J. A. Del-rio, L. De-lecea, I. Ferrer, and E. Soriano, The development of parvalbumin-immunoreactivity in the neocortex of the mouse, Brain Res Dev Brain Res, vol.81, issue.2, pp.247-59, 1994.

T. Hensch, Critical period plasticity in local cortical circuits, Nature Reviews Neuroscience, vol.6, pp.877-88, 2005.

D. Bavelier, D. M. Levi, R. W. Li, Y. Dan, and T. K. Hensch, Removing brakes on adult brain plasticity: from molecular to behavioral interventions, J Neurosci, vol.30, issue.45, p.2992973, 2010.

T. K. Hensch, Critical period mechanisms in developing visual cortex, Curr Top Dev Biol, vol.69, pp.215-252, 2005.

S. Sugiyama, D. Nardo, A. A. Aizawa, S. Matsuo, I. Volovitch et al., Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity, Cell, vol.134, issue.3, pp.508-528, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02380510

J. Spatazza, H. H. Lee, D. Nardo, A. A. Tibaldi, L. Joliot et al., Choroid-Plexus-Derived Otx2 Homeoprotein Constrains Adult Cortical Plasticity, Cell Rep, vol.3, issue.13, pp.231-234, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02380061

M. Beurdeley, J. Spatazza, H. Lee, S. Sugiyama, C. Bernard et al., Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex, J Neurosci, vol.32, issue.27, p.22764251, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02380082

S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, and H. Kitagawa, Persistent cortical plasticity by upregulation of chondroitin 6-sulfation, Nat Neurosci, vol.15, pp.414-436, 2012.

J. Spatazza, D. Lullo, E. Joliot, A. Dupont, E. Moya et al., Homeoprotein signaling in development, health, and disease: a shaking of dogmas offers challenges and promises from bench to bed, Pharmacol Rev, vol.65, issue.1, pp.90-104, 2013.

A. Prochiantz, D. Nardo, and A. A. , Homeoprotein Signaling in the Developing and Adult Nervous System, Neuron, vol.85, issue.5, pp.911-936, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02380506

A. Joliot and A. Prochiantz, Transduction peptides: from technology to physiology, Nat Cell Biol, vol.6, issue.3, pp.189-96, 2004.

C. Bernard, H. T. Kim, T. Ibad, R. Lee, E. J. Simonutti et al., Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes, Hum Mol Genet, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02380495

B. Lesaffre, A. Joliot, A. Prochiantz, and M. Volovitch, Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish, Neural Develop, vol.2, issue.1, 2007.

A. Wizenmann, I. Brunet, J. Lam, L. Sonnier, M. Beurdeley et al., Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo, Neuron, vol.64, pp.355-66, 2009.

S. Layalle, M. Volovitch, B. Mugat, N. Bonneaud, M. L. Parmentier et al., Engrailed homeoprotein acts as a signaling molecule in the developing fly, Development, vol.138, issue.11, pp.2315-2338, 2011.

, Genetic Evidence for Paracrine Otx2 Function, PLOS Genetics, vol.13, p.15, 2016.

R. Amin, S. Neijts, R. Simmini, S. Van-rooijen, C. Tan et al., Cdx and T brachyury co-activate growth signaling in the embryonic axial progenitor niche, Cell Rep, vol.17, pp.3165-3177, 2016.

S. Anders and W. Huber, Differential expression analysis for sequence count data, Genome Biol, vol.11, p.106, 2010.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

K. I. Andreasson and W. E. Kaufmann, Role of immediate early gene expression in cortical morphogenesis and plasticity, Results Probl Cell Differ, vol.39, pp.113-137, 2002.

G. Barreto, A. Schäfer, J. Marhold, D. Stach, S. K. Swaminathan et al., Gadd45a promotes epigenetic gene activation by repairmediated DNA demethylation, Nature, vol.445, pp.671-675, 2007.

J. Benoit, A. E. Ayoub, and P. Rakic, Transcriptomics of critical period of visual cortical plasticity in mice, Proc Natl Acad Sci, vol.112, pp.8094-8099, 2015.

C. Bernard and A. Prochiantz, Otx2-PNN interaction to regulate cortical plasticity, Neural Plast, vol.2016, pp.1-7, 2016.

C. Bernard, C. Vincent, D. Testa, E. Bertini, J. Ribot et al., A mouse model for conditional secretion of specific single-chain antibodies provides genetic evidence for regulation of cortical plasticity by a non-cell autonomous homeoprotein transcription factor, PLoS Genet, vol.12, p.1006035, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02380471

M. Beurdeley, J. Spatazza, H. Lee, S. Sugiyama, C. Bernard et al., Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex, J Neurosci, vol.32, pp.9429-9437, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02380082

J. Cang, V. A. Kalatsky, S. Löwel, and M. P. Stryker, Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse, Vis Neurosci, vol.22, pp.685-691, 2005.

G. Chatelain, N. Fossat, G. Brun, and T. Lamonerie, Molecular dissection reveals decreased activity and not dominant negative effect in human OTX2 mutants, J Mol Med, vol.84, pp.604-615, 2006.

W. G. Chen, Q. Chang, Y. Lin, A. Meissner, A. E. West et al., Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2, Science, vol.302, pp.885-889, 2003.

L. Chen, K. Chen, L. A. Lavery, S. A. Baker, C. A. Shaw et al., MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome, Proc Natl Acad Sci, vol.112, pp.5509-5514, 2015.

D. Lullo, E. Haton, C. , L. Poupon, C. Volovitch et al., Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube, Development, vol.138, pp.4991-5001, 2011.

D. Nardo, A. A. Nedelec, S. Trembleau, A. Volovitch, M. Prochiantz et al., Dendritic localization and activitydependent translation of Engrailed1 transcription factor, Mol Cell Neurosci, vol.35, pp.230-236, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00184043

S. Durand, A. Patrizi, K. B. Quast, L. Hachigian, R. Pavlyuk et al., NMDA receptor regulation prevents regression of visual cortical function in the absence of Mecp2, Neuron, vol.76, pp.1078-1090, 2012.

M. Fagiolini, C. L. Jensen, and F. A. Champagne, Epigenetic influences on brain development and plasticity, Curr Opin Neurobiol, vol.19, pp.207-212, 2009.

Y. Fu, J. M. Tucciarone, J. S. Espinosa, N. Sheng, D. P. Darcy et al., A cortical circuit for gain control by behavioral state, Cell, vol.156, pp.1139-1152, 2014.

H. W. Gabel, B. Kinde, H. Stroud, C. S. Gilbert, D. A. Harmin et al., Disruption of DNA-methylation-dependent long gene repression in Rett syndrome, Nature, vol.522, pp.89-93, 2015.

D. P. Gavin, R. P. Sharma, K. A. Chase, F. Matrisciano, E. Dong et al., Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis, Neuropsychopharmacology, vol.37, pp.531-542, 2012.

N. Gogolla, A. E. Takesian, G. Feng, M. Fagiolini, and T. K. Hensch, Sensory integration in mouse insular cortex reflects GABA circuit maturation, Neuron, vol.83, pp.894-905, 2014.

J. A. Gordon and M. P. Stryker, Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse, J Neurosci, vol.16, pp.3274-3286, 1996.

J. U. Guo, Y. Su, J. H. Shin, J. Shin, H. Li et al., Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain, Nat Neurosci, vol.17, pp.215-222, 2014.

C. E. Hannon, S. A. Blythe, and E. F. Wieschaus, Concentration dependent chromatin states induced by the bicoid morphogen gradient, Elife, vol.6, p.3165, 2017.

R. Hattori, K. V. Kuchibhotla, R. C. Froemke, and T. Komiyama, Functions and dysfunctions of neocortical inhibitory neuron subtypes, Nat Neurosci, vol.20, pp.1199-1208, 2017.

L. He, N. Liu, T. Cheng, X. Chen, Y. Li et al., Conditional deletion of Mecp2 in parvalbuminexpressing GABAergic cells results in the absence of critical period plasticity, Nat Commun, vol.5, p.5036, 2014.

R. V. Hoch, S. Lindtner, J. D. Price, and J. Rubenstein, OTX2 transcription factor controls regional patterning within the medial ganglionic eminence and regional identity of the septum, Cell Rep, vol.12, pp.482-494, 2015.

M. C. Hollander, M. S. Sheikh, D. V. Bulavin, K. Lundgren, L. Augeri-henmueller et al., Genomic instability in Gadd45a-deficient mice, Nat Genet, vol.23, pp.176-184, 1999.

J. M. Holmes and M. P. Clarke, Amblyopia. Lancet, vol.367, pp.1343-1351, 2006.

M. Hübener and T. Bonhoeffer, Neuronal plasticity: beyond the critical period, Cell, vol.159, pp.727-737, 2014.

A. H. Joliot, A. Triller, M. Volovitch, C. Pernelle, and A. Prochiantz, Alpha-2,8-polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide, New Biol, vol.3, pp.1121-1134, 1991.

L. Jourdren, M. Bernard, M. Dillies, L. Crom, and S. , Eoulsan: a cloud computing-based framework facilitating high throughput sequencing analyses, Bioinformatics, vol.28, pp.1542-1543, 2012.

L. Kaczmarek and A. Chaudhuri, Sensory regulation of immediateearly gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity, Brain Res Brain Res Rev, vol.23, pp.237-256, 1997.

V. A. Kalatsky and M. P. Stryker, New paradigm for optical imaging: temporally encoded maps of intrinsic signal, Neuron, vol.38, pp.529-545, 2003.

N. Kim, D. Acampora, F. Dingli, D. Loew, A. Simeone et al., Immunoprecipitation and mass spectrometry identify non-cell autonomous Otx2 homeoprotein in the granular and supragranular layers of mouse visual cortex, vol.3, p.178, 1000.
URL : https://hal.archives-ouvertes.fr/hal-02380426

K. Krishnan, B. Lau, G. Ewall, Z. J. Huang, and S. D. Shea, MECP2 regulates cortical plasticity underlying a learned behaviour in adult female mice, Nat Commun, vol.8, p.14077, 2017.

K. Krishnan, B. Wang, J. Lu, L. Wang, A. Maffei et al., MeCP2 regulates the timing of critical period plasticity that shapes functional connectivity in primary visual cortex, Proc Natl Acad Sci, vol.112, pp.4782-4791, 2015.

I. Kruglikov and B. Rudy, Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators, Neuron, vol.58, pp.911-924, 2008.

S. J. Kuhlman, N. D. Olivas, E. Tring, T. Ikrar, X. Xu et al., A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex, Nature, vol.501, pp.543-546, 2013.

Y. Kumaki, M. Oda, and M. Okano, QUMA: quantification tool for methylation analysis, Nucleic Acids Res, vol.36, pp.170-175, 2008.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

P. T. Leach, S. G. Poplawski, J. W. Kenney, B. Hoffman, D. A. Liebermann et al., Gadd45b knockout mice exhibit selective deficits in hippocampus-dependent long-term memory, Learn Mem, vol.19, pp.319-324, 2012.

H. Lee, C. Bernard, Z. Ye, D. Acampora, A. Simeone et al., Genetic Otx2 mislocalization delays critical period plasticity across brain regions, Mol Psychiatry, vol.22, pp.680-688, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02380572

A. Lennartsson, E. Arner, M. Fagiolini, A. Saxena, R. Andersson et al., Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticity by HDAC inhibitors, Epigenetics Chromatin, vol.8, p.55, 2015.

L. Li, J. Carter, X. Gao, J. Whitehead, and W. G. Tourtellotte, The neuroplasticity-associated arc gene is a direct transcriptional target of early growth response (Egr) transcription factors, Mol Cell Biol, vol.25, pp.10286-10300, 2005.

L. Li and R. Dahiya, MethPrimer: designing primers for methylation PCRs, Bioinformatics, vol.18, pp.1427-1431, 2002.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., Genome Project Data Cortical OTX2 Targets Gadd45b/g Apulei et al. | 11, 1000.

, The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

D. K. Ma, M. Jang, J. U. Guo, Y. Kitabatake, M. Chang et al., Neuronal activityinduced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis, Science, vol.323, pp.1074-1077, 2009.

M. Majdan and C. J. Shatz, Effects of visual experience on activity-dependent gene regulation in cortex, Nat Neurosci, vol.9, pp.650-659, 2006.

E. Matsunaga, S. Nambu, M. Oka, and A. Iriki, Comparative analysis of developmentally regulated expressions of Gadd45a, Gadd45b, and Gadd45g in the mouse and marmoset cerebral cortex, Neuroscience, vol.284, pp.566-580, 2015.

M. Mellén, P. Ayata, S. Dewell, S. Kriaucionis, and N. Heintz, MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system, Cell, vol.151, pp.1417-1430, 2012.

X. Meng, W. Wang, H. Lu, L. He, W. Chen et al., Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders, p.185, 2016.

A. Mo, E. A. Mukamel, F. P. Davis, C. Luo, G. L. Henry et al., Epigenomic signatures of neuronal diversity in the mammalian brain, Neuron, vol.86, pp.1369-1384, 2015.

C. W. Mount and M. Monje, Wrapped to adapt: experiencedependent myelination, Neuron, vol.95, pp.743-756, 2017.

C. Niehrs and A. Schäfer, Active DNA demethylation by Gadd45 and DNA repair, Trends Cell Biol, vol.22, pp.220-227, 2012.

A. Nott, S. Cho, J. Seo, and L. Tsai, HDAC2 expression in parvalbumin interneurons regulates synaptic plasticity in the mouse visual cortex, Neuroepigenetics, vol.1, pp.34-40, 2015.

G. T. Ooi, D. R. Brown, D. S. Suh, L. Y. Tseng, and M. M. Rechler, Cycloheximide stabilizes insulin-like growth factor-binding protein-1 (IGFBP-1) mRNA and inhibits IGFBP-1 transcription in H4-II-E rat hepatoma cells, J Biol Chem, vol.268, pp.16664-16672, 1993.

H. Pi, B. Hangya, D. Kvitsiani, J. I. Sanders, Z. J. Huang et al., Cortical interneurons that specialize in disinhibitory control, Nature, vol.503, pp.521-524, 2013.

A. Prochiantz, D. Nardo, and A. A. , Homeoprotein signaling in the developing and adult nervous system, Neuron, vol.85, pp.911-925, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02380506

E. Putignano, G. Lonetti, L. Cancedda, G. Ratto, M. Costa et al., Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity, Neuron, vol.53, pp.747-759, 2007.

K. Rai, I. J. Huggins, S. R. James, A. R. Karpf, D. A. Jones et al., DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45, Cell, vol.135, pp.1201-1212, 2008.

A. Ranson, C. Cheetham, K. Fox, and F. Sengpiel, Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity, Proc Natl Acad Sci, vol.109, pp.1311-1316, 2012.

H. Rekaik, F. Blaudin-de-thé, J. Fuchs, O. Massiani-beaudoin, A. Prochiantz et al., Engrailed homeoprotein protects mesencephalic dopaminergic neurons from oxidative stress, Cell Rep, vol.13, pp.242-250, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02156811

M. L. Rietman and J. Sommeijer, Neuro-Bsik Mouse Phenomics Consortium. Levelt CN, Heimel JA. 2012. Candidate genes in ocular dominance plasticity, Front Neurosci, vol.6, p.11

C. Sampathkumar, Y. Wu, M. Vadhvani, T. Trimbuch, B. Eickholt et al., Loss of MeCP2 disrupts cell autonomous and autocrine BDNF signaling in mouse glutamatergic neurons, Elife, vol.5, p.214, 2016.

A. Samuel, M. Housset, B. Fant, and T. Lamonerie, Otx2 ChIP-seq reveals unique and redundant functions in the mature mouse retina, PLoS One, vol.9, p.89110, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968745

M. Sato and M. P. Stryker, Distinctive features of adult ocular dominance plasticity, J Neurosci, vol.28, pp.10278-10286, 2008.

A. V. Sharma, F. E. Nargang, and C. T. Dickson, Neurosilence: profound suppression of neural activity following intracerebral administration of the protein synthesis inhibitor anisomycin, J Neurosci, vol.32, pp.2377-2387, 2012.

J. D. Shepherd and M. F. Bear, New views of Arc, a master regulator of synaptic plasticity, Nat Neurosci, vol.14, pp.279-284, 2011.

J. Spatazza, H. Lee, D. Nardo, A. A. Tibaldi, L. Joliot et al., Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity, Cell Rep, vol.3, pp.1815-1823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02380061

O. Stettler, R. L. Joshi, A. Wizenmann, J. Reingruber, D. Holcman et al., Engrailed homeoprotein recruits the adenosine A1 receptor to potentiate ephrin A5 function in retinal growth cones, Development, vol.139, pp.215-224, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02160114

S. Sugiyama, D. Nardo, A. A. Aizawa, S. Matsuo, I. Volovitch et al., Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity, Cell, vol.134, pp.508-520, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02380510

F. A. Sultan, J. Wang, J. Tront, D. A. Liebermann, and J. D. Sweatt, Genetic deletion of Gadd45b, a regulator of active DNA demethylation, enhances long-term memory and synaptic plasticity, J Neurosci, vol.32, pp.17059-17066, 2012.

A. E. Takesian and T. K. Hensch, Balancing plasticity/stability across brain development, Prog Brain Res, vol.207, pp.3-34, 2013.

E. Tiraboschi, R. Guirado, D. Greco, P. Auvinen, M. Vetencourt et al., Gene expression patterns underlying the reinstatement of plasticity in the adult visual system, Neural Plast, p.605079, 2013.

P. Tognini, D. Napoli, J. Tola, D. Silingardi, R. Della et al., Experience-dependent DNA methylation regulates plasticity in the developing visual cortex, Nat Neurosci, vol.18, pp.956-958, 2015.

G. S. Tomassy, N. Morello, E. Calcagno, and M. Giustetto, Developmental abnormalities of cortical interneurons precede symptoms onset in a mouse model of Rett syndrome, J Neurochem, vol.131, pp.115-127, 2014.

A. Vallès, A. J. Boender, S. Gijsbers, R. Haast, G. Martens et al., Genomewide analysis of rat barrel cortex reveals time-and layer-specific mRNA expression changes related to experience-dependent plasticity, J Neurosci, vol.31, pp.374-383, 2011.

A. Wizenmann, I. Brunet, J. Lam, L. Sonnier, M. Beurdeley et al., Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo, Neuron, vol.64, pp.355-366, 2009.

T. Yokoo, B. W. Knight, and L. Sirovich, An optimization approach to signal extraction from noisy multivariate data, Neuroimage, vol.14, pp.1309-1326, 2001.

Y. Yotsumoto, L. Chang, R. Ni, R. Pierce, G. J. Andersen et al., White matter in the older brain is more plastic than in the younger brain, Nat Commun, vol.5, p.5504, 2014.

T. K. Hensch, Nat Rev Neurosci, vol.6, issue.11, p.877, 2005.

J. Spatazza, H. H. Lee, A. A. Di-nardo, L. Tibaldi, A. Joliot et al., Cell Rep, vol.2013, issue.6, p.1815

S. Sugiyama, A. A. Di-nardo, S. Aizawa, I. Matsuo, M. Volovitch et al., Cell, vol.134, issue.3, p.508, 2008.

S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, and H. Kitagawa, Nat Neurosci, vol.15, issue.3, p.414, 2012.

M. Beurdeley, J. Spatazza, H. H. Lee, S. Sugiyama, C. Bernard et al., Prochiantz, A. Journal of Neuroscience, vol.2012, issue.27, p.9429

A. Prochiantz and A. A. Di-nardo, Neuron, vol.85, issue.5, p.911, 2015.

D. J. Johnson, W. Li, T. E. Adams, and J. A. Huntington, EMBO J, vol.25, issue.9, p.2029, 2006.

B. L. Henry and U. R. Desai, Thromb. Res, vol.134, issue.5, p.1123, 2014.

J. Malineni, S. Singh, S. Tillmann, H. Keul, M. Möller et al., , vol.17, p.1117, 2017.

N. Sangaj, P. Kyriakakis, D. Yang, C. Chang, G. Arya et al., , p.3294, 2010.

G. Despras, C. Bernard, A. Perrot, L. Cattiaux, A. Prochiantz et al., Chemistry, vol.19, issue.2, p.531, 2013.

S. H. Kim and K. L. Kiick, Peptides, vol.28, issue.11, p.2125, 2007.

S. Vázquez-campos, P. M. St-hilaire, D. Damgaard, and M. Meldal, QSAR Comb. Sci, vol.24, issue.8, p.923, 2005.

C. H. Hirs, J Biol Chem, vol.219, issue.2, p.611, 1956.

S. Moore, Journal of Biological Chemistry, vol.238, issue.1, p.235, 1963.

H. H. Lee, C. Bernard, Z. Ye, D. Acampora, A. Simeone et al., Mol Psychiatry, vol.22, issue.5, p.680, 2017.

G. Dick, C. L. Tan, J. N. Alves, E. M. Ehlert, G. M. Miller et al., J Biol Chem, vol.288, issue.38, p.27384, 2013.

C. Bernard, A. Prochiantz, and . Plast, , p.1, 2016.

X. Hou, N. Yoshioka, H. Tsukano, A. Sakai, S. Miyata et al., , vol.7, p.12646, 2017.

C. Bernard, C. Vincent, D. Testa, E. Bertini, J. Ribot et al., PLoS Genet, vol.12, issue.5, p.1006035, 2016.

M. Corredor, R. Bonet, A. Moure, C. Domingo, J. Bujons et al., Biophys J, vol.110, issue.6, p.1291, 2016.

S. T. Cheung, M. S. Miller, R. Pacoma, J. Roland, J. Liu et al., ACS Chem. Biol, 2017.

D. Acampora, M. Gulisano, V. Broccoli, and A. Simeone, Otx genes in brain morphogenesis, Prog Neurobiol, vol.64, pp.69-95, 2001.

D. Acampora, S. Mazan, Y. Lallemand, V. Avantaggiato, M. Maury et al., Forebrain and midbrain regions are deleted in Otx2-/-mutants due to a defective anterior neuroectoderm specification during gastrulation, Development, vol.121, pp.3279-3290, 1995.

S. Ashikari-hada, H. Habuchi, Y. Kariya, N. Itoh, A. H. Reddi et al., Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library, J Biol Chem, vol.279, pp.12346-12354, 2004.

S. Ashikari-hada, H. Habuchi, N. Sugaya, T. Kobayashi, and K. Kimata, Specific inhibition of FGF-2 signaling with 2-O-sulfated octasaccharides of heparan sulfate, Glycobiology, vol.19, pp.644-654, 2009.

J. P. Berlose, O. Convert, D. Derossi, A. Brunissen, and G. Chassaing, Conformational and associative behaviours of the third helix of antennapedia homeodomain in membranemimetic environments, Eur J Biochem, vol.242, pp.372-386, 1996.

C. Bernard, H. Kim, R. T. Ibad, E. J. Lee, M. Simonutti et al., Graded Otx2 activities demonstrate dose-sensitive eye and retina phenotypes, Human Molecular Genetics, vol.23, pp.1742-1753, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02380495

C. Bernard, C. Vincent, D. Testa, E. Bertini, J. Ribot et al., A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor, PLoS Genet, vol.12, p.1006035, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02380471

M. Beurdeley, J. Spatazza, H. Lee, S. Sugiyama, C. Bernard et al., Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex, J Neurosci, vol.32, pp.9429-9437, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02380082

M. Billeter, Y. Qian, G. Otting, M. Müller, W. J. Gehring et al., Determination of the three-dimensional structure of the Antennapedia homeodomain from Drosophila in solution by 1H nuclear magnetic resonance spectroscopy, J Mol Biol, vol.214, pp.183-197, 1990.

M. Billeter, Y. Q. Qian, G. Otting, M. Müller, W. Gehring et al., Determination of the nuclear magnetic resonance solution structure of an Antennapedia homeodomain-DNA complex, J Mol Biol, vol.234, pp.1084-1093, 1993.

I. Brunet, C. Weinl, M. Piper, A. Trembleau, M. Volovitch et al., The transcription factor Engrailed-2 guides retinal axons, Nature, vol.438, pp.94-98, 2005.

G. Brückner, K. Brauer, W. Härtig, J. R. Wolff, M. J. Rickmann et al., Perineuronal nets provide a polyanionic, gliaassociated form of microenvironment around certain neurons in many parts of the rat brain, Glia, vol.8, pp.183-200, 1993.

G. Brückner, J. Grosche, S. Schmidt, W. Härtig, R. U. Margolis et al., Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R, J Comp Neurol, vol.428, pp.616-629, 2000.

J. Cabungcal, P. Steullet, H. Morishita, R. Kraftsik, M. Cuenod et al., Perineuronal nets protect fast-spiking interneurons against oxidative stress, Proc Natl Acad Sci U S A, vol.110, pp.9130-9135, 2013.

R. Cardis, J. Dwir, D. Do, and K. Q. , A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets, Neurobiol Dis, vol.109, pp.64-75, 2018.

S. T. Cheung, M. S. Miller, R. Pacoma, J. Roland, J. Liu et al., Discovery of a Small-Molecule Modulator of Glycosaminoglycan Sulfation, ACS Chem Biol, vol.12, pp.3126-3133, 2017.

B. Christiaens, S. Symoens, S. Verheyden, Y. Engelborghs, A. Joliot et al., Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes, Eur J Biochem, vol.269, pp.2918-2926, 2002.

S. Cohen and G. Jürgens, Drosophila headlines, Trends Genet, vol.7, pp.267-272, 1991.

M. Corredor, R. Bonet, A. Moure, C. Domingo, J. Bujons et al., Cationic Peptides and Peptidomimetics Bind Glycosaminoglycans as Potential Sema3A Pathway Inhibitors, Biophys J, vol.110, pp.1291-1303, 2016.

B. Cragg, Brain extracellular space fixed for electron microscopy, Neurosci Lett, vol.15, pp.301-306, 1979.

J. M. Day, A. I. Olin, A. D. Murdoch, A. Canfield, T. Sasaki et al., Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins, J Biol Chem, vol.279, pp.12511-12518, 2004.

F. De-winter, J. Kwok, J. W. Fawcett, T. T. Vo, D. Carulli et al., The Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity, Neural Plasticity, pp.3679545-3679559, 2016.

D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing et al., Cell internalization of the third helix of the Antennapedia homeodomain is receptorindependent, J Biol Chem, vol.271, pp.18188-18193, 1996.

D. Derossi, G. Chassaing, and A. Prochiantz, Trojan peptides: the penetratin system for intracellular delivery, Trends Cell Biol, vol.8, pp.84-87, 1998.

D. Derossi, A. H. Joliot, G. Chassaing, and A. Prochiantz, The third helix of the Antennapedia homeodomain translocates through biological membranes, J Biol Chem, vol.269, pp.10444-10450, 1994.

G. Despras, C. Bernard, A. Perrot, L. Cattiaux, A. Prochiantz et al., Toward libraries of biotinylated chondroitin sulfate analogues: from synthesis to in vivo studies, Chemistry, vol.19, pp.531-540, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00755864

D. Cristo, G. Chattopadhyaya, B. Kuhlman, S. J. Fu, Y. Bélanger et al., Activity-dependent PSA expression regulates inhibitory maturation and onset of critical period plasticity, Nat Neurosci, vol.10, pp.1569-1577, 2007.

D. Lullo, E. Haton, C. , L. Poupon, C. Volovitch et al., Paracrine Pax6 activity regulates oligodendrocyte precursor cell migration in the chick embryonic neural tube, Development, vol.138, pp.4991-5001, 2011.

D. Nardo, A. A. Fuchs, J. Joshi, R. L. Moya, and K. L. , The Physiology of Homeoprotein Transduction, Physiological Reviews, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02380064

G. Dick, C. L. Tan, J. N. Alves, E. Ehlert, G. M. Miller et al., , 2013.

, Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains, J Biol Chem, vol.288, pp.27384-27395

J. Dubnau and G. Struhl, RNA recognition and translational regulation by a homeodomain protein, Nature, vol.379, pp.694-699, 1996.

E. Dupont, A. Prochiantz, and A. Joliot, Identification of a signal peptide for unconventional secretion, J Biol Chem, vol.282, pp.8994-9000, 2007.

J. S. Espinosa and M. P. Stryker, Development and plasticity of the primary visual cortex, Neuron, vol.75, pp.230-249, 2012.

M. Fagiolini, J. Fritschy, K. Löw, H. Möhler, U. Rudolph et al., Specific GABAA circuits for visual cortical plasticity, Science, vol.303, pp.1681-1683, 2004.

E. Favuzzi, A. Marques-smith, R. Deogracias, C. M. Winterflood, A. Sánchez-aguilera et al., Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican, Neuron, vol.95, pp.639-655, 2017.

R. Finkelstein and N. Perrimon, The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development, Nature, vol.346, pp.485-488, 1990.

G. D. Frantz, J. M. Weimann, M. E. Levin, and S. K. Mcconnell, Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum, J Neurosci, vol.14, pp.5725-5740, 1994.

R. Frischknecht, M. Heine, D. Perrais, C. I. Seidenbecher, D. Choquet et al., Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity, Nat Neurosci, vol.12, pp.897-904, 2009.

W. Gehring, Clonal analysis of determination dynamics in cultures of imaginal disks in Drosophila melanogaster, Dev Biol, vol.16, pp.438-456, 1967.

J. A. Gordon and M. P. Stryker, Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse, J Neurosci, vol.16, pp.3274-3286, 1996.

C. E. Hannon, S. A. Blythe, and E. F. Wieschaus, Concentration dependent chromatin states induced by the bicoid morphogen gradient, vol.6, p.3165, 2017.

A. Harauzov, M. Spolidoro, G. Dicristo, D. Pasquale, R. Cancedda et al., Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity, J Neurosci, vol.30, pp.361-371, 2010.

W. Härtig, A. Derouiche, K. Welt, K. Brauer, J. Grosche et al., Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations, Brain Research, vol.842, pp.15-29, 1999.

L. He, N. Liu, T. Cheng, X. Chen, Y. Li et al., Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity, Nat Commun, vol.5, p.5036, 2014.

T. K. Hensch, Critical period plasticity in local cortical circuits, Nat Rev Neurosci, vol.6, pp.877-888, 2005.

T. K. Hensch, M. Fagiolini, N. Mataga, M. P. Stryker, S. Baekkeskov et al., Local GABA circuit control of experience-dependent plasticity in developing visual cortex, Science, vol.282, pp.1504-1508, 1998.

F. Hirth, S. Therianos, T. Loop, W. J. Gehring, H. Reichert et al., Developmental defects in brain segmentation caused by mutations of the homeobox genes orthodenticle and empty spiracles in Drosophila, Neuron, vol.15, pp.769-778, 1995.

J. C. Horton and D. R. Hocking, Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex, J Neurosci, vol.17, pp.3684-3709, 1997.

X. Hou, N. Yoshioka, H. Tsukano, A. Sakai, S. Miyata et al., Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex, p.12646, 2017.

H. Hu, J. Gan, and J. P. , Interneurons. Fast-spiking, parvalbumin? GABAergic interneurons: from cellular design to microcircuit function, Science, vol.345, pp.1255263-1255263, 2014.

Z. J. Huang, A. Kirkwood, T. Pizzorusso, V. Porciatti, B. Morales et al., BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex, Cell, vol.98, pp.739-755, 1999.

N. P. Issa, J. T. Trachtenberg, B. Chapman, K. R. Zahs, and M. P. Stryker, The critical period for ocular dominance plasticity in the Ferret's visual cortex, J Neurosci, vol.19, pp.6965-6978, 1999.

A. Joliot, A. Maizel, D. Rosenberg, A. Trembleau, S. Dupas et al., Identification of a signal sequence necessary for the unconventional secretion of Engrailed homeoprotein, Curr Biol, vol.8, pp.856-863, 1998.

A. Joliot, C. Pernelle, H. Deagostini-bazin, and A. Prochiantz, Antennapedia homeobox peptide regulates neural morphogenesis, Proc Natl Acad Sci U S A, vol.88, pp.1864-1868, 1991.

A. H. Joliot, A. Triller, M. Volovitch, and C. Pernelle, Prochiantz A (1991b) alpha-2,8-Polysialic acid is the neuronal surface receptor of antennapedia homeobox peptide, New Biol, vol.3, pp.1121-1134

A. L. Joyner, Engrailed, Wnt and Pax genes regulate midbrain--hindbrain development, Trends Genet, vol.12, pp.15-20, 1996.

S. Karch, F. Segmiller, I. Hantschk, A. Cerovecki, M. Opgen-rhein et al., Increased ? oscillations during voluntary selection processes in adult patients with attention deficit/hyperactivity disorder, J Psychiatr Res, vol.46, pp.1515-1523, 2012.

R. Kelwick, I. Desanlis, G. N. Wheeler, and D. R. Edwards, The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family, Genome Biol, vol.16, p.113, 2015.

C. R. Kissinger, B. S. Liu, E. Martin-blanco, T. B. Kornberg, and C. O. Pabo, Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions, Cell, vol.63, pp.579-590, 1990.

C. Koike, A. Nishida, S. Ueno, H. Saito, R. Sanuki et al., Functional roles of Otx2 transcription factor in postnatal mouse retinal development, Mol Cell Biol, vol.27, pp.8318-8329, 2007.

J. Kwok, D. Carulli, and J. W. Fawcett, In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity, Journal of Neurochemistry, vol.114, pp.1447-1459, 2010.

S. Layalle, M. Volovitch, B. Mugat, N. Bonneaud, M. Parmentier et al., Engrailed homeoprotein acts as a signaling molecule in the developing fly, Development, vol.138, pp.2315-2323, 2011.

H. Lee, C. Bernard, Z. Ye, D. Acampora, A. Simeone et al., Genetic Otx2 mis-localization delays critical period plasticity across brain regions, Mol Psychiatry, vol.22, pp.680-688, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02380572

K. Lepeta, K. J. Purzycka, K. Pachulska-wieczorek, M. Mitjans, M. Begemann et al., A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms, EMBO Mol Med, vol.9, pp.1100-1116, 2017.

B. Lesaffre, A. Joliot, A. Prochiantz, and M. Volovitch, Direct non-cell autonomous Pax6 activity regulates eye development in the zebrafish, Neural Dev, vol.2, issue.2, 2007.

E. B. Lewis, A gene complex controlling segmentation in Drosophila, Nature, vol.276, pp.565-570, 1978.

A. Maizel, M. Tassetto, O. Filhol, C. Cochet, A. Prochiantz et al., Engrailed homeoprotein secretion is a regulated process, Development, vol.129, pp.3545-3553, 2002.

O. Marín, Interneuron dysfunction in psychiatric disorders, Nat Rev Neurosci, vol.13, pp.107-120, 2012.

J. R. Martinez-morales, M. Signore, D. Acampora, A. Simeone, and P. Bovolenta, Otx genes are required for tissue specification in the developing eye, Development, vol.128, pp.2019-2030, 2001.

W. Mcginnis, C. P. Hart, W. J. Gehring, and F. H. Ruddle, Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila, Cell, vol.38, pp.675-680, 1984.

M. Mellén, P. Ayata, S. Dewell, S. Kriaucionis, and N. Heintz, MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system, Cell, vol.151, pp.1417-1430, 2012.

S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, and H. Kitagawa, Persistent cortical plasticity by upregulation of chondroitin 6-sulfation, Nat Neurosci, vol.15, pp.414-436, 2012.

S. Miyata, Y. Nishimura, and T. Nakashima, Perineuronal nets protect against amyloid betaprotein neurotoxicity in cultured cortical neurons, Brain Research, vol.1150, pp.200-206, 2007.

T. H. Morgan and C. B. Bridges, The Third-Chromosome Group of Mutant Characters of Drosophila Melanogaster, 1923.

H. Morishita, J. Chen, Y. Do, K. Q. Hensch, and T. K. , Prolonged Period of Cortical Plasticity upon Redox Dysregulation in Fast-Spiking Interneurons, Biol Psychiatry, vol.78, pp.396-402, 2015.

S. Nédélec, I. Foucher, I. Brunet, C. Bouillot, A. Prochiantz et al., Emx2 homeodomain transcription factor interacts with eukaryotic translation initiation factor 4E (eIF4E) in the axons of olfactory sensory neurons, Proc Natl Acad Sci U S A, vol.101, pp.10815-10820, 2004.

T. Oohashi, M. Edamatsu, Y. Bekku, and D. Carulli, The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity, Experimental Neurology, vol.274, pp.134-144, 2015.

D. M. Ornitz, FGFs, heparan sulfate and FGFRs: complex interactions essential for development, Bioessays, vol.22, pp.108-112, 2000.

G. Otting, Y. Q. Qian, M. Billeter, M. Müller, M. Affolter et al., Protein--DNA contacts in the structure of a homeodomain--DNA complex determined by nuclear magnetic resonance spectroscopy in solution, EMBO J, vol.9, pp.3085-3092, 1990.

T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett et al., Reactivation of ocular dominance plasticity in the adult visual cortex, Science, vol.298, pp.1248-1251, 2002.

T. Pizzorusso, P. Medini, S. Landi, S. Baldini, N. Berardi et al., Structural and functional recovery from early monocular deprivation in adult rats, Proc Natl Acad Sci U S A, vol.103, pp.8517-8522, 2006.

S. S. Prasad, L. Z. Kojic, P. Li, D. E. Mitchell, A. Hachisuka et al., Gene expression patterns during enhanced periods of visual cortex plasticity, Neuroscience, vol.111, pp.35-45, 2001.

A. Prochiantz, D. Nardo, and A. A. , Homeoprotein signaling in the developing and adult nervous system, Neuron, vol.85, pp.911-925, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02380506

E. Putignano, G. Lonetti, L. Cancedda, G. Ratto, M. Costa et al., Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity, Neuron, vol.53, pp.747-759, 2007.

Y. Q. Qian, M. Billeter, G. Otting, M. Müller, W. J. Gehring et al., The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors, Cell, vol.59, pp.573-580, 1989.

U. Rauch, A. Clement, C. Retzler, L. Fröhlich, R. Fässler et al., Mapping of a defined neurocan binding site to distinct domains of tenascin-C, J Biol Chem, vol.272, pp.26905-26912, 1997.

H. Rekaik, F. Blaudin-de-thé, J. Fuchs, O. Massiani-beaudoin, A. Prochiantz et al., Engrailed Homeoprotein Protects Mesencephalic Dopaminergic Neurons from Oxidative Stress, Cell Rep, vol.13, pp.242-250, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02156811

D. C. Rojas and L. B. Wilson, ) ?-band abnormalities as markers of autism spectrum disorders, Biomark Med, vol.8, pp.353-368, 2014.

J. Rossier, A. Bernard, J. Cabungcal, Q. Perrenoud, A. Savoye et al., Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin, Mol Psychiatry, vol.20, pp.154-161, 2015.

S. Sabunciyan, R. Yolken, C. M. Ragan, J. B. Potash, V. L. Nimgaonkar et al., Polymorphisms in the homeobox gene OTX2 may be a risk factor for bipolar disorder, Am J Med Genet B Neuropsychiatr Genet, vol.144, pp.1083-1086, 2007.

A. Sakai, R. Nakato, Y. Ling, X. Hou, N. Hara et al., Genome-Wide Target Analyses of Otx2 Homeoprotein in Postnatal Cortex, Front Neurosci, vol.11, p.307, 2017.

R. Sasisekharan and G. Venkataraman, Heparin and heparan sulfate: biosynthesis, structure and function, Curr Opin Chem Biol, vol.4, pp.626-631, 2000.

M. M. Scheiman, R. W. Hertle, R. W. Beck, A. R. Edwards, E. Birch et al., Randomized trial of treatment of amblyopia in children aged 7 to 17 years, Pediatric Eye Disease Investigator Group, vol.123, pp.437-447, 2005.

, Biological insights from 108 schizophrenia-associated genetic loci, Schizophrenia Working Group of the Psychiatric Genomics Consortium, vol.511, pp.421-427, 2014.

C. I. Seidenbecher, K. Richter, U. Rauch, R. Fässler, C. C. Garner et al., Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms, J Biol Chem, vol.270, pp.27206-27212, 1995.

Y. Shin, O. Donnell, B. F. Youn, S. Kwon, and J. S. , Gamma oscillation in schizophrenia, Psychiatry Investig, vol.8, pp.288-296, 2011.

J. E. Silbert and G. Sugumaran, Biosynthesis of chondroitin/dermatan sulfate, IUBMB Life, vol.54, pp.177-186, 2002.

A. Simeone, D. Acampora, M. Gulisano, A. Stornaiuolo, and E. Boncinelli, Nested expression domains of four homeobox genes in developing rostral brain, Nature, vol.358, pp.687-690, 1992.

A. Simeone, D. Acampora, A. Mallamaci, A. Stornaiuolo, D. 'apice et al., A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo, EMBO J, vol.12, pp.2735-2747, 1993.

L. Sonnier, L. Pen, G. Hartmann, A. Bizot, J. Trovero et al., Progressive loss of dopaminergic neurons in the ventral midbrain of adult mice heterozygote for Engrailed1, J Neurosci, vol.27, pp.1063-1071, 2007.

D. G. Southwell, R. C. Froemke, A. Alvarez-buylla, M. P. Stryker, and S. P. Gandhi, Cortical plasticity induced by inhibitory neuron transplantation, Science, vol.327, pp.1145-1148, 2010.

J. Spatazza, D. Lullo, E. Joliot, A. Dupont, E. Moya et al., Homeoprotein signaling in development, health, and disease: a shaking of dogmas offers challenges and promises from bench to bed, Pharmacological Reviews, vol.65, pp.90-104, 2013.

J. Spatazza, H. Lee, D. Nardo, A. A. Tibaldi, L. Joliot et al., Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity, Cell Rep, vol.3, pp.1815-1823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02380061

A. P. Spicer, A. Joo, and R. A. Bowling, A hyaluronan binding link protein gene family whose members are physically linked adjacent to chondroitin sulfate proteoglycan core protein genes: the missing links, J Biol Chem, vol.278, pp.21083-21091, 2003.

O. Stettler, R. L. Joshi, A. Wizenmann, J. Reingruber, D. Holcman et al., Engrailed homeoprotein recruits the adenosine A1 receptor to potentiate ephrin A5 function in retinal growth cones, Development, vol.139, pp.215-224, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02160114

S. Sugiyama, D. Nardo, A. A. Aizawa, S. Matsuo, I. Volovitch et al., Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity, Cell, vol.134, pp.508-520, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02380510

A. Suttkus, S. Rohn, S. Weigel, P. Glöckner, T. Arendt et al., Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress, Cell Death Dis, vol.5, pp.1119-1119, 2014.

I. Topisirovic and K. Borden, Homeodomain proteins and eukaryotic translation initiation factor 4E (eIF4E): an unexpected relationship, Histol Histopathol, vol.20, pp.1275-1284, 2005.

M. J. Végh, C. M. Heldring, W. Kamphuis, S. Hijazi, A. J. Timmerman et al., Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease, Acta Neuropathol Commun, vol.2, p.76, 2014.

T. H. Wen, S. Afroz, S. M. Reinhard, A. R. Palacios, K. Tapia et al., Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice, Cereb Cortex, pp.1-14, 2017.

A. Wizenmann, I. Brunet, J. Lam, L. Sonnier, M. Beurdeley et al., Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo, Neuron, vol.64, pp.355-366, 2009.

Y. Yamaguchi, Lecticans: organizers of the brain extracellular matrix, Cell Mol Life Sci, vol.57, pp.276-289, 2000.

S. Yang, M. Cacquevel, L. M. Saksida, T. J. Bussey, B. L. Schneider et al., Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology, Experimental Neurology, vol.265, pp.48-58, 2015.

S. Yang, S. Hilton, J. N. Alves, L. M. Saksida, T. Bussey et al., Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration, Neurobiol Aging, vol.59, pp.197-209, 2017.

B. Cragg, Brain extracellular space fixed for electron microscopy, Neurosci Lett, vol.15, pp.301-306, 1979.

A. Bignami, M. Hosley, and D. Dahl, Hyaluronic acid and hyaluronic acidbinding proteins in brain extracellular matrix, Anat. Embryol, vol.188, pp.419-433, 1993.

L. W. Lau, R. Cua, M. B. Keough, S. Haylock-jacobs, and V. W. Yong, Pathophysiology of the brain extracellular matrix: a new target for remyelination, vol.14, pp.722-729, 2013.

R. T. Matthews, G. M. Kelly, C. A. Zerillo, G. Gray, M. Tiemeyer et al., Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets, Journal of Neuroscience, vol.22, pp.7536-7547, 2002.

K. E. Rhodes and J. W. Fawcett, Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS?, J Anat, vol.204, pp.33-48, 2004.

G. Brückner, K. Brauer, W. Härtig, J. R. Wolff, M. J. Rickmann et al., Perineuronal nets provide a polyanionic, glia-associated form of microenvironment around certain neurons in many parts of the rat brain, Glia, vol.8, pp.183-200, 1993.

N. Itano, T. Sawai, M. Yoshida, P. Lenas, Y. Yamada et al., Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties, J Biol Chem, vol.274, pp.25085-25092, 1999.

D. Carulli, K. E. Rhodes, D. J. Brown, T. P. Bonnert, S. J. Pollack et al., Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components, J Comp Neurol, vol.494, pp.559-577, 2006.

Y. Li, Z. Li, T. Jin, Z. Wang, and P. Zhao, Tau Pathology Promotes the Reorganization of the Extracellular Matrix and Inhibits the Formation of Perineuronal Nets by Regulating the Expression and the Distribution of Hyaluronic Acid Synthases, J. Alzheimers Dis, vol.57, pp.395-409, 2017.

J. C. Kwok, D. Carulli, and J. W. Fawcett, In vitro modeling of perineuronal nets: hyaluronan synthase and link protein are necessary for their formation and integrity, J Neurochem, vol.114, pp.1447-1459, 2010.

T. Mikami and H. Kitagawa, Biosynthesis and function of chondroitin sulfate, Biochimica Et Biophysica Acta (BBA) -General Subjects, vol.1830, pp.4719-4733, 2013.

S. S. Deepa, D. Carulli, C. Galtrey, K. Rhodes, J. Fukuda et al., Composition of perineuronal net extracellular matrix in rat brain: a different disaccharide composition for the net-associated proteoglycans, J Biol Chem, vol.281, pp.17789-17800, 2006.

N. B. Schwartz, Effect of betaxylosides on synthesis of chondroitin sulfate proteoglycan, chondroitin sulfate chains, and core protein, J Biol Chem, vol.252, pp.6316-6321, 1977.

T. Oohashi, M. Edamatsu, Y. Bekku, and D. Carulli, The hyaluronan and proteoglycan link proteins: Organizers of the brain extracellular matrix and key molecules for neuronal function and plasticity, Exp Neurol, 2015.

Y. Yamaguchi, Lecticans: organizers of the brain extracellular matrix, Cellular and Molecular Life Sciences, vol.57, pp.276-289, 2000.

A. Aspberg, C. Binkert, and E. Ruoslahti, The versican C-type lectin domain recognizes the adhesion protein tenascin-R, vol.92, pp.10590-10594, 1995.

J. M. Day, A. I. Olin, A. D. Murdoch, A. Canfield, T. Sasaki et al., Alternative Splicing in the Aggrecan G3 Domain Influences Binding Interactions with Tenascin-C and Other Extracellular Matrix Proteins, J Biol Chem, vol.279, pp.12511-12518, 2004.

U. Rauch, A. Clement, C. Retzler, L. Fröhlich, R. Fässler et al., Mapping of a defined neurocan binding site to distinct domains of tenascin-C, vol.272, pp.26905-26912, 1997.

D. Carulli, T. Laabs, H. M. Geller, and J. W. Fawcett, Chondroitin sulfate proteoglycans in neural development and regeneration, Curr Opin Neurobiol, vol.15, pp.116-120, 2005.

A. Lundell, A. I. Olin, M. Mörgelin, S. Karadaghi, A. Aspberg et al., Structural Basis for Interactions between Tenascins and Lectican C-Type Lectin Domains, vol.12, pp.1495-1506, 2004.

G. Brückner, J. Grosche, S. Schmidt, W. Härtig, R. U. Margolis et al., Postnatal development of perineuronal nets in wild-type mice and in a mutant deficient in tenascin-R, J Comp Neurol, vol.428, pp.616-629, 2000.

D. Carulli, T. Pizzorusso, J. C. Kwok, E. Putignano, A. Poli et al., Animals lacking link protein have attenuated perineuronal nets and persistent plasticity, Brain, vol.133, pp.2331-2347, 2010.

C. M. Galtrey, J. C. Kwok, D. Carulli, K. E. Rhodes, and J. W. Fawcett, Distribution and synthesis of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat spinal cord, Eur J Neurosci, vol.27, pp.1373-1390, 2008.

K. A. Giamanco and R. T. Matthews, Deconstructing the perineuronal net: cellular contributions and molecular composition of the neuronal extracellular matrix, Neuroscience, vol.218, pp.367-384, 2012.

C. I. Seidenbecher, K. Richter, U. Rauch, R. Fässler, C. C. Garner et al., Brevican, a chondroitin sulfate proteoglycan of rat brain, occurs as secreted and cell surface glycosylphosphatidylinositol-anchored isoforms, J Biol Chem, vol.270, pp.27206-27212, 1995.

U. Novak, U. Novak, A. H. Kaye, and A. H. Kaye, Extracellular matrix and the brain: components and function, Journal of Clinical Neuroscience, vol.7, pp.280-290, 2000.

Y. Bekku, M. Saito, M. Moser, M. Fuchigami, A. Maehara et al., Bral2 is indispensable for the proper localization of brevican and the structural integrity of the perineuronal net in the brainstem and cerebellum, J Comp Neurol, vol.520, pp.1721-1736, 2012.

R. J. Gilbert, R. J. Mckeon, A. Darr, A. Calabro, V. C. Hascall et al., CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension, Molecular and Cellular Neuroscience, vol.29, pp.545-558, 2005.

S. Foscarin, R. Raha-chowdhury, J. W. Fawcett, and J. C. Kwok, Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory, Aging, issue.9, pp.1607-1622, 2017.

S. Miyata and H. Kitagawa, Chondroitin 6-Sulfation Regulates Perineuronal Net Formation by Controlling the Stability of Aggrecan, Neural Plast, pp.1305801-1305814, 2016.

S. Miyata, Y. Komatsu, Y. Yoshimura, C. Taya, and H. Kitagawa, Persistent cortical plasticity by upregulation of chondroitin 6-sulfation, Nat Neurosci, vol.15, pp.414-422, 2012.

R. Sasisekharan and G. Venkataraman, Heparin and heparan sulfate: biosynthesis, structure and function, Curr Opin Chem Biol, vol.4, pp.626-631, 2000.

R. Kelwick, I. Desanlis, G. N. Wheeler, and D. R. Edwards, The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family, Genome Biol, vol.16, p.15, 2015.

A. K. Cross, G. Haddock, C. J. Stock, S. Allan, J. Surr et al., ADAMTS-1 and -4 are up-regulated following transient middle cerebral artery occlusion in the rat and their expression is modulated by TNF in cultured astrocytes, Brain Res, vol.1088, pp.19-30, 2006.

M. G. Hamel, J. M. Ajmo, C. C. Leonardo, F. Zuo, J. D. Sandy et al., Multimodal signaling by the ADAMTSs (a disintegrin and metalloproteinase with thrombospondin motifs) promotes neurite extension, Exp Neurol, vol.210, pp.428-440, 2008.

J. Rossier, A. Bernard, J. Cabungcal, Q. Perrenoud, A. Savoye et al., Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin, Mol Psychiatry, vol.20, pp.154-161, 2014.

L. A. Collins-racie, C. R. Flannery, W. Zeng, C. Corcoran, B. Annis-freeman et al., ADAMTS-8 exhibits aggrecanase activity and is expressed in human articular cartilage, Matrix Biol, vol.23, pp.219-230, 2004.

C. M. Dancevic, F. W. Fraser, A. D. Smith, N. Stupka, A. C. Ward et al., Biosynthesis and expression of a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats-15: a novel versican-cleaving proteoglycanase, J Biol Chem, vol.288, pp.37267-37276, 2013.

J. Dzwonek, M. Rylski, and L. Kaczmarek, Matrix metalloproteinases and their endogenous inhibitors in neuronal physiology of the adult brain, FEBS Lett, vol.567, pp.129-135, 2004.

I. M. Ethell and D. W. Ethell, Matrix metalloproteinases in brain development and remodeling: synaptic functions and targets, J Neurosci Res, vol.85, pp.2813-2823, 2007.

T. H. Wen, S. Afroz, S. M. Reinhard, A. R. Palacios, K. Tapia et al., Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice, Cerebral Cortex, pp.1-14, 2017.

M. Morawski, T. Reinert, W. Meyer-klaucke, F. E. Wagner, W. Tröger et al., Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties, Sci Rep, vol.5, p.16471, 2015.

W. Härtig, A. Derouiche, K. Welt, K. Brauer, J. Grosche et al., Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are predominantly surrounded by perineuronal nets presumed as a buffering system for cations, Brain Res, vol.842, pp.15-29, 1999.

S. Hrab?tová, D. Masri, L. Tao, F. Xiao, and C. Nicholson, Calcium diffusion enhanced after cleavage of negatively charged components of brain extracellular matrix by chondroitinase ABC, The Journal of Physiology, vol.587, pp.4029-4049, 2009.

A. Suttkus, S. Rohn, S. Weigel, P. Glöckner, T. Arendt et al., Aggrecan, link protein and tenascin-R are essential components of the perineuronal net to protect neurons against iron-induced oxidative stress, Cell Death Dis, vol.5, p.1119, 2014.

J. Cabungcal, P. Steullet, H. Morishita, R. Kraftsik, M. Cuenod et al., Perineuronal nets protect fast-spiking interneurons against oxidative stress, Proc Natl Acad Sci, vol.110, pp.9130-9135, 2013.

S. Miyata, Y. Nishimura, and T. Nakashima, Perineuronal nets protect against amyloid beta-protein neurotoxicity in cultured cortical neurons, Brain Res, vol.1150, pp.200-206, 2007.

M. Morawski, G. Brückner, C. Jäger, G. Seeger, and T. Arendt, Neurons associated with aggrecan-based perineuronal nets are protected against tau pathology in subcortical regions in Alzheimer's disease, Neuroscience, vol.169, pp.1347-1363, 2010.

C. Costa, R. Tortosa, A. Domènech, E. Vidal, M. Pumarola et al., Mapping of aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central nervous system of the mouse, J Chem Neuroanat, vol.33, pp.111-123, 2007.

R. Frischknecht, M. Heine, D. Perrais, C. I. Seidenbecher, D. Choquet et al., Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity, Nat Neurosci, vol.12, pp.897-904, 2009.

C. Orlando, J. Ster, U. Gerber, J. W. Fawcett, and O. Raineteau, Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrindependent manner, Journal of Neuroscience, vol.32, pp.18009-18017, 2012.

L. Vivo, S. Landi, M. Panniello, L. Baroncelli, S. Chierzi et al., Extracellular matrix inhibits structural and functional plasticity of dendritic spines in the adult visual cortex, Nat Comms, vol.4, p.1484, 2013.

F. Donato, S. B. Rompani, and P. Caroni, Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning, Nature, vol.504, pp.272-276, 2013.

S. Miyata and H. Kitagawa, Mechanisms for modulation of neural plasticity and axon regeneration by chondroitin sulphate, J. Biochem, vol.157, pp.13-22, 2015.

A. D. Cardin and H. J. Weintraub, Molecular modeling of proteinglycosaminoglycan interactions, Arteriosclerosis, vol.9, pp.21-32, 1989.

N. S. Gandhi and R. L. Mancera, The Structure of Glycosaminoglycans and their Interactions with Proteins, Chemical Biology & Drug Design, vol.72, pp.455-482, 2008.

G. Despras, C. Bernard, A. Perrot, L. Cattiaux, A. Prochiantz et al., Toward libraries of biotinylated chondroitin sulfate analogues: from synthesis to in vivo studies, Chemistry, vol.19, pp.531-540, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00755864

M. Beurdeley, J. Spatazza, H. H. Lee, S. Sugiyama, C. Bernard et al., Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex, Journal of Neuroscience, vol.32, pp.9429-9437, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02380082

G. Dick, C. L. Tan, J. N. Alves, E. M. Ehlert, G. M. Miller et al., Semaphorin 3A Binds to the Perineuronal Nets via Chondroitin Sulfate Type E Motifs in Rodent Brains, J Biol Chem, vol.288, pp.27384-27395, 2013.

A. Joliot, C. Pernelle, H. Deagostini-bazin, and A. Prochiantz, Antennapedia homeobox peptide regulates neural morphogenesis, Proc Natl Acad Sci, vol.88, pp.1864-1868, 1991.

I. L. Roux, A. H. Joliot, E. Bloch-gallego, A. Prochiantz, and M. Volovitch, Neurotrophic activity of the Antennapedia homeodomain depends on its specific DNA-binding properties, Proc Natl Acad Sci, vol.90, pp.9120-9124, 1993.

A. Prochiantz and A. A. Di-nardo, Homeoprotein Signaling in the Developing and Adult Nervous System, Neuron, vol.85, pp.911-925, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02380506

S. Sugiyama, A. A. Di-nardo, S. Aizawa, I. Matsuo, M. Volovitch et al., Experience-dependent transfer of Otx2 homeoprotein into the visual cortex activates postnatal plasticity, Cell, vol.134, pp.508-520, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02380510

C. Bernard, C. Vincent, D. Testa, E. Bertini, J. Ribot et al., A Mouse Model for Conditional Secretion of Specific Single-Chain Antibodies Provides Genetic Evidence for Regulation of Cortical Plasticity by a Non-cell Autonomous Homeoprotein Transcription Factor, PLoS Genet, vol.12, p.1006035, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02380471

H. H. Lee, C. Bernard, Z. Ye, D. Acampora, A. Simeone et al., Erratum: Genetic Otx2 mis-localization delays critical period plasticity across brain regions, Mol Psychiatry, vol.22, pp.785-785, 2017.

H. H. Lee, C. Bernard, Z. Ye, D. Acampora, A. Simeone et al., Genetic Otx2 mis-localization delays critical period plasticity across brain regions, Mol Psychiatry, vol.22, pp.680-688, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02380572

C. Bernard and A. Prochiantz, Otx2-PNN Interaction to Regulate Cortical Plasticity, Neural Plast, pp.1-7, 2016.

J. Spatazza, H. H. Lee, A. A. Di-nardo, L. Tibaldi, A. Joliot et al., Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity, Cell Rep, vol.3, pp.1815-1823, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02380061

X. Hou, N. Yoshioka, H. Tsukano, A. Sakai, S. Miyata et al., Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex, Sci Rep, vol.7, p.12646, 2017.

T. Takahashi, A. Fournier, F. Nakamura, L. H. Wang, Y. Murakami et al., Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors, Cell, vol.99, pp.59-69, 1999.

T. Vo, D. Carulli, E. M. Ehlert, J. C. Kwok, G. Dick et al., The chemorepulsive axon guidance protein semaphorin3A is a constituent of perineuronal nets in the adult rodent brain, Mol Cell Neurosci, vol.56, pp.186-200, 2013.

F. Winter, J. C. Kwok, J. W. Fawcett, T. T. Vo, D. Carulli et al., The Chemorepulsive Protein Semaphorin 3A and Perineuronal Net-Mediated Plasticity, pp.3679545-3679559, 2016.

J. De-wit, F. Winter, J. Klooster, and J. Verhaagen, Semaphorin 3A displays a punctate distribution on the surface of neuronal cells and interacts with proteoglycans in the extracellular matrix, Mol Cell Neurosci, vol.29, pp.40-55, 2005.

A. Dityatev, G. Brückner, G. Dityateva, J. Grosche, R. Kleene et al., Activity-dependent formation and functions of chondroitin sulfate-rich extracellular matrix of perineuronal nets, Developmental Neurobiology, vol.67, pp.570-588, 2007.

E. Favuzzi, A. Marques-smith, R. Deogracias, C. M. Winterflood, A. Sánchez-aguilera et al., Activity-Dependent Gating of Parvalbumin Interneuron Function by the Perineuronal Net Protein Brevican, Neuron, vol.95, pp.639-655, 2017.

T. S. Balmer, Perineuronal Nets Enhance the Excitability of Fast-Spiking Neurons, 2016.

M. Slaker, L. Churchill, R. P. Todd, J. M. Blacktop, D. G. Zuloaga et al., Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory, Journal of Neuroscience, vol.35, pp.4190-4202, 2015.

P. Steullet, J. Cabungcal, M. Cuenod, and K. Q. Do, Fast oscillatory activity in the anterior cingulate cortex: dopaminergic modulation and effect of perineuronal net loss, Front Cell Neurosci, vol.8, p.244, 2014.

T. Pizzorusso, P. Medini, N. Berardi, S. Chierzi, J. W. Fawcett et al., Reactivation of ocular dominance plasticity in the adult visual cortex, Science, vol.298, pp.1248-1251, 2002.

M. Nakamura, K. Nakano, S. Morita, T. Nakashima, A. Oohira et al., Expression of chondroitin sulfate proteoglycans in barrel field of mouse and rat somatosensory cortex, Brain Res, vol.1252, pp.117-129, 2009.

A. E. Takesian and T. K. Hensch, Balancing plasticity/stability across brain development, Prog Brain Res, vol.207, pp.1-1, 2013.

T. Pizzorusso, P. Medini, S. Landi, S. Baldini, N. Berardi et al., Structural and functional recovery from early monocular deprivation in adult rats, Proc Natl Acad Sci, issue.103, pp.8517-8522, 2006.

M. C. Chang, J. M. Park, K. A. Pelkey, H. L. Grabenstatter, D. Xu et al., Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons, vol.13, pp.1090-1097, 2010.

Y. Gu, S. Huang, M. C. Chang, P. Worley, A. Kirkwood et al., Obligatory role for the immediate early gene NARP in critical period plasticity, Neuron, vol.79, pp.335-346, 2013.

T. L. Dickendesher, K. T. Baldwin, Y. A. Mironova, Y. Koriyama, S. J. Raiker et al., NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans, Nat Neurosci, vol.15, pp.703-712, 2012.

Q. Ye and Q. Miao, Experience-dependent development of perineuronal nets and chondroitin sulfate proteoglycan receptors in mouse visual cortex, Matrix Biol, vol.32, pp.352-363, 2013.

C. Stephany, M. G. Frantz, and A. W. Mcgee, Multiple Roles for Nogo Receptor 1 in Visual System Plasticity, Neuroscientist, vol.22, pp.653-666, 2016.

M. S. Fanselow and J. E. Ledoux, Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala, Neuron, vol.23, pp.229-232, 1999.

N. Gogolla, P. Caroni, A. Lüthi, and C. Herry, Perineuronal nets protect fear memories from erasure, Science, vol.325, pp.1258-1261, 2009.

G. Kochlamazashvili, C. Henneberger, O. Bukalo, E. Dvoretskova, O. Senkov et al., The Extracellular Matrix Molecule Hyaluronic Acid Regulates Hippocampal Synaptic Plasticity by Modulating Postsynaptic L-Type Ca2+ Channels, Neuron, vol.67, pp.116-128, 2010.

M. J. Hylin, S. A. Orsi, A. N. Moore, and P. K. Dash, Disruption of the perineuronal net in the hippocampus or medial prefrontal cortex impairs fear conditioning, Learn Mem, vol.20, pp.267-273, 2013.

C. Romberg, S. Yang, R. Melani, M. R. Andrews, A. E. Horner et al., Depletion of perineuronal nets enhances recognition memory and long-term depression in the perirhinal cortex, Journal of Neuroscience, vol.33, pp.7057-7065, 2013.

M. F. Happel, H. Niekisch, L. L. Rivera, F. W. Ohl, M. Deliano et al., Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex, Proc Natl Acad Sci, vol.111, pp.2800-2805, 2014.

F. Donato, A. Chowdhury, M. Lahr, and P. Caroni, Early-and late-born parvalbumin basket cell subpopulations exhibiting distinct regulation and roles in learning, Neuron, vol.85, pp.770-786, 2015.

B. A. Sorg, S. Berretta, J. M. Blacktop, J. W. Fawcett, H. Kitagawa et al.,

. Kwok, Casting a Wide Net: Role of Perineuronal Nets in Neural Plasticity, Journal of Neuroscience, vol.36, pp.11468-11459, 2016.

S. Soleman, M. A. Filippov, A. Dityatev, and J. W. Fawcett, Targeting the neural extracellular matrix in neurological disorders, Neuroscience, vol.253, pp.194-213, 2013.

H. Hu, J. Gan, P. Jonas, and . Interneurons, Fast-spiking, parvalbumin? GABAergic interneurons: from cellular design to microcircuit function, Science, vol.345, pp.1255263-1255263, 2014.

O. Marin, Interneuron dysfunction in psychiatric disorders, Nat Rev Neurosci, vol.13, pp.107-120, 2012.

B. K. Bitanihirwe, S. A. Mauney, and T. W. Woo, Weaving a Net of Neurobiological Mechanisms in Schizophrenia and Unraveling the Underlying Pathophysiology, Biol. Psychiatry, vol.80, pp.589-598, 2016.

J. F. Enwright, S. Sanapala, A. Foglio, R. Berry, K. N. Fish et al., Reduced Labeling of Parvalbumin Neurons and Perineuronal Nets in the Dorsolateral Prefrontal Cortex of Subjects with Schizophrenia, Neuropsychopharmacology, vol.41, pp.2206-2214, 2016.

H. Pantazopoulos, M. Markota, F. Jaquet, D. Ghosh, A. Wallin et al., Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala, Transl Psychiatry, vol.5, p.496, 2015.

S. A. Mauney, K. M. Athanas, H. Pantazopoulos, N. Shaskan, E. Passeri et al., Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia, Biol. Psychiatry, vol.74, pp.427-435, 2013.

J. M. Kippe, T. M. Mueller, V. Haroutunian, and J. H. Meador-woodruff, Abnormal N-acetylglucosaminyltransferase expression in prefrontal cortex in schizophrenia, Schizophr. Res, vol.166, pp.219-224, 2015.

, Biological insights from 108 schizophrenia-associated genetic loci, Nature, vol.511, pp.421-427, 2014.

S. Cichon, T. W. Mühleisen, F. A. Degenhardt, M. Mattheisen, X. Miró et al., Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder, Am J Hum Genet, vol.88, pp.372-381, 2011.

X. Miró, S. Meier, M. L. Dreisow, J. Frank, J. Strohmaier et al., Studies in humans and mice implicate neurocan in the etiology of mania, Am J Psychiatry, vol.169, pp.982-990, 2012.

A. K. Kähler, S. Djurovic, L. M. Rimol, A. A. Brown, L. Athanasiu et al., Candidate gene analysis of the human natural killer-1 carbohydrate pathway and perineuronal nets in schizophrenia: B3GAT2 is associated with disease risk and cortical surface area, Biol. Psychiatry, vol.69, pp.90-96, 2011.

J. D. Buxbaum, L. Georgieva, J. J. Young, C. Plescia, Y. Kajiwara et al., Molecular dissection of NRG1-ERBB4 signaling implicates PTPRZ1 as a potential schizophrenia susceptibility gene, Mol Psychiatry, vol.13, pp.162-172, 2008.

N. Takahashi, T. Sakurai, O. Bozdagi-gunal, N. P. Dorr, J. Moy et al., Increased expression of receptor phosphotyrosine phosphatase-?/? is associated with molecular, cellular, behavioral and cognitive schizophrenia phenotypes, Transl Psychiatry, vol.1, pp.8-8, 2011.

P. Steullet, J. Cabungcal, S. A. Bukhari, M. I. Ardelt, H. Pantazopoulos et al., The thalamic reticular nucleus in schizophrenia and bipolar disorder: role of parvalbumin-expressing neuron networks and oxidative stress, Mol Psychiatry, vol.79, p.474, 2017.

S. Sabunciyan, R. Yolken, C. M. Ragan, J. B. Potash, V. L. Nimgaonkar et al., Polymorphisms in the homeobox gene OTX2 may be a risk factor for bipolar disorder, Am. J. Med. Genet. B Neuropsychiatr. Genet, vol.144, pp.1083-1086, 2007.

A. Sakai, R. Nakato, Y. Ling, X. Hou, N. Hara et al., Genome-Wide Target Analyses of Otx2 Homeoprotein in Postnatal Cortex, Front Neurosci, vol.11, p.307, 2017.

H. Yamamori, R. Hashimoto, T. Ishima, F. Kishi, Y. Yasuda et al., Plasma levels of mature brain-derived neurotrophic factor (BDNF) and matrix metalloproteinase-9 (MMP-9) in treatment-resistant schizophrenia treated with clozapine, Neurosci Lett, vol.556, pp.37-41, 2013.

K. Lepeta, K. J. Purzycka, K. Pachulska-wieczorek, M. Mitjans, M. Begemann et al., A normal genetic variation modulates synaptic MMP-9 protein levels and the severity of schizophrenia symptoms, EMBO Mol Med, vol.9, pp.1100-1116, 2017.

R. Cardis, J. Cabungcal, D. Dwir, K. Q. Do, and P. Steullet, A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets, Neurobiol Dis, vol.109, pp.64-75, 2018.

J. W. Paylor, B. R. Lins, Q. Greba, N. Moen, R. S. De-moraes et al., Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation, Sci Rep, vol.6, p.37580, 2016.

J. Su, J. Cole, and M. A. Fox, Loss of Interneuron-Derived Collagen XIX Leads to a Reduction in Perineuronal Nets in the Mammalian Telencephalon, ASN Neuro, vol.9, p.1759091416689020, 2017.

A. Shah and D. J. Lodge, A loss of hippocampal perineuronal nets produces deficits in dopamine system function: relevance to the positive symptoms of schizophrenia, Transl Psychiatry, vol.3, pp.215-215, 2013.

M. Goedert, R. Jakes, M. G. Spillantini, M. Hasegawa, M. J. Smith et al., Assembly of microtubule-associated protein tau into Alzheimerlike filaments induced by sulphated glycosaminoglycans, Nature, vol.383, pp.550-553, 1996.

G. M. Castillo, W. Lukito, T. N. Wight, and A. D. Snow, The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation, J Neurochem, vol.72, pp.1681-1687, 1999.

N. Quittot, M. Sebastiao, and S. Bourgault, Modulation of amyloid assembly by glycosaminoglycans: from mechanism to biological significance, Biochem. Cell Biol, vol.95, pp.329-337, 2017.

B. B. Holmes, S. L. Devos, N. Kfoury, M. Li, R. Jacks et al., Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds, Proc Natl Acad Sci, vol.110, pp.3138-3185, 2013.

J. N. Rauch, J. J. Chen, A. W. Sorum, G. M. Miller, T. Sharf et al., Sulfation on Heparan Sulfate Proteoglycans (HSPGs), Sci Rep, vol.8, p.6382, 2018.

C. B. Jendresen, H. Cui, X. Zhang, I. Vlodavsky, L. N. Nilsson et al., Overexpression of heparanase lowers the amyloid burden in amyloid-? precursor protein transgenic mice, J Biol Chem, vol.290, pp.5053-5064, 2015.

M. K. Sethi and J. Zaia, Extracellular matrix proteomics in schizophrenia and Alzheimer's disease, Anal Bioanal Chem, vol.409, pp.379-394, 2017.

G. Brückner, D. Hausen, W. Härtig, M. Drlicek, T. Arendt et al., Cortical areas abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by cytoskeletal changes in Alzheimer's disease, Neuroscience, vol.92, pp.791-805, 1999.

M. Morawski, G. Brückner, C. Jäger, G. Seeger, R. T. Matthews et al., Involvement of perineuronal and perisynaptic extracellular matrix in Alzheimer's disease neuropathology, Brain Pathol, vol.22, pp.547-561, 2012.

S. Baig, G. K. Wilcock, and S. Love, Loss of perineuronal net Nacetylgalactosamine in Alzheimer's disease, Acta Neuropathologica, vol.110, pp.393-401, 2005.

A. W. Lasek, H. Chen, and W. Chen, Releasing Addiction Memories Trapped in Perineuronal Nets, Trends Genet, vol.34, pp.197-208, 2018.

A. Samochowiec, A. Grzywacz, L. Kaczmarek, P. Bienkowski, J. Samochowiec et al., Functional polymorphism of matrix metalloproteinase-9 (MMP-9) gene in alcohol dependence: Family and case control study, Brain Res, vol.1327, pp.103-106, 2010.

L. Zuo, J. Gelernter, C. K. Zhang, H. Zhao, L. Lu et al., Genome-Wide Association Study of Alcohol Dependence Implicates <i>KIAA0040</i> on Chromosome 1q, Neuropsychopharmacology, vol.37, pp.557-566, 2012.

D. C. Mash, J. Ffrench-mullen, N. Adi, Y. Qin, A. Buck et al., Gene Expression in Human Hippocampus from Cocaine Abusers Identifies Genes which Regulate Extracellular Matrix Remodeling, PLoS ONE, vol.2, p.1187, 2007.

D. B. Vazquez-sanroman, R. D. Monje, and M. T. Bardo, Nicotine selfadministration remodels perineuronal nets in ventral tegmental area and orbitofrontal cortex in adult male rats, Addict Biol, vol.22, pp.1743-1755, 2017.

M. C. Van-den-oever, B. R. Lubbers, N. A. Goriounova, K. W. Li, R. C. Van-der-schors et al., Extracellular matrix plasticity and GABAergic inhibition of prefrontal cortex pyramidal cells facilitates relapse to heroin seeking, Neuropsychopharmacology, vol.35, pp.2120-2133, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00550738

J. M. Blacktop, R. P. Todd, and B. A. Sorg, Role of perineuronal nets in the anterior dorsal lateral hypothalamic area in the acquisition of cocaineinduced conditioned place preference and self-administration, Neuropharmacology, vol.118, pp.124-136, 2017.

D. Bavelier, D. M. Levi, R. W. Li, Y. Dan, and T. K. Hensch, Removing brakes on adult brain plasticity: from molecular to behavioral interventions, Journal of Neuroscience, vol.30, pp.14964-14971, 2010.

A. Pascual-leone, A. Amedi, F. Fregni, and L. B. Merabet, The plastic human brain cortex, Annu Rev Neurosci, vol.28, pp.377-401, 2005.

V. Vorobyov, J. C. Kwok, J. W. Fawcett, and F. Sengpiel, Effects of digesting chondroitin sulfate proteoglycans on plasticity in cat primary visual cortex, Journal of Neuroscience, vol.33, pp.234-243, 2013.

M. J. Végh, C. M. Heldring, W. Kamphuis, S. Hijazi, A. J. Timmerman et al., Reducing hippocampal extracellular matrix reverses early memory deficits in a mouse model of Alzheimer's disease, Acta Neuropathol Commun, vol.2, p.76, 2014.

M. D. Howell, L. A. Bailey, M. A. Cozart, B. M. Gannon, and P. E. Gottschall, Hippocampal administration of chondroitinase ABC increases plaqueadjacent synaptic marker and diminishes amyloid burden in aged APPswe/PS1dE9 mice, Acta Neuropathol Commun, vol.3, p.54, 2015.

S. Yang, M. Cacquevel, L. M. Saksida, T. J. Bussey, B. L. Schneider et al., Perineuronal net digestion with chondroitinase restores memory in mice with tau pathology, Exp Neurol, vol.265, pp.48-58, 2015.

J. W. Fawcett, The extracellular matrix in plasticity and regeneration after CNS injury and neurodegenerative disease, Prog Brain Res, vol.218, pp.213-226, 2015.

N. G. Harris, Y. A. Mironova, D. A. Hovda, and R. L. Sutton, Chondroitinase ABC enhances pericontusion axonal sprouting but does not confer robust improvements in behavioral recovery, J. Neurotrauma, vol.27, pp.1971-1982, 2010.

S. Soleman, P. K. Yip, D. A. Duricki, and L. D. Moon, Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats, Brain, vol.135, pp.1210-1223, 2012.

S. Yang, S. Hilton, J. N. Alves, L. M. Saksida, T. Bussey et al., Antibody recognizing 4-sulfated chondroitin sulfate proteoglycans restores memory in tauopathy-induced neurodegeneration, Neurobiol. Aging, vol.59, pp.197-209, 2017.

M. Corredor, R. Bonet, A. Moure, C. Domingo, J. Bujons et al., Cationic Peptides and Peptidomimetics Bind Glycosaminoglycans as Potential Sema3A Pathway Inhibitors, Biophys J, vol.110, pp.1291-1303, 2016.

T. Hsieh, H. H. Lee, M. Q. Hameed, A. Pascual-leone, T. K. Hensch et al., Trajectory of Parvalbumin Cell Impairment and Loss of Cortical Inhibition in Traumatic Brain Injury, Cerebral Cortex, vol.27, pp.5509-5524, 2017.

S. Y. Kim, V. V. Senatorov, C. S. Morrissey, K. Lippmann, O. Vazquez et al., TGF? signaling is associated with changes in inflammatory gene expression and perineuronal net degradation around inhibitory neurons following various neurological insults, Sci Rep, vol.7, p.7711, 2017.

W. Härtig, B. Mages, S. Aleithe, B. Nitzsche, S. Altmann et al., Damaged Neocortical Perineuronal Nets Due to Experimental Focal Cerebral Ischemia in Mice, Rats and Sheep, Front Integr Neurosci, vol.11, p.15, 2017.

M. J. Quattromani, M. Pruvost, C. Guerreiro, F. Backlund, E. Englund et al., Extracellular Matrix Modulation Is Driven by Experience-Dependent Plasticity During Stroke Recovery, Mol Neurobiol, vol.55, pp.2196-2213, 2018.

E. Pollock, M. Everest, A. Brown, and M. O. Poulter, Metalloproteinase inhibition prevents inhibitory synapse reorganization and seizure genesis, Neurobiol Dis, vol.70, pp.21-31, 2014.

S. T. Cheung, M. S. Miller, R. Pacoma, J. Roland, J. Liu et al., Discovery of a Small-Molecule Modulator of Glycosaminoglycan Sulfation, ACS Chem. Biol, 2017.