
the most expensive step, which is the computation of the perturbative acceleration
aB. From Eq. (1.35), each acceleration aBi scales as N2, because all the residual
accelerations between the bodies within the orbit have to be taken into account. So
the total cost of the step (computation of the aBi for each orbit) scales as O(N3).

The quantity that is best correlated with the error is the error itself. The energy
error can be computed from Eqs. 1.10 and 1.11 in the framework of Swift HJS. It
gives:
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Herr =
∆t

2
{HA, HB} =

∆t

2
{
N∑

k=2

p2
k

2mk

, HB} (1.45)

= −∆t

2

N∑

k=2

pk
mk

∂

∂rk
HB) (1.46)

=
∆t

2

N∑

k=2

pka
B
k (1.47)

in the first-order case, and, with some more steps,

Herr = −∆t2

12
{{HA, HB}, HA +

1

2
HB} (1.48)

≈ −∆t2

12
{{HA, HB}, HA} (1.49)

≈ −∆t2

12

(
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GMk
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mk
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ij
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mk
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∑
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Gmimj(M
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r3
ij

rij
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.
Gµkηk
r3
k

rk

)

(1.50)

in the second-order case, whereM is the transformation matrix from the barycentric
to the Jacobi coordinates, such that r′k = Mkjrj and rj = M−1

jk rk.
Clearly, the expression of the error given by Eq. 1.50 for the second-order case is

too complicated to be a good criterion. The error of the first-order scheme given by
Eq. 1.47 is a good basis however, as it is proportional to aB, which is already com-
puted in the integration. We are searching for a criterion to measure the relevance
of the hierarchy, whatever the time step or the velocities. Moreover, each orbit does
not weight the same in the energy error, but the hierarchy should fit at best every
orbit nevertheless. All in all, we define the individual criteria of orbit k as

ck =
aBk
aKep
k

(1.51)

where aKep
k is the Keplerian acceleration, induced byHA. We set the threshold, below

which every ck should remain, at 0.2. Assuming a well-chosen timescale (< P/20),
it would correspond to an energy ratio Herr/HA of 0.01. Above, a new hierarchy is
searched for. It is important to note that the criterion only indicates when to search
for a new hierarchy, but does not guaranty that a better hierarchy will be found.
Conversely, a non-optimal hierarchy can have low criterion or energy error. But as
the search for a new hierarchy is computationally costly, we limit it to the cases
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when the integration error becomes high. The value of the criterion threshold can
be adjusted in the code, but in most cases that I tested, no better hierarchy existed
for configurations below this threshold.

Time

First
hierarchy
change

Second
hierarchy
change

Initial
hierarchy

Figure 1.11 – Test case for the new algorithm, where a red body disrupt a black
binary and is captured by one of the companion.

The criterion makes sense only if the time scale is adapted to the current hier-
archy. Changing the time step in a symplectic integrator breaks the symplecticity,
but so does a hierarchy change, so that the time step can be changed at the same
time. Empirical considerations give a time step of 1/20 of the smallest period to
ensure an energy error below 10−6 in the nominal cases (Levison & Duncan 1994),
and we chose 1/20 of the periastron to account for eccentricities.
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Figure 1.12 – Comparison between the criterion for hierarchical change (maximum
of all the ck) and the error term in the Hamiltonian, depending on whether the time
scale is fixed (small points) or evolves (big points). The grey lines correspond to
hierarchy changes. The drop of the error around 500 yr is not significant (see text).

We represented in Fig. 1.12 the simultaneous evolution of the criteria along with
the evolution of Herr in a particular test case. This test case corresponds to a close
encounter between three stars of same mass, which leads to two hierarchy changes
(see Fig. 1.11). The energy error is very high in that case, because each body has
similar mass, and it is not representative of most of the situation that the algorithm
will encounter, but corresponds to an extreme case. We see that the criterion evolves
smoothly, is correlated to the error and prevents the energy error to go over 0.01.
Without the change of the hierarchy, the error ratio would have reached 100%.

We see that the criterion is not completely following the evolution of the error of
the second-order scheme. This error, given by the convoluted expression of Eq. 1.50,
exhibit some drops and peaks along the system evolution, which do not reflect either
a peculiar physical configuration or on the acceleration ratio. However, the criterion
succeeds to identify the critical zones for which the error raises and which correspond
to an inadequate hierarchy. It is important to realize here that the criterion is only
used to avoid the costly process of building a new hierarchy at every step. In the
phase around a hierarchy change, the energy error will inevitably raise, whatever
the hierarchy. In Fig. 1.12, a better hierarchy is found when the criterion raises
around 0.3. Thus, changing the value of the threshold will have no effect on the
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energy error if it stays under 0.3, but it will change the computation time, because
each step above the criterion involves a search for the best hierarchy. On the other
hand, increasing the criterion above 0.3 will delay the hierarchy change and increase
the energy error.

2.2.2 Designing a new hierarchy

20 0 20
x

30

20

10

0

10

20

30

40

y

Step 0

20 0 20
x

Step 1

20 0 20
x

Step 2

20 0 20
x

Step 3

20 0 20
x

y

Hierarchy

Figure 1.13 – Iterative procedure to build a hierarchy. The blue points represent
the bodies, the width of the blue lines represent the strength of the acceleration
between two bodies/orbits. The orange crosses represent the centers of masses of
the outermost orbits. The orange lines represent the orbits.

Once the criterion points out that the scheme is inappropriate, we choose an iter-
ative procedure that is designed to optimize the acceleration ratio from the current
positions of the bodies.

An example of the algorithm is described in Fig. 1.13. At first (step 0), we com-
pute a two-dimensional symmetric array that compiles the Keplerian acceleration
between two bodies aKep

ij = G(mi + mj)/r
2
ij. The strongest acceleration gives the

first orbit, then the two bodies are replaced by their center of mass and the array is
updated: the accelerations aKep

ij where i and j belongs to the new orbit are discarded
(set to −1), and those where i belongs to the new orbit and not j (and vice versa)
are replaced by the accelerations between the particle i and the center of mass of the
new orbit G(mi +M1)/|ri − r1|2 (step 1). The procedure continues with remaining
bodies until N-1 orbits are defined (at step N-1, only one center of mass remains,
comprising every body, and this is ensured by the demonstration of Sec. 1.3.5).

Then, if the computed hierarchy is different than the current one, the hierarchy
is replaced. A new transformation matrix from/to the Jacobi coordinates is then
computed. However, the algorithm keeps in mind the initial hierarchy and uses it
to write the outputs, so that the user gets the orbital elements for the orbits they
initially define.

The procedure is similar for test particles, whether their orbit should be redefined
because of a change of hierarchy of the massive bodies, or because their orbit is too
strongly perturbed. There are 2N − 1 possibilities for the orbit of a test particle:
around a massive body (N) or around an orbit (N−1). For each of these possibility,
the Keplerian acceleration is computed, an the larger is chosen (see Fig. 1.14).
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Figure 1.14 – Procedure to compute the hierarchy of a test particle. The blue points
represent the massive bodies, the orange lines the orbits, the black point the test
particle, and the width of the black line the strength of the acceleration between the
test particle and the bodies/orbits.

2.2.3 Specific modules

Some additional modules have been introduced with the new version.

First, a new output file is produced by the algorithm to monitor the evolution
of the hierarchy. This new output is then used in the automatic analysis routine to
compute a schematic of the different hierarchies (see Fig. 1.15), and the evolution
of the orbital elements taking into account hierarchy changes.

To store the hierarchy, I used the formalism that is implemented in Swift HJS,
with an N −1×N array representing the status of the N bodies (center, satellite or
outer) in the N − 1 orbits. The details of the hierarchy and barycentric coordinates
evolution enable the compilation of the orbital elements in the different hierarchies.
The design of the schematic to represent visually the hierarchies is more challenging,
as the order of the bodies must be rearranged according to the hierarchy and the
orbits ranked according to their number of bodies.

Moreover, two options have been added for a better monitoring, that should
be specified in the parameters file. The first one defines if an initial check of the
hierarchy is required, and the second one if the time step should be changed in case
of hierarchy changes.
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Figure 1.15 – Output of the automatic analysis routine that sums up the different
hierarchy changes, with the times of change. The integer represent the bodies, and
the underscores the orbits.

2.2.4 Strengths and limitations

Taking into account possible hierarchy changes allows the code to adapt to an evolv-
ing architecture within a symplectic frame (symplectic everywhere but during the
changes), and consequently avoid to lose control on the accuracy. However, this
accuracy remains not optimal, as a change of hierarchy takes place in a situation
of strong perturbations of the Keplerian scheme. To correctly resolve this critical
phase, one of the classical integrator described above must be used, or the time step
must be sufficiently small, which often decreases the interest of using a symplectic
integrator.

Moreover, the symplecticity of the integrator is broken sharply at each hierar-
chy change, creating an incompressible offset of energy, equal to the value of the
energy error at the moment of the change. In case of several hierarchy changes (or,
even worse, recurring), these offsets pile up and the integrator greatly loses its inter-
est. The sharpness of the change cannot be avoided, as the alternative (smoothing
function to go from on hierarchy to another) leads to an extremely complex Hamil-
tonian, for it should comprise every possible hierarchies, not integrable and heavy
to compute.

Nevertheless, this first version of ODEA is in working order. It is the only sym-
plectic integrators that can handle hierarchical changes, and is very efficient in some
specific cases, such as the study of HD 106906 (see Sec. 3). Both the functioning
of the algorithm and the study of the system are detailed in a submitted paper (re-
produced below). But to extend the resilience of the algorithm, a hybrid approach
is required to resolve more precisely the close encounters.

2.3 Handling close encounters

In the last subsection, I described how we could handle evolving architectures by
adapting the hierarchy. This lowers the error associated with the integration scheme.
However, in some transitional states, the problem cannot be reduced to slightly
perturbed Keplerian orbits, so that changing the hierarchy is not enough to limit the
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error to a satisfying threshold. At these parts of the integration, a mixed approach
should be adopted, where the integration makes use of a classical integrator. In the
last year of my thesis, I worked on the implementation of such an approach into
ODEA, and a dedicated paper is in preparation. Inspiring by Mercury, the classical
integrator used is a Bulirsch Stoer algorithm (Sec. 1.2.2), which is very precise
(the desired precision can be chosen) and does not depend on the structure of the
problem.

2.3.1 Implementation into the scheme

Implementing the mixed approach is rather straightforward in the heliocentric co-
ordinates used in Mercury and SyMBA, because the terms associated with a close
encounter can be isolated without difficulty. In the Jacobi and the Hierarchical
Jacobi coordinates, each body is located with respect to the center of mass of the
inner bodies, so that a close encounter affects multiple terms of the Hamiltonian.
Two approaches are then possible. The first is rather brutal: whenever an orbit
is perturbed, the sympectic scheme is set aside and all the problem is integrated
with a classical algorithm. On the other hand, a softer approach adopted by all the
integrators presented in Sec. 1.2 is to keep the original symplectic approach for the
non-perturbed orbits, and to integrate only the perturbed orbits with the classical
algorithm. The latter approach is the one we chose, although its implementation is
more challenging in the HJS framework than in the MVS framework, because of the
non-restricted form of the hierarchy.

An essential point for the implementation of this mixed approach is the following
results, flowing from the definitions of the orbits: For any couple of bodies i and j,
a unique orbit k0 exists for which i is a satellite and j a center, or vice versa. From
this, the perturbation Hamiltonian HB can be rewritten in the following way:

HB =
N∑

orbits k=2


Gµkηk

r′k
−
∑

i cen k
j sat k

Gmimj

rij


 (1.52)

Moreover, for each couple of bodies i and j, the terms rij can be written as
a linear combination of r′l, with no contributions of the orbits l that are outer or
foreign to their orbit k0. It follows that, from Eq. 1.35, the residual acceleration aBk
can be written only with r′l with l inner than k. We thus see that strictly separating
the problem between perturbed and non-perturbed orbits is not possible because of
the entanglement terms. If an orbit k is perturbed, it is however possible to divide
the Hamiltonian between orbits inner or equal to k, and orbits outer or foreign to
k. We shall describe in more details this separation in what follows.

As before, we choose a criterion to probe the problem and the relevance of the
symplectic splitting. The criterion should not depend on the velocities, to preserve
the possibility of directly integrating HB without approximation. For any criterion
ck, the Hamiltonian can be separated into:
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HA =
N∑

orbits k=2


 p

′2
k

2m′k
− Gµkηk

r′k
+


Gµkηk

r′k
−
∑

i cen k
j sat k

Gmimj

rij


 ck


 (1.53)

HB =
N∑

orbits k=2





Gµkηk

r′k
−
∑

i cen k
j sat k

Gmimj

rij


 (1− ck)


 (1.54)

Let us consider the case of a Heaviside-like criterion, which is 1 if the orbit is
perturbed and 0 otherwise (null derivative with respect to positions or velocities).
In the (r′k, p

′
k) variables, the Hamilton equations with respect to HA give:

ṙk =
p′k
mk

(1.55)

ṗk = −Gµkηk
r3
k

rk(1− ck)−
∑

1≤i<j<≤N

Gmimj

r3
ij

(M−1
jk −M−1

ik )rijck0 (1.56)

where k0(i, j) is the index of the unique orbit such as i is center and j is satellite.
Using a Keplerian drift for integrating HA is only possible for orbits that have ck = 0
and cl = 0 for all l such as k ⊂ l. TheHA-induced drift of the other orbits (those that
are either perturbed or inner to a perturbed orbit) is integrated with the Bulirsch-
Stoer algorithm (Sec. 1.2.2). Indeed, the term M−1

jk −M−1
ik vanishes if neither i nor

j belong to orbit k, or if they belong to the same sets (centers or satellites) of orbit
k. In particular, it vanishes when k0 is inner or foreign to k, so that inner or foreign
perturbed orbits can be ignored while integrating k.

As an example, let us suppose that orbit 2 is perturbed (c2 > 0) in the configura-
tion depicted by Fig. 1.16, because the satellite C is perturbed by the binarity of the
center AB. In the sum of Eq. 1.56, only two pairs of body (i, j) will have a non-zero
ck0 : A-C and B-C, for which k0 = 2 (one body is center and the other satellite of
orbit 2). Moreover, in the evolution of orbit 3 and 4, the terms M−1

jk −M−1
ik will

vanish because orbit 2 is foreign to orbit 3 and inner to orbit 4. Thus, the evolu-
tion with respect to HA of orbits 1 and 2 will be integrated with the Bulirsch-Stoer
algorithm, while for the orbits 3 and 4 the evolution remains Keplerian.

Let us consider an orbit k which is neither perturbed, nor is inner to a perturbed
orbit. Its evolution driven by HA writes:

ṙk =
p′k
mk

(1.57)

ṗk = −Gµkηk
r3
k

rk (1.58)

which is the classical Keplerian drift, implemented exactly in the original algorithm.
On the other hand, the evolution of a perturbed orbit, for which it exists by definition
an orbit k0 outer or equal to k which has a non-zero ck0, is given by Eqs. 1.55 and
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Figure 1.16 – Example of a hierarchic configuration where orbit 2 is perturbed. Both
orbits 1 (because it is inner to 2) and 2 will be integrated with the Bulirsch-Stoer
algorithm.

(1.56). Neither terms in Eq. 1.56 do vanish, so that the evolution is then not
exactly solvable. The corresponding rij term depends on inner orbits r′l, which are
also perturbed by definition. The Bulirsch-Stoer algorithm must solve the coupled
evolution of all the perturbed orbits.

Moreover, the evolution controlled by HB is always integrable as it still not
depend on the velocities. The acceleration corresponds to the acceleration aBk of
Eq. 1.35, with each term being weighted by a factor (1 − ck0). This weighted
acceleration will be denoted αBk .

The new structure of the core is summarized on Fig. 1.17. Each time the
acceleration is computed, both aBk and αBk are computed (the two may be different
if at least one orbit is perturbed). Indeed, the non-weighted accelerations are still
needed to compute the criteria.

2.3.2 Criterion to evaluate perturbations

Inspiring from the handling of hierarchy changes, we choose the following criterion :

ck = He

(
∆t

τKep
k

aBk
aKep
k

− ccrit
)

(1.59)

where He is the Heaviside function, ccrit represents an arbitrary threshold and aBk is
given by Eq. 1.35. The previously used accelerations ratio aBk /a

Kep
k is here weighted

by the ratio between the time step and the Keplerian time, which I define as τKep
k =√

r3
k/GMK . The addition of this weight illustrates the difference with the previous

version: we are no longer looking for the better hierarchy in a problem, independently
from the time step, but we are now trying to control the energy error.

The term ∆t

τKep
k

aBk
aKep
k

in the criterion corresponds roughly to the energy error in
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Figure 1.17 – Schematic of the core algorithm of ODEA.
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Figure 1.18 – Comparison between the criterion for close encounters (maximum of all
the ck) and the error term in the Hamiltonian. The grey lines correspond to hierarchy
changes, the red zones to periods where at least one orbit is perturbed (criterion
above threshold). The energy error in the red zone (small dots) is indicative of what
it would be without the new implementation.

the first-order scheme. Its relation with the error in the second-order case is not
straightforward, but its value gives an upper bound, as the first-order scheme is less
accurate a priori than the second-order scheme. This can be seen on Fig. 1.18.
Consequently, we fix the critical threshold to ccrit = 10−3, but its value can be
changed in the core code according to the precision goal.

I tested the different versions of the code on the previously introduced extreme
examples of a close encounter between 3 equal-mass massive bodies. The output
in terms of energy error and trajectories is represented in Fig. 1.19. Hierarchy
changes avoid reaching high energy error. However it does not ensure that the final
total energy will be more precise than the classical SWIFT HJS case, because the
hierarchy change break the symplectic nature, so that the return of an unperturbed
situation might not compensate the energy offset. However, preventing the energy
error to explode even temporarily allows a reliable computation of the trajectory.
On the other hand, the close encounter version greatly limits the energy error, on top
of keeping track of the trajectory. In the example, only the 100-200 yr part, between
the two hierarchy changes (visible on Fig. 1.12), and the end of the simulation is
integrated without Bulirsch-Stoer.
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Figure 1.19 – Comparison of the different versions of the code, on the same test case
(highly perturbed three-body system). The interpretation can be found in the text.

This computation of the criterions for each orbit grows with N3, which is not
negligible a priori. The algorithm remains efficient because the computation of the
criterion makes use of quantities (the accelerations) that are already computed in
the code at the beginning and the end of each time step. However, the necessary
accelerations should also be computed at each step of the Bulirsch-Stoer algorithm,
so that the computation could potentially grow heavy. To avoid that, the criterion
keeps its value throughout a step. It modifies in theory the nature of the criterion
function, but does not impact the equations in practice.

In Mercury, to avoid integrating with a Keplerian drift an orbit that becomes per-
turbed during the time step, a quick polynomial integration module is implemented
to predict the future close encounters (Chambers 1999). This is possible/compu-
tationaly interesting because of the simplicity of the criterion. In our case, such
approach would be far too heavy to encode. Instead, a time step is redone if a
criterion becomes non-zero during it.

2.3.3 The case of test particles

All the new features of ODEA are relevant for both massive bodies and test particles.
Indeed, the latter are used to model the structures of debris disk, and each individual
particles can be either captured or ejected by the interaction with the massive bodies
of the system. Similarly than for the orbits of massive bodies, we compute a criterion
c for each test particle, also based on the ratio between the HB-induced acceleration
aB (Eq. 1.36) and the Keplerian acceleration.

The massless nature of test particles implies that no other bodies depends on
their evolution, although each one of them depend on the evolution of massive
bodies. The orbit of a test particle is embedded within the hierarchy of massive
bodies, so that the same results than for massive bodies hold. Thus, only when
c = 0 and if the particle’s orbit is not inner to the perturbed orbit of massive
bodies, then its evolution is simply computed with the usual analytical kick-drift-
kick approach. Otherwise, itsHA-induced acceleration is computed with the Bulirsch
Stoer algorithm.

In the classical version of Swift HJS, the evolution of the test particles only
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requires the positions of the massive bodies at the beginning and end of the time
step, plus their velocities after the first kick. However, a perturbed test particle’s
evolution along HA is coupled to the evolution of the massive bodies around which
it revolves, so that their motion has to be integrated alongside the motion of the
perturbed test particles.

2.3.4 Smooth transitions

In Mercury, the criterion is a smooth function that takes value between 0 and 1. We
can inspire from that to smooth our criterion. However, the criterion’s derivatives
should then be taken into account in the evolution.

The Hamilton equations for HA now are

ṙk =
p′k
mk

(1.60)

ṗk = − Gµkηk
r
′3
k

r′k(1− ck)−
∑

1≤i<j<≤N

Gmimj

r3
ij

(M−1
jk −M−1

ik )rijck0

+
N∑

l=2


Gµlηl

r′l
−
∑

i cen l
j sat l

Gmimj

rij


 dcl

dr′k

(1.61)

so that the precedent description is still valid as long as the new term vanishes
when k is not perturbed. This is the case when the criterion is a function of the
accelerations ratio described above, because then it depends only on the inner orbits.
Thus, if orbit k is not perturbed, then the criterion cl of any perturbed orbit l will
not depend on r′k because k is either foreign or outer to l by definition.

On the other hand, the evolution along HB also includes derivative terms. The
subsequent accelerations are still analytically integrable however, as they still not
depend on the velocities.

A smooth criterion would be

ck = f

(
∆t

τKep
k

aBk
aKep
k

− ccrit
)

(1.62)

where

f(y) =
y2

2y2 − 2y + 1
(1.63)

This is one of the simplest form that can be thought of to smooth the acceleration
ratio, with f(0) = 0, f(1) = 1, f ′(0) = 0 and f ′(1) = 0. The resulting Hamiltonian
is thus C1, even in case of perturbation. However, the derivative is nevertheless
tedious to compute. It writes:
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dcl
dr′k

= ∆tf ′

(
∆t

τKep
k

aBk
aKep
k

− ccrit
)(

1

aBk τ
Kep
l aKep

l

(
−2δkl

G2M2
k

r6
k

rk−

δkl
GMk

r3
k

∑

1≤i<j≤N

Gmimj(M
−1
jk −M−1

ik )

mkr3
ij

rij(1− 3
rij .rk
r2
k

)

−GMl

r3
l

∑

1≤i<j≤N

Gmimj(M
−1
jl −M−1

il )(M−1
jk −M−1

ik )

mlr3
ij

(rk − 3
(rij .rl)

r2
ij

rij)

+
∑

1≤i<j≤N

∑

1≤a<b≤N

G2mimjmamb(M
−1
jl −M−1

il )(M−1
jk −M−1

ik )(M−1
bl −M−1

al )

m2
l r

3
ijr

3
ab

(rab − 3
(rij .rab)

r2
ij

rij)

)
+

aBk
(τKep
l aKep

l )2
δkl

rk

2τKep
k rk

)

(1.64)

with f ′(y) =
2y(1− y)

(2y2 − 2y + 1)2
(1.65)

This derivative is very complicated and the computation of the related terms
in the accelerations grow as N6 (although it is still linear in the number of test
particles). As a part of the evolution in both HA and HB, it has to be computed
many times per time step, in particular for the perturbed orbits in the Bulirsch-Steor
algorithm. The advantages of using a smooth criterion have thus to be discussed and
weighted. In Mercury, the term has simply been ignored, introducing an error in
the integrator (Wisdom 2016). The new implementation available in the Rebound
package solves this issue (Rein et al. 2019), and the authors additionally tested
several smoothing functions, including a Heaviside threshold. They concluded on
the negligible impact of this choice on the integration. However, a recent study
by Hernandez (2019) shows that a smooth Hamiltonian improves significantly the
long-term precision for chaotic problems. A smooth version of the Hamiltonian is
under development in Odea, so that dedicated tests will enable the comparison of
its efficiency and precision with the non-smoothed version.

2.3.5 Specific modules

The structure of ODEA being essentially similar to that of Swift HJS, the general ar-
chitecture of the code and its articulation with its modules do not drastically evolve.
Figure 1.21 details the new organization. The initialization routine in particular re-
mains identical to the previous version. The post-processing, however, has become
more complex.

On top of the archival file that compiles the hierarchy, introduced in the previous
version, a new output is produced by the core code that monitors the close encounters
(ce.out). Whenever an orbit is perturbed, the time and number of the orbit is saved.
When the orbit stabilizes, a new line is included into the file with the number of
the orbit, the beginning time of the close encounter, and its ending time. If the
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simulation ends before the end of the perturbation, a line is added at the end of the
integration with only the beginning time.

This new output allows the upgrade of the Analysis routine to represent the
close encounters on the orbital elements evolution plots, along with the hierarchy
evolution. The values of the orbital elements in the new hierarchies are not a direct
output of the code, since the data files elbodies and eltp are archives of the orbital
elements in the initial hierarchy, for consistency. Thus, the Analysis module reads
the archives of the positions and the hierarchy and recompute from them the orbital
elements in the new hierarchy.
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Figure 1.20 – Example of automatic analysis by the module Analysis.py of a sim-
ulation with ODEA. The evolution of each orbit orbital elements (columns) of each
orbits (lines) is computed, but only the semi-major axes and eccentricities are rep-
resented here. The red zones indicates that the orbit is considered perturbed. The
red vertical lines indicates hierarchy changes.
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Change of basis 
matrix to the 

invariant plane

matpass.dat

Integrator

swift_hjs.sh
swift_hjs.f

Archive orbital 
elements

bin

extract_hjs.sh, extract_hjs.f

xvbodies.out

Conventions, hierarchy, orbital elements
Massive bodies and test particles

gen.sh, gen.f

Initial barycentric 
coordinates

phjs.in, tphjs.in

Initial, final times
Time step, name

params.in

Archive energy
energy.out

Final save

dump_params.dat
dump_pl.dat
dump_tp.dat

Change of basis matrix
Jacobi → Barycentric

mat.dat

Archive barycentric
Test particles

xvtp.out

Archive orbital elements
Test particles

eltp.out

Archive orbital elements
Massive bodies

elbodies.out

Automatic analysis
Analysis.py

Orbital elements of initial hierarchy
Evolution.png

Creates readable outputs
extract_hjs.sh, extract_hjs.f

Archive barycentric 
coordinates 

Massive bodies

elbodies.out

Orbital elements of adaptive hierarchy
Evolution_withchange.png

Hierarchy schemes
hierarchy.dat

Archive hierarchy
oloc.out

Archive close encounters
ce.out

Figure 1.21 – Schematic of the inputs and outputs of ODEA. The user inputs are filled
in gen.sh and params.in.

2.3.6 Conclusion on Odea

A first conclusion of my work is that expanding the scope of Swift HJS to include
hierarchy changes and close encounters is definitely challenging. Swift HJS has been
designed as a generalization of the previous symplectic schemes that only handle
Solar-System-like architecture. Each features that may be applied in other codes in a
straightforward way have to be generalized for any hierarchy before being transferred
to Swift HJS. Thus, if the mixed approach implementation is rather painless in
Mercury, thanks to the stable hierarchy and the fact that encounters only affect two
bodies at a time, it becomes an ordeal in Swift HJS, where perturbed orbits may
potentially include all the bodies.

As I finish this thesis, the final version of ODEA is not yet produced. However,
most of the theoretical design and numerical implementations have been made, and
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Symplectic Handles any Handles hierarchy Handles close Smooth
architectures changes encounters

ODEA ×
Swift HJS × ×
Mercury × × ∼
IAS15 × ∼ ∼

Table 1.1 – Summary of the characteristics of different N-body codes. The Hamil-
tonian in Mercury is C1, so that it has some smoothness properties. IAS15 does not
make use of the hierarchy for the integration, but the post-processing routines in the
Python Package are designed in the Jacobi coordinates and do not handle evolving
hierarchies with multiple rotation centers.

the evolution of massive bodies can already be integrated with hierarchical changes
and close encounters. Moreover, a version including hierarchical changes for both
massive bodies and test particles is in working order, and has already been used in a
submitted paper (see Sec. 3). These versions already have their designated analysis
tools for post-processing. The modules added to the original code Swift HJS are
either quick to compute or rarely appealed to. The extension of close encounters to
test particles is theoretically equivalent, and will follow naturally once the numerical
aspects are efficiently taken care of.

ODEA will be presented in an upcoming dedicated paper. It is a versatile tool, able
to adapt to either architecture and to handle any evolution, however catastrophic. A
summary and comparison of ODEA’s properties is displayed in Table 1.1. Such tools
will be necessary to study the diversity of planetary systems that we are beginning
to unveil. The possibility to take into account non-Keplerian forces has not been
implemented yet, but it is a natural upgrading perspective, notably to take into
account migration or tidal forces. Treated as additional perturbing terms in HB,
they can be simply included into the described close encounter procedure.

3 Understanding the peculiar architecture of the
system HD 106906

HD 106906 is a rare and intriguing system. Located in the Lower-Centaurus-Crux
association which is part of the Sco-Cen OB association, it comprises a tight binary,
a wide and asymmetric debris disk and a giant planet at very large separation,
possibly misaligned with the disk plane (see Fig.1.22). This wide planet challenges
the models of planetary formation, and the presence of a debris disk makes this
system a benchmark for the planet/disk interactions. Indeed, it is one of the rare
systems around which both a companion and a disk have been imaged, and the very
low mass ratio between the host star and the planetary companion is unique as such
separation (see Introduction Fig. 2).

The young (5-15 Myr) Sco-Cen association is known for several decades to be the
nearest OB association (around 100 pc away), and the kinematics and properties
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Figure 1.22 – Presentation of system HD 106096. SPHERE image from Lagrange
et al. (2016).

of its young stars have thus been thoroughly characterized (De Zeeuw et al. 1999).
In a survey using the space telescope Spitzer, targetting specifically the association,
Chen et al. (2005) discovered a large infrared excess in the spectral energy distribu-
tion of HD 106906, indicating a massive debris disk. Further characterization with
Magellan/MIKE confirmed this excess and led to an estimate of its properties (disk
mass, luminosity, temperature; Chen et al. 2011). The shape of the spectral energy
distribution suggests that the disk is devoid of both hot and warm material, which
led Bailey et al. (2014) to look for a companion with the Magellan Adaptative Optics
(MagAO). The planetary mass companion HD 106906 b was then discovered at 7"
from the host star, putting the spotlight on the system. High signal-to-noise spec-
tral characterization concluded on a spectral type L1.5 ±1 and confirmed a mass at
the upper limit of the planet realm (Daemgen et al. 2017). New observations with
SPHERE (Lagrange et al. 2016), HST, GPI (Kalas et al. 2015) and MagAO (Wu
et al. 2016) resolved the debris disk and revealed its strong asymmetries. SPHERE
is the only instrument capable of imaging both the debris disk and the planet in its
large field of view (Fig. 1.22). Since then, numerous studies explored the interac-
tions between the planet and the disk (Jílková & Zwart 2015; Nesvold et al. 2017;
Lazzoni et al. 2018), suggesting an eccentric orbit with a periastron just outside
the disk outer radius, and a possible inner companion to carve the inner edge. The
masses and separations of the different components of the system are summarized
in Table 1 of Rodet et al. (2017) below.

At the beginning of my thesis work, the binary nature of the host star was
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revealed by HARPS and PIONIER radial velocity and interferometric measurements
Lagrange et al. (2019). This hypothesis of a past scattering of the companion to
its current position had thus to be investigated. This was done in two designated
papers, Rodet et al. (2017) and Rodet et al. (2019), that are introduced below and
that are making use of Swift HJS and ODEA.

3.1 Investigating the dynamical evolution

In Rodet et al. (2017), we explored possible scenarios to account for the peculiarities
of the system. To this goal, we performed numerous N-body simulations and made
use of Swift HJS to model the non-Solar type architecture. We suggest that
the planet formed within the disk, closer to the central binary star, and migrated
towards it until it got caught in a mean-motion resonance. The resonance would
have then enhanced the planet eccentricity until its periastron would be decreased
to a critical value, where interactions with the binary could have ejected it on a
wide orbit. Such orbit would remain strongly unstable, except if some exterior force
would further circularize it. This stabilizing factor could be a passing star (fly-by).
However, the probability of such fly-by to happen is not high given our knowledge
of the neighborhood density. The entire study is detailed below.
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ABSTRACT

Context. A giant planet has been recently resolved at a projected distance of 730 au from the tight pair of young (∼13 Myr)
intermediate-mass stars HD 106906AB in the Lower Centaurus Crux (LCC) group. The stars are surrounded by a debris disk which
displays a ring-like morphology and strong asymmetries at multiple scales.
Aims. We aim to study the likelihood of a scenario where the planet formed closer to the stars in the disk, underwent inward disk-
induced migration, and got scattered away by the binary star before being stabilized by a close encounter (fly-by).
Methods. We performed semi-analytical calculations and numerical simulations (Swift_HJS package) to model the interactions be-
tween the planet and the two stars. We accounted for the migration as a simple force. We studied the LCC kinematics to set constraints
on the local density of stars, and therefore on the fly-by likelihood. We performed N-body simulations to determine the effects of the
planet trajectories (ejection and secular effects) onto the disk morphology.
Results. The combination of the migration and mean-motion resonances with the binary star (often 1:6) can eject the planet. Nonethe-
less, we estimate that the fly-by hypothesis decreases the scenario probability to less than 10−7 for a derived local density of stars of
0.11 stars/pc3. We show that the concomitant effect of the planet and stars trajectories induce spiral-features in the disk which may
correspond to the observed asymmetries. Moreover, the present disk shape suggests that the planet is on an eccentric orbit.
Conclusions. The scenario we explored is a natural hypothesis if the planet formed within a disk. Conversely, its low probability of
occurrence and the fact that HD 106906 b shares some characteristics with other systems in Sco-Cen (e.g., HIP 78530, in terms of
mass ratio and separation) may indicate an alternative formation pathway for those objects.

Key words. methods: numerical – celestial mechanics – planetary systems – planets and satellites: dynamical evolution and stability –
planet-disk interactions

1. Introduction

More than 3500 exoplanets have been found in the last three
decades1, but few among them have been detected to be hun-
dreds of astronomical units (au) from their star. As the develop-
ment of direct imaging reveals more of those wide planetary-
mass companions, classical theories of planet formation fail
at explaining their origin. In the two scenarios, core accretion
(Pollack et al. 1996) and gravitational instability (Boss 1997),
the planets form within the primordial gas disk. However, the
limited extent of the disk (see e.g. Fig. 5 in Lieman-Sifry et al.
2016) does not enable the formation of a giant planet far away
from its star. Thus, when the star around which orbits the very
wide and massive HD 106906AB b turned out to be a binary star
(Lagrange et al. 2016b), it has been suggested that dynamical in-
teractions could account for the current position of the planet
(Lagrange et al. 2016b; Wu et al. 2016).

The planet HD 106906 (or also HIP 59960) is located at a
distance of 103 ± 4 pc (Van Leeuwen 2007) and belongs to the
Lower Centaurus Crux (LCC) group, which is a subgroup of the
Scorpius-Centaurus (Sco-Cen) OB association (De Zeeuw et al.
1999). The LCC group has a mean age of 17 Myr, with an

1 http://exoplanet.eu

age-spread of about 10 Myr (Pecaut et al. 2012). In recent years,
high contrast imaging has revealed the circumstellar environ-
ment of HD 106906AB: an 11 ± 2 MJ planet located at 732 ±
30 au in projected separation (Bailey et al. 2013) and an asym-
metric debris disk nearly viewed edge-on, imaged by SPHERE
(Lagrange et al. 2016a), GPI and HST (Kalas et al. 2015) and
MagAO (Wu et al. 2016). More recently, the binary nature of
HD 106906 was inferred thanks to observations with the instru-
ments HARPS and PIONIER (Lagrange et al. 2016b). It turns
out to be a 13 ± 2 Myr old SB2 binary consisting of two F5 V-
type stars with very similar masses. Table 1 summarizes the key
characteristics of the system components. No further informa-
tion is known about the orbit of the planet, which must have an
orbital period of at least 3000 years. The binary orbit is also not
much constrained yet, but given its short orbital period (<100
days), it will presumably be better known in the near future.

The edge-on debris disk has an unusual shape: its luminous
intensity has a very asymmetric profile. The longest peak, point-
ing westward, extends up to 550 au, while the east edge reaches
120 au only (see Figs. 1 and 3 of Kalas et al. 2015). Conversely,
below 120 au, the disk is more luminous on its east side than on
its west side. This reversed asymmetry might suggest the pres-
ence of a spiral density wave extending over the whole disk, and
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Table 1. Key characteristics of the HD 106906 system.

System component Mass Projected separation

HD 106906 AB ∼1.34 and ∼1.37 M�a 0.36−0.58 aua

HD 106906 b 11 ± 2 MJ
b 732 ± 30 aub

Disk 0.067 MMoon
c from 65 ± 3 to ∼550 aud,e

References. (a) Lagrange et al. (2016b); (b) Bailey et al. (2013); (c) Chen
et al. (2011); (d) Kalas et al. (2015); (e) Lagrange et al. (2016a).

viewed edge-on from the Earth. Finally, a large cavity splits the
disk into two debris belts. Chen et al. (2014) modeled the stars’
excess emission and suggested 13.7 and 46 au for the radii of
the belts. The latter likely corresponds to the one imaged by
Lagrange et al. (2016a) and Kalas et al. (2015) at ∼50 au.

Despite the richness of the observations, the geometry and
kinematics of the whole system are strongly underconstrained.
If the actual planet-binary distance is less than 1000 au, then
the orbit inclination with respect to the plane of the disk must
be significant (20 degrees). However, a coplanar configuration
cannot be excluded, but the separation should then be around
3000 au. In any case, the large separation between the planet and
the central binary, as well as the possible misalignment between
the planet orbit and the debris disk, challenges classical mecha-
nisms of planet formation.

According to current theories, planet formation takes place in
the primordial gaseous disk. However, as we mentioned above,
forming a giant planet via core accretion or gravitational instabil-
ity at 700 au or more from any central star appears very unlikely,
first due to the lack of circumstellar gas at that distance, and sec-
ond because the corresponding formation timescale would ex-
ceed the lifetime of the gaseous disk. The disk asymmetries (in
particular the suspected spiral structure) indicate strong ongo-
ing dynamical interaction with the dust. This may suggest that
the planet did not form where it resides today, but may have
formed inside and be scattered afterwards. The recently discov-
ered binary nature of HD 106906AB is indeed a source of po-
tentially strong dynamical perturbations that could trigger planet
scattering.

The purpose of this paper is to investigate both analytically
and numerically the scenario that could have lead to the present-
day characteristics of the HD 106906 system starting from a
planet formation within the circumbinary disk. As viscosity-
induced migration tends to make the planet move inwards, in
Sect. 2 we will study the likelihood of an ejection via interac-
tions with the binary, and we will then discuss in Sect. 3 how
the planet could have stabilized on such a wide orbit. Finally,
in Sect. 4 we briefly analyze the effect of this scattering sce-
nario on the disk and the processes that could have shaped it
as it currently appears. Numerical simulations in our analysis
have been performed using the Swift_HJS symplectic integra-
tion package (Beust 2003), a variant of the Swift package de-
veloped by Levison & Duncan (1994), but dedicated to multiple
stellar systems.

2. Ejection

2.1. Basic scenario

We investigated how HD 106906 b, supposed initially orbiting
the binary on a nearly coplanar orbit, could have been ejected
from the disk via dynamical interactions. When it is located far
away enough from its host stars, a circumbinary planet may have
a very stable orbit. On the other hand, if it migrates too close to

Fig. 1. Chaotic zone (in dark gray) as a function of the binary eccentric-
ity, for binary components of same masses. The lighter part designates
a critical zone, where some test particles can survive. The red lines rep-
resent the lower and upper critical orbit parabolic fits found by Dvorak
(1986) in its study of circumbinary planet stability. The 1:6 commen-
surability is the strongest outside the chaotic zone (see Sect. 2.2) for
eB ≥ 0.4.

the binary, it undergoes a close encounter with the stars and can
be ejected.

The binary is surrounded by a chaotic zone where no sta-
ble circumbinary orbit is possible. Dvorak (1986) uses a semi-
analytical approach to compute the upper critical orbit (lower
radius of the stable zone) and lower critical orbit (upper radius
of the chaotic zone) around two stars of same masses for differ-
ent binary eccentricities, and found that this gap size typically
ranges between two and three times the semi-major axis of the
binary orbit. Numerical results for this mass ratio are missing,
so that we computed the limits of the gap with our Swift_ HJS
package and compared them to the semi-analytical approach in
Fig. 1. In each simulation, the evolutions of 10 000 test parti-
cles have been studied during 105 orbital periods of the binary.
The particles have been randomly chosen with semi-major axes
between 1.5 and four times the binary semi-major axis aB, ec-
centricities between 0 and 0.1, and inclinations with respect to
the binary orbital plan between 0 and 3◦. The time step has been
chosen to be 1/20 of the binary orbital period.

Artymowicz & Lubow (1994) showed that this chaotic zone
also affects the gas of the disk, with gap sizes similar to the val-
ues given by our algorithm (Beust 2003). Consequently, as the
migration necessarily stops at the inner edge of the disk, the
planet should never reach the chaotic zone this way. It will re-
main confined close to the lower critical orbit, where it may
never be ejected. Mean-motion resonances (hereafter MMR)
may help overcoming this difficulty. During its inward migra-
tion, the planet is likely to cross MMRs with the binary. It may
then be captured by the resonance and furthermore undergo an
eccentricity increase that could drive its periastron well inside
the chaotic zone.

2.2. Mean-motion resonances

Nested orbits are in a configuration of MMR when their orbital
periods are commensurable. For fixed masses and neglecting the
precession, this is fully controlled by the semi-major axis ratio
aB/a (subscript B refers to the binary): the orbits are said to be
in a p + q: p resonance when

TB

T
=

(aB

a

)3/2
√

mB

mB + m
=

p + q
p

, (1)
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where p, q are integers, and T and m designate respectively
Keplerian periods and masses. Resonances are described using
the characteristic angle

σ =
p + q

q
λB − p

q
λ − ω, (2)

where λ designates the mean longitude and ω the periastron lon-
gitude. σ represents the longitude of a conjunction between the
binary and the planet, where all three bodies are aligned, mea-
sured from the line of apsides of the planet. If σ stops circulating
and begins to oscillate around an equilibrium position (libration),
it means that the conjunctions repeatedly occur roughly at the
same places on the planet orbit: the system is locked in the reso-
nant configuration. If the resonant conjunction occurs in the lo-
cation where the interacting bodies are sufficiently far away from
each other (like in the Neptune-Pluto case), then the resonance
acts as a stabilizing mechanism that prevents close encounters.
MMRs are nevertheless known to enhance eccentricities. If the
eccentricities are too highly excited, then the conjunctions may
no longer occur at safe locations, often causing instability. For a
review on MMRs, see Morbidelli (2002).

The way a MMR can enhance the eccentricity of the planet
can be studied in a semi-analytical way. Details about this proce-
dure are given in Beust (2016), Beust & Morbidelli (2000) and
Yoshikawa (1989). Basically, if we restrict the study to orbits
with negligible σ-libration, the interaction Hamiltonian can be
averaged over the motion of the binary for constant σ. This
gives a one degree of freedom autonomous Hamiltonian. Phase-
space diagrams with level curves of this Hamiltonian can then be
drawn in (ν ≡ ω − ωB, e) space to explore the overall dynamics.
To adapt the method to this unusual case where the inner bodies
have similar masses, we calculated the resonant Hamiltonian of
a planet orbiting the center of mass of a binary with binary mass
parameter µ ≡ m2/mB (where m2 is the mass of the second star):

H = − GmB

2a
−GmB

(
1 − µ
|r + µrB| +

µ

|r − (1 − µ)rB| −
1
|r|

)

− p + q
p

2π
TB

√
GmBa, (3)

where G is the gravitational constant, rB ≡ R2 − R1 and r ≡
R − (µR1 + (1 − µ)R2) if R, R1 and R2 are respectively the po-
sition vectors of the planet, the first and the second component
of the binary. We could then perform the integration over the or-
bital motions and derive the phase space diagram for the interest-
ing commensurabilities. The result is displayed in Fig. 2 in the
1:6 MMR case, for a binary eccentricity of eB = 0.4. Most of
the level curves of the Hamiltonian exhibit important change in
the planet eccentricity; therefore, starting at low eccentricity, the
resonant interaction can drive the planet to higher eccentricity
regime and cause it to cross the chaotic zone (indicated in red on
the figure) at periastron, leading to ejection.

Our choice of focusing on the 1:6 mean-motion resonance
should not be surprising. Indeed, according to Fig. 1, it is the
lowest order resonance that lies outside the chaotic zone for eB ≥
0.4: it occurs at a/aB ' 3.3. Any lower order (thus potentially
stronger) resonance such as 1:2, 1:3, etc. falls inside the chaotic
zone, and could not be reached by the planet according to our
scenario. Moreover, the topology of the diagram depends on the
binary eccentricity: the higher it is, the higher is the change of
eccentricities depicted by the level curves. And those curves are
flat for a circular binary orbit.

However, the semi-analytical study is not sufficient here to
study the dynamical route that leads to ejection. Indeed, libration

Fig. 2. Isocontour in the (ν = ω − ωB, e) phase space of the average
interaction Hamiltonian of a test particle trapped in 1:6 mean-motion
resonance with a binary eccentricity of eB = 0.4, assuming a binary
mass parameter of µ = 1/2. Each curve represents a trajectory in the (ν,
e) space. Above the red line, the planet has part of its orbit in the chaotic
zone.

Table 2. Effect of the 1:6 mean-motion resonance and ejection duration
for different eccentricities of the binary, starting with a planet eccentric-
ity of e = 0.05.

Binary eccentricity Effect of the 1:6 MMR
eB = 0.0 no ejection
eB = 0.2 no ejection
eB = 0.4 ejection in 100–1000 yr
eB = 0.6 ejection in 100–1000 yr
eB = 0.8 ejection in 100 yr

Notes. For aB = 0.4 au, the 1:6 resonance corresponds to a planet semi-
major axis around a = 1.3 au.

of the resonant angle σ and chaos on short timescale, not taken
into account in the computation of the phase-space diagram, are
not negligible for a binary with mass parameter close to 1/2. We
thus performed numerical simulations of 105 binary orbital pe-
riods of dynamical evolution for different binary eccentricities
and different initial angular conditions, to study the stability of
different ratio of MMR. All runs were performed starting with a
semi-major axis close to the resonant value, with a time step set
to 1/20 of the binary orbital period.

Only a few resonances located outside the chaotic zone are
finally able to trigger ejection: the 1:6 and the 1:7 one. The simu-
lations allowed to check not only the ability of the resonances to
generate instability, but also the time needed to eject the planet,
as well as the typical width of the starting resonant zone that
leads to ejection, which is typically 0.01 au. Table 2 summarizes
the results obtained with various eB values and µ = 1/2 with the
1:6 resonance.

The simulations confirm that resonance stability depends on
binary eccentricity eB, and that the resonance gets weaker when
the order of the resonance |q| increases. An important result is
that whenever ejection occurs, it happens within a very short
timescale, always much shorter than the typical time needed
(<∼1 Myr) to form the planet from the gaseous disk. Our first
conclusion is thus that the planet cannot have formed within
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the resonance. This validates the idea outlined above that it first
formed at larger distances in a more stable position, and fur-
thermore migrated inwards and was possibly trapped in a mean-
motion resonance before being ejected. In the following, we in-
vestigate this scenario.

2.3. Migration

In recent decades, planet migration has become an unavoidable
ingredient to explain the configuration of some planetary sys-
tems. Due to tidal interactions with the primordial gas disk, gi-
ant planets (mass > 10 M⊕) undergo first a type I, and further-
more a type II migration once they have created a gap in the
disk (Baruteau et al. 2014). It consists of a drift that can be di-
rected toward the star, whose characteristic timescale depends on
the position, and characteristics of the planet and on the viscous
properties of the disk.

We have assumed that the planet has approximately reached
its final mass when it arrives at the location of unstable MMRs,
that is between 1 and 2 au from the stars. The characteristic time
of migration varies in inverse proportion to the quantity ανh2Σ,
where αν is the viscosity parameter, h the aspect ratio and Σ
the surface density (Lin & Papaloizou 1986). However, not only
the values of those quantities are unknown in HD 106906 pri-
mordial disk, but also this simple dependency does not seem
to match nor the known planetary population (Mordasini et al.
2009) neither the results inferred by hydrodynamical simulations
(Dürmann & Kley 2015). Taking this fact into account, estimat-
ing the mass of the primordial disk to be around 0.6% of the stel-
lar mass (Andrews et al. 2013) and varying the viscosity param-
eter and the aspect ratio around the observed values (e.g., Pinte
et al. 2015), we obtained a large range of migration timescales.
To obtain the largest overview without trying every single ve-
locity, we choose to run our tests with four different migration
velocities at 2 au: 10−3, 10−4, 10−5 and 10−6 au/yr.

Simulating the whole process of disk-induced migration in
the circumbinary environment is beyond the scope of the present
paper. Using a hydrodynamic code, Nelson (2003) computed the
migration of a planet in a circumbinary disk and show that it was
likely to get locked into a mean-motion resonance. As their stars
had very different masses, their results can not be applied here,
so we choose to add to the SWIFT_HJS code an additional extra-
force that mimics the migration mechanisms they observed. This
force is designed in such a way that its secular effect averaged
over the orbital motion of the planet just induces the desired
steady-state semi-major axis drift da/dt = vmig, vmig being a fixed
arbitrary migration velocity, and has no effect on the eccentric-
ity nor on the longitude of periastron. Further details about the
choice of the force are provided in Appendix A. We derive:

Fmig =
vmign

2
√

1 − e2

(
1 +

1
2

(
1 − r

a

))
eθ, (4)

where (er, eθ) are the 2-D cylindrical radial and orthoradial unit
vectors in the local referential frame attached to the planet’s mo-
tion. Thus, Fmig depends on the planet position via the radius r,
the vector eθ and the planet mean angular motion n = 2π/T . The
parameter vmig is set at the beginning of the simulation, accord-
ing to the timescale we want for the migration. We note that with
the above convention, inward migration corresponds to vmig < 0.
Of course, the migration is implicitly assumed to hold as long as
the planet moves inside the disk.

Whether migration would inhibit or enhance the effects of
MMR is not a straightforward issue. Resonance trapping induced

Fig. 3. Evolution of the planet semi-major axis with respect to time for
a binary eccentricity of eB = 0.2 and a 10−5 au/yr migration velocity.
The semi-major axis of the binary has been set to aB = 0.4 au. The plot
illustrates the migration, then ejection, of the planet after it has been
trapped into a 1:6 resonance. The effect of the 1:7 resonance, weaker, is
also visible on the plot. As the planet has a perturbed Keplerian motion
around the binary, the exact locations of MMRs are not straightforward
to derive (see Appendix B).

by type II migration was found to exist for some commensurabil-
ities between two protoplanets orbiting a star (Snellgrove et al.
2001; Nelson & Papaloizou 2002). But MMRs with a binary are
more difficult to predict, especially those located near the chaotic
zone, like those we are focusing on here. Moreover, the expected
lifetime of the gas disk is roughly three million years around
massive stars (Haisch Jr et al. 2001; Ribas et al. 2015), so that
the formation, migration and hypothetical ejection must all oc-
cur by this time.

We thus performed numerical simulations, where the planet
was initially put outside (∼2 au) the zone of interest. Whether
the planet formed just outside the critical zone or whether it mi-
grated toward there is irrelevant, only the values of the orbital
elements and migration velocity at the entrance of the zone of in-
terest matter to conclude on the possibility of ejection. Migration
was added using the additional force depicted in Eq. (4), with
the diverse migration velocity prescriptions described above.
The simulations were pursued until the planet gets captured in
a mean-motion resonance and furthermore ejected, or until it
reaches the inner edge of the disk, that is, the chaotic zone, in
the case of no resonant capture. Again, the time step has been
taken to be .TB/20. The main result is that migration, regard-
less of its velocity or of the binary eccentricity, always leads to
a resonant trapping followed by an ejection after a reasonable
amount of time spent in the resonance.

In Fig. 3, an example of the effect of both migration and res-
onances is visible via the evolution of the semi-major axis of the
planet. The figure illustrates the full dynamical evolution corre-
sponding to vmig = 10−5 au/yr and eB = 0.2. In addition to high
frequency oscillations that illustrate the chaotic nature of the dy-
namics, we see a gradual semi-major decrease at a speed corre-
sponding to the initial prescription, followed by a capture in the
1:6 MMR resonance that finally leads to ejection. Interestingly,
we note a temporary trapping in the 1:7 resonance than occurs
before the final capture in the 1:6. The 1:7 resonance appears not
to be strong enough to fully inhibit the migration, while the 1:6
does.
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Table 3. First unstable resonance and corresponding ejection time for different eccentricities of the binary and different migration velocities,
starting with e = 0.05 and a = 2 au.

Migration 10−3 au/yr 10−4 au/yr 10−5 au/yr 10−6 au/yr

eB = 0 1:4, 50 yr 1:4, 103 yr 1:5, 104 yr 1:5, 105 yr
eB = 0.2 1:5, 50 yr 1:6, 103 yr 1:6, 104 yr 1:7, 5 × 104 yr
eB = 0.4 1:6, 100 yr 1:6, 500 yr 1:6, 2 × 103 yr 1:7, 2 × 104 yr
eB = 0.6 1:6, 100 yr 1:6, 100 yr 1:6, 2 × 103 yr 1:6, 104 yr
eB = 0.8 1:6, 100 yr 1:7, 500 yr 1:8, 104 yr 1:7, 2 × 104 yr

Notes. The ejection time corresponds to the time needed to eject the planet starting from the beginning of the MMR trapping.

Table 3 summarizes the ejection times obtained in the var-
ious cases tested. Comparing Tables 3 and 2, we note that mi-
gration, despite causing important small-scale variability of the
semi-major axis, enhances resonant instabilities. However, this
efficiency is probably overestimated because of the simplicity of
our migration model. Deeper analysis of the disk-planet interac-
tion close to the resonance would be needed. Moreover, close to
its inner edge, the disk is strongly shaped by the binary and some
eccentric ring-like features may affect the protoplanet migration
(Mutter et al. 2016).

We may now summarize the analysis that has been conducted
in this section by reviewing the time evolution of this tentative
ejection process. The formation of a giant planet takes a vari-
able amount of time depending on the process and the location:
from several periods if formed via gravitational instabilities to
a million periods if formed via core accretion (Chabrier et al.
2014). Consequently, in order for HD 106906 b to acquire its
mass, it must have formed in a relatively stable location over
the timescale involved, at least at a distance of 2 au. How-
ever, as giant planets are believed to form beyond the snow
line, whose location is estimated to ∼10 au around ∼3 M� star
(Kennedy & Kenyon 2008), the stability of the planet formation
position is a priori ensured. After a substantial growth of the
planet, migration occurs, whose strength depends on the primor-
dial disk characteristics, and pushes the planet into a less sta-
ble zone. For the planet to be ejected, it has to enter the zone
of destabilizing resonances (1:6, 1:7), which lies around 1.5 au
(Fig. 3). All in all, if aformation/vmig is inferior to the disk life-
expectancy, the scattering of the planet is a natural outcome in a
system with binary mass ratio close to unity.

3. Stabilization

3.1. The idea of a close encounter

In the previous subsection, we demonstrate that a giant planet
which formed reasonably close to the binary is likely to undergo
an ejection. However, ejection does not imply stabilization on a
distant orbit around the binary, as it is most likely the case for
HD 106906 b. Eventually, the planet follows an hyperbolic tra-
jectory and does not need more than 10 000 years to completely
fly away from its host star. Indeed, suppose that the planet gets
ejected on a still-bound orbit via a close encounter with the bi-
nary: the orbit may have a very distant apoastron, but its perias-
tron will necessarily lies in the region where it originates, that is
the immediate vicinity of the binary. Therefore, after one orbital
period, the planet is back at periastron and undergoes a new vi-
olent encounter with the binary that is likely to cause ejection.
Such episodes have been actually recorded in our simulations.

Thus, in order to stop the ejection process and stabilize
the planet orbit, an additional dynamical process is needed to

lower its eccentricity and increase its periastron. In the absence
of other wide companion of similar mass orbiting the binary
(Lagrange et al. 2016a), a close encounter with a passing star
is a natural candidate. Recalling that the Sco-Cen association
must have had a more important stellar density several million
years ago, this event might have occurred with non negligible
probability.

The impact of dynamical interactions on planetary systems
in open clusters has been studied intensively since the dis-
covery of the first exoplanets. An effective cross section has
been computed by Laughlin & Adams (1998), that characterizes
the minimal encounter distance needed to raise the eccentric-
ity of a Jovian planet at 5 au from 0 to over 0.5. They found
〈σ〉 = (230 au)2, which gives a stellar encounter rate of about
0.01 disruptive encounter in our system lifetime. More precisely,
Parker & Quanz (2012) conducted N-body simulation to observe
the planet orbital elements after a fly-by, and found a probability
between 20 and 25% that a 30 au planet undergoes at least a 10%
eccentricity change in a ten million year period. In our case, the
situation seems even easier, because we want to modify the orbit
of an unstable planet already far from its star, thus with a trajec-
tory that can easily be swayed. However, the encounter needs to
happen at the right time of the planet life, during the ∼1000 years
that would last the ejection. Moreover, the encounter should be
weak enough not to definitely eject the planet, but strong enough
to circularize the orbit to a reasonable eccentricity. We note that
weak encounters are more likely to occur than strong ones.

3.2. Probability of a stabilizing fly-by

Of course, not all fly-by geometries will generate the desired ef-
fect. The fly-by is entirely defined by the mass of the passing star
M∗, the closest approach (or periastron) to the binary p∗, the ve-
locity of the passing star at closest approach v∗, the inclination i∗
of the passing star orbit with respect to the planet orbit, its longi-
tude of ascending node Ω∗ measured from the line of apsides of
the planet orbit, and the argument of periastron ω∗ with respect
to the line of nodes. A scheme of the effect of a stellar fly-by is
sketched in Fig. 4 in the coplanar case, in a configuration vol-
untarily favorable to a restabilization: when the planet is at the
apoastron of a wide unstable orbit. In fact, the apoastron is also
the most likely position of the planet, as it spend there most of
its time.

Figure 5 shows the results of a parametric study limited to
coplanar fly-bys (we studied the inclined cases as well) for a
given angle ω∗ (45 degrees), in (p∗, v∗) 2D parameter space, for
three different M∗ values (0.1, 1 and 5 M�) and assuming the
planet was at the apoastron of a very wide unstable orbit before
the encounter (such as in Fig. 4). The planet is 1000 au away
from the binary when the fly-by occurs, this is why a cut-of can
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Fig. 4. Example of a coplanar configuration where a passing star (in red)
stabilizes a wide unstable planet orbit. Before the fly-by, the planet orbit
still has a very low periastron, and after it gets much wider, thanks to
the interaction with the passing star. We recall that according to Kepler’s
laws, the planet spends most of its time near apoastron, so that any fly-
by is likely to occur when the planet is at or near this point.

Fig. 5. Area in the disruptive star phase space which succeed to raise the
periastron from 1 au to over 2 au in the case of a coplanar encounter of
periastron argument ω∗ − ω = 45 degrees. v∗ designates the maximum
relative velocity of the disruptive star, p∗ designates its smaller distance
from the binary.

be seen around p∗ = 1000 cos( π4 ) au. In each case, the gray area
represents the zone in parameter space that is reachable (plausi-
ble v∗) and actually causes a significant periastron increase of
the planet. In this peculiar configuration, taking into account
the distribution of p∗ and v∗ (see below), a stabilization is very
likely.

As a more general approach, the probability of a convenient
encounter can be estimated by an integration over the relevant
fly-by parameters. Taking a homogeneous distribution of stars
in the cluster with characteristic distance d, and a Gaussian dis-
tribution of relative velocities with dispersion σ, the number of

fly-bys that would raise the planet periastron above qstable is

Nqf>qstable =
τejection

τcluster

∫ +∞

0

dp∗
4πd2

∫ 2π

0
p∗dω∗

∫ +∞
√

2GM
p∗

dv∗ nv(v∗, p∗)

×
∫ π

0
di∗ sin i∗

∫ 2π

0
dΩ∗ He(qf − qstable), (5)

where qf is the final periastron reached by the planet after the
fly-by perturbation, τejection is the characteristic time of ejection,
τcluster ≡ d/σ is the characteristic time in the cluster (timescale
needed to have a convenient fly-by), He is the Heaviside func-
tion and nv the velocity distribution of unbound stars

nv(v∗, p∗) = 4πv∗

√
v2∗ − 2GM

p∗

(
3

2πσ2

)3/2

exp

−
3
(
v2
∗ − 2GM

p∗

)

2σ2

 ·

(6)
This gives the probability of having a stabilizing fly-by, for a
given mass M∗ of the passing star. Apart from the role of M∗
(see Fig. 5), this probability is strongly though indirectly depen-
dent on the orbital parameters of the planet before the fly-by,
that is on the state of advancement of the planet ejection. It is
higher when the planet lies initially on a wide, unstable but still
bound orbit (as in Fig. 4). On the other hand, it is nearly zero
as long as the planet is still close to the binary (i.e., before ejec-
tion) and if it is already on a hyperbolic trajectory. In order to
compute analytically the value of He(qf − qstable) for every set
of parameters (p∗, v∗, i∗,Ω∗, ω∗) given any initial planet position
and velocity, we assume a linear trajectory for the perturber. The
direction of the velocity change caused by this approximated
encounter can then be analytically derived, as well as the new
planet orbit. In the computation, we assumed a velocity disper-
sion of σ = 0.2 au/yr (1 km s−1) (Madsen et al. 2002), and the
order of magnitude of the characteristic time of ejection τejection

has been set to 103 yr.
The most critical dependence of our formula (5) is on the

local distance between stars d. The present and past density of
the LCC is not known. Therefore, we attempted to determine it
through a kinematic study in Appendix D. From 141 stars for
which complete data could be retrieved, we could trace back the
density of LCC through time. The results show that the early
density was roughly 1.7 times the present density, evaluated
around 0.05 star/pc3 in the close neighborhood of HD 106906.
Moreover, the contribution of field stars (not related to LCC) has
been estimated to be similar to the contribution of LCC. From
this piece of information, we derived that the present local den-
sity is lower than ≈0.11 star/pc3. This density, consistent with
the density of the solar neighborhood (Reid et al. 2002), corre-
sponds to d ∼ 2 pc. If our scenario happened in such an environ-
ment, the probability of a close encounter (p∗ < 5000 au) just
following the planet ejection is below 1 × 10−7.

Nevertheless, our estimate of the LCC density is based on
a small number of luminous (and mostly early-type) stars for
which the kinematics can be inferred. In our case, the fly-by of
any object more massive than the planet can stabilize the or-
bit and impact our probabilities. Therefore, we considered the
extreme case where neighboring bodies in the cluster are sep-
arated by d = 0.1 pc, a density similar to the one taken in
Laughlin & Adams (1998) and Parker & Quanz (2012). We re-
port the probabilities for that high density and for the case of
a 1 M� perturber in Table 4, for different initial conditions. We
note that the number of encounters for any d > 5000 au roughly
scale with d−3, so that lower-density results can be easily re-
trieved from the table.
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Table 4. Number of close encounters with a 1 M� star raising the planet
periastron above a given value (2, 50 or 150 au) depending on the tra-
jectory of the planet before the fly-by.

Periastron superior to 2 au 50 au 150 au

Unstable elliptic trajectory 8 × 10−4 5 × 10−5 2 × 10−5

Slow hyperbolic trajectory 1 × 10−4 2 × 10−5 6 × 10−6

Fast hyperbolic trajectory <1 × 10−6 <1 × 10−6 <1 × 10−6

Notes. These values have been obtained from Eq. (5).

3.3. Conclusions

Table 4 shows that the probability of a stabilizing fly-by remains
low. As outlined above, the most favorable case corresponds to
initially wide elliptical orbits before encounter. However, most
of the time, the planet is directly ejected on an hyperbolic orbit
instead of a wide elliptical orbit. And even if this occurs, the sub-
sequent periastron passages in the vicinity of the binary quickly
lead to a definitive ejection.

The probabilities have been computed for a 1 M� perturber
only, less than half of our system 2.7 M� star. Though the per-
turber to host star mass ratio do matter to evaluate the fly-by
impact (e.g., Jílková et al. 2016), the 1 M� results give an up-
per bound that accounts for the encounter with lighter stars, and
a rough estimate for encounters with heavier stars (see Fig. 5),
which are less abundant.

We therefore conclude that while our scenario uses generic
ingredients (migration, MMR, fly-by), it is not very likely to
happen because of the low probability of a fly-by-assisted sta-
bilization. An indirect proof could be provided if we could see
traces of planet ejection on the disk. Moreover, constraints on
the present-day orbit of HD 106906 b would certainly help refin-
ing this scenario: a very high planet eccentricity could raise its
likelihood, but the secular effect of such a planet passage in the
disk every thousands of years would have big consequences on
the disk morphology.

4. Debris disk

In this section, we investigate the consequences of our scatter-
ing scenario on the disk particles repartition, to check whether
it matches the observations (short-distance asymmetry, long-
distance asymmetry and extended inner cavity).

4.1. Ejection through the disk

An essential part of the scenario we outline in this paper is the
violent scattering of the planet by the binary. Most of the time,
the planet switches directly from a close orbit around the binary
to a fast hyperbolic trajectory toward the edge of the system.
As of yet we did not mention the effect of such an ejection on
the debris disk surrounding HD 106906AB. The passage of a
∼10 MJup planet across the disk should presumably induce dras-
tic perturbations on it. In order to investigate this issue, we ran a
N-body simulation with 10 000 test particles, neglecting the in-
teractions between them to access the first order of perturbation.
The particles have been randomly chosen with semi-major axes
between 5 and 100 au, eccentricities between 0 and 0.05, and in-
clinations with respect to the binary orbital plan between 0 and
2◦. As the main effect of the ejection is due to close encoun-
ters between the planet and the disk particles, we use the pack-
age Swift_RMVS (Levison & Duncan 1994) that is designed to

handle such trajectories. However, this package is not devised
to work in multiple stellar system, so that the binary will be
here approximated by a single star. The binary effect on the dust
being negligible above 5 au for the duration of the perturba-
tion (approximately ten times the planet ejection time, that is
10 000 years), this approximation has almost no consequences
on the final dust distribution. Time steps have been set to at most
1/20 of the particles orbital periods, but Swift_RMVS automati-
cally adjusts them to manage close encounters.

The result is displayed in Fig. 6. After the initial spiral-like
propagation of the eccentricity disturbance created by the planet,
the disk homogenizes on an oblong asymmetric shape that could
possible match the needle we observe up to ∼500 au. In the case
where the planet is first scattered on a wide eccentric orbit be-
fore being ejected, the process gives eccentricity to some test
particles, but the effect is negligible compared to the effect of the
ejection that comes next. However, in any case, the asymmetry
might not last forever. Orbital precession induced by the inner
binary (not taken into account in our simulation) should finally
randomize the longitudes of periastron of the particles on a much
longer timescale and restore the initial axisymmetric disk shape.
For a particle orbiting the binary at 100 au, the precession period
(see Appendix C) due to the binary is ∼4× 107 yr. Of course it is
shorter closer to the star, but this remains comparable or larger
than the age of the system except in the innermost parts of the
disk. Hence still observing the asymmetry today at 500 au should
not be surprising even if was created a long time ago. However,
our mechanism cannot explain the reversed asymmetry at shorter
distance. This inversion presumably corresponds to a spiral den-
sity wave extending across the disk that needs a steady-state per-
turbation to be sustained over a long enough timescale.

4.2. The effect of a stellar encounter

In Sect. 3, we discussed the possibility that a stellar fly-by could
have stabilized the planet mid-ejection. The effect of such en-
counters on a disk has been studied intensively (for example in
Breslau et al. 2014; Jílková et al. 2016). This effect is of course
very dependent on the mass ratio of the stars and on the en-
counter periastron and eccentricity.

In fact, most encounters that would stabilize an unstable
planet are compatible with the current shape of the disk. We
can, for example, consider the case of a 1 M� star perturber.
The majority of the suitable encounters have periastrons supe-
rior to 1000 au (see Fig. 5). According to the computations of
Jílková et al. (2016), this and the high mass of our star implies
that all the disk particles will remain bound. Indeed, the trans-
fer radius, that is the minimum radius where capture is possi-
ble, is well superior to the observed limit of the debris disk. For
our disk to be depleted, the transfer radius should be inferior to
≈100 au, which corresponds to an encounter periastron around
250 au. Thus, though the problem is strongly underconstrained,
our scenario is likely to be compatible with the existence of the
disk.

4.3. Secular carving

The secular action of the planet orbiting the binary on its present
day large stabilized orbit is an obvious long-term source of per-
turbation on the disk. We note that we make here a clear dis-
tinction between the initial, short term perturbation triggered by
the planet on the disk during its ejection process, which effect
has been described in the previous subsection, and the long-term
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(a) (b) (c)

(d) (e) (f)

Fig. 6. N-body simulation showing the consequence of the ejection of a 11 MJ planet through a disk. From left to right, the snapshots have been
taken 0, 1000 and 10 000 years after the ejection. The planet starts on an hyperbolic orbit similar to what we observe in the simulations we
performed: a = 10 au and e = 1.1 (corresponding to periastron q = 1 au). Above is a spatial representation of the top view of the disk (the planet
trajectory is depicted in black), below is the density along the y axis, integrated over the x and z axis.

secular action of the planet as it moves on its distant bound or-
bit. It is known that eccentric companions (planets or substel-
lar) orbiting at large distance a star surrounded by a disk cre-
ate spiral density waves within the disk (Augereau & Papaloizou
2004). To a lesser extent, binaries do the same on circumbi-
nary disks (Mutter et al. 2016). The following study nevertheless
shows that the asymmetry currently observed in the HD 106906
disk cannot be due to the sole action of the binary, but rather
requires an outer source of perturbation like the planet, that en-
hances the density waves induced by the binary.

We investigate here the secular action of the planet on the
disk, combined with that of the binary, using simulations with
our Swift_HJS package. Of course with only a projected posi-
tion, our knowledge of the current orbit of the planet is sparse.
Some orbital configurations may nevertheless be ruled out as
they would lead to a destruction of the disk. Jilkova & Zwart
(2015) studied intensively the impact of each orbital configura-
tion on the disk via the percentage of particles that remain bound
nbound and the fraction of bound particles that suit the observa-
tion constraints fd/b. Although nor the disk neither the binary
was resolved at that time, their conclusion still can be used, at
least on a qualitative level. They showed that a planet periastron
larger than 50 au or an inclination larger than five to ten degrees
is enough to keep a relatively good agreement with the observa-
tions ( fd/b > 0.5) without completely depleting the disk. How-
ever, to better match the observations ( fd/b > 2/3), the periastron
must lie outside the outer radius of the disk. The maximal in-
clination is constrained by the observation, that is about twenty

degrees. No further constraints can be provided by the simulation
of Jilkova and Zwart to rule out any inclination between zero and
20 degrees if the planet orbit does not go across the disk. They
point out that Kozai-like mechanisms can lead to some wobbles
in inclination, but small enough for the disk to remain in a nearly
coplanar state.

Assuming that the planet fulfills these requirements, we com-
pute the asymmetries induced on the disk and compare the result
to the observation. The disk was initially made of 10 000 test
particles with same initial conditions than in the previous subsec-
tion. The result of a typical run is displayed in Fig. 7. Basically,
if the periastron of the planet is close enough to the outer edge of
the disk, it generates an important asymmetry in the disk within
a timescale of between five and ten million years (∼108 binary
periods, ∼103 planetary orbit). In Fig. 8, the density profile has
been computed along the x axis. The resulting plot displays an
asymmetry similar to the observations: the east side (in blue) is
brighter than the west side on short scale, but its density drops
well above the west side density. The shape of the perturbation
resembles a circular arc, but it actually consists of two overlap-
ping spiral arcs, one driven by the planet and the other one cre-
ated by the binary.

This issue can be studied analytically. The approach is anal-
ogous to the study without binary, as conducted in Wyatt (2005).
Consider a test particle orbiting the binary. Suppose that the
planet has a Keplerian orbit around the center of mass of the
binary, so that the system is hierarchical. The instantaneous
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Fig. 7. Top view of the evolution of the debris disk after ten million
years of perturbation by a planet on a coplanar orbit whose coplanar
orbit has a periastron of 200 au and an apoastron of 1000 au. The color
scale represents the relative density. Strong asymmetries can be seen.

Fig. 8. Density along the x axis, integrated over the y and z axis, ob-
tained from Fig. 7. The gray zone marks approximately the cavity that
we observe today. The asymmetry seems to reverse when we get farther
to the stars.

Hamiltonian controlling its motion can be written as

H = HKep + Hbin + Hpla, (7)

where HKep = −GmB/2a is the pure Keplerian Hamiltonian, and
where the two remaining terms constitute the disturbing func-
tion, one part arising from the binary, and the other part from
the planet. For a binary of mass parameter µ, these independent
perturbations are written

Hbin = −GmB(1 − µ)
|r − µrB| −

GmBµ

|r − (1 − µ)rB| − HKep; (8)

Hpla = −Gmp


1

|r − rp| −
r · rp

r3
p

 , (9)

where, in a frame whose origin is at the center of mass of the bi-
nary, r is the position vector of the particle, rB is the radius vec-
tor between the two individual stars, mp is the mass of the planet,
and rp is its position vector. More generally, B subscribed quanti-
ties will refer to parameters of the binary, p subscribed quantities

to the planet, while unsubscribed parameters will correspond to
the orbiting particle.

Both terms of the disturbing function are then expanded in
ascending powers of the semi-major axis ratios aB/a and a/ap,
truncated to some finite order (three here) and averaged indepen-
dently over all orbital motions, assuming implicitly that the par-
ticle is not locked in any mean-motion resonance with the planet
or with the binary. Higher orders terms of the disturbing func-
tion will be neglected on initial examination, but their influence
will be studied in a forthcoming paper. The secular evolution of
the particle’s orbital elements is then derived via Lagrange equa-
tions. Details on this procedure are given in Appendix C.

Starting from a disk made of particles on circular orbits, we
use this theory to compute their instantaneous polar coordinates
(r(t), θ(t)) in the disk and compute theoretical synthetic images.
The result is shown in Fig. 9, which must be compared with
Fig. 7. We note the presence of a circular arc very similar to the
one obtained in the numerical simulation. This peculiar shape
is due to the combination of two spiral waves winded in oppo-
site senses, induced by the planet and the binary via differential
precession and eccentricity excitation on the disk particles.

The test particles precession velocities and periastrons are
represented in Fig. 10 as a function of their semi-major axis. In
the inner part of the disk, the precession is dominated by the
binary, so that the speed of the orbital precession decreases with
increasing semi-major axis. The results is a trailing spiral wave
that can be seen in Fig. 9. Conversely, in the outer part of the
disk, the precession is mostly due to the planet, so that its is
now an increasing function of the semi-major axis. This creates
a leading spiral density wave. The superposition of both spirals
in the intermediate region generates the observed circular arc.
The exact location of this arc corresponds to the periastron of
the particles whose semi-major axis minimizes the precession
velocity, that is, around 55 au. Moreover, we see in Fig. 10 that
all particles from a ∼ 60 au to ∼100 au have the same periastron.
The combination of the two effects enhances the density of the
arc, as can be observed in Figs. 7 and 9.

The two spirals are, however, not fully independent. Orbital
precession of the particles actually has no visible effect on their
global distribution in the disk as long as their orbits are circular.
In Appendix C, we show that due to the small size of its orbit
and its mass ratio close to one, the binary has very little influ-
ence on the eccentricity of the particles compared to the planet,
even in the inner part of the disk. In fact, while the outer spi-
ral is fully due to the planet, in the inner spiral, the eccentricity
oscillations are also driven by the planet, while the precession
is controlled by the binary. Moreover, the contrast of the den-
sity wave highly depends on the planet orbital shape (the ampli-
tude of the eccentricity oscillations is roughly proportional to ep
within our approximation). For example, if the planet apoastron
is 1000 au, its periastron should be less than 500 au (e > 0.3) in
order to create a significant asymmetry as the one we observe, in
a reasonable timescale.

5. Discussion

5.1. Disk cavity

In the previous sections, we did not study the origin of the large
cavity observed within the disk by Lagrange et al. (2016a) and
Kalas et al. (2015). It is possible that one or more unseen planets
could have carved and sustained this cavity. In that case, one of
those unseen planet may be responsible for the ejection of the
known one, instead of one of the binary star. Those planet(s), if
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Fig. 9. 2D representation of a debris disk after 0, 106 and 107 years under the third-order approximation of the influence of the binary and a planet
whose periastron is 200 au and apoastron is 1000 au. The color scale represents the local number of particles. At first, only the edge of the disk is
affected, but after 107 years, two spirals components appear within the disk.

Fig. 10. Precession velocities (above) and periastrons (below) of Fig. 9
test particles with respect to their semi-major axis (that does not change
with time) after ten million years evolution. Above, the red curve dis-
plays the precession induced by the binary, the blue curve by the planet
and the black curve depicts both contributions.

on eccentric orbits, could also influence the shape of the disk
(Lee & Chiang 2016). Therefore, we ran N-body simulations
with the Swift_RMVS package (the same setting as in the Debris
Disk section) to quantify at first order the minimum mass of a
single planet, checking if it can carve the observed cavity be-
tween the two belts of debris surrounding the pair of stars. This
assumes that if one planet alone is responsible for gap, its mass
will be higher than in the case where multiple planets are consid-
ered. The end result must reproduce the inner edge of the cavity

Fig. 11. Minimum mass of planets (in Jupiter masses) that can be de-
tected into the H2 data published in Lagrange et al. (2016a) around
HD 106906. The contrasts has been translated into masses using
Baraffe et al. (2003) model adapted to the SPHERE filters.

at 13 Myr located between 10 and 15 au (inferred from the IR
excess modeling, Chen et al. 2014). We assume that the outer
edge of the cavity around corresponds to the separation of the
ring (65 au) measured on the SPHERE images (Lagrange et al.
2016a). The simulations give a minimum mass of 30 MJ for a
single non-eccentric planet located at 30 au, which is well above
the detection limits in Fig. 6 of Lagrange et al. (2016a). How-
ever, the disk is viewed edge-on, so that the coronagraph used
during the observation (radius of 93 mas or 9.5 au) hides part
of the orbital plan. In Fig. 11 we computed a 2D detection-limits
map from the data published in Lagrange et al. (2016a). The map
confirms that a small zone around the coronagraph has detection
sensitivity above 30 MJ. An additional giant planet on a 30 au
circular orbit will spend 20% of its time (ten years) in this blind
zone and therefore could have been missed. For the case of an
eccentric orbit, the mass of the perturber could be only 1 MJ.
This is too low compared to the known planet mass to produce
an ejection, but high enough to have a noticeable effect on the
disk morphology.

5.2. Alternative scenarios

Our scenario makes use of standard ingredients (resonances,
migration, scattering, fly-by) envisioned or observed in young
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planetary systems (Baruteau et al. 2014) and account for all
known components of the system. Nevertheless, the low prob-
ability of occurrence we estimate in Sect. 3 because of the need
for a nearby star fly-by at the right time makes the scenario im-
plausible. If we suppose that the planet was in fact on a stable or-
bit before the fly-by, then this fly-by event could have happened
at any time, and not necessarily during the early age of the sys-
tem. However, the probability for a fly-by to have a significant
effect on the planet without ejecting it decreases dramatically
when the planet gets closer to its host star. Taking the data from
Parker & Quanz (2012), we can expect a probability of around
0.1 for a disruption superior to 10% on eccentricity without ejec-
tion for a 30 au Jovian planet in the system lifetime. Among the
disruptive encounters, it is then hard to tell how many would put
the planet on a suitable orbit (apoastron greater than 700 au, that
is e > 0.75). Plus, such a change of orbit would lead to a very
small planet periastron, which will strongly deplete the disk (see
Sect. 4.2).

Alternatively, the planet could have been stolen from an-
other system. Indeed, captured planets tend to have eccentric or-
bit (Malmberg et al. 2011). However, for the final orbit to be so
wide, the initial orbit must also have been wide (Jílková et al.
2016). All in all, such a scenario would only turn over the prob-
lem, as we would have to account for the wide initial orbit on the
first place.

Conversely, the disk could replace the fly-by in our scenario.
Indeed, to follow the idea of Kikuchi et al. (2014), the planet
could have been accelerated by the gas at its apoastron after a
first scattering, and its orbit could have been rendered stable this
way. It is interesting to note that some of the circumstellar disks
of ∼2.5 M� stars recently resolved with ALMA at high angu-
lar resolution shows gas extending up beyond the separation of
HD 106906 b (e.g., Walsh et al. 2016, and references therein).
The total mass of HD 106906 A and B is around 2.7 M� and it
is therefore possible that the binary bore such an extended pri-
mordial disk that would have circularized the orbit of the ejected
HD 106906 b.

Before the discovery of HD 106906AB binary status that
indicates strong gravitational interactions, Bailey et al. (2013)
suggested that it may have formed in situ. On the one hand,
the existence of extended protoplanetary disks implies that our
planet may have formed in HD 106906AB primordial disk. On
the other hand, HD 106906 b is not the only planetary-mass com-
panion detected at very large projected separation, and such bod-
ies have usually no known scatterers in their environment (see
Bryan et al. 2016, even though their study was conducted over a
small number of systems less wide than HD 106906 and with
lighter stars). Among the systems harboring a planetary-mass
companion of similar separation and mass ratio, we can name
HIP 779002 (Aller et al. 2013), HIP 78530 (Lafrenière et al.
2011), or the triple system Ross 458 (Goldman et al. 2010). In
Fig. 12, we represented the wide young planetary-mass compan-
ions discovered by direct imaging. We note that HD 106906 b
has the lowest planet/star mass ratio above 100 au. The prox-
imity of HIP 78530A b and HIP 77900A b (two brown dwarfs
that are also part of Sco-Cen) in that diagram, could indicate that
HD 106906AB b formed in situ (within the disk, or like a stellar
companion).

2 Contrary to HD 106906 b, HIP 77900 b has not been confirmed by
the common proper motion test. Nonetheless, Aller et al. (2013) argue
that low-gravity features in HIP 77900 b spectrum is compatible with
the object being a member of Sco-Cen, and therefore a plausible com-
panion to HIP 77900 A.

Fig. 12. Planet mass ratios with respect to projected separation. Only
planets that belong to young systems (<0.1 Gyr) are displayed, with the
exception of the circumbinary planet Ross 458 c. HD 106906 b has the
lowest mass ratio beyond 100 au. HIP 78530 b and HIP 77900 b are its
two closest neighbors in the diagram. Being identified as brown dwarfs,
they may have formed in situ by cloud collapse. Data retrieved from the
exoplanets.eu database.

6. Conclusion

We have shown that HD 106906AB b could have formed within
the primordial disk and be scattered away on a wide orbit dur-
ing the first ten million years of the system life. This scenario
involves the combination of disk-induced migration and mean-
motion resonances with the binary. However, if the scattering is
likely to occur, the stabilization of the planet on its current wide
orbit is delicate, and requires more than gravitational interac-
tions with the binary. A fly-by scenario has been suggested, but
the stabilization only occurs for a restricted part of the overall
encounters trajectories. The low density (<0.11 stars/pc3) that
we estimated for the LCC makes a close encounter even more
unlikely.

The disk has multiple features, that each could be explained
within the frame of our scenario, but also outside of this frame.
Two spiral density waves are created if the planet have for the last
ten million years had an eccentric orbit with periastron around
200 au. A needle extending to 500 au could have been created
by the ejection of the planet, but a smaller needle could be pro-
voked by an eccentric and inclined outer orbit (see Fig. 7) or
by an eccentric inner orbit (Lee & Chiang 2016). Nesvold et al.
(2017) also studied the secular effect of an eccentric, inclined
outer orbit for HD 106906 b in a recent paper, and could produce
asymmetries whose brightness repartition is consistent with the
observations.

The scenario we explored builds on the observed compo-
nents of the system (disk, binary star) and on the hypothesis that
the planet could not have formed via core accretion or gravita-
tional instability at several hundreds of au. Nevertheless, the low
probability of occurrence of our scenario demands that we re-
consider those assumptions. Alternative hypothesis like the cir-
cularization of the planet orbit via the interaction with the disk
gas or in situ formation could explain the present architecture
of the system. But this requires that the disk extends up to the
separation of the planet and contains enough gas at that separa-
tion. Recent high quality images of circumstellar disks extending
beyond 700 au around massive stars and the close properties of
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other systems in Sco-Cen (HIP 78530A b and HIP 77900A b)
argue for this alternative formation pathway.

Finally, we note that many of the methods depicted here are
easily generalizable to other circumbinary environment. N-body
simulations with a simple migration force can be applied on any
circumbinary planet to have a quick overlook of the stability of
its early trajectory. Fly-by may not be the most efficient pro-
cess to stabilize a planet, because of the rarity of suitable close
encounters. Destabilization by a fly-by is much more probable.
Finally, ejection, outer and inner orbits can create huge asymme-
tries in the disk during the first ten million years of a system. In
particular, an inner orbit enhances the dynamical perturbations
created by an outer orbit by speeding up the precession, while
the outer orbit if eccentric can enhance the perturbations created
by the inner orbit by providing eccentricity to the disk.
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Appendix A: Ad hoc force to account for type II
migration

We searched for a coplanar migration force Fmig that induces a
constant variation of the planet average semi-major axis, but no
change in the planet average eccentricity, nor in the periastron
longitude. Let Fmig = Frer + Fθeθ be the description of the force
in the local referential attached to the planet movement. Gauss
equations are (Duriez 1992):

C
da
dt

= 2a2(Fθ + eFmig · ey); (A.1)

C
de
dt

= r(e + cos θ)Fθ + a(1 − e2)Fmig · ey; (A.2)

Ce
dω
dt

= r sin θFθ − a(1 − e2)Fmig · ex, (A.3)

where ex and ey are the vectors in the fixed frame and C =√
GMa(1 − e2). We want to assume a simple form for Fr and

Fθ that could then be easily averaged over time. The simplest
position-dependent force would be Fr = A(1 + c cos u) et Fθ =
B(1 + d cos u), where A, B, c and d are unknown functions of
(a, e), constant at first order over a one-period integration. Our
conditions are then summarized to:

dā
dt

= vmig ⇐⇒ 2B
√

1 − e2

n
= vmig; (A.4)

dē
dt

= 0 ⇐⇒ B(2e2d − 3e3 + 3e − 2d) = 0; (A.5)

dω̄
dt

= 0 ⇐⇒ A
√

1 − e2(c − 2e) = 0, (A.6)

where n =
√

GM/a3 is the mean motion. Taking A = 0, B =

nvmig/(2
√

1 − e2), any c and d = 3e/2, we finally obtain Eq. (4).

Appendix B: Location of mean-motion resonances

Equation (1) gives the semi-major axis of a resonant circumbi-
nary planet when its orbit is purely Keplerian. When we take
into account the perturbation caused by the binary on the planet
orbit, the commensurability of periods that characterizes MMRs
can not be easily associated with a semi-major axis, mainly due
to orbital precession.

The movement of a circumbinary planet (binary of mass pa-
rameter µ) is controlled by the Hamiltonian

H = −GmB

2a
−GmB

(
1 − µ
|r + µrB| +

µ

|r − (1 − µ)rB| −
1
|r|

)
(B.1)

= HKep + Hbin, (B.2)

where HKep = −GmB/(2a) is the Keplerian Hamiltonian, and
where Hbin is given by Eq. (8). If the planet orbits at sufficiently
large distance from the binary, Hbin is a perturbative term that
triggers orbital evolution of the planet. This can be investigated
analytically via a truncated expansion of Hbin in ascending pow-
ers of aB/a, and an averaging over both orbital motions. To low-
est order, this yields

Hbin ' −µ(1 − µ)
4

GmBa2
B

a3

3e2
B + 2

(1 − e2)3/2 · (B.3)

Strictly speaking, this approximation is not valid at the exact lo-
cation of MMRs, as the motions of both orbits are not indepen-
dent anymore, but it gives a good insight of the perturbation of

the planet orbit when it is near the MMRs. Moreover, numeri-
cal verifications show that this order two approximation is still
relevant for a ≥ 3aB, and could thus be made to study the 1:6
resonance. Lagrange equations (Duriez 1992) then give

dω
dt

=
3µ(1 − µ)

4
n
(aB

a

)2 3
2 e2

B + 1
(1 − e2)2 ; (B.4)

dλ
dt

= n +
3µ(1 − µ)

2
n
(aB

a

)2 3
2 e2

B + 1

(1 − e2)
3
2

+
(
1 −
√

1 − e2
) dω

dt
,

(B.5)

where n is the Keplerian mean-motion. Thus, if T0(a) is the
Keplerian period 2π/n, then the period of the mean longitude
Tλ is

Tλ =
T0(a)

1 +
3µ(1 − µ)

4

(aB

a

)2 3
2 e2

B + 1

(1 − e2)
3
2

(
1 +

1√
1 − e2

) · (B.6)

The MMR configuration is characterized by the steadiness of
σ = (p + q)/qλB − p/qλ − ω. However, in our study, the planet
orbit remains almost circular until ejection, so that the planet
line of apsides is not a good reference. Taking the binary line
of apsides (constant in time) as the new reference, the resonance
characterization writes Tλ = p/(p + q)TB. All in all, the resonant
location ares satisfies

Tλ(ares) =
p

p + q
TB. (B.7)

Appendix C: Spiral density wave

As mentioned in the text, the motion of a particle moving in a cir-
cumbinary disk is controlled by the Hamiltonian HKep + Hbin +
Hpla, where Hbin and Hpla are perturbative terms given by Eqs. (8)
and (9). Following the approach of Wyatt (2005), these terms are
then expanded in ascending powers of aB/a and a/ap, truncated
to some finite order and averaged over the orbital motion of both
orbits (see Laskar & Boué 2010). To second order and third or-
der, the result is

U2 = − µ(1 − µ)
4

GmBa2
B

a3

3
2 e2

B + 1

(1 − e2)
3
2

− 1
4

Gmpa2

a3
p

3
2 e2 + 1

(1 − e2
p)

3
2

; (C.1)

U3 =
15µ(1 − µ)(1 − 2µ)

16
GmBa3

B

a4

e cos(ω − ωB)eB( 3
4 e2

B + 1)

(1 − e2)
5
2

+
15
16

Gmpa3

a4
p

ep cos(ω − ωp)e( 3
4 e2 + 1)

(1 − e2
p)

5
2

· (C.2)

In HD 106906 configuration, the binary mass parameter is very
close to 1/2, and the semi-major axis of the binary is very small
compared to the distance between the binary and the relevant
part of the disk, between 50 and 100 au. Thus, the binary part of
U3 can be neglected. Using Lagrange equations, we derive the
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equations of evolution:

dω
dt

=
3

16
n
(aB

a

)2 3
2 e2

B + 1
(1 − e2)2 +

3
4

mp

mB
n
(

a
ap

)3 √1 − e2

(1 − e2
p)

3
2

− 15
16

mp

mB
nep

(
a
ap

)4
√

1 − e2 cos(ω−ωp)(1 + 9
4 e2)

e(1 − e2
p)

5
2

; (C.3)

de
dt

= − 15
16

mp

mB
nep

(
a
ap

)4 sin(ω − ωp)

(1 − e2
p)

5
2

; (C.4)

dM
dt

=
3

16
n
(aB

a

)2 3
2 e2

B + 1
(1 − e2)2 −

7
4

mp

mB
n
(

a
ap

)3
(
1 + 3

7 e2
)

(1 − e2
p)

3
2

+
15
16

mp

mB
nep

(
a
ap

)4 cos(ω − ωp)(1 + 29
4 e2 + 9

4 e4)

e(1 − e2
p)

5
2

, (C.5)

where M is the mean anomaly, n =
√

GmB/a3 is the mean mo-
tion and a is a constant of motion in the secular regime. As we
want to study the evolution of an initially almost circular parti-
cle orbit, we note that we cannot neglect the planetary part of
U3, because of the 1/e factor in dω/dt. The two first equation
are coupled, Eq. (C.5) will be solved in a second phase after in-
jection of their solution. These equations are nonetheless irreg-
ular for small eccentricity regime. Thus, we will use the com-
plex variable z = e exp(iω) to render them regular (Wyatt 2005).
Moreover, from Eq. (C.4), we can deduce that the eccentricity
is maximum when ω = ωp. This information, combined with
the initial value of the Hamiltonian, allows us to compute the
maximal eccentricity as a function of a. These maximums prove
themselves to be less than 0.5 in any case, so that we can lin-
earize the system in z for an easier solving. It yields

dz
dt

= i
(
(AB,1 + Ap,1)z − Ap,2

)
, z = e exp(iω), (C.6)

where

AB,1 =
3

16
n
(aB

a

)2
(

3
2

e2
B + 1

)
; (C.7)

Ap,1 =
3
4

mp

mB
n
(

a
ap

)3 (
1 − e2

p

)− 3
2 ; (C.8)

Ap,2 =
15
16

mp

mB
nep

(
a
ap

)4 (
1 − e2

p

)− 5
2 . (C.9)

We now solve the system and get the eccentricity, precession and
mean anomaly as a function of time. For null initial eccentricity,
it is written

e(t) =
2Ap,2

AB,1 + Ap,1

∣∣∣∣∣∣sin
(

(AB,1 + Ap,1)t
2

)∣∣∣∣∣∣ ; (C.10)

ω(t) =
AB,1 + Ap,1

2
t (mod π) − π

2
+ ωp; (C.11)

M(t) = (n + AB,1 − 7
3

Ap,1 +
1
8

Ap,2)t + M(0). (C.12)

If we represent the motion of z on the complex plane, we get ex-
actly the circle depicted in Fig. 2 of Wyatt (2005). These formula
were used to generate Fig. 9.

Appendix D: Density of stars around HD 106906

The first step to investigate the density of stars around the
HD 106906 system is to build a complete list of known mem-
bers in the LCC subgroup of the Sco-Cen association. Our list
of LCC members is based on previous surveys of this region
(De Zeeuw et al. 1999; Preibisch & Mamajek 2008; Song et al.
2012; Pecaut & Mamajek 2016) and consists of 369 stars. In the
following, we estimate the current density of stars around the
planetary system and its evolution in time. Thus, our methodol-
ogy requires prior knowledge of the distances, proper motions
and radial velocities for the individual stars in our sample.

The Tycho-Gaia Astrometric Solution (TGAS, Lindegren
et al. 2016) from the Gaia data release 1 provides trigonomet-
ric parallaxes and proper motions for 203 stars in our sam-
ple. To access more proper motion data, we also searched for
this information in the PPMXL (Roeser et al. 2010), UCAC4
(Zacharias et al. 2012) and SPM4 (Girard et al. 2011) catalogs.
Doing so, we find proper motions for 368 stars of the sample.
We use the TGAS proper motions for the 203 stars and take
the weighted mean of the multiple measurements given by the
other catalogs (PPMXL, UCAC4 and SPM4) for the remain-
ing 165 stars. Then, we searched the SIMBAD/CDS databases
(Wenger et al. 2000) for radial velocity information using the
data mining tools available on the site. The radial velocities
that we use in this work come from Wilson (1953), Duflot et al.
(1995), Barbier-Brossat & Figon (2000), Torres et al. (2006),
Gontcharov (2006), Holmberg et al. (2007), Mermilliod et al.
(2009), Chen et al. (2011), Song et al. (2012), Kordopatis et al.
(2013) and Desidera et al. (2015). We found radial velocity for
184 stars of our sample.

We apply the methodology developed by Bailer-Jones (2015)
to convert parallaxes into distances (see Sect. 7 of his paper).
The systematic errors of about 0.3 mas in the TGAS parallaxes
reported by Lindegren et al. (2016) were added quadratically to
the parallax uncertainties. The three-dimensional position of the
stars are calculated from the individual distances in a XYZ grid
where X points to the Galactic center, Y points in the direction
of Galactic rotation, and Z points to the Galactic north pole. The
reference system has its origin at the Sun. Then, we use the pro-
cedure described in Johnson & Soderblom (1987) to compute
the UVW components of the spatial velocity for each star that
are given in the same reference system. We perform a 3σ clip-
ping in the distribution of proper motions, parallaxes, radial ve-
locities and spatial velocities to remove obvious outliers. This
procedure reduces the dataset to a total of 312 stars, but only
141 stars in this sample exhibit published radial velocities and
102 stars have complete data (proper motions, radial velocities
and parallaxes). Based on this subset of 102 stars we calcu-
late a revised mean spatial velocity of the LCC association of
(U,V,W) = (−8.5,−21.1,−6.3) ± (0.2, 0.2, 0.2) km s−1 (not cor-
rected for the solar motion).

We note that 39 stars in the sample of 141 stars with known
radial velocities do not have published parallaxes in the TGAS
catalog. Individual parallaxes (and distances) can be inferred for
these stars from the moving-cluster method under the assump-
tion that they are co-moving. This method uses proper motions,
radial velocities and the convergent point position of the mov-
ing group to derive individual parallaxes for group members
(Galli et al. 2012). We emphasize that the so-derived kinematic
parallaxes are meaningful and provide valuable information in
this work to increase the number of stars with measured par-
allax in our sample. We adopt the space motion listed above
and the formalism described in Sect. 2 of Galli et al. (2017) to
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Fig. D.1. Evolution of the density of stars for different radii around the
HD 106906 planetary system. The colored regions indicate the upper
and lower limits (at the 1σ level) for the density of stars at a given
radius.

estimate the convergent point position and the kinematic par-
allaxes for each group member. Using a velocity dispersion of
σv = 1.5 km s−1 and distance estimate of 120 pc for the LCC as-
sociation (see e.g., de Bruijne 1999) we find a convergent point
solution located at (αcp, δcp) = (104.8◦,−37.2◦) ± (1.0◦, 0.8◦)
with chi-squared statistics χ2

red = 0.92 and correlation coeffi-
cient of ρ = −0.98. To gain confidence in the so-derived kine-
matic parallaxes we compare our results with the trigonomet-
ric parallaxes from the TGAS catalog for the stars in common.
We find a mean difference of 0.1 mas and rms of 0.6 mas, that
are significantly smaller than the typical error on the kinematic
parallaxes (∼0.8 mas) derived from the moving-cluster method
in this analysis. This confirms the good agreement between the
two datasets. Thus, the final sample with complete information
(proper motion, radial velocity and parallax) that we use in this
work to estimate the early density of stars around HD 106906
consists of 141 stars.

In a subsequent analysis, we consider the present day lo-
cation of the 141 stars and use the UVW spatial velocity for
each star to calculate their XYZ positions backward in time.
We compute the stellar positions as a function of time in steps
of 0.1 Myr from t = 0 (current position) to t = −14.0 Myr.
The latter value is chosen to be consistent with an upper limit
for the age estimate of the HD 106906 system as derived by
Pecaut et al. (2012) from different evolutionary models. Then,
we count the number of stars in the vicinity of HD 106906 for
different radii (r = 5, 10, 15, ..., 30 pc) and determine the den-
sity of stars around the target. Figure D.1 illustrates the results
of this investigation. Our analysis indicates that the early den-
sity of stars around HD 106906 (at t = −7.7 Myr) was higher
than the current value by a factor of about 1.7 for r = 5 pc. At
this stage it is important to mention that our result for density of
stars is restricted to known members of the LCC association with
complete data in our sample for which we can calculate spatial
velocities and compute their positions back in time. As soon as
new data (parallaxes and radial velocities) from the upcoming
surveys (e.g., Gaia) become available and other group members
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Fig. D.2. Current density of stars in the vicinity of the HD 106906 sys-
tem inferred from LCC cluster members and field stars. The colored
region indicates the upper/lower limits (at the 1σ level) for the final
density of stars (cluster + field) at different radii around the target.

are identified, a more refined analysis of this scenario will be
made possible.

One alternative approach to better constrain the density
of stars around HD 106906 consists of investigating the
contribution of field stars (not related to the LCC association)
in our solution. In this context, we use the model of stellar pop-
ulation synthesis from Robin et al. (2003) to simulate a cata-
log of pseudo-stars and their intrinsic properties (e.g., distances,
spectral types, ages, magnitudes, etc.) in the direction of the
HD 106906 system. We run the model with a distance range
from 0 to 300 pc and a solid angle of 20 deg2 centered around
the target. These values are chosen to include known members of
the LCC association that is clearly spread in angular extent and
exhibits significant depth effects along the line of sight. We do
not constrain our simulations in magnitudes and spectral types
to get a more complete picture of the stellar population in this
region. We use a distance step of 0.5 pc in our simulations that
is the minimum value that can be used in the model. The syn-
thetic stars are all supposed to be at the same coordinates. So,
we run a number of 1000 simulations to generate random coor-
dinates for the simulated stars and use them (together with the
distances provided by the model) to calculate the stellar three-
dimensional positions in the XYZ grid. Figure D.2 shows the
density of stars around HD 106906 for different radii obtained
from our sample of LCC stars, the pseudo-stars from our simu-
lations and a combined result that includes both (cluster + field).
Although this analysis cannot be extrapolated backward in time
(as in Fig. D.1), it yields a more refined value for the current
(t = 0) density of stars. However, we emphasize that the re-
sults obtained for small radii around the target (i.e., r ≤ 5 pc)
are calculated with a small number of stars (typically, less than
ten stars) and they should be regarded with caution. Thus, we
conclude that the present-day density of stars in the vicinity of
the HD 106906 system for r > 5 pc is ≤0.07 stars/pc3 (within the
1σ error bars). We infer from the results presented in Fig. D.1
an upper limit of ∼0.11 stars/pc3 for the density of stars around
HD 106906, a result that will need further confirmation as soon
as more data becomes available.
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3.2 Refining the scenario

Two years after the Rodet et al. (2017) study, the release of Gaia data allowed for
a deeper study of the system’s neighborhood. Taking into account Gaia proper
motions and additional radial velocity measurements, De Rosa & Kalas (2019) ev-
idenced two stellar candidates, HIP 59716 and HIP 59721, possibly bound, that
might have had a close fly-by with HD 106906 some million years ago. This fly-by
could have been the crucial ingredient to prevent the planet from being permanently
ejected from the system after a scattering by the binary host star, in the scenario
described in Rodet et al. (2017) above.

We then collaborated to write another paper studying the impact of the fly-
by, given the information on the perturbers (Rodet et al. 2019). In this paper,
I first present the code Odea, that handled hierarchy changes but not yet close
encounters. I ran a set of 10,000 4-body simulations, computed their effect on the
planet, and compared it to theoretical predictions. The paper sets an upper limit
to the distance at closest approach, in order to have a dynamically significant fly-by
(significant decrease of the planet eccentricity, raise of the planet elevation above
the disk plane, disk warp): 0.01-0.05 pc depending on the planet initial apoastron.
It confirms that such a close fly-by is possible from both perturbers, though the
precision on the relative parallax and radial velocity does not conclude the study.
The entire study, submitted to A&A, is detailed below.
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ABSTRACT

Context. Symplectic integrators are widely used in orbital dynamics. However, they have been developed for Solar
system-type architectures, and can not handle evolving hierarchy, in particular in systems with two or more stellar
components. Such configuration may have occurred in the history of HD 106906, a tight pair of F-type stars surrounded
by a debris disk and a planetary-mass companion on a wide orbit.
Aims. We present the new algorithm Odea, based on the symplectic algorithm Swift Hjs, that can model any system
(binary,...) with unstable architecture. We study the peculiar system HD 106906 as a testcase for the code.
Methods. We define and compute a criterion based on acceleration ratios to indicate when the initial hierarchy is not
relevant anymore. A new hierarchy is then computed. The code is applied to study the two fly-bys that occurred on
system HD 106906, recently evidenced by De Rosa & Kalas (2019), to determine if they could account for the wide
orbit of the planet. Thousands of simulations have been performed to account for the uncertainty on the perturbers
coordinates and velocities.
Results. The algorithm is able to handle any change of hierarchy, temporary or not. We used it to fully model HD
106906 encounters. The simulations confirm that the fly-bys could have stabilized the planet orbit, and show that it can
account for the planet probable misalignment with respect to the disk plane as well as the disk morphology. However,
that requires a small distance at closest approach (. 0.05 pc), and this configuration is not guaranteed.
Conclusions. Odea is the natural choice for the study of non-Solar type architecture. It can now adapt to an evolving
hierarchy, and is thus suitable to study capture of planets and dust. Further observations of the perturbers, in particular
their radial velocity, are required to conclude on the effects of the fly-by on system HD 106906.

Key words. methods: numerical – celestial mechanics – planets and satellites: dynamical evolution and stability –
planets and satellites: individual: HD 106906 – planet-star interactions - stars: kinematics and dynamics

1. Introduction

1.1. Symplectic algorithms

In the context of the rapid increase of exoplanet discoveries,
the need for efficient N-body simulations has become strong
to model the evolution of complex systems and the inter-
action between planets, planets and debris disk, or within
debris disks. Symplectic integrators are widely used for dy-
namical simulations of planetary systems, as they present
two major advantages with respect to other N-body inte-
grators: First, they exhibit no long-term accumulation of
energy error, which is essential to ensure orbital stability
through the integration. On the other hand, they provide
a gain of at least one order of magnitude in computation
speed, for equivalent accuracy, because they allow one to
adopt a much larger time-step than other integrators for
the same result. In 1991, Wisdom and Holman devise the
first symplectic map specifically designed for N-body prob-
lems with a central dominant mass (Wisdom & Holman
1991). Since then, numerous codes implemented this struc-
ture that are still widely used today (e.g., Swift, Levison
& Duncan 1994, Mercury Chambers 1999).

Yet, sympleptic integrators can model the interactions
between multiple stars, moon, or simply planets whose mass
are non negligible with respect to the central mass as well.
They are versatile tools well suited to characterize the great
diversity of extrasolar system architectures, well beyond the
framework of our Solar System. Efforts were made to ex-
tend the scheme to binary stars in two modified versions of
Mercury (Chambers et al. 2002), but it could not be gen-
eralized to multiple systems with other hierarchies. In this
context, Beust (2003) designed a symplectic scheme valid
for any type of hierarchical architecture, and implemented
it with Swift Hjs. This generalized the theoretical frame
of Wisdom and Holman to any hierarchical system.

However, in Swift Hjs, the hierarchical structure of
the system is given at the beginning of the run and must
be preserved along the integration. This is a severe limita-
tion as it prevents the efficient modeling of non stable hier-
archies with e.g. orbital captures (planets, dust), whereas
such situations may be numerous among young systems.
With Swift Hjs, handling accurately such configurations
is only possible adopting a very small time-step, which is
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of course not optimal. This motivated us to build a new
version of Swift Hjs, Odea, that tackles this issue.

In the following, we describe the new code in detail,
and present a full application to the complex system of
HD 106906. Before that, we present this system and our
motivations for modeling it and using it as a benchmark
for our new code.

1.2. HD 106906

The system HD 106906 (HIP 59960) is located at a dis-
tance of 103.3± 0.5 pc (Brown et al. 2018) and belongs to
the Lower Centaurux Crux (LCC) group, which is a sub-
group of the Scorpius-Centaurus (Sco-Cen) OB association
(De Zeeuw et al. 1999). The LCC group has a mean age of
15 ± 3 Myr, with an age spread of 6 Myr (Pecaut & Ma-
majek 2016). HD 106906 is a 2.58± 0.04 M� spectroscopic
binary star, on an eccentric (0.66) and tight (0.6 au) or-
bit (Lagrange et al. 2019). Moreover, high contrast imaging
has revealed an asymmetric debris disk (Kalas et al. 2015;
Lagrange et al. 2016) and a giant planet on a wide orbit
(projected separation from the binary: 735 ± 5 au, Bailey
et al. 2013). At such a separation, the planet relative motion
can not be detected with present imaging instruments on a
reasonable time basis. The orbital inclination with respect
to the plane of the disk is probably significant (20◦), but
a coplanar configuration cannot be excluded. The planet
mass has been estimated at 11± 9 MJ mass from hot-start
models by Daemgen et al. (2017).

Two major scenarios compete for the formation of giant
planets (e.g., Baruteau et al. 2016). In the core accretion
scenario, planets begin their formation with the growth of
dust grains and the formation of planetesimals, that will
slowly accrete each other to form terrestrial planets or plan-
etary cores. On the other hand, the gravitational instability
scenario is a faster process that is able to form giant planets
at large separation from an instability in the protoplanetary
disk. In both cases, planet formation takes place in the pri-
mordial gaseous disk. Forming a giant planet at 700 au or
more from any central star appears very unlikely in any of
those scenarios, first due to the lack of circumstellar gas at
that distance, and second because the corresponding for-
mation timescale would exceed the lifetime of the gaseous
disk. This led Rodet et al. (2017) to propose a dynamical
scenario to account for the planet’s current separation. The
scenario involves a traditional planetary formation within
the gaseous disk, an inward migration and a subsequent
scattering by the binary. However, for the planet to remain
bound, an external perturbation such as a fly-by is neces-
sary in order to reduce its eccentricity and stabilize its orbit
in a bound configuration.

Recently, De Rosa & Kalas (2019) investigated the stel-
lar neighborhood of system HD 106906 in Gaia DR2 (Brown
et al. 2018), and discovered two stars that have recently
come within 1 pc of the central binary HD 106906 AB.
Given the uncertainty on the perturbers distances and ra-
dial velocities, De Rosa & Kalas concluded that there was
a possibility that the fly-by was dynamically significant for
the planet evolution history. This motivates us to reinvesti-
gate the Rodet et al. (2017) scenario, using Odea, to check
this possibility.

2. Algorithm

2.1. Structure of the code: Swift Hjs

Let us consider the gravitational N-body problem, with
masses (mi)i=1,..,N , positions (ri)i=1,..,N and impulsions
(pi)i=1,..,N . The Hamiltonian is

H =

N∑

i=1

pi
2

2mi
−

∑

1≤i<j≤N

Gmimj

rij
, (1)

where G is the constant of gravitation and rij = ||rj − ri||
is the distance between bodies i and j.

In the current version of Swift Hjs, as in the other
similar codes, the integrator do not solve H exactly, but a
surrogate Hamiltonian H̃. The latter is chosen to be close
to the real one, and exactly solvable. In that case, the algo-
rithm is symplectic: it exactly preserves the areas in phase
space and exhibit no long-term drift of the energy.

In order to design a proper H̃ in orbital mechanics, the
key idea is to split the Hamiltonian into two integrable
parts:

H = HA +HB . (2)

Several splitting have been suggested (e.g., Wisdom
& Holman 1991; Saha & Tremaine 1994; Chambers 1999),
most of them consisting on a Keplerian part and a pertur-
bation part. Both parts are then integrable within computer
round-off errors. H̃ corresponds to the successive integra-
tion of these parts separately. For a second order symplec-
tic integrator, a so-called leap-frog method can be used. It
consists in integrating HB for ∆t/2 (kick), then HA for ∆t
(drift), then again HB for ∆t/2 (kick), where ∆t is the time
step.

Swift Hjs is based on the Hierarchical Jacobi Sym-
plectic method introduced by Beust (2003), where the de-
scription is based on orbits instead of on bodies. An orbit
consists in a collection of two non-empty sets of bodies, the
set of centers and the set of satellites, that have empty in-
tersection. In all problems in orbital mechanics, a hierarchy
can then be defined as a collection of orbits comprising all
bodies satisfying the following rule: for all couples of orbit
k and l 6= k, one of the three subsequent propositions apply

– orbits k and l have no common bodies (orbits k and l
are foreign);

– orbit k is comprised in the centers or satellites of orbit
l (orbit k is inner to orbit l);

– orbit l is comprised in the centers or satellites of orbit
k (orbit k is outer to orbit l).

A so-defined hierarchy is made of exactlyN−1 orbits. In
Swift Hjs, the orbits are numbered from 2 to N. Finally,
we define µk and ηk as the total mass of the satellites and
centers respectively in orbit k. The total dynamical mass
in orbit k is then Mk = µk + ηk and the reduced mass
m′k = µkηk/Mk.

In this formalism, a new set of N coordinates
(r′k,p′

k)i=1,..,N are designed with a Jacobi-like approach:
r′k is the relative position of the center of mass of orbit
k’s satellites with respect to that of its centers, and p′

k
is the relative conjugate momentum. The first coordinates
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Initial hierarchy Initial hierarchy 
strongly perturbed New hierarchy

Fig. 1. Example of hierarchy change in the case of a capture.
At first the red body orbits the yellow–blue pair. After a strong
interaction, it captures the small blue body.

r′1 and p′
1 are the position and impulsion of the center of

mass. These positions and conjugate momenta derive from
a canonical transformation that let the Hamiltonian invari-
ant. They can be expressed with the bodies coordinates as

r′k =
∑

i, satellites of k

miri
µk
−

∑

i, centers of k

miri
ηk

(3)

p′
k = m′k


 ∑

i, satellites of k

pi
µk
−

∑

i, centers of k

pi
ηk


 (4)

The Hamiltonian can then be split as follows

HA =

N∑

k=2

p′k
2

2m′k
− Gµkηk

r′k
; (5)

HB =

N∑

k=2

Gµkηk
r′k

−
∑

1≤i<j<≤N

Gmimj

rij
. (6)

When the hierarchy is sufficiently clear (that is if the
orbits are almost Keplerian), HB � HA. As HA is a Ke-
plerian Hamiltonian describing N − 1 independent orbits,
the drift consists of evolving each Keplerian orbits. On the
other hand, as HB depends exclusively on the positions,
the kick consists of a linear raise of the velocity, with an
acceleration aB.

2.2. Building a new hierarchy

The above scheme is well adapted to lightly perturbed Ke-
plerian orbits in a fixed hierarchy, but becomes strongly un-
suitable if the initial hierarchy evolves, whether temporarily
or definitively (see example Fig. 1).

Thus, when the hierarchy is not relevant anymore (that
is the splitting in the initial HA and HB does not optimize
the error), a module of the algorithm will design a new hi-
erarchy from the current positions of the bodies. For this,
the algorithm computes a two-dimensional symmetric array
that compiles the Keplerian acceleration between two bod-
ies aKep

k = GMk/r
2
ij , where Mk is the sum of the masses.

The strongest acceleration gives the first orbit, then the two
bodies are replaced by their center of mass and the array is
updated, and again until the last orbit comprises all bod-
ies. We first checked that this algorithm always returns the
existing hierarchy when no change is expected. Then, if the
computed hierarchy is different than the current one, the
hierarchy must be changed.

If the hierarchy needs to be changed, so is the time-step
∆t. We choose a Keplerian-like time mink Tk/20, where

Tk =

√
4π2a3k | 1− ek |3

GMk
(7)

if orbit k is bound or if its smallest approach has not yet
occurred, or

Tk =

√
4π2r′k

3

GMk
(8)

otherwise. The choice to adapt or not the time step is given
to the user.

Strictly speaking, when changing the hierarchy, the sym-
plectic nature of the algorithm does not hold anymore, as
the splitting of the Hamiltonian is entirely based on the hi-
erarchy. This is also true for any change of the time step.
A new approximate Hamitonian is integrated from an al-
ready approximated scheme, which means that the error
budget raises potentially at each hierarchy change. How-
ever, the algorithm is designed for orbital dynamics, where
systems are not subject to frequent reorganization of their
architecture. Designing a new Hamiltionan when the initial
hierarchy is not suited anymore allows to limitate the error
on each orbit, which will otherwise become out of control.
This is basically the same problem as the one raised by close
encouters in planetary dynamics. When handling close en-
counters, Levison & Duncan (1994) (in Swift rmvs) and
Chambers (1999) (in Mercury) temporarily change the way
of splitting the Hamiltonian when transferring to HA the
part of HB that concerns the close encounter, even some-
times changing the hierarchy to planetocentric. Conceptu-
ally, a close encounter within a planetary system can be
viewed as a temporary change of hierarchy that eventually
returns to the initial hierarchy. Here we are concerned by
changes that can be permanent.

2.3. Checking the relevance of the hierarchy

Performing a hierarchy change is quite costly, as all the ac-
celeration couples have to be computed at each step (multi-
ple operations that scale as O(N3)). Checking for a possible
change at each time-step, with the result that most of the
time the current hierarchy would be left unchanged, would
thus amount to a considerable loss of efficiency. Prior to
launching the entire hierarchy re-building process, an effi-
cient algorithm with a simpler criterion must be applied
to check whether it is appropriate or not. The most exact
criterion would be the theoretical energy error associated
to the symplectic mapping, but its computation is tedious
(grows as N4). The criterion must be fast to compute (max-
imum as N3, like the accelerations) and correlated to the
error.
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In Mercury (Chambers 1999), the criterion to spot close
encounters is the ratio between the relative distances and
the Hill radii, assuming the latter roughly constant. This
is a legit criterion for the study of the Solar system, but
it is not relevant to our case. Indeed, the Hill radius is not
easy to compute for eccentric orbit, it depends strongly on
the orbital parameters (which is subject to variation in the
general case) and it is not satisfyingly correlated to the
errors in a complex architecture.

We choose to compute at each step the ratio aBk /a
Kep
k

for each orbit k, and declare the hierarchy questionable if it
is higher than 0.2 for at least one orbit. The computation
of that criterion also scales as O(N3) in theory, but it uses
the acceleration aB that is already computed in any step of
the integration, so that the extra cost remains limited. In
a Solar-System like configuration, the derivation of the Hill
radius is based on a simpler consideration.

2.4. The case of test particles

The study of planetary systems often involved the study
of debris belts. In N-body simulations, the dust is modeled
at first order by massless bodies (or test particless) that
interact with the massive bodies but not with each other.
Test particles must be specifically considered in Odea as
the handling of their hierarchy is slightly different. Indeed,
they are the only satellites of their orbit and their orbit is
invisible to the bodies and other test particles evolution.
When looking for a new hierarchy, Odea will not consider
the test particles, for it searches foremost to optimize the
energy error budget related to the massive bodies.

When the hierarchy of the massive bodies changes, each
test particle must find its natural orbit given its relative
position. A similar procedure to the hierarchy building of
massive bodies is then performed. For a consistent hierar-
chy, the test particles have 2N − 1 possibilities for their
orbit: around one massive bodies (N) or around one orbit
(N −1). Thus, for each test particle, a 2N −1 array is com-
puted, compiling the Keplerian accelerations. The maximal
element will correspond to the new particle configuration.

Finally, a test particle may also be subject to a hier-
archy change, independently of the massive bodies archi-
tecture evolution. Thus, the acceleration ratio criterion is
computed at each time step to check the suitability of the
particle orbit, and a new orbital configuration is investi-
gated if necessary following the previous procedure.

2.5. Comparison with other codes

Several symplectic algorithms have been introduced since
the formalization of the first symplectic map for orbital
mechanics, including the widely used Mercury (Chambers
1999). Most of them are designed to work in Solar-System-
like hierarchy. Chambers et al. (2002) introduced two algo-
rithms, derived from Mercury, to model planetary motions
in binary systems. However, to our knowledge, no symplec-
tic integrator are able to integrate indifferently any types of
hierarchy, or a more complex hierarchy, except from Swift
Hjs.

Moreover, no symplectic integrator that we know of are
designed to handle long or definitive hierarchy change. Such
situations can be encountered in case of a stellar fly-by, or
of a capture of debris disk dust by a stellar or planetary

companion. The subsequent study of system HD 106906
is a perfect example of situations that can not be tackled
by ordinary symplectic algorithms: binary fly-by and dust
capture.

On an other hand, Rein & Spiegel (2014) argue that
a high-order classical integrator is quicker and more accu-
rate than symplectic integrators. This may be true for some
complex cases, or if we aim for a very high precision. How-
ever, symplectic integrators have encoded the exact reso-
lution of the Keplerian motion, while a classical integrator
makes no hypothesis for the form of the motion, and has
to solve from scratch the differential equations of motion.
Thus, for lightly perturbed Keplerian motion, symplectic
algorithms are certainly more practical than classical inte-
grators. The time steps can be large without endangering
the stability of the orbits.

For example, in the case of HD 106906, the simulations
involved very different scales, from the planet periastron
to the wide hyperbolic orbit of the perturbers. A classical
integrator would have to adapt its time step to the smallest
distance, while a symplectic integrator can adopt a larger
timescale without compromising the stability of the planet
orbit.

We also point out that Swift Hjs never makes the as-
sumption that the orbits we are considering are actually
bound. The only requirement is that the sum of the Kep-
lerian interactions associated with the hierarchy (i.e. HA)
must represent most of the full Hamiltonian. Some of the
orbits we are considering can thus be hyperbolic, and this
will be the case in a fly-by configuration. The Kepler solver
used to integrate HA handles bound or unbound orbits as
well.

3. Application to system HD 106906

3.1. Characterizing the perturbers

Searching for potential stellar perturbers in Sco-Cen dur-
ing the previous 15 Myr, De Rosa & Kalas (2019) identified
two perturbers in LCC (Pecaut et al. 2012): HIP 59716 and
HIP 59721. Located around 11 pc (projected 0.5◦) from HD
106906 and 0.5 pc (projected 30”) from each other, their
relative velocities suggest an encounter with HD 106906 a
few million years ago. The coordinates and velocities of the
three systems are summarized in Table 1 of De Rosa &
Kalas (2019). As can be seen on Fig. 2, the relative sepa-
ration and velocity between HD 106906 and its perturbers
lie essentially on the direction to Earth. Unfortunately, the
quantities projected in this direction (distance and radial
velocity) have the larger observational uncertainties, which
creates a high dispersion on the closest encounters, in par-
ticular for the most promising candidate HIP 59716 (Fig.
3).

We note that the relative velocities between each sys-
tems (∼ 4 km/s) are four times higher than the velocity
dispersion reported for LCC (1.13 ± 0.07 km/s; Madsen
et al. 2002), that was used in Rodet et al. (2017). We will
see in subsection 3.3 that the effect of a fly-by is inversely
proportional to the velocity of the passing star.

The masses of HIP 59716 and HIP 59721 have been es-
timated respectively 1.37 M� for HIP 59716 and 1.22 M�
for HIP 59721 from the spectral types. HD 106906 binary
mass has been estimated to 2.58± 0.04 M� from radial ve-
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Fig. 2. Representation of HD 106906, HIP 59716 and HIP 59721
current positions and velocities in HD 106906 rest frame (disk
lies in the YZ plane, observed extension in the -Y direction).
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Fig. 3. Two dimension histograms of the coordinates of the
intersection points between the perturbers trajectories and the
XY plane, assuming linear trajectories.
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Fig. 4. Representation of a typical evolution of the hierarchy
in the three-body simulations of HD 106906 fly-bys with Odea.
All orbits here are hyperbolic.

locity and interferometric measurements by Lagrange et al.
(2019).

3.2. Simulating the encounters

N-body simulations performed by De Rosa & Kalas (2019)
indicate that the galactic gravitational potential has a neg-
ligible influence on the characteristics of the encounters.
Moreover, the binarity of HD 106906 does not affect the en-
counters, because of the very high ratio between the closest
approaches and the binary separation (> 1000). In order to
efficiently determine the parameters of the encounters, we
first performed 10, 000 simulations with Odea, including
three bodies: HD 106906 ABb (2.58+0.01 M�), HIP 59716
and HIP 59721. The mass of HD 106906 and the algorithm
that we present here are the only differences with De Rosa
& Kalas study at that point.

The initialization of the simulations is designed with
a Monte-Carlo approach, following De Rosa & Kalas. The
3×6 parameters and their respective precision are the right
ascension α (0.05 mas), the declination δ (0.002 mas), the
parallax π (0.05 mas), the proper motion of the right as-
cension µα cos δ (0.05 mas/yr), the proper motion of the
declination µδ (0.05 mas/yr) and the radial velocity γ (up
to 1.7 km/s). The parameters are drawn from a normal
distribution centered on their measured values, with a dis-
persion equal to the observations uncertainties, taking into
account the correlations given by Gaia catalog. Then, we
trace back the stars trajectory to observe the encounters.

Most of the simulations follow the same hierarchy evo-
lution, represented on Fig. 4: the first fly-by involves HIP
59716 and the second HIP 59721, before the two perturbers
get very close at each other as can be seen today. The hi-
erarchy will thus naturally evolves to take into account the
successive encounters. Computing the eccentricity of several
sets of configurations, we evaluated that the two perturbers
have currently a 2.1 ± 0.1 % chance of being gravitation-
ally bound to each other. However, De Rosa & Kalas point
out that the probability of them having such similar angu-
lar positions and proper motions without being bound are
extremely low.

We launched 10,000 simulations for 15 Myr, correspond-
ing to a backward evolution from our days to the formations
of the stars. At first sight, 10,000 simulations may not seem
enough to correctly sample the 18 parameters confidence in-
tervals. However, most of the parameters are strongly con-
strained, the only strong uncertainties being the perturbers
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Fig. 5. Distribution of the distances at closest approach. The
following study will focus on the red part, that corresponds to
fly-by closer than 0.1 pc (3.6 % of the configurations).

relative radial velocities and distances, that is 4 parame-
ters. Thus, these are the critical parameters that must be
correctly sampled, and 10,000 is then a sufficient number.
The initial time-step was set to 1,000 yr, with outputs ev-
ery 1,000 yr. To account for the possibility of the two per-
turbers being bound, we performed an additional 10,000
simulations with only bound configurations. It comes down
essentially to selecting only the configurations where the
perturbers have similar radial velocities.

The distances at closest approach were computed for
each simulation (Fig. 5). Most of the encounters occur with
a closest approach between 0.3 and 2 pc, with a maximal
probability around 0.6 pc, consistent with the results of De
Rosa & Kalas. We then reviewed the simulations for which
a close (< 0.1 pc) fly-by occurred, from any one or both of
the two perturbers. 359 configurations were selected, that
is around 4% of the total number of studied configurations.
In most cases (& 90%), HIP 59716 encounters HIP 106906
at the shortest distance. For the bound configurations, the
peak is around 0.4 pc but the number of close fly-bys is
roughly the same. HIP 59716 coordinates distributions are
presented on Fig. 7. Most of the parameters of the config-
urations with close fly-bys are drawn randomly within the
configurations, except for the radial velocity, where we see
that the configurations leading to a close fly-by correspond
to the higher radial velocities (closer to the radial velocity
of HIP 59721). The distributions for the two other bodies
are presented on Fig. 13 and 14 in the appendix.

The distributions of the time and velocities of the per-
turber at closest approach are represented on Fig. 6 (only
the cases where the distance was less than 0.1 pc). Most
of the encounters occur between 4 and 2 Myr ago, with a
velocity between 2 and 6 km/s.

3.3. Effect on the planet

3.3.1. Setup

Once the configurations for which a close fly-by occur
within the 15 Myr of the system life have been identified,
we launch a new set of simulations, this time including the
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Fig. 6. Distribution of the times and velocities at closest ap-
proach, for the cases where the distance at closest approach is
less than 0.1 pc.

planet. The bodies are initialized at their position at the
end of the first simulation, that is at their position 15 Myr
ago. HD 106906 is separated into two bodies, namely the bi-
nary HD 106906 AB (2.58 M�), and the planet HD 106906
ABb (0.01 M�). The simulations are launched from 15 Myr
ago to the present epoch, so that the final outcome repre-
sents the current positions of the bodies. The time-step was
set to 100 yr, with outputs every 1,000 yr.

In the study of Rodet et al. (2017), the destabilization
of the planet takes place after a violent encounter with the
central binary, in the beginning of the system’s life. The
outcome was either a definitive ejection on a hyperbolic tra-
jectory, or a transitional state where the eccentricity raised
dramatically without passing 1. The probability of the dif-
ferent outcomes depends on the characteristics of the en-
counter, which is highly underconstrained. In the case of a
hyperbolic trajectory, a subsequent stabilization by a fly-
by must be precisely synchronized, and is thus difficult to
achieve. Thus, we study here the case of a highly eccen-
tric transitional bound orbit. The periastron should roughly
correspond to the separation of the planet when the per-
turbation occurred, around 1 au. On the other hand, the
apoastron will remained mostly unchanged after a fly-by.
The current projected separation implies a minimal value
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Fig. 7. Initial distribution (today) of HIP 59716 coordinates and velocities for the 10,000 simulated cases (green), and for the 359
cases where a fly-by closer than 0.1 pc occurred (red).

of 730 au. Moreover, the probability is higher to observe
the planet near apoastron: it spends 2/3 of its time at a
separation greater than 700 au for an apoastron of 1,000
au, and 95 % for an apoastron of 3,000 au. All in all, two
sets of simulations are performed, where the planet is ini-
tialized with a periastron of 1 au and an apoastron of 1,000
(a = 500.5 au, e = 0.998) or 3,000 au (a = 1500.5 au,
e = 0.9993).

The necessary energy to completely eject the planet is
1
2GMHD106906/ap, where ap is the initial semi-major axis of
the planet andMHD106906 the mass of the host binary. From
its current position close to the central binary, a defini-
tive ejection requires around 1 M�au2/yr2. A proportion of
2.10−3 less corresponds to an elliptic trajectory with apoas-
tron 1,000 au, and 2.10−4 M�au2/yr2 less corresponds to
10,000 au. Thus, from an energetic point of view, reaching a
high apoastron on a still bound orbit in the ejection process
is nearly as costly as being definitely ejected.

For a fly-by to have a meaningful role in the dynamical
history of the planet, it has to decrease the planet eccentric-
ity by increasing the periastron to a safer value (an increase
of the order of the astronomical unit at least). The time-
scale of the fly-by is much larger than the orbital period of
the planet, so that the initial position of the planet on its
orbit is not a relevant parameter in the simulations. More-
over, in our scenario, the planet formed within the disk, so
that its orbit was initially coplanar with the disk mid-plane.
We assume that the planet apoastron is aligned with the
observed extension of the disk. A close encounter with the
central binary will retain this coplanarity if the inclination
of the binary orbit is similar to that of the disk plane, which
seems likely from the first estimates of its orbital parame-
ters (Lagrange et al. 2019). As the fly-by is likely to keep
the apoastron roughly unchanged and the eccentricity high
(consistent with the observed patterns of the disk accord-
ing to Jílková & Zwart 2015; Nesvold et al. 2017; Rodet

et al. 2017), this is consistent with the current position of
the planet.

3.3.2. Results

The conclusion of the study depends essentially on the pos-
sibility for the fly-by to increase significantly the periastron.
This effect is stongly correlated to the distance at closest
approach. We thus represented the periastron change with
respect to the distance at closest approach for the outputs
of the two sets of simulations on Figs. 8 and 9.

Whether for a 1,000 or 3,000 au apoastron, a 0.1 pc en-
counter is not enough to significantly raise the periastron:
a closer fly-by is required. For the 1,000 au apoastron case,
the distance at closest approach must be less than 0.01 pc,
that is 2, 000 au. For the 3,000 au apoastron case, the desta-
bilization is certainly easier, but the distance at closest ap-
proach must still be less than 0.05 pc, that is 10, 000 au. For
such distances, the results are essentially identical for the
bound cases, as the separation between the two perturbers
is greater of similar than the distance at closest approach
with HD 106906. On our initial 10,000 draws, respectively 2
and 20 resulted in a periastron increase superior to 1 au for
the 1,000 and 3,000 au apoastron cases, and 1 and 2 lead to
the ejection of the planet (for distance at closest approach
similar or less than the planet semi-major axis).

Moreover, coplanarity of the planet orbit with the disk
plan is expected if the planet formed within the disk. The
current projected planet misalignment with the disk plane
is currently estimated at 23 degrees, although a lower angle
(and even coplanarity) would be possible if the planet true
separation is greater than its projected separation (& 3000
au for coplanarity). A 23◦ misalignment corresponds to a
minimal altitude of ∼ 280 au above the disk plane, and such
gain of altitude is rarely seen in the simulations, even in the
most favorable case of a high initial apoastron. This would
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suggest that the misalignment (or part of it at least) is an
illusion due to projection effects.

3.3.3. Theory

We first study the periastron increase as a function of the
distance at closest approach, and compare it to the theo-
retical predictions. The computation of the following theo-
retical formula is explained in the appendix. The simplest
approach is the impulse approximation, where the fly-by is
assumed to be instantaneous and trigger a sudden velocity
change on the planet. Although this cannot be considered
as representative for the reality if we compare the fly-by
time-scale with the orbital period of the planet, this approx-
imation often provides a good estimate. In this framework,
Brunini & Fernandez (1996) show that the fly-by increases
the planet velocity by:

|∆vp| .
2GM∗
V D2

ap (9)

where vp is the planet velocity, M∗ is the perturber’s mass,
V its velocity at closest approach, D its distance at clos-
est approach, and ap the planet semi-major axis. This for-
mula nevertheless applies to circular orbits only (Brunini
& Fernandez 1996). By supposing that the new orbit in-
tersects the old one at apoastron, the planet eccentric-
ity ep takes part, and we have a change of semi-major
axis ∆ap = −ap∆ep, which gives a change of periastron
∆peri = −2ap∆ep. Finally, one gets (see appendix):

|∆peri| . 8
GM∗√

GMHD106906

a
5
2
p

V D2
(10)

It can be adapted to an eccentric orbit, as was done in
Rodet et al. (2017), by supposing that the perturbations
occur only at apoastron. Then, stating that the apoas-
tron is preserved, one gets ∆ap = −ap∆ep/(1 + ep) and
∆peri = −2ap∆ep/(1+ep). Finally, using Eq. 9 to quantify
the velocity increase at apoastron, one gets (see appendix):

|∆peri| . 8
GM∗√

GMHD106906

a
5
2
p

V D2

√
(1− ep)(1 + ep)

3− ep
(11)

On the other hand, a more rigorous approach is to com-
pute the secular evolution of the orbital elements of the
planet during the passage of the perturber. Heggie & Ra-
sio (1996) used that method to determine the eccentricity
increase of a companion, and found a complex formula de-
pending on all 6 orbital elements of the perturber’s orbit. In
this framework, the semi-major axis is invariant throughout
the fly-by. Considering a coplanar orbit and a perturber’s
eccentricity significantly higher than 1 (strongly unbound
orbit), the maximum is:

|∆peri| . 5

2

GM∗√
GMHD106906

a
5
2
p

V D2
ep
√

1− ep2 (12)

The three theoretical predictions are represented on
Figs. 8 and 9: circular impulse, apoastron impulse and sec-
ular approximation. They all correspond to maximum val-
ues, as the true periastron evolution depends on the angular
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Fig. 8. Periastron increase with respect to the distance at clos-
est approach, from N-body simulations (dots) and theoretical
approaches (lines), for the closer fly-bys, and for an initial plan-
etary apoastron of 1,000 au. The grey part corresponds to a
periastron change inferior to +1 au, which will not secure the
planet stability.
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est approach, from N-body simulations (dots) and theoretical
approaches (lines), for the closer fly-bys, and for an initial plan-
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periastron change inferior to +1 au, which will not secure the
planet stability.

characteristics of the encounter. The velocity V is set to its
mean value over all closest approaches, around 4 km/s. M∗
was set to 1.3 M�, but the increase depends weakly on
the perturber’s exact mass. The eccentricity ep is set to its
initial value, an approximation that becomes less relevant
when ∆ep & 1 − ep = 2.10−3 (for closest approach less or
around 0.01 pc).

We see on Fig. 8 that the periastron change is best mod-
eled by the secular approximation, but is also correctly ap-
proached by the impulse approximation at apoastron. It
suggests that the effect of both perturbers on the planet
can be estimated by the effect of the perturber that had
the closest approach. This is also true for the cases where
the two perturbers are bound (see Appendix).
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est approach, from N-body simulations (dots) and secular theo-
retical approach (line), for the closer fly-bys, and for an initial
planetary apoastron of 1,000 au. The grey line indicates the pro-
jected elevation of the planet.

Furthermore, we seek to estimate if the fly-by could ac-
count for the possible misalignment of the planet with the
debris disk plane. Depending on the exact value of the argu-
ment of periastron ωp, a very eccentric orbit does not neces-
sarily have a large elevation above the disk plane, even if it
is highly inclined. To have a meaningful plan misalignment,
the planet should have an inclination change combined with
a shift of the argument of its periastron that results in a
significant elevation above the disk plane. For any Keple-
rian orbit, the maximum elevation zmax above the reference
plane is given by:

zmax = ap sin(ip)
(√

1− e2p cos2(ωp) + ep| sin(ωp)|
)

.

(13)

Obviously, with ep ∼ 1 and ωp ∼ 0 or π, zmax remains small
irrespective of the value of ip.

We thus computed the change in zmax, inspiring from
Heggie & Rasio (1996). The details are explained in the
appendix. The resulting maximal altitude is represented on
Fig.10 and 11.

3.3.4. Discussion

From both approaches, theoretical and numerical, in the
most favorable case, it appears that a fly-by has a significant
impact on the planet (periastron increase above 1 au) only
if its closest approach is less than 0.05 pc, that is 10,000 au.
This corresponds to a small subset among the initial draws,
not because of an incompatibility with the observations,
but because of the high dispersion of closest approaches,
underconstrained by the observations.

We checked that the distance at closest approach is not
correlated to the time at closest approach, nor to the ve-
locity at closest approach. Considering the compatibility
between our results and the dynamical scenario proposed
in Rodet et al. (2017), the time of the fly-by must be consid-
ered. Given our simulations, the closest approach occurred
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Fig. 11. Maximal altitude with respect to the distance at clos-
est approach, from N-body simulations (dots) and secular theo-
retical approach (line), for the closer fly-bys, and for an initial
planetary apoastron of 3,000 au. The grey line indicates the pro-
jected elevation of the planet.

likely 2 to 4 Myr ago (3 ± 1 Myr). However, our scenario
account for the ejection of the planet only in the beginning
of the system life, when protoplanetary disk is still present
and can effectively trigger planetary migration. Given the
disk lifetime for massive stars (∼ 3 Myr, Ribas et al. 2015)
and the system assumed age (15 Myr), 2 to 4 Myr ago is
significantly too late for the fly-by to have a decisive role.
However, a younger age for the system (10 Myr, compatible
with LCC age spread of 6 Myr) could still account for this
discrepancy.

3.4. Effect on the disk

The effects of a fly-by on a disk may be significant, de-
pending on the parameters of the encounter. The case of a
dynamically efficient fly-by can be observed in system HD
141569, where the ongoing encounter has been deeply stud-
ied in Reche et al. (2009). In this system, the fly-by could be
responsible for truncation, spiral formation, collisional evo-
lution, eccentricity and inclination raise. In our study, the
effect of the fly-by on test-particles will be essentially simi-
lar to that on the planet. Since the test particles in a debris
disk have a nearly circular orbit, the fly-by will increase the
eccentricity, significantly or not depending on the distance
of closest approach. Moreover, all fly-by characteristics be-
ing equal, particles inclination will be excited differently de-
pending on their distance to the host star. The disk might
then be warped. The sensitivity of the scattered-light im-
ages of the disk are not sufficient to reveal a weak warp, but
the warp can induce further instabilities and asymmetries
in the disk that could account for its non-standard shape.

We chose among the previous cases a situation with a
very short distance at closest approach (1,000 au), with a
medium relative inclination (∼ 45 ◦) and ran a simulation
with the three massive bodies (HD 106906 ABb and the
perturbers) and 1,000 test particles. The particles have ini-
tially semi-major axes evenly shared between 10 and 600
au, eccentricity below 0.05, and an inclination spread of
2 degrees. The simulation was launched for 100 000 years
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Fig. 12. Orbital elements of the test particles after a close fly-
by. The lightly blue zones represent the initial configuration.

around the fly-by epoch, with a time step of 1 yr. The re-
sulting disk is represented on Fig. 12.

On the other hand, the repeating passing of the planet
within the disk would have stronger consequences. If a very
small percentage is ejected over one period (. 0.01 %), the
mean eccentricity of the particles raise from 0.02 at each
passage. For the disk to remain long-lived in its current
shape, Jílková & Zwart (2015) (non collisional simulations)
and Nesvold et al. (2017) (collisional simulations) estimated
that the planet orbit should not cross the disk. Thus, the
planet periastron should be outer to the observed ∼ 100
au outer disk radius. Within our scenario, it means that
this enlargement of the periastron occurred rather quickly,
whether or not it was caused entirely by the fly-by. In any
case, the planet interactions would have cover the track of
the fly-by-induced perturbations

The new structure of the code allows to estimate the
percentage of dust capture by the planet. It turns out that
temporary (less than 10 yr) capture is experienced by about
5% of the dust at each passage, but no permanent captures
were produced.

4. Conclusion

In this paper, we present the N-body symplectic code
Odea, that is able to study multiple systems in evolving
architectures. We use it to study the rare planetary sys-
tem HD 106906. We confirm that the two stars identified
by De Rosa & Kalas (2019) could have helped stabilizing
the planet after a destabilization by its host binary star.
This scenario could account for the wide separation of the
planet, its possible elevation with respect to the disk plane,
as well as the structures evidenced within the disk.

However, the significance of the encounter strongly de-
pends on the distances at closest approach. With the cur-
rent precision on the three systems configuration (especially
the relative radial velocities and distances), it is not possible
to establish the role of the flybys. To circularize the planet
orbit if it was previously ejected on a wide trajectory, a
fly-by closer than 0.05 pc is needed (assuming apoastron ≤
3,000 au), which is one order of magnitude below the uncer-
tainty on the closest approach. The simulations show that
the angular configuration is favorable when this condition
is met.

Any indication of HD 106906 b relative motion would be
helpful to constrain its orbit, and thus its dynamical history.
More precise parallaxes and radial velocities for HIP 59716
and HIP 59721 are necessary to constrain the distances at
closest approach, and conclude on the effect of the fly-bys
on the system dynamical evolution.

Odea handles hierarchy changes in systems with non-
Solar-system-type architectures. It can model efficiently
captures and fly-bys. Through a criterion based on acceler-
ations ratios, a new hierarchy is defined when the current is
perturbed. Odea’s natural upgrade is the implementation
of a Mercury-like approach to handle close encounters, that
is transitional states of non-Keplerian movements.
Acknowledgements. The project is supported by CNRS, by the
Agence Nationale de la Recherche (ANR-14-CE33-0018, GIPSE),
the OSUG@2020 labex and the Programme National de Planétolo-
gie (PNP, INSU) and Programme National de Physique Stellaire
(PNPS, INSU). Most of the computations presented in this paper
were performed using the Froggy platform of the CIMENT infras-
tructure (https://ciment.ujf-grenoble.fr), which is supported by the
Rhône-Alpes region (GRANT CPER07_13 CIRA), the OSUG@2020
labex (reference ANR10 LABX56) and the Equip@Meso project
(reference ANR-10-EQPX-29-01) of the programme Investissements
d’Avenir, supervised by the Agence Nationale pour la Recherche.
P.K. and R.J.D.R. thank support from NSF AST-1518332, NASA
NNX15AC89G and NNX15AD95G/NEXSS. This work benefited from
NASA’s Nexus for Exoplanet System Science (NExSS) research coor-
dination network sponsored by NASA’s Science Mission Directorate.

References
Bailey, V., Meshkat, T., Reiter, M., et al. 2013, ApJ, 780, L4
Baruteau, C., Bai, X., Mordasini, C., & Mollière, P. 2016,

Space Sci. Rev., 205, 77
Beust, H. 2003, A&A, 400, 1129
Brown, A., Vallenari, A., Prusti, T., et al. 2018, arXiv preprint

arXiv:1804.09365
Brunini, A. & Fernandez, J. A. 1996, Astronomy and Astrophysics,

308, 988
Chambers, J. E. 1999, Monthly Notices of the Royal Astronomical

Society, 304, 793
Chambers, J. E., Quintana, E. V., et al. 2002, AJ, 123, 2884
Daemgen, S., Todorov, K., Quanz, S. P., et al. 2017, Astronomy &

Astrophysics, 608, A71
De Rosa, R. J. & Kalas, P. 2019, The Astronomical Journal, 157, 125
De Zeeuw, P., Hoogerwerf, R. v., de Bruijne, J. H., Brown, A., &

Blaauw, A. 1999, ApJ, 117, 354

Article number, page 10 of 30

107



L. Rodet et al.: Orbital dynamics in a complex evolving architecture

Heggie, D. C. & Rasio, F. A. 1996, Monthly Notices of the Royal
Astronomical Society, 282, 1064

Jílková, L. & Zwart, S. P. 2015, MNRAS, 451, 804
Kalas, P. G., Rajan, A., Wang, J. J., et al. 2015, ApJ, 814, 32
Lagrange, A.-M., Langlois, M., Gratton, R., et al. 2016, A&A, 586,

L8
Lagrange, A.-M., Mathias, P., Absil, O., et al. 2019, A&A, in press
Levison, H. F. & Duncan, M. J. 1994, Icarus, 108, 18
Madsen, S., Dravins, D., & Lindegren, L. 2002, Astronomy & Astro-

physics, 381, 446
Nesvold, E. R., Naoz, S., & Fitzgerald, M. P. 2017, ApJ, 837, L6
Pecaut, M. J. & Mamajek, E. E. 2016, Monthly Notices of the Royal

Astronomical Society, 461, 794
Pecaut, M. J., Mamajek, E. E., & Bubar, E. J. 2012, The Astrophys-

ical Journal, 746, 154
Reche, R., Beust, H., & Augereau, J.-C. 2009, Astronomy & Astro-

physics, 493, 661
Rein, H. & Spiegel, D. S. 2014, Monthly Notices of the Royal Astro-

nomical Society, 446, 1424
Ribas, Á., Bouy, H., & Merín, B. 2015, Astronomy & Astrophysics,

576, A52
Rodet, L., Beust, H., Bonnefoy, M., et al. 2017, Astronomy & Astro-

physics, 602, A12
Saha, P. & Tremaine, S. 1994, arXiv preprint astro-ph/9403057
Wisdom, J. & Holman, M. 1991, AJ, 102, 1528

Appendix

Derivation of the changes of planet periastron due to the fly-by
in the impulse approximation

Circular impulse

The expression of the change of the planet velocity is given
in Eq. 9. Supposing that the new orbit intersects the old
one at apoastron or periastron, we have ∆ap = ap∆ep.
Moreover, the velocity of the planet if on a circular orbit is
vp =

√
GMHD106906/ap. Thus, the eccentricity is

|∆ep| =
|∆ap|
ap

= 2
|∆vp|
vp

. 4
GM∗√

GMHD106906

a
3
2
p

V D2

and the periastron is then given by ∆peri = ∆ap−a∆ep =
−2ap∆ep.

Apoastron impulse

Stating instead that the apoastron is preserved, one gets
∆ap = −ap∆ep/(1 + ep). Within the impulse framework,
the change of velocity involves the velocity at apoastron, so
that the velocity writes vp =

√
GMtot/ap

√
(1− e)/(1 + e)

. Thus,

∆vp
vp

= −∆ap
2ap
− ∆ep

1− ep2 = − ∆ep
2(1 + ep)

− ∆ep
1− ep2

which gives

|∆ep| = −2
|∆vp|
vp

1− e2p
3− ep

. 4
GM∗√

GMHD106906

a
3
2
p

V D2

(1 + ep)
3
2

√
1− ep

3− ep
and the periastron is then given by ∆peri = ∆ap(1− ep)−
a∆ep = −2ap∆ep/(1 + ep).

Derivation of the changes of planet orbital characteristics due
to the fly-by in the secular approximation

Perturbative potential

We inspire from Heggie & Rasio (1996) to derive the first-
order perturbation of the planet orbital elements in the sec-
ular approximation.

Following Heggie & Rasi, we number respectively 1, 2
and 3 HD 106906 central star, HD 106906 b and one of the
stellar perturber. The position of the planet relative to its
host star is denoted by r, and the position of the third body
relative to HD 106906 center of mass is denoted by R. In
this framework, the evolution of the planet orbit verifies:

r̈ = −GM12

r3
r + ∇U

U =
Gm3M12

m1m2

(
m2

|R− m1

M12
r| −

m1

|R + m2

M12
r|

)

=
Gm3r2

2R3

(
3(

r.R

rR
)2 − 1

)
+O((

r

R
)3)

where U is the perturbative potential.
In the secular approximation, U is averaged over the

orbit of HD 106906 planetary orbit. The implicit assump-
tions is that all orbital elements but the anomaly have a
longer evolution timescale than the orbital period. As we
are interested in the first order evolution, we only integrate
the dominant part in ap/a (quadripole order). Then, we use
Lagrange equations to retrieve the evolution of the eccen-
tricity, the inclination and the longitude of periastron.

Eccentricity and periastron change

After we first averaged over the planet orbital motion,
the secular evolution of the eccentricity obtained at the
quadrupole level writes:

dep
dt

=
15Gm3RxRya

3
2
p ep
√

1− ep2
2R5
√
GM12

where the x-y plane is the initial plane of the planet (plane
of the disk), and the x direction is given by the planet
initial periastron. To compute the first order of the change
of e after the fly-by, we integrate de/dt along time from −∞
to +∞ by fixing all variables to their initial values but the
angular evolution of the stellar perturber.

Heggie & Rasio computed in their Eq. (7) the change
in eccentricity as a function of the angular parameters of
the encounter, and we exactly retrieve their expression. The
maximum efficiency is obtained for a coplanar encounter,
where all the transferred angular momentum apply only on
the eccentricity. Stating that the eccentricity of the per-
turber’s orbit is significantly more than 1 (V = 3 km/s and
D = 1 pc gives e ∼ 500, D = 0.1 pc gives e ∼ 50), we
obtain

∆ep = −5

2

M∗√
MHD106906Mtot

a
3
2
p

D
3
2

ep
√

1− e2p
√
e

sin(2Ω + 2ω)
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where Ω is the longitude of the ascending node and ω the
argument of the periastron of the perturber hyperbolic or-
bit. The maximum is obtained for Ω + ω = π/4. More-
over, the eccentricity e depends on D, V and GMtot as
V =

√
GMtot(1 + e)/D so that

√
e ' V

√
D/GMtot. Thus,

the eccentricity change satisfies:

|∆ep| .
5

2

GM∗√
GMHD106906

a
3
2
p

V D2
ep
√

1− ep2 (14)

On the other hand, the semi-major axis is constant in
the secular approximation. The periastron is then given by
∆peri = −a∆ep.

Inclination change

The secular evolution of the inclination obtained at the
quadrupole level writes:

dip
dt

= −3Gm3a
3
2
p

(
4e2p + 1

)
RxRz

2R5
√(

1− e2p
)
GM12

We then integrate as before to compute the change of
inclination ∆ip.

∆ip =
3

2

GM∗√
GMHD106906

a
3
2
p

V D2

1 + 4e2p√
1− e2p

(
cos(i) sin(Ω)(arccos(−1

e
) +

√
e2 − 1)

−(cos(Ω) sin(2ω) + cos(i) sin(Ω) cos(2ω))
(e2 − 1)

3
2

3e2

)

The maximum is reached for i = π/4, Ω = π/2 and
ω = π/2. Thus, we obtain

∆ip .
GM∗√

GMHD106906

a
3
2
p

V D2

1 + 4e2p√
1− e2p

Longitude of the periastron change

The secular evolution of the total longitude of the perias-
tron ω̄p = ωp + Ωp obtained at the quadrupole level writes:

dω̄p
dt

= −
3Gm3a

3
2
p

√(
1− e2p

)
(R2 − 4R2

x +R2
y)

2R5
√
GM12

We then integrate as before to compute the change of
inclination ∆ω̄pp.

∆ω̄p =
1

4

GM∗√
GMHD106906

a
3
2
p

V D2

√
1− e2p

(
6 cos2(i) cos2(ω)− 5(cos(2i)− 3) cos2(ω) cos(2Ω)

+2 cos(2i)(3− 5 cos(2Ω)) sin2(ω)− 10 cos(i) sin(2ω) sin(2Ω)
)

The maximum is reached for i = π/2, Ω = 0 and ω = 0.
Thus, we obtain

∆ω̄p . 5
GM∗√

GMHD106906

a
3
2
p

V D2

√
1− e2p

Maximal altitude

The maximum altitude zmax reached by the planet on its
orbit is given as a function of its orbital elements:

zmax = ap sin(ip)
(√

1− e2p cos2(ωp) + ep| sin(ωp)|
)

.

(15)

It thus depends on the evolution of ap, ep, ip and ωp.
Due to the term sin(ip), the same approach than above

leads to neglecting all evolution but that of the inclination.
It is consistent with the fact that in the previous expres-
sions, ∆ip� ∆ep,∆ip when the eccentricity tends to 1. We
get:

∆zmax = ap

√
1− e2p∆ip (16)

. GM∗√
GMHD106906

a
5
2
p

V D2
(1 + 4e2p) . (17)

However, this estimate is not valid anymore when ∆ip
approaches π/2, that is when sin(ip) approaches 1. At this
point, the estimates of ∆ep and ∆ω̄ must be taken into
account. In order to comprise all the different evolution
scales, we thus simply estimate the maximal altitude by
replacing directly the computed evolution in the definition
formula:

∆zmax . ap sin
(
ĩp
)(√

1− ẽp2 cos2 (ω̃) + ẽp| sin (ω̃) |
)

(18)

where ĩp = max(∆ip,
π
2 ), ẽp = ep − ∆ep and ω̃ =

max(∆ω̄p,
π
2 ).

Additional materials for HD 106906 fly-by simulations

Fig. 13 and 14 represents the distribution of the coordinates
of the bodies in the simulations.

Fig. 15 and 16 describe the case where the two per-
turbers are bound. The coordinates of the bodies are drawn
from the observational constraints with the same process
that for the non-bound case, but we discarded the configu-
rations where the eccentricity of the relative orbit is greater
than 1. The resulting semi-major axis and eccentricity dis-
tributions are presented here, along with the effect of the
fly-bys on the planet periastron, which is very similar to
the non-bound case.
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Fig. 13. Initial distribution (today) of HD 106906 coordinates and velocities for the 10,000 simulated cases (green), and for the
359 cases where a fly-by closer than 0.1 pc occurred (red).
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Orbital fitting of imaged companions
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Constraining the orbital parameters of any detected companion (exoplanet,
brown-dwarf) is an essential part in the characterization of extrasolar systems. Be-
sides the description of the position and velocity of the bodies with respect to time,
retrieving the orbital parameters enables the investigation of the past and future
dynamical evolution of a system. High eccentricity, misalignment, mean-motion res-
onances, these features are the keys to decipher a system’s history. Additionally,
orbital fitting gives an estimate of the total mass or even, in some cases, the indi-
vidual masses, which characterize the system and constrain the physical evolution
of the bodies.

Theoretically, the relative position and velocity at a given time is enough to
entirely retrieve the orbital elements. However, two main problems arise in real life,
which complexify the orbital fitting processes.

First, we are not able to access the three-dimensional position and velocity at
one epoch. In the case of direct imaging, an observation consists in the relative
projected separation and position angle. Conventional direct imaging methods do
not provide the instantaneous speed. Several epochs are therefore needed to suppress
the degeneracy.

Second, all observations come with uncertainties. One can thus never obtain the
orbital elements with an infinite precision, and the uncertainties must be propagated.

The propagation of the uncertainties of projected coordinates from several epochs
give birth to a complex analytical problem. The uncertainties are often taken into
account through the formalism of probability distribution. If the true value of the
parameters of an orbit are θ, a measurement xi with Gaussian uncertainty σi will
have a probability of

p (xi|θ) =
1√

2πσ2
i

exp

(
−(xi − x (ti,θ))2

2σ2
i

)
(2.1)

where x(ti,θ) is the theoretical value, computed from the parameters θ. More-
over, we usually have some geometrical or physical constraints on the parameters,
independently from the measured data. This probability p(θ) is called the prior.

From the probabilities of each of our measurements, we can introduce the likeli-
hood of the parameters L(θ):

L(θ) = p ((xi)|θ) =
∏

i

p(xi|θ) ∝ e−
1
2
χ2

(2.2)

where χ2 =
∑

i
(xi−x(ti,θ))2

σ2
i

. The likelihood of θ will be maximum when χ2 is mini-
mum. It can be noted that this expression of the χ2 is valid only if the measurements
(xi) are independent, which we will assume in the rest of the chapter. If this is not the
case, the correlations have to be taken into account through a covariance matrix.
After the measurements, the Bayesian inference framework gives us the posterior
probability of the parameters:

p (θ|(xi)) =
L(θ)p(θ)

p ((xi))
∝ L(θ)p(θ) . (2.3)
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Eventually, orbital fitting boils down to the characterization of the posterior
probability distribution over the parameter space. Maximization of the likelihood
will provide the best fit, maximization of the posterior will provide the most probable
parameters, but the shape of the distribution is essential to evaluate the confidence
interval. This, however, is not straightforward, especially when the number of pa-
rameters is high, and brute-force approach becomes impracticable.

Deriving a trustworthy estimate of the orbital elements despite these difficulties
have been a central problem in the exoplanet field, whatever the detection tech-
niques. Numerical approaches progressively superseded the first semi-analytical and
geometrical approaches. In particular, Levenberg-Marquardt (LM) algorithms have
been first used for orbital fitting, and Markov-Chain Monte Carlo (MCMC) algo-
rithms have then been introduced in the early 2000s. MCMC is the approach I have
adopted during my Ph.D, combined with a first LM minimization. In this chapter,
I will first present the principles of the LM algorithm, before describing the basics
of the MCMC approach. In this thesis, I used and improved an in-house code. I set
out the statistical and implementation choices that have been adopted in Secs. 2, 3
and 4. Section 3.5 presents quickly the other codes available and a comparison of
their approaches to ours. In sections 5 and 6, I present eight systems observed with
SPHERE, for which I derived orbital elements estimates. I describe in particular in
Sec. 6 three astrometric binaries that were characterized through their orbital fit,
that gave an independent estimate of their dynamical masses. Finally, I introduce
in Sec. 7 my work to take into account both absolute and relative astrometry in
the orbital fitting procedure, a development that will be needed with the growing
importance of the astrometric detection technique, that uses the projected motion
of a host star on the skyplane.

1 Levenberg-Marquardt algorithm (LM)

To get a first estimate of the fitting of the parameters of a model, it is common
to start with a "simple" minimization procedure, a local minimization of the χ2

from a first guess. The Levenberg-Marquardt algorithm, also called Least-Squared
Levenberg-Marquardt (LSLM), is specifically designed for local minimization of non-
linear problems.

Let us consider χ2 as a function of the parameters θ:

χ2(θ) =
∑

i

(xi − x(ti,θ))2

σ2
i

. (2.4)

Retrieving the best fit is equivalent to finding θ̂ that verifies dχ2/dθ |θ̂ = 0.
From a first guess θ0, we are searching a step δ such that θ̂ = θ0 + δ. Let Ji be

the gradient vector of x(ti, .), evaluated in θ0. When

∂2x(ti,θ)

∂θα∂θβ
(xi − x(ti,θ))� ∂x(ti,θ)

∂θα

∂x(ti,θ)

∂θβ
, (2.5)

that is for linear models or in weakly correlated cases, we have
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χ2(θ0 + δ) = χ2(θ0) +
dχ2

dθ

∣∣∣
θ0
δ +

1

2
tδ t

d2χ2

dθ2

∣∣∣
θ0
δ + o(δ3) (2.6)

= χ2(θ0)− 2
∑

i

xi − x(ti,θ0)

σ2
i

Jiδ + tδ
∑

i,j

tJiJjδ + o(δ3) . (2.7)

where t stands for the transpose. Moreover,

dχ2

dθ

∣∣∣
θ̂

=
dχ2(θ0 + δ)

dδ

∣∣∣
θ̂

= 0 (2.8)

Thus, at first order, δ must verify

∑

i,j

tJiJjδ =
∑

i

xi − x(ti,θ0)

σ2
i

tJi . (2.9)

This is a set of linear equations, which can be solved for δ. To make up for
the potential badness of the approximations, Levenberg suggested to replace this
equation by a damped version:

(
∑

i,j

tJiJj + λI)δ =
∑

i

xi − x(ti,θ0)

σ2
i

tJi (2.10)

where I is the identity matrix and λ the damping factor, which is adjusted at each
iteration. If the convergence is quick, then λ is decreased, and it is increased if the
convergence is slow.

After the desired convergence is reached (condition on the closeness of succes-
sive estimates of χ2(θ̂) for example), we obtain a good estimate of θ̂, the best-fit
parameters. However, it is crucial to obtain an interval of confidence around the
best-fit parameters to evaluate the reliability of the results. From the output of the
Levenberg-Marquardt procedure, the interval dθ is such as χ2(θ̂+dθ)−χ2(θ̂) = 1.
That is

1

2
dθHdθ = 1 (2.11)

where H is the Hessian matrix of χ2 with respect to the parameters, evaluated in θ̂.
As the Hessian matrix is definite positive ( θ̂ is a minimum), then it is diagonalizable
with change of basis matrix V (eigenvectors matrix) and diagonal matrix D. The
interval of confidence is finally given by

dθ = V




√
2/D11

...√
2/Ddd


 ≈




√
2H−1

11

...√
2H−1

dd


 (2.12)

where d is the dimension of the parameters space. Nevertheless, this interval is
not robust to correlations and does not grasp the potential peculiarities of the final
probability distribution (asymmetries, multi-modes...).
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2 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo procedures are a powerful Bayesian tool to characterize
the likelihood and fit the parameters of a model and their uncertainties. It is partic-
ularly well adapted for high dimension parameters space and monomodal likelihood.
The following introduction is based on Gilks et al. (1996), Gelman et al. (2003) and
Ford (2005). The particular setup described here has been implemented at IPAG in
a code designed by Pr. Beust, described briefly in Chauvin et al. (2012), and that I
contributed to expand. An overview of the procedure is presented on Fig. 2.1.

2.1 Overview

A procedure is referred to as Monte-Carlo when it relies on repeated random sam-
pling to obtain numerical results. This technique is widely used in all fields of
science, and appeared at the beginning of the computer era. It is named after a
Monaco district known for the gambling. Monte-Carlo procedures comprise various
types of approaches, especially regarding the specificity of the random choices. Some
procedures adopt a sampling where each draw is independent from the others. This
strategy is often chosen for the computation of integrals.

On the other hand, orbital fitting requires the computation of the relative likeli-
hood of parameters in the neighborhood of its peak. Markov chains are well adapted
to this problem. A Markov chain is a stochastic model describing a sequence of pos-
sible events in which the probability of each event depends only on the state attained
in the previous event. Thus, the random choice of a point in the parameters space
is not independent of the previous draw, so that the sampling can be thought of as
a chain. Given a proper sampling, a Markov chain will eventually converge towards
the stationary distribution it probes. A proper sampling is guaranteed by reversibil-
ity, irreducibility and aperiodicity. Reversibility ensures that a probability of being
in a state θ and going to a state θ′ from θ is equal to being in a state θ′ and going
from θ′ to θ. In other words, if state θ′ is twice more probable than state θ, the
probability of going from θ to θ′ will be twice the probability of going from θ′ to θ.
Irreducibility ensures it is possible for the chain to reach every state with non-zero
probability from any initial state.

2.2 The Metropolis-Hastings algorithm for transition proba-
bility

Such Markov chains can be built using the Metropolis-Hastings algorithm. In this
formalism, the probability of a transition from a state θ (corresponding to a vector
of parameters) to an other θ′ is the probability q(θ′|θ) to consider θ′ from θ times
the probability α(θ′|θ) of accepting this trial. The Metropolis-Hastings algorithm
acceptance probability is

α(θ′|θ) = min

(
q(θ|θ′)p(θ′|(xi))
q(θ′|θ)p(θ|(xi))

, 1

)
(2.13)
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Figure 2.1 – Schematic of the procedure to retrieve the probability distribution of
the parameters θ1 and θ2. The maps represent the 2D histogram of the χ2. The
Gibbs sampler prevents diagonal moves. The discretization is for better readability
and is not a feature of the code.
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where p (θ|(xi)) is the probability of state θ given the set of data (xi). In that case,
whatever the choice of q(θ′|θ), the Markov chain is reversible.

In our case, we pre-select each transition θ → θ′ with a normal distribution
centered on the state θ, with a fixed deviation independent from θ. It follows
that q(θ′|θ) = q(θ|θ′). Thus, the acceptance probability boils down to 1 when
p(θ′|(xi)) > p(θ|(xi)), and p(θ′|(xi))/p(θ|(xi)) when p(θ′|(xi)) < p(θ|(xi)).

This method has the advantage of requiring only the probability ratios. Thus,
the normalization that appears in the likelihood, in the form of a tedious integral,
is not needed, with counterpart that we will retrieve only a relative probability
distribution.

2.3 Guiding the walk in multiple dimensions: the Gibbs sam-
pler

The choice of q(θ′|θ) to select a tentative transition is a delicate issue. A common
choice is a Gaussian distribution centered around θ, but there remains the important
choices of the dispersion, that is the scales and correlations between each parameters.

If the trial states are chosen with a too large dispersion then a large fraction of
the trial states will be rejected, causing the chain to remain at each state for several
trials and to converge very slowly. If the trial states are chosen with a too small
dispersion, then the small step size will cause the chain to behave like a random walk.
Monitoring the fraction of trial states that are accepted is one way to verify that
the scale chosen for q(θ′|θ) is not too inefficient. Optimal values for the acceptance
rate have been estimated for Gaussian posterior distributions at about 0.44 when θ
has one dimension, 0.23 otherwise.

Handling multi-dimensionality requires deeper consideration because of the pos-
sible correlations between the parameters. A simple method to tackle the issue is
called Gibbs sampling. In this sampling, a step corresponds to the successive evolu-
tion of each parameter. When updating the parameter j, a tentative parameter is
proposed by the candidate transition probability function q(θ′j|θj), then the move is
accepted with probability α(θ′|θ), where θ and θ′ are the current parameters, that
is the new ones from ranks 1 to j−1, and the old ones from ranks j+1 to d, where d
is the dimension of the parameters space. To remove any possible bias regarding the
order of the parameters, at each step the parameters ranks are randomly permuted
before the evolution.

However, roaming the parameters space along the direction of each parameters
is not necessarily the most efficient way, because of the possible correlations between
parameters. Thus, after a significant evolution of the walk, we compute the covari-
ance matrix and derive orthonormal eigenvectors. Then, we travel the parameters
space along the directions of the eigenvectors.

Choosing the scale of the transition function is easy within the Gibbs sampler,
because each parameters (or combination of parameters) evolves separately. In our
algorithm, before the true launch of the Markov chains, tentative steps are made in
order to tune the value of the scale β. From an initial guess, β is updated until the
acceptance rate on each dimension is 0.44 with a 10% precision. The update of β
is scaled on the ratio between the current and expected acceptance rates, and the
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frequency of update is decreasing following the progress of the convergence. The
detailed procedure is described in Ford (2006).

2.4 Evaluation of the convergence

Deciding when the walk should stop is the most challenging part of the procedure,
as we have to determine when the chains are representative of the true probabil-
ity distribution (or, equivalently, have converged). A common approach is to use
Gelman-Rubin convergence diagnosis (Gelman et al. 1992; Ford 2006). Alternative
criteria exist, using for example the autocorrelation time (see emcee, Sec. 3.5.1). The
convergence diagnosis depends strongly on the overall set-up (numbers of chains,
sampler...). In the Gelman-Rubin framework, several Markov chains are started.
The parallel computation of independent chains allows both a better sampling of
the parameter space and the evaluation of the convergence by comparing the state
of the different chains. The Gelman-Rubin statistics is based on the computation of
the variance of the parameters in a given chain and in all the chains.

A first criterion that is computed is R̂, the factor by which the scale of the esti-
mate of the distribution could be reduced by continuing to calculate longer Markov
chains. For a given parameter, It corresponds roughly to the ratio between an un-
biased estimator of the dispersion and the average dispersion over all chains. For a
parameter θj, if we consider Nc chains of lengths Lc, it writes

R̂(θj) =

√
v̂ar(θj)
W (θj)

=

√
1 +

1

Lc
(
B(θj)

W (θj)
− 1) (2.14)

where v̂ar(θj) is an unbiased estimator of the variance, W (θj) the average of the
variances over the chains, and B(θj) is Lc times the variance of the means. As
the Markov chains approach convergence, R̂(θj) approaches 1 from above. In our
algorithm, we launch ten chains and set two thresholds: when all the R̂ are below
1.1 (weak) and when the R̂ are below 1.01 (strong).

On the other hand, a second criterion is T̂ , the estimate of the effective number
of independent draws. It is roughly the number of draws Nc × Lc weighted by the
ratio between an unbiased estimator of the variance and the variance of the averages
over all chains. It writes

T̂ (θj) = LcNc min

(
v̂ar(θj)
B(θj)

, 1

)
. (2.15)

A high T̂ ensures that our distribution is not biased by auto-correlation. In our
algorithm, the weak threshold is set to 100 and the strong to 1, 000.

Thus, along the walk of the Markov chains, we repeatedly compute the R̂ and T̂
to evaluate the convergence (see Fig. 2.2). To avoid chance good values, when the
criteria first pass the threshold, we increase the Markov chains of 1, 2, 3, 4 and 5%
successively and evaluate the criteria each time. If they pass again the test, then
the convergence is likely (at least we could not disprove it).
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Figure 2.2 – Example of the probability distributions function of 5 chains that respec-
tively have not converged, have weakly converged and strongly converged, according
to the Gelman-Rubin statistics.

2.5 Beginning the walk

The initial points in the Markov chains are theoretically irrelevant to the final esti-
mated probability distributions, but are in fact important regarding two aspects.

First, though the MCMC procedure is more global than the Levenberg-
Marquardt algorithm and can potentially retrieve a multimodal distribution, it will
in practice not be the case if the peaks are separated by a zone with very small
probability. Thus, the beginning value should be comprised within a reasonably
probable zone around the more probable part of the parameters space.

Moreover, the convergence may be extremely slowed by a chain struggling to
reach the probable zone. This first part of the chain is often discarded by default
in the end (a process called burning), for storage issue, as it brings only bias to the
estimated probability distribution. In our code, the parts of the chains before the
weak convergence threshold has been reached are discarded.

From this point, two approaches are possible: sampling the beginning points
randomly through the parameters space, or beginning the walk already in the iden-
tified probable zone. The first approach decreases the risk of incomplete sampling,
the second optimizes the convergence time. In our algorithm, we choose the second
version, as there are rarely several distinct local maxima in the likelihood function
in orbital fitting problems. Indeed, the problem is not strongly degerate if the con-
straints are good (precise astrometry, long baseline), and the walks explore all the
parameters space if the problem is underconstrained. To locate the probable part of
the parameters space, the parameters are roughly estimated manually, with tentative
trials. Then, when a reasonable χ2 is obtained, a Levenberg-Marquardt procedure
is launched to locate the exact position of the best fit. All Markov chains are then
started from this position (see Fig. 2.3).

2.6 Building a consistent sample

A more practical problem is that the Markov chains can grow excessively long before
convergence is reached. Storing the entire chain might be computationally costly,
and is not needed to retrieve the desired probability distribution. Indeed, the nature
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Figure 2.3 – Example of first guess (left), Levenberg-Marquart and MCMC proce-
dures (right) for orbital fitting.

of the Markov chain creates a strong auto-correlation between successive values of
a parameter, so that the complete chain is strongly redundant. The position at
a given time is slowly forgotten as the chain pursue its random walk, but it may
take hundreds of steps before the autocorrelation becomes negligible. Moreover, the
Markov chain only needs the latest parameters to run.

Along the walks, we will store a given number Nmod of random positions of
the walks. This number should be large enough to correctly sampled the probability
distribution throughout all the dimensions of the parameters space. First, nothing is
stored before the weak convergence threshold is reached. Then, the points are stored
with a given probability, computed to roughly optimized the sampling so that enough
points are sampled before the strong convergence is reached. If nevertheless Nmod

points are already stored before the end of the walk, then the sampling continue and
a new point replaces a randomly selected previous point.

If the sampling has the advantage of preventing a useless massive storage, it has
the inconvenient of meddling the sequence of the Markov chains, which prevents
some converging diagnosis to be performed afterwards. However, we can be careful
not to blend together the Markov chains to allow for comparisons between their
distributions (see Sec. 4.2).

3 Application to orbital fitting

3.1 Likelihood

Characterizing the likelihood over the parameters space is a tedious process when
the dimension is high, unless a Monte Carlo approach is adopted. Orbital fitting
with direct imaging involve 6 parameters in the simplest case (only astrometry), 9 if
radial velocity measurements are included, 11 if we fit absolute astrometry, and even
more if we account for additional systematic offsets between data-sets. Moreover,
there are rarely very distinct solutions to orbital fitting problems. MCMC is thus a
natural approach to tackle the issue.

The model that we will be fitting here is a pure Keplerian motion, and the
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parameters are the orbital elements. The simplest are the period P , the eccentricity
e, the longitude of the ascending node Ω, the inclination i, the argument of periastron
ω and the time of periastron passage tp (for precise definition of these quantities,
refer to the introduction). Fitting these 6 elements requires to know the total mass of
the system (to retrieve the semi-major axis a) and its distance (to convert arcseconds
in astronomical units). To retrieve the total mass, a 7 parameters description can
be chosen, by fitting independently both a and P . This dynamical mass can then
be used as an input in the evolutionary models (see Sec. 6).

θ = (P, e,Ω, i, ω, tp) (2.16)

From the six/seven orbital elements θ, we can compute the prediction of the
model for each epoch ti in terms of projected positions x(ti,θ) and y(ti,θ). The
only difficulty is to solve the Kepler equation 2π(ti− tp)/P = u− e sin(u) to retrieve
the eccentric anomaly u at the time ti as a function of tp, P and e. The procedure
to solve the equation is described in the Appendix. First, the predicted positions
are computed in the orbital plane (X, Y ):

X = a(cos(u)− e) (2.17)

Y = a
√

1− e2 sin(u) (2.18)

In the skyplane, the coordinates of the unit vectors of the orbital plane are given
by:

uX =

(
cos2( i

2
) cos(ω + Ω) + sin2( i

2
) cos(ω − Ω)

cos2( i
2
) sin(ω + Ω)− sin2( i

2
) sin(ω − Ω)

)
(2.19)

uY =

(
− cos2( i

2
) sin(ω + Ω)− sin2( i

2
) sin(ω − Ω)

cos2( i
2
) cos(ω + Ω)− sin2( i

2
) cos(ω − Ω)

)
(2.20)

Finally, the predicted positions on the skyplane are given by

(
x(ti,θ)
y(ti,θ)

)
= XuX + Y uY (2.21)

An example of representation of an orbit in the two planes is drawn on Fig. 2.4.
The χ2 is then naturally

χ2 =
∑

i

(xi − x(ti,θ))2

σ2
x,i

+
∑

i

(yi − y(ti,θ))2

σ2
y,i

(2.22)

3.2 Prior distributions

Before any observations, we have an a priori knowledge on the orbital elements
probability distribution.
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Figure 2.4 – Orbit in the orbital plane and projected on the skyplane. The orbital
elements are: a = 3, e = 0.5, i = 60◦, Ω = 30◦, and ω = 50◦.

First, there is no preferred orbital plane, so that the direction of the angular
momentum vector C is uniformly distributed. This direction is given by the angles
i and Ω, with the formula

C = C




sin(i) sin(Ω)
sin(i) cos(Ω)

cos(i)


 (2.23)

i and Ω are equivalent to the angles in the spherical coordinates description,
and the dimensionless surface element at constant radius is dS = sin(i) di dΩ in this
framework. The probability of these angles in the case of a uniform distribution of
direction of C is thus proportional to sin(i).

Once the orbital plane is defined, the direction of the eccentric vector (or equiv-
alently of the periastron) is also uniformly distributed, so that the probability of ω
is constant.

The probability of the mean anomalyM = 2π(t−tp)/P is also constant, as there
is no preferred time of periastron passage in the Universe.

The probability of the eccentricity e is supposed constant. Few information is
known on the distribution of eccentricities in planetary systems, especially for planets
on wide orbit that are not currently well monitored by radial velocity. On the other
hand, the distribution of eccentricity in binary stars is more or less consistent with
a flat prior (see Introduction).

Finally, the probability of P is set to 1/P to ensure scale invariance (1/a if a is
also a parameter). This law is sometimes referred to as Opik’s law (Öpik 1924). Scale
invariance is a purely physical consequence of the equation of motion, which states
that there are no preferred scale for an orbit. Of course, additional considerations
(size and composition of protoplanetary disks, ...) qualifies this assumption for
planetary systems. But here again, the distribution of periods and semi-major axes
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is not satisfyingly constrained by the observations. For binary systems however,
Opik’s law is a valid approximation (see Introduction).

The choice of prior is always partially arbitrary, as it depends on the information
we choose to take into account for our problem (geometry, addition of theoretical
considerations on energy and momentum, observed distributions...). Other possibil-
ities have been adopted in the literature (Blunt et al. 2017; O’Neil et al. 2018).

Theoretically, some of these prior probabilities are ill-defined, for their integration
over the parameters space is improper, which is not acceptable for a probability
distribution. It is in particular the case for the period, as the integration spans
until infinity. However, most of the times, the likelihood function is sufficiently
constraining to ensure the good definition of the posterior probability. If it is not
the case, an upper bound is manually defined.

3.3 Choice of the MCMC parameters

The six parameters and their prior distributions introduced above are the natural
description of the orbit and are relevant to study its dynamical evolution, but they
are not optimal regarding their definition properties and their correlations.

The properties of the angles (definition modulo 2π) are difficult to handle in a
random walk. To solve this issue, we use instead their cos and sin, properly defined
between -1 and 1. For the inclination, defined from 0 to 180◦, the sine is enough if
we consider sin(i/2).

Moreover, for any orbital solution, the couples (Ω, ω) and (Ω + π, ω + π) yield
the same astrometric data, as both parameters appear only as ω + Ω and ω − Ω in
Eqs. 2.19 and 2.20. This can be understood geometrically: orbits with (Ω, ω) and
(Ω + π, ω + π) are symmetric with respect to the skyplane, so that their projection
is identical. Thus, the algorithm fits ω + Ω and ω − Ω, which are not affected by
the degeneracy. To conclude on the choice of (Ω, ω) requires to determine if the
planet moves away from us or toward us. This information can be obtained with
one measure of the relative radial velocity.

On the other hand, the argument of periastron is ill-defined when e is null. Thus,
some parameters have a factor e to prevent unnecessary wandering in the ω space
at low eccentricity. Also, the longitude of node is ill-defined when the inclination is
null. Similarly, a factor sin(i/2) will be added when necessary.

Finally, it has been found preferable in some cases to sample
√

1− e2 instead of
e, to avoid the divergences associated with eccentricities greater than 1.

All in all, tests to optimize the convergences have been performed with the
previous constraints, and the following sets of parameters have been chosen:

θ =

(
1

P
cos(ω + Ω + ν),

1

P
sin(ω + Ω + ν),

e cos(ω + Ω)√
1− e2

,
e sin(ω + Ω)√

1− e2
,

sin

(
i

2

)
cos(ω − Ω)(1− e2)

1
4 , sin

(
i

2

)
sin(ω − Ω)(1− e2)

1
4

)
. (2.24)

where ν is the true anomaly.
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The prior distributions become then more complicated. In fact, the individ-
ual priors are not necessary in order to run an MCMC, only the ratio of the total
probabilities of two events are needed, to compute the acceptance probability. To re-
trieve this total probability ratio, we compute the Jacobian J of the new parameters
expressed as functions of the orbital elements. We get

pprior ((P, e,Ω, i, ω, tp)) ∝
sin(i)

P
(2.25)

pprior(θ) ∝ P

sin(i)
|J | ∝ e (1 + e cos(θ))2

(1− e2)3 P 2
(2.26)

3.4 Analysis

When the Markov chains have converged (see Sec. 2.4), we get the consistent sample
that have been built along the walks (see Sec. 2.6). It consists here in a set of
1,000,000 different vectors of parameters θ, that have been converted into orbital
elements. From there, multiple approaches can be used to visualized and interpret
the result of the orbital fitting.

The following approaches were coded by Prof. Beust in the GreG language, that
is part of the GILDAS working group software developed by IPAG and IRAM in
Grenoble. As part of this PhD, I have redeveloped and enhanced them in Python
to provide a better flexibility and portability.

3.4.1 Corner plot

Naturally, the first approach to visualize the output of the MCMC procedure is to
compute independent probability distribution of each of the orbital elements. The
general properties of each distribution are then easily accessible: shape (one peak or
multimodal), mean, median, interval of confidence, lower and upper boundaries... To
get a more complete view of the overall probability distribution of the parameters,
the correlations can be visualized with two-dimension histograms. We indicated the
best fit in each plot, and the shortest 68 % interval of confidence around the peak
(see Sec. 4.3) in the individual probability distribution.

Correlations between the different dimensions of the Markov chains walks are not
necessarily prejudicial, but will slow down the convergence of the chains. Complex
correlation patterns can also prevent part of the parameters space to be visited.
However, depending on the measurements and orbital configurations, the correla-
tions between the orbital elements may not be easily overcame (semi-major axis
correlated to eccentricity for insufficient orbital coverage, eccentricity to inclina-
tion...).

An example of a corner plot is represented on Fig. 2.5. It corresponds to a
well-sampled orbit, so that the distributions all exhibit a clear peak of maximum
probability. The longitude of node and argument of periastron both exhibit two dis-
tinct peaks separated by 180◦, because of the degeneracy introduced in the previous
subsection.
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Figure 2.5 – Example of a corner plot presenting the results of a MCMC orbital
fitting procedure with 7 orbital parameters. The black lines and crosses correspond
to the results of the LM procedure (best fit). The blue shade corresponds to the 68
% interval around the peak.

Evaluating the absolute goodness of a fit is not straightforward. The χ2 is used
to compare two solutions within the same model, and is used in particular to guide
the walks of the Markov chains. However, the χ2 is an indicator that increases with
the number of measurements and decreases with the number of parameters. Thus, a
common criterion to evaluate the goodness of an orbital fit is the so-called reduced
χ2:

χ2
red =

1

N − dχ
2 . (2.27)

If the model is linear with respect to the parameters, χ2
red is expected to be 1.

A value inferior to 1 suggests an overestimation of the errorbars, and superior to 1
indicates a relatively bad fit (which remains acceptable below 2 or 3). In our case
however, the Keplerian model is not linear nor in most of the orbital elements, neither
on the parameters chosen for the MCMC. We still decide to adopt this criterion for
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Figure 2.6 – Example of two representations on the sky plane of 100 orbits (colored)
from an MCMC orbital fitting procedure. The black orbit corresponds to the results
of the LM procedure (best fit).

it allows comparing the different solutions, and it still gives an order of magnitude
of the offset between the observations and the predictions of the fit relative to the
uncertainties.

3.4.2 Representation on the sky plane and temporal evolution

Eventually, the best way to evaluate the goodness of a fit is to draw a representative
sample of solutions directly over the observations on the sky plane. It is essential
to see the relative consistence of all the observations, evaluate possible problems
with the measurements (underestimated errorbars, systematic offsets...), have an
overview of the possible orbits and plan the future observations.

An example of representation on the sky plane is drawn on Fig. 2.6. To give an
idea of the diversity of the solutions, a hundred solutions, selected randomly among
the final distribution of the MCMC, are plotted along the best fit. The temporal
evolution can be suggested by a color scale.

However, one has to remember that the goodness of the fit cannot be obtained
simply by looking at the matching between the observations and the solutions of the
fit on the sky plane. Indeed, the temporal aspect is hidden on the figure, so that a
fitted solution that matches perfectly a set of astrometric measurements on the sky
plane might not be in phase with the observations epochs.

In order to evaluate the consistency of the observations with the fitted solutions,
the temporal evolution of different observational quantities are often represented.
An example of such representation is drawn on Fig. 2.7.

The evolution of the position angle (PA) measures the orbital coverage, and get
a rough estimate of the period. On the other hand, the absolute orientation of
the field is usually inferred from the observations of different reference astronomic
fields (clusters), and this orientation is not derived in a homogeneous way for all the
instruments. Thus, the position angle is particularly submitted to systematic offsets
between different instruments, so that it is important to look for these systematics
by eye (at first, see Sec. 4.4) on the temporal evolution figure.

The evolution of the separation evaluates the information we have on the cur-
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from the results of a MCMC orbital fitting procedure. At each time, the standard
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vature of the orbit, and determines if the orbital coverage is sufficient to get strong
constraints on the orbital elements. An example of a bad orbital coverage is drawn
on Fig. 2.17.

Finally, when astrometry and radial velocity are combined, the evolution of the
radial velocity allows determining the part of the RV in the orbital fitting, depending
on the dispersion of solutions compared with the radial velocity uncertainties. It can
also help to evaluate the activity-related noise in the measurements.

3.5 Comparison with alternative approaches for orbital fit-
ting

The approach that I just presented is a particular implementation designed for the
orbital fitting of directly imaged orbits, derived from Ford (2005) and Ford (2006)
and optimized with additional mathematical and numerical techniques (orthonormal
basis of the parameter space, parallelization of the different Markov chains). It has
proven to be a versatile tool, able to fit efficiently the orbits, whether the problem is
well constrained or not (see the different applications in Secs. 5 and 6). I will present
here three alternative approaches that are often encountered in the literature.

3.5.1 emcee

emcee is a Python package proposing a general MCMC implementation which is very
different from our approach (Foreman-Mackey et al. 2013). It is based on so-called
ensemble MCMC: the chains are not independent from one another, so that the
choice function q(θ′|θ) is a global function including all the chains. In the algorithm,
the new position of a chain is chosen along the direction of one of the other chains
(picked randomly).

The convergence is measured with the integrated autocorrelation time, which is
an estimate of the number of steps needed in the chain in order to get independent
samples. The ensemble algorithm used in emcee decreases efficiently this number.
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Figure 2.8 – Corner plot presenting the results of the emcee orbital fitting procedure
of TWA 22 A-B relative orbit. The plots are centered around the main peak. The
degeneracy in Ω and ω is not dealt with. This figure can be compared to Fig. 15 in
Rodet et al. (2018) (below).

The algorithm is optimized for a large number of chains (typically hundreds). Several
adjustments of the setups may be necessary to reach a fair acceptance rate.

emcee uses the large number of chains to be faster, but the disadvantage is that
some of these chains can be blocked into local minima and slow down the overall
convergence. As an example, I performed the orbital fitting of TWA 22 binary (see
Sec. 6) by emcee, with 100 chains, a first burning phase of 10, 000 steps and then
the compilation of 1, 000 steps. According to the autocorrelation time, this number
of iterations should be enough. I computed the corner plot with the Python Corner
module (Fig. 2.8). The results are similar to the results of our MCMC procedure
depicted in Rodet et al. (2018) (Fig. 15), with some lost chains blocked into a local
χ2 minima (Fig. 2.9).
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Figure 2.9 – Histogram of the semi-major axes of TWA 22 A-B relative orbit at the
end of an emcee run, and the corresponding χ2. Some chains are trapped in a local
χ2 minima far from the general minimum.

3.5.2 OFTI

OFTI, for Orbits For The Impatient, is a Monte-Carlo algorithm designed to effi-
ciently compute posterior distributions of orbital elements for data covering short
fractions of long-period orbits (Blunt et al. 2017). The sampling follows a classical
random Monte Carlo sampling with priors (no Markov chain), but selects a reference
epoch to reduce the dimension of the explored parameters space. Indeed, 4 orbital
elements are first fixed (e, i, ω and tp) and the two additional ones (a and Ω) are
chosen to fit the reference epoch. This step is called scale-and-rotate. Then, the
likelihood is computed and a classical probability rejection is applied.

The priors that are chosen in OFTI are identical to ours, except for the eccentric-
ity, where a slope of −2.18 was adopted, from the observed distribution of exoplanets
detected by the radial velocity method (Nielsen et al. 2008). The acceptation prob-
ability α(θ′|θ) is slightly different to ours: the comparison between the χ2 of the new
step and the one of the old step exp(−χ′2/χ2) is replaced by a normalization by the
minimum χ2 found exp (−(χ′2 − χ2

min)).
This approach is designed explicitly for highly incomplete orbital coverage, and

is not suited to the problem otherwise. Indeed, the algorithm particularizes one
epoch, which is assumed to be representative of the arc of trajectory. When the
problem is underconstrained, the OFTI procedure is more efficient compared to the
MCMC approach. Adopting a Monte-Carlo approach without Markov Chain avoids
an inefficient sampling by the chains of the parameter space, especially relative to
the most underconstrained parameters, which are often the semi-major axis (queue
of solutions toward the highly eccentric and wide orbits) and the longitude of nodes

131



(correlated with the argument of periastron). An example of poor constraints on
these parameters due to insufficient orbital covering can be seen on Fig. 2.15.

OFTI has been compared with our MCMC procedure in the study of Maire et al.
(2019) (see Sec. 3). The observational constraints were loose (around 5%), and the
results were very similar.

3.5.3 LSMC

The family of LSMC methods, for Least-Squared Monte-Carlo, consists in minimiz-
ing the χ2 (such as the Levenberg-Marquardt algorithm) multiple times, varying the
set of measurements and/or the initial guess of parameters. Random realizations of
the measurements are drawn assuming Gaussian distributions defined by the obser-
vational errors. Initial guesses are drawn randomly through the parameters space,
assuming some prior probabilities.

Such an approach was used for example in Maire et al. (2015), with the four-
planet system HR 8799, and in Maire et al. (2018), for the study of HR 2562 (de-
scribed in Sec. 5). It is more compliant than MCMC, so that it can be used
for exploratory fits, where the effects of additional constraints may be studied (or-
bital resonances, coplanarity...). The Monte-Carlo approach without Markov chains
probes the local minima of the probability distribution.

In practice, our MCMC procedure has been compared to an LSMC implemen-
tation in three studies: Maire et al. (2018), Maire et al. (2019) and Bonnefoy et al.
(2018) (all described in Section 5). In the first two cases, the shapes of the proba-
bility distribution were very similar. On the other hand, in the last case, the two
probability distributions did not exactly match: the parameters space were not sim-
ilarly explored despite the same priors, resulting in different peaks for some orbital
elements. However, the orbital coverage was very scarce, so that the constraints on
these elements were not usable in any case. An other implementation of MCMC
was compared to the LSMC approach in Ginski et al. (2013), resulting in similar
confidence intervals for the orbital elements.

4 Improvements

The previous description of the algorithm corresponds to a version already imple-
mented before my thesis work. Here I detail several aspects that I added to the pro-
cedure for easier utilization, completeness (convergence tests), better post-processing
or for taking into account new features in the data (systematic offsets).

4.1 Modular organization

Different versions of the code were implemented at the beginning of my thesis,
depending on the fitted parameters and the nature of the observations (with or
without a fixed total mass, purely astrometric or radial velocity measurements...).
Most of the ∼ 2000 lines of code are similar in all the versions, only the initialization
routines and the computation of the positions and positions derivatives (for the
LM part) are different. I thus separated the core part of the code from the more
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specialized parts, to get a more flexible architecture. This organization makes it
more adapted to diffusion and future developments, in particular through git-types
platforms.

Moreover, I grouped the various analyses tools that I coded (Sec. 3.4) in a
modular package dedicated to post-processing. It is designed to be highly flexible,
and can take as inputs the data from the different orbital fitting procedures (with
or without mass, radial velocity...).

All these practical considerations are made necessary by the strong need for or-
bital fitting, due to the growing quantity of observational constraints on the imaged
companions. Within my PhD, I performed orbital fitting on eight different systems
(see Secs. 5 and 6). For each of these systems, the procedure were launched multiple
times, from 3 to more than 30 times, with new or corrected observational data, dif-
ferent observational sets, systematic offsets, different distances... It is thus necessary
to have the most automated and readable procedure, to minimize the time cost.

4.2 Convergence

Despite the careful use of Gelman-Rubin statistics to ensure the convergence of the
Markov chains, the convergence cannot be established with certainty. Indeed, the
full complexity of the multi-parameters probability distributions cannot be entirely
described by the two quantities R̂ and T̂ (Eqs 2.14 and 2.15). To be convinced of
the robustness of the results, a last check can be performed by comparing visually
the outcomes of the different chains.

I thus slightly modified the original algorithm in order to not lose tracks of the
chains during the sampling. This is done within the steps separating the weak from
the strong convergence (see Sec. 2.6). At first, the steps are stored orderly, each
chain following the others. Then, when the desired number of steps is reached,
instead of overwriting randomly in the storing array, the index of a new stored
step must be, modulo the number of chains, the index of its chain of origin. Thus,
the different distributions produced by the chains can be separately analyzed and
compared.

Finally, I added a module to automatically plot the distributions of the chains
for each parameters. An example of such output is displayed on Fig. 2.10. The
comparison may be used to evaluate the relevance of a peak or feature in the overall
probability distribution. In the case of Fig. 2.10, most of the distributions seem
robust, but the argument of periastron and the second peak of the periastron passage
are not.

4.3 Analysis of the chains

In the mono-dimensional distribution of the corner plot, I chose to replace the his-
tograms by probability distribution functions. Indeed, the discontinuities between
bins inherent to the histogram representation is not mathematically relevant to the
description of the problem. Moreover, the choice of the origins and centers of the
bins is arbitrary, and there is no mathematical guidance for binning methods (equal
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Figure 2.10 – Comparison between the outcomes of 10 different Markov chains, in
the case of six fitted parameters. It corresponds to the corner plot of Fig. 2.15.
Most of the distributions seem robust, but the argument of periastron ω and the
second peak of the periastron passage Tp are not.

spacing, number of points...). An example of the importance of proper representa-
tion is displayed on Fig. 2.11.

To compute a probability distribution function f from a sample population (pi)
of size n, I perform a convolution with a Gaussian Kernel K of deviation h:

f(p, h) =
1

nh

N∑

i=1

K

(
p− pi
h

)
. (2.28)

The only remaining choice is that of h, called the bandwidth or smoothing pa-
rameter. If the underlying density being estimated is Gaussian, the optimal choice
for h (that is, the bandwidth that minimizes the mean integrated squared error), is
called Siverman’s rule of thumb and writes:

h =

(
4σ5

3n

) 1
5

(2.29)

where σ is the standard deviation of the samples. This is thus a natural choice
for the bandwidth, as we have no information on the shape of the sampled density
distribution.

A particular care has to be given to the angular parameters distribution function,
because of their cyclic nature, and to the eccentricity distribution, because of the
often reached 0 lower bound. The treatments of these cases are provided by the
python package PyQt-Fit.
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Figure 2.11 – Example of the importance of choosing an appropriate representation
for the analysis of a probability distribution.

The computation of the probability distribution function from a population of
106 orbital elements can be computationally costly. To have a first overview of the
results, the histogram representation is used, with mathematically driven approach
to compute the numbers of bins k. I use the ’auto’ options of the numpy package,
which uses the maximum of the Sturges estimate ss = dlog2 ne + 1, that is optimal
for Gaussian data, and the Freedman Diaconis estimate sfd = 2IQR(x)/n1/3, where
IQR stands for the interquartile range, which takes into account the variability of
the distribution.

The same approach could be used for the bi-dimensional distributions of the
corner plot, but there are often strongly non-Gaussian so that the computation of
the probability distribution function is challenging and computationally costly.

For the temporal evolutions, I inspired from Montet et al. (2015) and represented
the interval of confidence of the separation and position angle directly along the
evolution. Moreover, inspiring from De Rosa et al. (2015), I added a module in the
skyplane representation to color-code the orbital evolution.

Finally, I added a module to estimate different intervals of confidence from each
mono-dimensional probability distribution, and represent it on the corner plot. The
four choices are represented on Fig. 2.12. The classical one is to use the mean and
standard deviation. This has the advantage to be easy to compute and to convey an
easy mathematical understanding. However, the overall probability of the interval
computed from these quantities may be very weak, for example in case of bimodality.
To face this issue, we choose to compute the 68%, 95% and 99% confidence intervals,
that corresponds respectively to the 1σ, 2σ and 3σ ranges around the mean in case
of Gaussian distribution. But even then, plenty of choices remain for the interval.
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Figure 2.12 – Different intervals of confidence from the same probability distribution.

Three are often considered: symmetric, equal tails and shortest (see Fig. 2.12).
The symmetric interval of confidence corresponds to equal ranges around the mean.
The equal tails takes the median and ensures that each tail outside the interval
has a 16% probability. Finally, the shortest corresponds to the shortest possible
interval comprising 68% of the probability around the maximal peak. In that case,
the boundaries of the intervals have the same probability. All three frameworks are
rigorously acceptable, and are equivalent if the probability distribution is Gaussian.
I chose to use the shortest interval approach. This interval is not relevant in case of
multi-modal distributions.

4.4 Handling systematic offsets between data sets

Two quantities are necessary to retrieve a consistent set of astrometry from the
observations: the pixel scale and the true North (see Introduction Sec. 3. If the
pixel scale’s calibration is reliable, the precise derivation of true North is subject to
systematic changes between epochs, but mostly between instruments. The typical
variation for a given setup in SPHERE is of order 0.15 ◦, which is similar than the
typical PSF-induced error. Its calibration is done frequently, with carefully chosen
calibration targets (clusters, binaries) (Maire et al. 2016). The stability of the True
North for a given instrument may be compromised after technical interventions, or
in case of imperfect synchronization with the telescope, but the frequent calibration
with the same calibration procedure limit the possible offsets. However, the control
of the relative offset is not ensured when different instruments are considered, be-
cause of the different calibration strategies. When the same target is observed at
the same epoch with different instruments, the offset may appear clearly as in the
study of 51 Eri, Sec. 5.2, with SPHERE and GPI, or in the study of β Pictoris, with
NACO, SPHERE and GPI (Chauvin et al. 2012; Wang et al. 2016).

Estimating the systematic offsets between the different datasets is often crucial,
especially when the orbital coverage is small. A rough guess can be integrated to
the observation uncertainty, but the nature of the errors will then be lost. The most
proper way to take them into account is to add them as additional parameters to
the orbital fit.

I included this possibility in the code, for an arbitrary number of subsets. For n
different instruments, n−1 systematic offsets must be considered, and one instrument
must be declared the reference. The choice of the reference instrument scarcely
matters, as it will only affect the longitude of the node by a small error (the order
of magnitude of the PA offsets rarely exceeds 1◦. I assumed a flat prior and takes
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directly the angular offsets as parameters for the MCMC procedure.
The advantage of this approach are multiple. First, it takes into account sys-

tematic bias without overestimating the observation random noise. Second, it gives
estimates of the probability distribution of the reference position angle difference
between two instruments.

I have applied the algorithm to two systems: the binary orbit of system GJ 2060
(Sec 6) and the companion orbit in system 51 Eri (Sec. 5.2). In the first case, the
offset has been found negligible (0.1◦) between the two main instruments (AstraLux
and SPHERE), thanks to the robustness of the derived orbit. In the second case,
given the poor orbital coverage, the fit of the offset did not give a precise constraint
(0.6± 0.6◦). As the orbital monitoring of the long period companions will continue
with all the available instruments, the need to take all data into account will grow
accordingly, so that handling the systematic offsets might be an important part of
the orbital fitting procedure in the coming years.

5 Application to the characterization of companions
observed with SPHERE

I have applied the orbital fitting technique described above to several systems during
this PhD, all observed with SPHERE. Indeed, multiple direct imaging instruments
have been used to follow the orbit of detected planets and brown dwarfs since the
first lights of instrument NaCo in 2002, providing more than a decade of orbital
coverage.

5.1 HR 2562: A brown dwarf carving a debris disk

HR 2562 A is a nearby F5V star around which a low-mass brown dwarf, HR 2562
b, has been imaged by Konopacky et al. (2016) with the GPI instrument. The
companion is located at a projected distance of 0.6” (20 au) from the star. It has
then been observed multiple times by SPHERE. Moreover, an extended outer debris
disk have been identified by Moór et al. (2014) in the infrared with Herschel/PACS,
but its structure is strongly unconstrained. The debris disk is not detected by GPI
or SPHERE in the near-infrared.

The system is precious, as it is one of the rare cases where an imaged substellar
companion has been resolved in a system with a known debris disk (see Introduction).
The only other similar brown dwarf companion is HD 206893 (presented below). The
position of the companion, within the disk, makes it a valuable laboratory to analyze
disk-companions interactions. Furthermore, the mass ratio of the pair is very low
(0.02± 0.01), far from the usual mass ratio of F-type star companions (around 0.3,
higher for short period binaries, Raghavan et al. 2010). This is one of the typical
case where a planetary-like formation (gravitational instability or core accretion)
may have created a brown dwarf.

Five astrometric measurements of the relative position of the companion have
been obtained over the ∼ 2 years monitoring, that corresponds to about 1% of the
orbital period. No curvature is evidenced by the astrometry, and only 1 to 3◦ of
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Figure 2.13 – Representation on the sky plane of the results the MCMC orbital
fitting procedure of HR 2562 A-b relative orbit. The black orbit corresponds to the
results of the LM procedure (best fit). A hundred random solutions are plotted in
grey. The astrometric observations are represented in blue, and the disk range in
black.

angular evolution have been detected. Thus, the orbit is poorly constrained, and
the result of the orbital fit is not very informative for most orbital elements, except
for the inclination, which is likely edge-on. It suggests that the companion orbit and
the disk have a small relative inclination (see Fig. 2.13).

In Maire, Rodet et al. 2018, the orbital fit is performed with a LSMC algorithm
(see Sec. 3.5.3). The MCMC procedure was also applied although the results are not
detailed in the paper. The result was similar to the output of the LSMC procedure,
as can be seen by comparing Fig. 2.14 and Fig. 3 in the paper below. This is one
of the only paper which compared our MCMC implementation with another code,
in particular a LSMC code.

We also studied the interactions between the companion and the disk. For that,
I ran N-body simulations including 10,000 test particles for 100 Myr with Swift
RMVS, testing various orbital configurations allowed by the orbital fitting. Then, I
computed the density distribution and associated it with a luminosity, assuming
a radial temperature profile for the dust grains and black body emission. Finally,
I convoluted the result with Herschel/PACS PSF and compared the images with
the observation. Unfortunately, the poor constraints on both the orbit and the
inner radius of the disk limited the range of the analysis, and the poor resolution
of the disk image was not able to definitely rule out the presence of eccentricity-
induced structures, so that an eccentric orbit could not be discarded. Concluding
on the eccentricity of the brown dwarf’s orbit is essential to constrain its dynamical
history, and in particular its formation process. This will be achieved by extending
the orbital coverage and observing the debris disk with a better spatial resolution
(ESO P104 program submitted).
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ABSTRACT

Context. A low-mass brown dwarf has recently been imaged around HR 2562 (HD 50571), a star hosting a debris disk resolved in the
far infrared. Interestingly, the companion location is compatible with an orbit coplanar with the disk and interior to the debris belt. This
feature makes the system a valuable laboratory to analyze the formation of substellar companions in a circumstellar disk and potential
disk-companion dynamical interactions.
Aims. We aim to further characterize the orbital motion of HR 2562 B and its interactions with the host star debris disk.
Methods. We performed a monitoring of the system over ∼10 months in 2016 and 2017 with the VLT/SPHERE exoplanet imager.
Results. We confirm that the companion is comoving with the star and detect for the first time an orbital motion at high significance,
with a current orbital motion projected in the plane of the sky of 25 mas (∼0.85 au) per year. No orbital curvature is seen in the
measurements. An orbital fit of the SPHERE and literature astrometry of the companion without priors on the orbital plane clearly
indicates that its orbit is (quasi-)coplanar with the disk. To further constrain the other orbital parameters, we used empirical laws for a
companion chaotic zone validated by N-body simulations to test the orbital solutions that are compatible with the estimated disk cavity
size. Non-zero eccentricities (>0.15) are allowed for orbital periods shorter than 100 yr, while only moderate eccentricities up to ∼0.3
for orbital periods longer than 200 yr are compatible with the disk observations. A comparison of synthetic Herschel images to the real
data does not allow us to constrain the upper eccentricity of the companion.

Key words. brown dwarfs – methods: data analysis – stars: individual: HR 2562 – planets and satellites: dynamical evolution and
stability – techniques: high angular resolution – techniques: image processing

1. Introduction

HR 2562 (HD 50571, HIP 32775) is a nearby F5V star of mass
1.3 M� (Gray et al. 2006; Casagrande et al. 2011) with high
proper motion (d = 33.64± 0.45 pc, µα = 4.872± 0.040 mas yr−1,
µδ = 108.568± 0.040 mas yr−1, Gaia Collaboration 2016) known
to host an extended debris disk of outer radius 187± 20 au with
a fractional luminosity of the infrared excess Ldisk/L? = (1.0 ±
0.3)× 10−4 and a large inner hole of radius ∼18–70 au (Moór
et al. 2006, 2011, 2015), and a late-L brown dwarf companion
(Konopacky et al. 2016b).

Modelings of the stellar spectral energy distribution
(SED) show evidence for a single cold (∼40–70 K) outer
component (Moór et al. 2011, 2015; Pawellek et al. 2014). Pure
SED fittings give a cold disk average radius of 58–71 au (Moór
et al. 2011, 2015), whereas Herschel/PACS image fittings point
towards a larger average radius, 104–138 au (Pawellek et al. 2014;
Moór et al. 2015). Kral et al. (2017) estimated this parameter to
be 181 au from an SED fit combined with the blackbody radius
? Based on observations collected at the European Organisation for

Astronomical Research in the Southern Hemisphere under ESO pro-
gramme 198.C-0209.

correction proposed by Pawellek & Krivov (2015) assuming an
equal mixture of ices and astrosilicates. The inclination and the
position angle of the disk were estimated to be 78.0 ± 6.3◦ and
120.1 ± 3.2◦ by Moór et al. (2015) from the fit of a geometri-
cal disk model to Herschel/PACS images. Pawellek et al. (2014)
estimated an index for the size distribution of the dust grains
of 4.01 ± 0.49, which is consistent with predictions from col-
lisional cascade models (e.g., Dohnanyi 1969; Thébault & Wu
2008; Krivov et al. 2013).

The age estimate of the system is quite uncertain with a
range of 300–900 Myr (Konopacky et al. 2016b), translating
into a mass range for the brown dwarf companion of 15–45 MJ.
Thanks to the large stellar proper motion and the high astromet-
ric accuracy of the GPI instrument, Konopacky et al. (2016b)
were able to confirm that the companion is physically bound to
HR 2562 using observations taken one month apart. Although
the limited orbital coverage prevent them from performing an
orbital analysis of the companion, they noted that its location
is compatible with an orbital plane coplanar with the debris
disk with a projected separation (∼20 au) interior to the debris
belt. Together with the HD 206893 system (Milli et al. 2017),
HR 2562 therefore represents a valuable laboratory for studying
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Table 1. Observing log.

UT date ε (′′) τ0 (ms) AM start/end Mode Bands DIT (s)×Nfr ∆PA (◦) SR

2016/12/12 1.6–2.2 2 1.23–1.25 IRDIFS Y J+H 16(64) × 256(64) 28.1 0.30–0.53
2017/02/07 0.4–0.9 4–8 1.24–1.26 IRDIFS Y J+H 16(64) × 320(80) 34.9 0.72–0.92
2017/09/29 0.5–1.0 2–4 1.39–1.26 IRDIFS_EXT Y JH+K1K2 48(64) × 100(75) 27.6 0.69–0.87

Notes. The columns provide the observing date, the seeing measured by the differential image motion monitor (DIMM) at 0.5 µm, the associated
coherence time, the airmass (AM) at the beginning and the end of the sequence, the observing mode, the spectral bands, the detector integration
time (DIT) multiplied by the number of frames in the sequence (Nfr), the field of view rotation, and the Strehl ratio measured by the adaptive optics
system at 1.6 µm. For the DIT × Nfr column, the numbers in parentheses are for the IFS data.

the formation of substellar companions in a circumstellar disk
in a higher-mass regime with respect to other known debris
disk systems hosting planetary mass companions (e.g., HR 8799,
β Pic, HD 95086, 51 Eri; Marois et al. 2008, 2010; Lagrange
et al. 2010; Rameau et al. 2013; Macintosh et al. 2015). Recently,
Mesa et al. (2018) reassessed the stellar properties using the
isochrones of Bressan et al. (2012) and a Bayesian determination
approach (see details in Desidera et al. 2015) and found a mass
value similar to previous estimates (1.368 ± 0.018 M�) but a
slightly younger age range of 200–750 Myr.

We present in this paper high-contrast images of HR 2562
obtained with the instrument VLT/SPHERE (Beuzit et al. 2008)
as part of the SpHere INfrared survey for Exoplanets (SHINE,
Chauvin et al. 2017). Our goals are to further characterize
the orbital motion and parameters of HR 2562 B. A spec-
trophotometric analysis of the companion is presented in
Mesa et al. (2018). We describe the observations and the data
reduction (Sect. 2). Subsequently, we use the new astrometry
of HR 2562 B to confirm its companionship and analyze its
orbital motion jointly with the GPI astrometry (Sect. 3). We
subsequently fit the SPHERE and GPI astrometry to derive first
constraints on the companion’s orbit (Sect. 4). We analyze its
potential dynamical interactions with the host-star debris disk
(Sect. 5). Finally, we discuss potential formation scenarios for
the companion, the possibility to estimate its dynamical mass,
and further insights into the system that will be provided by
further astrometric monitoring of the brown dwarf companion
and ALMA observations of the disk.

2. Observations and data analysis

We observed HR 2562 on 2016 December 12, 2017 February 7,
and 2017 September 29 with the SPHERE near-infrared (NIR)
camera IRDIS (Dohlen et al. 2008) and integral field spectrom-
eter IFS (Claudi et al. 2008) simultaneously (Table 1). For the
first two epochs, the IRDIS data were acquired in the H-band
broad-band filter (λH = 1.6255 µm) with the aim to image the
debris disk and IFS in Y J mode (0.95–1.35 µm). As the disk was
not detected with this setup, for the latest epoch, we used the
IRDIFS_EXT mode, that is, IRDIS with the K12 narrow-band
filter pair (λK1 = 2.110 µm and λK2 = 2.251 µm, Vigan et al.
2010) and IFS covering the Y JH bands (0.95–1.65 µm). The star
was imaged with an apodized pupil Lyot coronagraph (Martinez
et al. 2009; Carbillet et al. 2011) of inner working angle 95 mas
(December 2016 and February 2017 data) or 120 mas (Septem-
ber 2017 data). The observing conditions were poor for the first
observation, but the companion could still be detected and its
astrometry extracted from the IRDIS data. Observing condi-
tions were good to average for the second and third epochs.
For calibrating the flux and the centering of the images, we
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Table 1: Observing log.

UT date ε (′′) τ0 (ms) AM start/end Mode Bands DIT (s)×Nfr ∆PA (◦) SR
2016/12/12 1.6–2.2 2 1.23–1.25 IRDIFS Y J+H 16(64)×256(64) 28.1 0.30–0.53
2017/02/07 0.4–0.9 4–8 1.24–1.26 IRDIFS Y J+H 16(64)×320(80) 34.9 0.72–0.92
2017/09/29 0.5–1.0 2–4 1.39–1.26 IRDIFS_EXT Y JH+K1K2 48(64)×100(75) 27.6 0.69–0.87

Notes. The columns provide the observing date, the seeing measured by the differential image motion monitor (DIMM) at 0.5 µm, the
associated coherence time, the airmass (AM) at the beginning and the end of the sequence, the observing mode, the spectral bands, the detector
integration time (DIT) multiplied by the number of frames in the sequence (Nfr), the field of view rotation, and the Strehl ratio measured by the
adaptive optics system at 1.6 µm. For the DIT×Nfr column, the numbers in parentheses are for the IFS data.

isochrones of Bressan et al. (2012) and a Bayesian determina-
tion approach (see details in Desidera et al. 2015) and found a
mass value similar to previous estimates (1.368±0.018 M�) but
a slightly younger age range of 200–750 Myr.

We present in this paper high-contrast images of HR 2562
obtained with the instrument VLT/SPHERE (Beuzit et al. 2008)
as part of the SpHere INfrared survey for Exoplanets (SHINE,
Chauvin et al. 2017). Our goals are to further characterize the
orbital motion and parameters of HR 2562 B. A spectropho-
tometric analysis of the companion is presented in Mesa et al.
(2017). We describe the observations and the data reduction
(Sect. 2). Subsequently, we use the new astrometry of HR 2562 B
to confirm its companionship and analyze its orbital motion
jointly with the GPI astrometry (Sect. 3). We subsequently fit
the SPHERE and GPI astrometry to derive first constraints on
the companion’s orbit (Sect. 4). We analyze its potential dynam-
ical interactions with the host-star debris disk (Sect. 5). Finally,
we discuss potential formation scenarios for the companion, the
possibility to estimate its dynamical mass, and further insights
into the system that will be provided by further astrometric mon-
itoring of the brown dwarf companion and ALMA observations
of the disk.

2. Observations and data analysis

We observed HR 2562 on 2016 December 12, 2017 February 7,
and 2017 September 29 with the SPHERE near-infrared (NIR)
camera IRDIS (Dohlen et al. 2008) and integral field spec-
trometer IFS (Claudi et al. 2008) simultaneously (Table 1). For
the first two epochs, the IRDIS data were acquired in the H-
band broad-band filter (λH = 1.6255 µm) with the aim to image
the debris disk and IFS in Y J mode (0.95–1.35 µm). As the disk
was not detected with this setup, for the latest epoch, we used
the IRDIFS_EXT mode, that is, IRDIS with the K12 narrow-
band filter pair (λK1 = 2.110 µm and λK2 = 2.251 µm, Vigan et al.
2010) and IFS covering the Y JH bands (0.95–1.65 µm). The star
was imaged with an apodized pupil Lyot coronagraph (Carbillet
et al. 2011; Martinez et al. 2009) of inner working angle 95 mas
(Dec 2016 and Feb 2017 data) or 120 mas (Sept 2017 data). The
observing conditions were poor for the first observation, but the
companion could still be detected and its astrometry extracted
from the IRDIS data. Observing conditions were good to av-
erage for the second and third epochs. For calibrating the flux
and the centering of the images, we acquired at the beginning
and end of the sequences unsaturated non-coronagraphic images
of the star (hereafter point-spread function or PSF) and corona-
graphic images with four artificial crosswise replica of the star
(Langlois et al. 2013). For the third sequence, the stellar replica
were used for the whole sequence to minimize the centering er-
rors in the astrometric error budget. Other calibration data (sky

BBH

2017 Feb 7

E

N

 0.5"

17 au

+

K1+K2

2017 Sept 29

+

Fig. 1: SPHERE/IRDIS TLOCI images of HR 2562 obtained
in the broad H-band filter (λH = 1.6255 µm, left) and with
the combination of the narrow-band K12 filter pair images
(λK1 = 2.110 µm, λK2 = 2.251 µm, right). The central regions of
the images were numerically masked out to hide bright stellar
residuals. The white crosses indicate the location of the star.

backgrounds, darks, detector flats) were obtained after the obser-
vations or during the daytime.

The data were reduced with the SPHERE Data Center1

pipeline (Delorme et al. 2017), which uses the Data Reduction
and Handling software (v0.15.0, Pavlov et al. 2008) and addi-
tional routines for the IFS data reduction (Mesa et al. 2015).
The pipeline corrects for the cosmetics and instrument distortion,
performs the wavelength calibration, and extracts the IFS im-
age cubes, registers the frames, and normalizes their flux. Then,
we sorted the frames using visual inspection and the statistics
of their flux and selected about 60% to 90% of the best frames
according to the data set. For the second IRDIS data set, we sub-
sequently binned it temporally by a factor of two to avoid long
computing times during the data post-processing while keep-
ing the azimuthal smearing of the companion negligible. After
these steps, for the IRDIS science cubes, we were left with 159,
129, and 92 frames, respectively. Finally, the data were analyzed
with a consortium image processing pipeline (Galicher et al.,
subm.). We show in Fig. 1 median-collapsed contrast IRDIS im-
ages obtained with Template Locally Optimized Combination
of Images algorithm (TLOCI, Marois et al. 2014). For the IFS
data, only the two last data sets could be used for extracting the
companion astrometry. For the data analysis, we kept 63 and 50
frames, respectively.

The known brown dwarf companion is detected at all epochs.
Its astrometry was measured using TLOCI applied to each spec-
tral channel of the science cubes separately. To attenuate the
stellar residuals in an image, TLOCI subtracts from the image

1 http://sphere.osug.fr/spip.php?rubrique16&lang=en
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Fig. 1. SPHERE/IRDIS TLOCI images of HR 2562 obtained in the
broad H-band filter (λH = 1.6255 µm, left) and with the combination
of the narrow-band K12 filter pair images (λK1 = 2.110 µm, λK2 =
2.251 µm, right). The central regions of the images were numerically
masked out to hide bright stellar residuals. The white crosses indicate
the location of the star.

acquired at the beginning and end of the sequences unsaturated
non-coronagraphic images of the star (hereafter point-spread
function or PSF) and coronagraphic images with four artifi-
cial crosswise replica of the star (Langlois et al. 2013). For
the third sequence, the stellar replica were used for the whole
sequence to minimize the centering errors in the astrometric
error budget. Other calibration data (sky backgrounds, darks,
detector flats) were obtained after the observations or during the
daytime.

The data were reduced with the SPHERE Data Center1

pipeline (Delorme et al. 2017), which uses the Data Reduction
and Handling software (v0.15.0; Pavlov et al. 2008) and addi-
tional routines for the IFS data reduction (Mesa et al. 2015).
The pipeline corrects for the cosmetics and instrument distor-
tion, performs the wavelength calibration, and extracts the IFS
image cubes, registers the frames, and normalizes their flux.
Then, we sorted the frames using visual inspection and the statis-
tics of their flux and selected about 60% to 90% of the best
frames according to the data set. For the second IRDIS data
set, we subsequently binned it temporally by a factor of two
to avoid long computing times during the data post-processing
while keeping the azimuthal smearing of the companion negligi-
ble. After these steps, for the IRDIS science cubes, we were left
with 159, 129, and 92 frames, respectively. Finally, the data were
analyzed with a consortium image processing pipeline (Galicher
et al. 2018). We show in Fig. 1 median-collapsed contrast IRDIS
images obtained with Template Locally Optimized Combination
of Images algorithm (TLOCI; Marois et al. 2014). For the IFS
data, only the two last data sets could be used for extracting

1 http://sphere.osug.fr/spip.php?rubrique16&lang=en
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Table 2. SPHERE astrometry relative to the star of HR 2562 B.

Epoch Filter ρ (mas) PA (deg) ∆RA (mas) ∆Dec (mas) Pixel scale (mas/pix) North correction angle (◦)

IRDIS
2016.95 H 637.8 ± 6.4 297.81 ± 0.54 −564.1 ± 4.9 297.6 ± 4.1 12.251 ± 0.009 −1.808 ± 0.043
2017.10 H 644.0 ± 2.3 297.82 ± 0.19 −569.6 ± 1.8 300.5 ± 1.4 12.251 ± 0.009 −1.712 ± 0.058
2017.75 K1 661.2 ± 1.3 297.97 ± 0.16 −583.9 ± 1.1 310.1 ± 0.8 12.267 ± 0.009 −1.735 ± 0.043
2017.75 K2 658.9 ± 1.6 298.08 ± 0.17 −581.4 ± 1.2 310.2 ± 1.0 12.263 ± 0.009 −1.735±0.043

IFS
2017.10 Y J 643.8 ± 3.2 297.51 ± 0.28 −571.0 ± 2.7 297.4 ± 1.8 7.46 ± 0.02 −102.19 ± 0.11
2017.75 Y JH 657.5 ± 2.6 297.65 ± 0.21 −582.4 ± 2.1 305.1 ± 1.5 7.46 ± 0.02 −102.22 ± 0.11

Notes. The astrometric error bars were derived assuming an error budget including the measurement and systematic errors. The uncertainties in the
estimation of the location of the star were derived to be 2.7 and 0.94 mas for the December 2016 and February 2017 IRDIS data sets, respectively.
For the February 2017 IFS data set, this uncertainty is estimated to be 0.11 mas. The September 2017 data sets were acquired simultaneously with
the satellite spots in the field of view.

the companion astrometry. For the data analysis, we kept 63 and
50 frames, respectively.

The known brown dwarf companion is detected at all epochs.
Its astrometry was measured using TLOCI applied to each spec-
tral channel of the science cubes separately. To attenuate the
stellar residuals in an image, TLOCI subtracts from the image
a model image of the stellar residuals built using the frames
obtained in the same observing sequence. To account for the
local properties of the stellar residuals, this model image or ref-
erence image is computed for each frame in a science cube in
annuli with a width of 1.5 times the full width at half maximum
(FWHM), and divided into sectors. To avoid large photometric
and astrometric biases on putative point sources, the reference
images were built using the best linear combination of the 80
most correlated frames for which the self-subtraction of mock
point sources, modeled using the observed PSF, was at max-
imum 15% (December 2016 data set) and 30% (February and
September 2017 data sets). To accurately estimate the astrometry
and photometry of HR 2562 B while accounting for the TLOCI
biases, we created a science cube with only a mock companion
modeled from the observed PSF inserted at the rough location
(within a pixel accuracy) of the measured companion accounting
for the field-of-view rotation (Galicher & Marois 2011). We then
processed the data with TLOCI assuming the algorithm coeffi-
cients computed for the analysis without the mock companion.
After, the subpixel position and flux of the model companion
image were optimized to minimize the image residuals within
a disk of radius 1.5 FWHM centered on the measured compan-
ion. The astrometry reported in Table 2 was calibrated following
the methods described in Maire et al. (2016). We compared the
IRDIS positions of stars in fields in 47 Tuc and NGC 3603 to
HST positions (A. Bellini, priv. comm.; Khorrami et al. 2016)
to determine the pixel scale and the correction angle to align
the images with the North direction. Since the IFS observations
are performed simultaneously with the IRDIS observations, we
calibrated the IFS data of HR 2562 using the IRDIS calibration
and an additional angle offset accounting for the relative orienta-
tion between the two instrument fields of view. We compared the
TLOCI astrometry to the results from the ANgular DiffeRen-
tial OptiMal Exoplanet Detection Algorithm (ANDROMEDA;
Mugnier et al. 2009; Cantalloube et al. 2015) and a principal
component analysis algorithm (Mesa et al. 2015). All values are
compatible given the error bars and we decided to use the IRDIS
astrometry extracted with TLOCI in the H and K1 bands for the
astrometric and orbital analyses.
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Table 2: SPHERE astrometry relative to the star of HR 2562 B.

Epoch Filter ρ (mas) PA (deg) ∆RA (mas) ∆Dec (mas) Pixel scale (mas/pix) North correction angle (◦)
IRDIS

2016.95 H 637.8±6.4 297.81±0.54 −564.1±4.9 297.6±4.1 12.251±0.009 −1.808±0.043
2017.10 H 644.0±2.3 297.82±0.19 −569.6±1.8 300.5±1.4 12.251±0.009 −1.712±0.058
2017.75 K1 661.2±1.3 297.97±0.16 −583.9±1.1 310.1±0.8 12.267±0.009 −1.735±0.043
2017.75 K2 658.9±1.6 298.08±0.17 −581.4±1.2 310.2±1.0 12.263±0.009 −1.735±0.043

IFS
2017.10 Y J 643.8±3.2 297.51±0.28 −571.0±2.7 297.4±1.8 7.46±0.02 −102.19±0.11
2017.75 Y JH 657.5±2.6 297.65±0.21 −582.4±2.1 305.1±1.5 7.46±0.02 −102.22±0.11

Notes. The astrometric error bars were derived assuming an error budget including the measurement and systematic errors. The uncertainties in
the estimation of the location of the star were derived to be 2.7 and 0.94 mas for the Dec 2016 and Feb 2017 IRDIS data sets, respectively. For the
Feb 2017 IFS data set, this uncertainty is estimated to be 0.11 mas. The Sept 2017 data sets were acquired simultaneously with the satellite spots
in the field of view.

a model image of the stellar residuals built using the frames ob-
tained in the same observing sequence. To account for the lo-
cal properties of the stellar residuals, this model image or ref-
erence image is computed for each frame in a science cube in
annuli with a width of 1.5 times the full width at half maximum
(FWHM), and divided into sectors. To avoid large photometric
and astrometric biases on putative point sources, the reference
images were built using the best linear combination of the 80
most correlated frames for which the self-subtraction of mock
point sources, modeled using the observed PSF, was at maxi-
mum 15% (Dec 2016 data set) and 30% (Feb and Sept 2017 data
sets). To accurately estimate the astrometry and photometry of
HR 2562 B while accounting for the TLOCI biases, we created
a science cube with only a mock companion modeled from the
observed PSF inserted at the rough location (within a pixel ac-
curacy) of the measured companion accounting for the field-of-
view rotation (Galicher & Marois 2011). We then processed the
data with TLOCI assuming the algorithm coefficients computed
for the analysis without the mock companion. After, the sub-
pixel position and flux of the model companion image were op-
timized to minimize the image residuals within a disk of radius
1.5 FWHM centered on the measured companion. The astrome-
try reported in Table 2 was calibrated following the methods de-
scribed in Maire et al. (2016). We compared the IRDIS positions
of stars in fields in 47 Tuc and NGC 3603 to HST positions (A.
Bellini, priv. comm.; Khorrami et al. 2016) to determine the pixel
scale and the correction angle to align the images with the North
direction. Since the IFS observations are performed simultane-
ously with the IRDIS observations, we calibrated the IFS data
of HR 2562 using the IRDIS calibration and an additional angle
offset accounting for the relative orientation between the two in-
strument fields of view. We compared the TLOCI astrometry to
the results from the ANgular DiffeRential OptiMal Exoplanet
Detection Algorithm (ANDROMEDA, Mugnier et al. 2009;
Cantalloube et al. 2015) and a principal component analysis
algorithm (Mesa et al. 2015). All values are compatible given
the error bars and we decided to use the IRDIS astrometry ex-
tracted with TLOCI in the H and K1 bands for the astrometric
and orbital analyses.

3. Astrometric confirmation and orbital motion

We show in Fig. 2 the common proper motion test of the com-
panion. Already considering only the Dec 2016 and Feb 2017
epochs, the companion does not follow the stationary back-

Fig. 2: SPHERE relative astrometry of HR 2562 B (blue points).
The black curve shows its motion if it is a stationary background
object. The black crosses represent the locations at epochs
2017.10 and 2017.75 (see labels on the right side outside the
plot) under the stationary background hypothesis accounting for
the uncertainties in the stellar proper motion and distance. The
GPI astrometry (red points) is shown for comparison. For most
of the data points, the uncertainties are smaller than the size
of the symbols.

ground track at 5.7 σ in right ascension and 5.2 σ in declination.
The addition of the Sept 2017 epoch reveals a significant orbital
motion for the companion (see below) that is not consistent with
the motion expected for a stationary background object.

Subsequently, we combined the SPHERE/IRDIS astrometry
with the GPI data reported in Konopacky et al. (2016b) to ana-
lyze the companion’s orbital motion. The total time baseline of
the measurements represents ∼1.7 yr. With respect to the last
GPI epoch (late Feb 2016), the separation of the companion in
early Feb 2017 increased by ∼25 mas at ∼7–8 σ significance
with a current orbital motion projected in the plane of the sky of
∼25 mas (∼0.85 au) per year, whereas its position angle does not
show any significant variations (see Sect. 4). The strong increase
in separation is too large to be accounted for by small system-
atic errors between the SPHERE and GPI astrometry. The sep-
aration measured in the SPHERE Sept 2017 data confirms the
observed trend (increase of ∼15 mas with respect to Feb 2017).
The large separation increase also rules out a face-on circular
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Fig. 2. SPHERE relative astrometry of HR 2562 B (blue points). The
black curve shows its motion if it is a stationary background object. The
black crosses represent the locations at epochs 2017.10 and 2017.75 (see
labels on the right side outside the plot) under the stationary background
hypothesis accounting for the uncertainties in the stellar proper motion
and distance. The GPI astrometry (red points) is shown for comparison.
For most of the data points, the uncertainties are smaller than the size
of the symbols.

3. Astrometric confirmation and orbital motion

We show in Fig. 2 the common proper motion test of the
companion. Already considering only the December 2016 and
February 2017 epochs, the companion does not follow the sta-
tionary background track at 5.7σ in right ascension and 5.2σ in
declination. The addition of the September 2017 epoch reveals
a significant orbital motion for the companion (see below) that
is not consistent with the motion expected for a stationary
background object.

Subsequently, we combined the SPHERE/IRDIS astrome-
try with the GPI data reported in Konopacky et al. (2016b) to
analyze the companion’s orbital motion. The total time base-
line of the measurements represents ∼1.7 yr. With respect to
the last GPI epoch (late February 2016), the separation of the
companion in early February 2017 increased by ∼25 mas at
∼7–8σ significance with a current orbital motion projected in
the plane of the sky of ∼25 mas (∼0.85 au) per year, whereas
its position angle does not show any significant variations (see
Sect. 4). The strong increase in separation is too large to be
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Fig. 3. LSMC distributions of the six Campbell orbital elements for all the fitted solutions with χ2
red < 2 among 2 000 000 random trials. The

diagrams displayed on the diagonal from top left to lower right represent the 1D histograms for the individual elements (blue: all solutions, red:
solutions compatible with the estimated disk geometry at 3σ and disk cavity size). The off-diagonal diagrams show the correlations between
pairs of orbital elements, with diagrams below and to the left of the diagonal showing all the fitted solutions, and the diagrams above and to
the right of the diagonal only showing solutions which are compatible with the estimated disk geometry and cavity size (see Sect. 5). The linear
color scale in the correlation plots account for the relative local density of orbital solutions. In the histograms, the purple and magenta solid lines
indicate the best χ2 fitted solutions for all solutions and the disk-compatible solutions, respectively. The solid and dashed lines of a given color
show the 50% percentile values and the intervals at 68% (blue: all solutions, red: disk-compatible solutions). The orange ellipses in the i-Ω plots
show the disk inclination and position angle estimated by Moór et al. (2015) at 3σ. The stars in the eccentricity-period diagram for the restricted
solutions (top row, second panel from the left) indicate the configurations tested in the N-body simulations described in Sect. 5 (green: allowed,
orange: excluded).

accounted for by small systematic errors between the SPHERE
and GPI astrometry. The separation measured in the SPHERE
September 2017 data confirms the observed trend (increase of
∼15 mas with respect to February 2017). The large separation
increase also rules out a face-on circular orbit. For the position
angles, we could not exclude small systematic errors between
SPHERE and GPI when considering the 2016 and early 2017 data
points. Nevertheless, the SPHERE September 2017 data point

confirms that the observed evolution for the position angle is
genuine.

4. Orbital fitting

We used a least-square Monte Carlo (LSMC) procedure to fit
the SPHERE and GPI astrometry (Esposito et al. 2013; Maire
et al. 2015). We assumed for the system the Gaia distance and a

A177, page 4 of 13 143



A.-L. Maire et al.: VLT/SPHERE astrometric confirmation and orbital analysis of the brown dwarf companion HR 2562 B

Fig. 4. Temporal evolution
of the separation and posi-
tion angle of HR 2562 B
measured by GPI and
SPHERE. Predicted sepa-
rations and position angles
for 100 randomly selected
orbital solutions in the
upper-right part of Fig. 3
are also shown.

total mass of 1.3 M�. We drew 2 000 000 random realizations of
the astrometric measurements assuming Gaussian distributions
around the nominal values, and then fitted the six Campbell ele-
ments simultaneously using a debugged version of the downhill
simplex AMOEBA algorithm2 (Eastman et al. 2013): orbital period
P, inclination i, longitude of node Ω, argument of periastron pas-
sage ω, and time at periastron passage T0. Initial guesses for
the orbital elements were drawn assuming uniform distributions.
Given the limited orbital coverage of the data, we considered
two cases: (1) no priors on the orbital elements except for the
period (P = 10–2000 yr), and (2) orbits with the same period
prior and coplanar with the debris disk measured with Herschel
(i∼ 78.0 ± 6.3◦, Ω∼ 120.1 ± 3.2◦; Moór et al. 2015). We found
that without any prior, the orbital solutions clearly favor a copla-
nar configuration with the disk. To test the presence of biases in
the fitted eccentricity and time at periastron passage because of
the small covered orbital arc, we used the correction proposed
by Konopacky et al. (2016a) but did not find large differences
between the derived distributions and we decided to keep the
non-corrected distributions for the analysis.

The lower-left part of Fig. 3 shows the histogram distribu-
tions and the correlation diagrams of the orbital parameters for
the case without using the disk measured inclination and posi-
tion angle constraints for all the derived solutions with χ2

red < 2.
The 68% intervals for the parameters are: e∼ 0.09–0.63, i∼ 86–
88◦, Ω∼ 119–126◦. The period is unconstrained. The distribution
for the argument of periastron exhibits two peaks around −25◦
and at ∼175◦. The distribution for the time at periastron passage
shows a very narrow peak in ∼2000 with two broader side peaks
in ∼1940 and ∼2050.

We compared these results with those from a Markov-chain
Monte Carlo (MCMC) tool (Chauvin et al. 2012) assuming uni-
form priors in log P, e, cos i, Ω + ω, ω − Ω, and T0. We found
similar ranges for the inclination, the longitude of node, and the
argument of periastron. However, the MCMC period and time at
periastron distributions are better defined and the corresponding
eccentricity distribution shows a very strong peak close to e = 1.
A high-eccentricity peak is also seen in the LSMC distribution
but significantly weaker. Additional checks showed that the bet-
ter constraints on the period and time at periastron as well as the
strong high-eccentricity peak obtained in the MCMC analysis
are related to the period prior. The high-eccentricity peak feature
can be explained by the almost radial motion without curvature

2 The own built-in routine provided by the Interactive Data Language
(IDL) programming language truncates the stepping scales to floating
point precision, regardless of the input data type.

and the absence of significant change in position angle of the
companion over the time baseline. We also note that this almost
radial motion of the companion results in the well-constrained
orbit plane derived in the orbital fits.

We also used the imorbel online tool3 to apply the small arc
analysis of Pearce et al. (2015). We derived 68% intervals of
0.16+0.02

−0.02 for the dimensionless parameter B and 6.99+3.33
−3.42 deg for

the angle φ between the projected separation and velocity vec-
tors of the companion. Using these values and Figs. 5 and 6 in
Pearce et al. (2015), we can set constraints on the minimum semi-
major axis, minimum eccentricity, and maximum inclination for
the companion. The minimum semi-major axis is 13+1

−2 au at 3σ.
(Quasi-)circular and/or edge-on orbits cannot be excluded. These
constraints are compatible with the LSMC results, but the latter
are more stringent for the inclination.

Moór et al. (2015) derived from a geometrical model fitted to
Herschel/PACS data an average dust radius of 112.1 ± 8.4 au, an
inner hole radius of ∼38 ± 20 au, and an average outer dust radius
of ∼187 ± 20 au. Because of inconsistencies between the fitted
values of the average dust radius between the Herschel/PACS
images and the SED (64 ± 6 au, Moór et al. 2015), Konopacky
et al. (2016b) performed a simultaneous fit of the SED and
Herschel image and derived an inner hole radius of ∼75 au. From
this constraint and assuming a circular orbit for the companion,
Konopacky et al. (2016b) derived an upper mass limit for the
companion of ∼0.24 M�, which is much larger than the upper
limit from evolutionary models (when using an inner hole radius
of 38 au, the value is ∼20 MJ). Konopacky et al. (2016b) propose
that this apparent discrepancy for the companion mass could be
solved if the companion has an eccentric orbit. This hypothesis
is compatible with the results of our orbital analysis, although
new observations are required to obtain robust constraints.

Figure 4 represents the predicted separations and position
angles for 100 randomly selected fitted orbits compatible with
the disk geometry and cavity size constraints (see Sect. 5).
Monitoring the system in subsequent years will be critical for
improving the orbital constraints, especially if orbital curvature
can be measured. We note that, because of the small baseline of
the measurements, the separations of the most extreme orbital
predictions diverge quickly with time after the last SPHERE
epoch and that the maximum difference in separations is already
∼15 mas in early 2019. A significant deviation from linearity
could therefore be measured, that would favor short-period orbits
with non-zero eccentricities over long-period and circular orbits.
If this is the case, the robust rejection of circular orbits will

3 http://drgmk.com/imorbel/
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however require a longer follow-up. If no or small deviation
from linearity is measured, this would reject a few short-period
orbits and bring only little improvement on the derived orbital
elements. We also emphasize that our orbital constraints are pre-
liminary and that robust constraints will be possible once at least
one-third of the complete companion orbit can be monitored.

Finally, we used the methods in Pearce et al. (2014) to test the
scenario of an unseen inner low-mass companion which could
bias the orbital eccentricity of HR 2562 B toward large values
due to the orbital motion that the unseen companion induces
on the host star. For this, we used the period and eccentricity
distributions derived from the orbital fit for the non-restricted
case. Figure 5 shows the mass of a putative inner companion as
a function of the eccentricity of HR 2562 B. Such a compan-
ion would lie at an angular separation of 0.1′′. We estimated the
TLOCI contrast limit in the SPHERE/IRDIS February 2017 data
set at this separation including the coronagraph transmission
(Boccaletti et al. 2018) and the small sample statistics correc-
tion (Mawet et al. 2014) and derived a value of ∼1.6 × 10−3. This
corresponds to a mass of ∼0.1 M� for a system age of 450 Myr
according to the evolutionary and atmospheric models of Baraffe
et al. (2003, 2015). Thus, we can conclude that if HR 2562 B has
an eccentricity larger than ∼0.6, this eccentricity is genuine and
does not result from an unseen low-mass inner companion. For
smaller eccentricities, we cannot exclude an unseen inner com-
panion as potential origin. As discussed in Mesa et al. (2018),
there is no clear evidence for binarity of the host star, although
additional observations are required to definitely rule out this
hypothesis.

5. Disk-companion dynamical analysis

5.1. Empirical and numerical dynamical analysis

The positions we observed for HR 2562 B represent a very small
part of its orbit, and the orbital fit is thus not able to give strong
constraints. Konopacky et al. (2016b) showed that the companion
mass is consistent with a stirring of the dust up to the outer edge
of the disk given the constraints on the system age. By simulating
dynamical interactions between the companion and the debris
disk, we can further constrain the companion’s orbit by removing
solutions that do not match the observational constraints on the
disk (e.g., measured cavity size, resolved image).

A word of caution about the accuracy on the disk parame-
ters estimated by Moór et al. (2015) is needed here as the disk
is only marginally resolved in the Herschel data because of a
large instrument PSF. The Herschel constraints must therefore
be treated with caution, especially for the size of the cavity. The
fact that the disk is not detected in the SPHERE images, despite
being highly inclined, indicates a low surface brightness in the
NIR, which in turn suggests a spatially extended disk.

The distribution of the relative inclination of the compan-
ion orbit to the debris disk indicates that they are coplanar at
the ∼1.5-σ level (Fig. 6). Therefore, we restricted our problem
to orbits coplanar with the disk. We checked that a small mis-
alignment of 20◦ between the companion orbit and the disk plane
has little influence on the carving of the disk by the companion
(Appendix A).

N-body simulations being time consuming, we first used
empirical laws to obtain rough estimates of the parameter
space of the orbital solutions compatible with the estimated
disk cavity radius. The only relevant orbital parameters are the
semi-major axis a (or, equivalently, the period P) and the eccen-
tricity e. Given these two parameters, we used the formulae in

Fig. 5. Mass (in solar masses) of an unseen inner companion that could
bias the orbital eccentricity measured for HR 2562 B for the unrestricted
case (lower-left part of Fig. 3) compared to the SPHERE/IRDIS detec-
tion limit at the separation predicted for this putative companion (purple
line, see text).

Fig. 6. Relative inclination of HR 2562 B with respect to the debris
disk from the unrestricted orbital fit given the constraints in Moór et al.
(2015). The red solid and dashed lines show the 50% percentile value
and the interval at 68%, the green solid line shows the best-fit solution,
and the purple dotted line indicates the 1σ uncertainty on the inclination
estimate in Moór et al. (2015).

Wisdom (1980) and Mustill & Wyatt (2012) to compute the size
of the gap opened by a companion following the approach of
Lazzoni et al. (2018). Unfortunately, the constraints on the disk
gap radius are rather blurry, from 38 ± 20 au to about 75 au. If
we suppose that the disk gap radius is 75 au, we can still exclude
a posteriori a large part of the orbital fit results, as represented in
the eccentricity-period panels in Fig. 3.

To test the validity of the empirical results, we then used the
symplectic N-body code SWIFT_RMVS3 (Levison & Duncan
1994) to simulate the disk dynamics. The code does not simu-
late collisions between particles. For the initial parameters of the
particles, we assumed 10 000 particles with a uniform distribu-
tion for their distance to the star between 1 and 200 au, hence
their surface density is inversely proportional to their distance.
Their eccentricity and their relative inclination to the disk ir were
drawn assuming uniform priors in eccentricity between 0 and
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Fig. 7: N-body simulated images of the HR 2562 system after
100 Myr of evolution assuming a coplanar circular orbit for the
companion with semi-major axes 30 au (left) and 60 au (right).
The blue solid line shows the companion orbit and the red dashed
line the maximum gap radius allowed by the observations.

late collisions between particles. For the initial parameters of the
particles, we assumed 10 000 particles with a uniform distribu-
tion for their distance to the star between 1 and 200 au, hence
their surface density is inversely proportional to their distance.
Their eccentricity and their relative inclination to the disk ir were
drawn assuming uniform priors in eccentricity between 0 and
0.05 and in sin(ir) between 0 and 2◦, respectively. We finally set
the mass of the companion to 30 MJ. We checked with additional
simulations that the mass assumed for the companion has little
effect on the disk properties within the constraints from evolu-
tionary models. The revolution of a companion within a debris
disk is expected to first cause a gap in the dust distribution, that
will be completely formed after 10 000 companion revolutions
(see e.g., Holman & Wiegert 1999), and then the propagation of
a spiral structure towards the outer edge of the disk, that will be-
come more and more tightly wound because of the disk’s secular
precession and will eventually disappear (Wyatt 2005). The age
of the system is not well constrained either; Konopacky et al.
(2016b) found estimates from 180 Myr to 1.6 Gyr in the litera-
ture (Asiain et al. 1999; Rhee et al. 2007; Casagrande et al. 2011;
Moór et al. 2011; Pace 2013; Moór et al. 2015), but concluded
on an age range of 300–900 Myr. Mesa et al. (2017) determined
a younger age upper limit of 750 Myr. Simulating a debris disk
interacting with a companion for several hundred million years
requires significant computing time; we therefore calculated the
typical timescale τ of the dissipation of the wave from Wyatt
(2005). We then set the duration of our simulations to 100 Myr
accordingly. This duration is supposed to correspond to a steady
state. In fact, simulations revealed that the disk undergoes prac-
tically no change from an age of 10 Myr.

We first performed simulations setting the companion eccen-
tricity to zero. According to the orbital fit, such orbits are likely
to have a semi-major axis between 20 and 60 au, with a stronger
probability between 20 and 30 au. On the other hand, the empiri-
cal gap-opening formula from Wisdom (1980) predicts that if the
cavity radius is 75 au, the companion semi-major axis has to be
below 50 au. In Fig. 7, we represent the simulation outcome for
a circular orbit of 30 au and 60 au. As predicted, the former con-
figuration is compatible with the observations, while the latter
configuration is not: the gap would be too extended. For semi-
major axes smaller than 50 au, we note that the disk would not be
cleared out to the largest allowed inner cavity, which could sug-
gest the presence of an additional companion beyond the orbit of
HR 2562 B responsible for sculpting the disk. From the AMES-
COND detection limits in Mesa et al. (2017), we can exclude gi-
ant planet companions with projected separations beyond 40 au

Fig. 8: As in Fig. 7 but for eccentric orbits of the companion.
Left: a = 20 au, e = 0.8. Right: a = 40 au, e = 0.4. The diagrams
have different horizontal and vertical image cuts with respect to
Fig. 7.

more massive than 5 MJ (200 Myr), 8 MJ (450 Myr), and 10 MJ
(750 Myr). For projected separations beyond 60 au, the detec-
tion limits are >3 MJ (200 Myr), >5 MJ (450 Myr) and >6 MJ
(750 Myr).

We then considered eccentric orbits. Figure 8 shows the sim-
ulation results for two configurations: a = 20 au and e = 0.8,
and a = 40 au and e = 0.4. Because of the cavity’s eccentricity,
whether the outcome of a simulation matches the observations
or not is not as obvious as in the circular case. As a consequence,
the border between the parameter spaces of the orbital solutions
compatible with the disk cavity constraints and those excluded
is not well defined but is blurry. This has to be kept in mind
when using the empirical gap formula for eccentric orbits from
Lazzoni et al. (2018) to exclude orbital solutions (see top row of
Fig. 3, second panel from the left).

5.2. Comparison to Herschel data

Finally, we compared the N-body images of the two simulated
configurations compatible with the estimated disk cavity to the
Herschel/PACS image at 70 µm from Moór et al. (2015). We as-
sumed that the population of simulated bodies is, at first order,
a good tracer of the dust grains probed by Herschel. After ade-
quately orienting the disk plane in the simulated images, we as-
sumed a radial temperature profile for the dust grains (see Eq. (3)
in Backman & Paresce 1993) and that the dust grains emit like
black bodies. The temperatures predicted for the dust grains are
∼370 K at 1 au, 120 K at 10 au, and 40 K at 100 au. For the sur-
face density particles, we recall that it is set at the beginning of
the N-body simulations and is inversely proportional to the dis-
tance to the star. Subsequently, we used the derived temperatures
to weight the contributions to the flux density of the individual
particles using Planck’s law. To create an image, we summed
pixel by pixel all the individual contributions from particles in a
column subtended by a pixel and each resulting image was con-
volved with the Herschel PSF.

When comparing the synthetic Herschel images to the mea-
sured data, we noted a large flux ratio between the inner and
outer parts of the disk in the simulated images, the likes of which
is not measured in the data. This feature in the simulated im-
ages appears because the inner disks, even small or with low
density, are the main contributors to the disk emission. It is ex-
pected that an inner disk should be depleted in an old debris disk,
such as HR 2562, because of the “inside-out” evolution of the
dust grains (e.g., Kenyon & Bromley 2008). Briefly, large plan-
etesimals will progressively disappear through collisions and the
production of smaller and smaller dust grains. This evolution is
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Fig. 7. N-body simulated images of the HR 2562 system after 100 Myr
of evolution assuming a coplanar circular orbit for the companion with
semi-major axes 30 au (left) and 60 au (right). The blue solid line shows
the companion orbit and the red dashed line the maximum gap radius
allowed by the observations.

0.05 and in sin(ir) between 0◦ and 2◦, respectively. We finally set
the mass of the companion to 30 MJ. We checked with additional
simulations that the mass assumed for the companion has little
effect on the disk properties within the constraints from evolu-
tionary models. The revolution of a companion within a debris
disk is expected to first cause a gap in the dust distribution, that
will be completely formed after 10 000 companion revolutions
(see e.g., Holman & Wiegert 1999), and then the propagation of
a spiral structure towards the outer edge of the disk, that will
become more and more tightly wound because of the disk’s sec-
ular precession and will eventually disappear (Wyatt 2005). The
age of the system is not well constrained either; Konopacky et al.
(2016b) found estimates from 180 Myr to 1.6 Gyr in the litera-
ture (Asiain et al. 1999; Rhee et al. 2007; Casagrande et al. 2011;
Moór et al. 2011, 2015; Pace 2013), but concluded on an age
range of 300–900 Myr. Mesa et al. (2018) determined a younger
age upper limit of 750 Myr. Simulating a debris disk interact-
ing with a companion for several hundred million years requires
significant computing time; we therefore calculated the typical
timescale τ of the dissipation of the wave from Wyatt (2005).
We then set the duration of our simulations to 100 Myr accord-
ingly. This duration is supposed to correspond to a steady state.
In fact, simulations revealed that the disk undergoes practically
no change from an age of 10 Myr.

We first performed simulations setting the companion eccen-
tricity to zero. According to the orbital fit, such orbits are likely
to have a semi-major axis between 20 and 60 au, with a stronger
probability between 20 and 30 au. On the other hand, the
empirical gap-opening formula from Wisdom (1980) predicts
that if the cavity radius is 75 au, the companion semi-major axis
has to be below 50 au. In Fig. 7, we represent the simulation
outcome for a circular orbit of 30 au and 60 au. As predicted, the
former configuration is compatible with the observations, while
the latter configuration is not: the gap would be too extended.
For semi-major axes smaller than 50 au, we note that the disk
would not be cleared out to the largest allowed inner cavity,
which could suggest the presence of an additional companion
beyond the orbit of HR 2562 B responsible for sculpting the
disk. From the AMES-COND detection limits in Mesa et al.
(2018), we can exclude giant planet companions with projected
separations beyond 40 au more massive than 5 MJ (200 Myr),
8 MJ (450 Myr), and 10 MJ (750 Myr). For projected separations
beyond 60 au, the detection limits are >3 MJ (200 Myr), >5 MJ
(450 Myr), and >6 MJ (750 Myr).

We then considered eccentric orbits. Figure 8 shows the
simulation results for two configurations: a = 20 au and e = 0.8,
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Fig. 7: N-body simulated images of the HR 2562 system after
100 Myr of evolution assuming a coplanar circular orbit for the
companion with semi-major axes 30 au (left) and 60 au (right).
The blue solid line shows the companion orbit and the red dashed
line the maximum gap radius allowed by the observations.

late collisions between particles. For the initial parameters of the
particles, we assumed 10 000 particles with a uniform distribu-
tion for their distance to the star between 1 and 200 au, hence
their surface density is inversely proportional to their distance.
Their eccentricity and their relative inclination to the disk ir were
drawn assuming uniform priors in eccentricity between 0 and
0.05 and in sin(ir) between 0 and 2◦, respectively. We finally set
the mass of the companion to 30 MJ. We checked with additional
simulations that the mass assumed for the companion has little
effect on the disk properties within the constraints from evolu-
tionary models. The revolution of a companion within a debris
disk is expected to first cause a gap in the dust distribution, that
will be completely formed after 10 000 companion revolutions
(see e.g., Holman & Wiegert 1999), and then the propagation of
a spiral structure towards the outer edge of the disk, that will be-
come more and more tightly wound because of the disk’s secular
precession and will eventually disappear (Wyatt 2005). The age
of the system is not well constrained either; Konopacky et al.
(2016b) found estimates from 180 Myr to 1.6 Gyr in the litera-
ture (Asiain et al. 1999; Rhee et al. 2007; Casagrande et al. 2011;
Moór et al. 2011; Pace 2013; Moór et al. 2015), but concluded
on an age range of 300–900 Myr. Mesa et al. (2017) determined
a younger age upper limit of 750 Myr. Simulating a debris disk
interacting with a companion for several hundred million years
requires significant computing time; we therefore calculated the
typical timescale τ of the dissipation of the wave from Wyatt
(2005). We then set the duration of our simulations to 100 Myr
accordingly. This duration is supposed to correspond to a steady
state. In fact, simulations revealed that the disk undergoes prac-
tically no change from an age of 10 Myr.

We first performed simulations setting the companion eccen-
tricity to zero. According to the orbital fit, such orbits are likely
to have a semi-major axis between 20 and 60 au, with a stronger
probability between 20 and 30 au. On the other hand, the empiri-
cal gap-opening formula from Wisdom (1980) predicts that if the
cavity radius is 75 au, the companion semi-major axis has to be
below 50 au. In Fig. 7, we represent the simulation outcome for
a circular orbit of 30 au and 60 au. As predicted, the former con-
figuration is compatible with the observations, while the latter
configuration is not: the gap would be too extended. For semi-
major axes smaller than 50 au, we note that the disk would not be
cleared out to the largest allowed inner cavity, which could sug-
gest the presence of an additional companion beyond the orbit of
HR 2562 B responsible for sculpting the disk. From the AMES-
COND detection limits in Mesa et al. (2017), we can exclude gi-
ant planet companions with projected separations beyond 40 au

Fig. 8: As in Fig. 7 but for eccentric orbits of the companion.
Left: a = 20 au, e = 0.8. Right: a = 40 au, e = 0.4. The diagrams
have different horizontal and vertical image cuts with respect to
Fig. 7.

more massive than 5 MJ (200 Myr), 8 MJ (450 Myr), and 10 MJ
(750 Myr). For projected separations beyond 60 au, the detec-
tion limits are >3 MJ (200 Myr), >5 MJ (450 Myr) and >6 MJ
(750 Myr).

We then considered eccentric orbits. Figure 8 shows the sim-
ulation results for two configurations: a = 20 au and e = 0.8,
and a = 40 au and e = 0.4. Because of the cavity’s eccentricity,
whether the outcome of a simulation matches the observations
or not is not as obvious as in the circular case. As a consequence,
the border between the parameter spaces of the orbital solutions
compatible with the disk cavity constraints and those excluded
is not well defined but is blurry. This has to be kept in mind
when using the empirical gap formula for eccentric orbits from
Lazzoni et al. (2018) to exclude orbital solutions (see top row of
Fig. 3, second panel from the left).

5.2. Comparison to Herschel data

Finally, we compared the N-body images of the two simulated
configurations compatible with the estimated disk cavity to the
Herschel/PACS image at 70 µm from Moór et al. (2015). We as-
sumed that the population of simulated bodies is, at first order,
a good tracer of the dust grains probed by Herschel. After ade-
quately orienting the disk plane in the simulated images, we as-
sumed a radial temperature profile for the dust grains (see Eq. (3)
in Backman & Paresce 1993) and that the dust grains emit like
black bodies. The temperatures predicted for the dust grains are
∼370 K at 1 au, 120 K at 10 au, and 40 K at 100 au. For the sur-
face density particles, we recall that it is set at the beginning of
the N-body simulations and is inversely proportional to the dis-
tance to the star. Subsequently, we used the derived temperatures
to weight the contributions to the flux density of the individual
particles using Planck’s law. To create an image, we summed
pixel by pixel all the individual contributions from particles in a
column subtended by a pixel and each resulting image was con-
volved with the Herschel PSF.

When comparing the synthetic Herschel images to the mea-
sured data, we noted a large flux ratio between the inner and
outer parts of the disk in the simulated images, the likes of which
is not measured in the data. This feature in the simulated im-
ages appears because the inner disks, even small or with low
density, are the main contributors to the disk emission. It is ex-
pected that an inner disk should be depleted in an old debris disk,
such as HR 2562, because of the “inside-out” evolution of the
dust grains (e.g., Kenyon & Bromley 2008). Briefly, large plan-
etesimals will progressively disappear through collisions and the
production of smaller and smaller dust grains. This evolution is
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Fig. 8. As in Fig. 7 but for eccentric orbits of the companion. Left:
a = 20 au, e = 0.8. Right: a = 40 au, e = 0.4. The diagrams have different
horizontal and vertical image cuts with respect to Fig. 7.

and a = 40 au and e = 0.4. Because of the cavity’s eccentricity,
whether the outcome of a simulation matches the observations
or not is not as obvious as in the circular case. As a consequence,
the border between the parameter spaces of the orbital solutions
compatible with the disk cavity constraints and those excluded
is not well defined but is blurry. This has to be kept in mind
when using the empirical gap formula for eccentric orbits from
Lazzoni et al. (2018) to exclude orbital solutions (see top row of
Fig. 3, second panel from the left).

5.2. Comparison to Herschel data

Finally, we compared the N-body images of the two simulated
configurations compatible with the estimated disk cavity to the
Herschel/PACS image at 70 µm from Moór et al. (2015). We
assumed that the population of simulated bodies is, at first order,
a good tracer of the dust grains probed by Herschel. After ade-
quately orienting the disk plane in the simulated images, we
assumed a radial temperature profile for the dust grains (see
Eq. (3) in Backman & Paresce 1993) and that the dust grains
emit like black bodies. The temperatures predicted for the dust
grains are ∼370 K at 1 au, 120 K at 10 au, and 40 K at 100 au. For
the surface density particles, we recall that it is set at the begin-
ning of the N-body simulations and is inversely proportional to
the distance to the star. Subsequently, we used the derived tem-
peratures to weight the contributions to the flux density of the
individual particles using Planck’s law. To create an image, we
summed pixel by pixel all the individual contributions from par-
ticles in a column subtended by a pixel and each resulting image
was convolved with the Herschel PSF.

When comparing the synthetic Herschel images to the mea-
sured data, we noted a large flux ratio between the inner and
outer parts of the disk in the simulated images, the likes of
which is not measured in the data. This feature in the sim-
ulated images appears because the inner disks, even small or
with low density, are the main contributors to the disk emis-
sion. It is expected that an inner disk should be depleted in an
old debris disk, such as HR 2562, because of the “inside-out”
evolution of the dust grains (e.g., Kenyon & Bromley 2008).
Briefly, large planetesimals will progressively disappear through
collisions and the production of smaller and smaller dust grains.
This evolution is must faster in the innermost regions because of
the shorter dynamical timescales. This results in a large pop-
ulation of small grains close to the star that will be expelled
from the inner disk by the stellar radiation pressure. Interestingly,
Pawellek et al. (2014) found for HR 2562 a larger minimum grain
size than the blowout-limit grain size, which is consistent with
this scenario. In fact, no warm disk component was identified by
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(a)
(b) (c)

(d) (e) (f)

Fig. 9: (a) Geometrical fit to the Herschel/PACS image at 70 µm adapted from Moór et al. (2015) shown in panel (d). (b) and
(c) Simulated images consistent with the estimated disk cavity for a circular configuration (a = 30 au, e = 0) and for an eccentric
configuration (a = 40 au, e = 0.4), respectively. (d) Herschel image. (e) and (f) Synthetic Herschel images corresponding to (b) and
(c) (see text).

Table 3: Preliminary orbital parameters of HR 2562 B from the
combined astrometric and dynamical analysis.

Parameter Unit Median Lower Upper χ2
min

P yr 143 88 229 109
a au 30 22 41 25
e 0.21 0.08 0.50 0.27
i ◦ 87 85 88 86
Ω ◦ 121 119 124 122
ω ◦ −24 −92 83 −24
T0 2083 2020 2130 2082

Notes. The parameters are the period, semi-major axis, eccentricity, in-
clination, longitude of node, argument of periastron, and time at perias-
tron.

must faster in the innermost regions because of the shorter dy-
namical timescales. This results in a large population of small
grains close to the star that will be expelled from the inner disk
by the stellar radiation pressure. Interestingly, Pawellek et al.
(2014) found for HR 2562 a larger minimum grain size than
the blowout-limit grain size, which is consistent with this sce-
nario. In fact, no warm disk component was identified by Moór
et al. (2015) from the analysis of the target SED. The fact that in-
ner disks persist in our N-body simulations stems from the non-
inclusion of collisions between bodies. Since the Herschel image
and the SED of HR 2562 do not show evidence for an inner disk,
we removed the contribution from the simulated inner disks to
obtain the synthetic Herschel images shown in Fig. 9. We find
that a circular orbit and a very eccentric orbit for the companion
produce similar synthetic disk images and therefore cannot be
distinguished.

5.3. Effects on derived orbital parameters

We used the constraints on the companion chaotic zone and the
3-σ estimates on the disk inclination and position angle to fur-
ther refine the orbital solutions derived in the lower-left part of
Fig. 3 (Sect. 4). The strong high-eccentricity peak is strongly
attenuated in the resulting distribution because of the removal
of non-coplanar orbits. These additional constraints allow to
sharpen the histogram distributions as shown in the upper-right
part of the figure, especially for the period and the time at peri-
astron passage. The 68% intervals are (Table 3): P∼ 88–229 yr,
e∼ 0.08–0.50, i∼ 85–88◦, Ω∼ 119–124◦, T0 = 2020–2130, and
a∼ 22–41 au (distribution not shown for the latter parameter).
The distribution of arguments of periastron shows now only a
marginal peak around −30◦.

5.4. Shaping of the disk cavity by HR 2562 B

We finally represent in Fig. 10 the distribution of the outer extent
of the clearing zone associated with the orbits compatible with
the disk observations assuming the relations in Lazzoni et al.
(2018). We note that the disk cavity estimate of 38 au from Moór
et al. (2015) is located at the low end of the distribution. We
thus conclude that the current orbit of the companion is likely
responsible for the shaping of the gap. If the companion separa-
tion continues to increase in the coming years without any sign
of deceleration, this would mean that the actual disk cavity edge
is located further than 38 au. Depending on the outcome of fur-
ther astrometric monitoring of the companion, the analysis of
Moór et al. (2015) may or may not be rejected because of the
large uncertainty they estimated for the inner edge of the debris
belt (±20 au).
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Fig. 9. Panel a: geometrical fit to the Herschel/PACS image at 70 µm adapted from Moór et al. (2015) shown in panel d. Panels b and c: simulated
images consistent with the estimated disk cavity for a circular configuration (a = 30 au, e = 0) and for an eccentric configuration (a = 40 au, e = 0.4),
respectively. Panel d: Herschel image. Panels e and f: synthetic Herschel images corresponding to panels b and c (see text).

Moór et al. (2015) from the analysis of the target SED. The fact
that inner disks persist in our N-body simulations stems from the
non-inclusion of collisions between bodies. Since the Herschel
image and the SED of HR 2562 do not show evidence for an
inner disk, we removed the contribution from the simulated inner
disks to obtain the synthetic Herschel images shown in Fig. 9.
We find that a circular orbit and a very eccentric orbit for the
companion produce similar synthetic disk images and therefore
cannot be distinguished.

5.3. Effects on derived orbital parameters

We used the constraints on the companion chaotic zone and the
3-σ estimates on the disk inclination and position angle to fur-
ther refine the orbital solutions derived in the lower-left part of
Fig. 3 (Sect. 4). The strong high-eccentricity peak is strongly
attenuated in the resulting distribution because of the removal
of non-coplanar orbits. These additional constraints allow to
sharpen the histogram distributions as shown in the upper-right
part of the figure, especially for the period and the time at
periastron passage. The 68% intervals are (Table 3): P∼ 87–
227 yr, e∼ 0.07–0.49, i∼ 85–88◦,Ω∼ 119–124◦, T0 = 1934–2111,
and a∼ 22–41 au (distribution not shown for the latter parame-
ter). The distribution of arguments of periastron shows now only
a marginal peak around −30◦. The distribution of time at perias-
tron exhibits two peaks, one sharp peak in ∼2000 and a broader
peak in ∼2080.

5.4. Shaping of the disk cavity by HR 2562 B

We finally represent in Fig. 10 the distribution of the outer extent
of the clearing zone associated with the orbits compatible with
the disk observations assuming the relations in Lazzoni et al.
(2018). We note that the disk cavity estimate of 38 au from
Moór et al. (2015) is located at the low end of the distribu-
tion. We thus conclude that the current orbit of the companion
is likely responsible for the shaping of the gap. If the companion

Table 3. Preliminary orbital parameters of HR 2562 B from the
combined astrometric and dynamical analysis.

Parameter Unit Median Lower Upper χ2
min

P yr 141 87 227 159
a au 30 22 41 32
e 0.22 0.07 0.49 0.19
i ◦ 87 85 88 86
Ω ◦ 121 119 124 120
ω ◦ −24 −88 82 143
T0 2020 1934 2111 2016

Notes. The parameters are the period, semi-major axis, eccentricity,
inclination, longitude of node, argument of periastron, and time at
periastron.

separation continues to increase in the coming years without any
sign of deceleration, this would mean that the actual disk cavity
edge is located further than 38 au. Depending on the outcome
of further astrometric monitoring of the companion, the analysis
of Moór et al. (2015) may or may not be rejected because of the
large uncertainty they estimated for the inner edge of the debris
belt (±20 au).

6. Discussion

6.1. Formation scenarios for the companion

The fact that the brown dwarf orbit is (quasi-)coplanar with the
debris disk might suggest a formation process in the disk for
the companion, similar to a planet-like scenario. With a mass
ratio to the star of 0.02, the companion seems too massive to
have formed through core accretion (Mizuno 1980; Pollack et al.
1996; Mordasini et al. 2012). Its mass and semi-major axis are
compatible with predictions from disk gravitational instabili-
ties (Boss 1997; Forgan & Rice 2013) and from collapse and
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Fig. 10. Distribution of the outer extent of the clearing zone of
HR 2562 B for the orbital solutions compatible with the disk geome-
try and cavity constraints according to the relations in Lazzoni et al.
(2018). The vertical lines show the disk cavity estimates of Moór et al.
(2015) and Konopacky et al. (2016b).

fragmentation of a dense molecular cloud (Bate 2009). In partic-
ular, a large companion eccentricity could be a natural outcome
from a formation process by collapse with fragmentation of a
dense molecular cloud, whereas it could be more difficult to
explain it in a disk gravitational instability scenario (but see
discussion below). In the following, we further discuss a disk
gravitational instability scenario as a potential formation process
of HR 2562 B.

We applied a disk gravitational instability model (Klahr
et al., in prep.), which predicts the masses of fragments that
could form in situ following this mechanism as a function of
the semi-major axis to the star. The underlying fragmentation
criteria are presented in Mordasini et al. (2010) and Janson et al.
(2011) and have been confirmed in local high-resolution 3D sim-
ulations (Baehr et al. 2017). Briefly, fragments can form if they
satisfy the Toomre criterion for self-gravitating clumps (Toomre
1964) and if they are able to cool faster than the local Keplerian
timescale. The model inputs include the stellar luminosity at
the zero age main sequence point and the stellar metallicity. We
estimated the former parameter from the isochrones of Bressan
et al. (2012) and assumed for the latter parameter the value of
0.10 ± 0.06 dex derived in Mesa et al. (2018). The results are
shown in Fig. 11. We see that fragments less massive than 4 MJ
cannot be formed at any distance to the star. HR 2562 B appears
too close and too massive to have formed in situ via disk
gravitational instabilities. If we assume its nominal mass and
that this mass originates from the formation process alone,
it would require a very massive primordial disk with mass
∼40% of the stellar mass. Such a massive primordial disk
appears unlikely, because the corresponding Toomre parameter
would be <0.2. These results combined together suggest that
the companion could have formed at a larger distance to the
star from a less massive fragment and subsequently migrated
inward to its current location while still accreting mass from the
surrounding disk material.

If the companion has a large eccentricity, this property
might be difficult to explain in a disk gravitational instability
scenario because disk interactions tend to damp the eccen-
tricities of orbiting companions. This might imply subsequent
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Fig. 10: Distribution of the outer extent of the clearing zone of
HR 2562 B for the orbital solutions compatible with the disk ge-
ometry and cavity constraints according to the relations inLaz-
zoni et al. (2018). The vertical lines show the disk cavity esti-
mates ofMoór et al. (2015) (gray) and Konopacky et al. (2016b)
(black).

6. Discussion

6.1. Formation scenarios for the companion

The fact that the brown dwarf orbit is (quasi-)coplanar with the
debris disk might suggest a formation process in the disk for
the companion, similar to a planet-like scenario. With a mass
ratio to the star of 0.02, the companion seems too massive to
have formed through core accretion (Mizuno 1980; Pollack et al.
1996; Mordasini et al. 2012). Its mass and semi-major axis are
compatible with predictions from disk gravitational instabilities
(Boss 1997; Forgan & Rice 2013) and from collapse and frag-
mentation of a dense molecular cloud (Bate 2009). In particu-
lar, a large companion eccentricity could be a natural outcome
from a formation process by collapse with fragmentation of a
dense molecular cloud, whereas it could be more di�cult to ex-
plain it in a disk gravitational instability scenario (but see dis-
cussion below). In the following, we further discuss a disk grav-
itational instability scenarioas a potential formation process of
HR 2562 B.

We applied a disk gravitational instability model (Klahr et
al., in prep.), which predicts the masses o� ragments that could
form in-situ following this mechanism as a function of the semi-
major axis to the star. The underlying fragmentation criteria are
presented inMordasini et al. (2010) and Janson et al. (2011)
and have been confirmed in local high-resolution 3D simulations
(Baehr et al.2017). Briefly, fragments can form if they satisfy the
Toomre criterion for self-gravitating clumps (Toomre 1964) and
if they are able to cool faster than the local Keplerian timescale.
The model inputs include the stellar luminosity at the zero age
main sequence point and the stellar metallicity. We estimated the
former parameter from the isochrones ofBressan et al. (2012)
and assumed for the latter parameter the value of 0.10±0.06 dex
derived inMesa et al. (2017). The results are shown in Fig.11.
We see that fragments less massive than 4MJ cannot be formed
at any distance to the star. HR 2562 B appears too close and too
massive to have formed in-situ via disk gravitational instabili-
ties. If we assume its nominal mass and that this mass originates
from the formation process alone, it would require a very mas-
sive primordial disk with mass�40% of the stellar mass. Such
a massive primordial disk appears unlikely, because the corre-

Fig. 11: Masses o� ragments that could be produced in-situ via
disk gravitational instabilities for HR 2562 as a function of the
semi-major axis to the star (blue area). Fragments with masses
above the curve labeled “Cooling criterion” cannot cool e�-
ciently enough, while those below the curve labeled “Toomre
criterion” do not satisfy the Toomre criterion. The location of
HR 2562 B is indicated with the red square with error bars. The
primordial disk masses required to support fragments of a given
mass are shown with black dashed curves for several masses ex-
pressed as fractions of the stellar mass. The purple vertical solid
line indicates the inner radius of the debris disk fromKonopacky
et al. (2016b).

sponding Toomre parameter would be<0.2. These results com-
bined together suggest that the companion could have formed at
a larger distance to the star from a less massive fragment and
subsequently migrated inward to its current location while still
accreting mass from the surrounding disk material.

If the companion has a large eccentricity, this property might
be di�cult to explain in a disk gravitational instability scenario
because disk interactions tend to damp the eccentricities of orbit-
ing companions. This might imply subsequent dynamical inter-
actions with another body to stir the eccentricity of HR 2562 B.
Nevertheless, we note that for very massive substellar compan-
ions (>4–5 MJ) with low inclinations to the disk plane (<10�),
numerical simulations have shown that interactions with a proto-
planetary disk can stir their eccentricity (Papaloizou et al.2001;
Kley & Dirksen 2006; Bitsch et al. 2013).

6.2. Dynamical constraints on the companion mass

Dynamical mass measurements of young low-mass companions
o�er a powerful and independent way to constrain their pre-
dicted cooling models. These models are currently highly un-
certain at young ages and low masses because of the lack of
observations of suitable benchmark objects. However, they are
commonly used to estimate the mass of directly imaged substel-
lar companions.

We used the equations inLazzoni et al. (2018) to represent
the width of the chaotic zone created by a substellar companion
in units o� ts semi-major axis as a function o� ts mass ratio to
HR 2562 for several orbital eccentricities in Fig.12. The chaotic
zone width is defined as (∆a/a)chaos= (acav − a)/a, where acav is
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Fig. 11. Masses of fragments that could be produced in-situ via disk
gravitational instabilities for HR 2562 as a function of the semi-major
axis to the star (blue area). Fragments with masses above the curve
labeled “Cooling criterion” cannot cool efficiently enough, while those
below the curve labeled “Toomre criterion” do not satisfy the Toomre
criterion. The location of HR 2562 B is indicated with the red square
with error bars. The primordial disk masses required to support frag-
ments of a given mass are shown with black dashed curves for several
masses expressed as fractions of the stellar mass. The purple vertical
solid line indicates the inner radius of the debris disk from Konopacky
et al. (2016b).

dynamical interactions with another body to stir the eccentricity
of HR 2562 B. Nevertheless, we note that for very massive sub-
stellar companions (>4–5 MJ) with low inclinations to the disk
plane (<10◦), numerical simulations have shown that interactions
with a protoplanetary disk can stir their eccentricity (Papaloizou
et al. 2001; Kley & Dirksen 2006; Bitsch et al. 2013).

6.2. Dynamical constraints on the companion mass

Dynamical mass measurements of young low-mass compan-
ions offer a powerful and independent way to constrain their
predicted cooling models. These models are currently highly
uncertain at young ages and low masses because of the lack
of observations of suitable benchmark objects. However, they
are commonly used to estimate the mass of directly imaged
substellar companions.

We used the equations in Lazzoni et al. (2018) to represent
the width of the chaotic zone created by a substellar companion
in units of its semi-major axis as a function of its mass ratio to
HR 2562 for several orbital eccentricities in Fig. 12. The chaotic
zone width is defined as (∆a/a)chaos = (acav − a)/a, where acav is
the cavity radius. For a given chaotic zone width and compan-
ion eccentricity, this plot gives an estimate of the companion
mass. Unfortunately, these two parameters have large uncertain-
ties so the constraints on the companion mass are quite loose
and can be in the stellar regime. If we assume that the compan-
ion is a brown dwarf given the estimates on its spectral properties
and that the cavity is carved exclusively by the current orbit of
the companion4, we see that the latter cannot be on a circular

4 Other phenomena not accounted for in the formulae of Lazzoni et al.
(2018; migration of the companion, instabilities in the primordial disk,
additional bodies in the system) could enlarge the cavity.
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Fig. 12: Width of the chaotic zone (∆a/a)chaos = (acav − a)/a as
a function of the mass ratio to the star of a substellar compan-
ion carving the disk cavity of HR 2562 for several eccentricities
according to the relations in Lazzoni et al. (2018). The vertical
dashed lines delimit the brown dwarf mass regime and the hori-
zontal dashed lines show examples of chaotic zone width for two
(disk cavity radius, companion semi-major axis) couples.

the cavity radius. For a given chaotic zone width and companion
eccentricity, this plot gives an estimate of the companion mass.
Unfortunately, these two parameters have large uncertainties so
the constraints on the companion mass are quite loose and can
be in the stellar regime. If we assume that the companion is a
brown dwarf given the estimates on its spectral properties and
that the cavity is carved exclusively by the current orbit of the
companion4, we see that the latter cannot be on a circular orbit
if the chaotic zone width is larger than ∼0.6. Under the same hy-
potheses, the chaotic zone width has to be smaller than ∼2.5 if
the companion has an eccentricity of 0.8. For non-zero eccentric-
ities, an even more stringent upper limit on the companion mass
can be set if the eccentricity is larger and/or the chaotic zone
width is smaller. For a disk cavity radius of 38 au and a compan-
ion semi-major axis of 20 au, we see that the companion needs
to have a lower eccentricity of ∼0.2, whereas its upper eccentric-
ity is ∼0.3. For a disk cavity radius of 75 au and a companion
semi-major axis of 30 au, the eccentricity constraints are ∼0.4–
0.5. We acknowledge that these results are strongly dependent
on the assumed criterion for the cavity shaping. For comparison,
we show similar diagrams to Fig. 12 in Appendix B based on the
equations of Petrovich (2015) and Regály et al. (2018).

As already discussed in Sect. 4, further astrometric moni-
toring of the companion will be essential to measure inflexions
in its orbital motion that will help to discriminate between an
eccentric short-period orbit and a circular long-period orbit. On
the other hand, disk observations at higher resolutions will be
valuable to refine the estimates of its cavity shape and size (see
Sect. 6.3). Such combined constraints will provide powerful in-
sights into the architecture of the system and the dynamical mass
of the companion.

4 Other phenomena not accounted for in the formulae of Lazzoni et al.
(2018) (migration of the companion, instabilities in the primordial disk,
additional bodies in the system) could enlarge the cavity.

6.3. Constraints on the disk properties from ALMA data

(Sub-)millimeter observations of the HR 2562 disk at high an-
gular resolutions with ALMA will be valuable to further refine
the estimates on the extent and shape of its cavity. Regály et al.
(2018) discuss the potential of ALMA data for analyzing dy-
namical interactions between substellar companions and debris
disks. In particular, they provide a method to estimate the or-
bital eccentricity and mass of a giant planet carving the disk
cavity. This involves measurements of the cavity size and off-
set with respect to the star by ellipse fitting to a given intensity
contour level, which itself depends on the image resolution (the
optimal contour level is larger for poorer resolutions). The ro-
bustness of the empirical relations was checked against the plan-
etesimals’ initial eccentricity and inclination by simulating hot
and cold disks and against the stellar mass and age for ranges
of 0.6–1 Gyr and 0.5–2 M�, respectively. They found relations
for the cavity size and for the cavity center offset with respect
to the star which only depend on the planet/star mass ratio and
the planet eccentricity for eccentric orbits, allowing to break the
degeneracies between these two unknowns. They also show that
the cavity eccentricity cannot be used as a direct proxy for the
planet eccentricity because they are not identical and their rela-
tion is not a monotonic function. A disk cavity can be eccentric
while a perturbing planet orbit is circular. The eccentricity of the
disk cavity is only equal to that of the giant planet perturber for
a narrow range of intermediate planet eccentricities (0.3–0.6 for
a 5-MJ giant planet). Another observable disk feature that could
be suggestive of a large planetary eccentricity outlined by Regály
et al. (2018) would be the detection of an azimuthal brightness
asymmetry or “glow” with a large contrast (up to ∼50% for a
5-MJ planet) located beyond the disk cavity wall and near the
position angle of the planet apastron.

Using the relations for the cavity size and offset with respect
to the star in Regály et al. (2018), we estimated that if these
quantities could be measured with accuracies of ∼10%5, the ec-
centricity and mass ratio to the star of the planet could be as-
sessed with accuracies of ∼20% and ∼40%, respectively. The
stellar mass being constrained with an accuracy of <2% (Mesa
et al. 2017), the dynamical mass estimate of HR 2562 B would
be slightly more accurate than the ∼45–50% uncertainties of the
evolutionary model predictions (Konopacky et al. 2016b; Mesa
et al. 2017) but independent from assumptions on the formation
mechanism and the system age.

Such disk cavity measurements require high-resolution im-
ages. With a diameter of 0.5′′ for the ALMA instrument beam,
the HR 2562 disk cavity would be resolved with ∼4.5 resolu-
tion elements for the smallest diameter estimate of 38×2 au from
Moór et al. (2015), and ∼9 for the largest diameter estimate of
75×2 au from Konopacky et al. (2016b). These resolutions are in
the range of the resolutions for which the methods proposed by
Regály et al. (2018) could be applied. Higher resolutions could
be achieved but at the cost of longer integration times to com-
pensate for the instrument sensitivity loss.

7. Summary

We present VLT/SPHERE observations of the young system of
HR 2562 to redetect and further characterize the orbit of its

5 Limitations to the accuracy of these measurements include the shape
of the instrument beam (an elliptical beam can introduce artifacts in the
images like brightness asymmetries), instrument pointing accuracy, and
the scatter induced by the planet orbital phase.

Article number, page 10 of 14

Fig. 12. Width of the chaotic zone (∆a/a)chaos = (acav−a)/a as a function
of the mass ratio to the star of a substellar companion carving the disk
cavity of HR 2562 for several eccentricities according to the relations
in Lazzoni et al. (2018). The vertical dashed lines delimit the brown
dwarf mass regime and the horizontal dashed lines show examples of
chaotic zone width for two (disk cavity radius, companion semi-major
axis) couples.

orbit if the chaotic zone width is larger than ∼0.6. Under the
same hypotheses, the chaotic zone width has to be smaller than
∼2.5 if the companion has an eccentricity of 0.8. For non-zero
eccentricities, an even more stringent upper limit on the com-
panion mass can be set if the eccentricity is larger and/or the
chaotic zone width is smaller. For a disk cavity radius of 38 au
and a companion semi-major axis of 20 au, we see that the com-
panion needs to have a lower eccentricity of ∼0.2, whereas its
upper eccentricity is ∼0.3. For a disk cavity radius of 75 au and a
companion semi-major axis of 30 au, the eccentricity constraints
are ∼0.4–0.5. We acknowledge that these results are strongly
dependent on the assumed criterion for the cavity shaping. For
comparison, we show similar diagrams to Fig. 12 in Appendix B
based on the equations of Petrovich (2015) and Regály et al.
(2018).

As already discussed in Sect. 4, further astrometric monitor-
ing of the companion will be essential to measure inflexions in its
orbital motion that will help to discriminate between an eccentric
short-period orbit and a circular long-period orbit. On the other
hand, disk observations at higher resolutions will be valuable to
refine the estimates of its cavity shape and size (see Sect. 6.3).
Such combined constraints will provide powerful insights into
the architecture of the system and the dynamical mass of the
companion.

6.3. Constraints on the disk properties from ALMA data

(Sub-)millimeter observations of the HR 2562 disk at high angu-
lar resolutions with ALMA will be valuable to further refine
the estimates on the extent and shape of its cavity. Regály et al.
(2018) discuss the potential of ALMA data for analyzing dynam-
ical interactions between substellar companions and debris disks.
In particular, they provide a method to estimate the orbital eccen-
tricity and mass of a giant planet carving the disk cavity. This
involves measurements of the cavity size and offset with respect
to the star by ellipse fitting to a given intensity contour level,
which itself depends on the image resolution (the optimal con-
tour level is larger for poorer resolutions). The robustness of the
empirical relations was checked against the planetesimals’ ini-
tial eccentricity and inclination by simulating hot and cold disks

and against the stellar mass and age for ranges of 0.6–1 Gyr and
0.5–2 M�, respectively. They found relations for the cavity size
and for the cavity center offset with respect to the star which only
depend on the planet/star mass ratio and the planet eccentricity
for eccentric orbits, allowing to break the degeneracies between
these two unknowns. They also show that the cavity eccentric-
ity cannot be used as a direct proxy for the planet eccentricity
because they are not identical and their relation is not a mono-
tonic function. A disk cavity can be eccentric while a perturbing
planet orbit is circular. The eccentricity of the disk cavity is only
equal to that of the giant planet perturber for a narrow range
of intermediate planet eccentricities (0.3–0.6 for a 5-MJ giant
planet). Another observable disk feature that could be sugges-
tive of a large planetary eccentricity outlined by Regály et al.
(2018) would be the detection of an azimuthal brightness asym-
metry or “glow” with a large contrast (up to ∼50% for a 5-MJ
planet) located beyond the disk cavity wall and near the position
angle of the planet apastron.

Using the relations for the cavity size and offset with
respect to the star in Regály et al. (2018), we estimated that if
these quantities could be measured with accuracies of ∼10%5,
the eccentricity and mass ratio to the star of the planet could be
assessed with accuracies of ∼20% and ∼40%, respectively. The
stellar mass being constrained with an accuracy of <2% (Mesa
et al. 2018), the dynamical mass estimate of HR 2562 B would be
slightly more accurate than the ∼45%–50% uncertainties of the
evolutionary model predictions (Konopacky et al. 2016b; Mesa
et al. 2018) but independent from assumptions on the formation
mechanism and the system age.

Such disk cavity measurements require high-resolution
images. With a diameter of 0.5′′ for the ALMA instrument beam,
the HR 2562 disk cavity would be resolved with ∼4.5 resolution
elements for the smallest diameter estimate of 38 × 2 au from
Moór et al. (2015), and ∼9 resolution elements for the largest
diameter estimate of 75 × 2 au from Konopacky et al. (2016b).
These resolutions are in the range of the resolutions for which
the methods proposed by Regály et al. (2018) could be applied.
Higher resolutions could be achieved but at the cost of longer
integration times to compensate for the instrument sensitivity
loss.

7. Summary

We present VLT/SPHERE observations of the young system
of HR 2562 to redetect and further characterize the orbit of
its brown dwarf companion. The SPHERE data show a strong
increase of the companion separation of ∼40 mas (∼1.3 au)
over 1.7 yr with respect to the GPI measurements, ruling out
a face-on circular orbit. The joint fit of the SPHERE and GPI
astrometry clearly indicates for the companion an orbit (quasi-)
coplanar with the known debris disk without any prior on the
orbital plane. Furthermore, the eccentricity distribution sug-
gests a non-zero eccentricity, which could reconcile the mass
estimates from the evolutionary models and from dynamical
considerations assuming that the object is responsible for the
truncation of the debris belt. Assuming a debris belt inner edge
at 75 au, a dynamical analysis based on analytical and numeri-
cal approaches allows to reject eccentricities larger than ∼0.3 for
periods longer than 200 yr and eccentricities smaller than 0.15

5 Limitations to the accuracy of these measurements include the shape
of the instrument beam (an elliptical beam can introduce artifacts in the
images like brightness asymmetries), instrument pointing accuracy, and
the scatter induced by the planet orbital phase.
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for periods shorter than 100 yr. If the companion has formed
through disk gravitational instabilities, our analysis suggests that
its current location and mass can be accounted for by forma-
tion at a larger distance to the star from a less massive disk
fragment followed by inward migration with mass accretion. Fur-
ther astrometric monitoring of the companion in order to detect
curvature in its orbital motion will allow to better constrain its
period and eccentricity. In addition, far-IR or millimeter images
at higher resolutions are needed to determine more precisely
the disk geometry and its cavity extent. With such information
combined with a lower limit on the orbital eccentricity of the
companion, the dynamical mass of HR 2562 B could be strongly
constrained, making it a valuable benchmark object close to
the L/T transition for evolutionary and atmospheric models of
substellar companions.
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Appendix A: Dynamical simulation results for a
slightly non-coplanar companion

Fig. A.1: Simulated images of the disk for an eccentric (e=0.4)
companion orbit of semi-major axis 20 au coplanar with the disk
(left) and with a relative inclination of 20◦ (right).

Figure A.1 shows the simulated images of the disk for a com-
panion orbit with a semi-major axis of 20 au and an eccentricity
of 0.4 for a coplanar configuration and a relative inclination of
20◦ with the disk. The simulated relative inclination has no sig-
nificant effects on the cavity size. The only difference is that in
the non-coplanar case, the companion stirs the inclination of the
disk particles, which gives the disk a non-negligible thickness
(which cannot be seen on the face-on image).

Appendix B: Width of the chaotic zone predicted by
other relations

We show in Fig. B.1 the width of the chaotic zone created by a
substellar companion in the disk of HR 2562 for several eccen-
tricities according to the empirical relations of Petrovich (2015)
and Regály et al. (2018).

We first used the equation in Petrovich (2015), which is an
empirical dynamical stability criterion for two-planet systems
against collisions with the star and/or ejections from the sys-
tem. The formula was validated using numerical simulations for
planet/star mass ratios 10−4–10−2 and mutual inclinations .40◦.
In order to apply this relation to the HR 2562 companion-disk
system, we assumed that the outer planet has a negligible mass
(the most extreme mass ratio between the planets is 1/100 in
Petrovich 2015). The 1.15 constant term in the formula includes
a margin of 0.5 to account for disk regions which are potentially
unstable. In order not to overestimate the cavity size and to make
the comparison to the criteria in Lazzoni et al. (2018) and Regály
et al. (2018) coherent, we therefore decreased the constant term
in the formula of Petrovich (2015) by 0.5. We finally assumed
a null eccentricity for the debris belt, which is exterior to the
companion. Contrary to the formula in Lazzoni et al. (2018) and
Regály et al. (2018), the formula of Petrovich (2015) depends
on the cavity radius and companion semi-major axis. We chose
acav = 75 au and a = 30 au. We represent the resulting curves in
the left panel of Fig. B.1. The eccentricity is not well constrained
with respect to the predictions of Lazzoni et al. (2018) (Fig. 12)
and can lie in the range ∼0.2–0.7.

Subsequently, we considered the relations in the recent work
of Regály et al. (2018), which predict the size of the cavity of
a debris disk shaped by a giant planet perturber interior to the
debris belt. They were determined using N-body simulations as-
suming a giant planet with mass ratios to the star 1.25×10−3–
10−2 with eccentricities 0–0.9. Quasi-circular orbits cannot be

excluded for a disk cavity size of 38 au and a companion semi-
major axis of 20 au, whereas eccentricities as large as ∼0.3 are
allowed for the smallest mass range compatible with a brown
dwarf. For a disk cavity size of 75 au and a companion semi-
major axis of 30 au, the eccentricity is also poorly constrained
with respect to the predictions of Lazzoni et al. (2018) and can
range from ∼0.2 up to more than 0.8.

The more stringent constraints on the companion eccentricity
obtained using the relations in Lazzoni et al. (2018) stem from
the flatter global slopes of the relations with respect to those in
Petrovich (2015) and Regály et al. (2018). The relations in Laz-
zoni et al. (2018) predict wider chaotic zones at mass ratios be-
low ∼0.02 and eccentricities larger than 0.2 with respect to the
equations of Petrovich (2015) and Regály et al. (2018) while pre-
dict narrower chaotic zones for mass ratios larger than ∼0.04 and
eccentricities smaller than 0.6.

We finally note that the relations in Petrovich (2015) and
Regály et al. (2018) usually predict similar values for the chaotic
zone widths, except for a circular orbit and large companion/star
mass ratios (&0.03) and for highly-eccentric orbits (&0.6).
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Fig. A.1. Simulated images of the disk for an eccentric (e = 0.4) com-
panion orbit of semi-major axis 20 au coplanar with the disk (left) and
with a relative inclination of 20◦ (right).

Figure A.1 shows the simulated images of the disk for a compan-
ion orbit with a semi-major axis of 20 au and an eccentricity
of 0.4 for a coplanar configuration and a relative inclina-
tion of 20◦ with the disk. The simulated relative inclination
has no significant effects on the cavity size. The only dif-
ference is that in the non-coplanar case, the companion stirs
the inclination of the disk particles, which gives the disk a
non-negligible thickness (which cannot be seen on the face-on
image).

Appendix B: Width of the chaotic zone predicted
by other relations

We show in Fig. B.1 the width of the chaotic zone created by a
substellar companion in the disk of HR 2562 for several eccen-
tricities according to the empirical relations of Petrovich (2015)
and Regály et al. (2018).

We first used the equation in Petrovich (2015), which is
an empirical dynamical stability criterion for two-planet sys-
tems against collisions with the star and/or ejections from the
system. The formula was validated using numerical sim-
ulations for planet/star mass ratios 10−4–10−2 and mutual
inclinations .40◦. In order to apply this relation to the
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Fig. B.1: Same as Fig. 12 but for the relations in Petrovich (2015) (left) and Regály et al. (2018) (right).
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Fig. B.1. Same as Fig. 12 but for the relations in Petrovich (2015; left) and Regály et al. (2018; right).

HR 2562 companion-disk system, we assumed that the outer
planet has a negligible mass (the most extreme mass ratio
between the planets is 1/100 in Petrovich 2015). The 1.15 con-
stant term in the formula includes a margin of 0.5 to account
for disk regions which are potentially unstable. In order not to
overestimate the cavity size and to make the comparison to the
criteria in Lazzoni et al. (2018) and Regály et al. (2018) coher-
ent, we therefore decreased the constant term in the formula of
Petrovich (2015) by 0.5. We finally assumed a null eccentricity
for the debris belt, which is exterior to the companion. Contrary
to the formula in Lazzoni et al. (2018) and Regály et al. (2018),
the formula of Petrovich (2015) depends on the cavity radius and
companion semi-major axis. We chose acav = 75 au and a = 30 au.
We represent the resulting curves in the left panel of Fig. B.1.
The eccentricity is not well constrained with respect to the pre-
dictions of Lazzoni et al. (2018) (Fig. 12) and can lie in the range
∼0.2–0.7.

Subsequently, we considered the relations in the recent work
of Regály et al. (2018), which predict the size of the cavity
of a debris disk shaped by a giant planet perturber interior
to the debris belt. They were determined using N-body sim-
ulations assuming a giant planet with mass ratios to the star
1.25 × 10−3–10−2 with eccentricities 0–0.9. Quasi-circular orbits
cannot be excluded for a disk cavity size of 38 au and a compan-
ion semi-major axis of 20 au, whereas eccentricities as large as
∼0.3 are allowed for the smallest mass range compatible with a
brown dwarf. For a disk cavity size of 75 au and a companion
semi-major axis of 30 au, the eccentricity is also poorly con-
strained with respect to the predictions of Lazzoni et al. (2018)
and can range from ∼0.2 up to more than 0.8.

The more stringent constraints on the companion eccentric-
ity obtained using the relations in Lazzoni et al. (2018) stem from
the flatter global slopes of the relations with respect to those
in Petrovich (2015) and Regály et al. (2018). The relations in
Lazzoni et al. (2018) predict wider chaotic zones at mass ratios
below ∼0.02 and eccentricities larger than 0.2 with respect to the
equations of Petrovich (2015) and Regály et al. (2018) while pre-
dict narrower chaotic zones for mass ratios larger than ∼0.04 and
eccentricities smaller than 0.6.

We finally note that the relations in Petrovich (2015) and
Regály et al. (2018) usually predict similar values for the chaotic
zone widths, except for a circular orbit and large companion/star
mass ratios (&0.03) and for highly-eccentric orbits (&0.6).
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5.2 51 Eri: An eccentric giant planet in a hierarchical system

51 Eri A is a nearby F-type star that belongs to the young β-Pictoris moving group.
In 2015, the GPI instrument imaged a companion, 51 Eri b, with mass 2-10 MJ,
at around 0.45” (13 au) (Macintosh et al. 2015; De Rosa et al. 2015). An inner
and an outer debris disks have also been inferred from infrared excess, with very
ill-constrained radii (Patel et al. 2014; Riviere-Marichalar et al. 2014). Moreover,
51 Eri forms a hierarchical system with the binary GJ 3305, 2,000 au away, whose
orbit (GJ 3305 B around GJ 3305 A) has been precisely monitored (Montet et al.
2015).

Completing the preliminary orbital monitoring by GPI, 6 SPHERE points are
presented in Maire, Rodet et al. 2019, for a total orbital coverage of 4 years, or
20◦. A 1◦ offset has been evidenced between SPHERE and GPI data points. The
orbit is eccentric (e ∼ 0.5) and inclined (130◦), compatible with coplanarity with the
stellar rotation (null obliquity). Three algorithms have been used and compared for
the orbital fitting: LSMC (Sec. 3.5.3), MCMC (my contribution) and OFTI (Sec.
3.5.2). Despite the weak constraints, they give very similar results (see Figs. 4, D.1.
and E.1. of the paper).

51 Eri b belong to the select club of directly imaged planets. It has the closest
separation after β-Pic b, so that a robust orbital fitting will be possible within the
next decades. The non-negligible eccentricity of the planet is intriguing, because the
formation scenario still struggle to form eccentric planets (see Introduction). The
debris disk has a warm and cold components encircling the companion, but they have
not been resolved. Resolving the features of the disk might give better constraints
on the dynamical history of the planet and could hint for additional companions,
that could have triggered the observed eccentricity.
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ABSTRACT

Context. The 51 Eridani system harbors a complex architecture with its primary star forming a hierarchical system with the binary GJ 3305AB
at a projected separation of 2000 au, a giant planet orbiting the primary star at 13 au, and a low-mass debris disk around the primary star with
possibly a cold component and a warm component inferred from the spectral energy distribution.
Aims. We aim to better constrain the orbital parameters of the known giant planet.
Methods. We monitored the system over three years from 2015 to 2018 with the VLT/SPHERE exoplanet imaging instrument.
Results. We measure an orbital motion for the planet of ∼130 mas with a slightly decreasing separation (∼10 mas) and find a hint of curvature.
This potential curvature is further supported at 3σ significance when including literature GPI astrometry corrected for calibration systematics.
Fits of the SPHERE and GPI data using three complementary approaches provide broadly similar results. The data suggest an orbital period of
32+17
−9 yr (i.e. 12+4

−2 au in semi-major axis), an inclination of 133+14
−7 deg, an eccentricity of 0.45+0.10

−0.15, and an argument of periastron passage of
87+34
−30 deg [mod 180◦]. The time at periastron passage and the longitude of node exhibit bimodal distributions because we do not detect yet if the

planet is accelerating or decelerating along its orbit. Given the inclinations of the planet’s orbit and of the stellar rotation axis (134–144◦), we infer
alignment or misalignment within 18◦ for the star-planet spin-orbit. Further astrometric monitoring in the next 3–4 years is required to confirm at
a higher significance the curvature in the planet’s motion, determine if the planet is accelerating or decelerating on its orbit, and further constrain
its orbital parameters and the star-planet spin-orbit.

Key words. planetary systems – methods: data analysis – stars: individual: 51 Eridani – planet and satellites: dynamical evolution and stability –
techniques: high angular resolution – techniques: image processing

1. Introduction

51 Eridani b is the first giant planet discovered in the GPI ex-
oplanet imaging survey (Macintosh et al. 2015). The methane-
rich planet is a bound companion to the young star 51 Eri-
dani, which is a member of the 24-Myr β Pictoris moving
group (Zuckerman et al. 2001; Torres et al. 2008; Bell et al.
2015). The star is located at 29.78±0.15 pc1 (Gaia Collabora-
tion et al. 2018) and forms a hierarchical system with the M-
dwarf binary GJ 3305AB with separation ∼10 au located at a
projected separation of 2000 au (Feigelson et al. 2006; Montet

? Based on observations collected at the European Organisation for
Astronomical Research in the Southern Hemisphere under ESO pro-
grammes 095.C-0298, 096.C-0241, 198.C-0209, and 1100.C-0481.
?? F.R.S.-FNRS Postdoctoral Researcher.

??? International Max Planck Research School for Astronomy and Cos-
mic Physics, Heidelberg, Germany
1 This value is derived taking the inverse of the parallax measured by
Gaia. It is in good agreement with the value derived with an optimized
approach (29.76±0.12 pc, Bailer-Jones et al. 2018). Our uncertainty of
0.15 pc includes in addition to the statistical error of 0.12 pc an un-
certainty term of 0.1 mas to account for potential parallax systematics
(https://www.cosmos.esa.int/web/gaia/dr2).

et al. 2015). Simon & Schaefer (2011) measured a stellar ra-
dius of 1.63±0.03 R� with the CHARA interferometer and in-
ferred a stellar mass of 1.75±0.05 M�. The primary star also
harbors a debris disk inferred from the spectral energy distribu-
tion (Riviere-Marichalar et al. 2014; Patel et al. 2014). Riviere-
Marichalar et al. (2014) estimated a low infrared (IR) fractional
luminosity LIR/L� = 2.3×10−6 from Herschel photometry. Since
their analysis is based on fitting a 3-parameter model of a mod-
ified blackbody to three data points with excess IR emission at
wavelengths ≥70 µm, the resulting value for the inner edge of
the cold dust belt is largely uncertain with 82+677

−75 au. They also
estimated an upper limit for the dust mass of 1.6×10−3 M⊕ and
did not report gas detection ([OI], [CII]). Patel et al. (2014) ob-
served the target with WISE as part of a survey for warm debris
disks and inferred a warm disk with temperature 180 K (upper
limit 344 K) and radius 5.5 au (lower limit 1.5 au) assuming the
disk radiates as a blackbody. 51 Eridani could therefore harbor
a two-belt debris disk architecture, a feature observed in other
young systems with giant planets like HR 8799 (Marois et al.
2008; Marois et al. 2010; Su et al. 2009) and HD 95086 (Rameau
et al. 2013b; Moór et al. 2013).
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Table 1. Observing log of SPHERE observations of 51 Eridani.

UT date ε (′′) τ0 (ms) AM start/end Mode Bands DIT (s)×Nfr FoV rot. (◦) SR
2015/09/25 0.5–1.0 4–9 1.10–1.09 IRDIFS_EXT Y JH+K12 16×256 41.5 0.68–0.88
2015/09/26 0.7–1.3 6–12 1.10–1.09 IRDIFS Y J+BBH 4(64)×918(64) 42.6 0.66-0.90
2016/01/16 1.6–2.3 1 1.09–1.10 IRDIFS Y J+H23 16(64)×256(64) 41.8 0.63–0.86
2016/12/12 1.6–2.8 2 1.09–1.16 IRDIFS Y J+H23 64×54 25.2 0.55–0.62
2016/12/13 0.6–1.0 4–8 1.10–1.09 IRDIFS Y J+H23 64×72 44.4 0.78–0.92
2017/09/28 0.4–0.7 5–12 1.10–1.09 IRDIFS_EXT Y JH+K12 24(32)×192(144) 44.1 0.85–0.91
2018/09/18 0.7–1.2 2–5 1.21–1.08 IRDIFS_EXT Y JH+K12 24(32)×200(160) 38.5 0.64–0.87

Notes. The columns provide the observing date, the seeing and coherence time measured by the differential image motion monitor (DIMM) at
0.5 µm, the airmass at the beginning and the end of the sequence, the observing mode, the spectral bands, the DIT (detector integration time)
multiplied by the number of frames in the sequence, the field of view rotation, and the Strehl ratio measured by the adaptive optics system at
1.6 µm. For the DIT×Nfr column, the numbers in parentheses are for the IFS data.

The planet 51 Eridani b has a projected separation of ∼13 au
from the primary star. Macintosh et al. (2015) could not confirm
the companionship with a proper motion test because of the very
short time baseline of their GPI measurements (∼1.5 months, be-
tween December 2014 and January 2015). Instead, the planetary
nature hypothesis is based on the spectrum showing methane ab-
sorption. De Rosa et al. (2015) presented a new GPI astrometric
epoch obtained in September 2015, confirming that the planet is
gravitationnally bound, and detected orbital motion. They also
carried out a preliminary assessment of its orbital elements us-
ing Bayesian rejection sampling and Markov-chain Monte Carlo
methods. Their analysis suggests most probable values with 1σ
error bars for the semi-major axis of 14+7

−3 au, for the period of
41+35
−12 yr, and for the inclination of 138+15

−13 deg. The other pa-
rameters are marginally constrained. The authors also noted that
the orbital inclination of the planet is different from the inclina-
tion of the orbital plane of the binary GJ 3305AB (i = 92.1±0.2◦,
Montet et al. 2015), implying that they cannot be coplanar.

We present in this paper astrometric follow-up observations
of 51 Eridani b obtained with the instrument VLT/SPHERE
(Beuzit et al. 2019) as part of the SpHere INfrared survey for
Exoplanets (SHINE, Chauvin et al. 2017). We describe the ob-
servations and the data reduction (Sect. 2). Then, we use the
new astrometric data of the planet to analyze its orbital motion
(Sect. 3). We subsequently fit the SPHERE astrometry in combi-
nation with GPI data to derive its orbital parameters (Sect. 4).

2. Observations and data analysis

We observed 51 Eridani eight times from September 2015 to
September 2018 with the IRDIFS mode of SPHERE. In this
mode, the near-IR camera IRDIS (Dohlen et al. 2008; Vigan
et al. 2010) and integral field spectrograph IFS (Claudi et al.
2008) are operated in parallel, either in the Y J bands for IFS
and the H23 filter pair for IRDIS (standard IRDIFS mode) or
in the Y JH bands for IFS and the K12 filter pair for IRDIS
(IRDIFS_EXT mode). Four datasets were published in an anal-
ysis of the planet’s spectral energy distribution in Samland et al.
(2017). Table 1 lists the published observations used for astrom-
etry and the new observations. We only considered the IRDIS
data in this work because the planet astrometry could be ex-
tracted from a higher number of datasets due to signal-to-noise
limitations. Due to the planet’s challenging contrast, it could be
detected and its astrometry measured in six datasets only (Ta-
ble 2).

For all sequences, an apodized pupil Lyot coronagraph (Car-
billet et al. 2011; Martinez et al. 2009) was used. For calibrating
the flux and the centering of the images, we acquired unsatu-
rated non-coronagraphic images of the star (hereafter reference
point-spread function or reference PSF) and coronagraphic im-
ages with four artificial crosswise replicas of the star (Langlois
et al. 2013) at the beginning and end of the sequences. For all
datasets obtained starting from December 2016, the science im-
ages were recorded with the stellar replicas simultaneously, to
minimize the frame centering uncertainties in the astrometric er-
ror budget. Nighttime sky background frames were taken and
additional daytime calibration performed following the standard
procedure at ESO.

The data were reduced with the SPHERE Data Center
pipeline (Delorme et al. 2017), which uses the Data Reduction
and Handling software (v0.15.0, Pavlov et al. 2008) and custom
routines. It corrects for the cosmetics and instrument distortion,
registers the frames, and normalizes their flux. Then, we sorted
the frames using visual inspection to reject poor-quality frames
(adaptive optics open loops, low-wind effect) and an automatic
criterion to reject frames with low flux in the coronagraphic
spot (semi-transparent mask). After this step, we were left with
77–97% of the frames depending on the sequence. Finally, the
data were analyzed with a consortium image processing pipeline
(Galicher et al. 2018). Figure 1 shows the IRDIS images ob-
tained for the best epochs with a two-step process2: simultaneous
spectral differential imaging (SDI, Racine et al. 1999) and an-
gular differential imaging with the Template Locally Optimized
Combination of Images algorithm (TLOCI, Marois et al. 2014).

For all epochs, the planet astrometry and photometry was
measured in the SDI+TLOCI images using the fit of a model
of planet image built from the reference PSF and processed with
TLOCI (Galicher et al. 2018). The position and flux of the model
of planet image was optimized to minimize the image residu-
als within a circular region of radius 1.5 FWHM centered on
the measured planet location. The values reported in Table 2
were calibrated following the methods in Maire et al. (2016).
We also compared them with the astrometry extracted using SDI
in combination with the ANgular DiffeRential Optimal Method
Exoplanet Detection Algorithm (ANDROMEDA, Mugnier et al.
2009; Cantalloube et al. 2015) and found most values to agree
within the TLOCI measurement uncertainties (Appendix A). We
use the SDI+TLOCI astrometry for the astrometric and orbital

2 The 2015 September 26 dataset was obtained with the broad H-band
filter, so it was processed with angular differential imaging only.
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Table 2. SPHERE astrometry relative to the star of 51 Eridani b.

Epoch Filter ρ PA ∆RA ∆Dec Pixel scale North correction angle
(mas) (◦) (mas) (mas) (mas/pix) (◦)

2015.74 K1 453.4±4.6 167.15±0.56 100.8±2.9 −442.0±3.6 12.267±0.009 −1.813±0.046
2015.74 H 453.9±16.3 166.1±2.0 108.7±8.8 −440.7±13.7 12.251±0.009 −1.813±0.046
2016.04 H2 456.7±6.9 165.50±0.84 114.3±4.5 −442.2±5.2 12.255±0.009 −1.82±0.06
2016.95 H2 453.6±5.7 160.30±0.72 152.9±3.4 −427.1±4.6 12.255±0.009 −1.808±0.043
2017.74 K1 449.0±2.9 155.67±0.38 185.0±2.0 −409.2±2.1 12.267±0.009 −1.735±0.043
2018.72 K1 443.3±4.2 150.23±0.55 220.2±2.8 −384.8±3.1 12.267±0.009 −1.796±0.068

Notes. The astrometric error bars were derived assuming an error budget including the measurement uncertainties (image post-processing) and
the systematic uncertainties (calibration). The uncertainties in the estimation of the star location for the sequences obtained without the stellar
replicas in the science images were estimated using calibration data taken before and after the science images (see text). The values are 0.32, 7.87,
and 2.02 mas for the 2015 September 25, 2015 September 26, and January 2016 datasets, respectively.
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+
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Fig. 1. SPHERE/IRDIS SDI+TLOCI contrast images of 51 Eridani at
four epochs obtained with a narrow-band filter in H2 (λH2 = 1.593 µm,
December 2016) and in K1 (λK1 = 2.110 µm, all other epochs). The cen-
tral regions of the images were numerically masked out to hide bright
stellar residuals. The white crosses indicate the location of the star.

analyses in the next sections, because TLOCI was tested and val-
idated on a larger number of SPHERE datasets to retrieve the as-
trometry and photometry of detected companions (Galicher et al.
2018).

3. Orbital motion

The astrometry of the planet is given in Table 2. The data are
represented in Fig. 2 with the GPI measurements reported by De
Rosa et al. (2015), who also revised the astrometry published
in Macintosh et al. (2015). The SPHERE data over three years
confirm the orbital motion of the planet at a high significance:
∼119 mas at ∼30σ in right ascension and ∼57 mas at ∼12σ in
declination. While there is a hint for a decrease in separation
by ∼10 mas, the position angle clearly decreases at a rate of
5.7±0.2◦/yr. The trend in position angle is similar to the trend
seen in the GPI data (De Rosa et al. 2015). The position angle

Fig. 2. Compilation of the astrometric measurements of 51 Eridani b.
The GPI data are taken from De Rosa et al. (2015) without recalibration
on the SPHERE data.

variation is not compatible with the expectations for a face-on
circular orbit (∼10◦/yr, assuming a semi-major axis for the planet
of 13 au and a stellar mass of 1.75 M�), suggesting an inclined
and/or eccentric orbit. The data also show signs of curvature,
hinting at orbital inflexion (see below).

The GPI data obtained in December 2014 and January 2015
show a discrepant increasing trend in separation (in particular,
the separations measured in two consecutive nights in January
2015 are not included within the measurement uncertainties of
each other hence disagree at the 1-σ level: 454.0± 6.4 mas on
January 30 and 461.8± 7.1 mas on January 31). Macintosh et al.
(2015) noted that the conditions for this last observation was av-
erage. We also note a small systematic offset in position angle
between the SPHERE and GPI data using two measurements
obtained close in time in September 2015 (the GPI point has
PA = 166.5± 0.6◦, which is smaller by 1.1 σ from the PA of the
SPHERE point which was obtained more than three weeks later,
we should also expect due to the orbital motion of the planet
over this elapsed time a further displacement of ∼-0.38± 0.02◦
in PA). This offset is likely due to systematic uncertainties re-
lated to differences in the astrometric calibration of the instru-
ments (see Appendix B). It is well accounted for by an offset in
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Fig. 3. Temporal evolution of the relative right ascension (top left), relative declination (top right), separation (bottom left) and declination (bottom
right) of 51 Eridani b. With respect to Fig. 2, the GPI astrometry is recalibrated by adding a position angle offset of 1.0◦ (see text). In the top
panels, second-order polynomial fits on the SPHERE and GPI data points are also indicated to highlight the curvature in the planet motion (purple
curves). In the bottom-right panel is shown a linear fit to the SPHERE data (purple line). The data point in light gray was not considered for the
acceleration analysis and the orbital fits (see text).

the measured position angles of 1.0±0.2◦. The inclusion of the
recalibration uncertainty in the GPI measurement uncertainties
has negligible effects.

We show the recalibrated GPI data and the SPHERE mea-
surements in Fig. 3, which represents the temporal evolution
of the relative right ascension, relative declination, separation,
and position angle. The curvature of the SPHERE data which
was hinted in Fig. 2 is better seen. We also show second-order
polynomial fits to all the SPHERE and GPI data except for the
GPI data point taken on 2015 January 31 due to its discrepant
separation with respect to the other GPI data points3. Second-
order polynomial fits provide significantly better unreduced chi-
square goodness-of-fit parameters (1.4 for ∆RA vs time and
1.0 for ∆Dec vs time) with respect to linear fits (7.4 and 12.2,
respectively). We followed the approach of Konopacky et al.
(2016a) to test if acceleration is detected (the measured accel-
eration plus its uncertainty at 3σ shall stay negative). From the
second-order polynomial fits abovementioned, we estimated the
cartesian components of the acceleration and converted them

3 The separation measured for this epoch is 461.8 mas whereas the
other data points have separations smaller than 455 mas (upper limit of
460.4 mas at 1σ). Even when increasing the error bars on this data point
to include the other GPI measurements, the LSMC orbital fit is still
affected and shows a stronger paucity in low-eccentricity orbits with
respect to a fit where this data point is excluded.

into radial and tangential components. The radial acceleration
component is −4.03±1.34 mas.yr−2, which implies that acceler-
ation is detected at the 3.0σ level. New measurements should
help to confirm the acceleration estimate, and measure it with a
better accuracy.

4. Orbital analysis

4.1. Determination of the orbital parameters

We assumed for the system the distance estimated from the
Gaia parallax and a total mass of 1.75 M� (Simon & Schae-
fer 2011). We also make the assumption that the GJ 3305AB
binary does not dynamically disturb the planet’s orbit. Montet
et al. (2015) showed that given the wide separation of the binary
and the young age of the system, it appears unlikely that Lidov-
Kozai oscillations (Kozai 1962; Lidov 1962) could have had the
time to disturb the planet’s semi-major axis (typical timescale of
200 Myr for a perturber on a circular orbit). Nevertheless, mod-
erate changes in the planet’s inclination and eccentricity cannot
be excluded (Fabrycky & Tremaine 2007). Quicker dynamical
effects (secular precession due to, e.g., an unseen inner compan-
ion) could suppress Lidov-Kozai oscillations. On the other hand,
assuming the criterion in Holman & Wiegert (1999), we could
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Fig. 4. LSMC distributions of the six Campbell orbital elements for all the fitted solutions with χ2
red < 2 among 1 000 000 random trials. The

diagrams displayed on the diagonal from top left to lower right represent the 1D histogram distributions for the individual elements. The off-
diagonal diagrams show the correlations between pairs of orbital elements. The linear color scale in the correlation plots accounts for the relative
local density of orbital solutions. In the histograms, the green solid line indicates the best χ2 fitted solution, the red solid line the 50% percentile
value, and the red dashed lines the interval at 68%.

also expect that the planet’s current orbit remains unchanged de-
spite the wide binary.

We first used a least-square Monte Carlo (LSMC) proce-
dure to fit the SPHERE and GPI astrometry (Esposito et al.
2013; Maire et al. 2015, Appendix C). We also performed
complementary analyses using a Markov-chain Monte Carlo
(MCMC) procedure (Chauvin et al. 2012, Appendix D) and the
Bayesian rejection sampling approach OFTI (Blunt et al. 2017,
Appendix E).

We checked with the LSMC and OFTI methods the effects
on the parameter distributions of the inclusion of the GPI as-

trometric points. Adding the GPI data strengthens short-period
and eccentric orbits. We also used these two approaches to test
the effect of a different initial eccentricity distribution on the
resulting eccentricity distribution, given that the analyses favor
eccentric orbits over circular orbits. We used a distribution that
gives more weight to low-eccentricity orbits, similar to the fit to
the eccentricity distribution of radial-velocity planets in Nielsen
et al. (2008). The resulting eccentricity distributions have sim-
ilar shapes using both types of initial distributions. Finally, we
checked that the uncertainty on the stellar mass (<3%) has neg-
ligible effects on the parameter distributions.
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Fig. 5. Predictions for the separation (left) and position angle (middle) of 51 Eridani b for 100 randomly selected orbital solutions in Fig. 4. The
right panel displays the orbits in the plane of the sky.

Further constraints could also be obtained with detection
limits from archival high-contrast imaging data by rejecting or-
bits predicting too large separations for the planet in the past.
Unfortunately, the current detection limits are not deep enough
to provide useful constraints (Heinze et al. 2010; Biller et al.
2013; Rameau et al. 2013a; Hagan et al. 2018; Stone et al. 2018).

4.2. Parameter intervals and correlations

The LSMC distributions and intervals of the orbital parameters
are shown in Fig. 4 and Table 3. The shapes of the distributions
and the parameter intervals are broadly similar to those obtained
with the MCMC and OFTI approaches. The three T0 distribu-
tions show two peaks around ∼2005 and ∼2025. The three Ω
distributions display two broad peaks around ∼10◦ and ∼130◦.
Nevertheless, we note some differences in the detailed shape
of the distributions. The LSMC eccentricity distribution does
not show a high-eccentricity tail (correlated with a long-period
tail) as seen in the MCMC and OFTI distributions. We checked
that this is due to the correction for the LSMC fitted orbits of
the bias on the time at periastron passage for eccentric orbits
(Konopacky et al. 2016a). The LSMC distribution for i has a
more pronounced peak toward values smaller than ∼135◦ with
respect to the MCMC and OFTI distributions. This is caused by
a larger number of low-eccentricity orbits with Ω around ∼160◦
in the LSMC fitted orbits. The LSMC distribution for Ω exhibits
a deeper dip between the two broad peaks mentioned above with
respect to the MCMC and OFTI distributions. This feature is
related to a paucity of orbits with Ω around ∼65◦ and low to
moderate eccentricities (up to ∼0.4) in the LSMC fitted orbits.
The MCMC distribution for ω looks sharper than the LSMC and
OFTI distributions.

When comparing our results obtained with the OFTI ap-
proach with those of De Rosa et al. (2015), who employed a
similar method, we note that most of the parameters are better
defined in our analysis4. We derive a 68% interval for the incli-

4 The 68% interval for the longitude of node in De Rosa et al. (2015)
was derived by wrapping the values to the range 30–120◦, whereas we
consider the full [0;180◦] range. For the time of periastron passage, the
distribution in De Rosa et al. (2015) shows a stronger peak around epoch
∼2005, whereas in our study the peak around epoch ∼2025 is slightly
more pronounced. They also wrapped their distribution to the range
1995–1995+P, whereas our distributions extend to previous epochs.
Nevertheless, we checked that applying a similar wrapping has a negli-
gible effect on the derived T0 ranges in our analysis. Further monitoring
is required to solve for the ambiguity in this parameter.

Table 3. Preliminary orbital parameters of 51 Eridani b.

Parameter Unit Median Lower Upper χ2
min

P yr 32 23 49 30
a au 12 10 16 12
e 0.45 0.30 0.55 0.43
i ◦ 133 126 147 135
Ω ◦ 103 13 156 17
ω ◦ 87 57 121 69
T0 2011 2006 2027 2006

Notes. The parameters are the period, semi-major axis, eccentricity, in-
clination, longitude of node (mod 180◦), argument of periastron pas-
sage (mod 180◦), and time at periastron passage. The median value is
the 50% percentile value, the lower and upper values are the lower and
upper bounds of the 68% interval, and the χ2

min value is the best-fit value.

nation of 126–147◦, which is slightly better constrained with re-
spect to the range of 125–153◦ in De Rosa et al. (2015). Thus, we
confirm after De Rosa et al. (2015) that the planet’s orbital plane
cannot be coplanar with the orbital plane of the wide-separated
binary GJ 3305AB (i = 92.1±0.2◦, Montet et al. 2015). Our ec-
centricity interval is 0.33–0.57 at 68%, which suggests eccentric
orbits. This feature is related to our more extended dataset with
respect to De Rosa et al. (2015) (Appendix E). Nevertheless,
orbits with low to moderate eccentricities are not formally ex-
cluded. Low-eccentricity orbits are characterized by parameters
around Ω∼ 160◦, i∼ 130◦, and P∼ 35–40 yr. New data covering
a larger fraction of the planet’s orbit are needed to check the hint
for large eccentricities.

Figure 5 shows a random sample of fitted orbits from the
LSMC analysis. In particular, low-eccentricity orbits predict
steeper decreases of the separation and position angle in the next
coming years. If new data taken in the next couple of years show
a weak decrease of the separation and still follow the linear trend
in position angle seen with the current data, this will rule out
low-eccentricity orbits.

4.3. An unseen inner companion that could bias the planet’s
eccentricity?

Finally, we used the methods in Pearce et al. (2014) to test the
scenario of an unseen inner low-mass companion which could
bias the eccentricity of 51 Eridani b toward large values due to
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the orbital motion that the unseen companion induces on the host
star around the center of mass of the system. We considered the
case where this putative inner companion lies on a circular or-
bit. For this, we used the period and eccentricity distributions
in Fig. 4. Figure 6 shows the minimum mass of a putative inner
companion as a function of the planet’s eccentricity. Such a com-
panion would lie at an angular separation of ∼0.21′′5 (∼6 au).
By comparing these masses to the SPHERE/IRDIS mass limit
of ∼3 MJ measured at this separation (Samland et al. 2017) ac-
cording to the atmospheric and evolutionary models of Baraffe
et al. (2015, 2003), we can conclude that if 51 Eridani b has a
non-zero eccentricity, this eccentricity is genuine and does not
result from an unseen low-mass inner companion.

5. Conclusions

We presented VLT/SPHERE observations over three years of the
young giant exoplanet 51 Eridani b to further characterize its or-
bital motion and parameters. The planet moved by ∼130 mas
over this elapsed time with hints for orbital curvature and a de-
creasing trend in its separation to the star. We compared the re-
sults of three orbital fitting approaches based on LSMC, MCMC,
and Bayesian rejection sampling, and found similar distribution
shapes for all parameters. With respect to the study of De Rosa
et al. (2015), our orbital analysis based on a similar Bayesian
rejection sampling approach provides narrower ranges for the
orbital parameters. The time at periastron passage and the longi-
tude of node exhibit bimodal distributions, the ambiguity being
related to the non-detection of changes in the orbital speed of
the planet. We derived an inclination range of 126–147◦, which
is slightly narrower than the 125–153◦ range derived by De Rosa
et al. (2015). We note that the planet’s orbital inclination is com-
patible with an orbit lying in the stellar equatorial plane (the stel-
lar rotation axis has an inclination of 134–144◦, see Appendix F)
or offsetted by less than 18◦. Given that the star is expected to
host a debris disk, this might suggest a coplanar planet-disk con-
figuration and dynamical interactions. Further astrometric mon-
itoring will help to refine the planet’s orbital inclination and the
analysis of the system spin-orbit.

Our orbital analysis suggests an eccentric orbit for the planet
with a 68% interval of 0.30–0.55. If the planet’s eccentricity
is indeed genuine, this may hint at dynamical interactions be-
tween the planet and another body in the system to produce such
a large eccentricity. This putative additional body could be an
unseen inner or outer planet, although we note that the current
imaging detection limits are quite deep (>4 MJ beyond 5 au and
>2 MJ beyond 9 au assuming hot-start models, Samland et al.
2017). Another possibility would be gravitational perturbations
from GJ 3305AB like Kozai-Lidov oscillations, but this scenario
may face timescale issues because of the large separation of the
binary and the system youth. Fabrycky & Tremaine (2007) pre-
dict that a close-in giant planet experiencing Kozai-Lidov oscil-
lations from a distant binary companion to its host star will typ-
ically have an orbit misaligned with the stellar equatorial plan.
Our analysis favors alignment or misalignment within 18◦ for
the spin-orbit of the 51 Eridani star-planet system. Interactions
of the planet with the circumstellar disk could also be a possible
mechanism. Although this kind of interactions is usually thought
to damp a planet’s eccentricity, simulations have shown that for
massive giant planets (>4–5 MJ) lying near the disk midplane
(<10◦) interactions with a protoplanetary disk increase their ec-

5 This companion could in theory lie at a larger separation but its mass
would be larger, hence its detection would be even easier.

Fig. 6. Minimum mass (in solar masses) of an unseen inner companion
on a circular orbit that could bias the eccentricity measured for 51 Eri-
dani b compared to the SPHERE/IRDIS detection limit at 6 au (see
text). The inset provides a zoom at low eccentricities and masses to bet-
ter show the detection limit.

centricity (Papaloizou et al. 2001; Kley & Dirksen 2006; Bitsch
et al. 2013). The current mass estimate of 51 Eridani b is ∼2–
4 MJ assuming hot-start models but it could be as large as 12 MJ
assuming warm-start models (Samland et al. 2017).

Further astrometric monitoring in the next 3–4 years will be
critical to confirm at a higher significance the curvature in the
planet’s motion, determine if the planet is accelerating or de-
celerating on its orbit, and further constrain its orbital param-
eters. It will also be critical for preparing future observations.
If the planet’s angular separation strongly decreases, this might
prevent its follow-up near its periastron passage with SPHERE,
GPI, and JWST to better constrain its orbital and atmospheric
properties and leave such observations feasible with ELT instru-
ments only.

In addition to further orbital follow-up, resolved images of
the host star debris disk will be valuable to determine if the
planet orbits in the disk plane by providing the disk orientation
and, if the data confirm the two disk belts inferred from the stel-
lar spectral energy distribution, if it dynamically shapes these
belts by providing their radial extent. Such information would
also help to better characterize its orbital period and eccentricity.
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Appendix A: Comparison of astrometric
measurements from different algorithms

Table A.1. SPHERE astrometry relative to the star of 51 Eridani b ob-
tained with SDI+TLOCI and SDI+ANDROMEDA.

Epoch Spectral band ρ (mas) PA (◦)
SDI+TLOCI

2015.74 K1 453.4±4.4 167.15±0.55
2015.74 H 453.9±15.9 166.1±2.0
2016.04 H2 456.7±6.6 165.50±0.83
2016.95 H2 453.6±5.7 160.30±0.72
2017.74 K1 449.0±2.9 155.67±0.37
2018.72 K1 443.3±4.2 150.23±0.54

SDI+ANDROMEDA
2015.74 K1 448.6±1.4 167.45±0.06
2015.74 H 467.4±2.9 167.09±0.07
2016.04a H2 – –
2016.95 H2 456.1±1.6 160.06±0.06
2017.74 K1 447.9±1.3 155.80±0.04
2018.72 K1 439.0±1.2 150.09±0.03

Notes. The uncertainties are from the measurement procedure only and
are given at 1σ.
a It was not possible to extract the planet’s astrometry.

Appendix B: Comparison of the SPHERE and GPI
astrometry without GPI/SPHERE recalibration

Figure B.1 shows further comparisons of all the SPHERE as-
trometry and the GPI astrometry reported in De Rosa et al.
(2015) without applying any recalibration of the latter on the
SPHERE data. While we do not see any clear GPI/SPHERE off-
set in the separations (Fig. 3), we note that the position angle of
the GPI point taken on 2015 September 1 is smaller by 0.65◦ (1.1
times the measurement uncertainty) than the PA of a SPHERE
point taken three weeks later, on 2015 September 25. However,
we expect due to the planet’s orbital motion an additional de-
crease in PA of ∼0.38±0.02◦ between the GPI and SPHERE
epochs, so that the actual offset between these two measurements
is possibly ∼1◦ (1.7 times the measurement uncertainty).

We did not consider for the comparison the SPHERE point
taken on 2015 September 26 because the PA measured at this
epoch has significantly larger uncertainties and deviates from a
linear fit matching well all the other SPHERE data points (pur-
ple line in the bottom panel of Fig. B.1). Contrary to the other
SPHERE datasets, this dataset was not obtained with the dual-
band imaging mode of IRDIS that allows for simultaneous imag-
ing in two spectral bands in and out a methane absorption band.
Therefore, SDI could not be used in the image post-processing
to attenuate fast quasi-static stellar speckles which are not at-
tenuated with angular differential imaging, resulting in a poorer
detection of the planet. We did not also consider other GPI and
SPHERE data points because they were taken far in time. We
note that the GPI PA measurements exhibit a steeper slope with
respect to the SPHERE data although the measured uncertainties
are large (−6.7±1.3◦) and include the slope value derived from
the SPHERE data (−5.7±0.2◦).

In order to further analyze potential PA systematics be-
tween the SPHERE and GPI data, we reduced all the GPI H-
band data of 51 Eridani available in the Gemini archive (eight

datasets taken from December 2014 to November 2017) using
the GPI data reduction pipeline v1.4.0 (Perrin et al. 2014, 2016),
which applies an automatic correction for the North offset of
−1.00±0.03◦ measured by Konopacky et al. (2014). Then, we
post-processed them using SDI+ANDROMEDA. The SDI step
was necessary to enhance the S/N of the planet. For this, we
selected spectral channels where the planet is not expected to
show large fluxes due to strong methane absorptions (Macintosh
et al. 2015; Samland et al. 2017; Rajan et al. 2017). We could
recover the planet in five of the datasets. The GPI PA measure-
ments shown in Fig. B.2 display a decreasing slope (−5.9±0.3◦)
in agreement with the slope measured with the SPHERE data
but are offsetted by 0.65±0.17◦ toward smaller values. We also
note that our GPI measurements in common with De Rosa et al.
(2015) are offsetted by ∼0.35±0.05◦ toward larger values.

From these analyses, we applied a recalibration in PA of
1.0±0.2◦ to the GPI measurements in De Rosa et al. (2015) be-
fore fitting the SPHERE and GPI data. Due to the location of
51 Eridani b, the offset in PA produces an offset mainly in rela-
tive RA as seen in the top-left panel of Figure B.1.

The large GPI/SPHERE PA offset that we found in our anal-
ysis is likely related to differences in the astrometric calibration
of the instruments. It is currently unclear if this PA offset should
be considered systematically when combining SPHERE and GPI
astrometry in orbital fits because it is not seen for other targets
observed with both instruments and with published observations
close in time (HD 95086, HR 2562, β Pictoris, HR 8799, Rameau
et al. 2016; Konopacky et al. 2016b; Wang et al. 2016, 2018;
Chauvin et al. 2018; Maire et al. 2018; Lagrange et al. 2019;
Zurlo et al. 2016). Further analysis is needed to conclude on this
point but is considered to be beyond the scope of this paper.

Appendix C: LSMC orbital fitting

We drew 1 000 000 random realizations of the astrometric mea-
surements assuming Gaussian distributions around the nominal
values. Then, we fit the six Campbell elements simultaneously
using the downhill simplex AMOEBA procedure provided in the
EXOFAST library (Eastman et al. 2013): orbital period P, eccen-
tricity e, inclination i, longitude of node Ω, argument of perias-
tron passage ω, and time at periastron passage T0. Initial guesses
of the parameters were drawn assuming uniform distributions in
log P, e, cos i, Ω, ω, and T0. We considered no restricted ranges
except for the period (P=10–1000 yr). We also included the cor-
rection for the bias on the eccentricity and time at periastron pas-
sage due to the small orbital arc covered by the data following
the method in Konopacky et al. (2016a) (∼34% of fitted orbits
are rejected when applying this method, because of long peri-
ods, large eccentricities and/or times at periastron passage close
to the epochs of the data).

For the corner plot and the 68% intervals of the parameters
shown in Sect. 4, we retained for the analysis all the derived so-
lutions with χ2

red < 2. The longitude of node and the argument of
periastron passage are restrained in the [0;180◦] range to account
for the ambiguity on the longitude of node inherent to the fitting
of imaging data alone.

We note two broad peak features around ∼10◦ and 130◦ in the
distribution of the longitude of node, which are associated with
eccentricities of ∼0.2–0.5 and show correlations with the time
at periastron passage. The peak around ∼10◦ seems to produce
more orbits with T0 around ∼ 2005, whereas the peak around
∼130◦ seems to produce more orbits with T0 around ∼ 2025.
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Fig. B.1. Temporal evolution of the relative right ascension (top left), relative declination (top right), and position angle (bottom) of 51 Eridani b.
The GPI astrometry is taken from De Rosa et al. (2015) without applying a recalibration of the PA measurements (see Sect. 3). In the bottom-right
panel is shown a linear fit to the SPHERE data (purple line).

Fig. B.2. Temporal evolution of the position angle of 51 Eridani b mea-
sured in the SPHERE data (stars) and our analysis of the GPI archival
data (diamonds). Linear fits are shown for each data series separately
(SPHERE: dashed line, GPI: dotted line).

Appendix D: MCMC orbital fitting

We provide in this appendix the parameter distribution obtained
using an MCMC approach (see details in Chauvin et al. 2012).
We assumed uniform priors in log P, e, cos i, Ω+ω,ω−Ω, and T0.
Ten chains of orbital solutions were conducted in parallel, and
we used the Gelman–Rubin statistics as convergence criterion

(see the details in Ford 2006). We picked a random sample of
500 000 orbits from those chains following the convergence.

Table D.1. Orbital parameters of 51 Eridani b derived from the MCMC
analysis.

Parameter Unit Median Lower Upper χ2
min

P yr 30 23 46 53
a au 12 10 15 17
e 0.49 0.36 0.58 0.39
i ◦ 135 126 146 124
Ω ◦ 76 14 139 5
ω ◦ 85 54 111 121
T0 2007 2005 2027 2009

Appendix E: OFTI orbital fitting

We provide in this appendix the parameter distribution obtained
using a custom IDL implementation of the Orbits For The Impa-
tient (OFTI) approach described in Blunt et al. (2017). Briefly,
we drew random orbits from uniform distributions in e, cos i, ω,
and T0 and adjusted their semi-major axis and longitude of node
by scaling and rotating the orbits to match one of the measured
astrometric points. As explained in Blunt et al. (2017), the scale-
and-rotate method to adjust the semi-major axis and longitude

Article number, page 11 of 15

164



A&A proofs: manuscript no. ms

# 
of

 so
lu

tio
ns

0.00
0.25
0.50
0.75
1.00

e

1 2 3
2
red

# 
of

 so
lu

tio
ns

0

50

100

150

i (
de

g)

0

50

100

150

 (d
eg

)

0

100

200

300

 (d
eg

)

0

10
0

20
0

P (yr)

1975
2000
2025
2050

T p
 (y

r)

0.
00

0.
25

0.
50

0.
75

1.
00

e

0 50 10
0

15
0

i (deg)

0 50 10
0

15
0

 (deg)

0

10
0

20
0

30
0

 (deg) 20
00

20
50

Tp (yr)

10 20 30 40

Semi-major axis (au)

Fig. D.1. MCMC distributions of the six Campbell orbital elements. The diagrams displayed on the diagonal from top left to lower right represent
the 1D histogram distributions for the individual elements. The off-diagonal diagrams show the correlations between pairs of orbital elements. The
linear color scale in the correlation plots accounts for the relative local density of orbital solutions. The diagram in the top-right part shows the
histogram distribution of the reduced χ2.

of node imposes uniform priors in log P and Ω. Then, the χ2

probability of each orbit was computed assuming uncorrelated
Gaussian errors before performing the rejection sampling test.
To speed up the procedure to obtain a meaningful number of
orbits (29 870), we applied the procedure at each iteration over
8 000 trial orbits simultaneously and we also restrained the prior
ranges using the statistics of the first 100 accepted orbits.

We cross-checked our code with the OFTI procedure avail-
able as part of the Python orbitize package (Blunt et al. 2019).
We also performed as a check a fit using only GPI data points
(2014 December 18, 2015 January 30, and 2015 September 1)

from De Rosa et al. (2015) and assuming the same priors for the
parameters and found parameter distributions and intervals very
similar to those that they obtained.
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Fig. E.1. Same as Fig. 4 but obtained using the OFTI approach (see text).

Appendix F: Stellar rotation axis

Koen & Eyer (2002) estimated a rotation period of 0.65 d
for 51 Eridani from Hipparcos photometric data without giv-
ing an uncertainty. This rotation period was used by Feigel-
son et al. (2006) with a stellar projected rotational velocity of
v sin i?= 71.8± 3.6 km s−1 (Reiners & Schmitt 2003) and a stel-
lar radius of 1.5 R� to estimate an inclination of 45◦ for the star’s
rotation axis.

In order to better constrain the stellar rotation axis and
estimate in particular an uncertainty on this parameter, we
reanalyzed the Hipparcos photometric data (Perryman et al.
1997; van Leeuwen et al. 1997). Figure F.1 shows the results.
Both the Lomb-Scargle periodogram (Scargle 1982) and the

CLEAN periodogram (Roberts et al. 1987) show a peak at
P? = 0.65± 0.03 d. We also analyzed as a cross-check analysis
archival data from MASCARA (Talens et al. 2017) and found a
rotation period in good agreement with the value derived from
the Hipparcos data (P? = 0.66 d, Fig. F.2). We considered only
the Hipparcos results in the remainder of the analysis.

Using a V magnitude V = 5.20 mag, a distance
d = 29.78± 0.15 pc, a bolometric correction BCV = 0 mag,
and an average effective temperature from the literature
T? = 7250 K, we infer a stellar radius R? = 1.53± 0.04 R�.
Combining the rotation period, the stellar radius, and an average
projected rotational velocity v sin i? = 83± 3 km s−1 (estimated
from an average of the measurements in Royer et al. 2007;
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Table E.1. Orbital parameters of 51 Eridani b derived from the OFTI
analysis.

Parameter Unit Median Lower Upper χ2
min

P yr 31 23 47 34
a au 12 10 16 13
e 0.47 0.33 0.57 0.39
i ◦ 135 126 147 132
Ω ◦ 82 15 148 134
ω ◦ 86 59 118 101
T0 2012 2006 2027 2026

Luck 2017, 84 km s−1 and 81.2 km s−1, respectively), we infer
an inclination of the stellar rotation axis with respect to the line
of sight 39◦ < i? < 51◦ or 129◦ < i? < 141◦. Given the derived
orbital inclination of the planet (126–147◦), this suggests
alignment for the spin-orbit of the star-planet system. Using
the stellar radius measurement of 1.63± 0.03 R� in Simon &
Schaefer (2011) gives 36◦ < i? < 46◦ or 134◦ < i? < 144◦, which
also suggests spin-orbit alignment.
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Fig. F.1. Photometric analysis of 51 Eridani based on Hipparcos data. Top row from left to right: V-band magnitudes versus Heliocentric Julian
Day, Lomb-Scargle periodogram, and CLEAN periodogram. For the Lomb-Scargle periodogram, we show the spectral window function (in red)
and the peak corresponding to the rotation period (red vertical mark). Bottom panel: Light curve phased with the rotation period. The solid red
curve represents the sinusoidal fit.

Fig. F.2. Same as for Fig. F.1 but for the MASCARA data.
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5.3 HD 206893: An intriguing brown dwarf

HD 206893 (or HIP 107412) A is a F-type star around which a companion at ∼ 11
au, HD 206893 B, has been imaged in 2016 by Milli et al. (2017) with SPHERE. Due
to the uncertainty on the system age (50-700 Myr) and its unusually red spectrum,
the mass of the companion is not well constrained (15-30 MJ) but its brown dwarf
nature is established (Delorme et al. 2017). The system also hosts an outer debris
disk with an inner radius around 50 au, evidenced by its spectral energy distribution
with Spitzer and marginally resolved with Herschel.

A first LSMC approach was performed on the 1-yr baseline astrometric data, but
no clear constraints could be derived (Delorme et al. 2017). Adding a constraint of
coplanarity with the debris disk selects solutions with a low non-zero eccentricity
(e ∼ 0.2) and a semi-major axis around 10 au.

As part of the Delorme et al. (2017) study, I performed N-body simulations with
Swift RMVS to try to improve the constraints on the orbital elements by studying
possible interactions with the debris disk. It turns out that all orbits found by the
preliminary fit are compatible with an inner radius of 50 au. However, none of them
could be responsible for such a large gap. If the system is young (10-20 Myr) and
the orbit eccentric, the simulations show that a spiral density wave affects strongly
the disk shape. This spiral dissipates for older ages. In any case, the morphology of
the disk is strongly unconstrained, so that spiral structures could remain unnoticed.

Finally, a new study by Grandjean et al. (2019) presents more astrometric points,
along with radial velocity measurements and constraints from Hipparcos and Gaia.
I contributed to the development of the procedure to perform an orbital fitting com-
bining these three types of data, using the emcee package (see Sec. 3.5.1). Hipparcos
and Gaia’s data allow the computation of the difference of stellar orbital velocity
projected on the skyplane between two epochs ∼ 20 yr apart. In practice, this is
done by computing the proper motion difference, taken into account as two addi-
tional terms (proper motion difference on the declination and on the right ascension)
to the χ2. This new type of analysis has been made possible with the Gaia DR2.

The star is active and its radial velocity estimate is noisy (100 m/s dispersion),
so that the constraints remain loose despite a longer time baseline. Hipparcos and
Gaia information provides an estimate of the proper motion variation over 24 years
of orbital motion. Radial velocity and proper motions constrain the mass ratio, and
the ill-constrained mass of the companion. However, the retrieved mass (110− 350
MJ) is inconsistent with its spectra and magnitude. An unresolved companion might
thus be responsible of the radial drift, and would prevent a reliable orbital fitting of
HD 206893 B relative motion.

HD 206893 B is unique in many respects. First, it is the brown-dwarf com-
panion with the closest projected separation ever imaged, and it belongs to one of
the few such systems comprising a debris disk. The short separation and the low
mass ratio (q = 0.01− 0.02) points toward a planetary-like formation (gravitational
instability or core accretion). In that respect, the system is very similar to HR
2562, presented above. Moreover, HD 206893 B has the reddest near-infrared color
among all known substellar objects, either orbiting a star or isolated. This hints for
an extremely dusty atmosphere, and makes the object an essential benchmark for
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atmospheric and evolutionary models. Finally, the presence of both a debris disk
and a possible additional companion suggested by the radial velocity drift indicate
rich dynamical interactions that will be investigated as we gather more observational
information (orbital monitoring, constraints on the structures of the disk, detection
of the putative additional companion).
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ABSTRACT

Context. The substellar companion HD 206893b has recently been discovered by direct imaging of its disc-bearing host star with the Spectro-
Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument.
Aims. We investigate the atypical properties of the companion, which has the reddest near-infrared colours among all known substellar objects,
either orbiting a star or isolated, and we provide a comprehensive characterisation of the host star-disc-companion system.
Methods. We conducted a follow-up of the companion with adaptive optics imaging and spectro-imaging with SPHERE, and a multi-instrument
follow-up of its host star. We obtain a R = 30 spectrum from 0.95 to 1.64 µm of the companion and additional photometry at 2.11 and 2.25 µm.
We carried out extensive atmosphere model fitting for the companions and the host star in order to derive their age, mass, and metallicity.
Results. We found no additional companion in the system in spite of exquisite observing conditions resulting in sensitivity to 6 MJup (2 MJup)
at 0.500 for an age of 300 Myr (50 Myr). We detect orbital motion over more than one year and characterise the possible Keplerian orbits. We
constrain the age of the system to a minimum of 50 Myr and a maximum of 700 Myr, and determine that the host-star metallicity is nearly solar.
The comparison of the companion spectrum and photometry to model atmospheres indicates that the companion is an extremely dusty late L
dwarf, with an intermediate gravity (log g ⇠ 4.5–5.0) which is compatible with the independent age estimate of the system.
Conclusions. Though our best fit corresponds to a brown dwarf of 15–30 MJup aged 100–300 Myr, our analysis is also compatible with a range
of masses and ages going from a 50 Myr 12 MJup planetary-mass object to a 50 MJup Hyades-age brown dwarf. Even though this companion is
extremely red, we note that it is more probable that it has an intermediate gravity rather than the very low gravity that is often associated with very
red L dwarfs. We also find that the detected companion cannot shape the observed outer debris disc, hinting that one or several additional planetary
mass objects in the system might be necessary to explain the position of the disc inner edge.

Key words. brown dwarfs – planets and satellites: atmospheres – techniques: high angular resolution – planet-disk interactions

1. Introduction

The discovery of young extrasolar giant planets found with high-
contrast imaging techniques (Chauvin et al. 2004; Marois et al.
2008; Lagrange et al. 2010; Rameau et al. 2013; Delorme et al.
2013; Bailey et al. 2014; Macintosh et al. 2015; Gauza et al.
2015) o↵ers the opportunity to directly probe the proper-
ties of their photosphere. The improved contrast and spectro-
scopic capabilities of the new generation of adaptive optics
(AO) instruments such as Spectro-Polarimetric High-contrast
Exoplanet REsearch (SPHERE; Beuzit et al. 2008) and GPI
(Macintosh et al. 2012) have made it possible to study the
molecular composition and physical processes taking place in

? Based on observations made with ESO Telescopes at the Paranal
Observatory under Programs ID 097.C-0865(D) (SPHERE GTO,
SHINE Program) and Program ID: 082.A-9007(A) (FEROS) 098.C-
0739(A), 192.C-0224(C) (HARPS). This work has made use of the
SPHERE Data Centre.
?? Corresponding author: P. Delorme,
e-mail: Philippe.Delorme@univ-grenoble-alpes.fr
??? F.R.S.-FNRS Research Associate.

the atmospheres of extrasolar giant planets (Zurlo et al. 2016;
Bonnefoy et al. 2016; Vigan et al. 2016; De Rosa et al. 2016;
Chilcote et al. 2017).

These previous studies have shown that while young exo-
planets have a spectral signature quite distinct from field brown
dwarfs of equivalent e↵ective temperature, they have many at-
mospheric properties in common with isolated brown dwarfs
recently identified in young moving groups (Liu et al. 2013;
Gagné et al. 2015a; Aller et al. 2016; Faherty et al. 2016). They
notably share a very red spectral energy distribution (SED) in
the near-infrared (NIR) that can be attributed to the presence of
very thick dust clouds in their photosphere. This trend was qual-
itatively expected by atmosphere models because the lower sur-
face gravity of these planetary mass objects inhibits dust settling
and naturally increases the dust content within the photosphere.
However, all atmosphere models fail to quantitatively match the
very red NIR colours of young planetary mass objects via a self-
consistent physical model, and have to resort to parametrising
the sedimentation e�ciency of the dust to match these observa-
tions, as done for instance in the Dusty models where there is
no dust settling (Allard et al. 2001) or the parametrised cloud
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ABSTRACT

Context. High contrast direct imaging allows determining light companions (planets, brown dwarfs) orbital parameters
and to estimate model and age dependent masses from their observed magnitudes or spectra. Combining astrometric
positions with radial velocity allows constraining directly the dynamical mass of companions in addition to better
constrain their orbit. A brown dwarf was discovered with SPHERE in 2016 around HD206893. Given the important
uncertainity on the systeme age, its mass could not be well constrained.
Aims. We aim to constrain HD206893B's orbit and dynamical mass.
Methods. We combined radial velocity data obtained with HARPS spectra and astrometric data obtained with the
high contrast imaging VLT/SPHERE and VLT/NaCo instruments, with a time baseline less than 3 years. We then
combine those data with astrometry data obtained by HIPPARCOS and Gaia with a time baseline of 24 years. We use
an MCMC approach to estimate the orbital parameters and dynamical mass of the brown dwarf from those data.
Results. We infer a dynamical mass of : 131+67

−59 MJ, an orbital period of 23.84+1
−1 yr and an orbital inclination of 152+4

−4

degrees for HD206893 in case of a single planetary system. This mass is not compatible with the observed near IR
spectrum of the object. The presence of an inner body could explain the drift in the RV.

Key words. Techniques: radial velocities � Techniques: high angular resolution � astrometry �Stars: brown dwarfs �
Stars: binaries : close

1. Introduction

Mass estimation of planets and Brown dwarfs (BD) from
high contrast direct imaging depends on evolutionary mod-
els. These models still need to be calibrated, especially
at young ages. Such calibrations can be done using sys-
tems for which the companion mass is independently mea-
sured. Combining radial velocity (RV) and astrometric
data, information given by high contrast direct imaging

and HIPPARCOS/Gaia, permits to measure or constrain the
companion's dynamical mass.

HD206893 is a F5V nearby star, located at 40.81 pc
(Gaïa DR2). It hosts the reddest known brown dwarf (De-
lorme et al. 2017). Its age is estimated between 0.2 and
2 Gyr (Zuckerman & Song 2004), so is not well constrained.

A BD was discovered around HD206893 by direct imag-
ing using VLT/SPHERE in 2017 by Milli et al. (2017) with

Article number, page 1 of 8
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5.4 HD 100453: A stellar companion shaping a protoplane-
tary disk?
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Figure 2.15 – Corner plot presenting the results of the MCMC orbital fitting pro-
cedure of HD 100453 A-B relative orbit. The black lines and crosses correspond to
the results of the LM procedure (best fit).

HD 100453 A is a young (10 Myr) A9V star whose protoplanetary disk was
revealed to host a global two-armed spiral structure, extending over 40 au (Wagner
et al. 2015). The star has a M-type companion at a projected separation of 1”
(108 au), HD 100453 B, whose relative motion has been monitored for 14 yr (5◦)
with NaCo, SPHERE and MagAO/Clio-2. It is unsure whether this companions is
responsible for the observed disk patterns.

A first orbital fitting has been performed in Wagner et al. (2018) with a grid-
search approach. The fit suggests low eccentricity and a semi-major axis close to the
projected separation. The inclination of the orbit is low (20-40◦), and compatible
with a coplanarity with the disk. The study concludes incorrectly on a low relative
inclination between the orbital plane and the disk plane. However, equal inclina-
tions from the skyplane does not imply a null relative inclination. To conclude on
the coplanarity, the difference of the longitudes of nodes must be considered. Wag-
ner et al. (2018) performed hydrodynamic and radiative transfer simulations in the
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coplanar case and shows that the structures in the disk are likely triggered by the
companion.
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Figure 2.16 – Representation on the sky plane of the results the MCMC orbital
fitting procedure of HD 100453 A-B relative orbit. The black orbit corresponds to
the results of the LM procedure (best fit). A hundred random solutions are plotted
in grey. The disk range is represented in black, and the observations in blue.

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Epoch (yr)

106

107

108

109

110

Se
pa

ra
tio

n 
(a

u)

Best fit

1020

1030

1040

1050

1060

1070

Se
pa

ra
tio

n 
(m

as
)

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Epoch (yr)

126

128

130

132

134

PA
 (d

eg
)

Best fit

Figure 2.17 – Temporal evolution of the separation and position angle from the
results of the MCMC orbital fitting procedure of HD100453 A-B relative orbit. At
each time, the standard deviation σ is computed and the 1-σ, 2-σ and 3-σ intervals
are represented in different shades of grey. The observations are represented in blue.

A second study was then performed in van der Plas et al. (2019) to study the in-
teraction between the companion and the disk. In this study, I performed an MCMC
orbital fitting with the same astrometry, and derive similar constraints. However,
using the longitude of nodes, I computed the relative inclination and excluded orbits
coplanar with the disk, to the difference of Wagner et al. (2018). This is consistent
with the analysis of the ALMA data, exhibiting 12CO overlapping with the projected
separation of the companion.

HD 100453 is a complex system and a good laboratory to test spiral formation
theory. Understanding the structures within protoplanetary disks are essential to
understand disk evolution and planet formation. HD 100453’s well-resolved disk
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features and the detection and monitoring of a companion near the extent of the
disk makes it unique within the known systems with protoplanetary disks. The
non-coplanarity of the companion orbit does not solve the mechanisms of spiral
formation. Further numerical simulations should be performed to elucidate the
interaction of a gaseous disk with such a companion. An alternative hypothesis is
the presence of an additional companion inner to the disk.
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ABSTRACT

Context. The complex system HD 100453 AB with a ring-like circumprimary disk and two spiral arms, one of which is pointing to
the secondary, is a good laboratory to test spiral formation theories.
Aims. To resolve the dust and gas distribution in the disk around HD 100453 A and to quantify the interaction of HD 100453 B with
the circumprimary disk.
Methods. Using ALMA band 6 dust continuum and CO isotopologue observations we study the HD 100453 AB system with a spatial
resolution of 000.09 ⇥ 000.17 at 234 GHz. We use SPH simulations and orbital fitting to investigate the tidal influence of the companion
on the disk.
Results. We resolve the continuum emission around HD 100453 A into a disk between 000.22 and 000.40 with an inclination of 29.5� and
a position angle of 151.0�, an unresolved inner disk, and excess mm emission cospatial with the northern spiral arm which was
previously detected using scattered light observations. We also detect CO emission from 7 au (well within the disk cavity) out to
100.10, i.e., overlapping with HD 100453 B at least in projection. The outer CO disk PA and inclination di↵er by up to 10� from the
values found for the inner CO disk and the dust continuum emission, which we interpret as due to gravitational interaction with
HD 100453 B. Both the spatial extent of the CO disk and the detection of mm emission at the same location as the northern spiral arm
are in disagreement with the previously proposed near co-planar orbit of HD 100453 B.
Conclusions. We conclude that HD 100453 B has an orbit that is significantly misaligned with the circumprimary disk. Because it is
unclear whether such an orbit can explain the observed system geometry we highlight an alternative scenario that explains all detected
disk features where another, (yet) undetected, low mass close companion within the disk cavity, shepherds a misaligned inner disk
whose slowly precessing shadows excite the spiral arms.

Key words. protoplanetary disks – Herbig Ae/Be stars

1. Introduction

Protoplanetary (PP) disks are a natural byproduct of star forma-
tion. These disks dissipate with a typical timescale of 2 to 3 mil-
lion years (see e.g. the review by Williams & Cieza 2011, and
references therein) and planet formation during the evolution and
dissipation of the disk appears to be the rule rather than the ex-
ception (e.g, Dressing & Charbonneau 2015). The mechanisms
that allow the gas and small dust grains in the disk to coalesce
into planetary systems are not clear yet and high angular reso-
lution studies of PP disks are necessary to solve this part of the
planet formation puzzle.

Our current best tools to study PP disks at high spatial
resolution are (sub-)mm interferometers such as ALMA and
extreme AO high-contrast imagers such as the Gemini Planet
Imager (Gemini/GPI Macintosh et al. 2014) and the Spectro-
Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE
Beuzit et al. 2008). Each of them now routinely yields spatial
resolutions below 000.1 but each traces di↵erent regions of the
disks. The scattered light traces the small ⇡ micron sized dust

grains high up in the disk surface, while the longer wavelength
observations can trace both the larger, typically mm sized, dust
grains in the disk mid plane, as well as the intermediate disk
layers through many di↵erent molecular gas lines.

As we observe PP disks at increasingly high spatial resolu-
tion it becomes clear that substructures in these disks are com-
mon, and that understanding these substructures is essential to
understand disk evolution and planet formation. The most com-
mon structures found so far are [1] opacity cavities ranging be-
tween a few to over 100 au that sometimes contain a small mis-
aligned inner disk (such as, e.g., HD 142527, see Marino et
al. 2015), where this disk also casts a shadow on the outer disk
(Casassus et al. 2012), [2] (multiple) rings and / or cavities
(e.g. Andrews et al. 2016; Avenhaus et al. 2018), [3] large spi-
ral arms (such as i.e. HD 142527, see Christiaens et al. 2014)
, or HD 100453, see Wagner et al. (2015), and [4] azimuthal
dust concentrations with various contrast often interpreted as
dust trapping in vortices (such as i.e. IRS 48 and HD 34282, see
van der Marel et al. 2013; van der Plas et al. 2017). All of these
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5.5 GJ 504: two different ages and a possible obliquity
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Figure 2.19 – Corner plot presenting the results of the MCMC orbital fitting pro-
cedure of GJ 504 A-b relative orbit. The black lines and crosses correspond to the
results of the LM procedure (best fit). The inclination of the stellar rotation axis is
indicated in orange.

GJ 504 A is a nearby G-type star around which a companion, GJ 504 b, has been
imaged in 2011 by Kuzuhara et al. (2013) with the Subaru/HiCIAO adaptative-
optics instrument. Follow-up campaigns at Subaru from 2011 to 2012 and with
VLT/SPHERE from 2015 to 2018 have confirmed that GJ 504 b is one of the coolest
and faintest companion ever imaged (Teff = 550 ± 50 K) (Kuzuhara et al. 2013;
Janson et al. 2013; Bonnefoy et al. 2018). Isochronal analyses led to two possible
ages for the system (Bonnefoy et al. 2018), corresponding to a companion mass of
1, 3+0.6

−0.3 MJ for the young estimate (21 ± 2 Myr) or 23+10
−9 MJ for the old estimate

(4.0± 1.8 Gyr).
To determine the age of the system and the nature of the companion, Bonnefoy

et al. (2018) performed an in-depth study of the system with interferometric obser-
vations, radial velocity measurements and high contrast imaging data. If the study
did not succeed to solve the age controversy, we could still perform a first orbital
fitting using the 6 years of relative astrometry gathered by Subaru/HiCIAO and
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Figure 2.20 – Representation on the sky plane of the results the MCMC orbital
fitting procedure of GJ 504 A-b relative orbit.
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Figure 2.21 – Temporal evolution of the separation and position angle from the
results of the MCMC orbital fitting procedure of GJ 504 A-b relative orbit

SPHERE (10◦ total position angle displacement). The results are displayed on Figs.
2.19, 2.20 and 2.21.

Due to the short orbital coverage, the constraints are quite loose. A first peak
of solutions appears at short period (< 300 yr, a < 45 au) corresponding to the
companion being currently at apoastron on an eccentric retrograde face-on orbit
(e ∼ 0.4). A second peak, more precise, corresponds to a period close to 300 yr
(a ∼ 45 au) and a circular and moderately inclined (i ∼ 140◦) orbit. Finally, a
queue of solutions range from periods 300 to more than 500 yr, corresponding to
moderately eccentric and inclined orbit. The reduced χ2 distribution (less than 1)
indicates a good fit and overestimated errorbars (which can be hinted from Fig.
2.20).

Moreover, using the interferometric and radial velocity measurement of the stellar
radius and rotation period, we could retrieve the line-of-sight inclination of GJ 504
A rotation axis (162.4+3.8

−4.3
◦). The difference ∆i between the star inclination and

the orbital inclination of GJ 504 b gives a lower bound on the companion obliquity,
i.e. the relative orientation of the stellar spin axis and orbital angular momentum
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Figure 2.22 – Prediction for the relative position of GJ 504 b in February 2020, for
the P104 submitted proposal. This point would improve the constraints on the orbit
curvature.

vector (Bowler et al. 2017). Most of our solutions presently lead to ∆i values above
10 degrees (see Fig. 2.19). However, we cannot yet firmly exclude a null obliquity,
mostly due to the first peak of short-period orbits.

In order to get better constraints on the orbital elements, especially the inclina-
tion, and discriminate between the two solution peaks, the orbital monitoring must
continue. I am leading a SPHERE proposal to get one extra data point in 2020 (see
Fig. 2.22). The proposal suggests 1h30 of observations, and includes 25 co-authors.
It will be completed by using the difference between Hipparcos and GAIA proper
motions (20 years baseline) as an additional observational constraints, when the pre-
cise proper motion of GJ 504 A will be released by GAIA in the early DR3 (bright
sources, 2020) (Calissendorff & Janson 2018; Grandjean et al. 2019).
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ABSTRACT

Context. The G-type star GJ504A is known to host a 3–35 MJup companion whose temperature, mass, and projected separation all
contribute to making it a test case for planet formation theories and atmospheric models of giant planets and light brown dwarfs.
Aims. We aim at revisiting the system age, architecture, and companion physical and chemical properties using new complementary
interferometric, radial-velocity, and high-contrast imaging data.
Methods. We used the CHARA interferometer to measure GJ504A’s angular diameter and obtained an estimation of its radius in
combination with the HIPPARCOS parallax. The radius was compared to evolutionary tracks to infer a new independent age range for
the system. We collected dual imaging data with IRDIS on VLT/SPHERE to sample the near-infrared (1.02–2.25 µm) spectral energy
distribution (SED) of the companion. The SED was compared to five independent grids of atmospheric models (petitCODE, Exo-REM,
BT-SETTL, Morley et al., and ATMO) to infer the atmospheric parameters of GJ 504b and evaluate model-to-model systematic errors. In
addition, we used a specific model grid exploring the effect of different C/O ratios. Contrast limits from 2011 to 2017 were combined
with radial velocity data of the host star through the MESS2 tool to define upper limits on the mass of additional companions in the
system from 0.01 to 100 au. We used an MCMC fitting tool to constrain the companion’s orbital parameters based on the measured
astrometry, and dedicated formation models to investigate its origin.
Results. We report a radius of 1.35 ± 0.04 R� for GJ504A. The radius yields isochronal ages of 21 ± 2 Myr or 4.0 ± 1.8 Gyr for
the system and line-of-sight stellar rotation axis inclination of 162.4+3.8

−4.3 degrees or 18.6+4.3
−3.8 degrees. We re-detect the companion in

the Y2, Y3, J3, H2, and K1 dual-band images. The complete 1–4 µm SED shape of GJ504b is best reproduced by T8-T9.5 objects
with intermediate ages (≤1.5Gyr), and/or unusual dusty atmospheres and/or super-solar metallicities. All atmospheric models yield
Teff = 550 ± 50 K for GJ504b and point toward a low surface gravity (3.5–4.0 dex). The accuracy on the metallicity value is limited
by model-to-model systematics; it is not degenerate with the C/O ratio. We derive log L/L� = −6.15 ± 0.15 dex for the companion
from the empirical analysis and spectral synthesis. The luminosity and Teff yield masses of M = 1.3+0.6

−0.3 MJup and M = 23+10
−9 MJup for

the young and old age ranges, respectively. The semi-major axis (sma) is above 27.8 au and the eccentricity is lower than 0.55. The
posterior on GJ 504b’s orbital inclination suggests a misalignment with the rotation axis of GJ 504A. We exclude additional objects
(90% prob.) more massive than 2.5 and 30 MJup with semi-major axes in the range 0.01–80 au for the young and old isochronal ages,
respectively.
Conclusions. The mass and semi-major axis of GJ 504b are marginally compatible with a formation by disk-instability if the system
is 4 Gyr old. The companion is in the envelope of the population of planets synthesized with our core-accretion model. Additional
deep imaging and spectroscopic data with SPHERE and JWST should help to confirm the possible spin-orbit misalignment and refine
the estimates on the companion temperature, luminosity, and atmospheric composition.

Key words. techniques: high angular resolution – stars: fundamental parameters – techniques: radial velocities –
techniques: interferometric – planets and satellites: atmospheres – planets and satellites: formation

? Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programs
093.C-0500, 095.C-0298, 096.C-0241, and 198.C-0209, and on interferometric observations obtained with the VEGA instrument on the CHARA
Array.
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In summary, the orbital characterization of these five systems observed with
SPHERE led to five articles (two 2nd author, 4th author, one 5th author, one 7th

author, and one 14th author) and one PI ESO proposal. These systems are important
pieces for the understanding of the formation of disk structures and the evolution of
planetary-mass and brown dwarf companions.

6 Application to the astrometric binaries

An interesting application of orbital fitting is the computation of the dynamical
mass(es) of binary stars. Studying stellar dynamics is the only way to determine the
stellar masses independently from the evolutionary models. It is thus essential to the
calibration of these models, especially in the mass and age range where they are less
reliable (young low-mass stars, see Introduction). The objectives are twofold: un-
derstanding the underlying physics in the evolution of stellar and substellar objects,
and improve the precision of mass predictions. Understanding the stellar evolution
is essential to the characterization of stellar to planetary mass objects. We use the
model-based age of host stars to estimate the mass of their imaged companions.

There are two types of binary stars for which the dynamical mass can be com-
puted: astrometric binaries and SB2 eclipsing binaries. Indeed, the only possibility
to derive the total mass of the system is to compute independently the semi-major
axis and the period, and to use then the 3rd Kepler law. For astrometric binaries,
the angular semi-major axis and the period are readily measurable, so that the to-
tal mass can be retrieved assuming we know the distance of the system. However,
the semi-major axis is not retrievable with only radial velocity measurements, only
the period and amplitude of the signal are measurable. The amplitude K of one
component radial velocity is:

K =
2π

P
a sin(i)

m1

m1 +m2

. (2.30)

By measuring the two components radial velocities (SB2), the mass ratio and the
term a sin(i) can be derived. Thus, the inclination is needed to compute the masses.
When the binary is transiting, the inclination (90◦) is strongly constrained. In that
case, the individual masses are also retrieved. To get the individual masses from
astrometric binaries, either their absolute orbits on the skyplane must be fitted, or
the radial velocity amplitude of one component must be observed. The former is
currently rarely achieved, but will be generalized with the final Gaia release (see
Sec. 7).

In the following subsections, I present a thorough orbital fit of three rare pairs
of M-type binary stars. Their robust belonging to young moving groups make them
ideal calibrators of the evolutionary models. Moreover, they are tight enough to
allow a complete orbital coverage in a reasonable time (P < 10 yr).
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6.1 TWA 22: good accordance with evolutionary model pre-
dictions

TWA 22 AB is a pair of M-type stars belonging to the 25 Myr old β Pic moving
group. Its relative orbit is strongly constrained by a decade (2 orbital periods) of
monitoring with the adaptive-optics imager NaCo at VLT, completed by a later
observation with SPHERE (Bonnefoy et al. 2009; Rodet et al. 2018). Moreover, its
parallax has been thoroughly studied in Teixeira et al. (2009).

An MCMC orbital fit has been performed in Rodet et al. (2018) (below) with
all the available astrometric measurements. The angular separation was determined
with a 3 mas precision (3 %) and the period with a 0.04 yr precision (<1 %).
However, through the cubic power of the semi-major axis in the second Kepler law,
the precision on the mass is around 10 %.

Finally, the fit predicts for TWA 22 a total dynamical mass of 0.18 M�. This is
perfectly consistent with the estimate age of its moving group, given its luminosity
(see Fig. 8 in the paper below), according to the two evolutionary models we used.

6.2 GJ 2060: underluminous and eccentric binary in the AB
Dor moving group

GJ 2060 AB is a pair of M-type stars belonging to the AB Doradus moving group,
whose age constraint is loose (50-150 Myr). Its relative orbit can be strongly con-
strained through 15 yr (2 orbital periods) of astrometric monitoring with 5 different
instruments, and radial velocity monitoring with 2 different instruments (Rodet et al.
2018). This article gives the first estimate of the orbital elements of GJ 2060 AB.

The astrometric data are well consistent with each other and allows for a precise
determination of all orbital elements: angular separation with a 2 mas precision
(<1 %) and period with a 0.03 yr precision (< 1 %). However, the relatively im-
precise Hipparcos parallax of the pair (3% error) does not enable a mass precision
better precision than 10%. Moreover, we show that the radial velocities of the two
components are blended and strongly biased by stellar activity.

According to six different evolutionary models, GJ 2060 AB is strongly under-
luminous for its mass, whatever its age. The potential reason for the discrepancy
is discussed in details in the paper. A legitimate hypothesis would be that the
strong magnetic activity of the stars (evidenced by the jitter in the radial velocity
measurements) induces a non-negligible spot coverage, which decreases the observed
luminosity (Somers & Pinsonneault 2015).

In order to improve the precision of the study, Gaia DR3 parallaxes (that takes
into account the binarity of sources) are needed. In the mean time, further mon-
itoring of the sources is not critical, given the already excellent orbital coverage.
Data at the periastron of the very eccentric orbit, in 2021, might however improve
significantly the fit, assuming we are able to resolve the two stars.
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ABSTRACT

Context. Evolutionary models are widely used to infer the mass of stars, brown dwarfs, and giant planets. Their predictions are thought to be less
reliable at young ages (<200 Myr) and in the low-mass regime (<1 M�). GJ 2060 AB and TWA 22 AB are two rare astrometric M-dwarf binaries,
respectively members of the AB Doradus (AB Dor) and Beta Pictoris (βPic) moving groups. As their dynamical mass can be measured to within
a few years, they can be used to calibrate the evolutionary tracks and set new constraints on the age of young moving groups.
Aims. We provide the first dynamical mass measurement of GJ 2060 and a refined measurement of the total mass of TWA 22. We also characterize
the atmospheric properties of the individual components of GJ 2060 that can be used as inputs to the evolutionary models.
Methods. We used NaCo and SPHERE observations at VLT and archival Keck/NIRC2 data to complement the astrometric monitoring of the
binaries. We combined the astrometry with new HARPS radial velocities (RVs) and FEROS RVs of GJ 2060. We used a Markov chain Monte-
Carlo (MCMC) module to estimate posteriors on the orbital parameters and dynamical masses of GJ 2060 AB and TWA 22 AB from the astrometry
and RVs. Complementary data obtained with the integral field spectrograph VLT/SINFONI were gathered to extract the individual near-infrared
(1.1–2.5 µm) medium-resolution (R ∼ 1500−2000) spectra of GJ 2060 A and B. We compared the spectra to those of known objects and to grids
of BT-SETTL model spectra to infer the spectral type, bolometric luminosities, and temperatures of those objects.
Results. We find a total mass of 0.18 ± 0.02 M� for TWA 22, which is in good agreement with model predictions at the age of the βPic
moving group. We obtain a total mass of 1.09 ± 0.10 M� for GJ 2060. We estimate a spectral type of M1 ± 0.5, L/L� = −1.20 ± 0.05 dex, and
Teff = 3700 ± 100 K for GJ 2060 A. The B component is a M3±0.5 dwarf with L/L� = −1.63 ± 0.05 dex and Teff = 3400 ± 100 K. The dynamical
mass of GJ 2060 AB is inconsistent with the most recent models predictions (BCAH15, PARSEC) for an AB Dor age in the range 50–150 Myr. It is
10%–20% (1–2σ, depending on the assumed age) above the model’s predictions, corresponding to an underestimation of 0.10–0.20 M�. Coevality
suggests a young age for the system (∼50 Myr) according to most evolutionary models.
Conclusions. TWA 22 validates the predictions of recent evolutionary tracks at ∼20 Myr. On the other hand, we evidence a 1–2σ mismatch between
the predicted and observed mass of GJ 2060 AB. This slight departure may indicate that one of the stars hosts a tight companion. Alternatively,
this would confirm the model’s tendency to underestimate the mass of young low-mass stars.

Key words. techniques: high angular resolution – binaries: visual – astrometry – stars: low-mass – stars: pre-main sequence –
stars: individual: TWA 22 – stars: individual: GJ 2060

1. Introduction

Our understanding of stellar evolution has made a lot of
progress since the introduction of the Hertzsprung-Russell dia-
gram (HRD) a hundred years ago. The beginning of a star life,
before it reaches the zero age main sequence, has been in partic-
ular deeply investigated through the development of evolution-
ary models. The latter rely on equations of state describing the
stellar interior structure, and can make use of atmospheric mod-
els to define boundary conditions and predict emergent spec-
tra. Different families of models exist (D’Antona & Mazzitelli
1997; Siess et al. 2000; Tognelli et al. 2012; Bressan et al. 2012;
Feiden 2015; Baraffe et al. 2015), and their physical and chemi-
cal ingredients (e.g., nuclear rates, opacity, atmospheric param-
eters) have been updated in the recent years (e.g., Baraffe et al.
2015). The models can predict the age and mass of stellar and

substellar objects from the measured broad band photometry,
surface gravity, radius, luminosity, and effective temperature.
The mass is the fundamental parameter which allows to com-
prehend the object nature and formation pathways.

The models predictions remain to be calibrated in vari-
ous mass and age regimes (e.g., Hillenbrand & White 2004;
Mathieu et al. 2007). Uncertainties related to the object forma-
tion process (formation mechanism, early accretion history, etc.)
exist in the pre-main sequence (PMS) regime (e.g., Baraffe et al.
2002; Baraffe & Chabrier 2010). Further uncertainties may be
added for low-mass stars, which have strong convection, rotation
and magnetic activity (Mathieu et al. 2007). About 50 low-mass
(below 1 M�) pre-main sequence stars had their mass deter-
mined thus far (e.g., Simon et al. 2000; Gennaro et al. 2012;
Stassun et al. 2014; Mizuki et al., in prep.). Most of these sys-
tems have been studied through their disk kinematics, and are

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
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thus younger than 10 million years (e.g., Guilloteau et al. 2014;
Simon et al. 2017). Moreover, this method only allows to deter-
mine the total mass of the system, disk included. The disk
mass can be a nonnegligible fraction of the total mass (e.g.,
Andrews et al. 2013, Fig. 9), so that uncertainties remain on
the stellar mass. A dozen of the stars with dynamical mass
are SB2 eclipsing binaries, for which the orbital inclination
can be strongly constrained and the mass determined from the
orbit. However, eclipsing binaries are very tight stellar pairs
(orbital periods 1–10 d) so that each star strongly influences
the other one (tides, high rotation speed, convection inhibition).
Thus, their evolution may not be representative of typical stars
(Chabrier et al. 2007; Kraus et al. 2011; Stassun et al. 2014).
Consequently, evolution models remain poorly constrained for
low-mass stars for most of the pre-main sequence stellar evolu-
tion. This can induce systematic offsets and disparate mass pre-
dictions (Hillenbrand & White 2004; Mathieu et al. 2007).

Some rare young (age< 200 Myr) and nearby (d < 100 pc)
binaries resolved with high-resolution imaging techniques
(adaptive optics, speckle interferometry, lucky imaging, sparse
aperture masking) have orbital periods that are shorter than
a decade. Combined with a precise parallax, astrometric
follow-up of the relative orbit of the two components gives
the total dynamical mass of the system. Knowledge of
the individual masses can then be gained from additional
radial velocity measurements. These systems offer a good
prospect for calibrating the PMS tracks and the underly-
ing physics of the models. To date and to our knowledge,
only nine such systems in the intermediate PMS regime (10–
100 Myr) have dynamical mass estimates below 1 M�, with
various model agreements: HD 98800 B (Boden et al. 2005),
TWA 22 (Bonnefoy et al. 2009), HD 160934 (Azulay et al.
2014), AB Dor (Azulay et al. 2015; Close et al. 2007),
GJ 3305 (Montet et al. 2015), V343 Nor A (Nielsen et al. 2016),
NLTT 33370 (Dupuy et al. 2016), GJ 2060 (this work), and
GJ 1108 (Mizuki et al., in prep.). Here we provide a refined
dynamical mass for TWA 22 and a first determination for
GJ 2060.

The calibration is nonetheless often limited by uncertain-
ties on the age and distance of these benchmarking systems.
These uncertainties are mitigated for systems belonging to
known young nearby associations and moving groups (YMGs).
The age of the YMG can be inferred via several approaches
(lithium depletion boundary, kinematics, etc.) and parallaxes can
be measured for individual members (Gaia, Arenou et al. 2017,
HIPPARCOS, Van Leeuwen 2007). Moreover, these systems have
the same age (8–150 Myr) as the substellar companions resolved
during direct imaging surveys (planets and brown dwarfs; e.g.,
Chauvin et al. 2004; Lagrange et al. 2010; Marois et al. 2008,
2010; Rameau et al. 2013a,b) whose mass determination also
depends on PMS evolutionary models.

TWA 22 and GJ 2060 are two precious astrometric M-dwarf
binaries with orbital periods of a few years. They are pro-
posed members of the young βPic and AB Dor moving groups,
respectively. Both systems have well-measured parallaxes. We
initiated their follow-up in 2004 with various ground-based facil-
ities in order to measure their dynamical masses and character-
ize their components. This paper presents an in-depth study of
these two systems using published and additional observations,
and discusses the agreement between their orbits, their atmo-
spheric properties, the ages of their moving groups, and the PMS
evolutionary models. We first review the observations and mem-
bership studies previously performed (Sect. 2), and then present
new imaging and spectroscopic data (Sect. 3). We analyze the

spectroscopic properties of GJ 2060 (Sect. 4). We derive in
Sect. 5 the dynamical masses from orbital fits, and use them to
probe the evolutionary models (Sect. 6). The agreement between
models and data is finally discussed in Sect. 7.

2. Age and membership of TWA 22 and GJ 2060

2.1. TWA 22

TWA 22 (2MASS J10172689-5354265), located at d = 17.5 ±
0.2 pc (Teixeira et al. 2009), was originally proposed as a mem-
ber of the ∼10 Myr old (Bell et al. 2015) TW Hydrae association
(TWA) by Song et al. (2003). This classification was based on its
strong Li 6708 Å absorption and Hα emission lines and sky posi-
tion near other TWA members. A subsequent kinematic analysis
of all TWA members proposed at the time by Mamajek (2005)
revealed that the available kinematics of TWA 22 were largely
inconsistent with the bulk of other TWA members and provided
a low probability of membership. Possible membership in either
TWA or the older β Pictoris moving group (∼25 Myr, Bell et al.
2015) was then proposed by Song et al. (2006).

TWA 22 was included in 2003 as a target in an adaptive
optics (AO) imaging survey to search for low-mass companions
(Chauvin et al. 2010). It was resolved into a ∼100 mas, equal
luminosity binary, and was considered as a potential bench-
mark target for dynamical mass measurements and model cal-
ibration. For this purpose, Teixeira et al. (2009) measured the
parallax, provided revised proper motion and radial velocity
measurements, and performed a detailed kinematic analysis of
TWA 22, and found further evidence for membership in the βPic
group, but were unable to fully rule out TWA membership. Then,
Bonnefoy et al. (2009) presented resolved spectra of the compo-
nents, measured spectral types (later refined by Bonnefoy et al.
2014a to M5 ± 1 for TWA 22 A and M5.5 ± 1 for TWA 22 A),
and performed an astrometric orbit fit to the available obser-
vations. This revealed that the total mass of the system was
incompatible with model predictions, considering an age range
consistent with the age of TWA. The authors noted, however,
that the models may simply be underpredicting the system mass
at such a young age.

TWA 22 has now been adopted as a bona fide member of
the βPic group on the basis of Bayesian methods for deter-
mining membership to kinematic moving groups (BANYAN I,
Malo et al. 2013; BANYAN II, Gagné et al. 2014). The TWA 22
kinematics were used to develop the βPic group kinematic
model implemented in the BANYAN Bayesian estimator (with
>99% probability of membership). The amount of lithium
observed in TWA 22 is consistent with the age of the TWA
association, but we know now that it is also compatible with
its membership to the βPic group, as Li may still subsist
in the components at the age of βPic. The age of the βPic
group has been revised multiple times in recent years using
isochronal methods that rely on all group members (Malo et al.
2014; Bell et al. 2015), the lithium depletion boundary of the
group (Binks & Jeffries 2014; Malo et al. 2014; Messina et al.
2016; Shkolnik et al. 2017), the rotation distribution of known
members (Messina et al. 2016), and model comparisons to
dynamical masses of binaries in the group (Montet et al. 2015;
Nielsen et al. 2016). This wide variety of age determination
methods converge toward a group age of ∼25 Myr (see Table 1).

In this work we adopt the βPic group age for TWA 22,
provide new astrometric measurements of the binary compo-
nents, combine these data with previous data to perform an
updated orbital fit and measure the system mass, and compare
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Table 1. Age estimates of the Beta Pictoris moving group.

Paper Age Method
(Myr)

Malo et al. (2014) 15–28 Isochronal methods
26 ± 3 Lithium depletion boundary

Bell et al. (2015) 24 ± 3 Isochronal methods
Binks & Jeffries (2014) 21 ± 4 Lithium depletion boundary
Shkolnik et al. (2017) 22 ± 6 Lithium depletion boundary
Messina et al. (2016) 25 ± 3 Rotation distribution and

Lithium depletion boundary
Montet et al. (2015) 37 ± 9 Dynamical mass of binaries
Nielsen et al. (2016) 26 ± 3 Dynamical mass of binaries

the derived mass to estimates from the latest stellar evolution
models. The binary period is relatively short (∼5 yr); TWA 22
was regularly observed from 2004 to 2007 and later in 2013 and
2015, enabling a very good characterization through the orbital
fit. The two components are the least massive stars in the βPic
group for which a dynamical mass has been computed. They
complete the mass sampling between the giant planet βPictoris
b (Lagrange et al. 2010) and the higher mass binaries GJ 3305
(total mass 1.1 M�; Montet et al. 2015) and V343 Nor (total
mass 1.4 M�; Nielsen et al. 2016). TWA 22 is thus an essential
benchmark to test the predictions of the evolutionary models in
the young group in the 0.1 M� mass range.

2.2. GJ 2060

GJ 2060 (2MASS J07285137-3014490) is an early M dwarf at
d = 15.69 ± 0.45 pc (Van Leeuwen 2007) that was first iden-
tified as a small separation binary by the HIPPARCOS satellite
(Dommanget & Nys 2000). The star was subsequently identi-
fied as a nearby young star in the paper presenting the discov-
ery of the AB Doradus moving group (Zuckerman et al. 2004).
This work presented GJ 2060 and ∼30 other stars as having both
Galactic kinematics consistent with the well studied young sys-
tem AB Dor and independent indicators of youth (X-ray and
H-alpha emission, large v sin i, etc.). Along with AB Dor itself
and six other nearby stars within a ∼5 pc radius, GJ 2060 is
a member of the AB Dor moving group nucleus. The system
has since been verified as a bona fide member of the AB Dor
moving group using revised group kinematic distributions and
Bayesian methods with an estimated membership probability of
>99% (Malo et al. 2013; Gagné et al. 2014). GJ 2060 was first
resolved into an 0.175" multiple system by Daemgen et al. (2007)
using adaptative optics imaging. The system has been observed
multiple times since with high-resolution imaging and exhib-
ited rapid orbital motion (see Janson et al. 2014). The age of
the AB Dor moving group, and thereby GJ 2060, was first pro-
posed to be ∼50 Myr by Zuckerman et al. (2004). Yet, the age of
the group remains relatively poorly constrained, and ages rang-
ing from the original ∼50 Myr to ∼150 Myr have been proposed
over the last decade (e.g., Close et al. 2005; Nielsen et al. 2005;
Luhman et al. 2005; Lopez-Santiago et al. 2006; Ortega et al.
2007; Torres et al. 2008; Barenfeld et al. 2013; Bell et al. 2015).
The system components of the group’s namesake quadruple
system AB Dor have been studied in detail (Close et al. 2005;
Nielsen et al. 2005; Guirado et al. 2011; Azulay et al. 2015) and
comparisons to stellar evolution models indicate discrepancies
between the measured masses of the components and point
toward ages <100 Myr. This is in conflict with group ages

Table 2. Age estimates of the AB Doradus moving group.

Paper Age Method
(Myr)

Zuckerman et al. (2004) 50 ± 10 Isochronal methods
Luhman et al. (2005) 100–125 Isochronal methods
Lopez-Santiago et al. (2006) 30–50 Isochronal methods
Bell et al. (2015) 149+51

−19 Isochronal methods
Ortega et al. (2007) 119 ± 20 Stellar dynamics
Messina et al. (2010) ∼70 Rotation periods
Barenfeld et al. (2013) >110 Kine-chemical analysis
Nielsen et al. (2005) 50–100 AB Dor C
Boccaletti et al. (2008) 75 ± 25 AB Dor C
Guirado et al. (2011) 40–50 AB Dor A
Azulay et al. (2015) 40–50 AB Dor B

estimated from the individual components of AB Dor and from
the ensemble of stars using HR diagram placement (Luhman et al.
2005; Bell et al. 2015), rotation periods (Messina et al. 2010), and
Li depletion (Barenfeld et al. 2013). These works find that indi-
vidual members and the ensemble of proposed AB Dor mem-
bers have properties consistent with the Pleiades open clus-
ter and likely have a comparable age (∼120 Myr; Stauffer et al.
1998; Barrado y Navascués et al. 2004; Dahm 2015). Here we
use new astrometric and radial velocity measurements of the
GJ 2060 system to derive component masses and perform similar
comparisons to stellar evolution models. No orbital fit had been
performed on this system yet, so that its orbital elements and
dynamical mass are first determined in the present article.

3. Observation and data processing

A summary of the new observations of TWA 22 and GJ 2060 is
given in Table 3. We describe the datasets and related reduction
processes in more detail below.

3.1. TWA 22

3.1.1. NaCo observations

TWA 22 AB was observed in field-tracking mode on Febru-
ary 11, 2013, with the NAOS-CONICA (NaCo) adaptive-
optics instrument mounted on the VLT/UT4 (Lenzen et al. 2003;
Rousset et al. 2003) as part of a program dedicated to the
orbit monitoring of young binaries (PI Bonnefoy; program
ID 090.C-0819). The S13 camera was associated with the H-
band filter (λc = 1.66 µm, ∆λ = 0.33 µm), yielding a square
field of view of 13.5 arcsec. The wavefront sensing was achieved
in the near-infrared on the pair (seen as a whole). We acquired
32 frames (NEXPO) of the binaries consisting of 0.345 s × 30
(DIT × NDIT) averaged exposures each. Small (±3′′) dithers
were applied every four frames to allow for an efficient sky
and bias subtraction at the data processing step. We observed
immediately after TWA 22 AB the M 6 star GSC08612-01565
to calibrate the point-spread function (PSF) of the instrument
using the same adaptive-optics setup and the same DIT, NDIT,
and NEXPO as for TWA 22 AB. On the following night we
observed the crowded field of stars around Θ Ori C to calibrate
the platescale and field orientation with the same filter and cam-
era and the visible wavefront sensor. That astrometric field was
already used in Bonnefoy et al. (2009) for the previous observa-
tions of TWA 22.
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Table 3. Observing log.

UT date Target Instrument Mode DIT × NDIT × NEXPO θ 〈Seeing〉a 〈τ0〉 Airmass
(deg) (") (ms)

2013/02/11 TWA 22 AB NaCo H-S13 0.345 s × 30 × 32 n.a. 1.0 5.7 1.15
2013/02/11 GSC08612-01565 NaCo H-S13 0.345 s × 30 × 32 n.a. 1.0 6.0 1.22
2013/02/12 Θ Ori C NaCo H-S13 3 s × 3 × 25 n.a. 0.9 6.1 1.06
2015/02/03 TWA 22 AB SPHERE IRDIS-K12 4 s × 16 × 15 n.a. 2.5 1.4 1.15
2015/02/03 TWA 22 AB SPHERE IFS-YH 32 s × 2 × 17 n.a. 2.5 1.4 1.16
2012/11/21 Θ Ori C NaCo H-S13 3 s × 5 × 26 n.a. 0.6 3.7 1.08
2012/11/25 GJ 2060 AB NaCo H-S13 0.15 s × 100 × 7 n.a. 1.0 1.7 1.01
2012/11/25 GJ 3305 AB NaCo H-S13 0.12 s × 200 × 4 n.a. 0.8 2.1 1.08
2013/11/22 GJ 2060 AB SINFONI J 1 s × 4 × 11 n.a. 0.8 1.9 0.93
2013/11/22 GJ 2060 AB SINFONI H + K 0.83 s × 4 × 11 n.a. 0.8 2.1 0.92
2013/11/22 HIP 036092 SINFONI J 6 s × 2 × 1 n.a. 0.9 2.2 1.01
2013/11/22 HIP 036092 SINFONI H + K 5 s × 2 × 1 n.a. 0.8 2.4 1.01
2015/02/05 GJ 2060 AB SPHERE IRDIS-K12 2 s × 32 × 10 n.a. 2.0 2.6 1.14
2015/02/05 GJ 2060 AB SPHERE IFS-YH 32 s × 2 × 11 n.a. 1.8 2.6 1.14
2015/03/16 GJ 2060 AB AstraLux z′ 0.015 s × 20000 × 1 n.a. n.a. n.a. 1.48
2015/03/16 GJ 2060 AB AstraLux i′ 0.015 s × 20000 × 1 n.a. n.a. n.a. 1.54
2015/10/01 GJ 2060 AB NIRC2 Kcont 0.2 s × 50 × 6 0.67 n.a. n.a. 1.81
2015/11/18 GJ 2060 AB NIRC2 Kcont 0.2 s × 50 × 9 1.71 n.a. n.a. 1.56
2015/11/29 GJ 2060 AB SPHERE IRDIS-H23 4 s × 40 × 4 n.a. 1.12 3.4 1.06
2015/11/29 GJ 2060 AB SPHERE IFS-YJ 16 s × 10 × 4 n.a. 1.12 3.4 1.06
2015/12/25 GJ 2060 AB AstraLux z′ 0.015 s × 10000 × 1 n.a. n.a. n.a. 1.01
2015/12/26 GJ 2060 AB SPHERE IRDIS-H23 16 s × 14 × 16 2.3 0.8 3.5 1.26
2015/12/26 GJ 2060 AB SPHERE IFS-YJ 8 s × 7 × 16 2.3 0.8 3.5 1.26
2015/12/28 GJ 2060 AB AstraLux z′ 0.015 s × 10000 × 1 n.a. n.a. n.a. 1.15
2016/03/27 GJ 2060 AB SPHERE IRDIS-H23 2 s × 40 × 16 n.a. 0.5 2.6 1.08
2016/03/27 GJ 2060 AB SPHERE IFS-YJ 16 s × 20 × 5 n.a. 0.5 2.6 1.08
2017/02/07 GJ 2060 AB SPHERE IRDIS-K12 4 s × 8 × 16 1.87 0.6 15.4 1.11
2017/02/07 GJ 2060 AB SPHERE IFS-YH 16 s × 2 × 16 1.65 0.6 15.2 1.11

Notes. The field rotation θ is given when the observations are performed in pupil-tracking mode. (a)DIMM for the VLT.

Table 4. Summary of TWA 22 astrometry.

UT Date Band ∆RA ∆Dec Instrument Reference
(mas) (mas)

2004/03/05 NB2.17 99 ± 3 −17 ± 3 NaCo Bonnefoy et al. (2009)
2004/04/27 NB1.75 98 ± 6 −36 ± 6 NaCo Bonnefoy et al. (2009)
2005/05/06 H-ND 15 ± 3 −89 ± 3 NaCo Bonnefoy et al. (2009)
2006/01/08 H −68 ± 2 −49 ± 2 NaCo Bonnefoy et al. (2009)
2006/02/26 H −74 ± 3 −30 ± 3 NaCo Bonnefoy et al. (2009)
2007/03/06 H −57 ± 4 80 ± 2 NaCo Bonnefoy et al. (2009)
2007/12/04 H 19 ± 3 98 ± 3 NaCo Bonnefoy et al. (2009)
2007/12/26 H 26 ± 3 97 ± 3 NaCo Bonnefoy et al. (2009)
2013/02/11 H 2 ± 1 100 ± 1 NaCo This work
2015/02/05 IFS-YH −43 ± 1 93 ± 1 SPHERE This work

All the data were reduced with the eclipse sofware
(Devillard 1997). The eclipse routines carried out the basic
cosmetic steps: bad pixel flagging and interpolation, flat field
calibration, sky subtraction, and cross-correlation and shift of the
dithered frames. We extracted the position of the Θ Ori stars and
compared them to those reported in McCaughrean & Stauffer
(1994) to infer a platescale of 13.19 ± 0.08 mas pixel−1 and a
true north of −0.90 ± 0.15◦ for those observations. We used a
deconvolution algorithm dedicated to the stellar field blurred by
the adaptive-optics corrected point spread functions to deblend
the overlaping point spread functions of TWA 22 A and B in

the final NaCo image (Veran & Rigaut 1998) and to measure
the position and the photometry of each component. The same
tool was used in Bonnefoy et al. (2009). The algorithm is based
on the minimization in the Fourier domain of a regularized
least-squares objective function using the Levenberg–Marquardt
method. It is well suited to our data which are Nyquist sampled.
We cross-checked our results using the IDL Starfinder PSF
fitting package (Diolaiti et al. 2000), which implements a cus-
tom version of the CLEAN algorithm to build a flux distribution
model of the binary but does not perform any spatial deconvolu-
tion. We find a contrast ∆H = 0.52± 0.05 mag consistent with
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the values derived at previous epochs (Bonnefoy et al. 2009).
The binary is found at a PA = 1.15 ± 0.15◦ and separation
ρ = 100 ± 3 mas.

3.1.2. SPHERE observations

The binary was observed on February 3, 2015, as part of
the SpHere INfrared survey for Exoplanets (SHINE) sur-
vey (Chauvin et al. 2017) with the high-contrast instrument
SPHERE at UT3/VLT (Beuzit et al. 2008). The observations
were scheduled as part of a subprogram (filler) of SHINE
devoted to the astrometric monitoring of tight binaries.

SPHERE was operated in field-tracking mode. No coro-
nagraph was inserted into the light path. The IRDIFS_EXT
mode enabled for simultaneous observations with the dual-band
imaging sub-instrument IRDIS (Dohlen et al. 2008; Vigan et al.
2010) in the K1 (λc = 2.110 µm; ∆λ = 0.102 µm) and K2
(λc = 2.251 µm; ∆λ = 0.109 µm) filters in parallel with the
lenslet-based integral field spectrograph (IFS, Claudi et al. 2008;
Mesa et al. 2015) in the Y–H band (0.96−1.64 µm). Only the
IRDIS data were exploited because the low-resolution (R ∼ 30)
IFS observations are superseeded by the Spectrograph for INte-
gral Field Observations in the Near Infrared (SINFONI) spec-
tra (R ∼ 1500−2000) of the binary exploited in Bonnefoy et al.
(2009 and 2014a).

We acquired 240× 4 s IRDIS frames of the binary. The
IRDIS dataset was reduced at the SPHERE Data Center1 (DC)
using the SPHERE Data Reduction and Handling (DRH) auto-
mated pipeline (Pavlov et al. 2008; Delorme et al. 2017). The
DC carried out the basic corrections for bad pixels, dark cur-
rent, and flat field. It also included correction for the instrument
distortion (Maire et al. 2016a).

The wavefront-sensing of the adaptive optics system SAXO
(Fusco et al. 2006; Petit et al. 2014) was able to operate on the
target in spite of its faintness at optical wavelengths (V =
13.8 mag; Zacharias et al. 2005) and of the adverse observing
conditions (Table 3). The tip-tilt mirror occasionally produced
a strong, undesired offset of TWA 22 in the field of view, and
part of the sequence was affected by low Strehl ratio. We then
selected by eye 71 frames with the best angular resolution. We
measured the relative position of the binary in the remaining
frames using a custom cross-correlation IDL script. The frames
were then re-aligned using subpixel shifts with a tanh inter-
polation kernel. The registered frames were averaged to pro-
duce a final frame using the Specal pipeline (Galicher et al.,
in prep.).

TWA 22 A and B are well resolved into the final K1 and
K2 images (see Fig. 1). We did not observe a reference star
to calibrate the point-spread-function and so we were not able
to use a deconvolution algorithm for that epoch. However, the
high Strehls of the SPHERE observations mitigate the cross-
contamination of the binary components. We measured their
position in the K1 image (offering the best angular resolution)
fitting a Moffat function within an aperture mask (4 pixel radii)
centered on the estimated position of the stars. We varied the
aperture size (±1 pixels in radius) and considered alternative fit-
ting functions (Gaussian, Lorentzian) to estimate an error on
the astrometry. We used a true north value of 1.72 ± 0.06◦
and a platescale of 12.267 ± 0.009 mas pixel−1 derived from the
observations of Θ Orionis C as part of the long-term analysis of
the SHINE astrometric calibration (same field as that observed

1 http://sphere.osug.fr

Fig. 1. SPHERE/IRDIS K1 (λ = 2.11 nm) observations of GJ 2060 AB
(left) and TWA 22 AB (right). They were taken respectively in February
2017 and February 2015.

with NaCo; Maire et al. 2016a,b). This leads to a position angle
PA = 114.90 ± 0.10◦ and a separation ρ = 103 ± 1 mas between
the two components of TWA 22.

3.2. GJ 2060

3.2.1. NaCo data

We observed GJ 2060 with NaCo (Program 090.C-0698; PI
Delorme) in the H-band in the course of a direct imaging sur-
vey of M dwarfs (Delorme et al. 2012; Lannier et al. 2016). The
observations were performed in field tracking mode with the
detector cube mode enabling for short integration time (0.15 s).
We also observe the astrometric calibrator Θ Ori C with the same
setup. The data were all reduced with the eclipse tool. We find
a platescale of 13.19 ± 0.06 mas pixel−1 and a true north value
of −0.60 ± 0.33◦ for those observations. GJ 2060 AB was tight
(69 mas) in the images. This required the use of a deconvolu-
tion algorithm to deblend the binary components. We reduced
for that purpose the data of GJ 3305 observed the same night
(Table 3). GJ 3305 is itself a tight pair of M dwarfs and is a mem-
ber of the Beta Pictoris moving group (Zuckerman et al. 2001).
The separation of GJ 3305 in November 2012 (290 mas) and the
Strehl ratio were sufficient to mitigate the self-contamination
of the binary component. We were then able to extract a sub-
field centered on GJ 3305 A that could serve as a reference
PSF. Nonetheless, in addition we used three isolated bright
stars from the θ Orionis field observed on four nights before
GJ 2060 at a close airmass to evaluate the dependency of the
results related to the PSF choice. The deconvolution algorithm
of Veran & Rigaut (1998) yields a PA = 232.2 ± 2.3◦ and ρ =
69 ± 2 mas for GJ 2060 AB. This measurement is confirmed by
the Starfinder tool.

3.2.2. NIRC2 archival data

We collected and reduced two sets of archival data obtained
in pupil-tracking mode with the Keck/NIRC2 adaptive optics
instrument (van Dam et al. 2004) on October 1, 2015 (program
N101N2; PI Mann), and November 18, 2015 (program H269N2;
PI Gaidos). They were both obtained with the Kcont filter (λc =
2.2706 µm, ∆λ = 0.0296 µm).

Each of the two sequences contains two sets of frames that
correspond to a position of the source on the detector. We aver-
aged each set of three frames to produce two resulting frames.
These resulting frames were then used to subtract the sky and
bias contributions into the six original frames. We registered the
frames on a common origin, applied a rotation to re-align them
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Table 5. Contrasts and apparent magnitude of GJ 2060 A and B.

Date Band Contrast GJ 2060 A GJ 2060 B
(mag) (mag) (mag)

2012/11/25 H 0.80 ± 0.20
2015/10/01 Kcont 0.95 ± 0.10
2015/11/18 Kcont 0.87 ± 0.10
2013/11/22 Jsynth 0.94 ± 0.06
2013/11/22 Hsynth 0.98 ± 0.06 6.34 ± 0.06 7.32 ± 0.09
2013/11/22 Kssynth 0.90 ± 0.06 6.09 ± 0.06 7.04 ± 0.07
2013/11/22 K1synth 0.90 ± 0.06
2013/11/22 K2synth 0.87 ± 0.06
2015/02/05 K1 1.00 ± 0.04 6.12 ± 0.04 7.08 ± 0.07
2015/02/05 K2 0.90 ± 0.04 6.07 ± 0.04 6.95 ± 0.06
2015/02/05 Jsynth 0.97 ± 0.01 6.99 ± 0.03 7.96 ± 0.04
2015/11/29 H2 0.99 ± 0.05
2015/11/29 H3 0.99 ± 0.05
2015/12/26 H2 1.00 ± 0.01 6.33 ± 0.04 7.33 ± 0.05
2015/12/26 H3 0.99 ± 0.02
2016/03/27 H2 1.02 ± 0.02
2016/03/27 H3 1.00 ± 0.01 6.33 ± 0.04 7.33 ± 0.05
2017/02/07 K1 0.96 ± 0.06
2017/02/07 K2 0.88 ± 0.05
2017/02/07 Jsynth 0.97 ± 0.03

to the north, and averaged them to produce the final frames. The
last step enabled us to filter out part of the bad pixels.

We fitted a Moffat function on each star flux distribution to
retrieve its relative position. For both epochs, we considered the
platescale (9.971 ± 0.005 mas pixel−1) and the absolute orienta-
tion on the sky (0.262±0.022◦) reported in Service et al. (2016).
The estimated contrasts and astrometry are reported in Tables 5
and 6, respectively.

3.2.3. SPHERE observations

The binary was observed as part of the SHINE survey on Febru-
ary 2015 and February 2017 in field and pupil tracking mode,
respectively. For both nights, the IRDIFS_EXT mode was used.

The reduction of the IFS data was performed following the
procedure described in Mesa et al. (2015) and Zurlo et al. (2014).
The calibrated spectral datacubes are made of 39 narrow band
images. We rotated the datacubes corresponding to each expo-
sures to align them to the north and averaged them. We extracted
from the resulting cube the flux ratio between each component of
the binary for both epochs (74 mas circular aperture).

We made use of the IRDIS data for the astrometric moni-
toring. We followed the procedure described in Sect. 3.1.2 to
reduce those data. We used the true north and platescale values
reported in Sect. 3.1.2 for the 2015 observations. We adopted
a true north on sky of 1.702 ± 0.058◦ and a platescale of
12.250 ± 0.009 mas pixel−1 from the observations of NGC3603
obtained on February 7, 2017, as part of the long-term astromet-
ric calibration of the instrument (Maire et al. 2016b). The binary
position in the final images was measured with a Moffat function
and is reported in Table 6. Figure 1 displays the 2017 epoch.

3.2.4. AstraLux observations

Three of the AstraLux data points presented here are pre-
viously unpublished. They were obtained as a continua-
tion of the AstraLux orbital monitoring campaign for young
M-dwarf binaries, with a particular focus on young moving

group members (Janson et al. 2014, 2017). The new data were
acquired in March and December of 2015 with the lucky imaging
camera AstraLux Sur (Hippler et al. 2009) at the ESO NTT
telescope (programs 094.D-0609(A) and 096.C-0243(B)). They
were reduced in an identical way to that used previously in the
survey (e.g., Janson et al. 2014). For the March run, the clus-
ter NGC 3603 was used as astrometric calibrator, giving a pixel
scale of 15.23 mas pixel−1 and a true north angle of 2.9◦. In the
December run, the Trapezium cluster was used for astrometric
calibration, yielding a pixel scale of 15.20 mas pixel−1 and a true
north angle of 2.4◦.

3.2.5. SINFONI integral field spectroscopy

GJ 2060 AB was finally observed on November 22, 2013, with
the SINFONI instrument mounted on the VLT/UT4 as part
of our dedicated program for the orbital characterization of
dynamical calibrators (PI Bonnefoy; program ID 090.C-0819).
SINFONI couples a modified version of the adaptive optics
module MACAO (Bonnet et al. 2003) to the integral field spec-
trograph SPIFFI (Eisenhauer et al. 2003) operating in the near-
infrared (1.10–2.45 µm). SPIFFI slices the field of view into 32
horizontal slitlets that sample the horizontal spatial direction and
rearranges them to form a pseudo long slit. That pseudo-slit is
dispersed by the grating on the 2048 × 2048 SPIFFI detector.
GJ 2060 A was bright enough at R band to allow for an effi-
cient adaptive optics correction. We used the pre-optics provid-
ing 12.5 mas × 25 mas rectangular spaxels on sky and a square
field of view of 0.8" side. The target was observed during two
consecutive sequences with the J and H + K gratings, covering
the 1.10−1.40 and 1.45−2.45 µm wavelength range at R ∼ 2000
and 1500 resolving powers, respectively. We obtained 11 frames
with the binary in the field of view. Between each frame, the
binary was dithered to increase the final field of view and filter
out residual nonlinear and hot pixels. We also obtained an expo-
sure on the sky at the end of each sequence to efficiently sub-
tract the sky emission lines, detector bias, and residual detector
defects. The observatory obtained observations of HIP 036092
immediately after GJ 2060. HIP 036092 is a B8V star that was
used to evaluate and remove the telluric absorption lines.

We used the version 3.0.0 of the ESO data handling pipeline
(Abuter et al. 2006) through the workflow engine Reflex
(Freudling et al. 2013), which allowed for an end-to-end autom-
atized reduction. Reflex performed the usual cosmetic steps on
the bi-dimensional raw frames (flat field removal, bad-pixel flag-
ging, and interpolation). These steps rely on calibration frames
taken on the days following our observations. The distortion
and wavelength scale were calibrated on the entire detector. The
positions of the slitlets on the detector were measured and used
to build the datacubes containing the spatial (X,Y) and spectral
dimensions (Z). In the final step, the cubes corresponding to indi-
vidual exposures were merged into a master cube.

GJ 2060 is well resolved into the J and H + K master cubes
but the sources contaminate each other. We applied the CLEAN3D
tool described in Bonnefoy et al. (2017) to deblend the sources
at each wavelength. The PSF at each wavelength is built from the
duplication of the profile of GJ 2060 A following a PA = 0◦. The
tool produced two datacubes where one of the two components
of the system is removed. We extracted the J and H + K band
spectra of each component integrating the flux within circular
apertures of radius 147 and 110 mas at each wavelength in the
datacubes, respectively. We extracted the telluric standard star
spectrum using the same aperture sizes and corrected its contin-
uum with a 12120 K blackbody (Theodossiou & Danezis 1991).
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Table 6. Summary of GJ 2060 astrometry.

UT Date Band Position angle Separation ∆RA ∆Dec Instrument Reference
(deg) (mas) (mas) (mas)

2002/12/28 K p 180.3 ± 0.2 425 ± 4 −2 ± 2 −425 ± 4 Keck_ NIRC2 Janson et al. (2014)
2005/11/30 H 143.7 ± 1.5 175 ± 11 104 ± 11 −141 ± 12 Gemini_ NIRI Daemgen et al. (2007)
2008/11/12 z′ 169.7 ± 0.3 479 ± 5 86 ± 4 −471 ± 6 Astralux Bergfors et al. (2010)
2010/01/31 z′ 176.2 ± 0.3 458 ± 5 30 ± 3 −457 ± 6 Astralux Janson et al. (2012)
2010/10/25 z′ 181.1 ± 0.3 423 ± 4 −8 ± 3 −423 ± 4 Astralux Janson et al. (2014)
2012/01/06 z′ 191.6 ± 0.3 294 ± 3 −59 ± 3 −288 ± 4 Astralux Janson et al. (2014)
2012/11/25 H 232.3 ± 3.0 69 ± 5 −55 ± 4 −42 ± 4 NaCo Janson et al. (2014)
2015/02/05 IRD_ EXT 161.7 ± 0.2 393 ± 1 123 ± 2 −373 ± 2 SPHERE This work
2015/03/16 z′ 162.3 ± 0.5 399 ± 4 121 ± 5 −380 ± 5 Astralux This work
2015/10/01 Kc 166.3 ± 0.2 439 ± 4 105 ± 3 −426 ± 5 Keck_ NIRC2 This work
2015/11/18 Kc 167.1 ± 0.2 447 ± 4 101 ± 3 −436 ± 5 Keck_ NIRC2 This work
2015/11/29 IRD_ EXT 66.8 ± 0.1 449 ± 1 103 ± 1 −437 ± 1 SPHERE This work
2015/12/25 z′ 167.5 ± 0.2 453 ± 2 98 ± 2 −442 ± 3 Astralux This work
2015/12/26 IRD_ EXT 167.0 ± 0.1 453 ± 1 102 ± 1 −441 ± 1 SPHERE This work
2015/12/28 z′ 167.5 ± 0.2 454 ± 2 98 ± 2 −443 ± 3 Astralux This work
2016/03/27 IRD_ EXT 168.6 ± 0.1 463 ± 1 92 ± 1 −454 ± 1 SPHERE This work
2017/02/07 IRD_ EXT 173.1 ± 0.2 478 ± 1 57 ± 2 −474 ± 2 SPHERE This work

The hydrogen and helium lines were interpolated using a third-
order Legendre polynomial. The GJ 2060 A and B spectra could
then be divided by the telluric standard star spectrum to correct
for atmospheric absorptions.

We computed the 2MASS J-, H-, and K-band contrasts, and
the K1 and K2 SPHERE contrasts from the GJ 2060 A and B
spectra prior to the telluric line correction (Table 5). The H,
K1, and K2 synthetic contrasts match those derived from the
SPHERE and NaCo data within the error bars. We therefore used
the synthetic 2MASS H- and K-band contrasts and the 2MASS
magnitude of the system (Cutri et al. 2003) to retrieve the indi-
vidual magnitudes of GJ 2060 A and B. The J-band contrasts
were extracted from the SPHERE IFS data. They agree with the
value derived with SINFONI. We used the contrast value of the
2015 SPHERE data to derive the J-band magnitude of the sys-
tem components.

The 2MASS J magnitudes could then be used to flux-
calibrate the J-band spectra using the 2MASS filter response
curves and tabulated zero points2. We used the K1 magni-
tude measured with VLT/SPHERE and a spectrum of Vega
(Mountain et al. 1985; Hayes 1985) to flux-calibrate the H + K
spectra.

3.2.6. HARPS data

High S/N spectra have been acquired with HARPS (Mayor et al.
2003): one night in April 2014 (JDB = 2456774.493808) and
five nights in October 2016 (between JDB = 2457666.881702
and 2457671.850830). Each spectrum contains 72 spectral
orders, covering the spectral window [3800 Å, 6900 Å]. The
spectral resolution is approximately 100 000. The S/N of the
spectra is ≈100 at 550 nm. The number of spectra per night
is two (consecutive), except for the first night, when only one
was taken. The data provided by HARPS’s Data Reduction Soft-
ware (DRS) 3.5 were first processed with SAFIR, a home-built
tool that uses the Fourier interspectrum method described in

2 https://www.ipac.caltech.edu/2mass/releases/allsky/
doc/sec6_4a.html

Table 7. Summary of HARPS radial velocity measurements of the SB1
GJ 2060.

Obs. JD-2454000 Radial velocity
(km s−1)

2774.49 28.99 ± 0.01
3666.88 28.34 ± 0.02
3666.89 28.27 ± 0.02
3668.86 27.86 ± 0.02
3668.88 27.89 ± 0.02
3669.88 27.91 ± 0.01
3669.89 27.93 ± 0.01
3670.89 27.91 ± 0.02
3670.90 27.79 ± 0.02
3671.84 28.18 ± 0.02
3671.85 28.15 ± 0.02

Chelli (2000) and Galland et al. (2005) to measure radial veloc-
ities of stars with high v sin i. SAFIR also estimates other
observables such as the cross-correlation functions, as defined
in Queloz et al. (2001), and the bisector velocity spans (BVS),
R0HK indexes, etc. For a detailed description of SAFIR, see
Galland et al. (2005).

The values obtained in October 2016 show a very strong dis-
persion, probably due to the high magnetic activity of the star.
The orbit of the binary is ∼8 yr long, so that we do not expect
the radial velocities to vary more than ∼0.01 km s−1 within a few
consecutive days, very different from the 0.40 km s−1 variation
we observed. Moreover, we note a strong correlation between
the star bisector and the radial velocity measurements. We will
therefore add this noise to the instrument uncertainty.

3.2.7. FEROS data

Ten radial velocity measurements have been obtained using
the Fiberfed Extended Range Optical Spectrograph (FEROS;
Kaufer et al. 1999) mounted at the ESO-MPG 2.2 m telescope
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Fig. 2. SINFONI spectra (1.1–2.45 µm) of GJ 2060 A and B renormalized at 1.55 µm.

at La Silla Observatory. FEROS is an echelle spectrograph cov-
ering the wavelength range 3500–9200 Å across 39 orders with
R ≈ 48000. The measurements are reported in Durkan et al.
(2018) as part of a radial velocity monitoring survey of young,
low-mass binaries. The data reduction process is described
therein. They cover a 12 yr span from 2005 to 2017.

The jitter evidenced in the HARPS data (Sect. 3.2.6) must
be taken into account in the FEROS set. Thus, we combined
quadratically this estimated activity-related noise (0.40 km s−1)
to each FEROS uncertainty.

4. Spectrophotometric analysis

We compared the SINFONI spectra of GJ2060 A and B to the
medium-resolution (R ∼ 2000) spectra of K and M dwarfs from
the IRTF library (Cushing et al. 2005; Rayner et al. 2009). The
1.1–2.5 µm spectral slopes of GJ 2060 A is best reproduced by
the Gl 229 A spectrum (M1V; Fig. 2). The detailed absorptions
and slopes of the J-band and K-band spectra are also reproduced
by that template (Fig. A.1). The lack of water band absorption
from 1.3 to 1.4 µm in the spectrum of GJ 2060 A confirms that
the object has a spectral type earlier than M2. The M0.5 and
M1.5 dwarfs Gl 846 and Gl 205 fit equally well the K and H
band spectra, respectively, of GJ 2060 A (Figs. A.1 and A.2).
Therefore, we estimate that GJ 2060 A is a M1± 0.5 dwarf.

The spectral slope of GJ 2060 B is reproduced by the spec-
trum of the M3 dwarf Gl 388. The comparison at J band
evidences departures from 1.1 to 1.2 µm and 1.24 to 1.33 µm
between our object spectrum and the templates (Fig. A.1).
These departures are also evidenced in the SINFONI spectra
of GJ 3305 A and B obtained as part of our observation pro-
gram (Durkan et al. 2018). It likely arises from the SINFONI
instrument. The multiple atomic lines (K I, Na I, Fe I, Al I) and
the water band absorption from 1.3 to 1.35 µm indicate that the
object has a spectral type later than M2. The H-band spectrum
is best represented by the one of the M3.5 dwarf Gl 273 while
the K-band is perfectly reproduced by the spectrum of the M3
template (Figs. A.1 and A.2). We conclude that GJ 2060 B is a
M3± 0.5 dwarf.

These spectral types confirm the estimates made in
Bergfors et al. (2010) from the optical colors. We used them
together with the bolometric corrections of Pecaut & Mamajek
(2013) and the J-band magnitude (Table 5) of each
component to infer a log(L/L�) = −1.20 ± 0.05 dex and

log(L/L�) = −1.63 ± 0.05 dex for GJ 2060 A and B, respec-
tively.

We performed a χ2 comparison of GJ 2060 A and B spec-
tra to a grid of BT-SETTL atmosphere models (Baraffe et al.
2015) and show the best fitting solutions in Fig. 3.
The grid covers 1500 ≤ Teff(K) ≤ 5500 (in steps of 100 K),
2.5 ≤ log g(dex) ≤ 5.5 (in steps of 0.5 dex), and considers solar
abundances. We find Teff = 3700 ± 100 K and log g> 4.0 dex for
GJ 2060 A. Similarly, we find Teff = 3400 ± 100 K and log g ≥
3.5 dex for GJ 2060 B. The Teff are in good agreement with the
estimates (Teff = 3615 − 3775 K for A and Teff = 3300 − 3475 K
for B) derived from Table 5 of Pecaut & Mamajek (2013) for
the estimated spectral type of the binary components. As these
results rely on atmosphere models, they do not depend on the
system age. Both the Teff and bolometric luminosities are used
as input of evolutionary models for the calibration of their mass
predictions in Sect. 6.

5. Orbital fit and dynamical mass

The orbits of the two systems have been observed on several
occasions covering a time span longer than their periods, so that
we are now able to derive precise estimates of their orbital ele-
ments. In both cases, we fit the relative orbit of the B component
with respect to the A component, assuming a Keplerian orbit
projected on the plane of the sky. In this formalism, the astro-
metric position of the companion can be written as

x = ∆Dec = r (cos(ω + θ) cos Ω − sin(ω + θ) cos i sin Ω) , (1)
y = ∆RA = r (cos(ω + θ) sin Ω + sin(ω + θ) cos i cos Ω) , (2)

where Ω is the longitude of the ascending node (measured coun-
terclockwise from north);ω is the argument of periastron; i is the
inclination; θ is the true anomaly; and r = a(1− e2)/(1 + e cos θ)
is the radius, where a stands for the semi-major axis and e for
the eccentricity.

The orbital fit we performed uses the observed astrometries
depicted in Tables 4 and 6 to derive probability distributions for
elements a, P (period), e, i, Ω, ω, and time for periastron passage
tp. Elements a and P are probed separately so that we can deduce
the probability distribution of the total mass as a by-product, as
a function of the distance of the star d.

We used two complementary fitting methods, as described
in Chauvin et al. (2012): a least-squares Levenberg–Marquardt
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(LSLM) algorithm to search for the model with the minimal
reduced χ2, and a more robust statistical approach using the
Markov chain Monte Carlo (MCMC) Bayesian analysis tech-
nique (Ford 2005, 2006) to probe the distribution of the orbital
elements. Ten chains of orbital solutions were conducted in par-
allel, and we used the Gelman–Rubin statistics as convergence
criterion (see the details in Ford 2006). We picked a random
sample of 500 000 orbits from those chains following the con-
vergence. This sample is assumed to be representative of the
probability (posterior) distribution of the orbital elements for
the given priors. We chose the priors to be uniform in x =
(ln a, ln P, e, cos i,Ω + ω,ω − Ω, tp) following Ford (2006). For
any orbital solution, the couples (ω, Ω) and (ω + π, Ω + π) yield
the same astrometric data; this is why the algorithm fits Ω + ω
and ω−Ω, which are not affected by this degeneracy. The system
distance has to be given to the algorithm. No input on the mass
is needed as it can be derived directly from a and P by Kepler’s
third law. The resulting MCMC distributions are well peaked
when the data adequately sample the orbits, as is the case in this
study. The complete set of posterior distributions and correla-
tions are given in the Appendix B.

5.1. TWA 22

Bonnefoy et al. (2009) already performed an orbital fit of
TWA 22 based on astrometric data from 2004 to 2007. At that
time the data covered about three-quarters of a period. The
authors used a pure Levenberg–Marquardt algorithm, which
finds local minima and estimates the uncertainties from the
resulting covariance matrix. We intend here to improve the
orbital fit by using the new astrometric data (two periods are
now covered) and the refined algorithm described above, which
allow a fine sampling of the phase parameters and a robust deter-
mination of the probability distributions.

The astrometric measurements gathered with NaCo on the
system are particularly homogeneous and sample the orbit well.
Therefore, we excluded the SPHERE point from the fit at first
in order to avoid the possible bias associated with the change of
instrument. We then checked the agreement between the results
and the SPHERE point afterward.

The MCMC algorithm gives an estimate of the orbital ele-
ments (see Table 8), with a precision of 0.02 on the eccentric-
ity, 0.05 au on the semi-major axis, 0.04 yr for the period, or

Table 8. Orbital elements from the MCMC fit of TWA 22 relative orbit,
compared to the last orbit determination by Bonnefoy et al. (2009).

Parameter This work Bonnefoy et al. (2009)

a (au) 1.72 ± 0.05
(

d
17.5pc

)
1.77 ± 0.04

P (yr) 5.35 ± 0.04 5.15 ± 0.09
e 0.13 ± 0.02 0.10 ± 0.04

i (◦) 22 ± 6 27 ± 5
Ω (◦) 129 or −51 ±18 135 ± 1
ω (◦) 106 or −74 ±17 100 ± 10

tp (yr, AD) 2006.04 ± 0.07 2006.04 ± 0.01

Notes. The uncertainties on the fitted parameters correspond to the 68%
interval of confidence of the distribution probabilities (see Appendix B).
The astrometric data only allow determination of the couple (Ω,ω)
modulo π.

6◦ on the inclination (see Appendix B). The portrayed orbit has
a low eccentricity (∼0.1) and inclination (∼22◦), as can be seen
from its on-sky representation in Fig. 4. This figure shows the
best fit obtained with the LSLM algorithm together with a hun-
dred orbits picked up randomly within the 500 000 total sample
used to derive the posteriors. The orbital elements derived by
Bonnefoy et al. (2009) are all retrieved within 1σ.

The total system mass was computed from the semi-major
axis and period corresponding to each orbit explored by the
MCMC chains. For any distance d, we find a resulting total mass
of mtot = a3/T 2 = 0.179 ± 0.018 M�

(
d

17.5pc

)3
. Using the paral-

lax distance and propagating its uncertainty, we finally obtain a
dynamical mass of mtot = 0.18 ± 0.02 M� for the pair.

We checked the consistency between the fitted orbit and the
SPHERE point that we did not consider: the astrometry falls
within the 68% confidence interval of the orbital fit, between
0.4 and 0.9σ from the probability peak (2–3◦ in position angle,
2–3 mas in radius). Running the algorithm with this extra data
point gives very similar orbital elements (all well inside the 68%
confidence interval). It yields the same dynamical mass, but with
smaller error bars (0.18 ± 0.01 M�).

A dynamical mass of mtot = 0.21 ± 0.02 M� was obtained in
Bonnefoy et al. (2009) with less than 4 yr coverage via a LSLM
algorithm. This value is close to the one we obtain, but our peak
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Fig. 4. Plots of a hundred orbits obtained with the MCMC algorithm for
system TWA 22. Astrometric measurements are color-coded by instru-
ment, and the position on the fit is also shown. Only NaCo data are used
in the orbital fit. The orbit in black, obtained with the LSLM algorithm,
corresponds to the lower χ2.

value is outside the 1σ confidence interval. However, the error
bars on the orbital elements in Bonnefoy et al. (2009) may be
slightly underestimated as they are roughly estimated from the
covariance matrix. The present determination should therefore
be more robust.

5.2. GJ 2060

Radial velocity measurements (RVs) from HARPS and FEROS
(Durkan et al. 2018) help to refine the orbital fit. The binary is
not resolved by the spectrometers (SB1). We only considered the
FEROS data to get homogeneous measurements. This is legiti-
mate, as taking into account HARPS data would not bring signif-
icant constraints. Indeed, HARPS data come down to two epochs
(April 2014 and October 2016) that are close to FEROS epochs
(see Fig. 6), and we have to fit an additional RV offset if we want
to include data from another instrument.

The code we use is a slightly modified version of the code
used for TWA 22, similar to the code used in Bonnefoy et al.
(2014b) for βPic b. In addition to the orbital elements, it eval-
uates the probability distributions of the offset velocity v0 and
amplitude K of the radial velocity, with a prior uniform in
(v0, ln K) assumed for these extra variables (Ford 2006). In the
formalism described previously, assuming a Keplerian orbit, the
radial velocity is

vrad = K
cosω(cos θ + e) − sinω sin θ√

1 − e2
+ v0. (3)

If the binary is a pure SB1, the amplitude derives from the frac-
tional secondary mass mB/mtot as

K =
2π
P

mB

mtot
a sin i. (4)

The introduction of the radial velocity breaks the degeneracy of
the couple (Ω,ω) and unique values can thus be derived for these
two variables.

The astrometric data are more numerous than in the case
of TWA 22, but less homogeneous. Therefore, small systematic
errors may bias the orbital fit (Table 6). These errors are dis-
cussed in Sect. 6.1. These 15 yr of data cover approximately
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Fig. 5. Plots of a hundred orbits obtained with the MCMC algorithm
for system GJ 2060. Astrometric measurements are color-coded accord-
ing to the instrument, and their position on the fit is also shown. The
orbit in black, obtained with the LSLM algorithm, corresponds to the
lower χ2.

Table 9. Orbital elements from the MCMC fit of GJ 2060 AB relative
orbit.

Parameter This work

a (au) 4.03 ± 0.03
(

d
15.69pc

)

P (yr) 7.77 ± 0.03
e 0.89 ± 0.01

i (◦) 36 ± 3
Ω (◦) 8 ± 4
ω (◦) −20 ± 5

tp (yr, AD) 2005.27 ± 0.03
v0 (km s−1) 28.8 ± 0.2
K (km s−1) 2.3 ± 0.9

Notes. The uncertainties on the fitted parameters correspond to the 68%
interval of confidence of the distribution probabilities (see Appendix B).

twice the relative orbit, but the passages near periastron are not
very well constrained and suggest a very quick displacement
in that zone, hinting at a high eccentricity. The results of the
MCMC algorithm are displayed in Table 9. The distribution of
orbital elements are very peaked, especially that on the eccentric-
ity (see Appendix B). We obtain a precision of 0.01 on the eccen-
tricity, 0.04 au on the semi-major axis, 0.04 yr on the period, and
3◦ on the inclination. Noticeably, the eccentric distribution peaks
at e = 0.89, but does not extend up to e = 1: the components are
bound. These orbital elements, and in particular the eccentricity,
are very robust, and we obtain the same constraint when we fit
only the astrometry. A hundred orbits, selected randomly within
the 500 000 orbits used to derive the posteriors, are plotted in
Fig. 5. Figure 6 displays the radial velocity data. The portrayed
orbit confirms the very high <1 eccentricity.

For any distance d, we infer a dynamical mass of mtot =

1.09 ± 0.03 M�
(

d
15.69pc

)3
for the pair. The fractional mass could

be computed for each orbit thanks to the fit of the radial veloc-
ity amplitude (Eq. (3)). Considering our system as a pure SB1
(Eq. (4)), we obtain a fractional mass of mB/mtot = 0.26 ±
0.10

(
15.69 pc

d

)
. However, this naive approach is questionable
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giving the flux ratio of the two components at FEROS wave-
lengths (∼0.25). Thus, we used the method proposed by
Montet et al. (2015) and considered our RVs to be the flux-
weighted sum of the two individual RVs. The amplitude K fitted
by the orbital fit could then be written as

K = (1 − F)KA − FKB, (5)

=
2π
P

a sin i
(
(1 − F)

mB

mtot
− F

mA

mtot

)
, (6)

where F = LV
B/(L

V
A + LV

B) = 0.2, LV
A and LV

B are the compo-
nents luminosities in the visible spectrum, and KA and KB are
respectively the amplitudes from A and B. From this relation,
for any distance d, we obtain a fractional mass of mB/mtot =

0.46 ± 0.10
(

15.69pc
d

)
. Using the parallax distance and propagat-

ing its uncertainty, we finally obtain mtot = 1.09 ± 0.10 M� and
mB
mtot

= 0.46 ± 0.10.
The uncertainty on the total mass mainly comes from the

uncertainty on the distance d, as ∆mtot/mtot = 3∆d/d. The
parameters d and ∆d derive from the parallax released within
the new reduction of HIPPARCOS data (Van Leeuwen 2007). The
binarity of the system was taken into account in HIPPARCOS
reduction through two additional variables in the proper motion
fit. Moreover, the high eccentricity of the orbit prevents a good
sampling of the radial velocity, in particular close to the peri-
astron passage. This leads to high error bars in the inclination
and velocity amplitude K. These errors propagate on the frac-
tional secondary mass (see Eq. (4)). A higher accuracy on the
orbital elements determination would certainly be achieved if the
periastron passage were sampled in the available astrometric and
spectroscopic data. This is unfortunately not the case yet.

On the other hand, the uncertainty on the fractional mass
mainly comes from the very low constraints provided by the
RVs. During most of the orbital revolution, the RV variation
has a similar magnitude to that of the noise evidenced by the
HARPS measurements. Only the sampling of the periastron pas-
sage could provide meaningful points that can refine the frac-
tional mass. The next passage corresponds to October 2020. We
can also see that the difference is very significant between the

naive (SB1) and corrected (flux-weighted) approach: the frac-
tional mass nearly doubles. Averaging the flux-weighted RVs
is a first-order method, and is probably not precise enough to
disentangle the two lines in our case where the luminosity of
the secondary is nonnegligible compared to the primary. A more
refined method (e.g., Czekala et al. 2017) would be necessary to
trace back the individual RVs from our measurements and com-
pute a robust fractional mass. Thus, we use only the total mass
in the next sections.

6. Comparison to the models

Both our systems now have a dynamical mass and an estimated
age given by their membership to moving groups, as well as a
robust estimate of their bolometric luminosities L and effective
temperatures Teff. Thus, we are able to probe the accuracy of the
PMS evolutionary models at these mass ranges.

There are several evolutionary models for PMS stars that
rely on different physics (e.g., atmospheric models, convection
efficiency). Two of them are suitable for 0.1 M� objects, the
DM97 model (D’Antona & Mazzitelli 1997) and the BHAC15
model (Baraffe et al. 2015). Four more models are suitable for
higher mass PMS stars: the SDF00 model (Siess et al. 2000),
the PISA model (Tognelli et al. 2011, 2012), the PARSEC model
(Bressan et al. 2012) with the Chen et al. (2014) corrections for
low-mass stars, and the Darmouth model (Dotter et al. 2008)
with the Feiden (2016) integrations of the magnetic field. Test-
ing the predictions of different models enables us to compare the
relevance of their approach, and thus to achieve a better under-
standing of the underlying physics.

6.1. TWA 22

According to the previous sections, TWA 22 has a total dynami-
cal mass of 0.18± 0.02 M� and an age of ∼25 Myr. We first con-
sidered the isochrones and iso-masses predicted by evolutionary
models in a (Teff, L) plane. We used the bolometric luminosities
and effective temperatures derived by Bonnefoy et al. (2014a).
Figure 9 compares our observed Teff and L to the BHAC15
tracks. The two components, A and B, are not located on the
same isochrone, the primary at 10 Myr and the secondary at
20 Myr, but their positions are consistent with coevality between
10 and 25 Myr within 1σ. On the other hand, the predicted
masses are respectively around 0.06 and 0.07 M� for A and B, at
the lower end of the stellar regime, which gives a total mass of
0.13 M�. Nevertheless, when we impose coevality at the moving
group age and allow for a shift of Teff within the 1σ interval, we
retrieve the total dynamical mass, with masses of about 0.08 and
0.1 M� for A and B. The corresponding diagram is shown in the
Appendix C for the DM97 model. Underprediction of the total
mass and noncoevality are again retrieved, but once again the
discrepancy disappears when we impose coevality at the moving
group’s age and allow for a shift of Teff.

Unlike the bolometric luminosity and dynamical mass, the
effective temperature predicted by the models is not robust as
it depends strongly on the atmosphere model. For each compo-
nent, we thus used the measured luminosity to compute the pre-
dicted mass for a range of ages with the BHAC15 and DM97
models. The corresponding plot is displayed in Fig. 8; the data
have been linearly interpolated where necessary to provide pre-
dictions at the required ages. The prediction at the moving group
age is consistent with the dynamical mass.
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6.2. GJ 2060

According to the previous sections, GJ 2060 has a total dynam-
ical mass of mtot = 1.09 ± 0.10 M�, and its age estimate can go
from 30 to 200 Myr.

We first considered the isochrones and iso-masses predicted
by evolutionary models in a (Teff, L) plane. Figure 9 compares
our observed Teff and L to the BHAC15 tracks. The two compo-
nents, A and B, are located on the same isochrone, at approxi-
mately 40 Myr, which is consistent with the younger estimations
of the AB Dor-MG age. On the other hand, the predicted masses
are respectively at approximately 0.55 and 0.3 M� for A and B,
which gives a total mass of 0.85 M�, far (2σ) from the 1.09 M�
obtained by the orbital fit. We tried to impose a total mass of
0.85 M� in the orbital fit in order to evaluate how this would
change the distribution of χ2. In this case, it leads to orbits with
χ2

red > 8.5 for a distance of 15.69 pc, and χ2
red > 2.5 for the

1σ distance 15.24 pc, compared to 0.5 when the mass is set free.

3000 3200 3400 3600 3800 4000 4200 4400
Teff (K)

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

lo
g(

L/
L

) (
de

x)

50 Myr
75 Myr

150 Myr

A

B

0.1 M

0.
3 

M 0.
5 

M

Fig. 9. Isochrones and iso-mass curves predicted by BHAC15. Shown
are the 10, 20, 50, 75, 150, and 600 Myr isochrones (dash-dotted
lines from left to right), while one iso-mass is drawn as a solid line
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Therefore, the predicted mass does not account for the astrome-
try of the system.

The corresponding diagrams are shown in the Appendix C
for all the other models. Underprediction of the total mass are
retrieved in each case. Coevality is sometimes only marginally
achieved (PARSEC), and a very young age can be predicted
(20 Myr, DM97).

As in the TWA 22 case, we then used each component mea-
sured luminosity to compute the predicted mass for a range of
ages with the six models (BHAC15, DM97, PARSEC, PISA,
Darmouth and SDF00) and we infer a plot linking the mass
and age for the observed luminosity. These plots are displayed
in Fig. 10. We retrieve the ∼20% underestimation of the total
mass (2σ deviation) if a young age is assumed. Conversely, an
old age (>150 M�) gives a mass marginally compatible (1σ) with
the orbital fit.

From the plots, we computed the predicted mass for each
model and different ages of the AB Dor moving group. The
results are displayed in Table 10. In order to avoid summing
correlated errors, we drew the mass-age relation for several
distances, and determined the system mass in each case. We
computed the spread and deduced the uncertainty due to the
distance σd. For the most probable distance, we then derived the
age uncertainty due to the luminosities σL. The final ages uncer-
tainties are then the quadratic sum of the independent errors σL
and σd. Only the >100 Myr case fits marginally within the 68 %
interval of confidence of the MCMC probability distribution of
the dynamical mass. This age is inconsistent with the positions
of the two stars on the temperature-luminosity diagram for all
models, except for PARSEC.

7. Discussion

The discrepancy in the dynamical mass of GJ 2060 AB ranges
from 1 to 2σ, depending on the system’s age. Such a dispar-
ity is not statistically impossible as it represents respectively the
edge of the 68% and 95% confidence interval. As an example, a
1–2σ overestimation of the parallax could resolve the issue while
being a legitimate statistical realization. We present below some
alternative hypotheses.
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Fig. 10. Mass–age relations according to the six different evolutionary
models, for GJ 2060 observed luminosities. A distance of 15.69 pc is
assumed. The dynamical mass and its uncertainty are shown in red.

Table 10. Predicted mass (in solar mass units) for system GJ 2060
depending on the evolutionary model, from its luminosity and for sev-
eral assumed ages.

Model 50 Myr 75 Myr 100 Myr 150 Myr 200 Myr

BHAC15 0.90+0.03
−0.04 0.95+0.03

−0.04 0.97+0.03
−0.03 1.01+0.03

−0.03 1.03+0.02
−0.04

PISA 0.89+0.03
−0.04 0.94+0.03

−0.04 0.96+0.03
−0.03 x x

PARSEC 0.92+0.05
−0.03 0.97+0.02

−0.04 0.98+0.02
−0.04 1.01+0.03

−0.03 1.02+0.03
−0.02

SDF00 0.76+0.05
−0.04 0.83+0.03

−0.03 0.87+0.03
−0.04 0.90+0.03

−0.04 0.90+0.03
−0.03

DM97 0.85+0.03
−0.04 0.89+0.03

−0.03 0.93+0.05
−0.03 0.95+0.03

−0.03 0.97+0.01
−0.04

Darmouth 0.90+0.05
−0.04 0.96+0.03

−0.04 0.98+0.03
−0.04 1.02+0.03

−0.04 1.03+0.03
−0.03

Notes. The error on the distance is taken into account here. The dynam-
ical mass is 1.09 ± 0.10 M�.

Table 11. Mean predicted mass (in solar mass units) for GJ 2060 A and
B, from their luminosities.

Component 50 Myr 75 Myr 100 Myr 150 Myr 200 Myr

GJ 2060 A 0.55 0.55 0.55 0.57 0.57
GJ 2060 B 0.32 0.37 0.40 0.41 0.42

7.1. Data derivation and interpretation

The SINFONI spectra of GJ 2060 A and B are well fitted by the
BT-SETTL model (Fig. 3). Consistent estimates of the bolomet-
ric luminosities can be inferred from the multi-epoch observa-
tions of the pair (Table 5). Thus, we can focus on vetting the
dynamical mass estimate.

GJ 2060 astrometry has been measured with many differ-
ent instruments, so that systematic errors can lead to impor-
tant biases if they are not accounted for in the error bars.
However, we performed the MCMC fit to each instrument
astrometry, with and without the radial velocity measurements,
and found values very close to those given in Sect. 5 for orbital
elements and for total mass peak values that can definitely not
account for the 0.1 or 0.2 M� difference. We find a total mass
of mtot = 1.10 ± 0.14 M� when we only consider the largest
homogeneous sample of astrometric epochs (AstraLux), and
mtot = 1.05 ± 0.12 M� when we consider the three main sets

of astrometric epochs (AstraLux, SPHERE, Keck). We estimate
1.08± 0.12 M� when we consider all the astrometry and exclude
the radial velocity measurements. In all these cases, as the orbit
is less constrained, the mass can agree within 1σ with the model
predictions for the old age ranges of the AB Dor moving group.

The absolute orientation of the field is usually inferred from
the observations of different reference astrometric fields (clus-
ters). This orientation could not be derived in a homogeneous
way for all our astrometric epochs and instruments. Therefore, it
may introduce a bias on the orbital parameter determination of
GJ 2060 AB. A systematic on the pixel scale of the instruments
is less likely to change our results given the short separation
of GJ 2060 AB. Therefore, we added parameters to the MCMC
algorithm in order to estimate and account for systematic angu-
lar offsets in the astrometry. Our astrometry consists of five dif-
ferent samples, but only three of them (AstraLux, SPHERE,
and Keck) contain more than two data points. We performed
an orbital fit with only these samples along with the RVs, with
AstraLux data (which are more numerous) taken as reference.
Two offset parameters, α1 and α2, thus had to be added to the
original MCMC algorithm: the AstraLux data are fitted as they
are with a model corresponding to Eqs. (1) and (2), while the
SPHERE data are first rotated through the angle α1 and the Keck
data through the angle α2. We modified the algorithm to allow
any number N of samples (which are N different instruments)
as astrometry input. One sample has to be designated as the ref-
erence, and the algorithm fits N − 1 angular offsets assuming
a flat prior (e.g., Montet et al. 2015). The results are then dis-
played with posterior distributions and correlations to the other
parameters. We found a distribution centered around −0.18◦ for
the offset between AstraLux and SPHERE data, with standard
deviation of 0.2◦. For the offset between AstraLux and Keck, the
distribution is centered around 0.10◦, with standard deviation of
0.3◦. Near apoastron, an angular offset of 0.3◦ corresponds to
a 2–3 mas offset on the right ascension. However, the total and
fractional mass remain unaffected. We are then confident that
our dynamical mass estimate is not strongly affected by these
angular offsets.

7.2. Model imprecision at the moving group ages

Pre-main sequence models have a well-known tendency
to significantly underestimate the mass of low-mass stars
(Hillenbrand & White 2004; Mathieu et al. 2007). Mathieu et al.
(2007) studied the 23 PMS stars for which a dynamical mass
had been derived, and compared these masses to the predic-
tions of the evolutionary models given the bolometric luminosity
and effective temperature of the stars. They highlighted a mean
underestimation of 20–30% for low-mass stars (<1 M�), similar
to the underestimation of GJ 2060 mass. Since then, new evo-
lutionary models have been designed. Moreover, dozens of new
dynamical masses have been obtained for PMS stars in the mean
time (most of them for stars younger than 10 Myr). These stud-
ies often confirm the previously reported mass discrepancy (e.g.,
Simon et al. 2017; Mizuki et al., in prep.).

Among these systems, some are comparable to our objects.
In the AB Dor moving group, the systems AB Dor Bab
(Azulay et al. 2015; Janson 2018, in prep.) and C (Close et al.
2005, 2007; Luhman & Potter 2006; Boccaletti et al. 2008;
Azulay et al. 2017) have been deeply analyzed in relation to the
discussion about the age of the moving group. The dynamical
masses and luminosities of AB Dor Ba and Bb are not consistent
with the PMS isochrones (Janson 2018, in prep., Paper II). At
the given luminosities and for a moving group age of 150 Myr,
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the predicted masses are ∼25% below the dynamical masses,
which are similar to that of GJ 2060 B. The study of AB Dor
C is consistent with any age between 20 and 120 Myr, and the
mass derived from the models is slightly underestimated (10%)
but still consistent with the dynamical mass, which is similar to
that of the TWA 22 components (Azulay et al. 2017).

On the other hand, NTT 33370 AB is a 80 Myr low-mass
binary very similar to TWA 22 in terms of mass (Schlieder et al.
2014; Dupuy et al. 2016). Both individual masses are strongly
underpredicted by the BHAC15 model (2σ, 46+16

+19%), which con-
trasts with the perfect agreement we found for TWA 22.

This issue does not disappear for older ages of the PMS
regime. System 2M1036 is a triple M-dwarf stellar system
in the Ursa Major moving group, whose age is estimated
at 400–500 Myr (Brandt & Huang 2015; Jones et al. 2015).
Calissendorff et al. (2017) evidenced a 1σ underestimation on
each component mass. Conversely, in the same moving group, the
dynamical masses of the K binary system NO UMa are in good
agreement with the model predictions (Schlieder et al. 2016).

Evolutionary models have not yet entirely mastered the
physics of PMS stars, as can be seen from the frequent mass
underestimation. It is particularly surprising that two very sim-
ilar systems can encounter very different prediction agreements.
Confronted with the mass overestimation of system GJ 1108 A,
Mizuki et al. (in prep.) compared the dynamical masses of a dozen
PMS stars with the predictions of the BHAC15 model, and report
a ≤10% offset toward underestimation, and ∼20% scatter. Their
results also confirm that the tendency to underpredict the mass is
neither associated with a mass range nor with an age.

Magnetic activity is also often brought up as a cause
of discrepancy in low-mass stars, as it greatly affects con-
vection and induces large spot coverage fractions that may
lead to displacements on the HR diagram (e.g., Feiden 2015;
Somers & Pinsonneault 2015). The high jitter in HARPS RV
measurements (∼400 m s−1) indicates that GJ 2060 has strong
magnetic activity. Somers & Pinsonneault (2015) studied the
influence of spots on PMS stars and showed that it could lead
to nonnegligible radius inflation, which would then lower the
effective temperatures and luminosities of the stars. The gap
between the normal and spotted case depends a little on the
star’s age and strongly on the star’s mass. Following Fig. 1.B
in Somers & Pinsonneault (2015), we assumed a ∆L of −10%
and ∆Teff of −5% for the primary, and a ∆L of −20% and
∆Teff of −8% for the secondary. We then plot the new position
of GJ 2060 A and B on the BHAC15 isochrones in Fig. C.2f.
The positions are shifted of 0.04 dex and 0.1 dex toward the
brighter luminosities, and 200 K and 300 K toward the hotter
temperatures. The diagram is now consistent with coevality at
150 Myr, and the total mass that is derived matches the dynam-
ical estimate. These corrections are computed with a spot sur-
face coverage of 50%. The intense activity of the stars could
thus account for the disagreement with the models. A shift in
temperature could also resolve the slight mismatch of TWA 22
that appears in the HR diagram. However, a higher luminos-
ity would lead to an excessive mass. This hints at a reduced
activity-induced effect for TWA 22 components. In order to test
this hypothesis, it would be worth comparing the activity indica-
tors of different PMS binaries with their predicted mass discrep-
ancy. Such a study was done recently for eclipsing binaries by
Stassun et al. (2014), who showed that activity was not the only
cause of the disparity. Finally, in our case where the two com-
ponents are regularly (at each periastron passage) very close to
each other (<1 au), tidal interactions may also affect the
evolution of the stars, although the effects are expected to be
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Table 12. GJ 2060 missing mass (in solar mass units) depending on
models and age.

Model 50 Myr 75 Myr 100 Myr 150 Myr 200 Myr

BHAC15 0.18+0.09
−0.08 0.13+0.09

−0.08 0.11+0.09
−0.09 0.07+0.09

−0.09 0.05+0.11
−0.08

PISA 0.19+0.09
−0.08 0.14+0.09

−0.08 0.12+0.09
−0.09 x x

PARSEC 0.16+0.09
−0.10 0.11+0.10

−0.08 0.10+0.10
−0.08 0.07+0.09

−0.08 0.06+0.10
−0.09

SDF00 0.32+0.09
−0.09 0.25+0.09

−0.09 0.21+0.09
−0.09 0.18+0.09

−0.09 0.18+0.09
−0.08

DM97 0.23+0.09
−0.08 0.19+0.09

−0.08 0.15+0.09
−0.09 0.13+0.09

−0.08 0.11+0.11
−0.08

Darmouth 0.18+0.09
−0.09 0.12+0.09

−0.08 0.10+0.09
−0.08 0.06+0.09

−0.08 0.05+0.10
−0.08

Mean 0.21 0.16 0.13 0.10 0.09

Notes. Error propagation values were obtained from the MCMC pos-
terior dispersion, the luminosity uncertainty at given distances, and the
errors on the distance assuming independency.

weaker than in the eclipsing binary cases, which are constantly
undergoing strong interactions. An in-depth study would be
needed, however, to determine the effect of tidal forces on the
interiors of eccentric binaries.

On the other hand, Simon et al. (2017) suggested that all
underestimations come from hidden components within the sys-
tems. If it is unlikely that this explanation accounts for all the
observed discrepancies, in particular within tight binaries, it is
nevertheless a suggestion worth studying for GJ 2060, especially
given its unusually high eccentricity (e ∼ 0.9).

7.3. Missing mass: existence of GJ 2060 Ab or Bb

Hidden mass close to the primary could explain the strong dis-
agreement between models and data for GJ 2060. An additional
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Fig. 12. Period–eccentricity diagrams from two catalogs of binary stars: panel a: visual binaries from ORB6 and panel b: spectroscopic binaries
from SB9.

companion of 0.1–0.2 M� (depending on the system’s age) could
account for the mass underestimation (see Table 12) and could
have been missed in the SPHERE datasets if close enough to one
of the two components.

Quick dynamical simulations with a symplectic integrator
(SWIFT_ HJS Beust 2003, see Appendix D) show that an addi-
tional companion should orbit closer than 0.1 au (6 mas) to either
of the companions to remain bound for the system’s lifetime.

The PSFs of GJ 2060 A and B are not elongated, even in
the SPHERE images (FWHM ∼ 30 mas). In these images, we
injected models of putative companions with different fluxes
and separations and checked whether they would induce a PSF
lengthening that could be seen by eye. The models of the puta-
tive companion were built using a flux-normalized PSF. The PSF
is the other component of the system (e.g., B if the binarity of A
is investigated, and vice versa). Using the BHAC15 models, we
estimate that we would have just missed a 0.25 M� companion
at a projected separation 0.45 au. Thus, a 0.2 solar mass object
at 0.1 au would have gone unnoticed by the imagers.

As for the spectrograph, the available RV data are too sparse
to resolve in frequency an additional orbit, and the flux ratio in
the optical prevents the detection of any spectral signature. How-
ever, the closer the object, the stronger the radial velocity pertur-
bation amplitude. A simple comparison between the perturbation
amplitude on GJ 2060 A and B radial velocities and our mea-
surements standard deviation σ is summarized in Fig. 11 for the
circular case, for semi-major axis versus mass and semi-major
axis versus inclination. We used the predicted mass of GJ 2060 A
and B from Table 11 at an age of 100 Myr for that purpose. We
chose 3σ dispersion of the RVs as a detection threshold, and rep-
resented the corresponding frontier on the plots. The limit of the
dynamical stability has been set to 0.1 au; the accurate stabil-
ity limit depends on the third companion’s mass and inclination,
but in all cases it is .0.1 au. In the coplanar case, a mass higher
than 0.1 M� could have been unnoticed around the secondary.
This is not the case for a putative companion around the primary
because the light we observe comes mostly from the primary,
so that most signals would be easily spotted. However, a 0.1 or
even 0.2 M� at 0.1 au could be compatible with our deviation in
both situations, primary or secondary, for small enough inclina-
tions, respectively 10◦ and 5◦ around the primary, and 45◦ and
25◦ around the secondary.

If there is indeed a hidden companion, its luminosity would
add to the luminosity of the nearest component, so that the

latter measured flux would be biased. According to the BHAC15,
a 50–75 Myr 0.2 M� companion has log(L/L�) = −1.9,−2 dex,
and a 0.1 M� companion has log(L/L�) ∼ −2.3 dex. The com-
ponent hosting a hidden companion would appear overluminous
for its temperature (slightly for the primary, significantly for the
secondary), shifting its position on Fig. 9 toward the younger
isochrones and straining coevality. In the PARSEC isochrones
(see Appendix C) a significant luminosity shift (corresponding
to a 0.2 M� companion) of the primary could achieve coevality.
Conversely, the same companion around the secondary would
induce a luminosity shift that would break coevality in all models.

Finally, the high eccentricity (0.90 ± 0.01) of the visual orbit
is noticeable, and we wondered if it could indicate strong dynam-
ical interactions. From the ORB6 catalog3, we computed the peri-
ods and eccentricities of visual binary stars with reliable orbital
elements (according to the grades given in the catalog). From the
SB9 catalog (Pourbaix et al. 2004) we computed the periods and
eccentricities of spectroscopic binary stars. Our two binaries fall
near the limit of each catalog’s period coverage, so that while
it gives an interesting overview, more binaries would be needed
to draw robust statistical conclusions. Gaia’s next data releases
will significantly contribute to overcoming this lack. The result-
ing diagrams are shown in Fig. 12. While not so common, the
eccentricity of GJ 2060 does not seem so rare at this range of peri-
ods and ages (before circularization). Moreover, no mechanism is
known to enhance the eccentricity of an outer companion at such
a period ratio (greater than 200, which excludes any meaningful
mean-motion resonance). Only close encounters could dynami-
cally raise the eccentricity, but the configuration would then not
be stable. All in all, the high eccentricity is likely uncorrelated to
the potential existence of a third companion.

8. Conclusion

We considered two systems of young astrometric M-dwarf
binaries, TWA 22 and GJ 2060, and used existing astrometric
and spectroscopic data along with new Keck, SPHERE, NaCo,
HARPS, and FEROS data to derive the total mass of these
systems. We consolidated the total dynamical mass estimate of
TWA 22: 0.18 ± 0.02 M�. We derived the first estimate of the
total mass of GJ 2060: 1.08 ± 0.10 M�. The orbits of the two

3 http://www.usno.navy.mil/USNO/astrometry/
optical-IR-prod/wds/orb6
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systems are well constrained thanks to our additional data, and
the errors are carefully estimated through the MCMC approach.
The orbit of GJ 2060 has an unusually high eccentricity, around
0.9. The cross-contamination of GJ 2060 primary and secondary
spectra into the FEROS and HARPS data prevents us from deriv-
ing accurate dynamical masses of the individual components.

The study of the photometry and spectroscopy of the two sys-
tems, along with their membership to moving groups and accurate
distances, allow us to test the PMS evolutionary models predic-
tions. The dynamical mass of TWA22 AB is correctly predicted
by the models at the age of the βPictoris moving group. The
placement of GJ 2060 A and B on evolutionary tracks confirms
the system coevality at an age compatible with the AB Doradus
moving group (∼50 Myr). However, all models underpredict the
total mass of GJ 2060 AB, by 10–20% (0.1–0.2 M�, 1–2σ). A
new precise parallax (likely to come in the Gaia DR3 release)
would strongly decrease the uncertainty on the dynamical mass
and could improve the statistical relevance of the discrepancy.

GJ 2060 AB’s underpredicted mass is consistent with a trend
found for other systems in the same mass range. It could
be explained by luminosity and temperature drop caused by
high starspot coverage. In that case, we would retrieve coeval-
ity at 150 Myr. We also discussed the potential existence of a
third companion close to one component of GJ 2060 that could
account for this disagreement. Dynamical modeling shows that
such a companion would have to be very close to one of the
stars, less than 0.1 au (6 mas), in order to remain stable for mil-
lions of years. Such a close companion could have gone unno-
ticed, although the RVs are putting some constraints on its mass
and inclination. Astrometric and spectroscopic data at periastron
and the use of RV disentanglement techniques might help clar-
ify the origin of the discrepancy, and in particular if only one of
GJ 2060 AB’s components has an underpredicted mass.

A dozen new PMS stellar mass measurements have become
available in the last decade. A complete reassessment of the
dynamical mass determinations of subsolar mass stars and a
homogeneous comparison of these measurements to the latest
PMS models would help arrive at a conclusion regarding the
model’s reliability. On the other hand, the upcoming data releases
of the Gaia mission should yield a statistical sample of dynami-
cal mass determination of low-mass stars (Pourbaix 2011). Addi-
tional studies are needed in any case to infer the luminosity and
temperatures of these many systems and to allow a detailed com-
parison of the masses to evolutionary models predictions.
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Appendix A: Spectrophotometry
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Fig. A.1. Comparison of the J- and K-band spectra of GJ 2060 A (red) and GJ 2060 B (blue) to M-dwarf spectra.
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Fig. A.2. Comparison of the H-band spectra of GJ 2060 A (red) and GJ 2060 B (blue) to M-dwarf spectra.
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Appendix B: Orbital fit
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Fig. B.1. Distribution and correlations of each of the orbital elements fitted by the MCMC algorithm for system TWA 22. The black lines and
points depict the best fitting orbit (lower χ2) obtained with the LSLM algorithm. The color scale is logarithmic; blue corresponds to 1 orbit and
red to 1000.
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Fig. B.2. Distribution and correlations of each of the orbital elements fitted by the MCMC algorithm for system GJ 2060. The black lines and
points depict the best fitting orbit (lower χ2) obtained with the LSLM algorithm. The color scale is logarithmic; blue corresponds to 1 orbit and
red to 1000.
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Appendix C: Model comparison
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Fig. C.1. Mass–age relations according to the six different evolutionary models for the GJ 2060 observed luminosities. The dynamical mass is
depicted in red. Panel a: highest boundary of the distance (16.14 pc), panel b: lowest boundary (15.24 pc).

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Mass (M )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ag
e 

(G
yr

)

log(L/L ) = -1.2 dex
DM97
PISA
PARSEC
Siess00
Darmouth
BHAC15

(a) GJ 2060 A

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Mass (M )

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ag
e 

(G
yr

)

log(L/L ) = -1.63 dex
DM97
PISA
PARSEC
Siess00
Darmouth
BHAC15

(b) GJ 2060 B

Fig. C.2. Mass–age relations according to the six different evolutionary models for the GJ 2060 observed luminosities. Panel a: primary, panel b:
secondary. The error on the distance is taken into account.
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Fig. C.3. Isochrones and iso-mass curves predicted by different evolutionary models. Shown are the 10, 20, 50, 75, 150, and 600 Myr isochrones
(dash-dotted lines, from top to bottom panels; except for the Pisa and DM97 models, that stop respectively at 100 and 500 Myr), while one iso-
mass is drawn every 0.1 M� from 0.1 (left panels) to 1 M� (right panels). The 50, 75, and 150 Myr isochrones correspond to possible ages for
AB Dor-MG, and are drawn in red. The blue shaded regions correspond to the observed values and the error bars for each component of system
GJ 2060, A and B.
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Fig. D.1. 100 000 yr evolution of the semi-major axis and eccentricity of the two orbits represented in Fig. D.2.

Appendix D: Dynamical analysis
Dynamical simulations were performed with SWIFT_HJS, a
symplectic N-body code designed for multiple systems (Beust
2003), to test the stability of a three-body evolution. No stabil-
ity criterion can be easily derived for three close bodies with
similar masses, especially in the case of highly eccentric per-
turbers such as these. Some configurations were tested around
both components assuming null eccentricity for the internal orbit
(most stable case) and a coplanar situation. An example of sta-
ble configuration around the primary is depicted in Fig. D.2. The
corresponding semi-major axis and eccentricity evolution for
100 000 yr, more than 10 000 times the longer period, is depicted
in Fig. D.1. The parameters of the simulations are described
below. Within the constraints that we imposed (circular coplanar

orbit), our dynamical simulations show that the high eccentricity
of the A–B relative orbit would force the putative component to
be closer than 0.1 au from the primary. The same criterion holds
for an orbit around the secondary.

A 100 000-yr dynamical simulation was performed with the
configuration of Fig. D.2, with SWIFT_HJS. A time step of
0.001 yr was chosen. The inner orbit has initially a semi-major
axis of 0.05 au and eccentricity 0.05, while the outer orbit is set
with semi-major axis 4 au and eccentricity 0.9. The masses are
respectively 0.55, 0.21, and 0.32 M� for the primary, the putative
companion, and the secondary. The orbits are taken as coplanar,
with an initial mean anomaly difference of 45◦. The evolutions
of the semi-major axis and eccentricity show a strong stability of
the orbits.

A23, page 24 of 25 206



L. Rodet et al.: Dynamical masses of M-dwarf binaries in young moving groups. I.

Fig. D.2. Face-on example of a hypothetical stable three-body configu-
ration consistent with the data. Only components A and Ba have been
detected to date.
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6.3 AB Dor B: toward empirical isochrones for the AB Dor
moving group

The stellar system AB Dor is a quadruple system in the AB Dor moving group, con-
sisting in two pairs of binaries, AB Dor A and AB Dor B, separated by ∼ 9′′ (135 au).
AB Dor B is a pair of M-type stars whose orbit can be constrained through 5 yr (5
orbital periods) of astrometric monitoring by many different instruments, including
absolute position measurements in the radio band (Azulay et al. 2015; Janson et al.
2018). With the previous knowledge brought by the studies of other systems in the
AB Dor moving group (GJ 2060, AB Dor A), estimating the dynamical mass of AB
Dor B could lead to a better understanding of the local mass-luminosity isochrones.
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Figure 2.23 – Corner plot presenting the results of the MCMC orbital fitting proce-
dure of AB Dor B A-B relative orbit. The black lines and crosses correspond to the
results of the LM procedure (best fit).

In Janson et al. (2018), I performed an MCMC orbital fitting of the relative orbit
(see Figs.2.23, 2.24 and 2.25). The data are not all consistent with each other (in
particular the archival NaCo data, blue on the figures), and the periastron is poorly
sampled, so that the precision on the angular semi-major axis is not optimal (3 mas,
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Figure 2.24 – Representation on the sky plane of the results the MCMC orbital
fitting procedure of AB Dor B A-B relative orbit.
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Figure 2.25 – Temporal evolution of the separation and position angle from the
results of the MCMC orbital fitting procedure of AB Dor B A-B relative orbit

6 %). This induces a 18 % uncertainty on the total mass. We get however a very
good precision on the period (<1 d) and reveal a high eccentricity (0.67).

Like GJ 2060, the stars appear underluminous with respect to their masses,
according to the evolutionary models. A better sampling of the orbit and new
measurements similar astrometric binaries will confirm or reject the bias trend in
the AB Dor moving group.

In a previous study, Azulay et al. (2015) performed a Levenberg-Marquardt or-
bital fit taking into account the absolute position of the two stars. This allowed
them to retrieve the individual masses of each component with a 20 % precision. In
the next subsection, I present the integration of absolute astrometric measurement
in our MCMC procedure, and show that I could not reproduce the results of Azulay
et al. (2015), which exhibit some inconsistencies, so that only the relative orbital fit
were included in our study.
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ABSTRACT

Low-mass stars exhibit substantial pre-main sequence evolution during the first ∼100 Myr of their lives. Thus, young M-type stars are
prime targets for isochronal dating, especially in young moving groups (YMGs), which contain large amounts of stars in this mass and
age range. If the mass and luminosity of a star can both be directly determined, this allows for a particularly robust isochronal analysis.
This motivates in-depth studies of low-mass binaries with spatially resolvable orbits, where dynamical masses can be derived. Here we
present the results of an observing campaign dedicated to orbital monitoring of AB Dor Ba/Bb, which is a close M-dwarf pair within
the quadruple AB Dor system. We have acquired eight astrometric epochs with the SPHERE/ZIMPOL and NACO instruments, which
we combine with literature data to improve the robustness and precision for the orbital characterization of the pair. We find a system
mass 0.66+0.12

−0.12 M� and bolometric luminosities in log L/L� of −2.02 ± 0.02 and −2.11 ± 0.02 for AB Dor Ba and Bb, respectively.
These measurements are combined with other YMG pairs in the literature to start building a framework of empirical isochrones in
mass–luminosity space. This can be used to calibrate theoretical isochrones and to provide a model-free basis for assessing relative
stellar ages. We note a tentative emerging trend where the youngest moving group members are largely consistent with theoretical
expectations, while stars in older associations such as the AB Dor moving group appear to be systematically underluminous relative
to isochronal expectations.

Key words. binaries: visual – stars: low-mass – stars: pre-main sequence

1. Introduction

Stellar systems that are both young and nearby are of impor-
tance for a range of present-day scientific topics, not least for
the purpose of direct imaging of exoplanets (e.g. Marois et al.
2008; Macintosh et al. 2015; Chauvin et al. 2017) and disks (e.g.
Schneider et al. 2009; Thalmann et al. 2013; Boccaletti et al.
2015). This has led to an increased interest in young moving
groups (YMGs), which are associations of stars that are unbound
but clustered in phase space, and thus are expected to have orig-
inated from a mutual birth cluster (e.g. Torres et al. 2008). One
such group that is particularly close, and thus particularly use-
ful for many purposes, is the AB Dor moving group (ABMG;
e.g. Zuckerman et al. 2004). While ABMG is clearly older than
5–20 Myr, which is the approximate age of the youngest YMGs
such as the TW Hya or β Pic associations (e.g. Bell et al. 2015),
its specific age has remained uncertain, with different studies
suggesting age ranges from a lower limit of 30 Myr (Close et al.
2005) all the way to an upper limit of 200 Myr (Bell et al. 2015).
? Based on observations collected at the European Southern Obser-

vatory, Chile (Programmes 090.C-0819, 60.A-9386, 098.C-0262, and
099.C-0265).

The defining member of the ABMG, AB Dor itself, is a com-
plex and intriguing system. The primary AB Dor A is a K-type
star, which has long been known to share a common proper
motion with the M-type secondary AB Dor B (Rossiter 1955)
at a separation of ∼10′′. However, more recently it has been
discovered that A and B can each be resolved into tight stel-
lar pairs. AB Dor C is a ∼90 Mjup star near the hydrogen burn-
ing limit in a 11.75-year orbit around AB Dor A (Guirado et al.
1997; Close et al. 2005; Azulay et al. 2017b). AB Dor B is in
fact a nearly equal-mass stellar pair (Janson et al. 2007) des-
ignated as AB Dor Ba and Bb. The Ba/Bb pair has been the
subject of particular attention in several studies, due to its par-
ticular properties. Both stars are M 5–M 6 type stars, which
means that unlike earlier-type stars, they still reside in the pre-
main sequence (PMS) phase at the age of the ABMG. Further-
more, orbital monitoring of the system (e.g. Wolter et al. 2013;
Azulay et al. 2015; hereafter W14 and A15, respectively) has
shown that the orbital period is only ∼1 year, which benefits the
determination of precise stellar masses and ages. Azulay et al.
(2015) estimate masses of 0.28± 0.05 M� and 0.25± 0.05 M�
for the Ba and Bb components, respectively. This implies a total
mass 23% lower than the 0.69 M� derived by W14, although
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7 Combining absolute and relative astrometry

Once the two bodies of an orbit are resolved, the retrieval of the relative astrometry
is rather straightforward. Occasional calibrations with some objects of the field give
the pixel scale and true North, which are used to obtain a consistent set of data
(separations and position angles of the relative position vectors). The computation
of the absolute astrometry of the two elements is more challenging. The calibration
must be precise enough to locate within milliarcseconds the positions of each body
on the skyplane, and controlled so that the positions can be compared over successive
epochs, separated by several years. The main providers of such measurements are
the spatial telescopes Hipparcos (Van Leeuwen 2007) and Gaia (Brown et al. 2018).
At the present days, few orbits have absolute astrometric data. However, the field
will developed dramatically at the final release of Gaia in the mid-2020s, when the
intermediate data of the mission will be available and hundreds of new planets will
be indirectly revealed.

The absolute astrometry of only one of the two bodies is enough to characterize
the orbit and the individual masses. Fitting an orbit to the positions is complicated
by the proper motion of the center of mass relative to the Sun, and by the motion of
Earth around the Sun. This 1-yr-period motion, so-called parallactic, creates loops
in the apparent motion of each body on the skyplane. The closer the object, the
stronger the perturbation, with order of magnitude of around 1/d arcseconds, with
d the distance in parcsec. This number is called the parallax π. The parallactic
motion is thus far from negligible for targets closer than 1,000 pc. The example of
the trajectory of HD 106906, where the influence of the planet is negligible over the
short baseline, is drawn on Fig. 2.26.

Disentangling the parallactic motion from the wobble induced by a companion is
the challenge taken up by Gaia. As an example, the effect of a 1 MJ companion at
5 au on a Solar-type star have a maximum amplitude of 0.05 mas. For long-period
orbits, the comparison between Hipparcos and Gaia proper motions due to orbital
motions can already improve some relative orbital fit and could theoretically give a
mass ratio (Calissendorff & Janson 2018; Grandjean et al. 2019).

The number of parameters increases dramatically when fitting absolute data,
from 7 (when T and a are fitted independently) to 13 or even 15 when a linear
proper motion does not reproduce the trajectory well. The additional parameters
are:

• The parallax π, that corresponds to the radius of the parallactic loops;

• The position of the center of mass at the reference epoch, usually given in
the equatorial coordinates (α0, δ0), where α is the right ascension and δ is the
declination;

• The 2-dimension proper motion pα and pδ;

• The mass ratio µ = mB/mtot;

• (optional) The 2-dimension proper acceleration qα and qδ.
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Figure 2.26 – HD 106906 apparent motion on the skyplane (around 3 years), fitted
from the intermediate data from Hipparcos. The orbital motion induced by the
planet is negligible over 3 years, so that the trajectory only corresponds to a linear
proper motion with a parallactic component. The fit gives the parallax of the system
and its proper motion with a precision of around 1 mas and 0.5 mas/yr respectively.

The relative astrometry is often given in the projected equatorial coordinates,
which are (α∗, δ) = (α cos(δ), δ). As the relative angles are measured from the true
North, along the declination line, the previously introduced x corresponds to δ and
y to α∗. Then, the evolution of the absolute position of two component A and B
writes:

αA(t) = αG(t)− µ y(t, P, a, e, i,Ω, ω, tp)/ cos(δ0) (2.31)
δA(t) = δG(t)− µ x(t, P, a, e, i,Ω, ω, tp) (2.32)
αB(t) = αG(t) + (1− µ) y(t, P, a, e, i,Ω, ω, tp)/ cos(δ0) (2.33)
δB(t) = δG(t) + (1− µ) x(t, P, a, e, i,Ω, ω, tp) (2.34)

where αG and δG are the position of the center of mass, that is

αG(t) = α0 + pα(t− t0)
(
+qα(t− t0)2

)
+ πPα(t) (2.35)

δG(t) = δ0 + pδ(t− t0)
(
+qδ(t− t0)2

)
+ πPδ(t) (2.36)
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To fit the parallactic motion Pα,δ(t), we have to compute independently the
motion of the Earth with respect to the center of mass of the Solar System. I
computed a data file from the NASA Horizon website with the daily coordinates
(X⊕, Y⊕) of the Earth with respect to the Solar System’s center of mass for the last
decades. This evolution is then interpolated so that we can precisely retrieve the
coordinates for each observational epoch. From these coordinates, the parallactic
factors are (simple change of reference frame):

Pα(t) =
X⊕ sin(α)− Y⊕ cos(α)

cos(δ)
(2.37)

Pδ(t) = X⊕ cos(α) sin(δ) + Y⊕ sin(α) sin(δ)− Z⊕ cos(δ) (2.38)

The parallactic motion, as well as the orbital motion on the right ascension, thus
depends on the coordinates α and δ of the target, which we are trying to obtain.
However, the studied variations of α and δ are small, typically of order 1”, that is
3.10−4◦, so that fixing them to α0 and δ0 produces negligible error.

As part of the study of the astrometric binary AB Dor B (Sec. 6, Janson et al.
2018), I began to implement a new version of the orbital fitting routine, to use
both absolute and relative astrometry. On top of the relative positions of AB Dor
Bb with respect to AB Dor Ba, the absolute positions of both stars have been
measured at multiple times with the VLTI (Azulay et al. 2015). A previous orbital
fitting with a Levenberg-Marquardt algorithm, performed by Azulay et al. (2015),
gave a solution and rough uncertainties using all data (except for the new relative
astrometry presented in our article). For this system, the proper accelerations have
to be considered, because of the influence of the nearby component AB Dor A.

The first step was to use the best fit parameters of Azulay et al. (2015), to
test the formula, retrieve their figures and used this as a first guess for the orbital
fitting. However, I could not reproduce their results. Fig. 2.27 presents the tentative
reproduction of Azulay et al.’s best fit: the trajectories of the two bodies and their
center of mass on the skyplane and the orbits (trajectory without proper motion
and parallactic motion) from this work and from the work of Azulay’s et al.. In
my figure, the solution does not fit satisfyingly the observations, in particular the
1993 point, while it fits all the points in the representation of Azulay et al.. This
point originally comes from the work of Guirado et al. (2006), which computed 5
absolute positions for the Ba components. However, the Bb components was not
resolved in the observations, and Azulay et al. states that most observations are not
consistent with their new measurements, probably because of a confusion of the two
nearly-equal-mass components. They say however that two points are consistent, in
1992 and 1993. We can reproduce the agreement with the former, but not with the
latter. This discrepancy is visible on the trajectories including the proper motions
and parallactic motions. Moreover, contrary to what is indicated in their paper, the
relative sizes of the two absolute orbits suggest that the Ba component is lighter
than the Bb component. There is thus at least one clear discrepancy on Azulay et
al.’s paper.

A possible mistake on my side could lie in Eqs (2.31) to (2.38), on the coordinates
used for the Solar System barycenter, or in their numerical implementation. As a
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Figure 2.27 – Test of the best fit solution of Azulay et al. (2015) for the AB Dor B
system. The plots above represent the data corrected from the proper and parallactic
motions.
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Figure 2.28 – Test of the best fit solution of Azulay et al. (2017) for the AB Dor AC
system. The plots above represent the data corrected from the proper and parallactic
motions. The solution fits perfectly the data.
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deep search did not reveal any error, I tried to reproduce the figures of another study
by the same team, Azulay et al. (2017), presenting the AB Dor AC astrometric
binary. Multiple absolute measurements were available for the A component. The
figures I derived from Azulay et al. (2017)’s best fit and observations are represented
in Fig. 2.28. The solution fits perfectly the data, suggesting no mistakes in my
implementation.
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Figure 2.29 – Absolute and relative orbits of system AB Dor B, according to the
best fit of the MCMC orbital fitting procedure using both relative and astrometric
data. The 1993 epoch is still not well reproduced.

I have implemented the absolute part of the astrometric into the computation of
the χ2 in the Levenberg-Marquardt algorithm and the MCMC algorithm. Uniform
priors were adopted by default, but the precision of the constraints is sufficiently
high so that the dependence on any possible prior for the new variables would be
negligible. Applying the Levenberg-Marquardt algorithm to the ABDor B system,
I noticed that the result depends strongly on the initial guess, suggesting numerous
local minima and poor reliability. Contrary to Azulay et al. (2015), I found that
the observational constraints were not enough to properly constrain all the param-
eters. Indeed, if 5 epochs of the center of mass should be enough to constrain the
7 parameters π, α0, δ, pα, p/delta, qα and qδ, the poor precision/agreement of the
first two epochs hinder the fit. The absolute MCMC does not converge when the
parallax is a free parameter, and the preliminary LM cannot produce any errorbars.
I could only reach a convergence by fixing the value to the best fit of Azulay et al..

The results of the MCMC appeared nevertheless robust, with Gaussian prob-
ability distributions and weak or linear correlations (see Fig. 2.30). No possible
solutions were found to take into account the 1993 point within 1-sigma. The best
fit in the Markov chains is represented on Fig. 2.29. Finally, the solutions for Azulay
et al. (2015)’s LM approach, the complete MCMC approach or the MCMC approach
fitting only the relative data (Janson et al. 2018, see Sec. 6,) are given on Table 2.1.

The three approaches are consistent at 1-sigma. The MCMC approaches often
give more precise results on the relative orbital elements because additional relative
measurements were used compared to the Azulay et al. (2015)’s study. The period
and parallax are relatively well constrained (< 1%), so that the angular semi-major
axis and its uncertainty are the key parameters to compute the mass. However,
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Parameter LM MCMC MCMC
(Azulay et al. 2015) (this work) (Janson et al. 2018)

π (mas) 66.4± 0.5
α0 (h m s) 5 28 44.4840± 0.0003 5 28 44.4845± 0.0006
δ0 (◦ ’ ”) −65 26 46.057± 0.002 −65 26 46.057± 0.002
pα (s/yr) 0.0105± 0.0002 0.0106± 0.00006
pδ (”/yr) 0.1287± 0.0005 0.1290± 0.0002
qα (s/yr2) (8± 1).10−6 -(6± 5).10−6

qδ (”/yr2) -(10± 5).10−4 -(12± 2).10−4

µ 0.52± 0.05 0.40± 0.06
P (yr) 0.986± 0.008 0.9869± 0.0008 0.9856± 0.0009
a (mas) 52± 2 53± 2 57± 4

e 0.6± 0.1 0.59± 0.04 0.67± 0.04
i (◦) 121± 5 118± 2 115± 2
Ω (◦) 270± 15 93± 3 97± 3
ω (◦) 54± 20 61± 4 68± 4
tp (yr) 2003.68± 0.05 2003.68± 0.02 2009.63± 0.01

mtot (M�) 0.49± 0.06 0.51± 0.06 0.66± 0.12

Table 2.1 – Astrometric parameters of the system AB Dor B according to different
approaches. The derivation of the total mass for the MCMC analyses uses the
parallax of Azulay et al. (2015) and its uncertainty.

parts of the orbit are not well monitored, especially with the relative astrometry, so
that the relative MCMC gives a poor precision on the total mass (20%).

All in all, I developed the ingredients for combining absolute and relative as-
trometry in orbital fitting procedures. The addition of 5 to 7 parameters makes the
procedure heavier, and strong constraints are needed to ensure convergence. For the
AB Dor B cases, additional absolute astrometric data is essential to constrain all
the parameters including the parallax. The relative fit can be improved by measure-
ments of the relative positions near periastron (bodies ∼ 10 mas apart). The small
relative separation may be resolved with SPHERE/ZIMPOL. Moreover, statistical
methods outside MCMC, such as nested sampling, could be used to characterize the
loosely constrained systems.
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Figure 2.30 – Corner plot presenting the results of the MCMC orbital fitting pro-
cedure of AB Dor B using both relative and astrometric data. The black lines and
crosses correspond to the best fit.
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Conclusion and Perspectives

This manuscript presents the three years work of my Ph.D dedicated to the dynami-
cal study of extrasolar systems imaged by SPHERE. It consisted of characterizing the
multiple components of the observed systems (planets, stellar companions, disks),
and in the design of dynamical scenarios to investigate their formation and evolution.
The thesis is composed of two main parts: N-body simulations and orbital fitting.
It takes place in a context of spectacular development of the direct imaging per-
formance, that provides unprecedented constraints on the architecture of extrasolar
systems.

In the first chapter, I tackle the dynamical analyses from the perspective of N-
body simulations. After a review of the principal approaches, classical or symplectic,
and the associated codes, I presented our in-house code Swift HJS. It is a powerful
integrator that goes beyond conventional Solar-System-type architecture. Swift
HJS is however restricted to stable hierarchies in lightly perturbed orbits and does
not resist to the occasionally high perturbations referred to as close encounters.
To overcome these limitations, I developed a new code, ODEA, that handles both
hierarchy changes and close encounters by generalizing the approaches of algorithms
designed for Solar-System-type architectures. ODEA is currently at the end of its
developing phase and will be available online with dedicated post-processing tools
in Python. A first version including hierarchical changes is already in working order.

I had the occasion to extensively use the codes for the dynamical study of the in-
triguing system HD 106906, a tight binary star surrounded by an asymmetric debris
disk and which comprises a wide planetary-mass companion observed with SPHERE.
In a first paper, I designed a scenario that accounts for the large separation of the
planet without appealing to star-like formation mechanisms. This scenario is based
on the complex entanglement of different classical ingredients, such as migration,
mean-motion resonances, and stellar fly-by. In a second paper, I studied the two
stellar fly-bys that were evidenced in the Gaia data by an American team, following
the conclusions of my first paper.

HD 106906 has still a lot to reveal in the near future. Its slight orbital motion
might be detectable by direct imaging (a few mas per year) or radial velocity mea-
surements (a few km/s), depending on its current trajectory. The stellar fly-bys
can be further characterized by reaching a better precision on their radial velocities
and parallaxes (which might be provided by the next data release of Gaia). Finally,
the structures within the debris disk can be better constrained by higher contrast
observations, for example with the long-awaited JWST. If our theory is confirmed,
HD 106906 would be the only proven example of an extrasolar system in which a
planet has been ejected, as well as the only planetary system that has undergone
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a stellar fly-by. If, on the other hand, the fly-by turns out to be non-significant, it
will support the idea that HD 106906 b formed in-situ, and therefore that planets
on wide orbits can form like stars, from the collapse of their own molecular clouds.

In the second chapter, I presented the orbital fitting procedure that I used for
the study of systems observed with SPHERE. I described my team’s implementation
of an MCMC framework dedicated to the problem, compared it to the alternative
approaches in the literature, and presented the post-processing tools I developed.
This code was used in the study of 8 different systems comprising planets, brown
dwarfs and debris disks. My contribution was not only to retrieve estimates for the
orbital elements, but also to determine the coplanarity with a disk (HR 2562, HD
100453) or the stellar rotation plane (GJ 504), compare the outcome of different
orbital fitting approaches (HR 2562, 51 Eri, HD 206893, GJ 504, AB Dor B), in-
vestigate the dynamical interactions with the environment (HR 2562, GJ 504), and
retrieve the total dynamical mass of tight binaries (TWA 22, GJ 2060, AB Dor B).
I led a dedicated paper that presented two astrometric binaries, TWA 22 and GJ
2060, as ideal calibrators for the evolutionary models. The cases of GJ 2060 and AB
Dor B illustrate the uncertainties of the evolutionary models for pre-main sequence
low-mass stars.

Most of these studies will be naturally pursued as their monitoring baseline will
increase, refining the constraints on the orbital elements. This is particularly true
for the system GJ 504, for which I submitted a observing time proposal, where bet-
ter estimates of the orbital elements will confirm the obliquity of the companion,
the latter being critical to understand the dynamical history of the system (engulf-
ment scenario of another close-in companion). Moreover, as part of the SPHERE
consortium and in collaboration with the AstraLux M-dwarf multiplicity survey, I
will contribute to the study of astrometric binaries by conducting the orbital fitting
analyses.

In parallel, I began to work on tools to take into account both relative and abso-
lute astrometry. The subsequently high number of parameters makes the procedure
computationally heavy so that alternatives to the MCMC approach could be pos-
sibly considered, such as nested sampling or neural networks. Alternatively, other
types of MCMC could be considered (ensemble, differential evolution).

In this context of increasing planet detection, the need for efficient and versa-
tile dynamical tools able to model the diversity of system architectures is critical.
In the coming years, N-body algorithms are bound to be an active branch of the
exoplanet field. After the final development of ODEA, new features could be added
for a more complete simulation of the systems, such as tidal interactions, migra-
tion, or modeling of a simulated debris disk emission in scattered light. In parallel,
analytic considerations are effective to predict periodic pattern and stability, in par-
ticular within resonant configuration (mean-motion, secular, Kozai). They often al-
low avoiding hours of numerical simulations, while obtaining informative and robust
results. Many mechanisms remain to be investigated within the N-body problem,
notably by including the new more complex ingredients essential to the evolution
of extrasolar system: tidal forces, interactions with the gas reservoir, entanglement
between migration and resonances...

On top of the different projects into which I plan to stay involved, I would like
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to continue to characterize and study benchmark systems, following the evolution
of our understanding of planet evolution and formation. SPHERE’s adaptive op-
tics will be soon upgraded to achieve a better contrast and sensitivity, and a new
characterization mode will be provided by the coupling with high spectral resolution
spectrographs. This should allow the detection of planets closer to their stars for
which complementary constraints could be set by GAIA measurements (a decade of
monitoring). The coupling of the absolute and relative astrometry should become
an intense field of research especially in the context of a possible extension of the
GAIA mission beyond the nominal mission. On the E-ELT, the direct imaging in-
struments HARMONI (∼ 2025), MICADO (∼ 2026) and METIS (∼ 2026) will be
the perfect tools to resolve and characterize companions down to ∼ 20 mas from the
star (1 au at 50 pc). Both the ELT and the JWST (2021) may detect colder planets
in more mature and dynamically relaxed systems, and they will enable us to resolve
new structures in debris disks. Finally, the ending K2 mission, the recent launch
of telescope TESS whose main scientific results should be released throughout 2019
and 2020, and the future launch of PLATO (2026) will refine the statistics of the
population of short periods planets. All these new missions will require dedicated
dynamical analyses to confirm the stability of the detected systems, get insights on
undetected planets, and for a detailed characterization of the most interesting sys-
tems. The distribution of key characteristics (eccentricity, mean-motion resonance,
relative inclinations) will encourage the design of complex dynamical scenarios. The
coming periods will thus bring plenty of new insights on the architecture of extrasolar
systems, and, consequently, will shed a new light on our own Solar System.
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Appendix

1 Definition of the orbital elements
Let there be two massive bodies of masses m1 and m2, interacting only through
gravitational interactions. We place ourselves in a Galilean referential whose origin
is at the center of mass of the two bodies (m1 +m2). The positions of the two bodies
in that referential are R1 and R2, and their relative position is r ≡ R2 −R1. The
equations of motion writes then

m1R̈1 =
Gm1m2

r3
r (1)

m2R̈2 = −Gm1m2

r3
r (2)

where G is the gravitational constant. These equations are equivalent to

m1R̈1 +m2R̈2 = 0 (3)

r̈ = −G(m1 +m2)

r3
r . (4)

Our choice of referential implies no movement for the center of mass (Eq. 3), so
that the problem is reduced to a single body problem, equivalent to the motion of
one particle in an external potential (Eq. 4). We note µ ≡ G(m1 + m2) for easier
readability. From this equation, three quantities can be derived that will remain
constant during the motion.

The first one is the energy E (per unit mass), obtained by integrating the scalar
product between Eq. 1 and the position r:

E =
1

2
|ṙ|2 − µ

r
. (5)

The second one is the angular momentum C (per unit mass), obtained by inte-
grating the vector product between Eq. 1 and r:

C = r ∧ ṙ . (6)

The motion of the bodies are located in C’s orthogonal plane. Taking the norm
of C, we retrieve Kepler’s second law: r2θ̇ = C is constant, where θ is the angle
of the relative vector r in the plane of motion. Moreover, the inclination i of the

232



orbit is defined as the angle between C and the z axis: cos(i) = C.ez/C. It ranges
from 0◦(prograde) to 180◦(retrograde). The longitude of the ascending node Ω is
defined as the angle between the x axis and the lines of node, that is the line of
intersection of the x-y plane and the plane of motion: cos(Ω) = −C.ey/(C sin(i))
and sin(Ω) = C.ex/(C sin(i)).

Finally, the third conserved quantity is the eccentricity vector (or Laplace inte-
gral), obtained by integrating the vector product between Eq. 1 and C:

e =
ṙ ∧C
µ
− r
r

(7)

e is in the plane of motion (perpendicular to C), and we will choose it as the
reference from which the polar angle θ is measured: cos(θ) = r.e/(re). It is referred
to as the true anomaly. The angle it forms with the line of node is called the
argument of the periastron ω, and is defined as cos(ω) = −(C ∧ e).ez/(Ce sin(i))
and sin(ω) = e.ez/(e sin(i)).

From Eq. 7, taking the scalar product with r/r, we obtain the equation of motion
in the plane of the orbit:

r =
C2

1 + e cos(θ)
(8)

The relative position vector thus follows a conic section, the nature of which depends
on the value of the eccentricity e: ellipse below 1, parabola if 1, or hyperbola above.
The smaller approach between the two bodies (periastron) corresponds to θ = 0, so
that the eccentricity vector points toward the periastron.

The eccentricity e depends directly from the energy and angular momentum.
Indeed, when we compute the vector product of e and C, we obtain

e =

√
1 +

2EC2

µ2
. (9)

The parabolic case corresponds thus to E = 0, the elliptic to E < 0, and the
hyperbolic to E > 0. In the case of an elliptic orbit, we define the semi-major axis
such as

E = ± µ

2a
(10)

With the previous relations, we can show that this is equivalent to a = 0.5(r(θ =
0) + r(θ = π)), which is indeed the geometrical definition of the semi-major axis of
an ellipse.

Thus, we described here two ways of characterizing the trajectory of the two
body motion including each five free parameters: whether E, C and the orientation
of e in the plane of motion, or a, e, i, Ω and ω. To describe the evolution of the
bodies on this orbit, we now need the relation between the true anomaly and the
time.
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Using Eq. 1 and Eq. 5, we retrieve the differential equation of r with respect
to time. This equation is not directly solvable, but it is with respect to τ , which is
defined as dt = rdτ . It gives:

d2r

dτ 2
− 2Er = µ (11)

For elliptic orbits, we solve this equation with the initial condition at the peri-
astron passage time r(tp) = a(1− e) and dr/dτ = 0:

r = a(1− e cos(u)) (12)
M = u− e sin(u) (13)

where u =
√
−2Eτ is the eccentric anomaly, M =

√
µ/a3(t− tp) the mean anomaly,

and Eq. 13 is known as the Kepler equation. The eccentric anomaly has a geo-
metrical interpretation that is represented on Fig. 7 in the Introduction. Similar
relations can be retrieved for the hyperbolic case (with hyperbolic functions and
opposite signs).

2 Solving the Kepler equation
The Kepler equation is the key relation that links the temporal evolution to the
geometrical evolution in the Keplerian framework. Its solution is known as series,
but most of the times, iterative approaches are used. The simplest one is the fixed-
point method, the Newton’s method converges more efficiently, but multiple analyses
have been done to improve the efficiency of the classical methods for the peculiar case
of the Kepler equation. A robust one is from Danby & Burkardt (1983), that gives a
very precise estimate of the root of function f(u) = u− e sin(u)−M . We adopt the
suggested quintic convergence: an initial guess is chosen (u = M is the simplest, but
many more complicated possibilities are described) and the next estimate is given
by

un+1 = un + δn3 (14)

δn1 = − f
f ′

(15)

δn2 = − f

f ′ + 1
2
δn1f ′′

(16)

δn3 = − f

f ′ + 1
2
δn2f ′′ +

1
6
δ2
n2f
′′′ (17)

where the arguments un are omitted from f and its derivatives to ease the notation.
For low eccentricities, only one iteration is necessary to obtain an estimate within
computer round-off error. For medium eccentricity (typically 0.2 to 0.8), two iter-
ations are performed. And for high eccentricity, three iterations are required (see
Fig. 31).
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Figure 31 – Three methods to solve Kepler equation, with initial guess u = M ,
and for medium eccentricity e = 0.5. A more complex initial guess can reduce the
number of steps by 1 or 2.

3 Perturbation by an inner companion
As an example of perturbed 2-body problem, let us compute the effect of an inner
companion on the orbit of an outer body in the coplanar case. This test case is the
basis of most of the analyses of system HD 106906 (Chapter 1 Sec. 3), and was
used to draw the Hamiltonian maps in the Introduction (Fig. 9). The notations are
described on Fig. 32.

The system is conservative, and the total Hamiltonian is, in the referential of the
center of mass:

H =
1

2m′1
p2
1 +

1

2m′2
p2
2 −

Gm′1M1

r1

− Gm′2M2

r2

+ U (18)

= −Gm
′1M1

2a1

− Gm′2M2

2a2

+ U (19)

with

U =
Gm′2M2

r2

− Gm1m3

r13

− Gm2m3

r23

(20)

= Gm′2M2

(
1

r2

− 1− q
|r2 + qr1|

− q

|r2 − (1− q)r1|

)
(21)

where p1 = m′1ṙ1 and p2 = m′1ṙ2 following the notations of Fig. 32, and where we
introduced the mass ratio q = m2/(m1 +m2).
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ϕ

Figure 32 – Schematic of an outer body (orange) perturbed by an inner companion.

We suppose that r1 � r2, that is that the potential U is small with respect to the
total Hamiltonian, so that the two trajectories are nearly Keplerian and the orbital
elements provide a meaningful description. At the first orders in r1/r2, the potential
is

U =
Gm′2M2q(1− q) (1− 3 cos(φ)) r2

1

2r3
2

(22)

+
Gm′2M2q(1− q)(1− 2q) cos(φ) (3− 5 cos2(φ)) r3

1

2r4
2

+O

(
r4

1

r4
2

)
(23)

To use the Lagrange equations, we must express H as a function of the orbital
elements. For that, we will use the following relations, derived from Sec. 4.1:

r1 =
a1(1− e2

1)

1 + e1 cos(θ1)
(24)

r2 =
a2(1− e2

2)

1 + e2 cos(θ2)
(25)

cos(φ) = cos(θ2 − θ1 + ω2 − ω1) (26)

Theoretically, we can now use the Lagrange equations. However, in practice, we
are not interested in the fluctuations of the orbital elements at the time scale of one
orbital period, but in the secular (long-scale) fluctuations. The secular potential
is obtained by averaging over time the rapidly oscillating terms θ1 and θ2, and
replacing the orbital elements by their mean. We suppose that the orbital periods
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are not commensurable (no MMR), so that the two motions are independent and
two separate integrations are performed. Recalling that the differential element
dt = dθr2/

√
GMa(1− e2), we obtain the average perturbation

Ū = − Gm′2M2q(1− q)(1 + 3
2
ē1

2)ā1
2

4(1− ē2
2)

3
2 ā2

3

+
15Gm′2M2q(1− q)(1− 2q)ē1ē2(1 + 3

4
ē1

2)ā1
3

16(1− ē2
2)

5
2 ā2

4
cos(ω̄2 − ω̄1) +O

(
ā1

4

ā2
4

)

(27)
where the bars designate averaged quantities This secular potential can now be used
in the Lagrange equations to study the long term variation of the orbital elements.
Let us suppose that the outer body does not affect the orbit of the inner body. The
perturbation of orbit 2 is given by

dā2

dt
= 0 (28)

dē2

dt
= −2π

P̄2

15q(1− q)(1− 2q)ē1(1 + 3
4
ē1

2)ā1
3

16(1− ē2
2)2ā2

3
sin(ω̄2 − ω̄1) +O

(
ā1

4

ā2
4

)
(29)

dω̄2

dt
=

2π

P̄2

3q(1− q)(1 + 3
2
ē1

2)ā1
2

4(1− ē2
2)2ā2

2

− 2π

P̄2

15q(1− q)(1− 2q)ē1(1 + 3
4
ē1

2)(1 + 4ē2
2)ā1

3

16ē2(1− ē2
2)3ā2

3
cos(ω̄2 − ω̄1) +O

(
ā1

4

ā2
4

)

(30)

Solving the coupled differential equations for ē2 and ω̄2 is not straightforward, but
the resolution can be performed for small e2. The derivation is described in Wyatt
(2005), and in the Appendix C of my first paper in Sec. 3 in a more complicated case
with an additional outer body. In the low eccentricity approximation, the secular
precession period is

Pw =
2(1− ē2

2)

3q(1− q)(1 + 3
2
ē1

2)

ā2
2

ā1
2
P̄2 (31)

and the amplitude of the eccentric oscillations is

∆emax =
5ē1(1 + 3

4
ē1

2)(1− 2q)

4(1 + 3
2
ē1

2)

ā1

ā2

(32)

where P2 is the orbital period of orbit 2. As an example, the precession period
induced by a 1-au eccentric (e1 = 0.4) super giant on a body at 3 au is around
500 orbital periods, while a q = 0.1 binary star will induce a precession period of
50 orbital periods in the same situation. However, the amplitude of the oscillation
is not proportional to the mass ratio, so that both situation will produce roughly
the same eccentricity amplitude (around 0.1). As the secular Hamiltonian has only
two degrees of freedom, ω̄2 − ω̄1 and ē2, the previous study can be represented by a
contour map (see Fig. 9 in the Introduction)
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