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Abstract

Several decades after the discovery of the first debris disks and exoplanets, lots of
questions remain regarding the mechanisms of formation and evolution of plane-
tary systems. The recent progress of high-resolution high-contrast direct imaging,
illustrated by the instruments VLT /SPHERE and Gemini/GPI, enables the astro-
physicists to unveil the outer architecture (> 5 au) of young (< 200 Myr) extrasolar
systems when the dynamical interactions are frequent. This work sheds light on
the origin and dynamical evolution mechanisms of planetary systems through the
detailed study of key systems resolved with SPHERE and through the developing
of dedicated tools.

The first part of this manuscript tackles the subject of N-body simulations. Nu-
merous algorithms have been proposed and implemented, with different compro-
mises on their speed, accuracy, and versatility. Among these algorithms, SWIFT
HJS allows us to model for secular times architectures that are very different from
our Solar System. It is thus an essential tool to the study of planetary to stellar
companions with non-negligible mass ratio, which are often encountered with direct
imaging. Within my Ph.D.; the functionalities of the algorithm were extended to
handle hierarchy changes and close encounters, which can play an important part in
the dynamical history of planetary systems. The code was used to study in detail
the puzzling system HD 106906, in particular, the interactions between its main
components (binary star, planet, debris disk).

In the second part of the manuscript, I introduce the subject of orbital fitting.
The observation of a system at different epochs allows theoretically the retrieval of
the orbital characteristics. However, the problem is often complex and degenerate,
in particular when the observations span a small fraction of the orbital period. The
widely used MCMC statistical approach gives robust estimates in most of the cases.
These estimates are then used to study the history and stability of the system, and
the interactions between orbits and with the environment, notably the disks. This
role of orbital fitting is here illustrated by the study of several benchmark systems
imaged with SPHERE.



Résumé

Plusieurs décennies aprés 'identification des premiers disques de débris et des exo-
planétes, les mécanismes de formation et d’évolution des systémes planétaires sont
encore loin d’étre élucidés. Les récents progrés de 'imagerie directe a haute résolu-
tion et haut contraste, illustrés par les instruments VLT /SPHERE et Gemini/GPI,
nous permettent désormais de révéler et d’étudier en détail ’architecture externe (>
5 ua) des systémes extrasolaires jeunes (< 200 Myr), & un age ou les interactions
dynamiques sont encore fréquentes. Mon travail de thése apporte un éclairage sur
I'origine et les mécanismes d’évolution dynamique des systémes planétaires a travers
I’étude détaillée de systemes clefs résolus par SPHERE et le développement d’outils
de modélisations dédiés.

La premiére partie de ce manuscrit aborde I’étude dynamique via les simulations
N-corps. De nombreux algorithmes ont été proposés et implémentés, avec des choix
de compromis différents sur leur vitesse, leur précision et leur polyvalence. Parmi
ces algorithmes, SWIFT HJS permet de modéliser des architectures tres différentes
de notre Systéme Solaire sur des temps séculaires. C’est donc un outil essentiel pour
étudier l'influence des planétes massives, naines brunes et compagnons stellaires
souvent rencontrés en imagerie directe. Durant ma thése, les fonctionnalités de ’al-
gorithme ont été étendues pour pouvoir modéliser les changements de hiérarchie et
les rencontres proches, des aspects de la mécanique orbitale qui ont souvent un role
crucial dans I’histoire dynamique des systémes planétaires. Ce code a notamment
été utilisé pour étudier en profondeur I’énigmatique systéeme HD 106906 et les dif-
férentes interactions entre ses principaux composants (binaire, planéte, disque de
débris).

Dans la deuxiéme partie du manuscrit, j'introduis la problématique de 'ajus-
tement orbital. Si 'observation d’un systéme a différentes époques permet théori-
quement de retrouver les caractéristiques de son orbite, le probléme peut se révéler
complexe et dégénéré, en particulier quand le temps d’observation est insuffisant
pour correctement échantillonner 1’orbite. L’approche statistique la plus couram-
ment adoptée, le MCMC, permet d’obtenir des estimations fiables dans la plupart
des cas. Ces estimations sont ensuite exploitées pour étudier I’histoire et la stabilité
du systéme et les interactions entre orbites et avec I’environnement, notamment les
disques. Ce role de I'ajustement orbital est ici illustré dans les études de plusieurs
systémes de référence, imagés par SPHERE.
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Before entering into the details of my work on the dynamical study of extrasolar
systems, this chapter aims to review the present understanding of extrasolar systems,
the open questions regarding their formation and evolution, and the role taken by
the direct imaging approach. It also introduces the mathematical tools that are
needed to study orbital mechanics, along with the different mechanisms that are
known to significantly excite the orbits.

1 Extrasolar systems

Our knowledge about extrasolar systems has dramatically increased for the last two
decades. The huge samples of stars that were characterized by the latest large
surveys (Hipparcos, 2-MASS, Gaia) enable the computation of robust statistics. On
the other hand, though new planets are discovered on a daily basis, our knowledge
about the architecture of planetary systems is still sparse because a large part of
the planetary population remains undetected by the large-scale surveys. I will here
present an overlook of the present understanding of stellar and sub-stellar objects,
and in particular of the characteristics that are relevant for their dynamical study
(masses, multiplicity, separations, eccentricities...). Because of the observational
constraints induced by direct imaging (angular separation, contrast), most of the
studies that I performed targeted systems in nearby young moving groups. I will
thus begin the introduction with this topic.

1.1 Stars in Moving Groups

Most of the stars form in clusters, as these are the leftovers of the huge molecular
clouds in which star formation takes place (Porras et al.[2003). If the old age of the
Solar System does not provide robust certainties about its conditions of birth, several
features (abundances, architecture) hint for past interactions with neighboring stars,
suggesting a dense native region (Pfalzner et al.2015). Depending on the density
and structure of these clusters, their evolution and interest significantly differ.

Stellar associations or moving groups are collections of stars that, by their clus-
tering and their similarities (chemical composition, similar velocities), are thought
to originate from a common birth. Contrarily to the globular and open clusters, the
members of moving groups are not bound. The life expectancy of the structure is
thus reduced (often less than 100 Myr). Their density is thought to be only slightly
superior to the density of the field (e.g., Fernandez et al.2008; Rodet et al.|2017).
A variety of comoving stellar groups near the Sun have been identified in the last
decades, such as the ~ 25 Myr old 8 Pictoris moving group or the 50 — 150 Myr old
AB Doradus moving group (Zuckerman & Song|2004). New members are regularly
added, as more stars have their kinematics unveiled by the various observational
surveys (such as Gaia, Gagné & Faherty |2018)

Very young associations that contain a significant number of the short-lived (10-
100 Myr) O and B-type stars are known as OB associations. The closest one is the
Scorpius-Centaurus (Sco-Cen) association (100 pc, De Zeeuw et al.||1999), which is
actively studied and comprises directly imaged planets, brown dwarfs and debris
disks (e.g.; Bailey et al.|[2014; Chauvin et al.|2017; Bonnefoy et al.[2017).
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Because the cluster members are of similar age and chemical composition, their
property (such as distance, age, metallicity, velocity...) are more easily determined
than they are for isolated stars. Moreover, the known moving groups are young
and nearby, which makes them ideal targets for direct imaging, because the angular
separation of the companions is then larger and their contrast is enhanced by the
thermal heat gained at formation. Observing the systems at young age allows putting
constraints on the formation and evolution pathways. The members of young moving
groups are thus a natural target for deep characterization, model calibration and
eventually for the search of exoplanets. Most of the systems studied in this thesis
are members of young moving groups (Sco-Cen, AB Doradus,  Pictoris).

1.2 Multiple systems

Planetary formation is not inhibited by stellar companions, as multiple systems
have been found to host planets. Several of them have been discovered in the last
decade, whether orbiting one star with a distant companion (S-type, e.g., Doyle
et al.|2011) or orbiting the center of mass of a binary (P-type, e.g., Bonavita et al.
2016). Dynamical interactions with the companion might induce eccentricity and
inclination variations. Due to the high proportion of multiple stars and the rich
dynamics within, the study of planets in non-single systems is a growing field (e.g.,
Martin 2018; |Asensio-Torres et al.[2018) and takes up a significant part of my work,
from the design of specific numerical tools to the study of the system HD 106906
(Chapter .

The multiplicity frequency of the different types of stars is now well constrained
(see Fig. , thanks to dedicated surveys using both spectroscopic and visual ob-
servations. A bit less than half of Solar-type stars (Raghavan et al.[2010) and more
than half of higher mass stars are multiple (Duchéne & Kraus/2013). On the other
hand, low-mass stars (< 0.5 M) are very common, but they appear to have the
lowest fractions of multiple systems, less than a third (Delfosse et al.|2004; Dieterich
et al. 2012). Triple and higher-order systems represent about 25% of all solar-type
multiple systems (Duchéne & Kraus 2013)). To maintain their stability, there are
organized within a strictly hierarchical scheme, with high period ratios.

Characterizing the orbital features of multiple stars are important, as eccentric
or inclined stellar companions induce dynamical perturbations in planetary systems
if the semi-major axes ratio is neither too small nor too large. The orbital features of
binary stars are not strongly constrained, but their eccentricity distribution suggest
a flat distribution (see Fig. |1]) and their separation seems to follow the simple Opik’s
law (logarithmically-flat distribution, f(a) ~ 1/a, Kouwenhoven|2006).

Most of the time, the multiplicity of directly imaged systems is not well con-
strained, because tight binaries are not resolved. Some observational programs are
now dedicated to the radial velocity monitoring of the stars targeted by direct imag-
ing, in search of planetary or stellar companions at close separations (Lagrange et al.
2013). HD 106906 is a perfect example of such case, where the planet was discovered
before the binary status of the host star (Bailey et al.|2014; Lagrange et al.|2019).

11
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Figure 1 — Multiplicity (blue) and companion (red) frequency with respect to stellar
mass (left) and cumulative eccentricity distribution for various types of stars (Very
Low Mass, M-type, G-type and OB-type), by comparison with a flat (dashes) or
thermal (dots) distribution (right). The figures are from Duchéne & Kraus (2013).

1.3 Planets and Brown Dwarfs

Until 1995 and the discovery of 51 Peg b, the first exoplanet around a main-sequence
star, the Solar System was our only laboratory to comprehend our origins, and in
particular the planets’ formation and dynamical evolution. With almost 4,000 exo-
planets confirmed in more than 2,000 systems to dateE], we are now able to apprehend
the planetary population beyond the Solar System framework, and henceforth we
acquired the certainty that planets are ubiquitous, that the Solar System is far from
being the norm among planetary systems, and that planetary systems exhibit an
unexpected diversity (Winn & Fabrycky|2015]).

Exoplanets are now mainly revealed by their primary transit detected by space-
based telescopes (Corot, Kepler/K2, TESS). This method enables the retrieval of
robust statistics on the population of (edge-on) short periods planets, from Earths
to giant planets. It also revealed several Earth-sized planets within the habitable
zone of M-dwarf stars (Gillon et al. [2016; Bonfils et al.2018). The second most
fruitful technique is Doppler spectroscopy, an indirect approach that makes use
of the variation of the host star’s radial velocity to probe the short periods plan-
ets at any inclination (except face-on). Additionally, planets may be detected by
the small gravitational lens effect that they create when transiting a background
star (microlensing), or by the monitoring of the host star’s wobble on the skyplane
(astrometry). Complementary to these indirect methods, direct imaging uniquely
allows the probing of the population of giant planets at large orbital radii where
the indirect techniques are inefficient (> 5 au) and to conduct in-depth spectro-
photometric characterization of their physical and atmospheric properties (see Sec.
3).

Different types of planets have been identified so far: the more numerous small-
mass planets (Earth, Super-Earth and Neptune-mass, with M < 30 Mg and
R < 4 Rg) and the giant planets (Jupiter to Super-Jupiter). Among these, the
distribution of mass is not uniform and is not entirely understood, as for the radius

Laccording to the extrasolar planets encyclopedia http://exoplanet.eu
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gap evidenced around 2 Rg in Kepler data (Fulton et al.[2017).

The latest results of these surveys indicate that the occurrence of planets around
main-sequence stars is high: at least 75 % within 10 yr of orbital period (Mayor
et al|2011), and about 30 % for Super-Earths (R 2 2 Rg) within 400 days (Zhu
et al.||2018)), which do not exist in our Solar System. Low mass planets are mostly
distributed between 10 and 100 days (Mayor et al.2011)). Giant planets are signif-
icantly less abundant than the smaller planets, with a probability of around 10%
within orbital periods of a few years. Though the first detected exoplanet, 51 Peg
b, was a so-called hot Jupiter (with a period shorter than 10 days), this population
appears to be quite rare (< 1%, Mayor et al.|[2011)).

Correlations between the presence of planets and the property of the host stars
are also being investigated. The studies suggest that giant planets are associated
with higher heavy-element abundance (Fischer & Valenti 2005) and more massive
stellar hosts (Johnson et al.[2010; Nielsen et al.|2019). Such constraints are important
to discriminate different formation pathways (see Sec. [2)).

As the orbital characteristics are often not well constrained, the distribution of
the eccentricity and its correlation to the mass and separation is not entirely under-
stood yet. From the radial velocity surveys, it appears that the low eccentricities in
the Solar System are not standard. Exoplanets can orbit on very eccentric orbits (up
to ~ 0.9!), especially the giant planets that have periods longer than 100 days. On
the other hand, the closest planets have been circularized by tidal effects with the
host stars and exhibit very low eccentricities (Mayor et al.[2011; Winn & Fabrycky
2015).

Similarly, the planetary orbital momentum can be significantly misaligned (even
retrograde) with the stellar axis of rotation (high obliquity, Winn & Fabrycky|2015).
High obliquities are correlated with high temperature of the star and low tidal pa-
rameters, suggesting a complex entanglement of the different physical processes at
stakes (e.g., Lai2012).

The findings of significantly eccentric planets or planets with high obliquity con-
tradict the expectations from the planetary formation theories, that predict forma-
tion within the stellar rotation plan and circularization of the orbits through inter-
actions with the protoplanetary disk. Therefore, planetary synthesis models are now
taking into account the further dynamical evolution of the system to retrieve the
observed population (see Sec. .

Brown dwarfs are substellar objects that fuse deuterium, but cannot sustain the
fusion of ordinary hydrogen. Their masses range from the upper limit of the planet
realm (~ 13 Mj) to the very-low-mass stars (80 Mj), although the significance of
the mass frontiers is often debated (see Sec. . Theoretically predicted by Kumar
(1962), the first companion brown dwarf, GL 229 B, has been discovered in the
same year than 51 Peg b. Since then, the infrared catalogs (2-MASS,...) exhibited
numerous isolated brown dwarfs. The frontier between giant planets and brown
dwarfs is blurred (Chabrier et al.|2014)), in particular since the discovery of planetary
mass companions at very wide orbits, companion brown dwarfs with a planetary-like
mass ratio (see Fig. [2) or isolated planetary-mass objects (e.g., (Gagné et al.|[2018).
The difference between planets and brown dwarfs is also found in the occurrence
rate: brown dwarfs companions are much rarer than their planetary counterpart at

13



1 Mjup 10 Mjup

1072 4 ®

Mass ratio

10t 107 103 104
Separation (au)

Figure 2 — Mass ratios with respect to separation for the known companions with
separations greater than 10 au and mass ratios below 0.01. Data taken from ex-
oplanet.eu. Objects below 13 Mj are depicted in blue (planets), those above are
depicted in orange (brown dwarfs).

short separations (< 1% around Solar-type stars). This lack is referred to as the
brown dwarf desert and has been observed in multiple observational surveys. They
suggest separate formation mechanisms between planetary and stellar companions
(Sahlmann et al.|2011; |Chabrier et al.|[2014]).

In my PhD, I was involved in the study of directly imaged companions. I describe
in more details the population observed with this technique in Sec.

1.4 Disks

Protoplanetary disks are circumstellar disks of dense gas and dust that surround
the young stars in the first million years of their life (Haisch et al. 2001)). Strong
uncertainties remain regarding their structure, notably their density profile and their
viscous properties (Morbidelli & Raymond 2016). Their study is essential to the
understanding of the formation and early evolution of planetary systems, notably
the accretion process (see Sec. [2) and the interaction between the gas and dust and
the orbits (e.g., migration). Different steps of planetary formation have been imaged
by ALMA (gap carving in HL Tau, Brogan et al.[|2015) and SPHERE (accretion in
PDS 70, |[Keppler et al.||[2018)

After a few million years, the gas is progressively accreted by the star or the
planets, or photo-dissociated and dismissed into the interstellar medium. Transition
disks are thought to trace this key step in the disk lifetime. They are characterized
by a gap in the spectral energy distribution, hinting for a large cavity opened within
the disk, that for some systems has been resolved (van der Marel et al.[2018). This is
notably the case of the system 10-Myr system HD 100453, that is characterized in van
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der Plas et al] (2019) (Chapter [2] Sec. [5.4), or of the 5-Myr-old system PDS 70, for
which two planets has been resolved in the cavity (Keppler et al.[|2018; Haffert et al.
2019). In the general case, the processes and time necessary for a protoplanetary
disk to loose all its gas and become a debris disk is not well understood yet, as
cavities are not necessarily populated by planets (van der Marel et al.[2018) and as
the collisions of planetesimals are creating gas in parallel (Kral et al.|2017; Hughes
et al.[2018).

Debris disks are the remnants of planet formation processes. They mainly consist
of small dust particles resulting from ongoing collisional cascades from kilometer-
sized parent bodies. Therefore, the presence of these disks indicates that the forma-
tion process led to large bodies, and potentially planets. At least 20 % of Sun-like
exoplanet host stars harbor debris disks (Marshall et al.|[2014), including the Solar
System (asteroid and Kuiper belts).

The dust particles composing the disk emit according to their temperature, and
scatter the light of the host star in wavelengths comparable to their size. The
temperatures of the dust ranges from 1500 K (close-in, also called exozodies) to 50
K in the outer parts of the disk. In the visible or near-infrared bands (SPHERE,
...) the stellar flux dominates the thermal emission of the dust, so that the main
contribution of the dust comes from the scattered light of micron-size dust particles.
Infrared excess in the Spectral Energy Distribution (SED) of a system is thus a good
indicator of the presence of debris disks.

Dusty systems are thought to be better candidates to harbor giant planets, so
that some direct imaging surveys are targeting them in priority to improve the yield
(Meshkat et al.|2017)), given the low occurrence of giant planets at long separation.
To further increase the occurrence, some surveys aim for debris disks with unusual
features, which are often caused by dynamical interactions with a companion. Eleven
planets or brown dwarfs in eight different systems have been imaged so far around
young stars with debris disks (see Fig. @, among which the system HD 106906 that
I have been extensively studying (Chapter 1).

The study of debris disks has developed along with the study of exoplanets, as it
allows the probing of the neighborhood of a planet, hints for additional companions,
or give constraints on the mass or orbital elements (Wyatt|[2018). Contrary to the
protoplanetary disk case, the interaction between planets and dust can be efficiently
modeled by non-viscous N-body dynamics, and several features can be computed
with analytic or semi-analytic configurations (see Sec. [1.7)).

2 Formation and Evolution

2.1 Stars

Stars are thought to form inside giant molecular clouds. Over millions of years, they
gradually collapse and fragment to form small, dense protostars and their accretion
disk. Different collapsing mechanisms take place depending on the density of the
cloud, and the link between the cloud geometry, the core mass function and the
initial mass function is still to be clarified (Motte et al.[2018).
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Figure 3 — Hertzsprung-Russel Diagram: (left) original from (1914) and
(right) derived from Gaia DR2. Picture published by the Gaia Data Processing and

Analysis Consortium.

At the beginning of the 20*® century, Ejnar Hertzsprung and Henry Norris Rus-
sell represented the stars on a luminosity-temperature diagram, now called the
Hertzsprung-Russell diagram (HRD), and evidenced a pattern in the distribution:
the main-sequence. Our statistics and understanding of stellar evolution have made
a lot of progress since then (see Fig. [3). The beginning of a star’s life, before
it reaches the zero-age main sequence, has been in particular deeply investigated
through the development of evolutionary models. The latter rely on equations of
state describing the stellar interior structure and can make use of atmospheric mod-
els to define boundary conditions and predict emergent spectra. Different families
of models exist (e.g., [Siess et al|2000; Feiden et al.|2015; Baraffe et al. 2015),
ranging from very low mass (0.01 Mg) to massive (7 M) stars. Some account for
the pre-main sequence phase, but most describe the main-sequence evolution ex-
tending to Gyr time-scales. Their physical and chemical ingredients (e.g., nuclear
rates, opacity, atmospheric parameters) are frequently updated to account for the
newest observations (e.g., Baraffe et al|[2015). The models relate the age and mass
of stellar and substellar objects to the measured broadband photometry, surface
gravity, radius, luminosity, and effective temperature. They are therefore a key tool
for estimating the mass from the measured luminosity of any imaged objet.

The models predictions still need to be calibrated in various mass and age regimes
(e.g., Hillenbrand & White 2004} Mathieu et al.|2007). Uncertainties related to the
object formation process (early accretion history, etc.) exist in the pre-main sequence
(PMS) regime (Baraffe et al.[2002). Further uncertainties may be added for low-mass
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stars, which have strong convection, rotation and magnetic activity (Mathieu et al.
2007; Somers & Pinsonneault||2015). The calibration of models for young low-mass
stars is treated in more details within [Rodet et al| (2018) in Chapter 2] Sec. [6] Such
understanding is essential to properly constrain the age and mass of young stars.
Moreover, the evolutionary models of giant planets directly derive from the models
of low-mass stars, so that calibrating the latter can help to constrain the former.

2.2 Planets

The extremely diverse physical and orbital characteristics of exoplanets led to fre-
quently revise the scenarios for planet formation, as most features of their observed
distributions are not yet accounted for.

2.2.1 Formation

Contrary to the stellar formation, which takes place at the center of a collapsing
gas cloud, the planetary formation occurs within the circumstellar disks forming
around the protostar as a consequence of angular momentum conservation. Several
formation paradigms are currently proposed.

The most conventional is the core accretion scenario (Pollack et al.[[1996]), which
is the privileged choice for the planets of our Solar System. In this model, plan-
ets begin their formation with the settling and growth of dust grains in the disk
mid-plane, that will slowly accrete each other to form planetesimals. When they
reach approximately 1,000 km in diameter, the accretion slows down (oligarchic and
chaotic growth) until the dispersion of the disk gas, and the final formation of rocky
planets or planetary cores (Baruteau et al.[2016). This formation mechanism is con-
sistent with the observed correlations between planets and stellar host metallicity
(Santos et al. 2004; Mulders |2018). If the protoplanets reach sufficiently high mass
(10 — 15 Mg)) within the lifetime of the protoplanetary disk (< 10 Myr), they can
further accrete gas and become the cores of giant planets. The growth of the core
depends on the separation and disk density, and traditional core accretion fails to
produce planets at large separations, for the formation timescale would then exceed
the lifetime of the protoplanetary disk (Baruteau et al.2016). Taking into account
migration processes in the core-accretion model has the potential to speed up core
growth (Mordasini et al.2009). However, this strongly depends on the migration
rate, that is currently poorly constrained (Baruteau et al.[2016)). On the other hand,
a new model for the accretion of solids has been recently proposed, called pebble
accretion, which can form planetary cores in a more efficient way (formation of an
earth-mass core in some thousands of orbits, which is less than 1 Myr even at tens
of astronomical units). Still, the processes driving the growth of macroscopic parti-
cles remain poorly understood (boucing barrier, meter-size barrier), which prevents
us to predict effectively when, where and how many protoplanets form in a disk
(Morbidelli & Raymond, [2016). Nevertheless, the core accretion scenario predicts
low eccentricities and low inclinations, due to planet-disk interactions. Plus, the
runaway accretion needed to accrete gas on giant planets are though to be possible
only beyond the "snow line", at a few astronomical units, where water exists as a
solid (Winn & Fabrycky|[2015).
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On the other hand, the gravitational instability scenario is a faster process (~
1,000 yr) that is able to form giant planets at large separation from an instability
in the protoplanetary disk (Boss||1997). The relatively recent discoveries of massive
planets at large separations relived this theory, which was otherwise not favored for
the planets of the Solar system. In this model, the protoplanetary disk fragments into
dense clumps in its outer parts (typically 50 to 100 au). This pathway could lead
to the formation of planets in some tens of orbital periods, which is significantly
faster than the core accretion scenario. The so-formed giant planets could have
no solid core. This is a good candidate formation mechanism to account for the
discovery of giant planets and brown dwarfs at tens or hundreds of astronomical
units, although it remains controversial and consistent models are still developing
to include the effects of the magnetic fields (Chabrier et al.2014). Like the core-
accretion scenario, gravitational instability cannot account for high eccentricities and
inclinations (Winn & Fabrycky|2015). Tidal downsizing scenario has been recently
proposed to form the planets at short separations and to account for the lack of giant
planets at large separations (> 50 au). This theory includes gravitational instability,
strong migration and tidal disruption of the gaseous clumps, and can produce giant
planets as well as stellar companions and rocky planets (Nayakshin |2017)).

Finally, collapse within the protostellar core phase, like multiple stars, is a plausi-
ble option to account for the observations of very wide or even isolated brown dwarf
companions and planetary-mass objects, that could have not formed a priori within
the disk of a star (Sumi et al.2011; |Gagné et al. 2014, 2018). The distribution of
masses of such companions would likely resemble the low-mass end of the stellar
initial mass function (Chabrier et al.[2014).

A better description of the mass and separation distribution of planets will help
to discriminate the formation scenarios, although the observed distributions will
reflect both the formation and dynamical evolution of the systems. The system HD
106906 Bailey et al. (2014) is a perfect example of this complexity: the very wide
separation of the planet suggests a star-like formation pathway, but a planet-like
formation might be possible if the planet underwent a dynamical scattering (see

Chapter [1| Sec. .

2.2.2 Physical evolution

Much effort has been devoted to the modeling of sub-stellar objects during the
past decades, improving our knowledge of their evolutionary properties and their
atmospheres. Theoretical models can now predict the characteristic properties of
the exoplanets mass, radius and atmospheric signature. Evolutionary tracks have
been computed, adapted to various mass ranges, dust proportions (so-called DUSTY
or COND models), and atmosphere compositions (Chabrier et al.|[2000; Baraffe
et al. [2003; |Mordasini| [2013). Many points remain badly understood, as spread
and discrepancies from the theoretical predictions are regularly observed, such as
inflated radii or spectral reddening (see the study of HD 206893, Chapter [2] Sec.
(Baraffe et al.|2010]). For the moment, substellar evolutionary models focus on the
description of giant planets and brown dwarfs, and derive in part from the physics
of stellar models.
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After the accretion, a new-born planet cools down, significantly in the beginning
of its life, in times ranging from 10 Myr for small planets to a few 100 Myr for
the more massive. In principle, we can then derive the mass and the radius from
the spectroscopy and photometry, through comparisons with theoretical spectra.
However, the theoretical models strongly depend on the physics of the gas accretion
phase (e.g., (Cumming et al.|[2018)).
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Figure 4 — Summary of the various pathways to giant planet formation leading to
different post-formation entropies, from Baruteau et al.| (2016). M;,; denotes the
initial mass of the clump formed by gravitational instability.

The initial (post-accretion) luminosity of young giant planets remains an open
question of giant planet formation. The uncertainty primarily lies in how much en-
ergy is radiated away from the in-falling material during the accretion. The limiting
conditions obtained by adjusting the efficiency of the shocks lead to the so-called
"hot" and "cold" start models (see Fig. . At 1 Myr, the luminosity difference
between the two starts for a giant planet can represent a factor of 10 to 1,000 (Fig.
3, |Mordasini 2013). This is particularly problematic for the characterization of
directly imaged planets (generally young), as it leads to high uncertainties in their
mass estimate that prevents a robust dynamical analysis of the system. At later
ages (~ 100 Myr), the importance of the initial conditions decreases and so does the
distinction between the two start models (Spiegel & Burrows|2012).

2.2.3 Orbital evolution

Over the last decades, planet migration has become an unavoidable ingredient to
explain the configuration of some planetary systems, in particular the mean-motion
resonance chains and giant planets at close separation. The phenomenon occurs
at the beginning of a planet’s life, when it is still embedded in the protoplanetary
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disk. Its orbital motion creates a spiral density wave in the gas distribution, which
in return exerts a torque on the planet. As a result, the angular momentum of the
planet’s orbit changes, and the orbit expands or contracts depending on the sign of
the torque. This leads to radial migration towards or away from the central star.

For low-mass planets, the migration time scale decreases linearly with the planet’s
mass (Lin & Papaloizou/|1986), and becomes significant (less than the disk lifetime)
only for planets of a few Earth masses. Until the disk structure is not significantly
perturbed by the planet, we refer to the migration as type I. When the influence of
the planet becomes sufficient to open an annular gap within the disk (mass > 10
Myg,) , the planet is locked in its gap and follows the accretion of the disk gas onto
the star. This is called type II migration (Baruteau et al.[2014).

However, migration depends on a variety of poorly constrained physical charac-
teristics of the protoplanetary disk, such as the viscosity, surface density, or height
profiles (Crida & Morbidelli2007)). The current understanding of the migration the-
ories struggles to reproduce the known planetary population (Mordasini et al.|2009),
essentially because the theory predicts a very efficient migration that pushes most
planets towards the inner zones of the system (Morbidelli & Raymond|2016). As well
as shrinking the separation distribution, this process would give rise to dynamical
interactions between the different objects of a system. This could have possibility
been the case in the binary system HD 106906, where the migration could have
pushed the planet towards the central binary star and lead to an ejection to the
outer parts of the system (see Chapter (1] Sec. .

Giant planet migration is thought to be a key mechanism that structured the
architecture of our Solar System. Specificity such as the mass depletion between the
Earth and Jupiter orbits (in particular the low-mass of Mars) can be accounted for
with an early inward migration of Jupiter, which would have reversed when Saturn
formed (Grand Tack, [Walsh et al.[2011]).

Combined with the physical evolution of their structure and the interaction with
the gaseous disk, planets experience critical orbital evolution after their formation,
through interactions between themselves. The reality of post-gas dynamical evo-
lution is supported by observational evidence,such as the relatively low number of
resonant chains and the common non-zero eccentricities (Morbidelli|2018)). In the
Solar System, this led to the so-called Nice model, that accounts for the small body
population in the Solar System by modeling the coupled orbital evolution of Jupiter
and Saturn (Morbidelli et al.[|2007; [Nesvorny 2018). Hot Jupiters may also originate
from interactions with planetary or stellar companions, through a combination of
processes referred to as high-eccentricity migration (Hamers et al.|2017; Teyssandier
et al.[2019).

3 Direct imaging

Direct imaging is presently the only viable method to complete our view of planetary
systems architectures and to set constraints onto the giant planet formation scenarios
at large (> 5 au) separations. It occupies an important niche with a potential for
growth in the near future, in particular in the coming era of the extremely large
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telescopes (TMT, GMT, E-ELT). The detection of photons from the atmosphere
of planetary companions gives precious information about their composition and
physical properties (effective temperature, surface gravity, atmospheric properties).
Furthermore, direct imaging can detect planets in formation in the primordial gas
disk (such as PDS 70; Keppler et al.|2018; Haffert et al.[2019). On top of constraining
the physics of accretion, this gives valuable inputs on the very young architecture
of planetary systems, which can be then compared to more evolved systems to
investigate the dynamical evolution.

3.1 State of the art

Two main difficulties arise when trying to resolve a planet: its faintness compared to
the stellar luminosity, and its small angular separation from the star. For example,
Jupiter seen from 50 pc away would appear at an angular separation of 100 mas
(3.1075 degrees), and with a contrast in luminosity of 107® (4.5 Gyr). For younger
ages (10 Myr), the intrinsic luminosity increases the contrast to 1075 — 1075 (respec-
tively for hot-start and cold start, [Mordasini 2013)). These observational specifica-
tions require high-angular resolution high-contrast instruments, and only the highest
performing ones (2nd generation, namely VLT /SPHERE and Gemini South/GPI)
can currently hope to detect young Jupiters at 5 au. To detect a Gyr-old Earth in
the habitable zone of a Solar-type star, a contrast of 107! and an angular separation
of 20 mas (at 50 pc) have to be reached. The generation of imaging instruments
on the ELTs will be able to reach that separation, but the limits in contrast will
probably be the main technical hurdle.

The high performance on the 8-10 meter-class telescopes (VLT, Gemini, Subaru,
Keck, LBT) rests upon a set-up that enables for high angular resolution (giant
telescope and adaptative optics), the use of a coronagraph to attenuate the light
from the star, and differential imaging techniques.

The recent refinements of adaptive optics (Extreme-Adaptative Optics) is one of
the key ingredient that accounts for the gain in angular resolution (Chauvin/[2016]).
Indeed, observations from the ground are strongly hindered by the turbulence in
Earth’s atmosphere, which affects the light propagation, blurring the Point-spread
function (PSF, spread of order 17). Adaptive optics compensate for this turbulence
through a wavefront sensor, a deformable mirror whose surface shape is controlled by
actuators, and a real-time controller. Extreme-Adaptive Optics are characterized by
a higher frequency of adaptation (> 1 kHz), finer corrections (more than a thousand
actuators) and an enhanced stability of the set-up. SPHERE’s PSF has a typical
size of 0.04”, a gain of more than 10 compared to the seeing-limited case.

Coronagraphs reduce the impact of the quasi-static speckle noise when searching
for faint companions. They achieve this by decreasing the diffracted light of the
star where planets are looked for, and decreasing the intensity of the star to prevent
saturating the detector. It pushes back contrast limits, in particular in the inner
zone of the system, by decreasing by more than 100 the intensity of the stellar light.

Finally, a variety of techniques exists to minimize the residual flux structures
(Speckles), from correction algorithms fine-tuning the deformable mirror (Give’on
et al.2007) to differential procedures (reference, angular, spectral, polarimetric, e.g.
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Marois et al.|20006).

The implementation of the differential imaging techniques on the planet imager
instruments has been critical to reveal the scattered light emission of planets and
faint disks. Consequently, the morphology of the disks (asymmetries, spirals, carv-
ing...) can be revealed and studied in great details.

3.2 SPHERE

SPHERE| (Spectro-Polarimetric High-contrast Exoplanet REsearch) is a sec-
ond generation high-angular resolution high-contrast instrument installed on the
UT3/VLT in Chile (Beuzit et al.|2008). It has been developed by a consortium of
11 institutes in 5 European countries, led by IPAG in Grenoble. Since its first-light
in 2014, it has shared its observing time between open-time programs and 260 nights
of Guaranteed Time Observations (GTO), mainly devoted to the search and charac-
terization of exoplanets (Chauvin et al.[2017). SPHERE is designed to give optimal
performance for stellar targets up to 9 mag, which is enough to build a sample of
400 to 600 young stars of the Solar neighborhood (Beuzit et al.|2008).

SPHERE is composed of three modules. The main one, IRDIS, is a near-infrared
dual-beam imaging module that has a wide field of view (11”), and works in a broad
range of near-infrared wavelengths (0.95 to 2.32 um). The two beams, corresponding
to two neighboring spectral channels, have been carefully chosen so that one of the
two corresponds to a absorption line of companions atmospheres (e.g., methane), to
strengthen the detection. The very high astrometric precision (a few mas) combined
to the large field of view makes IRDIS unique for the characterization of companions
from 10 au to wide orbits (several 100 au). Most of the data used in this thesis were
thus observed with IRDIS.

A second module, the integral field spectrograph (IFS), allows the sampling of
the frequency space at low resolution over a field of view of 1.73”. This module is
used to characterize the spectrum of the companions in the 0.95-1.65 um range (R
~ 30) and in the 0.95-1.35 um range (R ~ 50). On top of giving precious information
about the composition of the companions, it allows the estimation of their physical
properties (Teff, log g, radius, mass).

Finally, ZIMPOL is a polarimeter working in the visual range (0.6-0.9 um). The
use of polarimetry singles out the reflected stellar light, which is otherwise extremely
faint. This module is used to resolve debris disks and to detect the reflected emission
of evolved planets (so far unsuccessfully).

All three instruments benefit from a robust image and pupil stability, ensured
through the common path facility, that measure and adjust in real time the differ-
ential image movements. Thanks to its extremely adaptive optics and to the large
diameter of the VLT, the PSF of SPHERE has a a typical size of 40 mas (around
4 pixels square). A good modeling of the PSF then allows the constraints of the
positions of the objects with a precision of 1 to 5 mas (compared to ~ 10 mas for the
older generation of NaCo or HAO). A good precision on the position is essential to
the orbital monitoring of the detected companions, because it allows the detection
of an orbital motion in a reasonable time (~ 1 yr) despite their long periods (= 100

2Website: https://sphere.osug.fr/spip.php?rubrique6&lang=en
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yr). The coronagraph is limited to an inner working angle of < 100 mas, preventing
to probe the inner regions around the central star (see Fig. [5)).
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Figure 5 — SPHERE/IRDIS image of the brown-dwarf companion HD 206893 in the
H-band filter (1.6255 pm). The cut of the inner zone is due to the coronagraph. The

companion is detected at a separation of 270 mas (~ 10 au) and has a contrast of
3.6.1075.

Two quantities are necessary to ensure the consistency of the astrometry along
different epochs : the pixel scale, to derive the separation in arcseconds, and the in-
strument orientation on sky (true North), to allow comparisons between the position
angles. Their calibration is performed based on carefully-chosen astrometric fields
(binaries, clusters) with accurate positions and a good on-sky coverage throughout
the year. The pixel scale exhibits only negligible variations over time for a given
setup (of order 0.01 mas for SPHERE /IRDIS, a hundred times less than the typical
error), so that its calibration is reliable (Maire et al.|2016). On the other hand, the
precise derivation of true North is subject to systematic changes between epochs.
The typical variation for a given setup in SPHERE is of order 0.15 °, which is similar
than the typical error (Maire et al.|2016]).

3.3 Science: Planets and disks

Several past and ongoing surveys have revealed a scarce but interesting population
of young gas giants on wide orbits, making use of different instruments: VLT /-
NACO (e.g., [Rameau et al|2013} |Vigan et al.|2017), VLT /SPHERE (e.g., Chauvin
et al[2017), Gemini South/GPI (e.g., Nielsen et al|2019), SUBARU (e.g., [Uyama
et al.[[2017)), Keck II/NICRC2, Gemini North/NIRI and Gemini South/NICI (e.g.,
Galicher et al|2016), MagAO/Clio2+FIRE (Janson et al.|2013) and other instru-
ments probing the near infrared domain (e.g., Baron et al/2018). Their results point
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toward a low occurrence (< 10 %) of giant planets (> 5 Mj) at separations larger
than 10 au (Nielsen et al.|[2019)), very low (< 3 %) for very wide separations (1000
to 5000 au, Baron et al.2018).

The SHINE survey with SPHERE targets 500 young, nearby stars with a 200
nights budget (Chauvin et al.[2017). Each target has to be observed twice within
at least a 1-yr interval in order to distinguish bound companions from background
stars, using their relative proper motion. For now, SHINE has discovered two planets
(HIP 65426 b and PDS 70 b;|Chauvin et al.[2017; Keppler et al.|2018) and 2 brown
dwarfs (HD 206893 B and HIP 64892 B; |Milli et al|2017; Cheetham et al.|2018]),
although the final statistics are not yet available (the end of the survey is expected
in 2020). SHINE also has contributed significantly to the characterization of most
known imaged companions and, occasionally, debris disks. I have been working on
five of these systems (HD 106906, HR 2562, HIP 206893 and 51 Eri), plus four stellar
systems also imaged by SPHERE (GJ 2060, TWA 22, AB Dor B and HD 100453).
The detailed study of these systems are described in specific sections of this thesis
in Chapter 2]

The SPHERE consortium also performs the DISKS survey to look for disks (of
gas and/or debris). Around 40 gas disks and 30 debris disks have been detected for
the first time in scattered light since the beginning of the survey. The observations
already enabled a taxonomical study of protoplanetary disks brightness, extension
and morphology (Garufi et al.|[2018).

Fig. [6]sums up the directly imaged companions at the time of the writing of this
thesis, according to exoplanet.eu (I corrected the catalog to account for numerous
unrecorded updates). HR 8799 and PDS 70 are the only imaged systems with
multiple companions. The detection of brown dwarfs at thousands of au (or even
isolated) suggests that they can form from their own cloud collapse. The very wide
orbit of giant planets such as HD 106906 is not well accounted for. This is a reason
why we chose to investigate dynamical scenarios for this system, and we propose a
more complicated formation pathways (see Chapter [1| Sec. .

4 Dynamics

This section intends to set the basics of the celestial mechanics used in the thesis.
I will introduce the Hamiltonian framework that is the ground of the symplectic
integrators of Chapter [I] I will then present different aspects of the perturbed 2-
body problem, that will be used in both Chapters [I] and 2| This section makes use
of the online course of Duriez| (2002).

4.1 2-body problem: notations and resolution
In a Galilean referential, the equation of motion of the 2-body problem is

. H
T=——r 1
e M
where 7 is the position vector between the two bodies and p the product of the
gravitational constant GG and the total mass of the system. Three constant quantities
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Figure 6 — Architecture of the directly imaged main-sequence systems with a planet
or brown dwarf companion. The binary-type mass ratios (> 0.05) and the post-main
sequence systems are not represented. The blue color indicates objects below the 13
M; mass limit, and the grey rectangles indicates disks (of debris, except from PDS
70). The red names indicate the systems whose studies are depicted in this thesis.
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Figure 7 — (left) Representation of the five angular orbital elements. (right)
Schematic of the true and eccentric anomaly in the orbital plane.

are used to describe the problem:

e The energy E = |7r|> — &;

r?
e The angular momentum C' = r A 7;

#ANC
w

e The eccentricity vector e =

SIS

The energy controls the size of the orbit described by . The angular momentum
is normal to the orbital plane (along k in Fig. [7]). Finally, the eccentricity vector
points towards the direction of smallest value of r (periastron).

An alternative representation of the trajectory is given by the six orbital elements:

e The semi-major axis a = |#5|;

The eccentricity e which is the norm of the eccentricity vector;

The longitude of the ascending node 2 = arctan (—g—z);

°
Q

The inclination ¢ = arccos (

ol

The argument of periastron w = arctan (——(Ceje)z);

The true anomaly 6, polar angle of 7 in the plane normal to C', measured from
e.

The two angles ¢ and €2 define the plane of the trajectory, w its orientation, a
and e its shape and 6 the current position on the trajectory (see Fig. . It can be
shown (see Appendix) that r follows a conic section of equation:
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with 6 = = (2" Kepler law) (3)
When the trajectory is elliptic (e < 1), the period of the orbit is given by:
_And®

1
and the orbital elements correspond to the elliptic elements:

P? (3™ Kepler law) (4)

Ta+Tp

a=—->=
2

To —T

e = P
2a

where r, = (0 = 0) is the periastron (shortest separation) and r, = r(6 = ) is
the apoastron (largest separation). We may equivalently use the time of periastron
passage t, instead of the true anomaly 6.

To link the time evolution to the geometrical evolution, we define the eccentric
anomaly u, whose geometric representation is presented on Fig. [7] It can be linked
both to the true anomaly 6 and to the time, through the mean anomaly M = 27t/ P.
The equations are:

r(0) = a(1 — ecos(u)) (5)
M =wu —esin(u) (Kepler equation) (6)

Similar relations can be derived in the hyperbolic case, with hyperbolic functions
and opposite signs. The solution of the Kepler equation is known as series, but most
of the time, iterative approaches are used (Danby & Burkardt| 1983, see Appendix).

4.2 Hamiltonian representation

The orbital elements just described can be introduced with the Hamiltonian mechan-
ics framework. It is particularly useful for the perturbed case (see Sec. , as it
allows the derivation of the evolution equations of each of the orbital elements, which
are much more workable than the equations of evolution of the classical coordinates.

The Lagrangian (per unit mass) is defined as the difference between the kinetic
energy and the potential energy. In the 2-body problem, with the previously defined
notations, it is

1 %
L=_-r4+= 7
SR (7)
The conjugate moment p, defined as the derivative of £ with respect to 7, is:
dl
=—=7 . 8
p= =7 (8)
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The Hamiltonian is then defined as

H=pr—-L 9)
1 5 p

—pr 1

5P (10)

and the following equations (Hamilton equations) hold

_OH . OH pu
=gp =P P= =" (11)

which transform the three-dimension second-order differential equations (Eq. [1)) into
two equivalent three-dimension first-order differential equations. When the system
is conservative, as it is here, the Hamiltonian represents the energy and is conserved.

To adopt new coordinates (orbital elements) for the description of the system, we
must check that they are canonic, that is that their evolution follows the structure
of Hamilton equations. This is the case for the Delaunay variables, that we use to
describe the elliptic (bound) case (the quantities on the same line are conjugated) :

r

M L= (12)
w C = +/pa(l—e?) (13)

Q O = y/pa(l — e?) cos(i) (14)

1
=—— 1
H 212 (15)
and the evolution equations
2
M _od _p _ [u b _9H _ (16)
dt oL L3 a3 dt oM
dw O0OH dC OH
— = = —_— == 1
dt  oC 0 dt Ow 0 (17)
dQY  O0H de OH
— = = —_— == 1
dt 00 0 dt o) 0 (18)

We retrieve the conservation of the orbital elements and the third Kepler law.
In the case of a coplanar problem, the mean longitude A and the plane longitude
of periastron w are used:

A=M+w+Q L= ./na (19)
w=w+Q P=L(V1-e-1) (20)
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4.3 Jacobi coordinates

Let there be N bodies of masses (m;);—1.n, described by their position (r;);=1. n in
the barycentric coordinates. Alternative coordinates description are used to reduce
the problem to N — 1 two-body problems.

The first alternative is to particularize one of the body, for example the Sun in
the Solar System, and compute the relative position of the other bodies from it. If
the other bodies’ masses are small enough with respect to the Sun’s mass, each body
is following its orbit around the Sun as a 2-body problem.

Barycentric Coordinates Heliocentric Coordinates

Figure 8 — Representation of three different descriptions of the N-body problem.

However, in practice, the masses of the bodies are not entirely negligible (and
sometimes not at all). In that case, the referential centered on the Sun is not
Galilean. A more rigorous description is given by the Jacobi coordinates, where
the bodies are first ordered along their distance to a rotation center (Sun, center
of mass) and their relative positions are computed with respect to the successive
centers of mass (see Fig. . The new positions (r;)jzl,_ N are given by:

ry = ! im-r (21)
LT e < i3
’ — M .
TP =Tj — ri for j > 2 (22)
1 Mot j-1

where myo; designates the total mass of bodies up to j. The position r{ is the
constant position of the total center of mass, so that the problem can be reduced
to N — 1 two-body problems. The Jacobi coordinates can be generalized for several
centers of rotation by the Hierarchical Jacobi coordinates. This is the basis of my
team’s N-body integrator Swift HJS, which I describe extensively in Chapter 1.

4.4 Perturbed 2-body problem, Lagrange equations

In the ideal 2-body problem, the previously defined orbital elements a, e, i, 2, w
and ¢, remain constant. Most of the time however, additional forces (tidal, viscous
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interactions with the disk) or additional bodies perturb the scheme and the orbital
elements evolve.

The orbital elements are defined from the vectors position and velocity, so that
their definition stands even if the situation does not correspond to an ideal 2-body
problem. In such case, they are not conserved and, at for any given time, they
correspond to the orbital elements of the traced orbit if the problem would suddenly
become Keplerian.

If a perturbative potential U was added to the problem, the Hamiltonian would
become:

12

212
and the new equations of motion would write:

H=———+U (23)

AV _on 2 U dL _ o _ U (24)
dt oL L3 OL dt oM oM
dw _0H _0U C __oH _ U (25)
dt  oC  oC dt = dw = Ow
@ _oH _oU © __oH _ _oU (26)
dt 090 00 dt 99 90

Rewritten with the classical orbital elements, we obtain the Lagrange equations:

da oU

pags = =200 (27)
uae% = —(1 —62)5—]\(]4+ 1—622—5 (28)
C’sin(i)% =— cos(i)g—g + Z—g (29)
Csin(i)% = —%—[j (30)
Ce sin(i)i—j =—(1—¢% sin(i)%—(ej + ecos(i)aa—[i] (31)
% a4 \/L_a <2a‘2—z - o(i—(’; + cos(i)%)) (32)

Even with the simplest form of perturbative potential U, these equations can
often not be solved. To simplify their resolution, we often develop them in per-
turbative series (of the semi-major axes, masses or eccentricities ratios typically),
and/or we average the Hamiltonian over the fast rotating variables. The latter ap-
proach is called secular approximation, and is used when the studied perturbations
happen on a time scale significantly larger than the orbital periods.

4.5 Secular approximation and Hamiltonian maps

In practice, the Lagrange equations are too complex to solve exactly, even for the
simplest perturbative potential (remote third body for example). The secular ap-
proximation is a method valid for lightly perturbed Keplerian motion. It consists
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in dividing the problem into two time-scales: the small time-scales (comparable to
the orbital period), and the longer (secular) time-scales. The potential U is then
expressed as a function of both rapidly oscillating variables (f) and slowly-varying
variables (the other orbital elements). We then average over 6 and replace the or-
bital elements by their averaged value. We can then study the evolution of these
averages. Rigorous mathematical derivations of the correctness of this approach are
given in Morbidelli (2002), using series of Fourier coefficients. If several orbits are
considered, the integration is performed independently on each rapidly oscillating
terms, if the periods are not commensurable. Otherwise, we are in a situation of
mean-motion resonance (see Sec. [£.6).

In the secular approximation, the semi-major axis a is always constant, as it
is the conjugate of the mean anomaly (which is rapidly oscillating). The stability
of the semi major axis is thus a condition sine qua none for the use of the secular
approach. This is true as soon as the energy perturbation from the Keplerian case
is small with respect to the Keplerian energy.

2 =3.0,e;=0.4,u=0.01

1.0 2 =3.0,e,=0.4,u=0.01

0.8 Close encounters
Close encounters

0.6
Q
0.4

0.2

0.0
0 50 100 150 200 250 300 350

Wy — Wi

100 150 200 250 300 350
Wy — W1

(a) Semi-analytical secular approach (b) Analytical secular approach

Lo 2=3.0,e,=04,u=0.01

0.8 Close encounters

0.6
1}
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0.2 ) \ s C

0.0
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(¢) Numerical approach
Figure 9 — Hamiltionian maps for the evolution of an outer body (2) perturbed by

an inner companion (1).

When the problem is coplanar, the secular Hamiltonian has only two degrees
of freedom: the average eccentricity e and argument of periastron w. The problem
can then be represented by a contour map (see Fig. E[) As the Hamiltonian is
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conserved, the evolution of the system must follow the iso-energy lines. On Fig.
O T used three different approaches to compute the Hamiltonian map for an orbit
perturbed by an inner planetary companion. Such a perturbation will induce pre-
cession (in around 500 orbital periods for a semi-major axes ratio of 3), as well as
secular eccentricity variations. Map (a) is obtained through a semi-analytical ap-
proach: the secular Hamiltonian is computed numerically for every couple (e,w),
without any approximation, to obtain an exact secular energy map. On map (b),
I superposed to the semi-analytical map the complete analytical resolution e(w) for
small e and high semi-major axis ratio with the companion (the resolution is de-
tailed in the Appendix). This resolution follows very faithfully the map (a), even for
moderate eccentricities. Finally, I superposed to the analytical lines the outcome of
two different simulations with the N-body code SWIFT HJS (see Chapter [1)), with
two different initial eccentricities and running for 10 precession periods. Both sim-
ulations follow the theoretical predictions. The red zone labeled chaos corresponds
to the numerical estimate of the chaotic zone from Petrovich (2015), for which the
secular approximation does not hold.

In the secular theory, the displacement on the equi-energy lines on the Hamilto-
nian maps is performed at the rate of the precession. The low eccentricity approx-
imation predicts a homogeneous precession, which gives a good estimate. In some
cases, where the two orbits are initially nearly aligned and the outer orbit has low
eccentricity, the longitude of the periastron is confined to and oscillates within a
part of the parameter space. This situation is called libration.

4.6 Mean-Motion Resonances (MMR)

Two orbits are said to be in a mean-motion resonance configuration when their
periods are commensurable. In that case, we cannot average the Hamiltonian over
the two orbital motions independently in the secular approach. Instead, the average
is made over the least common multiple of the two periods, and the relative positions
of each bodies is computed directly from the time. MMRs are usually noted p+q : p,
meaning that the body we study undergoes p + ¢ revolutions while the perturber
does p, where p and ¢ are integers. |g| is the order of the resonance, positive when
the perturber is an outer body and negative otherwise. The lower the order, the
greater the effect of the resonance. The commensurability of the periods leads
to fixed conjunctions localization, and the order |q| also represents the number of
conjunctions (see Fig. [10).

The secular Hamiltonian can no longer be computed analytically for any eccen-
tricity, because of the resolution of the Kepler equation to derive the positions of
each bodies with time. Thus, we analyze the problem using the semi-analytical
Hamiltonian map, as in Fig. [9] (a). In the MMR case, the Hamiltonian depends of
one more parameter: the initial relative position of the bodies, or equivalently the
longitude of the conjunctions . This longitude is often computed with respect to
the longitude of periastron of the body of interest. It can be written as a function
of the mean longitudes:

_ptgq
g =
q

)\1 — B}\Q — W2 (33>
q
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Figure 10 — Example of a stable 1:2 MMR. The conjunctions occur only when the
bodies are at apoastron, which guaranties the stability of the system.

Given that (p+ q)P, = pP;, o is constant on the short time scales. On secular time
scale, the mean-motion resonance is characterized by the libration of ¢ around an
equilibrium value (Morbidelli & Moons||1993).

1:5,e;=0.4,u=0.01

0.2 1

0-0 T T T T T T T
0 50 100 150 200 250 300 350

W2 — W

Figure 11 — Hamiltionian maps for the evolution of an outer body (2) perturbed by
an inner companion (1), in a 1:5 MMR.

One can note that o represents the longitude of the conjunctions of the mean
longitude, which may be different from the true geometrical longitude. The more
stable case is when the conjunction occurs at apoastron, that is when ¢ = 7. As o
is defined modulo 27/|q| (there are |g| conjunctions), it is equivalent to ¢ = 0 for
even |q|, o = m/|q| for odd |g|.

Let us consider our previous example of an inner eccentric giant planet perturbing
a lighter body, which is studied in Fig. [0] If instead the semi-major axis ratio is 2.924
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instead of 3, it is in a configuration of 1:5 MMR. The corresponding Hamiltonian
map is drawn on Fig. for 0 = /4 (neglecting its libration). We see that the
resonance induces strong eccentricity variation, except in some localized zones of
low eccentricities.

Because it induced such raises of eccentricity in otherwise stable configurations,
mean motion resonances are thought to be a factor of destabilization in planetary
systems (Beust & Morbidelli[1996)). Various studies showed that disk-induced migra-
tion is creating naturally resonant chains, as resonant configurations are relatively
robust and can stop the planetary migration (resonance capture, e.g. [Snellgrove
et al. 2001)). In Rodet et al. (2017)), we used MMR to suggest an early ejection of
the planet in system HD 106906 by a 1 : 6 resonance with its host binary (Chapter
Sec. . However, resonance capture depends on a variety of parameters (migration
rate, eccentricity damping time scale, mass ratios...), which could account for the
lack of observed MMR in Kepler data (Xu & Lai [2017)).

On the other hand, MMR can be a stabilizing factor if the eccentricity of the
larger body is small. Such configurations can be observed in the Solar System, where
the non-stable MMR configurations have long been ejected. The more illustrative
case is the 3 : 2 resonance between Neptune and Pluto, that ensures that the bodies
never encounter when their orbits are close.

4.7 Perturbation in a debris disk

The general theories described above give the tools to study the relative influence of
companions on each other, but also the effect of a companion on a debris disk. The
Hamiltonian maps portraying the effect of an inner companion on outer orbits can
be used to model the structures induced in outer belts of debris. A similar analysis
allows the computation of the effect of an outer companion on an inner belt, or to
compute the perturbation induced by an inclined companion. For sufficient relative
inclination between two orbits (~ 40 °), the eccentricity can reach extremely high
values, the inclination varies significantly, and there may be libration of anti-aligned
orbits. This configuration is called Lidov-Kozai resonance (Kozai1962).

The coupling between eccentricity and precession in debris disk creates large scale
structures that can change significantly their shape and brightness distribution. In
the transient state from a circular shape and a homogeneous density distribution, the
different precession rates of each zones of the disk (depending on their separation)
naturally creates spiral features. After several precession periods, the longitudes of
periastron are randomized and the disk appears eccentric, with periastron grouped
around the periastron of the perturber. This phenomenon is called pericenter glow
by Wyatt et al.| (1999).

In a less subtle fashion, perturbers can deplete significantly parts of debris disks.
First, they create a cavity at the location of their orbit, of a width depending strongly
on the semi-major axis and eccentricity, and moderately on the mass ratio. The size
and features of this so-called chaotic zone have been thoroughly studied during
the last decades, both analytically and numerically. The overlapping of first-orders
MMRs gives a theoretical estimate in the circular case (around 2 Hill radii, Wisdom
1980, see Fig. , that can be then extended to the eccentric case (Mustill &
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Structural Diversity in Debris Disks

a) Narrow ring  NIR | b) Broad, eccentric ring Vis | ¢) Radial gap

o :
HR 4796A| — HD 202628 | —— HD 107146 | — HD 53143
HD 106906

i) Spiral arm
g) Clump

v :m‘

HD 61005 HD 141569

Figure 12 — Mosaic of debris disks observations, taken from [Hughes et al. (2018)
(references therein). The scale bars represent 50 au. The images were taken with

SPHERE (a), HST/STIS (b, d, e, h, i), ALMA (c, g) and GPI (f).

Wyatt|[2012). Numerical tables and fits are computed for different mass ratios and
eccentricities (Holman & Wiegert| 1999; |Lazzoni et al.[2018; Regély et al.[2018)).

Similarly to the transition disks case, planetary perturbers may not be the only
possible causes of the asymmetries and perturbations observed in debris disks (e.g.,
Moor et al.[2014)). Among the possible sources are the stellar fly-bys (see next sub-
section) and the self-stirring mechanism (Kenyon & Bromley 2004). In the latter,
the emergent largest planetesimals (Pluto-size objects) perturb the orbits of neigh-
boring smaller bodies, increasing their inclination and eccentricities. This results in
destructive collisions and initiates a collisional cascade through the disk. The rela-
tive contributions of self-stirring and planetary stirring in observed debris systems
is an issue that is still being investigated (Kennedy & Wyatt|2010)).

Direct imaging is the only technique that can resolve the features of the disk and
use them to probe their environment. The sample of observed debris disk indicates
that large cavities and asymmetries are common. Examples of such cases are shown
on Fig. Some of the few cases where a companion was also resolved (HD 106906,
HR 2562) are presented in the next chapters.

4.8 Stellar fly-by

In the course of their long life, stars are bound to encounter occasionally other stars.
Most of the time, such encounters (or fly-bys) do not significantly impact the ar-
chitecture of the systems. However, in some cases, they lead to dramatic changes:
carving of the debris belts, excitation of the planetary eccentricities and inclina-
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Figure 13 — Representation of the MMRs of orders ¢ < 4 around Jupiter (in black).
The strength of the lines represents the order of the resonance (1 is strong, 4 is
weak). It creates a chaotic zone around Jupiter, that shapes the asteroid belt.

tions, or even planetary captures in some rare cases. The study of the consequences
of stellar fly-bys is important, as it could account for some puzzling observed archi-
tectures, such as wide separations or retrograde orbits. This is particularly relevant
for planetary systems in stellar clusters, as the high stellar density increases the
chances of consequential encounters.

The secular theory can be extended to hyperbolic Keplerian trajectories. The
average is then performed over all the infinite trajectory and not only over one orbit.
Such approach was adopted first in |[Heggie & Rasio| (1996), and was used in
, when studying the effect of the fly-bys on the planet in system HD
106906 (Chapter [1] Sec. [3).

On the other hand, the analytic computation shows that the consequences of the
encounters depend strongly on its geometric characteristics, through multiple fac-
tors. To account for this diversity, most of the studies choose a numerical approach,
where they compute the dynamical evolution of numerous systems and study the
statistics of the final population. They could compute survival rates, eccentricity
raises, and reproduce captures and retrograde orbits (Malmberg et al.2011; [Li et al.|
. The consequences of the stellar fly-bys may be cumulative, or even indirect, as
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the excitation of the eccentricities in planetary systems can lead to close encounters
and scattering (Cai et al.|[2017)).

If the fly-by hypothesis is sometimes considered to explain the specificity of a
system (Pfalzner et al.|[2018)), no planetary systems are known to have undergone
a fly-by. HD 106906 is currently the most serious contender, since the discovery of
two fly-bys candidates. The system HD 141569 may be currently experiencing a
close fly-by that is shaping a massive debris disk (Reche et al.|[2009). This is also
possibly the case for several protostellar disks in star-forming regions (e.g., RW Aur,
Rodriguez et al.|2018).

4.9 Close encounters

Finally, when the eccentricities in a multiplanetary system becomes critical, or if the
migration changes the semi-major axis ratios to unsafe values, a body can be caught
in a close encounter with another body, where the trajectories of at least one of the
bodies is suddenly strongly disturbed from its Keplerian orbit. Close encounters will
almost always lead to a definitive ejection from the system. Indeed, if both bodies
remain bound, the periodicity of the orbits implies that they will meet again in the
treacherous terrain. Thus, if the first close encounter does not immediately provoke
an ejection, the subsequent encounters will do so.

As the close encounters are sudden (compared to the orbital period), the proba-
bility of observing a system experiencing one is very low. Even the complete ejection
to the outer limit of the system takes around 1,000 yr, a very short time interval
compared to the million to billion years-old systems that we observe. However, the
observation of wide companions with high relative velocities could still reveal them-
selves to be ejected bodies (Beust et al.|2016). In our Solar system, we regularly
observe close encounters between the massive planets and the asteroids or comets.
This is why the handling of close encounters was one of the first features imple-
mented in the N-body integrators designed to model the Solar System (see Chapter
. The implementation of close encounters in my team’s code Swift HJS is one of
the issue tackled in this thesis (Chapter [I] Sec. [2.3)).

5 Summarized Context

In summary, my thesis takes place in the context of a massive flow of observational
inputs yielded by SPHERE. We are on the verge of unveiling the key characteristics
of the architectures of extrasolar systems, and with it, to understand the formation
and evolution processes. The dynamical analysis is an essential part to achieve this
understanding from the observations.

The relative positions are fitted by a Keplerian orbit to determine the orbital
elements of the system. This requires powerful statistical procedure, because of the
relatively high number of parameters (> 6) and the sometimes poor constraints.
The procedure, as well as its applications to eight different systems, is described
in Chapter 2] The statistics of the orbital elements are essential to characterize
the architectures. The sample of directly imaged planet is still too small to draw
statistical conclusions on the orbital elements distribution. However, the presence of
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wide giant planets and the eccentricity of some fitted orbits are already meaningful
inputs concerning the formation and evolution pathways. Moreover, the dynamical
mass can be computed from the orbital elements, and is valuable to the calibration
of evolutionary models, especially for young low-mass stars. The analysis of two
such astrometric binaries led to a first-author paper, reproduced in Chapter [2]

N-body simulations can then be used to refine the orbital constraints or inves-
tigate unexpected features. As seen above, the stability of N-body systems with
N > 3 is not ensured, and the influence of companions on each other and on their
environment are often not negligible. In Chapter [I} I present the current N-body
integrators available in the literature, and the new version I designed of the team
code Swift HJS to take into account hierarchy changes and close encounters. This
part of my thesis rests principally upon the study of system HD 106906, a rare sys-
tem with a potentially rich dynamical history. Its analysis led to two first-author
papers (one just submitted), reproduced in Chapter .
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In the Introduction, we reviewed the formalism of the N-body problem and saw
that the analytical approach is limited as soon as 3 bodies are involved. Average
evolutions (secular) or strong instabilities can be determined from a detailed study
of the equations, but N-body dynamics is strongly chaotic for N > 2 and thus do
not allow for precise conclusions most of the time.

Numerical simulations are a natural approach when studying N-body dynamics,
because of the simplicity of the equations of motion and the complexity of their
analytical resolution. They allow for the study of evolutions on multiple time-scales
(from fractions of an orbital period to secular times) and are not limited by the
number of bodies. In the study of extrasolar systems, they are used to predict the
stability of the companions, their past and future evolution or some observational
features that will help to constrain the rest of the system (disk carving, transit
timing variation...).

However, numerical simulations imply approximation errors, if only the computer
round-off errors (15 significant decimal digits precision in double precision), that
accumulates at each operation. When the implementation is unbiased, this evolves
at minimum with the square root of the number of steps (Brouwer 1937). On the
other hand, when the resolution of the problem is approximated, the error piles
up along the integration. For example, the Runge-Kutta framework in N-body
dynamics induces an energy error that evolves linearly with the number of steps
(Rein & Spiegel [2014)).

In orbital mechanics, we are often interested in long-term evolution of orbits, that
corresponds to several thousands to million time-steps. To model the Solar System
4.5 billion years evolution for example, one needs a time step an order of magnitude
lower than Mercury’s orbit, so that 400 billion time steps are needed. At each time
steps, multiple calculations are performed, so that the total energy error becomes
quickly so important that the accuracy of the integration becomes questionable and
the planets orbital stability is not ensured.

Thus, the design and coding of an optimal scheme to integrate the motion in
N-body problems is a complex and active branch in astrophysics. The optimization
criteria generally chosen is the energy error, as the stability of an orbit is determined
by its energy. Different schemes might be optimal depending on the problem, and
I will first review the existing integrators before introducing the code at the cen-
ter of my PhD, Swift HJS, the new versions I developed, and the corresponding
astrophysical applications.

1 State of the art

1.1 Available codes

N-body simulations were developed during the 20" century, along with the progress
of computer science. The first approach was naturally to use truncated series of the
position, using the derivatives, to integrate the evolution of the bodies. Varying the
order, the numbers of iterations, the time step or the structure of the equations, the
possibilities are large and the codes highly adaptable. I regroup this approach under
the category "Classical integrators" in Sec. [.2] and give an overview of the most
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widely-used set-ups in celestial dynamics. The most famous ones are the Runge-
Kutta methods (Sec. [I.2.1)), which combine the derivatives at different fractions of
the time-step to reduce the error. They have been upgraded and refined over the
years, but a significant improvement of the precision can be reached by opting for
the Bulirsch-Stoer approach, which adds an extrapolation step (Sec. [1.2.2). The
implementation of these approaches is described in Press et al.| (1989), and can be
found in most computational languages. But if a Bulirsch-Stoer algorithm is quicker
than the equivalent (in accuracy) Runge-Kutta method, it is still computationaly
costly, and the time step must be small enough to capture precisely the features of
the trajectory.

In the 1990s, the necessity to integrate systems for a gigantic number of time
steps with a constraint of stable energy gave birth to the symplectic integrators.
They allow the integration of a problem with larger time steps without endangering
the conservation of the energy, as long as the problem is similar to an exactly solvable
problem. Luckily, that is the case in orbital dynamics, for the computation of a Ke-
plerian motion is analytically known. Symplectic integrators are thus highly specific
to the problem they model, but increase the speed of several orders of magnitude
with no concession on the energy stability. Different mappings (depending on the
choice for the reference Keplerian orbits) are used in the literature, and I describe
them quickly in Sec[I.3] Three implementations have been developed before 2000,
that are still available and used today: SWIFT RMVS (Sec. [L.3.4), SymBa and Mercury
(Sec. [1.3.3)). All can integrate Solar-System-like architectures and resist to close en-
counters, so that preferring one or another is more of a personal choice (although
Mercury is probably the most widely-used). Facing with the dynamical study of
extrasolar systems with possible non-Solar-System types architectures, Beust, (2003])
introduced SWIFT HJS (Sec. . I used this integrator for most of my work, and
it is the basis of the new code ODEA that I will present below (Sec. [2)).

Recently, the development of super computers and the complexity of the pro-
cesses studied, that often include additional forces (collisions, tidal forces, interac-
tions with the gaseous environment...), led Rein & Spiegel (2014) to advocate for
the return to classical integrators with variable time-steps. Indeed, if the implemen-
tation is of sufficiently high-order, then classical integrators might be stable enough
to ensure the conservation of the energy for billions of time-scale. To support their
claim, Rein & Spiegel (2014) introduced the IAS15 integrator, a 15" order Gauss-
Radau algorithm, that inspires from the classical integrator RADAU (Sec. . This
code is embedded into a multi-purpose Python package, REBOUND (Rein & Liu/2012),
designed specifically for N-body dynamics. However, although IAS15 might be the
natural choice for high-precision N-body simulations with strongly pertubed Kep-
lerian motions, the symplectic integrators remain the most efficient choice for very
long-term integrations when the Keplerian motion is dominant.
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1.2 Classical integrators

In the barycentric referential frame, N-body dynamics is controlled by the following
Hamiltonian (see Introduction Sec. [1.2):

H=Y g X (1

m T
i=1 Y 1<i<j<N v

where (m;) are the masses of the bodies, (r;) their positions, (p;) their momenta,
and 7r;; = r; — 7; the relative positions.
In this framework, the equations of motion (Hamilton equations) of body i writes

H .
= 00 _pi (1.2)
Op; my
) OH Gm;m,;
pi = —a’r‘ = Z 7’*3, Jrij s (13)
g K
or simply
. Gm;
i

These differential equations are not solvable for NV > 2, but they can be solved by
computation within classical numerical integration schemes of arbitrary order. For
the following introductions to the algorithms, the handbook of Press et al.| (1989)
has been used.

1.2.1 Runge-Kutta

The Runge-Kutta scheme of integration is a family of simple and well-known iterative
methods to give approximate solutions of ordinary differential equations of the form
y = f(t,y). In our case, y = (r1,v1,...,7N,vn) is a 6N dimension vector. Given
a time-step h, the Runge-Kutta method evaluates f at fractions of h and sums the
results with coefficients chosen to optimize the error on y.

If the most simple Runge-Kutta schemes are the first order Euler method (one
sub-step) and the second order leap-frog method (three sub-steps), the most widely
used is generally referred to as RK4, as it is a fourth order method (error on the
order h®). These simple schemes are often not sufficient for orbital dynamics, as the
errors pile up and induce drifts in the constants of the problem (see Fig. .

In order to improve the precision of classical algorithms, the first option is to
increase their orders, for example by adding more steps in the Runge-Kutta frame-
works. This generally guarantees a better precision, although it is not ensured (high
coefficients can make the high-order terms not negligible). However, the compu-
tation time becomes increasingly long when the order of the algorithm increases.
Another option is to consider adaptive time-steps. Adaptive time-steps indubitably
add some complexity to the algorithm, but it gives a much better control on the
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Figure 1.1 — Second order Runge-Kutta model of an orbit (2-body problem) after
100 periods P, with a time step of P/100. The semi-major axis is not conserved,
and the orbit artifically precesses.

accuracy and speed of the scheme, by decreasing or increasing the time-step accord-
ing to the behavior of the function to probe. In orbital mechanics, it would ensure
the robustness of the algorithm at periastron passage or in case of close encounters
between two bodies on different orbits.

Adaptive time-steps can be implemented from the Runge-Kutta approach. The
simplest possibility is to compare the outputs of the Runge-Kutta algorithm with
time steps h and h/2, and then adjusting h so that the difference between the two
outputs is below our accuracy goal. Other schemes compare the outputs of two
different Runge-Kutta-like formula.

1.2.2 Bulirsch-Stoer

The Bulirsch-Stoer algorithm is a robust integrator that pushes to its limit the
idea of adaptive time-steps (Bulirsch & Stoer||1966). This algorithm is both precise
and flexible, and is often used in so-called hybrid symplectic integrators to handle
strongly perturbed Keplerian motions, as will be developed in Sec. [I.3] T chose this
algorithm to implement new features in SWIFT HJS, detailed in Sec. [2.3]

The idea of the Bulirsch-Stoer approach is to compute the next value of y with
decreasing values of the time-step h. Decreasing h produces more and more precise
estimates of y. When enough values have been computed (minimum 3), we fit a
rational function to probe the evolution of the prediction with respect to the time
step. We then evaluate the limit when h tends to 0 (see Fig. , with an arbitrary
precision (estimated from the goodness of the fit) with a much smaller number of
steps that would be theoretically required.

Let is be H the initial time step and y, the current value of y. The successive
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Figure 1.2 — Bulirsch-Stoer method to solve the differential equation of y. The left
image is taken from [Press et al|(1989). A large interval H is spanned by different
sequences of finer and finer substeps. A rational extrapolation then gives an answer
that is supposed to correspond to infinitely fine substeps.

time steps from which the limit will be retrieved have the form h = H/j, where j is
an increasing even number. To compute the value of y after a time H (y,.1), the
Bulirsch-Stoer algorithm then calls j times a simple routine with time step h. We
use a second order scheme designed to call the function f only once at each substep
(to limit the computational cost).

Given y, and H, a sequence of outputs (1 +1); is then computed. Each time a
new j is computed, a rational fitting is performed to estimate the limit when j tends
to infinity and its uncertainty. Until this uncertainty does not match our precision
goal (defined beforehand) we go higher in j. Thus, we do not know in advance how
many time steps will be necessary.

To interpolate the sequence with a rational function and extrapolate its value at
0, Neville’s algorithm is used, where the extrapolation is recursively updated each
time a new point is added, and that naturally provides an estimate of its error. The
next H will be scaled according to the previous number of substeps j.

1.2.3 Gauss-Radau and TAS15

Another approach is to fix the timesteps, but iterate on the results with a predictor-
corrector scheme. We define an ensemble of substeps (h;) spanning a step H, and
compute the respective values y; = y(h;). At first, the derivative of y is supposed
constant throughout H and a simple integration gives the (y;). Then, the (y;) are
used to compute better estimates of themselves. With a proper truncation of the
serial expansion of g, it is possible to express each y; as a function of (y;) where
k < j only. Then, the updates can be made progressively

The role of the h; is essential here. To optimize the method, Everhart| (1985)
thought of using the Gaussian spacings traditionally used to compute integrals,
which are not equally spaced. The peculiar scheme where the computation makes
use of the lower bound of the interval (i.e. the initial conditions) is called Gauss-
Radau integration.

In [Everhart| (1985)), the quadrature uses 4 substeps (9*" order) and the predictor-
corrector scheme uses a fixed number of iterations to optimize the (y;). The overall
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algorithm is called the RADAU code.

More recently, Rein & Spiegel (2014) presented the IAS15 algorithm, that takes
over the RADAU code, but uses 8 substeps (15" order integrator) and a dynamic
predictor-corrector scheme to adapt the number of iterations to the desired precision.
Moreover, they added a module to automatically set and adapt the large time-step
H. 1t is chosen smaller than the typical time-scale of the problem, and is obtained
by a rescaling of the last term of the expansion of 3. Finally, they optimize their
algorithm to limit the computer round-off errors to there minimal increment. It is
accessible within the Rebound Python package.

1.2.4 Hermite scheme

Finally, time-symmetric schemes can be used to minimize the error on the energy.
An algorithm is time-symmetric if an integration for At then —At returns exactly
to the initial situation. This property theoretically guaranties energy conservation.
An algorithm based on Hermite interpolation of the acceleration has been proposed
by Kokubo et al. (1998) (P(EC)"™ Hermite scheme). The algorithm is fourth
order, but uses an iterative process to improve the accuracy. The formula depends
symmetrically on the times before and after the steps. The time step is updated
after each step, and is different for each body.

In any case, classical integrators rely on the time-step or on the number of iter-
ations to gain in precision. Such an approach is computationally costly, especially
since the algorithms must resolve at each time the curvature of the Keplerian motion.
Symplectic integrators adopted a more specific approach to integrate the problem,
based on the analytic resolution of a surrogate problem.

1.3 Symplectic integration

To solve the equations of motion in orbital mechanics and keep the error low on the
energy, a different line of integrators appeared in the 1980s, symplectic integrators.
Instead of lowering fiercely the order of magnitude of the positions uncertainty, these
integrators adopt a different approach, that is to solve analytically/to machine-
precision a surrogate problem similar to the real problem. For this method to be
useful, this surrogate problem must be simple to solve (not computationally costly)
and have an energy close to the real Hamiltonian. Due to the nature of the time
evolution of Hamilton’s equation, not only symplectic integrators do not accumulate
errors on H, but they also conserve the differential volume dr A dp.

Symplectic integrators can be substantially faster than classical integrators in
celestial dynamics, because the time step does not need to be as small to conserve
the energy. On the other hand, symplectic integrators lack flexibility, in particular
for the adaptation of the time step. Indeed, the time step is part of the scheme, and
changing it will break the symplecticity if no special care is given. This problem and
some strategies to handle it will be introduced within the following presentation of
the mappings.
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1.3.1 General theory

Let us call the surrogate Hamiltonian H. If it is exactly solvable, the algorithm is
symplectic: it exactly preserves the areas in phase space and exhibit no long-term
drift of the energy.

In order to design a proper H in orbital mechanics, the key idea is to split the
Hamiltonian into two integrable parts:

H=Hy+Hg . (1.5)

Several splittings are possible, depending on the problem at hand. Both parts
should be integrable within computer round-off errors. H corresponds to the suc-
cessive integration of these parts separately.

To understand the error that we introduce by integrating the surrogate Hamil-
tonian, a bit of theory on the evolution of Hamiltonian systems is needed. In that
framework, the evolution of any variable y(¢, (r;), (p;)) is given by:

dy _
dt
where the Poisson brackets are defined as follows: {f,g} =3, 2 7{1 ;ﬁi — I{i 88{?1' .
Let us define the operators A = {., Hx} and B = {., Hg}. Let us suppose that
y does not depend directly on time (for example y = r; or p;). Then its evolution
writes:

—{y H}+ay , (1.6)

j=(A+B)y . (1.7)

This differential equation is formally solvable:

y(t + At) = BBy (1) (1.8)

However, in most cases, the effect of the operator exp (At(A + B)) is not ex-
actly or easily calculable to computer round-off limits. By choosing Hx and Hg
that are exactly solvable, we ensure that we are able to compute the evolution un-
der exp(AtA) and exp(AtB) alone, and thus the evolution of their composition
exp(AtB) exp(AtA).

Let us define S as the operator corresponding to the evolution of the surrogate
Hamiltonian S = {., H}, where H consists in an evolution along Hj followed by
an evolution along Hg. The product of the exponential of two operators can be
computed as a series of commutators, with the Baker-Campbell-Hausdorft formula.
Thus, we can express the first orders of S as a function of At, A and B:

S=A+B- %[A, B] + O(A?) . (1.9)

Finally, it can be shown that [A, B] = —{.,{Ha, Hg}}. The surrogate Hamilto-
nian is therefore:

i A
H:H+7t{HA,HB}+O(At2) . (1.10)
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Eq. tells us that if Hg is not explicitly time-dependent, { Hx, Hg} corresponds
to the time derivative of Hy if the Hamiltonian was only H,. Therefore, the leading
term of the energy error scales as the variation of Hg and not directly as Hg. This
is important to evaluate the relevance of the splitting (see Sec. .

For a second order symplectic integrator, three steps are used instead of two.
The method consists in integrating Hp for At/2 then Ha for At, then again Hp
for At/2, where At is the time step. A similar analysis than above shows that the
surrogate Hamiltonian then writes:

At?
12

Exchanging Hx and Hp gives a non equivalent second-order scheme. Second
order integrators are often enough when H is designed to be close to H. A good

way to ensure that is to make Hg small (perturbative part). Higher order integrators
are nevertheless possible (Yoshidal/1990).

f—H- {{HA,HB},HAJr%HB}JrO(At“) | (1.11)

1.3.2 Leap-frog mapping

The Leap-frog mapping is the most natural splitting, and can be used for a wide
range of physical problems. It consists in separating the kinetic energy from the
potential energy ("T-+V" scheme). In our problem, it gives:

N p2
Hy = N 1.12
* i=1 2m; ( )
Gm;m.;
Hy=— Y S (1.13)

/r’. .
1<i<j<N v

An evolution controlled by Ha writes (Hamilton equations):

. OHA pi

i = : 1.14
" op; m; ( )
. OHn
;g = — =0 , 1.15

the momenta are constant and the positions evolve linearly. On the other hand, an
evolution controlled by Hg writes:

. OHp
i = =0 ; 1.16
" Opi ( )
. 8HB Gmimj
JF#i

the positions are constant and the momenta evolve linearly.
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An evolution controlled by the surrogate Hamiltonian thus corresponds to the
succession of inertial drifts (Ha) and velocity kicks (Hg). The latter does not cor-
respond to any physical process, but is formally well defined.

We usually call leap-frog the second-order scheme of this splitting, which is a kick
for At/2, a drift for At, and again a kick for At/2. However, this splitting does not
usually have Hy > Hg, so that the second order scheme is not sufficient to ensure
that the relative steady energy error is small (O(t?)). Higher order leap-frog is used
in N-body dynamics by the integrator Janus in the Python package Rebound (Rein
& Tamayo| 2017).

1.3.3 Mixed variable symplectic (MVS)

The leap-frog method is not specific to orbital mechanics, and does not take advan-
tage of the known features of the problem. The main idea of the mixed variable
symplectic mapping is that all the bodies trajectories are lightly perturbed Keple-
rian orbits, and that we know how to compute the exact resolution of the Keplerian
motion to machine precision.

This scheme was first designed when no exoplanet was yet found, so it was meant
exclusively for application to the Solar System. The motion is thus divided into two
parts: Keplerian orbits around the Sun and perturbations by the other planets.

" P? Gm;mg,
Hy=Y (55 - — : (1.18)

N
Hey — Z (Gmi/m@ B Gmim@> B Z Gmym; ' (1.19)

o 1<i<j<N &

where 7/ is the location of body i with respect to the center of mass of the bodies
interior to its orbit (Jacobi coordinates, see Introduction Sec. [4.3), and p! is the
relative conjugate momentum. An evolution controlled by H, writes:

. 9H ’

=2 B (1.20)
op; m;

. OHa Gm;me

Pi=—G = i (1.21)

which corresponds to a purely Keplerian evolution. On the other hand, an evolution
controlled by Hg writes:

: OHg

A . 1.22
T, op, 0 ; ( )
v OHp _
pi=— oy = m;a’ (('r;)) , (1.23)

i

the positions are constant and the momenta evolve linearly with an acceleration a®.
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Figure 1.3 — Schematic of the kick-drift-kick procedure in the MVS framework.

Assuming that the Sun is the dominant mass (mg > m;) and that there is no
close encounters between the planets, then Hg remains significantly smaller than H
and the second order scheme is accurate enough. Moreover, as each term is exactly
solvable, the time step does not need to be dramatically small. It is generally
assigned to 1/20 of the smaller orbit in the modeled system to ensure 107 relative
energy conservation in nominal cases.

This MVS mapping was suggested in Wisdom & Holman| (1991)), and was imple-
mented three years later in SWIFT RMVS by [Levison & Duncan| (1994)) (the appella-
tion Mixed Variable Symplectic refers to the frequent switches of the code between
Cartesian coordinates and Keplerian elements, and the R stands for Regularized).
For the first time, it was computationally possible to integrate the Solar System for
the entirety of its lifetime.

The scheme is very efficient for lightly perturbed Keplerian motions, but gives
poor results when Hp becomes large, such as in the case of close encounters (typically
comets entering the 3 Hill Radius zone). In SWIFT RMVS, [Levison & Duncan| (1994)
handled the problem by switching scheme (heliocentric to planetocentric) and time
steps whenever a body encounters another. At each of these interventions, however,
energy errors are introduced, so that the algorithm is not truly symplectic anymore.

The scheme was then complexified by [Saha & Tremaine| (1994) to allow for
individual time steps. It enabled a fastest and more precise integration, for the
evolution of planet Pluto could be computed with a longer time-step than Mercury,
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while Mercury’s orbital evolution could keep its accuracy. However, the time steps
could still not be changed.

1.3.4 Democratic heliocentric: SyMBA and Mercury

In the 1990s, the problem of adapting time steps in symplectic algorithms was a great
issue among dynamicists. In that quest, a new Hamiltonian splitting was introduced,
democratic heliocentric, that kept the idea of Wisdom & Holman! (1991)’s mixed
variables.

Duncan et al.| (1998) introduced this mapping in their SyMBA integrator (where
SyMBA stands for Symplectic Massive Body Algorithm), designed to adapt individ-
ually the time-steps without losing the symplecticity. Their approach is to define
successive shells around each body, with an associated time step that decreases with
the proximity of the shell. However, these variable individual time-steps does not
behave well in the Jacobi coordinates, because each body revolves around a different
center. Thus, |Duncan et al.| (1998) introduced the democratic heliocentric method.
In this framework, the Hamiltonian is split in three parts:

N 2 Gm.
Hy = (pz - mlm@) : (1.24)
; 2m, Tio
=1
Gmym;
Hp = — AL A .
B Z Tij ) (1 25)
1<i<j<N

Hc = ﬁ <Zp> . (1.26)

It consists in a heliocentric coordinates (r;) and barycentric velocities (momentum
p;) description. To include the shell description and adaptative time steps, the
potential part of Hy is decomposed into a sum of potentials different for each shell.
The resulting integrator is truly symplectic, but, according to Chambers (1999), it is
rather cumbersome to implement in practice, and it does not retain the great speed
advantage of the basic symplectic method.

Inspired by the Duncan et al.| (1998]) approach and using the democratic helio-
centric description, Chambers| (1999) created Mercury one year later. Introduced as
a hybrid symplectic integrator, Mercury handles close encounters with a Bulirsch-
Stoer integrator (Sec. [1.2.2]). To keep as much as possible the symplecticity of the
integrator, the parts of Hg that grow large in case of close encounters is transferred
into Hy when it cannot be neglected anymore. It is done so with a smoothing
function, scaled with the Hill radii.

In the original paper and the version that is currently found online, there is a
small mistake in Mercury’s implementation (Wisdom|2016]). The derivative of the
smoothing function should have been included in the evolution equations, but it is
not. This error has been corrected in the Mercury implementation in the Rebound
package (Mercurius, Rein et al.|2019).
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1.3.5 Hierarchical Jacobi Symplectic (HJS)

The previously presented mappings have been designed to properly integrate the
Solar System components. All of them have their advantages and disadvantages
depending on the exact nature of the problem to be solved. Though the dedicated
papers are contemporaries with the first exoplanet discoveries, the Solar System
echoes each of the discussions around symplectic codes. The central mass in even
referred to as mg in the papers, and the solar mass is hard-coded in some of the
implementations.

Today, the use of the N-body codes is not restricted to the Solar System anymore.
With the rapid increase of exoplanet discoveries, including multi-planetary systems,
the need for efficient N-body simulations has become strong to model the interaction
between planets or planets and debris disk. However, the architecture of the Solar
System is not universal. From giant planets to multiple stars, the single dominant
mass paradigm is not always the most appropriate description.

In (Chambers et al| (2002), the authors develop two new versions of Mercury,
designed for s-type planets in wide binary stars and for p-type planets in tight
binary stars (circumbinary planets). In these versions, the democratic heliocentric
method was modified to take into account the large motions of the stars, but the
philosophy stayed the same.

Yet, as long as there is lightly perturbed Keplerian motion involved, symplectic
integrators can theoretically model efficiently the evolution in any orbital config-
urations, assuming that the proper description is adopted. In Beust| (2003]), the
Hierarchical Jacobi coordinates are introduced that generalized the Mixed variable
symplectic approach to account for any architecture. They are implemented in the
Swift HJS code.

The Hierarchical Jacobi coordinates description is based on orbits instead of on
bodies. An orbit consists in a collection of two non-empty sets of bodies, the set
of centers and the set of satellites, that have empty intersection. We can chose by
convention to name centers the heaviest set and satellite the lightest. As an example,
the Sun-Earth-Moon problem can be represented by two orbits: the Earth-Moon
orbit, with the Earth as a center and a Moon as a satellite, and the Sun-Earth-
Moon orbit, with the Sun as a center and the Earth and Moon as satellites. Orbits
can be schematized as lines, linking the center of mass of the satellite to the center
of mass of the centers. An example of such representation is shown on Fig. [1.4]

In all problems in orbital mechanics, a hierarchy can then be defined as a collec-
tion of orbits comprising all bodies and satisfying the following rule: for all couples
of orbit k and [ # k, one of the three subsequent propositions applies

e orbits k and 1 have no common bodies (orbits k and [ are foreign);

e orbit k£ is comprised in the centers or satellites of orbit [ (orbit k is inner to
orbit 1);

e orbit [ is comprised in the centers or satellites of orbit k& (orbit k is outer to
orbit 1).
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Figure 1.4 — Schematic of a non-Solar type hierarchy, with 5 bodies and 4 nested
orbits. On the left, the orbits are represented by the trajectory of the centers and
satellites around their center of mass. On the right, they are represented by simple
lines linking the centers of mass of satellites and centers. The letters ¢ and s designate
respectively the centers and satellites of each orbit.

For a given problem numerous hierarchies are possible, but most of the time a natural
hierarchy arises, that decreases to a minimum the perturbations between each orbit,
so the problem is approximately a set of independent Keplerian motions. As an
example, Fig. shows a valid hierarchy defined in a 5-body problem. Orbits 1 is
inner to orbit 2, as the bodies of orbit 1 are entirely within the set of centers of orbit
2. Orbit 2 and 3 are foreign, as they have no bodies in common. Finally, orbit 4 is
outer to orbits 1, 2 and 3 are inner to orbit, because they are each embedded in one
of the sets of orbit 4.

During my PhD, I worked extensively on this orbital representation, to work on
the new versions of Swift HJS. Several results come directly from the rules defined
above.

First, a hierarchy of N bodies is made of exactly N — 1 orbits. This can be
proved by mathematical induction. The reasoning is represented on Fig. [1.5| From
two bodies, only one orbit can be defined. Supposing that the proposition is true
for n — 1 bodies, then let us consider n bodies and define an arbitrary orbit with ¢
centers and s satellites. As ¢, s and n — s — ¢ are both inferior or equal to n, then
the total number of orbits is the sum of s — 1, ¢ — 1, n — s — ¢ (counting the first
orbit as a body) and 1 (the first orbit). It gives a total of n — 1 orbits.

From this proposition, we derive that there is at least one orbit composed of two
bodies, and one composed of N — 1 bodies. This can be showed by contradiction,
because the contrary would leave room for another orbit, which is not possible given
the fixed number of orbits.

In SWIFT HJS, the orbits are numbered from 2 to N. Finally, we define j; and
M, as the total mass of the satellites and centers respectively of orbit k. The total
dynamical mass in orbit k is then M} = p,+nx and the reduced mass mj) = pgny /M.

In this formalism, a new set of N coordinates (v, p})i=1,. ~ are designed with
a Jacobi-like approach: r} is the relative position of the center of mass of orbit k’s
satellites with respect to that of its centers (the centers of mass are represented by
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Figure 1.5 — Ilustration of the mathematical induction to show that a N-body
problem admits hierarchies with exactly N — 1 orbits.

crosses in Fig. , and pj, is the relative conjugate momentum. The first coordinates
r] and p} are the position and impulsion of the center of mass. These positions and
conjugate momenta derive from a canonical transformation that let the Hamiltonian
invariant. They can be expressed with the bodies coordinates as

=y By I (1.27)

i, satellites of k Fok i, centers of k Mk

Dl = my, ( Z bi _ Z &> : (1.28)

i, satellites of k Fok i, centers of k Tk

The Hamiltonian can then be split as follows

2

L p G
Hy = — : 1.29
A ’;_;Zm}C T}, ’ ( )
al Gugn Gm;m
HB == 7’/ - 7'—] . (130)
k=2 k 1<i<j<<N “

The key idea is that Hg does not depend on the momenta pj, and that Ha naturally
splits into a sum of independent Keplerian problems. This is a direct consequence
of the fact that the kinetic energy writes as a weighted sum of the p;cz terms (no
crossed terms pjp;). An evolution controlled by H, writes:
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which corresponds to a purely Keplerian evolution. On the other hand, an evolution
controlled by Hg writes:

: OHgp
f=——=0 1.33
TZ ap; ? ( >
: oOHy
pi= 5 =miaP () (1.34)

the positions are constant and the momenta evolve linearly with an acceleration
denoted a®, that derives from Hp.

This description is fully symplectic, and a second-order scheme can be adopted
as Ha > Hpg when the hierarchy is marked, without any condition on dominant
mass ratios. Swift HJS is thus fitted to integrate planetary systems as well as
stellar systems (Beust 2003)). An example of non-Solar type hierarchy that can be
integrated with the code is represented on Fig. [I.4]

However, by its very nature, any change of hierarchy (including close encounters)
is not easy to handle in Swift HJS. In its original version, the code does not handle
close encounters. This issue is discussed in and [2.3] where new versions of the
algorithm are presented.

1.4 SwirFT HJS

SWIFT HJS is an implementation of the Hierarchical Jacobi Symplectic description,
designed by [Beust| (2003)) to model hierarchical systems. It is coded in Fortran, and
keeps the same organization than its ancestor Swift RMVS. The core code, organized
around the module swift hjs.f, makes use of around 60 sub-modules, that ranges
from the computation of a sine to the performing of a symplectic step. The solving of
the Keplerian part alone requires many of these modules, to properly and efficiently
model elliptic, hyperbolic and parabolic orbits.

1.4.1 Core algorithm

The core of the algorithm is a kick-drift-kick procedure illustrated on Fig. and
whose implementation is represented on Fig. In this framework, an evolution
for At is made of an evolution controlled by Hg for At/2, Ha for At, and Hg for
At/2. Only the velocities evolve during the first and last phase, while both the
position and velocity evolved along a Keplerian orbit in the middle phase. Two
modules require non-trivial computation: the derivation of the acceleration induced
by Hg (perturbative acceleration a®?), and the computation of the Keplerian drift.
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The acceleration of the Jacobian coordinates of orbit k is given by:

/ Gm;m; Gm;m; Gmym,; (1 1
B
al =) ST >, ST > v <ﬁ—r—3> rij (1.35)
icSat, kT icCen, HTij i€Ceny, k k ij
ik ¢k j€Saty

For each orbit, it compiles the interactions between the satellites, between the cen-
ters, and with the outer bodies. This operation scales as N?3.

To go from the Jacobi coordinates to the barycentric coordinates (and wvice-
versa), a transformation matrix is computed from the hierarchy at the beginning of
the simulation. This matrix gives the relative weight of bodies in each orbit, and is

described in (2003).

SWIFT H]S kick drift kick
rj = Jacobi positions
tj, vj, hierarchy, dt v = Jacobi velocity
l _ aj = Jacobi acceleration
write

t/ 1’]‘, vj — initial
l frame

Compute or
remember a;

l

Kick v; — v; + a; dt/2

Keplerian drift for dt
L new ¥, 0j, a;

Compute a;

l

Kick vj — vj + a; dt/2

t—=t+dt—
write
frame

Figure 1.6 — Schematic of the core algorithm of SwWirT HJS.
On the other hand, each orbital evolution is computed independently. First,

the orbital elements are derived from the Jacobi coordinates. Then, the Kepler
equation is solved to derive the new eccentric anomaly using the Danby iterative
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method (see Appendix). The Danby method is optimized so that the computer
accuracy is reached with a small number of iterations (below three for elliptic orbits,
below ten for hyperbolic orbit).

1.4.2 Modules

The core algorithm takes the initial coordinates of the bodies and test particles, their
hierarchy, and returns a binary file comprising the orbital elements with respect to
time. An efficient use of the code involves the design of additional modules, for easy
initialization and analysis of the data. They are summarized in Fig.

Using SWIFT HJS

gensh; gen.f

Conventions, hierarchy, orbital elements
Massive bodies and test particles

phjs.in, tphjs.in
Initial barycentric
coordinates

matpass.dat \ params.in
Change of basis Initial, final times
matrix to the Time step, name
bin

invariant plane
energy.out
Archive energy
Archive orbital

’ elbodies.out elements mat.dat

Archive orbital elements Change of basis matrix
extract hjs.shextracthjs:f
Creates readable outputs

swift hjsish
SWiTT ST

Integrator

dump_params.dat
dump_pl.dat
dump_tp.dat
Final save

Massive bodies Jacobi — Barycentric

eltp.out xvtp.out
Archive orbital elements Archive barycentric
Test particles elbodies.out Test particles

Archive barycentric
coordinates
Massive bodies

Analysis.py
Automatic analysis

Evolution.png
Orbital elements of initial hierarchy

Figure 1.7 — Schematic of the inputs and outputs of SWIFT HJS. The user inputs
are filled in gen.sh and params.in.

It is often useful to have an intermediate module to translate our constraints

into acceptable inputs. This is the role of the routine gen, which takes the orbital
elements of the orbits and the hierarchy of the massive bodies and test particles. The
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routine is straightforward for the massive bodies, but involves some computation to
generate a disk of test particles (see below).

Post-processing routines are also needed to makes use of the simulation. First, a
module extracts the desired information from the raw binary output (which contains
the history of the orbital elements of each massive bodies and test particles). Then,
we make use of a more practical langage (Greg or Python for example) to plot the
evolution of the different quantities, or represent the graphical evolution of the disk.

1.4.3 Treatment of test particles

The study of planetary systems often involves the study of debris belts. In N-body
simulations, the dust is modeled at first order by massless bodies (or test particles)
that interact with the massive bodies but not with each other. Test particles are
specifically considered in Swift HJS as the handling of their hierarchy is slightly
different. Indeed, they are the only satellites of their orbit and their orbit is invisible
to the bodies and other test particles evolution.

Their evolution follows the same pattern as the massive bodies, a kick-drift-kick
procedure presented above. However, their perturbative acceleration writes, in the
barycentric coordinates:

Gn Gy, Guyg Gm;

B __ ’ ’ ’ J
a” =BT Z P RE Z B TE T Z —(T_r.)g(r—?“j)

k with tpeSaty k k with tpeCeny k j€Cenyp J
(1.36)

and in the Jacobi coordinates:
’ m;
a®f=af - Z —af . (1.37)
jECentp

1.5 Non-Keplerian forces

The study of planetary systems often involve tidal forces or interactions with the
primordial gas (such as migration), so that the possibility of taking into account
these phenomena are essential to a good algorithm. All the integrators presented
above can handle additional non-Keplerian forces.

Let us name F' ((g;), (p;)) the sum of non-Keplerian force acting on the system.
If F is not conservative, the Hamiltonian is not conserved anymore. The equations
of motion now read:

: OH D;
R ) 1.38
" Ip; my ( )

Whatever the dependence of the force, these equations fit into all the frameworks
described previously. The use of the symplectic mappings remains possible, but
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is relevant only if F' has a small effect compared to the gravitational forces, and
can thus be integrated as a perturbative effect, similar to the treatment of Hpg.
Depending on the form of F', the integration may be exact (if it only depends on
the position for example) or approximate.

2 Code development

2.1 Development of surrogate tools for Swift HJS

2.1.1 Analysis and representation of the outputs
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Figure 1.8 — Example of automatic analysis by the module Analysis.py of a simu-
lation with Swift HJS. The evolutions of each orbit orbital elements (columns) of

each orbits (lines) are computed, but only the semi-major axes and eccentricities are
represented here.

Before my PhD, the analysis of the simulation was coded in the GreG language,
that is part of the GILDAS working group software developed by IPAG and IRAM in
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Grenoble. As part of this PhD, I have developed new routines in Python. First, an
extract routine is used to compute the position and orbital elements of the massive
bodies and test particles, inspiring from the output files of the Mercury code. Then,
a first analysis routine is used to plot the overall evolution of the massive bodies
orbital elements, as an overview of the entire integration (see Fig. .

10.0 yr 10.0yr

y (au)
o

y (au)
o

x (au) x (au)

Figure 1.9 — Snapshots of a simulation of a quadruple system with Swift HJS.

Furthermore, I wrote more complex routines to visualize the evolution of the
bodies and orbits. Examples of visualizations can be seen on Fig. whether with
orbits or trajectories. The relevant representation depends on the problem.

2.1.2 The special case of test particle

The analysis of the test particle evolution in the simulations involves different mod-
ules, mostly because test particles are often defined as a group with numerous objects
(1,000 - 10,000). It is practical to set the characteristics of the belt rather than the
individual characteristics of each particles. Such initialization is provided for in the
gen routine. Semi-major axis, eccentricity and inclination ranges must be provided,
along with the plane of reference and the center(s) of rotation. In the course of
my PhD, I worked multiple times with debris disks, the corresponding work being
described in the next sections (HD 106906, HD 206893 and HR 2562). Depending
on the situation, the base plane of the disk was not always the reference plane of the
planets (ecliptic), so that I improved the existing routine to compute a transforma-
tion matrix from the ecliptic to the wanted plane. Then, the characteristics of the
disk (in terms of orbital elements) could be given and retrieved in the desired plane.

Once the simulation is done, the test particles may be simply plotted along with
the massive bodies to have a first overview of the disk geometry (Fig left).
However, such representation does not allow grasping the structures that might
appear. The representation can therefore be completed with a density map (2D
histograms, Fig right). When we are interested in the secular evolution, the
number of particles can be artificially increased (to get a more precise map) by filling
the orbits of the existing particles.
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Figure 1.10 — Representations of the ouput of the simulation of a circumbinary debris
disk with Swift HJS. The two figures correspond to the same data comprising the
characteristics of 1,000 test particles. In the right figure, the orbits of each test
particles have been artificially filled with 1,000 additional particles, so that a 2D
histogram of the density can be computed.

2.1.3 Treatment of migration

In the study of the extrasolar system HD 106906 (see Sec. |3, we needed to take into
account the effect of migration in the coplanar case. Due to the interaction between
the protoplanetary disk and planets, planetary migration is currently not very well
constrained though it is a crucial ingredient of the early formation and evolution of
systems architecture (see Introduction). The most accurate way to include migration
into a study is to include the gas dynamics, but even then the constraints are always
loose regarding the gas aspect ratio, density and viscosity. Thus, we used an effective
migration force with a constant migration rate vy, = da/dt in case of no additional
perturbation. This assumption is not exactly realistic, but we were interested in
the dynamics of the planet in a specific narrow zone, so that the variation of the
migration rate may be negligible at first order. Assuming a simple form and no
eccentricity change or precession, we then derived theoretically the expression of the
migration force per mass Fy, for each orbit ¢ (the derivation is explained in Rodet
et al. 2017 below):

MV e T 1 Tl
Fo,=—"_(1+-(1--"))eqs |, 1.40
o= (1502 eo (1.40)
where P; is the period, a; the semi-major axis and e; the eccentricity of orbit ¢, and
eg is the unit vector of the polar base associated with the true anomaly 6. It can
be computed from the Jacobi vector position and velocity at a given time:
riAT, Tl
eg=——71—N— . 1.41

S P e A
Though we use the velocity to compute eg, the vector depends in fact on the true
anomaly and the orbital plane (fixed in the problem) alone. Thus, F' depends only
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on the position, so that its integration within Swift HJS’s scheme is immediate. Its
effect is accounted for in the kick part, where the position is fixed and the velocity
is linearly increased. The new perturbative evolution of orbit i is then

-, OHg

;= —81)2 =0 ; (1.42)
Y OHp .
Pi=—57 = m'ia? ((r;)) , (1.43)

where aP ((r;)) corresponds to the previously introduced (Egs. 1) and 1)

perturbative evolution of orbit ¢ without migration.

This derivation of F,;, is somewhat arbitrary (assumption of a simple form), and
neglects possibly important effects (eccentricity damping, variation of the migration
direction and strength...). However, in the following study, it was used to evaluate
qualitatively the possiblity of a scenario, and a simple approach was adopted to re-
duce computational costs. More complicated effective models were used for example
within Mercury in Xu & Lai| (2017).

2.2 Handling hierarchy change

The architecture of planetary systems are subject to constant variations. In an old
system such as the Solar System, the variations of the orbital elements of the planets
are small, so that the global hierarchy of the major planets remains the same, but
the smaller bodies (comets, asteroids) can still be subjected to major changes in case
of close encounter with a planet. In young systems, observations suggest that strong
interactions between planetary bodies are common (Morbidelli2013). In this thesis,
we refer as close encounter a phenomenon that deviates significantly and over a short
timescale an orbital trajectory from its current Keplerian motion. This definition is
partly arbitrary, as it depends on our accuracy goal to evaluate the significance of
the deviation.

The symplectic mappings that take advantage of the analytic resolution of the
Kepler motion do not handle well close encounters, and even less hierarchy changes.
They are designed for problems where the non-Keplerian parts of the motions (Hg)
are small with respect to the Keplerian parts (H,), so that the error becomes out
of control in case of close encounters. This error does not decreases if the hierarchy
has changed after the close encounter, because the splitting of the Hamiltonian is
entirely based on the initial hierarchy.

Handling hierarchy change is not a priority for most of the symplectic integrators,
as they are based on the Solar System architecture and are not fitted to change
the hierarchy whatsoever. However, Swift HJS is designed to work efficiently with
any hierarchy, and it is thus natural to implement the possibility of a hierarchy
change within the algorithm. Strictly speaking, when changing the hierarchy, the
symplectic nature of the algorithm does not hold anymore, as the splitting of the
Hamiltonian changes. This is also true for any change of the time step. A new
approximate Hamitonian is integrated from an already approximated scheme, which
means that the error budget raises potentially at each hierarchy change. However,
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the algorithm is designed for orbital dynamics, where systems are not subject to
frequent reorganization of their architecture.

The new version of SWIFT HJS that handles hierarchy changes is called ODEA.
It was presented in Rodet et al| (2019) (above), with an application to system HD
106906. In this section, I will introduce the new version with more details.

2.2.1 Criterion to evaluate a hierarchy

Similarly to the handling of close encounters, the computation of a good criterion
to evaluate the relevance of the Hamiltonian splitting is the central point of the
algorithm. Traditionally in a planetary system, the Hill radius around a given planet
is used to scale the bodies relative distances. The Hill radius corresponds to the
position of the first Lagrange point, that is the point between the center and the
satellite where the sum of the gravitational forces and the centripetal force cancel.
At this point, a massless particle is theoretically motionless in the co-rotating frame.
The Hill radius ry from the center (mass n) verifies:

Gn Gp  Glp+n), n
G . )<n+/f‘”’>=0 > (1.44)

where r is the distance between the center and the satellite (mass p). Solving this
equation is equivalent to finding the root of a 5-degree polynomial. An approximated
result can be derived if the satellite’s mass is negligible before the center’s mass:
ry/a = {/p/3n. However, there is no dominant mass a priori in ODEA, contrary to
Mercury. Moreover, the little eccentricities of the massive bodies in Mercury allow
neglecting the variation of the radius r and replace it by the semi-major axis a.
Again, this is not the case in ODEA, that is fitted to study any orbit, whatever its
eccentricity, including hyperbolic trajectory. Thus, the Hill radius, heavy to compute
and unreliable in the general case, will not be considered here.

We demand the criterion to satisfy two points: being correlated with the error
induced by the symplectic splitting (Eq. [L.11]), and being fast to compute. As it
must be computed at each time step, its computation must be fast compared to
the most expensive step, which is the computation of the perturbative acceleration
a®. From Eq. (L.37), each acceleration aP scales as N2, because all the residual
accelerations between the bodies within the orbit have to be taken into account. So
the total cost of the step (computation of the a? for each orbit) scales as O(N?3).

The quantity that is best correlated with the error is the error itself. The energy
error can be computed from Egs. and in the framework of Swift HJS. It
gives:
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Hey = {HA,HB} = —{Z (1.45)
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in the first-order case, and, with some more steps,

At2 1
H.,.. = {{HA,HB} Hp + HB} (1.48)
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in the second-order case, where M is the transformation matrix from the barycentric
to the Jacobi coordinates, such that 7, = Mj,r; and r; = M v Tk

Clearly, the expression of the error given by Eq. [1.50] for the second-order case is
too complicated to be a good criterion. The error of the first-order scheme given by
Eq. is a good basis however, as it is proportional to a®, which is already com-
puted in the integration. We are searching for a criterion to measure the relevance
of the hierarchy, whatever the time step or the velocities. Moreover, each orbit does
not weight the same in the energy error, but the hierarchy should fit at best every

orbit nevertheless. All in all, we define the individual criteria of orbit k as
ay
a?ep

cp = (1.51)
where ak P is the Keplerian acceleration, induced by Ha. We set the threshold, below
which every ¢, should remain, at 0.2. Assuming a well-chosen timescale (< P/ 20),
it would correspond to an energy ratio He../Ha of 0.01. Above, a new hierarchy is
searched for. It is important to note that the criterion only indicates when to search
for a new hierarchy, but does not guaranty that a better hierarchy will be found.
Conversely, a non-optimal hierarchy can have low criterion or energy error. But as
the search for a new hierarchy is computationally costly, we limit it to the cases
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when the integration error becomes high. The value of the criterion threshold can
be adjusted in the code, but in most cases that I tested, no better hierarchy existed
for configurations below this threshold.
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Figure 1.11 — Test case for the new algorithm, where a red body disrupt a black
binary and is captured by one of the companion.

The criterion makes sense only if the time scale is adapted to the current hier-
archy. Changing the time step in a symplectic integrator breaks the symplecticity,
but so does a hierarchy change, so that the time step can be changed at the same
time. Empirical considerations give a time step of 1/20 of the smallest period to
ensure an energy error below 107% in the nominal cases (Levison & Duncan|[1994),
and we chose 1/20 of the periastron to account for eccentricities.
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Figure 1.12 — Comparison between the criterion for hierarchical change (maximum
of all the ¢;) and the error term in the Hamiltonian, depending on whether the time
scale is fixed (small points) or evolves (big points). The grey lines correspond to
hierarchy changes. The drop of the error around 500 yr is not significant (see text).

We represented in Fig. the simultaneous evolution of the criteria along with
the evolution of H,, in a particular test case. This test case corresponds to a close
encounter between three stars of same mass, which leads to two hierarchy changes
(see Fig. [L.11)). The energy error is very high in that case, because each body has
similar mass, and it is not representative of most of the situation that the algorithm
will encounter, but corresponds to an extreme case. We see that the criterion evolves
smoothly, is correlated to the error and prevents the energy error to go over 0.01.
Without the change of the hierarchy, the error ratio would have reached 100%.

We see that the criterion is not completely following the evolution of the error of
the second-order scheme. This error, given by the convoluted expression of Eq.
exhibit some drops and peaks along the system evolution, which do not reflect either
a peculiar physical configuration or on the acceleration ratio. However, the criterion
succeeds to identify the critical zones for which the error raises and which correspond
to an inadequate hierarchy. It is important to realize here that the criterion is only
used to avoid the costly process of building a new hierarchy at every step. In the
phase around a hierarchy change, the energy error will inevitably raise, whatever
the hierarchy. In Fig. [1.12| a better hierarchy is found when the criterion raises
around 0.3. Thus, changing the value of the threshold will have no effect on the
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energy error if it stays under 0.3, but it will change the computation time, because
each step above the criterion involves a search for the best hierarchy. On the other
hand, increasing the criterion above 0.3 will delay the hierarchy change and increase
the energy error.

2.2.2 Designing a new hierarchy

0 Step 0 Step 1 Step 2 Step 3 Hierarchy
30 A
201 _* °
106 f

> 94 AN >]

-10 A\ >

—20

—304

—I20 (I) 2‘0 —I20 (I) 2‘0 —IZO (I) 2‘0 —I20 (I) 2‘0 —IZO (I) 2‘0
Figure 1.13 — Iterative procedure to build a hierarchy. The blue points represent
the bodies, the width of the blue lines represent the strength of the acceleration
between two bodies/orbits. The orange crosses represent the centers of masses of
the outermost orbits. The orange lines represent the orbits.

Once the criterion points out that the scheme is inappropriate, we choose an iter-
ative procedure that is designed to optimize the acceleration ratio from the current
positions of the bodies.

An example of the algorithm is described in Fig. [1.13] At first (step 0), we com-
pute a two-dimensional symmetric array that compiles the Keplerian acceleration
between two bodies aﬁep = G(m; + my)/r};. The strongest acceleration gives the
first orbit, then the two bodies are replaced by their center of mass and the array is
updated: the accelerations agep where ¢ and j belongs to the new orbit are discarded
(set to —1), and those where i belongs to the new orbit and not j (and vice versa)
are replaced by the accelerations between the particle 7 and the center of mass of the
new orbit G(m; + M;)/|r; — r1|? (step 1). The procedure continues with remaining
bodies until N-1 orbits are defined (at step N-1, only one center of mass remains,
comprising every body, and this is ensured by the demonstration of Sec. (1.3.5)).

Then, if the computed hierarchy is different than the current one, the hierarchy
is replaced. A new transformation matrix from/to the Jacobi coordinates is then
computed. However, the algorithm keeps in mind the initial hierarchy and uses it
to write the outputs, so that the user gets the orbital elements for the orbits they
initially define.

The procedure is similar for test particles, whether their orbit should be redefined
because of a change of hierarchy of the massive bodies, or because their orbit is too
strongly perturbed. There are 2N — 1 possibilities for the orbit of a test particle:
around a massive body (V) or around an orbit (N —1). For each of these possibility,
the Keplerian acceleration is computed, an the larger is chosen (see Fig. [1.14]).
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Figure 1.14 — Procedure to compute the hierarchy of a test particle. The blue points
represent the massive bodies, the orange lines the orbits, the black point the test
particle, and the width of the black line the strength of the acceleration between the
test particle and the bodies/orbits.

2.2.3 Specific modules

Some additional modules have been introduced with the new version.

First, a new output file is produced by the algorithm to monitor the evolution
of the hierarchy. This new output is then used in the automatic analysis routine to
compute a schematic of the different hierarchies (see Fig. [1.15)), and the evolution
of the orbital elements taking into account hierarchy changes.

To store the hierarchy, I used the formalism that is implemented in Swift HJS,
with an N — 1 x N array representing the status of the N bodies (center, satellite or
outer) in the N — 1 orbits. The details of the hierarchy and barycentric coordinates
evolution enable the compilation of the orbital elements in the different hierarchies.
The design of the schematic to represent visually the hierarchies is more challenging,
as the order of the bodies must be rearranged according to the hierarchy and the
orbits ranked according to their number of bodies.

Moreover, two options have been added for a better monitoring, that should
be specified in the parameters file. The first one defines if an initial check of the
hierarchy is required, and the second one if the time step should be changed in case
of hierarchy changes.
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Figure 1.15 — Output of the automatic analysis routine that sums up the different
hierarchy changes, with the times of change. The integer represent the bodies, and
the underscores the orbits.

2.2.4 Strengths and limitations

Taking into account possible hierarchy changes allows the code to adapt to an evolv-
ing architecture within a symplectic frame (symplectic everywhere but during the
changes), and consequently avoid to lose control on the accuracy. However, this
accuracy remains not optimal, as a change of hierarchy takes place in a situation
of strong perturbations of the Keplerian scheme. To correctly resolve this critical
phase, one of the classical integrator described above must be used, or the time step
must be sufficiently small, which often decreases the interest of using a symplectic
integrator.

Moreover, the symplecticity of the integrator is broken sharply at each hierar-
chy change, creating an incompressible offset of energy, equal to the value of the
energy error at the moment of the change. In case of several hierarchy changes (or,
even worse, recurring), these offsets pile up and the integrator greatly loses its inter-
est. The sharpness of the change cannot be avoided, as the alternative (smoothing
function to go from on hierarchy to another) leads to an extremely complex Hamil-
tonian, for it should comprise every possible hierarchies, not integrable and heavy
to compute.

Nevertheless, this first version of ODEA is in working order. It is the only sym-
plectic integrators that can handle hierarchical changes, and is very efficient in some
specific cases, such as the study of HD 106906 (see Sec. . Both the functioning
of the algorithm and the study of the system are detailed in a submitted paper (re-
produced below). But to extend the resilience of the algorithm, a hybrid approach
is required to resolve more precisely the close encounters.

2.3 Handling close encounters

In the last subsection, I described how we could handle evolving architectures by
adapting the hierarchy. This lowers the error associated with the integration scheme.
However, in some transitional states, the problem cannot be reduced to slightly
perturbed Keplerian orbits, so that changing the hierarchy is not enough to limit the
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error to a satisfying threshold. At these parts of the integration, a mixed approach
should be adopted, where the integration makes use of a classical integrator. In the
last year of my thesis, I worked on the implementation of such an approach into
ODEA, and a dedicated paper is in preparation. Inspiring by Mercury, the classical
integrator used is a Bulirsch Stoer algorithm (Sec. [1.2.2)), which is very precise
(the desired precision can be chosen) and does not depend on the structure of the
problem.

2.3.1 Implementation into the scheme

Implementing the mixed approach is rather straightforward in the heliocentric co-
ordinates used in Mercury and SyMBA, because the terms associated with a close
encounter can be isolated without difficulty. In the Jacobi and the Hierarchical
Jacobi coordinates, each body is located with respect to the center of mass of the
inner bodies, so that a close encounter affects multiple terms of the Hamiltonian.
Two approaches are then possible. The first is rather brutal: whenever an orbit
is perturbed, the sympectic scheme is set aside and all the problem is integrated
with a classical algorithm. On the other hand, a softer approach adopted by all the
integrators presented in Sec. is to keep the original symplectic approach for the
non-perturbed orbits, and to integrate only the perturbed orbits with the classical
algorithm. The latter approach is the one we chose, although its implementation is
more challenging in the HJS framework than in the MVS framework, because of the
non-restricted form of the hierarchy.

An essential point for the implementation of this mixed approach is the following
results, flowing from the definitions of the orbits: For any couple of bodies ¢ and j,
a unique orbit kg exists for which ¢ is a satellite and j a center, or vice versa. From
this, the perturbation Hamiltonian Hg can be rewritten in the following way:

Z Gy Z Gm;m;
HB - 7”/ - 7'—] (152)
orbits k=2 k i celg l]g Y
J sa

Moreover, for each couple of bodies ¢ and j, the terms 7;; can be written as
a linear combination of ], with no contributions of the orbits [ that are outer or
foreign to their orbit k. It follows that, from Eq. , the residual acceleration ap
can be written only with =] with [ inner than k. We thus see that strictly separating
the problem between perturbed and non-perturbed orbits is not possible because of
the entanglement terms. If an orbit k is perturbed, it is however possible to divide
the Hamiltonian between orbits inner or equal to k, and orbits outer or foreign to
k. We shall describe in more details this separation in what follows.

As before, we choose a criterion to probe the problem and the relevance of the
symplectic splitting. The criterion should not depend on the velocities, to preserve
the possibility of directly integrating Hg without approximation. For any criterion
¢k, the Hamiltonian can be separated into:
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Let us consider the case of a Heaviside-like criterion, which is 1 if the orbit is
perturbed and 0 otherwise (null derivative with respect to positions or velocities).
In the (7}, p)) variables, the Hamilton equations with respect to Hy give:

/
7y, = Lk (1.55)
my,
i G Gmym; , B
b = — ’;’;“krku —a) - Y. (M — My riger, (1.56)
k

1<i<j<<N ij

where kg (i, 7) is the index of the unique orbit such as i is center and j is satellite.
Using a Keplerian drift for integrating Hy is only possible for orbits that have ¢, = 0
and ¢; = 0 for all I such as k C [. The H-induced drift of the other orbits (those that
are either perturbed or inner to a perturbed orbit) is integrated with the Bulirsch-
Stoer algorithm (Sec. . Indeed, the term M ﬁcl — M;;! vanishes if neither i nor
j belong to orbit k, or if they belong to the same sets (centers or satellites) of orbit
k. In particular, it vanishes when £ is inner or foreign to k, so that inner or foreign
perturbed orbits can be ignored while integrating k.

As an example, let us suppose that orbit 2 is perturbed (¢ > 0) in the configura-
tion depicted by Fig. [I.16] because the satellite C is perturbed by the binarity of the
center AB. In the sum of Eq. , only two pairs of body (i, j) will have a non-zero
¢k A-C and B-C, for which ky = 2 (one body is center and the other satellite of
orbit 2). Moreover, in the evolution of orbit 3 and 4, the terms M ]761 — M;;' will
vanish because orbit 2 is foreign to orbit 3 and inner to orbit 4. Thus, the evolu-
tion with respect to Hy of orbits 1 and 2 will be integrated with the Bulirsch-Stoer
algorithm, while for the orbits 3 and 4 the evolution remains Keplerian.

Let us consider an orbit k£ which is neither perturbed, nor is inner to a perturbed
orbit. Its evolution driven by H, writes:

/
r, = Pk (1.57)
my
G
P = —— 2y, (1.58)
Tk

which is the classical Keplerian drift, implemented exactly in the original algorithm.
On the other hand, the evolution of a perturbed orbit, for which it exists by definition
an orbit ky outer or equal to £ which has a non-zero cyg, is given by Eqgs. [1.55] and

70



301

10 ‘g,

—-20 1

—-30 1

-40 -20 0 20 40

Figure 1.16 — Example of a hierarchic configuration where orbit 2 is perturbed. Both
orbits 1 (because it is inner to 2) and 2 will be integrated with the Bulirsch-Stoer
algorithm.

(1.56)). Neither terms in Eq. do vanish, so that the evolution is then not
exactly solvable. The corresponding r;; term depends on inner orbits rj, which are
also perturbed by definition. The Bulirsch-Stoer algorithm must solve the coupled
evolution of all the perturbed orbits.

Moreover, the evolution controlled by Hp is always integrable as it still not
depend on the velocities. The acceleration corresponds to the acceleration af of
Eq. with each term being weighted by a factor (1 — ¢k,). This weighted
acceleration will be denoted aB.

The new structure of the core is summarized on Fig. [I.I7 Each time the
acceleration is computed, both a? and af are computed (the two may be different
if at least one orbit is perturbed). Indeed, the non-weighted accelerations are still
needed to compute the criteria.

2.3.2 Criterion to evaluate perturbations

Inspiring from the handling of hierarchy changes, we choose the following criterion :

At aP
Cr — He ( Kekaep — Ccrit> (159)
Ty Ay

where He is the Heaviside function, c.i; represents an arbitrary threshold and a? is
given by Eq. The previously used accelerations ratio a?/ a?ep is here weighted
by the ratio between the time step and the Keplerian time, which I define as 7';( —
V73 /GMp. The addition of this weight illustrates the difference with the previous
version: we are no longer looking for the better hierarchy in a problem, independently

from the time step, but we are now trying to control the energy error.

B
a . . . .
The term <L - in the criterion corresponds roughly to the energy error in
Te O
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1j, vj, hierarchy, dt

write

kick drift kick 1=
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v;j = Jacobi velocity
aj = Jacobi acceleration
save
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Figure 1.17 — Schematic of the core algorithm of ODEA.
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Figure 1.18 — Comparison between the criterion for close encounters (maximum of all
the ¢ ) and the error term in the Hamiltonian. The grey lines correspond to hierarchy
changes, the red zones to periods where at least one orbit is perturbed (criterion
above threshold). The energy error in the red zone (small dots) is indicative of what
it would be without the new implementation.

the first-order scheme. Its relation with the error in the second-order case is not
straightforward, but its value gives an upper bound, as the first-order scheme is less
accurate a priori than the second-order scheme. This can be seen on Fig.
Consequently, we fix the critical threshold to cqi = 1073, but its value can be
changed in the core code according to the precision goal.

I tested the different versions of the code on the previously introduced extreme
examples of a close encounter between 3 equal-mass massive bodies. The output
in terms of energy error and trajectories is represented in Fig. [[.I9 Hierarchy
changes avoid reaching high energy error. However it does not ensure that the final
total energy will be more precise than the classical SWIFT HJS case, because the
hierarchy change break the symplectic nature, so that the return of an unperturbed
situation might not compensate the energy offset. However, preventing the energy
error to explode even temporarily allows a reliable computation of the trajectory.
On the other hand, the close encounter version greatly limits the energy error, on top
of keeping track of the trajectory. In the example, only the 100-200 yr part, between
the two hierarchy changes (visible on Fig. , and the end of the simulation is
integrated without Bulirsch-Stoer.
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Figure 1.19 — Comparison of the different versions of the code, on the same test case
(highly perturbed three-body system). The interpretation can be found in the text.

This computation of the criterions for each orbit grows with N2, which is not
negligible a priori. The algorithm remains efficient because the computation of the
criterion makes use of quantities (the accelerations) that are already computed in
the code at the beginning and the end of each time step. However, the necessary
accelerations should also be computed at each step of the Bulirsch-Stoer algorithm,
so that the computation could potentially grow heavy. To avoid that, the criterion
keeps its value throughout a step. It modifies in theory the nature of the criterion
function, but does not impact the equations in practice.

In Mercury, to avoid integrating with a Keplerian drift an orbit that becomes per-
turbed during the time step, a quick polynomial integration module is implemented
to predict the future close encounters (Chambers |1999). This is possible/compu-
tationaly interesting because of the simplicity of the criterion. In our case, such
approach would be far too heavy to encode. Instead, a time step is redone if a
criterion becomes non-zero during it.

2.3.3 The case of test particles

All the new features of ODEA are relevant for both massive bodies and test particles.
Indeed, the latter are used to model the structures of debris disk, and each individual
particles can be either captured or ejected by the interaction with the massive bodies
of the system. Similarly than for the orbits of massive bodies, we compute a criterion
c for each test particle, also based on the ratio between the Hg-induced acceleration
a® (Eq. and the Keplerian acceleration.

The massless nature of test particles implies that no other bodies depends on
their evolution, although each one of them depend on the evolution of massive
bodies. The orbit of a test particle is embedded within the hierarchy of massive
bodies, so that the same results than for massive bodies hold. Thus, only when
¢ = 0 and if the particle’s orbit is not inner to the perturbed orbit of massive
bodies, then its evolution is simply computed with the usual analytical kick-drift-
kick approach. Otherwise, its Hx-induced acceleration is computed with the Bulirsch
Stoer algorithm.

In the classical version of Swift HJS, the evolution of the test particles only

74



requires the positions of the massive bodies at the beginning and end of the time
step, plus their velocities after the first kick. However, a perturbed test particle’s
evolution along Hy is coupled to the evolution of the massive bodies around which
it revolves, so that their motion has to be integrated alongside the motion of the
perturbed test particles.

2.3.4 Smooth transitions

In Mercury, the criterion is a smooth function that takes value between 0 and 1. We
can inspire from that to smooth our criterion. However, the criterion’s derivatives
should then be taken into account in the evolution.

The Hamilton equations for Hy now are

/
v _ Pk (1.60)
my
. G Gmym; , _
Dr = — ':f’];nkr;c(l — )~ Z (M = My )rsjen (1.61)
k 1<i<j<<N ij
N
Gm Gm;m; | deg
D D Dl e
=2 ! i'cergé K k
7 sal

so that the precedent description is still valid as long as the new term vanishes
when k is not perturbed. This is the case when the criterion is a function of the
accelerations ratio described above, because then it depends only on the inner orbits.
Thus, if orbit k& is not perturbed, then the criterion ¢; of any perturbed orbit [ will
not depend on 7}, because k is either foreign or outer to [ by definition.

On the other hand, the evolution along Hg also includes derivative terms. The
subsequent accelerations are still analytically integrable however, as they still not
depend on the velocities.

A smooth criterion would be

At aP
Cr = f ( KepK_kep — Ccrit> (162)
T Qg
where
y2
=7 1.63

This is one of the simplest form that can be thought of to smooth the acceleration
ratio, with f(0) =0, f(1) =1, f/(0) = 0 and f'(1) = 0. The resulting Hamiltonian
is thus C!, even in case of perturbation. However, the derivative is nevertheless
tedious to compute. It writes:
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This derivative is very complicated and the computation of the related terms
in the accelerations grow as N® (although it is still linear in the number of test
particles). As a part of the evolution in both Hy and Hg, it has to be computed
many times per time step, in particular for the perturbed orbits in the Bulirsch-Steor
algorithm. The advantages of using a smooth criterion have thus to be discussed and
weighted. In Mercury, the term has simply been ignored, introducing an error in
the integrator (Wisdom!2016). The new implementation available in the Rebound
package solves this issue (Rein et al|2019), and the authors additionally tested
several smoothing functions, including a Heaviside threshold. They concluded on
the negligible impact of this choice on the integration. However, a recent study
by [Hernandez| (2019) shows that a smooth Hamiltonian improves significantly the
long-term precision for chaotic problems. A smooth version of the Hamiltonian is
under development in ODEA, so that dedicated tests will enable the comparison of
its efficiency and precision with the non-smoothed version.

2.3.5 Specific modules

The structure of ODEA being essentially similar to that of Swift HJS, the general ar-
chitecture of the code and its articulation with its modules do not drastically evolve.
Figure details the new organization. The initialization routine in particular re-
mains identical to the previous version. The post-processing, however, has become
more complex.

On top of the archival file that compiles the hierarchy, introduced in the previous
version, a new output is produced by the core code that monitors the close encounters
(ce.out). Whenever an orbit is perturbed, the time and number of the orbit is saved.
When the orbit stabilizes, a new line is included into the file with the number of
the orbit, the beginning time of the close encounter, and its ending time. If the
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simulation ends before the end of the perturbation, a line is added at the end of the
integration with only the beginning time.

This new output allows the upgrade of the Analysis routine to represent the
close encounters on the orbital elements evolution plots, along with the hierarchy
evolution. The values of the orbital elements in the new hierarchies are not a direct
output of the code, since the data files elbodies and eltp are archives of the orbital
elements in the initial hierarchy, for consistency. Thus, the Analysis module reads
the archives of the positions and the hierarchy and recompute from them the orbital
elements in the new hierarchy.
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1.2 1 9
40000 - 0
T J K
30000 - °
0.8
e
20000 - 0.6
o
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10000 o .
he ©
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Figure 1.20 — Example of automatic analysis by the module Analysis.py of a sim-
ulation with ODEA. The evolution of each orbit orbital elements (columns) of each
orbits (lines) is computed, but only the semi-major axes and eccentricities are rep-
resented here. The red zones indicates that the orbit is considered perturbed. The
red vertical lines indicates hierarchy changes.
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Using ODEA
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Conventions, hierarchy, orbital elements
Massive bodies and test particles

phjs.in, tphjs.in
Initial barycentric

coordinates

matpass.dat params.in
Change of basis Initial, final times

matrix to the Time step, name
invariant plane

swift hjsish

ce.out M ST oloc.out
Archive close encounters et Archive hierarchy
J

dump_params.dat
dump_pl.dat
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Final save

bin

energy.out
Archive energy
Archive orbital
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Figure 1.21 — Schematic of the inputs and outputs of ODEA. The user inputs are filled
in gen.sh and params.in.

2.3.6 Conclusion on 0Odea

A first conclusion of my work is that expanding the scope of Swift HJS to include
hierarchy changes and close encounters is definitely challenging. Swift HJS has been
designed as a generalization of the previous symplectic schemes that only handle
Solar-System-like architecture. Each features that may be applied in other codes in a
straightforward way have to be generalized for any hierarchy before being transferred
to Swift HJS. Thus, if the mixed approach implementation is rather painless in
Mercury, thanks to the stable hierarchy and the fact that encounters only affect two
bodies at a time, it becomes an ordeal in Swift HJS, where perturbed orbits may
potentially include all the bodies.

As I finish this thesis, the final version of ODEA is not yet produced. However,
most of the theoretical design and numerical implementations have been made, and
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Symplectic Handles any Handles hierarchy Handles close Smooth

architectures changes encounters
ODEA v’ v’ v’ v’ X
Swift HJS v’ v’ X X v’
Mercury v’ X X v’ ~
TAS15 X ~ ~ v’ Vv’

Table 1.1 — Summary of the characteristics of different N-body codes. The Hamil-
tonian in Mercury is C!, so that it has some smoothness properties. IAS15 does not
make use of the hierarchy for the integration, but the post-processing routines in the
Python Package are designed in the Jacobi coordinates and do not handle evolving
hierarchies with multiple rotation centers.

the evolution of massive bodies can already be integrated with hierarchical changes
and close encounters. Moreover, a version including hierarchical changes for both
massive bodies and test particles is in working order, and has already been used in a
submitted paper (see Sec. . These versions already have their designated analysis
tools for post-processing. The modules added to the original code Swift HJS are
either quick to compute or rarely appealed to. The extension of close encounters to
test particles is theoretically equivalent, and will follow naturally once the numerical
aspects are efficiently taken care of.

ODEA will be presented in an upcoming dedicated paper. It is a versatile tool, able
to adapt to either architecture and to handle any evolution, however catastrophic. A
summary and comparison of ODEA’s properties is displayed in Table [I.1] Such tools
will be necessary to study the diversity of planetary systems that we are beginning
to unveil. The possibility to take into account non-Keplerian forces has not been
implemented yet, but it is a natural upgrading perspective, notably to take into
account migration or tidal forces. Treated as additional perturbing terms in Hpg,
they can be simply included into the described close encounter procedure.

3 Understanding the peculiar architecture of the
system HD 106906

HD 106906 is a rare and intriguing system. Located in the Lower-Centaurus-Crux
association which is part of the Sco-Cen OB association, it comprises a tight binary,
a wide and asymmetric debris disk and a giant planet at very large separation,
possibly misaligned with the disk plane (see Fig[l1.22). This wide planet challenges
the models of planetary formation, and the presence of a debris disk makes this
system a benchmark for the planet/disk interactions. Indeed, it is one of the rare
systems around which both a companion and a disk have been imaged, and the very
low mass ratio between the host star and the planetary companion is unique as such
separation (see Introduction Fig. [2)).

The young (5-15 Myr) Sco-Cen association is known for several decades to be the
nearest OB association (around 100 pc away), and the kinematics and properties
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2 intermediate-mass stars
(2.6 MO)

Figure 1.22 — Presentation of system HD 106096. SPHERE image from Lagrange
et al. (2016).

of its young stars have thus been thoroughly characterized (De Zeeuw et al.|[1999).
In a survey using the space telescope Spitzer, targetting specifically the association,
Chen et al.| (2005)) discovered a large infrared excess in the spectral energy distribu-
tion of HD 106906, indicating a massive debris disk. Further characterization with
Magellan /MIKE confirmed this excess and led to an estimate of its properties (disk
mass, luminosity, temperature; |Chen et al.|2011). The shape of the spectral energy
distribution suggests that the disk is devoid of both hot and warm material, which
led Bailey et al. (2014) to look for a companion with the Magellan Adaptative Optics
(MagAQ). The planetary mass companion HD 106906 b was then discovered at 7"
from the host star, putting the spotlight on the system. High signal-to-noise spec-
tral characterization concluded on a spectral type L1.5 1 and confirmed a mass at
the upper limit of the planet realm (Daemgen et al.|2017). New observations with
SPHERE (Lagrange et al.|[2016)), HST, GPI (Kalas et al.|2015) and MagAO (Wu
et al.[2016]) resolved the debris disk and revealed its strong asymmetries. SPHERE
is the only instrument capable of imaging both the debris disk and the planet in its
large field of view (Fig. . Since then, numerous studies explored the interac-
tions between the planet and the disk (Jilkova & Zwart 2015; Nesvold et al.[[2017}
Lazzoni et al.[2018), suggesting an eccentric orbit with a periastron just outside
the disk outer radius, and a possible inner companion to carve the inner edge. The
masses and separations of the different components of the system are summarized
in Table 1 of [Rodet et al.| (2017) below.

At the beginning of my thesis work, the binary nature of the host star was
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revealed by HARPS and PIONIER radial velocity and interferometric measurements
Lagrange et al.| (2019). This hypothesis of a past scattering of the companion to
its current position had thus to be investigated. This was done in two designated
papers, Rodet et al.| (2017) and [Rodet et al.| (2019)), that are introduced below and
that are making use of Swift HJS and ODEA.

3.1 Investigating the dynamical evolution

In Rodet et al.|(2017)), we explored possible scenarios to account for the peculiarities
of the system. To this goal, we performed numerous N-body simulations and made
use of SWIFT HJS to model the non-Solar type architecture. We suggest that
the planet formed within the disk, closer to the central binary star, and migrated
towards it until it got caught in a mean-motion resonance. The resonance would
have then enhanced the planet eccentricity until its periastron would be decreased
to a critical value, where interactions with the binary could have ejected it on a
wide orbit. Such orbit would remain strongly unstable, except if some exterior force
would further circularize it. This stabilizing factor could be a passing star (fly-by).
However, the probability of such fly-by to happen is not high given our knowledge
of the neighborhood density. The entire study is detailed below.
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ABSTRACT

Context. A giant planet has been recently resolved at a projected distance of 730 au from the tight pair of young (~13 Myr)
intermediate-mass stars HD 106906AB in the Lower Centaurus Crux (LCC) group. The stars are surrounded by a debris disk which
displays a ring-like morphology and strong asymmetries at multiple scales.

Aims. We aim to study the likelihood of a scenario where the planet formed closer to the stars in the disk, underwent inward disk-
induced migration, and got scattered away by the binary star before being stabilized by a close encounter (fly-by).

Methods. We performed semi-analytical calculations and numerical simulations (Swift_HIJS package) to model the interactions be-
tween the planet and the two stars. We accounted for the migration as a simple force. We studied the LCC kinematics to set constraints
on the local density of stars, and therefore on the fly-by likelihood. We performed N-body simulations to determine the effects of the
planet trajectories (ejection and secular effects) onto the disk morphology.

Results. The combination of the migration and mean-motion resonances with the binary star (often 1:6) can eject the planet. Nonethe-
less, we estimate that the fly-by hypothesis decreases the scenario probability to less than 1077 for a derived local density of stars of
0.11 stars/pc®. We show that the concomitant effect of the planet and stars trajectories induce spiral-features in the disk which may
correspond to the observed asymmetries. Moreover, the present disk shape suggests that the planet is on an eccentric orbit.
Conclusions. The scenario we explored is a natural hypothesis if the planet formed within a disk. Conversely, its low probability of
occurrence and the fact that HD 106906 b shares some characteristics with other systems in Sco-Cen (e.g., HIP 78530, in terms of
mass ratio and separation) may indicate an alternative formation pathway for those objects.

Key words. methods: numerical — celestial mechanics — planetary systems — planets and satellites: dynamical evolution and stability —

planet-disk interactions

1. Introduction

More than 3500 exoplanets have been found in the last three
decades’, but few among them have been detected to be hun-
dreds of astronomical units (au) from their star. As the develop-
ment of direct imaging reveals more of those wide planetary-
mass companions, classical theories of planet formation fail
at explaining their origin. In the two scenarios, core accretion
(Pollack et al. 1996) and gravitational instability (Boss 1997),
the planets form within the primordial gas disk. However, the
limited extent of the disk (see e.g. Fig. 5 in Lieman-Sifry et al.
2016) does not enable the formation of a giant planet far away
from its star. Thus, when the star around which orbits the very
wide and massive HD 106906AB b turned out to be a binary star
(Lagrange et al. 2016b), it has been suggested that dynamical in-
teractions could account for the current position of the planet
(Lagrange et al. 2016b; Wu et al. 2016).

The planet HD 106906 (or also HIP 59960) is located at a
distance of 103 + 4 pc (Van Leeuwen 2007) and belongs to the
Lower Centaurus Crux (LCC) group, which is a subgroup of the
Scorpius-Centaurus (Sco-Cen) OB association (De Zeeuw et al.
1999). The LCC group has a mean age of 17 Myr, with an

http://exoplanet.eu
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age-spread of about 10 Myr (Pecaut et al. 2012). In recent years,
high contrast imaging has revealed the circumstellar environ-
ment of HD 106906AB: an 11 + 2 Mj planet located at 732 +
30 au in projected separation (Bailey et al. 2013) and an asym-
metric debris disk nearly viewed edge-on, imaged by SPHERE
(Lagrange et al. 2016a), GPI and HST (Kalas et al. 2015) and
MagAO (Wu et al. 2016). More recently, the binary nature of
HD 106906 was inferred thanks to observations with the instru-
ments HARPS and PIONIER (Lagrange et al. 2016b). It turns
out to be a 13 + 2 Myr old SB2 binary consisting of two F5 V-
type stars with very similar masses. Table 1 summarizes the key
characteristics of the system components. No further informa-
tion is known about the orbit of the planet, which must have an
orbital period of at least 3000 years. The binary orbit is also not
much constrained yet, but given its short orbital period (<100
days), it will presumably be better known in the near future.

The edge-on debris disk has an unusual shape: its luminous
intensity has a very asymmetric profile. The longest peak, point-
ing westward, extends up to 550 au, while the east edge reaches
120 au only (see Figs. 1 and 3 of Kalas et al. 2015). Conversely,
below 120 au, the disk is more luminous on its east side than on
its west side. This reversed asymmetry might suggest the pres-
ence of a spiral density wave extending over the whole disk, and
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Table 1. Key characteristics of the HD 106906 system.

System component Mass Projected separation
HD 106906 AB ~1.34 and ~1.37 Mp* 0.36—0.58 au”

HD 106906 b 112 Mp» 732 + 30 au®

Disk 0.067 Myioon© from 65 £ 3 to ~550 au

References.  Lagrange et al. (2016b); ) Bailey et al. (2013); © Chen
etal. (2011); @ Kalas et al. (2015); ) Lagrange et al. (2016a).

viewed edge-on from the Earth. Finally, a large cavity splits the
disk into two debris belts. Chen et al. (2014) modeled the stars’
excess emission and suggested 13.7 and 46 au for the radii of
the belts. The latter likely corresponds to the one imaged by
Lagrange et al. (2016a) and Kalas et al. (2015) at ~50 au.

Despite the richness of the observations, the geometry and
kinematics of the whole system are strongly underconstrained.
If the actual planet-binary distance is less than 1000 au, then
the orbit inclination with respect to the plane of the disk must
be significant (20 degrees). However, a coplanar configuration
cannot be excluded, but the separation should then be around
3000 au. In any case, the large separation between the planet and
the central binary, as well as the possible misalignment between
the planet orbit and the debris disk, challenges classical mecha-
nisms of planet formation.

According to current theories, planet formation takes place in
the primordial gaseous disk. However, as we mentioned above,
forming a giant planet via core accretion or gravitational instabil-
ity at 700 au or more from any central star appears very unlikely,
first due to the lack of circumstellar gas at that distance, and sec-
ond because the corresponding formation timescale would ex-
ceed the lifetime of the gaseous disk. The disk asymmetries (in
particular the suspected spiral structure) indicate strong ongo-
ing dynamical interaction with the dust. This may suggest that
the planet did not form where it resides today, but may have
formed inside and be scattered afterwards. The recently discov-
ered binary nature of HD 106906AB is indeed a source of po-
tentially strong dynamical perturbations that could trigger planet
scattering.

The purpose of this paper is to investigate both analytically
and numerically the scenario that could have lead to the present-
day characteristics of the HD 106906 system starting from a
planet formation within the circumbinary disk. As viscosity-
induced migration tends to make the planet move inwards, in
Sect. 2 we will study the likelihood of an ejection via interac-
tions with the binary, and we will then discuss in Sect. 3 how
the planet could have stabilized on such a wide orbit. Finally,
in Sect. 4 we briefly analyze the effect of this scattering sce-
nario on the disk and the processes that could have shaped it
as it currently appears. Numerical simulations in our analysis
have been performed using the Swift HJS symplectic integra-
tion package (Beust 2003), a variant of the Swift package de-
veloped by Levison & Duncan (1994), but dedicated to multiple
stellar systems.

2. Ejection
2.1. Basic scenario

We investigated how HD 106906 b, supposed initially orbiting
the binary on a nearly coplanar orbit, could have been ejected
from the disk via dynamical interactions. When it is located far
away enough from its host stars, a circumbinary planet may have
a very stable orbit. On the other hand, if it migrates too close to
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Fig. 1. Chaotic zone (in dark gray) as a function of the binary eccentric-
ity, for binary components of same masses. The lighter part designates
a critical zone, where some test particles can survive. The red lines rep-
resent the lower and upper critical orbit parabolic fits found by Dvorak
(1986) in its study of circumbinary planet stability. The 1:6 commen-
surability is the strongest outside the chaotic zone (see Sect. 2.2) for
e > 0.4.

the binary, it undergoes a close encounter with the stars and can
be ejected.

The binary is surrounded by a chaotic zone where no sta-
ble circumbinary orbit is possible. Dvorak (1986) uses a semi-
analytical approach to compute the upper critical orbit (lower
radius of the stable zone) and lower critical orbit (upper radius
of the chaotic zone) around two stars of same masses for differ-
ent binary eccentricities, and found that this gap size typically
ranges between two and three times the semi-major axis of the
binary orbit. Numerical results for this mass ratio are missing,
so that we computed the limits of the gap with our Swift_ HIS
package and compared them to the semi-analytical approach in
Fig. 1. In each simulation, the evolutions of 10000 test parti-
cles have been studied during 103 orbital periods of the binary.
The particles have been randomly chosen with semi-major axes
between 1.5 and four times the binary semi-major axis ag, ec-
centricities between 0 and 0.1, and inclinations with respect to
the binary orbital plan between 0 and 3°. The time step has been
chosen to be 1/20 of the binary orbital period.

Artymowicz & Lubow (1994) showed that this chaotic zone
also affects the gas of the disk, with gap sizes similar to the val-
ues given by our algorithm (Beust 2003). Consequently, as the
migration necessarily stops at the inner edge of the disk, the
planet should never reach the chaotic zone this way. It will re-
main confined close to the lower critical orbit, where it may
never be ejected. Mean-motion resonances (hereafter MMR)
may help overcoming this difficulty. During its inward migra-
tion, the planet is likely to cross MMRs with the binary. It may
then be captured by the resonance and furthermore undergo an
eccentricity increase that could drive its periastron well inside
the chaotic zone.

2.2. Mean-motion resonances

Nested orbits are in a configuration of MMR when their orbital
periods are commensurable. For fixed masses and neglecting the
precession, this is fully controlled by the semi-major axis ratio
ag/a (subscript B refers to the binary): the orbits are said to be
in a p + ¢: p resonance when

Ty _ (a_B)” mg__p+q 0
T a mg +m p
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where p, g are integers, and 7 and m designate respectively
Keplerian periods and masses. Resonances are described using
the characteristic angle

+
o= _Pi_, )
q

where A designates the mean longitude and w the periastron lon-
gitude. o represents the longitude of a conjunction between the
binary and the planet, where all three bodies are aligned, mea-
sured from the line of apsides of the planet. If o stops circulating
and begins to oscillate around an equilibrium position (libration),
it means that the conjunctions repeatedly occur roughly at the
same places on the planet orbit: the system is locked in the reso-
nant configuration. If the resonant conjunction occurs in the lo-
cation where the interacting bodies are sufficiently far away from
each other (like in the Neptune-Pluto case), then the resonance
acts as a stabilizing mechanism that prevents close encounters.
MMRs are nevertheless known to enhance eccentricities. If the
eccentricities are too highly excited, then the conjunctions may
no longer occur at safe locations, often causing instability. For a
review on MMRs, see Morbidelli (2002).

The way a MMR can enhance the eccentricity of the planet
can be studied in a semi-analytical way. Details about this proce-
dure are given in Beust (2016), Beust & Morbidelli (2000) and
Yoshikawa (1989). Basically, if we restrict the study to orbits
with negligible o-libration, the interaction Hamiltonian can be
averaged over the motion of the binary for constant o. This
gives a one degree of freedom autonomous Hamiltonian. Phase-
space diagrams with level curves of this Hamiltonian can then be
drawn in (v = w — wg, e) space to explore the overall dynamics.
To adapt the method to this unusual case where the inner bodies
have similar masses, we calculated the resonant Hamiltonian of
a planet orbiting the center of mass of a binary with binary mass
parameter u = my/mg (Where m; is the mass of the second star):

H G ( L K 1)
= - — = m _ —
24 B\ir+ursl * e = (= wrgl Ir]

2
_ P G, 3)

where G is the gravitational constant, rg = R; — Ry and r =
R — (uRy + (1 — p)Ry) if R, Ry and R, are respectively the po-
sition vectors of the planet, the first and the second component
of the binary. We could then perform the integration over the or-
bital motions and derive the phase space diagram for the interest-
ing commensurabilities. The result is displayed in Fig. 2 in the
1:6 MMR case, for a binary eccentricity of eg = 0.4. Most of
the level curves of the Hamiltonian exhibit important change in
the planet eccentricity; therefore, starting at low eccentricity, the
resonant interaction can drive the planet to higher eccentricity
regime and cause it to cross the chaotic zone (indicated in red on
the figure) at periastron, leading to ejection.

Our choice of focusing on the 1:6 mean-motion resonance
should not be surprising. Indeed, according to Fig. 1, it is the
lowest order resonance that lies outside the chaotic zone for eg >
0.4: it occurs at a/ag =~ 3.3. Any lower order (thus potentially
stronger) resonance such as 1:2, 1:3, etc. falls inside the chaotic
zone, and could not be reached by the planet according to our
scenario. Moreover, the topology of the diagram depends on the
binary eccentricity: the higher it is, the higher is the change of
eccentricities depicted by the level curves. And those curves are
flat for a circular binary orbit.

However, the semi-analytical study is not sufficient here to
study the dynamical route that leads to ejection. Indeed, libration

GmB

0.6

8]
>
=
o
=
]
c
v
[~
(¥
[NF)

o
=

0.0 \—’w-"ﬂv/—\
0

50 100 150 200 250 300 350
v (degrees)

Fig. 2. Isocontour in the (v = w — wg, €) phase space of the average
interaction Hamiltonian of a test particle trapped in 1:6 mean-motion
resonance with a binary eccentricity of e = 0.4, assuming a binary
mass parameter of u = 1/2. Each curve represents a trajectory in the (v,
e) space. Above the red line, the planet has part of its orbit in the chaotic
zone.

Table 2. Effect of the 1:6 mean-motion resonance and ejection duration
for different eccentricities of the binary, starting with a planet eccentric-
ity of e = 0.05.

Binary eccentricity  Effect of the 1:6 MMR

eg =0.0 no ejection

eg =0.2 no ejection

eg =04 ejection in 100-1000 yr
eg = 0.6 ejection in 100-1000 yr
eg = 0.8 ejection in 100 yr

Notes. For ag = 0.4 au, the 1:6 resonance corresponds to a planet semi-
major axis around a = 1.3 au.

of the resonant angle o~ and chaos on short timescale, not taken
into account in the computation of the phase-space diagram, are
not negligible for a binary with mass parameter close to 1/2. We
thus performed numerical simulations of 10° binary orbital pe-
riods of dynamical evolution for different binary eccentricities
and different initial angular conditions, to study the stability of
different ratio of MMR. All runs were performed starting with a
semi-major axis close to the resonant value, with a time step set
to 1/20 of the binary orbital period.

Only a few resonances located outside the chaotic zone are
finally able to trigger ejection: the 1:6 and the 1:7 one. The simu-
lations allowed to check not only the ability of the resonances to
generate instability, but also the time needed to eject the planet,
as well as the typical width of the starting resonant zone that
leads to ejection, which is typically 0.01 au. Table 2 summarizes
the results obtained with various ep values and u = 1/2 with the
1:6 resonance.

The simulations confirm that resonance stability depends on
binary eccentricity eg, and that the resonance gets weaker when
the order of the resonance |g| increases. An important result is
that whenever ejection occurs, it happens within a very short
timescale, always much shorter than the typical time needed
(S1Myr) to form the planet from the gaseous disk. Our first
conclusion is thus that the planet cannot have formed within
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the resonance. This validates the idea outlined above that it first
formed at larger distances in a more stable position, and fur-
thermore migrated inwards and was possibly trapped in a mean-
motion resonance before being ejected. In the following, we in-
vestigate this scenario.

2.3. Migration

In recent decades, planet migration has become an unavoidable
ingredient to explain the configuration of some planetary sys-
tems. Due to tidal interactions with the primordial gas disk, gi-
ant planets (mass > 10 Mg) undergo first a type I, and further-
more a type II migration once they have created a gap in the
disk (Baruteau et al. 2014). It consists of a drift that can be di-
rected toward the star, whose characteristic timescale depends on
the position, and characteristics of the planet and on the viscous
properties of the disk.

We have assumed that the planet has approximately reached
its final mass when it arrives at the location of unstable MMRs,
that is between 1 and 2 au from the stars. The characteristic time
of migration varies in inverse proportion to the quantity a,h*Z,
where «, is the viscosity parameter, & the aspect ratio and X
the surface density (Lin & Papaloizou 1986). However, not only
the values of those quantities are unknown in HD 106906 pri-
mordial disk, but also this simple dependency does not seem
to match nor the known planetary population (Mordasini et al.
2009) neither the results inferred by hydrodynamical simulations
(Diirmann & Kley 2015). Taking this fact into account, estimat-
ing the mass of the primordial disk to be around 0.6% of the stel-
lar mass (Andrews et al. 2013) and varying the viscosity param-
eter and the aspect ratio around the observed values (e.g., Pinte
et al. 2015), we obtained a large range of migration timescales.
To obtain the largest overview without trying every single ve-
locity, we choose to run our tests with four different migration
velocities at 2 au: 1073, 107#, 10~ and 107 au/yr.

Simulating the whole process of disk-induced migration in
the circumbinary environment is beyond the scope of the present
paper. Using a hydrodynamic code, Nelson (2003) computed the
migration of a planet in a circumbinary disk and show that it was
likely to get locked into a mean-motion resonance. As their stars
had very different masses, their results can not be applied here,
so we choose to add to the SWIFT_HIS code an additional extra-
force that mimics the migration mechanisms they observed. This
force is designed in such a way that its secular effect averaged
over the orbital motion of the planet just induces the desired
steady-state semi-major axis drift da/df = vm;g, Umig being a fixed
arbitrary migration velocity, and has no effect on the eccentric-
ity nor on the longitude of periastron. Further details about the
choice of the force are provided in Appendix A. We derive:

Unﬂgn 1 r
N (1 +5(1- ;)) @

where (e, eg) are the 2-D cylindrical radial and orthoradial unit
vectors in the local referential frame attached to the planet’s mo-
tion. Thus, Fp,;, depends on the planet position via the radius r,
the vector eg and the planet mean angular motion n = 27/T. The
parameter vy;g is set at the beginning of the simulation, accord-
ing to the timescale we want for the migration. We note that with
the above convention, inward migration corresponds to vy < 0.
Of course, the migration is implicitly assumed to hold as long as
the planet moves inside the disk.

Whether migration would inhibit or enhance the effects of
MMR is not a straightforward issue. Resonance trapping induced
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Fig. 3. Evolution of the planet semi-major axis with respect to time for
a binary eccentricity of eg = 0.2 and a 107 au/yr migration velocity.
The semi-major axis of the binary has been set to ag = 0.4 au. The plot
illustrates the migration, then ejection, of the planet after it has been
trapped into a 1:6 resonance. The effect of the 1:7 resonance, weaker, is
also visible on the plot. As the planet has a perturbed Keplerian motion
around the binary, the exact locations of MMRs are not straightforward
to derive (see Appendix B).

by type Il migration was found to exist for some commensurabil-
ities between two protoplanets orbiting a star (Snellgrove et al.
2001; Nelson & Papaloizou 2002). But MMRs with a binary are
more difficult to predict, especially those located near the chaotic
zone, like those we are focusing on here. Moreover, the expected
lifetime of the gas disk is roughly three million years around
massive stars (Haisch Jr et al. 2001; Ribas et al. 2015), so that
the formation, migration and hypothetical ejection must all oc-
cur by this time.

We thus performed numerical simulations, where the planet
was initially put outside (~2 au) the zone of interest. Whether
the planet formed just outside the critical zone or whether it mi-
grated toward there is irrelevant, only the values of the orbital
elements and migration velocity at the entrance of the zone of in-
terest matter to conclude on the possibility of ejection. Migration
was added using the additional force depicted in Eq. (4), with
the diverse migration velocity prescriptions described above.
The simulations were pursued until the planet gets captured in
a mean-motion resonance and furthermore ejected, or until it
reaches the inner edge of the disk, that is, the chaotic zone, in
the case of no resonant capture. Again, the time step has been
taken to be <7g/20. The main result is that migration, regard-
less of its velocity or of the binary eccentricity, always leads to
a resonant trapping followed by an ejection after a reasonable
amount of time spent in the resonance.

In Fig. 3, an example of the effect of both migration and res-
onances is visible via the evolution of the semi-major axis of the
planet. The figure illustrates the full dynamical evolution corre-
sponding to0 iz = 107 au/yr and e = 0.2. In addition to high
frequency oscillations that illustrate the chaotic nature of the dy-
namics, we see a gradual semi-major decrease at a speed corre-
sponding to the initial prescription, followed by a capture in the
1:6 MMR resonance that finally leads to ejection. Interestingly,
we note a temporary trapping in the 1:7 resonance than occurs
before the final capture in the 1:6. The 1:7 resonance appears not
to be strong enough to fully inhibit the migration, while the 1:6
does.
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Table 3. First unstable resonance and corresponding ejection time for different eccentricities of the binary and different migration velocities,

starting with e = 0.05 and a = 2 au.

Migration 1073 au/yr  10~* au/yr 107> au/yr 1076 au/yr
eg =0 1:4,50 yr 1:4,10° yr 1:5, 10* yr 1:5,10° yr
eg =02  1:5,50yr  1:6,10° yr  1:6, 10* yr 1:7,5 x 10* yr
eg = 0.4 1:6,100yr 1:6,500yr 1:6,2x 103 yr 1:7,2 x 10* yr
eg = 0.6 1:6,100 yr 1:6,100yr 1:6,2x 103 yr  1:6, 10* yr
eg = 0.8 1:6, 100 yr 1:7,500 yr 1:8, 10* yr 1:7,2 x 10* yr

Notes. The ejection time corresponds to the time needed to eject the planet starting from the beginning of the MMR trapping.

Table 3 summarizes the ejection times obtained in the var-
ious cases tested. Comparing Tables 3 and 2, we note that mi-
gration, despite causing important small-scale variability of the
semi-major axis, enhances resonant instabilities. However, this
efficiency is probably overestimated because of the simplicity of
our migration model. Deeper analysis of the disk-planet interac-
tion close to the resonance would be needed. Moreover, close to
its inner edge, the disk is strongly shaped by the binary and some
eccentric ring-like features may affect the protoplanet migration
(Mutter et al. 2016).

We may now summarize the analysis that has been conducted
in this section by reviewing the time evolution of this tentative
ejection process. The formation of a giant planet takes a vari-
able amount of time depending on the process and the location:
from several periods if formed via gravitational instabilities to
a million periods if formed via core accretion (Chabrier et al.
2014). Consequently, in order for HD 106906 b to acquire its
mass, it must have formed in a relatively stable location over
the timescale involved, at least at a distance of 2 au. How-
ever, as giant planets are believed to form beyond the snow
line, whose location is estimated to ~10 au around ~3 M star
(Kennedy & Kenyon 2008), the stability of the planet formation
position is a priori ensured. After a substantial growth of the
planet, migration occurs, whose strength depends on the primor-
dial disk characteristics, and pushes the planet into a less sta-
ble zone. For the planet to be ejected, it has to enter the zone
of destabilizing resonances (1:6, 1:7), which lies around 1.5 au
(Fig. 3). All in all, if @formation/Umig 18 inferior to the disk life-
expectancy, the scattering of the planet is a natural outcome in a
system with binary mass ratio close to unity.

3. Stabilization
3.1. The idea of a close encounter

In the previous subsection, we demonstrate that a giant planet
which formed reasonably close to the binary is likely to undergo
an ejection. However, ejection does not imply stabilization on a
distant orbit around the binary, as it is most likely the case for
HD 106906 b. Eventually, the planet follows an hyperbolic tra-
jectory and does not need more than 10000 years to completely
fly away from its host star. Indeed, suppose that the planet gets
ejected on a still-bound orbit via a close encounter with the bi-
nary: the orbit may have a very distant apoastron, but its perias-
tron will necessarily lies in the region where it originates, that is
the immediate vicinity of the binary. Therefore, after one orbital
period, the planet is back at periastron and undergoes a new vi-
olent encounter with the binary that is likely to cause ejection.
Such episodes have been actually recorded in our simulations.
Thus, in order to stop the ejection process and stabilize
the planet orbit, an additional dynamical process is needed to

lower its eccentricity and increase its periastron. In the absence
of other wide companion of similar mass orbiting the binary
(Lagrange et al. 2016a), a close encounter with a passing star
is a natural candidate. Recalling that the Sco-Cen association
must have had a more important stellar density several million
years ago, this event might have occurred with non negligible
probability.

The impact of dynamical interactions on planetary systems
in open clusters has been studied intensively since the dis-
covery of the first exoplanets. An effective cross section has
been computed by Laughlin & Adams (1998), that characterizes
the minimal encounter distance needed to raise the eccentric-
ity of a Jovian planet at 5 au from O to over 0.5. They found
(o) = (230 au)?, which gives a stellar encounter rate of about
0.01 disruptive encounter in our system lifetime. More precisely,
Parker & Quanz (2012) conducted N-body simulation to observe
the planet orbital elements after a fly-by, and found a probability
between 20 and 25% that a 30 au planet undergoes at least a 10%
eccentricity change in a ten million year period. In our case, the
situation seems even easier, because we want to modify the orbit
of an unstable planet already far from its star, thus with a trajec-
tory that can easily be swayed. However, the encounter needs to
happen at the right time of the planet life, during the ~1000 years
that would last the ejection. Moreover, the encounter should be
weak enough not to definitely eject the planet, but strong enough
to circularize the orbit to a reasonable eccentricity. We note that
weak encounters are more likely to occur than strong ones.

3.2. Probability of a stabilizing fly-by

Of course, not all fly-by geometries will generate the desired ef-
fect. The fly-by is entirely defined by the mass of the passing star
M., the closest approach (or periastron) to the binary p., the ve-
locity of the passing star at closest approach v, the inclination i,
of the passing star orbit with respect to the planet orbit, its longi-
tude of ascending node Q. measured from the line of apsides of
the planet orbit, and the argument of periastron w. with respect
to the line of nodes. A scheme of the effect of a stellar fly-by is
sketched in Fig. 4 in the coplanar case, in a configuration vol-
untarily favorable to a restabilization: when the planet is at the
apoastron of a wide unstable orbit. In fact, the apoastron is also
the most likely position of the planet, as it spend there most of
its time.

Figure 5 shows the results of a parametric study limited to
coplanar fly-bys (we studied the inclined cases as well) for a
given angle w., (45 degrees), in (p.,v.) 2D parameter space, for
three different M, values (0.1, 1 and 5 M) and assuming the
planet was at the apoastron of a very wide unstable orbit before
the encounter (such as in Fig. 4). The planet is 1000 au away
from the binary when the fly-by occurs, this is why a cut-of can
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Fig. 4. Example of a coplanar configuration where a passing star (in red)
stabilizes a wide unstable planet orbit. Before the fly-by, the planet orbit
still has a very low periastron, and after it gets much wider, thanks to
the interaction with the passing star. We recall that according to Kepler’s
laws, the planet spends most of its time near apoastron, so that any fly-
by is likely to occur when the planet is at or near this point.
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Fig. 5. Area in the disruptive star phase space which succeed to raise the
periastron from 1 au to over 2 au in the case of a coplanar encounter of
periastron argument w, — w = 45 degrees. v, designates the maximum
relative velocity of the disruptive star, p. designates its smaller distance
from the binary.

be seen around p. = 1000 cos(%) au. In each case, the gray area
represents the zone in parameter space that is reachable (plausi-
ble v,) and actually causes a significant periastron increase of
the planet. In this peculiar configuration, taking into account
the distribution of p. and v, (see below), a stabilization is very
likely.

As a more general approach, the probability of a convenient
encounter can be estimated by an integration over the relevant
fly-by parameters. Taking a homogeneous distribution of stars
in the cluster with characteristic distance d, and a Gaussian dis-
tribution of relative velocities with dispersion o, the number of
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where g¢ is the final periastron reached by the planet after the
fly-by perturbation, Tejection 1 the characteristic time of ejection,
Teuster = d/0 is the characteristic time in the cluster (timescale
needed to have a convenient fly-by), He is the Heaviside func-
tion and n, the velocity distribution of unbound stars
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(6)
This gives the probability of having a stabilizing fly-by, for a
given mass M, of the passing star. Apart from the role of M.,
(see Fig. 5), this probability is strongly though indirectly depen-
dent on the orbital parameters of the planet before the fly-by,
that is on the state of advancement of the planet ejection. It is
higher when the planet lies initially on a wide, unstable but still
bound orbit (as in Fig. 4). On the other hand, it is nearly zero
as long as the planet is still close to the binary (i.e., before ejec-
tion) and if it is already on a hyperbolic trajectory. In order to
compute analytically the value of He(gs — gspie) for every set
of parameters (p., v., i, Q., w,) given any initial planet position
and velocity, we assume a linear trajectory for the perturber. The
direction of the velocity change caused by this approximated
encounter can then be analytically derived, as well as the new
planet orbit. In the computation, we assumed a velocity disper-
sion of o = 0.2 au/yr (1 kms™") (Madsen et al. 2002), and the
order of magnitude of the characteristic time of ejection Tejection
has been set to 103 yr.

The most critical dependence of our formula (5) is on the
local distance between stars d. The present and past density of
the LCC is not known. Therefore, we attempted to determine it
through a kinematic study in Appendix D. From 141 stars for
which complete data could be retrieved, we could trace back the
density of LCC through time. The results show that the early
density was roughly 1.7 times the present density, evaluated
around 0.05 star/pc? in the close neighborhood of HD 106906.
Moreover, the contribution of field stars (not related to LCC) has
been estimated to be similar to the contribution of LCC. From
this piece of information, we derived that the present local den-
sity is lower than ~0.11 star/pc®. This density, consistent with
the density of the solar neighborhood (Reid et al. 2002), corre-
sponds to d ~ 2 pc. If our scenario happened in such an environ-
ment, the probability of a close encounter (p. < 5000 au) just
following the planet ejection is below 1 x 1077,

Nevertheless, our estimate of the LCC density is based on
a small number of luminous (and mostly early-type) stars for
which the kinematics can be inferred. In our case, the fly-by of
any object more massive than the planet can stabilize the or-
bit and impact our probabilities. Therefore, we considered the
extreme case where neighboring bodies in the cluster are sep-
arated by d = 0.1 pc, a density similar to the one taken in
Laughlin & Adams (1998) and Parker & Quanz (2012). We re-
port the probabilities for that high density and for the case of
a 1 M, perturber in Table 4, for different initial conditions. We
note that the number of encounters for any d > 5000 au roughly
scale with d3, so that lower-density results can be easily re-
trieved from the table.

87



L. Rodet et al.: Origin of the wide-orbit circumbinary giant planet HD 106906

Table 4. Number of close encounters with a 1 M, star raising the planet
periastron above a given value (2, 50 or 150 au) depending on the tra-
jectory of the planet before the fly-by.

Periastron superior to 2 au 50 au 150 au
Unstable elliptic trajectory 8x10™*  5x 1073 2x 107
Slow hyperbolic trajectory 1 x 107* 2% 107 6x 1076
Fast hyperbolic trajectory <1 x 107 <Ix10°® <1x107°

Notes. These values have been obtained from Eq. (5).

3.3. Conclusions

Table 4 shows that the probability of a stabilizing fly-by remains
low. As outlined above, the most favorable case corresponds to
initially wide elliptical orbits before encounter. However, most
of the time, the planet is directly ejected on an hyperbolic orbit
instead of a wide elliptical orbit. And even if this occurs, the sub-
sequent periastron passages in the vicinity of the binary quickly
lead to a definitive ejection.

The probabilities have been computed for a 1 M perturber
only, less than half of our system 2.7 M, star. Though the per-
turber to host star mass ratio do matter to evaluate the fly-by
impact (e.g., Jilkovd et al. 2016), the 1 M results give an up-
per bound that accounts for the encounter with lighter stars, and
a rough estimate for encounters with heavier stars (see Fig. 5),
which are less abundant.

We therefore conclude that while our scenario uses generic
ingredients (migration, MMR, fly-by), it is not very likely to
happen because of the low probability of a fly-by-assisted sta-
bilization. An indirect proof could be provided if we could see
traces of planet ejection on the disk. Moreover, constraints on
the present-day orbit of HD 106906 b would certainly help refin-
ing this scenario: a very high planet eccentricity could raise its
likelihood, but the secular effect of such a planet passage in the
disk every thousands of years would have big consequences on
the disk morphology.

4. Debris disk

In this section, we investigate the consequences of our scatter-
ing scenario on the disk particles repartition, to check whether
it matches the observations (short-distance asymmetry, long-
distance asymmetry and extended inner cavity).

4.1. Ejection through the disk

An essential part of the scenario we outline in this paper is the
violent scattering of the planet by the binary. Most of the time,
the planet switches directly from a close orbit around the binary
to a fast hyperbolic trajectory toward the edge of the system.
As of yet we did not mention the effect of such an ejection on
the debris disk surrounding HD 106906AB. The passage of a
~10 My, planet across the disk should presumably induce dras-
tic perturbations on it. In order to investigate this issue, we ran a
N-body simulation with 10000 test particles, neglecting the in-
teractions between them to access the first order of perturbation.
The particles have been randomly chosen with semi-major axes
between 5 and 100 au, eccentricities between 0 and 0.05, and in-
clinations with respect to the binary orbital plan between 0 and
2°. As the main effect of the ejection is due to close encoun-
ters between the planet and the disk particles, we use the pack-
age Swift_ RMVS (Levison & Duncan 1994) that is designed to

handle such trajectories. However, this package is not devised
to work in multiple stellar system, so that the binary will be
here approximated by a single star. The binary effect on the dust
being negligible above 5 au for the duration of the perturba-
tion (approximately ten times the planet ejection time, that is
10000 years), this approximation has almost no consequences
on the final dust distribution. Time steps have been set to at most
1/20 of the particles orbital periods, but Swift RMVS automati-
cally adjusts them to manage close encounters.

The result is displayed in Fig. 6. After the initial spiral-like
propagation of the eccentricity disturbance created by the planet,
the disk homogenizes on an oblong asymmetric shape that could
possible match the needle we observe up to ~500 au. In the case
where the planet is first scattered on a wide eccentric orbit be-
fore being ejected, the process gives eccentricity to some test
particles, but the effect is negligible compared to the effect of the
ejection that comes next. However, in any case, the asymmetry
might not last forever. Orbital precession induced by the inner
binary (not taken into account in our simulation) should finally
randomize the longitudes of periastron of the particles on a much
longer timescale and restore the initial axisymmetric disk shape.
For a particle orbiting the binary at 100 au, the precession period
(see Appendix C) due to the binary is ~4 x 10 yr. Of course it is
shorter closer to the star, but this remains comparable or larger
than the age of the system except in the innermost parts of the
disk. Hence still observing the asymmetry today at 500 au should
not be surprising even if was created a long time ago. However,
our mechanism cannot explain the reversed asymmetry at shorter
distance. This inversion presumably corresponds to a spiral den-
sity wave extending across the disk that needs a steady-state per-
turbation to be sustained over a long enough timescale.

4.2. The effect of a stellar encounter

In Sect. 3, we discussed the possibility that a stellar fly-by could
have stabilized the planet mid-ejection. The effect of such en-
counters on a disk has been studied intensively (for example in
Breslau et al. 2014, Jilkova et al. 2016). This effect is of course
very dependent on the mass ratio of the stars and on the en-
counter periastron and eccentricity.

In fact, most encounters that would stabilize an unstable
planet are compatible with the current shape of the disk. We
can, for example, consider the case of a 1 M, star perturber.
The majority of the suitable encounters have periastrons supe-
rior to 1000 au (see Fig. 5). According to the computations of
Jilkové et al. (2016), this and the high mass of our star implies
that all the disk particles will remain bound. Indeed, the trans-
fer radius, that is the minimum radius where capture is possi-
ble, is well superior to the observed limit of the debris disk. For
our disk to be depleted, the transfer radius should be inferior to
~100 au, which corresponds to an encounter periastron around
250 au. Thus, though the problem is strongly underconstrained,
our scenario is likely to be compatible with the existence of the
disk.

4.3. Secular carving

The secular action of the planet orbiting the binary on its present
day large stabilized orbit is an obvious long-term source of per-
turbation on the disk. We note that we make here a clear dis-
tinction between the initial, short term perturbation triggered by
the planet on the disk during its ejection process, which effect
has been described in the previous subsection, and the long-term
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Fig. 6. N-body simulation showing the consequence of the ejection of a 11 M; planet through a disk. From left to right, the snapshots have been
taken 0, 1000 and 10000 years after the ejection. The planet starts on an hyperbolic orbit similar to what we observe in the simulations we
performed: @ = 10 au and e = 1.1 (corresponding to periastron ¢ = 1 au). Above is a spatial representation of the top view of the disk (the planet
trajectory is depicted in black), below is the density along the y axis, integrated over the x and z axis.

secular action of the planet as it moves on its distant bound or-
bit. It is known that eccentric companions (planets or substel-
lar) orbiting at large distance a star surrounded by a disk cre-
ate spiral density waves within the disk (Augereau & Papaloizou
2004). To a lesser extent, binaries do the same on circumbi-
nary disks (Mutter et al. 2016). The following study nevertheless
shows that the asymmetry currently observed in the HD 106906
disk cannot be due to the sole action of the binary, but rather
requires an outer source of perturbation like the planet, that en-
hances the density waves induced by the binary.

We investigate here the secular action of the planet on the
disk, combined with that of the binary, using simulations with
our Swift_HJS package. Of course with only a projected posi-
tion, our knowledge of the current orbit of the planet is sparse.
Some orbital configurations may nevertheless be ruled out as
they would lead to a destruction of the disk. Jilkova & Zwart
(2015) studied intensively the impact of each orbital configura-
tion on the disk via the percentage of particles that remain bound
Mbound and the fraction of bound particles that suit the observa-
tion constraints fyp. Although nor the disk neither the binary
was resolved at that time, their conclusion still can be used, at
least on a qualitative level. They showed that a planet periastron
larger than 50 au or an inclination larger than five to ten degrees
is enough to keep a relatively good agreement with the observa-
tions (fap > 0.5) without completely depleting the disk. How-
ever, to better match the observations (fy, > 2/3), the periastron
must lie outside the outer radius of the disk. The maximal in-
clination is constrained by the observation, that is about twenty
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degrees. No further constraints can be provided by the simulation
of Jilkova and Zwart to rule out any inclination between zero and
20 degrees if the planet orbit does not go across the disk. They
point out that Kozai-like mechanisms can lead to some wobbles
in inclination, but small enough for the disk to remain in a nearly
coplanar state.

Assuming that the planet fulfills these requirements, we com-
pute the asymmetries induced on the disk and compare the result
to the observation. The disk was initially made of 10000 test
particles with same initial conditions than in the previous subsec-
tion. The result of a typical run is displayed in Fig. 7. Basically,
if the periastron of the planet is close enough to the outer edge of
the disk, it generates an important asymmetry in the disk within
a timescale of between five and ten million years (~10® binary
periods, ~103 planetary orbit). In Fig. 8, the density profile has
been computed along the x axis. The resulting plot displays an
asymmetry similar to the observations: the east side (in blue) is
brighter than the west side on short scale, but its density drops
well above the west side density. The shape of the perturbation
resembles a circular arc, but it actually consists of two overlap-
ping spiral arcs, one driven by the planet and the other one cre-
ated by the binary.

This issue can be studied analytically. The approach is anal-
ogous to the study without binary, as conducted in Wyatt (2005).
Consider a test particle orbiting the binary. Suppose that the
planet has a Keplerian orbit around the center of mass of the
binary, so that the system is hierarchical. The instantaneous
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we observe today. The asymmetry seems to reverse when we get farther
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Hamiltonian controlling its motion can be written as
H = HKep + Hypjp + lea’ (7

where Hye, = —Gmg/2a is the pure Keplerian Hamiltonian, and
where the two remaining terms constitute the disturbing func-
tion, one part arising from the binary, and the other part from
the planet. For a binary of mass parameter y, these independent
perturbations are written

Gmg(1 — ) Gm
Hyp = -——2 "R B Hyep; @®)
Ir — urs| Ir— (1 - rs
1 r-r
lea = _Gmp - —3 | )
|r_rp| rp

where, in a frame whose origin is at the center of mass of the bi-
nary, r is the position vector of the particle, rg is the radius vec-
tor between the two individual stars, m;, is the mass of the planet,
and ry, is its position vector. More generally, B subscribed quanti-
ties will refer to parameters of the binary, p subscribed quantities

to the planet, while unsubscribed parameters will correspond to
the orbiting particle.

Both terms of the disturbing function are then expanded in
ascending powers of the semi-major axis ratios ag/a and a/a,,
truncated to some finite order (three here) and averaged indepen-
dently over all orbital motions, assuming implicitly that the par-
ticle is not locked in any mean-motion resonance with the planet
or with the binary. Higher orders terms of the disturbing func-
tion will be neglected on initial examination, but their influence
will be studied in a forthcoming paper. The secular evolution of
the particle’s orbital elements is then derived via Lagrange equa-
tions. Details on this procedure are given in Appendix C.

Starting from a disk made of particles on circular orbits, we
use this theory to compute their instantaneous polar coordinates
(r(1), 6(1)) in the disk and compute theoretical synthetic images.
The result is shown in Fig. 9, which must be compared with
Fig. 7. We note the presence of a circular arc very similar to the
one obtained in the numerical simulation. This peculiar shape
is due to the combination of two spiral waves winded in oppo-
site senses, induced by the planet and the binary via differential
precession and eccentricity excitation on the disk particles.

The test particles precession velocities and periastrons are
represented in Fig. 10 as a function of their semi-major axis. In
the inner part of the disk, the precession is dominated by the
binary, so that the speed of the orbital precession decreases with
increasing semi-major axis. The results is a trailing spiral wave
that can be seen in Fig. 9. Conversely, in the outer part of the
disk, the precession is mostly due to the planet, so that its is
now an increasing function of the semi-major axis. This creates
a leading spiral density wave. The superposition of both spirals
in the intermediate region generates the observed circular arc.
The exact location of this arc corresponds to the periastron of
the particles whose semi-major axis minimizes the precession
velocity, that is, around 55 au. Moreover, we see in Fig. 10 that
all particles from a ~ 60 au to ~100 au have the same periastron.
The combination of the two effects enhances the density of the
arc, as can be observed in Figs. 7 and 9.

The two spirals are, however, not fully independent. Orbital
precession of the particles actually has no visible effect on their
global distribution in the disk as long as their orbits are circular.
In Appendix C, we show that due to the small size of its orbit
and its mass ratio close to one, the binary has very little influ-
ence on the eccentricity of the particles compared to the planet,
even in the inner part of the disk. In fact, while the outer spi-
ral is fully due to the planet, in the inner spiral, the eccentricity
oscillations are also driven by the planet, while the precession
is controlled by the binary. Moreover, the contrast of the den-
sity wave highly depends on the planet orbital shape (the ampli-
tude of the eccentricity oscillations is roughly proportional to e,
within our approximation). For example, if the planet apoastron
is 1000 au, its periastron should be less than 500 au (e > 0.3) in
order to create a significant asymmetry as the one we observe, in
a reasonable timescale.

5. Discussion
5.1. Disk cavity

In the previous sections, we did not study the origin of the large
cavity observed within the disk by Lagrange et al. (2016a) and
Kalas et al. (2015). It is possible that one or more unseen planets
could have carved and sustained this cavity. In that case, one of
those unseen planet may be responsible for the ejection of the
known one, instead of one of the binary star. Those planet(s), if
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on eccentric orbits, could also influence the shape of the disk
(Lee & Chiang 2016). Therefore, we ran N-body simulations
with the Swift. RMVS package (the same setting as in the Debris
Disk section) to quantify at first order the minimum mass of a
single planet, checking if it can carve the observed cavity be-
tween the two belts of debris surrounding the pair of stars. This
assumes that if one planet alone is responsible for gap, its mass
will be higher than in the case where multiple planets are consid-
ered. The end result must reproduce the inner edge of the cavity
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Fig. 11. Minimum mass of planets (in Jupiter masses) that can be de-
tected into the H2 data published in Lagrange et al. (2016a) around
HD 106906. The contrasts has been translated into masses using
Baraffe et al. (2003) model adapted to the SPHERE filters.

at 13 Myr located between 10 and 15 au (inferred from the IR
excess modeling, Chen et al. 2014). We assume that the outer
edge of the cavity around corresponds to the separation of the
ring (65 au) measured on the SPHERE images (Lagrange et al.
2016a). The simulations give a minimum mass of 30 Mj for a
single non-eccentric planet located at 30 au, which is well above
the detection limits in Fig. 6 of Lagrange et al. (2016a). How-
ever, the disk is viewed edge-on, so that the coronagraph used
during the observation (radius of 93 mas or 9.5 au) hides part
of the orbital plan. In Fig. 11 we computed a 2D detection-limits
map from the data published in Lagrange et al. (2016a). The map
confirms that a small zone around the coronagraph has detection
sensitivity above 30 Mj. An additional giant planet on a 30 au
circular orbit will spend 20% of its time (ten years) in this blind
zone and therefore could have been missed. For the case of an
eccentric orbit, the mass of the perturber could be only 1 Mj.
This is too low compared to the known planet mass to produce
an ejection, but high enough to have a noticeable effect on the
disk morphology.

5.2. Alternative scenarios

Our scenario makes use of standard ingredients (resonances,
migration, scattering, fly-by) envisioned or observed in young
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planetary systems (Baruteau et al. 2014) and account for all
known components of the system. Nevertheless, the low prob-
ability of occurrence we estimate in Sect. 3 because of the need
for a nearby star fly-by at the right time makes the scenario im-
plausible. If we suppose that the planet was in fact on a stable or-
bit before the fly-by, then this fly-by event could have happened
at any time, and not necessarily during the early age of the sys-
tem. However, the probability for a fly-by to have a significant
effect on the planet without ejecting it decreases dramatically
when the planet gets closer to its host star. Taking the data from
Parker & Quanz (2012), we can expect a probability of around
0.1 for a disruption superior to 10% on eccentricity without ejec-
tion for a 30 au Jovian planet in the system lifetime. Among the
disruptive encounters, it is then hard to tell how many would put
the planet on a suitable orbit (apoastron greater than 700 au, that
is e > 0.75). Plus, such a change of orbit would lead to a very
small planet periastron, which will strongly deplete the disk (see
Sect. 4.2).

Alternatively, the planet could have been stolen from an-
other system. Indeed, captured planets tend to have eccentric or-
bit (Malmberg et al. 2011). However, for the final orbit to be so
wide, the initial orbit must also have been wide (Jilkova et al.
2016). All in all, such a scenario would only turn over the prob-
lem, as we would have to account for the wide initial orbit on the
first place.

Conversely, the disk could replace the fly-by in our scenario.
Indeed, to follow the idea of Kikuchi et al. (2014), the planet
could have been accelerated by the gas at its apoastron after a
first scattering, and its orbit could have been rendered stable this
way. It is interesting to note that some of the circumstellar disks
of ~2.5 M, stars recently resolved with ALMA at high angu-
lar resolution shows gas extending up beyond the separation of
HD 106906 b (e.g., Walsh et al. 2016, and references therein).
The total mass of HD 106906 A and B is around 2.7 M and it
is therefore possible that the binary bore such an extended pri-
mordial disk that would have circularized the orbit of the ejected
HD 106906 b.

Before the discovery of HD 106906AB binary status that
indicates strong gravitational interactions, Bailey et al. (2013)
suggested that it may have formed in situ. On the one hand,
the existence of extended protoplanetary disks implies that our
planet may have formed in HD 106906AB primordial disk. On
the other hand, HD 106906 b is not the only planetary-mass com-
panion detected at very large projected separation, and such bod-
ies have usually no known scatterers in their environment (see
Bryan et al. 2016, even though their study was conducted over a
small number of systems less wide than HD 106906 and with
lighter stars). Among the systems harboring a planetary-mass
companion of similar separation and mass ratio, we can name
HIP 77900% (Aller et al. 2013), HIP 78530 (Lafreniére et al.
2011), or the triple system Ross 458 (Goldman et al. 2010). In
Fig. 12, we represented the wide young planetary-mass compan-
ions discovered by direct imaging. We note that HD 106906 b
has the lowest planet/star mass ratio above 100 au. The prox-
imity of HIP 78530A b and HIP 77900A b (two brown dwarfs
that are also part of Sco-Cen) in that diagram, could indicate that
HD 106906AB b formed in situ (within the disk, or like a stellar
companion).

2 Contrary to HD 106906 b, HIP 77900 b has not been confirmed by
the common proper motion test. Nonetheless, Aller et al. (2013) argue
that low-gravity features in HIP 77900 b spectrum is compatible with
the object being a member of Sco-Cen, and therefore a plausible com-
panion to HIP 77900 A.
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Fig. 12. Planet mass ratios with respect to projected separation. Only
planets that belong to young systems (<0.1 Gyr) are displayed, with the
exception of the circumbinary planet Ross 458 c. HD 106906 b has the
lowest mass ratio beyond 100 au. HIP 78530 b and HIP 77900 b are its
two closest neighbors in the diagram. Being identified as brown dwarfs,
they may have formed in situ by cloud collapse. Data retrieved from the
exoplanets.eu database.

6. Conclusion

We have shown that HD 106906 AB b could have formed within
the primordial disk and be scattered away on a wide orbit dur-
ing the first ten million years of the system life. This scenario
involves the combination of disk-induced migration and mean-
motion resonances with the binary. However, if the scattering is
likely to occur, the stabilization of the planet on its current wide
orbit is delicate, and requires more than gravitational interac-
tions with the binary. A fly-by scenario has been suggested, but
the stabilization only occurs for a restricted part of the overall
encounters trajectories. The low density (<0.11 stars/pc?) that
we estimated for the LCC makes a close encounter even more
unlikely.

The disk has multiple features, that each could be explained
within the frame of our scenario, but also outside of this frame.
Two spiral density waves are created if the planet have for the last
ten million years had an eccentric orbit with periastron around
200 au. A needle extending to 500 au could have been created
by the ejection of the planet, but a smaller needle could be pro-
voked by an eccentric and inclined outer orbit (see Fig. 7) or
by an eccentric inner orbit (Lee & Chiang 2016). Nesvold et al.
(2017) also studied the secular effect of an eccentric, inclined
outer orbit for HD 106906 b in a recent paper, and could produce
asymmetries whose brightness repartition is consistent with the
observations.

The scenario we explored builds on the observed compo-
nents of the system (disk, binary star) and on the hypothesis that
the planet could not have formed via core accretion or gravita-
tional instability at several hundreds of au. Nevertheless, the low
probability of occurrence of our scenario demands that we re-
consider those assumptions. Alternative hypothesis like the cir-
cularization of the planet orbit via the interaction with the disk
gas or in situ formation could explain the present architecture
of the system. But this requires that the disk extends up to the
separation of the planet and contains enough gas at that separa-
tion. Recent high quality images of circumstellar disks extending
beyond 700 au around massive stars and the close properties of
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other systems in Sco-Cen (HIP 78530A b and HIP 77900A b)
argue for this alternative formation pathway.

Finally, we note that many of the methods depicted here are
easily generalizable to other circumbinary environment. N-body
simulations with a simple migration force can be applied on any
circumbinary planet to have a quick overlook of the stability of
its early trajectory. Fly-by may not be the most efficient pro-
cess to stabilize a planet, because of the rarity of suitable close
encounters. Destabilization by a fly-by is much more probable.
Finally, ejection, outer and inner orbits can create huge asymme-
tries in the disk during the first ten million years of a system. In
particular, an inner orbit enhances the dynamical perturbations
created by an outer orbit by speeding up the precession, while
the outer orbit if eccentric can enhance the perturbations created
by the inner orbit by providing eccentricity to the disk.
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Appendix A: Ad hoc force to account for type Il
migration

We searched for a coplanar migration force Fy,;, that induces a
constant variation of the planet average semi-major axis, but no
change in the planet average eccentricity, nor in the periastron
longitude. Let Fri; = Fe, + Fgeq be the description of the force
in the local referential attached to the planet movement. Gauss
equations are (Duriez 1992):

d
cd—“ = 20%(Fy + eF iy - €,); (A1)
de
Ca =r(e+cosO)Fy+a(l — ez)Fmig - ey (A.2)
d
Ced—c: =rsin0Fy —a(l — ez)Fmig - ey, (A.3)

where e, and e, are the vectors in the fixed frame and C =

VGMa(l - ¢%). We want to assume a simple form for F, and
Fy that could then be easily averaged over time. The simplest
position-dependent force would be F, = A(1 + ccosu) et Fy =
B(1 + dcosu), where A, B, ¢ and d are unknown functions of
(a, e), constant at first order over a one-period integration. Our
conditions are then summarized to:

da 2BV1 —¢e2

T Umig — T Umig (A4)
o

d—f =0 & BQe*d -3¢ +3e-2d) = (A.5)
-

d_‘;’:o — AVI-e2(c-2¢)=0 (A.6)

where n = \/GM/a? is the mean motion. Taking A = 0, B =
NUmig/(2 V1 — €2), any ¢ and d = 3¢/2, we finally obtain Eq. (4).

Appendix B: Location of mean-motion resonances

Equation (1) gives the semi-major axis of a resonant circumbi-
nary planet when its orbit is purely Keplerian. When we take
into account the perturbation caused by the binary on the planet
orbit, the commensurability of periods that characterizes MMRs
can not be easily associated with a semi-major axis, mainly due
to orbital precession.

The movement of a circumbinary planet (binary of mass pa-
rameter ) is controlled by the Hamiltonian

G 1- 1
H=-"""_ Gmg K, a ——) (B.1)
2a |r+uprsl  Ir—(1—wre| |r|
= HKep + Hyip, (B.2)
where Hgep = —Gmg/(2a) is the Keplerian Hamiltonian, and

where Hy;, is given by Eq. (8). If the planet orbits at sufficiently
large distance from the binary, Hy, is a perturbative term that
triggers orbital evolution of the planet. This can be investigated
analytically via a truncated expansion of Hy, in ascending pow-
ers of ag/a, and an averaging over both orbital motions. To low-
est order, this yields

_p(d =) Gmpai 3ei +2
4 @ (1-e)?

Hypip =~ (B.3)
Strictly speaking, this approximation is not valid at the exact lo-
cation of MMRs, as the motions of both orbits are not indepen-
dent anymore, but it gives a good insight of the perturbation of

the planet orbit when it is near the MMRs. Moreover, numeri-
cal verifications show that this order two approximation is still
relevant for a > 3ag, and could thus be made to study the 1:6
resonance. Lagrange equations (Duriez 1992) then give

dw _ 3u( - (aB)2% +1
- 4 " = e2)2’ (B-4)
_ +1
A YW, (@) 2 2% viTe) s,
dr a 1_62)2 dr
(B.5)

where n is the Keplerian mean-motion. Thus, if Ty(a) is the
Keplerian period 2r/n, then the period of the mean longitude
T/l is

To(a)

2+1( 1
1+
(1—62)2 V1 —¢2

(B.6)
1+

3#(14— ) (aB )

The MMR configuration is characterized by the steadiness of
o =(p+q)/qids — p/qd — w. However, in our study, the planet
orbit remains almost circular until ejection, so that the planet
line of apsides is not a good reference. Taking the binary line
of apsides (constant in time) as the new reference, the resonance
characterization writes T, = p/(p + ¢)T. All in all, the resonant
location a, satisfies

p
ptq

Ta(ares) = Tg. B.7)

Appendix C: Spiral density wave

As mentioned in the text, the motion of a particle moving in a cir-
cumbinary disk is controlled by the Hamiltonian Hgep + Hpin +
Hyja, where Hyi, and Hp, are perturbative terms given by Egs. (8)
and (9). Following the approach of Wyatt (2005), these terms are
then expanded in ascending powers of ag/a and a/ay, truncated
to some finite order and averaged over the orbital motion of both
orbits (see Laskar & Boué 2010). To second order and third or-
der, the result is

U = p(l —p) Gmpag, seg+1  1Gmya® 3> +1
2 == - = )

(C.1)

4@ a-F 4 q (1-e)
Un = 15u(1 — p)(1 = 2u) Gmpas, e cos(w — wp)ep(3ej + 1)
T 16 at (1 —e2)}
15 Gmya® e, cos(w — wple(3e? + 1)
e P : (C.2)
"6y (1-¢p)?

In HD 106906 configuration, the binary mass parameter is very
close to 1/2, and the semi-major axis of the binary is very small
compared to the distance between the binary and the relevant
part of the disk, between 50 and 100 au. Thus, the binary part of
U; can be neglected. Using Lagrange equations, we derive the
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equations of evolution:

do 3 (aB)2 e2+1 3m, (a)3 Vi—e?
dw_ > (98) 2%BT° 2 (d) Nl—e
de 16 \a/) (1-¢2? 4mp \ap) (1 _eg)%
15 m, ( a )4 V1 - 2 cos(w—wp)(1 + %) ©3)
- — —nep| — ; .
16mg ° ap e(l _812))%
de 15m a \* sin(w — wp)
@ 16m (_) —— (C4)
B p (] —ep)z
W _ 3, (o s+l _Tmy (1)3 (1+3e)
dr 16 a (1-e>? 4mp ap) (- e%)%
15m 4 cos(w — wp)(1 + Ze? + 264
. __Pnep(i) Woolr3eti) s
16 mp ap e(1 —eg)i

where M is the mean anomaly, n = /Gmg/a? is the mean mo-
tion and a is a constant of motion in the secular regime. As we
want to study the evolution of an initially almost circular parti-
cle orbit, we note that we cannot neglect the planetary part of
Us, because of the 1/e factor in dw/dt. The two first equation
are coupled, Eq. (C.5) will be solved in a second phase after in-
jection of their solution. These equations are nonetheless irreg-
ular for small eccentricity regime. Thus, we will use the com-
plex variable z = e exp(iw) to render them regular (Wyatt 2005).
Moreover, from Eq. (C.4), we can deduce that the eccentricity
is maximum when w = wy. This information, combined with
the initial value of the Hamiltonian, allows us to compute the
maximal eccentricity as a function of a. These maximums prove
themselves to be less than 0.5 in any case, so that we can lin-
earize the system in z for an easier solving. It yields

j—j = i((Ap,1 + Ap1)z - Ap2). 7= eexplio), (C.6)
where

Apy = 13—6 (%B)z(%eg + 1), (C.7)
Apy = %Z—Zn(;’—j (1-e2) " (C.8)
Aps = %%ne}, (%)4 (1-e2)" (C.9)

‘We now solve the system and get the eccentricity, precession and
mean anomaly as a function of time. For null initial eccentricity,
it is written

2Ap2 . (ABI +Apl)t
1= - - - ; C.10
e(r) Apy + Ay, ln( 5 ( )
A1 +A
w(t) = B"T‘“z (mod 1) - g + Wy (C.11)
7 1
M) =(n+ AB,I - §AP’] + gApyz)l‘ + M(0). (C.12)

If we represent the motion of z on the complex plane, we get ex-
actly the circle depicted in Fig. 2 of Wyatt (2005). These formula
were used to generate Fig. 9.
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Appendix D: Density of stars around HD 106906

The first step to investigate the density of stars around the
HD 106906 system is to build a complete list of known mem-
bers in the LCC subgroup of the Sco-Cen association. Our list
of LCC members is based on previous surveys of this region
(De Zeeuw et al. 1999; Preibisch & Mamajek 2008; Song et al.
2012; Pecaut & Mamajek 2016) and consists of 369 stars. In the
following, we estimate the current density of stars around the
planetary system and its evolution in time. Thus, our methodol-
ogy requires prior knowledge of the distances, proper motions
and radial velocities for the individual stars in our sample.

The Tycho-Gaia Astrometric Solution (TGAS, Lindegren
et al. 2016) from the Gaia data release 1 provides trigonomet-
ric parallaxes and proper motions for 203 stars in our sam-
ple. To access more proper motion data, we also searched for
this information in the PPMXL (Roeser et al. 2010), UCAC4
(Zacharias et al. 2012) and SPM4 (Girard et al. 2011) catalogs.
Doing so, we find proper motions for 368 stars of the sample.
We use the TGAS proper motions for the 203 stars and take
the weighted mean of the multiple measurements given by the
other catalogs (PPMXL, UCAC4 and SPM4) for the remain-
ing 165 stars. Then, we searched the SIMBAD/CDS databases
(Wenger et al. 2000) for radial velocity information using the
data mining tools available on the site. The radial velocities
that we use in this work come from Wilson (1953), Duflot et al.
(1995), Barbier-Brossat & Figon (2000), Torres et al. (2006),
Gontcharov (2006), Holmberg et al. (2007), Mermilliod et al.
(2009), Chen et al. (2011), Song et al. (2012), Kordopatis et al.
(2013) and Desidera et al. (2015). We found radial velocity for
184 stars of our sample.

We apply the methodology developed by Bailer-Jones (2015)
to convert parallaxes into distances (see Sect. 7 of his paper).
The systematic errors of about 0.3 mas in the TGAS parallaxes
reported by Lindegren et al. (2016) were added quadratically to
the parallax uncertainties. The three-dimensional position of the
stars are calculated from the individual distances in a XYZ grid
where X points to the Galactic center, Y points in the direction
of Galactic rotation, and Z points to the Galactic north pole. The
reference system has its origin at the Sun. Then, we use the pro-
cedure described in Johnson & Soderblom (1987) to compute
the UVW components of the spatial velocity for each star that
are given in the same reference system. We perform a 3o clip-
ping in the distribution of proper motions, parallaxes, radial ve-
locities and spatial velocities to remove obvious outliers. This
procedure reduces the dataset to a total of 312 stars, but only
141 stars in this sample exhibit published radial velocities and
102 stars have complete data (proper motions, radial velocities
and parallaxes). Based on this subset of 102 stars we calcu-
late a revised mean spatial velocity of the LCC association of
(U, V,W) = (-8.5,-21.1,-6.3) + (0.2,0.2,0.2) km s~ (not cor-
rected for the solar motion).

We note that 39 stars in the sample of 141 stars with known
radial velocities do not have published parallaxes in the TGAS
catalog. Individual parallaxes (and distances) can be inferred for
these stars from the moving-cluster method under the assump-
tion that they are co-moving. This method uses proper motions,
radial velocities and the convergent point position of the mov-
ing group to derive individual parallaxes for group members
(Galli et al. 2012). We emphasize that the so-derived kinematic
parallaxes are meaningful and provide valuable information in
this work to increase the number of stars with measured par-
allax in our sample. We adopt the space motion listed above
and the formalism described in Sect. 2 of Galli et al. (2017) to
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Fig. D.1. Evolution of the density of stars for different radii around the
HD 106906 planetary system. The colored regions indicate the upper
and lower limits (at the 1o level) for the density of stars at a given
radius.

estimate the convergent point position and the kinematic par-
allaxes for each group member. Using a velocity dispersion of
o, = 1.5 kms~! and distance estimate of 120 pc for the LCC as-
sociation (see e.g., de Bruijne 1999) we find a convergent point
solution located at (acp,dep) = (104.8°,-37.2°) + (1.0°,0.8°)
with chi-squared statistics X?e 4 = 0.92 and correlation coeffi-
cient of p = —0.98. To gain confidence in the so-derived kine-
matic parallaxes we compare our results with the trigonomet-
ric parallaxes from the TGAS catalog for the stars in common.
We find a mean difference of 0.1 mas and rms of 0.6 mas, that
are significantly smaller than the typical error on the kinematic
parallaxes (~0.8 mas) derived from the moving-cluster method
in this analysis. This confirms the good agreement between the
two datasets. Thus, the final sample with complete information
(proper motion, radial velocity and parallax) that we use in this
work to estimate the early density of stars around HD 106906
consists of 141 stars.

In a subsequent analysis, we consider the present day lo-
cation of the 141 stars and use the UVW spatial velocity for
each star to calculate their XYZ positions backward in time.
We compute the stellar positions as a function of time in steps
of 0.1 Myr from ¢t = 0 (current position) to t = —14.0 Myr.
The latter value is chosen to be consistent with an upper limit
for the age estimate of the HD 106906 system as derived by
Pecaut et al. (2012) from different evolutionary models. Then,
we count the number of stars in the vicinity of HD 106906 for
different radii (r = 5,10, 15, ...,30 pc) and determine the den-
sity of stars around the target. Figure D.1 illustrates the results
of this investigation. Our analysis indicates that the early den-
sity of stars around HD 106906 (at + = —7.7 Myr) was higher
than the current value by a factor of about 1.7 for » = 5 pc. At
this stage it is important to mention that our result for density of
stars is restricted to known members of the LCC association with
complete data in our sample for which we can calculate spatial
velocities and compute their positions back in time. As soon as
new data (parallaxes and radial velocities) from the upcoming
surveys (e.g., Gaia) become available and other group members

- = LCC
- = field
—— LCC +field

0.5
|

0.4

Density (stars/pc®)
0.3

0.2
|

0.1

e S aE e e o

0.0

T T T T T T
5 10 15 20 25 30

radius (pc)

Fig. D.2. Current density of stars in the vicinity of the HD 106906 sys-
tem inferred from LCC cluster members and field stars. The colored
region indicates the upper/lower limits (at the 1o level) for the final
density of stars (cluster + field) at different radii around the target.

are identified, a more refined analysis of this scenario will be
made possible.

One alternative approach to better constrain the density
of stars around HD 106906 consists of investigating the
contribution of field stars (not related to the LCC association)
in our solution. In this context, we use the model of stellar pop-
ulation synthesis from Robin et al. (2003) to simulate a cata-
log of pseudo-stars and their intrinsic properties (e.g., distances,
spectral types, ages, magnitudes, etc.) in the direction of the
HD 106906 system. We run the model with a distance range
from 0 to 300 pc and a solid angle of 20 deg® centered around
the target. These values are chosen to include known members of
the LCC association that is clearly spread in angular extent and
exhibits significant depth effects along the line of sight. We do
not constrain our simulations in magnitudes and spectral types
to get a more complete picture of the stellar population in this
region. We use a distance step of 0.5 pc in our simulations that
is the minimum value that can be used in the model. The syn-
thetic stars are all supposed to be at the same coordinates. So,
we run a number of 1000 simulations to generate random coor-
dinates for the simulated stars and use them (together with the
distances provided by the model) to calculate the stellar three-
dimensional positions in the XYZ grid. Figure D.2 shows the
density of stars around HD 106906 for different radii obtained
from our sample of LCC stars, the pseudo-stars from our simu-
lations and a combined result that includes both (cluster + field).
Although this analysis cannot be extrapolated backward in time
(as in Fig. D.1), it yields a more refined value for the current
(t = 0) density of stars. However, we emphasize that the re-
sults obtained for small radii around the target (i.e., r < 5 pc)
are calculated with a small number of stars (typically, less than
ten stars) and they should be regarded with caution. Thus, we
conclude that the present-day density of stars in the vicinity of
the HD 106906 system for r > 5 pc is <0.07 stars/pc? (within the
1o error bars). We infer from the results presented in Fig. D.1
an upper limit of ~0.11 stars/pc® for the density of stars around
HD 106906, a result that will need further confirmation as soon
as more data becomes available.
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3.2 Refining the scenario

Two years after the Rodet et al| (2017) study, the release of Gaia data allowed for
a deeper study of the system’s neighborhood. Taking into account Gaia proper
motions and additional radial velocity measurements, |De Rosa & Kalas| (2019) ev-
idenced two stellar candidates, HIP 59716 and HIP 59721, possibly bound, that
might have had a close fly-by with HD 106906 some million years ago. This fly-by
could have been the crucial ingredient to prevent the planet from being permanently
ejected from the system after a scattering by the binary host star, in the scenario
described in |Rodet et al. (2017) above.

We then collaborated to write another paper studying the impact of the fly-
by, given the information on the perturbers (Rodet et al.|[2019). In this paper,
I first present the code ODEA, that handled hierarchy changes but not yet close
encounters. I ran a set of 10,000 4-body simulations, computed their effect on the
planet, and compared it to theoretical predictions. The paper sets an upper limit
to the distance at closest approach, in order to have a dynamically significant fly-by
(significant decrease of the planet eccentricity, raise of the planet elevation above
the disk plane, disk warp): 0.01-0.05 pc depending on the planet initial apoastron.
It confirms that such a close fly-by is possible from both perturbers, though the
precision on the relative parallax and radial velocity does not conclude the study.
The entire study, submitted to A&A, is detailed below.
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ABSTRACT

Context. Symplectic integrators are widely used in orbital dynamics. However, they have been developed for Solar
system-type architectures, and can not handle evolving hierarchy, in particular in systems with two or more stellar
components. Such configuration may have occurred in the history of HD 106906, a tight pair of F-type stars surrounded
by a debris disk and a planetary-mass companion on a wide orbit.

Aims. We present the new algorithm ODEA, based on the symplectic algorithm SwirFT Hus, that can model any system
(binary,...) with unstable architecture. We study the peculiar system HD 106906 as a testcase for the code.

Methods. We define and compute a criterion based on acceleration ratios to indicate when the initial hierarchy is not
relevant anymore. A new hierarchy is then computed. The code is applied to study the two fly-bys that occurred on
system HD 106906, recently evidenced by De Rosa & Kalas (2019), to determine if they could account for the wide
orbit of the planet. Thousands of simulations have been performed to account for the uncertainty on the perturbers
coordinates and velocities.

Results. The algorithm is able to handle any change of hierarchy, temporary or not. We used it to fully model HD
106906 encounters. The simulations confirm that the fly-bys could have stabilized the planet orbit, and show that it can
account for the planet probable misalignment with respect to the disk plane as well as the disk morphology. However,
that requires a small distance at closest approach (< 0.05 pc), and this configuration is not guaranteed.

Conclusions. ODEA is the natural choice for the study of non-Solar type architecture. It can now adapt to an evolving
hierarchy, and is thus suitable to study capture of planets and dust. Further observations of the perturbers, in particular

their radial velocity, are required to conclude on the effects of the fly-by on system HD 106906.

Key words.

methods: numerical — celestial mechanics — planets and satellites: dynamical evolution and stability —

planets and satellites: individual: HD 106906 — planet-star interactions - stars: kinematics and dynamics

1. Introduction
1.1. Symplectic algorithms

In the context of the rapid increase of exoplanet discoveries,
the need for efficient N-body simulations has become strong
to model the evolution of complex systems and the inter-
action between planets, planets and debris disk, or within
debris disks. Symplectic integrators are widely used for dy-
namical simulations of planetary systems, as they present
two major advantages with respect to other N-body inte-
grators: First, they exhibit no long-term accumulation of
energy error, which is essential to ensure orbital stability
through the integration. On the other hand, they provide
a gain of at least one order of magnitude in computation
speed, for equivalent accuracy, because they allow one to
adopt a much larger time-step than other integrators for
the same result. In 1991, Wisdom and Holman devise the
first symplectic map specifically designed for N-body prob-
lems with a central dominant mass (Wisdom & Holman
1991). Since then, numerous codes implemented this struc-
ture that are still widely used today (e.g., SWIFT, Levison
& Duncan 1994, Mercury Chambers 1999).

Yet, sympleptic integrators can model the interactions
between multiple stars, moon, or simply planets whose mass
are non negligible with respect to the central mass as well.
They are versatile tools well suited to characterize the great
diversity of extrasolar system architectures, well beyond the
framework of our Solar System. Efforts were made to ex-
tend the scheme to binary stars in two modified versions of
Mercury (Chambers et al. 2002), but it could not be gen-
eralized to multiple systems with other hierarchies. In this
context, Beust (2003) designed a symplectic scheme valid
for any type of hierarchical architecture, and implemented
it with SwWiFT HJs. This generalized the theoretical frame
of Wisdom and Holman to any hierarchical system.

However, in SWIFT HJS, the hierarchical structure of
the system is given at the beginning of the run and must
be preserved along the integration. This is a severe limita-
tion as it prevents the efficient modeling of non stable hier-
archies with e.g. orbital captures (planets, dust), whereas
such situations may be numerous among young systems.
With SwirT His, handling accurately such configurations
is only possible adopting a very small time-step, which is
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of course not optimal. This motivated us to build a new
version of SWIFT HJS, ODEA, that tackles this issue.

In the following, we describe the new code in detail,
and present a full application to the complex system of
HD 106906. Before that, we present this system and our
motivations for modeling it and using it as a benchmark
for our new code.

1.2. HD 106906

The system HD 106906 (HIP 59960) is located at a dis-
tance of 103.3 + 0.5 pc (Brown et al. 2018) and belongs to
the Lower Centaurux Crux (LCC) group, which is a sub-
group of the Scorpius-Centaurus (Sco-Cen) OB association
(De Zeeuw et al. 1999). The LCC group has a mean age of
15 + 3 Myr, with an age spread of 6 Myr (Pecaut & Ma-
majek 2016). HD 106906 is a 2.58 + 0.04 M, spectroscopic
binary star, on an eccentric (0.66) and tight (0.6 au) or-
bit (Lagrange et al. 2019). Moreover, high contrast imaging
has revealed an asymmetric debris disk (Kalas et al. 2015;
Lagrange et al. 2016) and a giant planet on a wide orbit
(projected separation from the binary: 735 &+ 5 au, Bailey
et al. 2013). At such a separation, the planet relative motion
can not be detected with present imaging instruments on a
reasonable time basis. The orbital inclination with respect
to the plane of the disk is probably significant (20°), but
a coplanar configuration cannot be excluded. The planet
mass has been estimated at 11 &9 M; mass from hot-start
models by Daemgen et al. (2017).

Two major scenarios compete for the formation of giant
planets (e.g., Baruteau et al. 2016). In the core accretion
scenario, planets begin their formation with the growth of
dust grains and the formation of planetesimals, that will
slowly accrete each other to form terrestrial planets or plan-
etary cores. On the other hand, the gravitational instability
scenario is a faster process that is able to form giant planets
at large separation from an instability in the protoplanetary
disk. In both cases, planet formation takes place in the pri-
mordial gaseous disk. Forming a giant planet at 700 au or
more from any central star appears very unlikely in any of
those scenarios, first due to the lack of circumstellar gas at
that distance, and second because the corresponding for-
mation timescale would exceed the lifetime of the gaseous
disk. This led Rodet et al. (2017) to propose a dynamical
scenario to account for the planet’s current separation. The
scenario involves a traditional planetary formation within
the gaseous disk, an inward migration and a subsequent
scattering by the binary. However, for the planet to remain
bound, an external perturbation such as a fly-by is neces-
sary in order to reduce its eccentricity and stabilize its orbit
in a bound configuration.

Recently, De Rosa & Kalas (2019) investigated the stel-
lar neighborhood of system HD 106906 in Gaia DR2 (Brown
et al. 2018), and discovered two stars that have recently
come within 1pc of the central binary HD 106906 AB.
Given the uncertainty on the perturbers distances and ra-
dial velocities, De Rosa & Kalas concluded that there was
a possibility that the fly-by was dynamically significant for
the planet evolution history. This motivates us to reinvesti-
gate the Rodet et al. (2017) scenario, using ODEA, to check
this possibility.
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2. Algorithm
2.1. Structure of the code: SWIFT HJs

Let us consider the gravitational N-body problem, with
masses (m;)i=1,. n, positions (7;);=1, n and impulsions
(p;)i=1,..,n. The Hamiltonian is

al Pi2 Gmimj
H=3 g X T (1)

r
v 1<i<j<N v

where G is the constant of gravitation and r;; = ||r; — 7]
is the distance between bodies 7 and j.

In the current version of SWIFT HJS, as in the other
similar codes, the integrator do not solve H exactly, but a
surrogate Hamiltonian H. The latter is chosen to be close
to the real one, and exactly solvable. In that case, the algo-
rithm is symplectic: it exactly preserves the areas in phase
space and exhibit no long-term drift of the energy.

In order to design a proper H in orbital mechanics, the
key idea is to split the Hamiltonian into two integrable
parts:

H=H, + Hg . (2)

Several splitting have been suggested (e.g., Wisdom
& Holman 1991; Saha & Tremaine 1994; Chambers 1999),
most of them consisting on a Keplerian part and a pertur-
bation part. Both parts are then integrable within computer
round-off errors. H corresponds to the successive integra-
tion of these parts separately. For a second order symplec-
tic integrator, a so-called leap-frog method can be used. It
consists in integrating Hg for At/2 (kick), then Ha for At
(drift), then again Hp for At/2 (kick), where At is the time
step.

SwIFT HJs is based on the Hierarchical Jacobi Sym-
plectic method introduced by Beust (2003), where the de-
scription is based on orbits instead of on bodies. An orbit
consists in a collection of two non-empty sets of bodies, the
set of centers and the set of satellites, that have empty in-
tersection. In all problems in orbital mechanics, a hierarchy
can then be defined as a collection of orbits comprising all
bodies satisfying the following rule: for all couples of orbit
k and [ # k, one of the three subsequent propositions apply

— orbits k and 1 have no common bodies (orbits k& and I
are foreign);

— orbit & is comprised in the centers or satellites of orbit
! (orbit k is inner to orbit 1);

— orbit [ is comprised in the centers or satellites of orbit
k (orbit k is outer to orbit 1).

A so-defined hierarchy is made of exactly N —1 orbits. In
SwIrFT HJs, the orbits are numbered from 2 to N. Finally,
we define uy and 75 as the total mass of the satellites and
centers respectively in orbit k. The total dynamical mass
in orbit k is then M = pg + 1 and the reduced mass
my, = N/ Mg.

In this formalism, a new set of N coordinates
(r'i,p'y)i=1,...~ are designed with a Jacobi-like approach:
r’). is the relative position of the center of mass of orbit
k’s satellites with respect to that of its centers, and p’,
is the relative conjugate momentum. The first coordinates
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Initial hierarchy
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Fig. 1. Example of hierarchy change in the case of a capture.
At first the red body orbits the yellow—blue pair. After a strong
interaction, it captures the small blue body.

Initial hierarchy New hierarchy

r’y and p’; are the position and impulsion of the center of
mass. These positions and conjugate momenta derive from
a canonical transformation that let the Hamiltonian invari-
ant. They can be expressed with the bodies coordinates as

DS >

i, satellites of k i, centers of k

> k- oy B (4)

1, satellites of k Fk i, centers of k MM

m;r;

Nk

m;r;

Pk

3)
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The Hamiltonian can then be split as follows

N
Hy = Z P Guemk (5)
P 2m, 4

_ Y. G
HB_Z r - Z

1<i<j<<N ij

(6)

When the hierarchy is sufficiently clear (that is if the
orbits are almost Keplerian), Hg < Ha. As Hp is a Ke-
plerian Hamiltonian describing N — 1 independent orbits,
the drift consists of evolving each Keplerian orbits. On the
other hand, as Hp depends exclusively on the positions,
the kick consists of a linear raise of the velocity, with an

acceleration a®B.

2.2. Building a new hierarchy

The above scheme is well adapted to lightly perturbed Ke-
plerian orbits in a fixed hierarchy, but becomes strongly un-
suitable if the initial hierarchy evolves, whether temporarily
or definitively (see example Fig. 1).

Thus, when the hierarchy is not relevant anymore (that
is the splitting in the initial Hx and Hp does not optimize
the error), a module of the algorithm will design a new hi-
erarchy from the current positions of the bodies. For this,
the algorithm computes a two-dimensional symmetric array
that compiles the Keplerian acceleration between two bod-

. K .
ies a, = GMk/rfj, where M, is the sum of the masses.

The strongest acceleration gives the first orbit, then the two
bodies are replaced by their center of mass and the array is
updated, and again until the last orbit comprises all bod-
ies. We first checked that this algorithm always returns the
existing hierarchy when no change is expected. Then, if the
computed hierarchy is different than the current one, the
hierarchy must be changed.

If the hierarchy needs to be changed, so is the time-step
At. We choose a Keplerian-like time miny T} /20, where

An2a3 |1 — e |
Ty = | — 7
k \/ 1 )

if orbit k is bound or if its smallest approach has not yet
occurred, or

2,73
4mery,

T = G M, (8)

otherwise. The choice to adapt or not the time step is given
to the user.

Strictly speaking, when changing the hierarchy, the sym-
plectic nature of the algorithm does not hold anymore, as
the splitting of the Hamiltonian is entirely based on the hi-
erarchy. This is also true for any change of the time step.
A new approximate Hamitonian is integrated from an al-
ready approximated scheme, which means that the error
budget raises potentially at each hierarchy change. How-
ever, the algorithm is designed for orbital dynamics, where
systems are not subject to frequent reorganization of their
architecture. Designing a new Hamiltionan when the initial
hierarchy is not suited anymore allows to limitate the error
on each orbit, which will otherwise become out of control.
This is basically the same problem as the one raised by close
encouters in planetary dynamics. When handling close en-
counters, Levison & Duncan (1994) (in SWIFT RMVS) and
Chambers (1999) (in Mercury) temporarily change the way
of splitting the Hamiltonian when transferring to H,4 the
part of Hp that concerns the close encounter, even some-
times changing the hierarchy to planetocentric. Conceptu-
ally, a close encounter within a planetary system can be
viewed as a temporary change of hierarchy that eventually
returns to the initial hierarchy. Here we are concerned by
changes that can be permanent.

2.3. Checking the relevance of the hierarchy

Performing a hierarchy change is quite costly, as all the ac-
celeration couples have to be computed at each step (multi-
ple operations that scale as O(N?)). Checking for a possible
change at each time-step, with the result that most of the
time the current hierarchy would be left unchanged, would
thus amount to a considerable loss of efficiency. Prior to
launching the entire hierarchy re-building process, an effi-
cient algorithm with a simpler criterion must be applied
to check whether it is appropriate or not. The most exact
criterion would be the theoretical energy error associated
to the symplectic mapping, but its computation is tedious
(grows as N*). The criterion must be fast to compute (max-
imum as N3, like the accelerations) and correlated to the
error.
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In Mercury (Chambers 1999), the criterion to spot close
encounters is the ratio between the relative distances and
the Hill radii, assuming the latter roughly constant. This
is a legit criterion for the study of the Solar system, but
it is not relevant to our case. Indeed, the Hill radius is not
easy to compute for eccentric orbit, it depends strongly on
the orbital parameters (which is subject to variation in the
general case) and it is not satisfyingly correlated to the

errors in a complex architecture.

We choose to compute at each step the ratio af / a?p

for each orbit k, and declare the hierarchy questionable if it
is higher than 0.2 for at least one orbit. The computation
of that criterion also scales as O(N?) in theory, but it uses
the acceleration a® that is already computed in any step of
the integration, so that the extra cost remains limited. In
a Solar-System like configuration, the derivation of the Hill
radius is based on a simpler consideration.

2.4. The case of test particles

The study of planetary systems often involved the study
of debris belts. In N-body simulations, the dust is modeled
at first order by massless bodies (or test particless) that
interact with the massive bodies but not with each other.
Test particles must be specifically considered in ODEA as
the handling of their hierarchy is slightly different. Indeed,
they are the only satellites of their orbit and their orbit is
invisible to the bodies and other test particles evolution.
When looking for a new hierarchy, ODEA will not consider
the test particles, for it searches foremost to optimize the
energy error budget related to the massive bodies.

When the hierarchy of the massive bodies changes, each
test particle must find its natural orbit given its relative
position. A similar procedure to the hierarchy building of
massive bodies is then performed. For a consistent hierar-
chy, the test particles have 2N — 1 possibilities for their
orbit: around one massive bodies (V) or around one orbit
(N —1). Thus, for each test particle, a 2N — 1 array is com-
puted, compiling the Keplerian accelerations. The maximal
element will correspond to the new particle configuration.

Finally, a test particle may also be subject to a hier-
archy change, independently of the massive bodies archi-
tecture evolution. Thus, the acceleration ratio criterion is
computed at each time step to check the suitability of the
particle orbit, and a new orbital configuration is investi-
gated if necessary following the previous procedure.

2.5. Comparison with other codes

Several symplectic algorithms have been introduced since
the formalization of the first symplectic map for orbital
mechanics, including the widely used Mercury (Chambers
1999). Most of them are designed to work in Solar-System-
like hierarchy. Chambers et al. (2002) introduced two algo-
rithms, derived from Mercury, to model planetary motions
in binary systems. However, to our knowledge, no symplec-
tic integrator are able to integrate indifferently any types of
hierarchy, or a more complex hierarchy, except from SWIFT
His.

Moreover, no symplectic integrator that we know of are
designed to handle long or definitive hierarchy change. Such
situations can be encountered in case of a stellar fly-by, or
of a capture of debris disk dust by a stellar or planetary
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companion. The subsequent study of system HD 106906
is a perfect example of situations that can not be tackled
by ordinary symplectic algorithms: binary fly-by and dust
capture.

On an other hand, Rein & Spiegel (2014) argue that
a high-order classical integrator is quicker and more accu-
rate than symplectic integrators. This may be true for some
complex cases, or if we aim for a very high precision. How-
ever, symplectic integrators have encoded the exact reso-
lution of the Keplerian motion, while a classical integrator
makes no hypothesis for the form of the motion, and has
to solve from scratch the differential equations of motion.
Thus, for lightly perturbed Keplerian motion, symplectic
algorithms are certainly more practical than classical inte-
grators. The time steps can be large without endangering
the stability of the orbits.

For example, in the case of HD 106906, the simulations
involved very different scales, from the planet periastron
to the wide hyperbolic orbit of the perturbers. A classical
integrator would have to adapt its time step to the smallest
distance, while a symplectic integrator can adopt a larger
timescale without compromising the stability of the planet
orbit.

We also point out that SWIFT HJS never makes the as-
sumption that the orbits we are considering are actually
bound. The only requirement is that the sum of the Kep-
lerian interactions associated with the hierarchy (i.e. Ha)
must represent most of the full Hamiltonian. Some of the
orbits we are considering can thus be hyperbolic, and this
will be the case in a fly-by configuration. The Kepler solver
used to integrate H4 handles bound or unbound orbits as
well.

3. Application to system HD 106906
3.1. Characterizing the perturbers

Searching for potential stellar perturbers in Sco-Cen dur-
ing the previous 15 Myr, De Rosa & Kalas (2019) identified
two perturbers in LCC (Pecaut et al. 2012): HIP 59716 and
HIP 59721. Located around 11 pc (projected 0.5°) from HD
106906 and 0.5 pc (projected 30”) from each other, their
relative velocities suggest an encounter with HD 106906 a
few million years ago. The coordinates and velocities of the
three systems are summarized in Table 1 of De Rosa &
Kalas (2019). As can be seen on Fig. 2, the relative sepa-
ration and velocity between HD 106906 and its perturbers
lie essentially on the direction to Earth. Unfortunately, the
quantities projected in this direction (distance and radial
velocity) have the larger observational uncertainties, which
creates a high dispersion on the closest encounters, in par-
ticular for the most promising candidate HIP 59716 (Fig.
3).

We note that the relative velocities between each sys-
tems (~ 4 km/s) are four times higher than the velocity
dispersion reported for LCC (1.13 4+ 0.07 km/s; Madsen
et al. 2002), that was used in Rodet et al. (2017). We will
see in subsection 3.3 that the effect of a fly-by is inversely
proportional to the velocity of the passing star.

The masses of HIP 59716 and HIP 59721 have been es-
timated respectively 1.37 Mg for HIP 59716 and 1.22 Mg
for HIP 59721 from the spectral types. HD 106906 binary
mass has been estimated to 2.58 £ 0.04 M, from radial ve-
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Fig. 2. Representation of HD 106906, HIP 59716 and HIP 59721
current positions and velocities in HD 106906 rest frame (disk
lies in the YZ plane, observed extension in the -Y direction).
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Fig. 3. Two dimension histograms of the coordinates of the
intersection points between the perturbers trajectories and the
XY plane, assuming linear trajectories.
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Fig. 4. Representation of a typical evolution of the hierarchy
in the three-body simulations of HD 106906 fly-bys with ODEA.
All orbits here are hyperbolic.

locity and interferometric measurements by Lagrange et al.
(2019).

3.2. Simulating the encounters

N-body simulations performed by De Rosa & Kalas (2019)
indicate that the galactic gravitational potential has a neg-
ligible influence on the characteristics of the encounters.
Moreover, the binarity of HD 106906 does not affect the en-
counters, because of the very high ratio between the closest
approaches and the binary separation (> 1000). In order to
efficiently determine the parameters of the encounters, we
first performed 10,000 simulations with ODEA, including
three bodies: HD 106906 ABDb (2.58+0.01 Mg,), HIP 59716
and HIP 59721. The mass of HD 106906 and the algorithm
that we present here are the only differences with De Rosa
& Kalas study at that point.

The initialization of the simulations is designed with
a Monte-Carlo approach, following De Rosa & Kalas. The
3 x 6 parameters and their respective precision are the right
ascension « (0.05 mas), the declination § (0.002 mas), the
parallax 7 (0.05 mas), the proper motion of the right as-
cension i, cosd (0.05 mas/yr), the proper motion of the
declination us (0.05 mas/yr) and the radial velocity v (up
to 1.7 kmm/s). The parameters are drawn from a normal
distribution centered on their measured values, with a dis-
persion equal to the observations uncertainties, taking into
account the correlations given by Gaia catalog. Then, we
trace back the stars trajectory to observe the encounters.

Most of the simulations follow the same hierarchy evo-
lution, represented on Fig. 4: the first fly-by involves HIP
59716 and the second HIP 59721, before the two perturbers
get very close at each other as can be seen today. The hi-
erarchy will thus naturally evolves to take into account the
successive encounters. Computing the eccentricity of several
sets of configurations, we evaluated that the two perturbers
have currently a 2.1 + 0.1 % chance of being gravitation-
ally bound to each other. However, De Rosa & Kalas point
out that the probability of them having such similar angu-
lar positions and proper motions without being bound are
extremely low.

We launched 10,000 simulations for 15 Myr, correspond-
ing to a backward evolution from our days to the formations
of the stars. At first sight, 10,000 simulations may not seem
enough to correctly sample the 18 parameters confidence in-
tervals. However, most of the parameters are strongly con-
strained, the only strong uncertainties being the perturbers
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Fig. 5. Distribution of the distances at closest approach. The
following study will focus on the red part, that corresponds to
fly-by closer than 0.1 pc (3.6 % of the configurations).

relative radial velocities and distances, that is 4 parame-
ters. Thus, these are the critical parameters that must be
correctly sampled, and 10,000 is then a sufficient number.
The initial time-step was set to 1,000 yr, with outputs ev-
ery 1,000 yr. To account for the possibility of the two per-
turbers being bound, we performed an additional 10,000
simulations with only bound configurations. It comes down
essentially to selecting only the configurations where the
perturbers have similar radial velocities.

The distances at closest approach were computed for
each simulation (Fig. 5). Most of the encounters occur with
a closest approach between 0.3 and 2 pc, with a maximal
probability around 0.6 pc, consistent with the results of De
Rosa & Kalas. We then reviewed the simulations for which
a close (< 0.1 pc) fly-by occurred, from any one or both of
the two perturbers. 359 configurations were selected, that
is around 4% of the total number of studied configurations.
In most cases (2 90%), HIP 59716 encounters HIP 106906
at the shortest distance. For the bound configurations, the
peak is around 0.4 pc but the number of close fly-bys is
roughly the same. HIP 59716 coordinates distributions are
presented on Fig. 7. Most of the parameters of the config-
urations with close fly-bys are drawn randomly within the
configurations, except for the radial velocity, where we see
that the configurations leading to a close fly-by correspond
to the higher radial velocities (closer to the radial velocity
of HIP 59721). The distributions for the two other bodies
are presented on Fig. 13 and 14 in the appendix.

The distributions of the time and velocities of the per-
turber at closest approach are represented on Fig. 6 (only
the cases where the distance was less than 0.1 pc). Most
of the encounters occur between 4 and 2 Myr ago, with a
velocity between 2 and 6 km/s.

3.3. Effect on the planet
3.3.1. Setup

Once the configurations for which a close fly-by occur
within the 15 Myr of the system life have been identified,
we launch a new set of simulations, this time including the
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Fig. 6. Distribution of the times and velocities at closest ap-
proach, for the cases where the distance at closest approach is
less than 0.1 pc.

planet. The bodies are initialized at their position at the
end of the first simulation, that is at their position 15 Myr
ago. HD 106906 is separated into two bodies, namely the bi-
nary HD 106906 AB (2.58 M), and the planet HD 106906
ABD (0.01 Mg). The simulations are launched from 15 Myr
ago to the present epoch, so that the final outcome repre-
sents the current positions of the bodies. The time-step was
set to 100 yr, with outputs every 1,000 yr.

In the study of Rodet et al. (2017), the destabilization
of the planet takes place after a violent encounter with the
central binary, in the beginning of the system’s life. The
outcome was either a definitive ejection on a hyperbolic tra-
jectory, or a transitional state where the eccentricity raised
dramatically without passing 1. The probability of the dif-
ferent outcomes depends on the characteristics of the en-
counter, which is highly underconstrained. In the case of a
hyperbolic trajectory, a subsequent stabilization by a fly-
by must be precisely synchronized, and is thus difficult to
achieve. Thus, we study here the case of a highly eccen-
tric transitional bound orbit. The periastron should roughly
correspond to the separation of the planet when the per-
turbation occurred, around 1 au. On the other hand, the
apoastron will remained mostly unchanged after a fly-by.
The current projected separation implies a minimal value
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Fig. 7. Initial distribution (today) of HIP 59716 coordinates and velocities for the 10,000 simulated cases (green), and for the 359

cases where a fly-by closer than 0.1 pc occurred (red).

of 730 au. Moreover, the probability is higher to observe
the planet near apoastron: it spends 2/3 of its time at a
separation greater than 700 au for an apoastron of 1,000
au, and 95 % for an apoastron of 3,000 au. All in all, two
sets of simulations are performed, where the planet is ini-
tialized with a periastron of 1 au and an apoastron of 1,000
(a = 500.5 au, e = 0.998) or 3,000 au (a = 1500.5 au,
e = 0.9993).

The necessary energy to completely eject the planet is
%GMHDH)GQOG/GP, where a), is the initial semi-major axis of
the planet and Mypiogoos the mass of the host binary. From
its current position close to the central binary, a defini-
tive ejection requires around 1 Muau?/yr2. A proportion of
2.1073 less corresponds to an elliptic trajectory with apoas-
tron 1,000 au, and 2.10~* Mgau?/yr? less corresponds to
10,000 au. Thus, from an energetic point of view, reaching a
high apoastron on a still bound orbit in the ejection process
is nearly as costly as being definitely ejected.

For a fly-by to have a meaningful role in the dynamical
history of the planet, it has to decrease the planet eccentric-
ity by increasing the periastron to a safer value (an increase
of the order of the astronomical unit at least). The time-
scale of the fly-by is much larger than the orbital period of
the planet, so that the initial position of the planet on its
orbit is not a relevant parameter in the simulations. More-
over, in our scenario, the planet formed within the disk, so
that its orbit was initially coplanar with the disk mid-plane.
We assume that the planet apoastron is aligned with the
observed extension of the disk. A close encounter with the
central binary will retain this coplanarity if the inclination
of the binary orbit is similar to that of the disk plane, which
seems likely from the first estimates of its orbital parame-
ters (Lagrange et al. 2019). As the fly-by is likely to keep
the apoastron roughly unchanged and the eccentricity high
(consistent with the observed patterns of the disk accord-
ing to Jilkova & Zwart 2015; Nesvold et al. 2017; Rodet

et al. 2017), this is consistent with the current position of
the planet.

3.3.2. Results

The conclusion of the study depends essentially on the pos-
sibility for the fly-by to increase significantly the periastron.
This effect is stongly correlated to the distance at closest
approach. We thus represented the periastron change with
respect to the distance at closest approach for the outputs
of the two sets of simulations on Figs. 8 and 9.

Whether for a 1,000 or 3,000 au apoastron, a 0.1 pc en-
counter is not enough to significantly raise the periastron:
a closer fly-by is required. For the 1,000 au apoastron case,
the distance at closest approach must be less than 0.01 pc,
that is 2,000 au. For the 3,000 au apoastron case, the desta-
bilization is certainly easier, but the distance at closest ap-
proach must still be less than 0.05 pc, that is 10,000 au. For
such distances, the results are essentially identical for the
bound cases, as the separation between the two perturbers
is greater of similar than the distance at closest approach
with HD 106906. On our initial 10,000 draws, respectively 2
and 20 resulted in a periastron increase superior to 1 au for
the 1,000 and 3,000 au apoastron cases, and 1 and 2 lead to
the ejection of the planet (for distance at closest approach
similar or less than the planet semi-major axis).

Moreover, coplanarity of the planet orbit with the disk
plan is expected if the planet formed within the disk. The
current projected planet misalignment with the disk plane
is currently estimated at 23 degrees, although a lower angle
(and even coplanarity) would be possible if the planet true
separation is greater than its projected separation (2 3000
au for coplanarity). A 23° misalignment corresponds to a
minimal altitude of ~ 280 au above the disk plane, and such
gain of altitude is rarely seen in the simulations, even in the
most favorable case of a high initial apoastron. This would
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suggest that the misalignment (or part of it at least) is an
illusion due to projection effects.

3.3.3. Theory

We first study the periastron increase as a function of the
distance at closest approach, and compare it to the theo-
retical predictions. The computation of the following theo-
retical formula is explained in the appendix. The simplest
approach is the impulse approximation, where the fly-by is
assumed to be instantaneous and trigger a sudden velocity
change on the planet. Although this cannot be considered
as representative for the reality if we compare the fly-by
time-scale with the orbital period of the planet, this approx-
imation often provides a good estimate. In this framework,
Brunini & Fernandez (1996) show that the fly-by increases
the planet velocity by:

2G M.,
|Avy| VD2 % 9)

where v, is the planet velocity, M, is the perturber’s mass,
V' its velocity at closest approach, D its distance at clos-
est approach, and a, the planet semi-major axis. This for-
mula nevertheless applies to circular orbits only (Brunini
& Fernandez 1996). By supposing that the new orbit in-
tersects the old one at apoastron, the planet eccentric-
ity e, takes part, and we have a change of semi-major
axis Aa, = —apAep,, which gives a change of periastron
Aperi = —2a,Ae,. Finally, one gets (see appendix):

5

GM, ag
vV GMupioseos V D?

It can be adapted to an eccentric orbit, as was done in
Rodet et al. (2017), by supposing that the perturbations
occur only at apoastron. Then, stating that the apoas-
tron is preserved, one gets Aa, = —apAe,/(1 + e,) and
Aperi = —2a,Ae,/(1+e€,). Finally, using Eq. 9 to quantify
the velocity increase at apoastron, one gets (see appendix):

|Aperi| < 8 (10)

5
|Aperi| < 8 G a V=)t ) (11)
~ "V GMupiosos V D? 3—ep

On the other hand, a more rigorous approach is to com-
pute the secular evolution of the orbital elements of the
planet during the passage of the perturber. Heggie & Ra-
sio (1996) used that method to determine the eccentricity
increase of a companion, and found a complex formula de-
pending on all 6 orbital elements of the perturber’s orbit. In
this framework, the semi-major axis is invariant throughout
the fly-by. Considering a coplanar orbit and a perturber’s
eccentricity significantly higher than 1 (strongly unbound
orbit), the maximum is:

5

5 G M., ag
2 \/GMupioeeos V D?

The three theoretical predictions are represented on
Figs. 8 and 9: circular impulse, apoastron impulse and sec-
ular approximation. They all correspond to maximum val-
ues, as the true periastron evolution depends on the angular

|Aperi| <

epyV/1— ep? (12)
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planet stability.

characteristics of the encounter. The velocity V is set to its
mean value over all closest approaches, around 4 km/s. M,
was set to 1.3 Mg, but the increase depends weakly on
the perturber’s exact mass. The eccentricity e, is set to its
initial value, an approximation that becomes less relevant
when Ae, > 1 — ¢, = 2.1073 (for closest approach less or
around 0.01 pc).

We see on Fig. 8 that the periastron change is best mod-
eled by the secular approximation, but is also correctly ap-
proached by the impulse approximation at apoastron. It
suggests that the effect of both perturbers on the planet
can be estimated by the effect of the perturber that had
the closest approach. This is also true for the cases where
the two perturbers are bound (see Appendix).
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retical approach (line), for the closer fly-bys, and for an initial
planetary apoastron of 1,000 au. The grey line indicates the pro-
jected elevation of the planet.

Furthermore, we seek to estimate if the fly-by could ac-
count for the possible misalignment of the planet with the
debris disk plane. Depending on the exact value of the argu-
ment of periastron wj,, a very eccentric orbit does not neces-
sarily have a large elevation above the disk plane, even if it
is highly inclined. To have a meaningful plan misalignment,
the planet should have an inclination change combined with
a shift of the argument of its periastron that results in a
significant elevation above the disk plane. For any Keple-
rian orbit, the maximum elevation zy,.x above the reference
plane is given by:

Zmax = Qp Sin(ip) (, /1 — eZcos?(wp) + e sin(wp)|>

Obviously, with e, ~ 1 and wp, ~ 0 or 7, 2Zmax remains small
irrespective of the value of 7.

We thus computed the change in zp.x, inspiring from
Heggie & Rasio (1996). The details are explained in the
appendix. The resulting maximal altitude is represented on
Fig.10 and 11.

(13)

3.3.4. Discussion

From both approaches, theoretical and numerical, in the
most favorable case, it appears that a fly-by has a significant
impact on the planet (periastron increase above 1 au) only
if its closest approach is less than 0.05 pc, that is 10,000 au.
This corresponds to a small subset among the initial draws,
not because of an incompatibility with the observations,
but because of the high dispersion of closest approaches,
underconstrained by the observations.

We checked that the distance at closest approach is not
correlated to the time at closest approach, nor to the ve-
locity at closest approach. Considering the compatibility
between our results and the dynamical scenario proposed
in Rodet et al. (2017), the time of the fly-by must be consid-
ered. Given our simulations, the closest approach occurred
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Fig. 11. Maximal altitude with respect to the distance at clos-
est approach, from N-body simulations (dots) and secular theo-
retical approach (line), for the closer fly-bys, and for an initial
planetary apoastron of 3,000 au. The grey line indicates the pro-
jected elevation of the planet.

likely 2 to 4 Myr ago (3 &+ 1 Myr). However, our scenario
account for the ejection of the planet only in the beginning
of the system life, when protoplanetary disk is still present
and can effectively trigger planetary migration. Given the
disk lifetime for massive stars (~ 3 Myr, Ribas et al. 2015)
and the system assumed age (15 Myr), 2 to 4 Myr ago is
significantly too late for the fly-by to have a decisive role.
However, a younger age for the system (10 Myr, compatible
with LCC age spread of 6 Myr) could still account for this
discrepancy.

3.4. Effect on the disk

The effects of a fly-by on a disk may be significant, de-
pending on the parameters of the encounter. The case of a
dynamically efficient fly-by can be observed in system HD
141569, where the ongoing encounter has been deeply stud-
ied in Reche et al. (2009). In this system, the fly-by could be
responsible for truncation, spiral formation, collisional evo-
lution, eccentricity and inclination raise. In our study, the
effect of the fly-by on test-particles will be essentially simi-
lar to that on the planet. Since the test particles in a debris
disk have a nearly circular orbit, the fly-by will increase the
eccentricity, significantly or not depending on the distance
of closest approach. Moreover, all fly-by characteristics be-
ing equal, particles inclination will be excited differently de-
pending on their distance to the host star. The disk might
then be warped. The sensitivity of the scattered-light im-
ages of the disk are not sufficient to reveal a weak warp, but
the warp can induce further instabilities and asymmetries
in the disk that could account for its non-standard shape.
We chose among the previous cases a situation with a
very short distance at closest approach (1,000 au), with a
medium relative inclination (~ 45 °) and ran a simulation
with the three massive bodies (HD 106906 ABb and the
perturbers) and 1,000 test particles. The particles have ini-
tially semi-major axes evenly shared between 10 and 600
au, eccentricity below 0.05, and an inclination spread of
2 degrees. The simulation was launched for 100 000 years
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Fig. 12. Orbital elements of the test particles after a close fly-
by. The lightly blue zones represent the initial configuration.

around the fly-by epoch, with a time step of 1 yr. The re-
sulting disk is represented on Fig. 12.

On the other hand, the repeating passing of the planet
within the disk would have stronger consequences. If a very
small percentage is ejected over one period (< 0.01 %), the
mean eccentricity of the particles raise from 0.02 at each
passage. For the disk to remain long-lived in its current
shape, Jilkova & Zwart (2015) (non collisional simulations)
and Nesvold et al. (2017) (collisional simulations) estimated
that the planet orbit should not cross the disk. Thus, the
planet periastron should be outer to the observed ~ 100
au outer disk radius. Within our scenario, it means that
this enlargement of the periastron occurred rather quickly,
whether or not it was caused entirely by the fly-by. In any
case, the planet interactions would have cover the track of
the fly-by-induced perturbations

The new structure of the code allows to estimate the
percentage of dust capture by the planet. It turns out that
temporary (less than 10 yr) capture is experienced by about
5% of the dust at each passage, but no permanent captures
were produced.

Article number, page 10 of 30

4. Conclusion

In this paper, we present the N-body symplectic code
ODEA, that is able to study multiple systems in evolving
architectures. We use it to study the rare planetary sys-
tem HD 106906. We confirm that the two stars identified
by De Rosa & Kalas (2019) could have helped stabilizing
the planet after a destabilization by its host binary star.
This scenario could account for the wide separation of the
planet, its possible elevation with respect to the disk plane,
as well as the structures evidenced within the disk.

However, the significance of the encounter strongly de-
pends on the distances at closest approach. With the cur-
rent precision on the three systems configuration (especially
the relative radial velocities and distances), it is not possible
to establish the role of the flybys. To circularize the planet
orbit if it was previously ejected on a wide trajectory, a
fly-by closer than 0.05 pc is needed (assuming apoastron <
3,000 au), which is one order of magnitude below the uncer-
tainty on the closest approach. The simulations show that
the angular configuration is favorable when this condition
is met.

Any indication of HD 106906 b relative motion would be
helpful to constrain its orbit, and thus its dynamical history.
More precise parallaxes and radial velocities for HIP 59716
and HIP 59721 are necessary to constrain the distances at
closest approach, and conclude on the effect of the fly-bys
on the system dynamical evolution.

ODEA handles hierarchy changes in systems with non-
Solar-system-type architectures. It can model efficiently
captures and fly-bys. Through a criterion based on acceler-
ations ratios, a new hierarchy is defined when the current is
perturbed. ODEA’s natural upgrade is the implementation
of a Mercury-like approach to handle close encounters, that
is transitional states of non-Keplerian movements.
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Appendix

Derivation of the changes of planet periastron due to the fly-by
in the impulse approximation

Circular impulse

The expression of the change of the planet velocity is given
in Eq. 9. Supposing that the new orbit intersects the old
one at apoastron or periastron, we have Aa, = ap,Ae,.
Moreover, the velocity of the planet if on a circular orbit is

vp = +/GMubioegos/ap. Thus, the eccentricity is

3

Aey| — |Aa,| _ 2\Avp| <4 GM, ag
p Up VG Mubioegos V D?

and the periastron is then given by Aperi = Aa, —alAe, =
—2a,Ae,.

Apoastron impulse

Stating instead that the apoastron is preserved, one gets
Aa, = —apAe,/(1 + ep). Within the impulse framework,
the change of velocity involves the velocity at apoastron, so
that the velocity writes v, = \/GM;ot/ap\/(1 —€)/(1 +¢)
. Thus,

Aay, Ae, Ae, Ae,
v,  2a, l—ep?  2(1+e,) 1—ep?

which gives

2
[Avp| 1 — €
vy 3—ep

<4 GM, a,% (1+ep)%\/1fep
~ VGMupiosoos V D? 3—ep

and the periastron is then given by Aperi = Aay(1—ep) —
ale, = —2a,Ae,/(1+¢€p).

|Aep| = —2

Derivation of the changes of planet orbital characteristics due
to the fly-by in the secular approximation

Perturbative potential

We inspire from Heggie & Rasio (1996) to derive the first-
order perturbation of the planet orbital elements in the sec-
ular approximation.

Following Heggie & Rasi, we number respectively 1, 2
and 3 HD 106906 central star, HD 106906 b and one of the
stellar perturber. The position of the planet relative to its
host star is denoted by r, and the position of the third body
relative to HD 106906 center of mass is denoted by R. In
this framework, the evolution of the planet orbit verifies:

GM
i=-""r+vVU
T
GmsMjia mo mi
U= m - m
mimso ‘R* M112’I"| |R+ N1122r|
B G, 312

rR., T3
o (32 —1) +ou )
where U is the perturbative potential.

In the secular approximation, U is averaged over the
orbit of HD 106906 planetary orbit. The implicit assump-
tions is that all orbital elements but the anomaly have a
longer evolution timescale than the orbital period. As we
are interested in the first order evolution, we only integrate
the dominant part in a,/a (quadripole order). Then, we use
Lagrange equations to retrieve the evolution of the eccen-
tricity, the inclination and the longitude of periastron.

Eccentricity and periastron change

After we first averaged over the planet orbital motion,
the secular evolution of the eccentricity obtained at the
quadrupole level writes:

3
_ 15GmsR,Ryagepy/1 — ep?

dey
dt 2R5\/G M2

where the x-y plane is the initial plane of the planet (plane
of the disk), and the = direction is given by the planet
initial periastron. To compute the first order of the change
of e after the fly-by, we integrate de/dt along time from —oo
to +o0o by fixing all variables to their initial values but the
angular evolution of the stellar perturber.

Heggie & Rasio computed in their Eq. (7) the change
in eccentricity as a function of the angular parameters of
the encounter, and we exactly retrieve their expression. The
maximum efficiency is obtained for a coplanar encounter,
where all the transferred angular momentum apply only on
the eccentricity. Stating that the eccentricity of the per-
turber’s orbit is significantly more than 1 (V' = 3 km/s and
D =1 pc gives e ~ 500, D = 0.1 pc gives e ~ 50), we
obtain

S oles

5 M, az e/l €}
— sin(29 + 2w
5 VMmoo i DY Ve ( )
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where Q is the longitude of the ascending node and w the
argument of the periastron of the perturber hyperbolic or-
bit. The maximum is obtained for Q + w = /4. More-
over, the eccentricity e depends on D, V and GM;s as

= /GM;ot (1 + €)/D so that /e ~ V/D/GM;q. Thus,

the eccentricity change satisfies:

’%

GM, ap
~ 2 VG smro6905 VD2 "
On the other hand, the semi-major axis is constant in

the secular approximation. The periastron is then given by
Aperi = —aAe,.

|Aep| < 1 —ep? (14)

Inclination change

The secular evolution of the inclination obtained at the
quadrupole level writes:

3Gm3a§ (4¢2 +1) R, R.
dt 2R5, /(1 — €2) GMy,

dip _

We then integrate as before to compute the change of
inclination Agp,.

3
§ GM, agp
2 v/GMup106906 V D?

(cos(z') sin(Q)(arccos(—é) ++ve2—1)

1+4e;

A =

—(cos(9) sin(2w) + cos(i) sin(Q) cos(2w))(63_621)2>

The maximum is reached for i = 7/4, Q =
w = /2. Thus, we obtain

/2 and

GM,  ap 1+4¢
VG Mupioseos V D?

Aiy <

Longitude of the periastron change

The secular evolution of the total longitude of the perias-
tron W, = wy + (), obtained at the quadrupole level writes:

iz, 3Gmaai /(1 — €2)(R? — AR? + R2)

dt 2R5\/G M2

We then integrate as before to compute the change of
inclination A(,Jpp.

3
G M., agp ﬁQ
4 \/GMyip1oseos VD?

(6 cos® (i) cos®(w) — 5(cos(2i) — 3) cos*(w) cos(2€2)

Aw, =

The maximum is reached for i = 7/2, Q2 =0 and w = 0.

Thus, we obtain

3

GM, agp

=
\/ G Mub1os9os V D?

Aw, <

Maximal altitude

The maximum altitude z,.x reached by the planet on its
orbit is given as a function of its orbital elements:

Zmax = Qp sin(ip) (, /1 — €2 cos?(wp) + epl sin(wp)o

It thus depends on the evolution of ay, e, i, and wy,.

Due to the term sin(é,), the same approach than above
leads to neglecting all evolution but that of the inclination.
It is consistent with the fact that in the previous expres-
sions, A;p > Ae,, Ai, when the eccentricity tends to 1. We
get:

5

AZmax = ap4/1 Azp

M, (1+4e)

\/ GMHD106906 VD2

However, this estimate is not valid anymore when A;p
approaches /2, that is when sin(i,) approaches 1. At this
point, the estimates of Ae, and Aw must be taken into
account. In order to comprise all the different evolution
scales, we thus simply estimate the maximal altitude by
replacing directly the computed evolution in the definition
formula:

(15)

(16)

(17)

Azmax S apsin (i) ( 1 —€,% cos? (@) + €, sin (@) )

(18)

where i, ep — Aep, and @ =

max(Awp,

max(Aiy, 5), € =
)-

w\:l

Additional materials for HD 106906 fly-by simulations

Fig. 13 and 14 represents the distribution of the coordinates
of the bodies in the simulations.

Fig. 15 and 16 describe the case where the two per-
turbers are bound. The coordinates of the bodies are drawn
from the observational constraints with the same process
that for the non-bound case, but we discarded the configu-
rations where the eccentricity of the relative orbit is greater
than 1. The resulting semi-major axis and eccentricity dis-
tributions are presented here, along with the effect of the
fly-bys on the planet periastron, which is very similar to
the non-bound case.

+2 cos(24) (3 — 5 cos(29)) sin®(w) — 10 cos(i) sin(2w) sin(29))
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Fig. 13. Initial distribution (today) of HD 106906 coordinates and velocities for the 10,000 simulated cases (green), and for the
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Constraining the orbital parameters of any detected companion (exoplanet,
brown-dwarf) is an essential part in the characterization of extrasolar systems. Be-
sides the description of the position and velocity of the bodies with respect to time,
retrieving the orbital parameters enables the investigation of the past and future
dynamical evolution of a system. High eccentricity, misalignment, mean-motion res-
onances, these features are the keys to decipher a system’s history. Additionally,
orbital fitting gives an estimate of the total mass or even, in some cases, the indi-
vidual masses, which characterize the system and constrain the physical evolution
of the bodies.

Theoretically, the relative position and velocity at a given time is enough to
entirely retrieve the orbital elements. However, two main problems arise in real life,
which complexify the orbital fitting processes.

First, we are not able to access the three-dimensional position and velocity at
one epoch. In the case of direct imaging, an observation consists in the relative
projected separation and position angle. Conventional direct imaging methods do
not provide the instantaneous speed. Several epochs are therefore needed to suppress
the degeneracy.

Second, all observations come with uncertainties. One can thus never obtain the
orbital elements with an infinite precision, and the uncertainties must be propagated.

The propagation of the uncertainties of projected coordinates from several epochs
give birth to a complex analytical problem. The uncertainties are often taken into
account through the formalism of probability distribution. If the true value of the
parameters of an orbit are 8, a measurement x; with Gaussian uncertainty o; will
have a probability of

p(l’z|9) _ 1 . exp (_ (331 — T (tz,a)) ) (2‘1)

2
2mo; 20;

where x(t;,0) is the theoretical value, computed from the parameters 6. More-
over, we usually have some geometrical or physical constraints on the parameters,
independently from the measured data. This probability p(8) is called the prior.

From the probabilities of each of our measurements, we can introduce the likeli-
hood of the parameters £(0):

£(6) = p((#:)10) = [ [ p(:/6) o =2 (22)

where x* = >, (ml_i(+0))2 The likelihood of @ will be maximum when y? is mini-

mum. Tt can be noted that this expression of the x? is valid only if the measurements
(x;) are independent, which we will assume in the rest of the chapter. If this is not the
case, the correlations have to be taken into account through a covariance matrix.
After the measurements, the Bayesian inference framework gives us the posterior
probability of the parameters:

p(0(2:) = — =5~ < L(8)p(6) (2.3)



Eventually, orbital fitting boils down to the characterization of the posterior
probability distribution over the parameter space. Maximization of the likelihood
will provide the best fit, maximization of the posterior will provide the most probable
parameters, but the shape of the distribution is essential to evaluate the confidence
interval. This, however, is not straightforward, especially when the number of pa-
rameters is high, and brute-force approach becomes impracticable.

Deriving a trustworthy estimate of the orbital elements despite these difficulties
have been a central problem in the exoplanet field, whatever the detection tech-
niques. Numerical approaches progressively superseded the first semi-analytical and
geometrical approaches. In particular, Levenberg-Marquardt (LM) algorithms have
been first used for orbital fitting, and Markov-Chain Monte Carlo (MCMC) algo-
rithms have then been introduced in the early 2000s. MCMC is the approach I have
adopted during my Ph.D, combined with a first LM minimization. In this chapter,
I will first present the principles of the LM algorithm, before describing the basics
of the MCMC approach. In this thesis, I used and improved an in-house code. I set
out the statistical and implementation choices that have been adopted in Secs.
and Section presents quickly the other codes available and a comparison of
their approaches to ours. In sections [0 and [6] I present eight systems observed with
SPHERE, for which I derived orbital elements estimates. I describe in particular in
Sec. [6] three astrometric binaries that were characterized through their orbital fit,
that gave an independent estimate of their dynamical masses. Finally, I introduce
in Sec. [7] my work to take into account both absolute and relative astrometry in
the orbital fitting procedure, a development that will be needed with the growing
importance of the astrometric detection technique, that uses the projected motion
of a host star on the skyplane.

1 Levenberg-Marquardt algorithm (LM)

To get a first estimate of the fitting of the parameters of a model, it is common
to start with a "simple" minimization procedure, a local minimization of the x?
from a first guess. The Levenberg-Marquardt algorithm, also called Least-Squared
Levenberg-Marquardt (LSLM), is specifically designed for local minimization of non-
linear problems.

Let us consider x? as a function of the parameters :

X2<0) _ Z (ml — x(ti? 0)) ) (24)

Retrieving the best fit is equivalent to finding 6 that verifies dx?/d@ |4 = 0.
From a first guess 6y, we are searching a step § such that 0 = 60y + 4. Let J; be

the gradient vector of z(t;,.), evaluated in 8g. When
(‘32x(ti, 0)
00,005

90, 905

(2; — 2(t;,0)) < (2.5)
that is for linear models or in weakly correlated cases, we have
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2 2

d 1

V(B0 + 8) = x2(89) + X AR d;g 8+ o(6) (2.6)

x; — x(t;, 60)
?(6) — 2 - & J‘é Y L6 +o(6%) . (2.7
o) Z T O I o) ()

where ! stands for the transpose. Moreover,

2 2
dx dx*(6o + 9) ‘ _ 0 (2.8)
do é

Thus, at first order, & must verify

i tz70
N8 = Zx oty (2.9)
i3
This is a set of linear equations, which can be solved for §. To make up for

the potential badness of the approximations, Levenberg suggested to replace this
equation by a damped version:

O T+ A6 = Zg’z—(t“e") Ji (2.10)

, o2
i3 v

where I is the identity matrix and A the damping factor, which is adjusted at each
iteration. If the convergence is quick, then X is decreased, and it is increased if the
convergence is slow.

After the desired convergence is reached (condition on the closeness of succes-
sive estimates of y2(0) for example), we obtain a good estimate of @, the best-fit
parameters. However, it is crucial to obtain an interval of confidence around the
best-fit parameters to evaluate the reliability of the results. From the output of the
Levenberg-Marquardt procedure, the interval d@ is such as Xz(é +do) — Xz(é) = 1.
That is

%d@?—[de =1 (2.11)

where H is the Hessian matrix of y? with respect to the parameters, evaluated in 6.
As the Hessian matrix is definite positive ( isa minimum), then it is diagonalizable
with change of basis matrix V' (eigenvectors matrix) and diagonal matrix D. The
interval of confidence is finally given by

/2/D11 VM
o)\ o

where d is the dimension of the parameters space. Nevertheless, this interval is
not robust to correlations and does not grasp the potential peculiarities of the final
probability distribution (asymmetries, multi-modes...).

do =V

Q

(2.12)
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2 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo procedures are a powerful Bayesian tool to characterize
the likelihood and fit the parameters of a model and their uncertainties. It is partic-
ularly well adapted for high dimension parameters space and monomodal likelihood.
The following introduction is based on |Gilks et al.| (1996)), (Gelman et al. (2003) and
Ford| (2005). The particular setup described here has been implemented at IPAG in
a code designed by Pr. Beust, described briefly in |(Chauvin et al.| (2012), and that I
contributed to expand. An overview of the procedure is presented on Fig. [2.1]

2.1 Overview

A procedure is referred to as Monte-Carlo when it relies on repeated random sam-
pling to obtain numerical results. This technique is widely used in all fields of
science, and appeared at the beginning of the computer era. It is named after a
Monaco district known for the gambling. Monte-Carlo procedures comprise various
types of approaches, especially regarding the specificity of the random choices. Some
procedures adopt a sampling where each draw is independent from the others. This
strategy is often chosen for the computation of integrals.

On the other hand, orbital fitting requires the computation of the relative likeli-
hood of parameters in the neighborhood of its peak. Markov chains are well adapted
to this problem. A Markov chain is a stochastic model describing a sequence of pos-
sible events in which the probability of each event depends only on the state attained
in the previous event. Thus, the random choice of a point in the parameters space
is not independent of the previous draw, so that the sampling can be thought of as
a chain. Given a proper sampling, a Markov chain will eventually converge towards
the stationary distribution it probes. A proper sampling is guaranteed by reversibil-
ity, irreducibility and aperiodicity. Reversibility ensures that a probability of being
in a state 8 and going to a state @’ from 6 is equal to being in a state 8’ and going
from @' to 6. In other words, if state 8’ is twice more probable than state 8, the
probability of going from 6 to 8" will be twice the probability of going from 6’ to 6.
Irreducibility ensures it is possible for the chain to reach every state with non-zero
probability from any initial state.

2.2 The Metropolis-Hastings algorithm for transition proba-
bility

Such Markov chains can be built using the Metropolis-Hastings algorithm. In this
formalism, the probability of a transition from a state 8 (corresponding to a vector
of parameters) to an other @’ is the probability ¢(€'|@) to consider 6’ from 8 times
the probability «(6'|@) of accepting this trial. The Metropolis-Hastings algorithm
acceptance probability is

oy ((4(61p(8 ()
«(16) = <q<9'|e>p<e|<xi>>’1) (2.13)
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where p (0](z;)) is the probability of state @ given the set of data (z;). In that case,
whatever the choice of ¢(6'|@), the Markov chain is reversible.

In our case, we pre-select each transition & — 6’ with a normal distribution
centered on the state 8, with a fixed deviation independent from 6. It follows
that ¢(0'|0) = q(6|0"). Thus, the acceptance probability boils down to 1 when
p(@)(z:)) > p(6](x,)), and p(@|(:))/p(6](x:)) when p(8'|(z:)) < p(B](z:).

This method has the advantage of requiring only the probability ratios. Thus,
the normalization that appears in the likelihood, in the form of a tedious integral,
is not needed, with counterpart that we will retrieve only a relative probability
distribution.

2.3 Guiding the walk in multiple dimensions: the Gibbs sam-
pler

The choice of ¢(6'|0) to select a tentative transition is a delicate issue. A common
choice is a Gaussian distribution centered around 6, but there remains the important
choices of the dispersion, that is the scales and correlations between each parameters.

If the trial states are chosen with a too large dispersion then a large fraction of
the trial states will be rejected, causing the chain to remain at each state for several
trials and to converge very slowly. If the trial states are chosen with a too small
dispersion, then the small step size will cause the chain to behave like a random walk.
Monitoring the fraction of trial states that are accepted is one way to verify that
the scale chosen for ¢(0’|@) is not too inefficient. Optimal values for the acceptance
rate have been estimated for Gaussian posterior distributions at about 0.44 when 0
has one dimension, 0.23 otherwise.

Handling multi-dimensionality requires deeper consideration because of the pos-
sible correlations between the parameters. A simple method to tackle the issue is
called Gibbs sampling. In this sampling, a step corresponds to the successive evolu-
tion of each parameter. When updating the parameter j, a tentative parameter is
proposed by the candidate transition probability function ¢(¢;]¢;), then the move is
accepted with probability a/(6’|@), where 8 and 6’ are the current parameters, that
is the new ones from ranks 1 to j — 1, and the old ones from ranks j+1 to d, where d
is the dimension of the parameters space. To remove any possible bias regarding the
order of the parameters, at each step the parameters ranks are randomly permuted
before the evolution.

However, roaming the parameters space along the direction of each parameters
is not necessarily the most efficient way, because of the possible correlations between
parameters. Thus, after a significant evolution of the walk, we compute the covari-
ance matrix and derive orthonormal eigenvectors. Then, we travel the parameters
space along the directions of the eigenvectors.

Choosing the scale of the transition function is easy within the Gibbs sampler,
because each parameters (or combination of parameters) evolves separately. In our
algorithm, before the true launch of the Markov chains, tentative steps are made in
order to tune the value of the scale 8. From an initial guess, 3 is updated until the
acceptance rate on each dimension is 0.44 with a 10% precision. The update of 3
is scaled on the ratio between the current and expected acceptance rates, and the
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frequency of update is decreasing following the progress of the convergence. The
detailed procedure is described in |Ford| (2006).

2.4 Evaluation of the convergence

Deciding when the walk should stop is the most challenging part of the procedure,
as we have to determine when the chains are representative of the true probabil-
ity distribution (or, equivalently, have converged). A common approach is to use
Gelman-Rubin convergence diagnosis (Gelman et al.|[1992; Ford [2006). Alternative
criteria exist, using for example the autocorrelation time (see emcee, Sec. . The
convergence diagnosis depends strongly on the overall set-up (numbers of chains,
sampler...). In the Gelman-Rubin framework, several Markov chains are started.
The parallel computation of independent chains allows both a better sampling of
the parameter space and the evaluation of the convergence by comparing the state
of the different chains. The Gelman-Rubin statistics is based on the computation of
the variance of the parameters in a given chain and in all the chains.

A first criterion that is computed is R, the factor by which the scale of the esti-
mate of the distribution could be reduced by continuing to calculate longer Markov
chains. For a given parameter, It corresponds roughly to the ratio between an un-
biased estimator of the dispersion and the average dispersion over all chai