. Pris-database and . Iaea,

, Nuclear Power Reactors -World Nuclear Association

, Nuclear Fuel Fabrication -World Nuclear Association

P. A. Scholle and D. Ulmer-scholle, Environmental Science 5: Energy efficiency, renewable and non-renewable energy resources. SEPM Photo CD-14, p.637, 1997.

G. Leinders, T. Cardinaels, K. Binnemans, and M. Verwerft, Accurate lattice parameter measurements of stoichiometric uranium dioxide, J. Nucl. Mater, vol.459, pp.135-142, 2015.

G. Delette and M. Charles, Thermal conductivity of fully dense unirradiated UO 2 : a new formulation from experimental results between 100 ? C and 2500 ? C, and associated fundamental properties, Technical Committee Meeting on 'Water Reactor Fuel Element Modelling at High Burnup and Experimental Support, pp.203-216, 1994.

H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater, vol.131, issue.2, pp.221-246, 1985.

S. Valin, Etude des méchanismes microstructuraux liés au relâchement des gaz de fission du dioxyde d'uranium irradié, 1999.

J. C. Rousseau, G. Houdayer, and M. Réocreux, The CATHARE code development, 5th International Meeting on Thermal Nuclear Reactor Safety, 1984.

D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, TID-26711-P1. Technical Information Center, 1976.

E. Vathonne, J. Wiktor, M. Freyss, G. Jomard, and M. Bertolus, DFT+U investigation of charged point defects and clusters in UO 2, J. Phys. Condens. Matter, vol.26, issue.32, p.325501, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02066524

P. Li and Z. F. Zhang, Standing wave effect and fractal structure in dislocation evolution, Scientific Reports, vol.7, p.4062, 2017.

A. Michel, C. Sabathier, G. Carlot, M. Cabié, S. Bouffard et al., A TEM study of bubbles growth with temperature in Xenon and Krypton implanted Uranium Dioxide, Defect and Diffusion Forum, vol.323, pp.191-196, 2012.

G. Brillant, F. Gupta, and A. Pasturel, Fission products stability in uranium dioxide, J. Nucl. Mater, vol.412, issue.1, pp.170-176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00640089

D. Olander, Nuclear fuels -Present and future, J. Nucl. Mater, vol.389, issue.1, pp.1-22, 2009.

G. Nilsson, Ejection of uranium atoms from sintered UO 2 by fission fragments in different gases and at different gas pressures, J. Nucl. Mater, vol.20, issue.2, pp.215-230, 1966.

C. Wise, Recoil release of fission products from nuclear fuel, J. Nucl. Mater, vol.136, issue.1, pp.30-47, 1985.

B. J. Lewis, Fission product release from nuclear fuel by recoil and knockout, J. Nucl. Mater, vol.148, issue.1, pp.28-42, 1987.

I. J. Hastings, C. E. Hunt, and J. J. Lipsett, Release of short-lived fission products from UO 2 fuel: Effects of operating conditions, J. Nucl. Mater, vol.130, pp.407-417, 1985.

R. J. White and M. O. Tucker, A new fission-gas release model, J. Nucl. Mater, vol.118, issue.1, pp.1-38, 1983.

R. White, The development of grain-face porosity in irradiated oxide fuel, J. Nucl. Mater, vol.325, issue.1, pp.61-77, 2004.

M. Freyss, N. Vergnet, and T. Petit, Ab initio modeling of the behavior of helium and xenon in actinide dioxide nuclear fuels, J. Nucl. Mater, vol.352, issue.1, pp.144-150, 2006.

Y. Yun, H. Kim, H. Kim, and K. Park, Atomic diffusion mechanism of Xe in UO 2, J. Nucl. Mater, vol.378, issue.1, pp.40-44, 2008.

D. A. Andersson, B. P. Uberuaga, P. V. Nerikar, C. Unal, and C. R. Stanek, U and Xe transport in UO 2±x : Density functional theory calculations, Phys. Rev. B, vol.84, issue.5, p.54105, 2011.

X. Y. Liu, B. P. Uberuaga, D. A. Andersson, C. R. Stanek, and K. E. Sickafus, Mechanism for transient migration of xenon in UO 2, App. Phys. Lett, vol.98, issue.15, p.151902, 2011.

A. E. Thompson and C. Wolverton, Pathway and energetics of xenon migration in uranium dioxide, Phys. Rev. B, vol.87, issue.10, p.104105, 2013.

D. A. Andersson, P. Garcia, X. Liu, G. Pastore, M. Tonks et al., Atomistic modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO 2±x : Implications for nuclear fuel performance modeling, J. Nucl. Mater, vol.451, issue.1, pp.225-242, 2014.

C. R. Catlow and W. C. Marshall, Fission gas diffusion in uranium dioxide, Proc. Royal Society of London. A. Mathematical and Physical Sciences, vol.364, pp.473-497, 1719.

R. G. Ball and R. W. Grimes, Diffusion of Xe in UO 2, J. Chem. Soc., Faraday Trans, vol.86, issue.8, pp.1257-1261, 1990.

K. Govers, S. E. Lemehov, and M. Verwerft, On the solution and migration of single Xe atoms in uranium dioxide -an interatomic potentials study, J. Nucl. Mater, vol.405, issue.3, pp.252-260, 2010.

S. T. Murphy, A. Chartier, L. Van-brutzel, and J. P. Crocombette, Free energy of Xe incorporation at point defects and in nanovoids and bubbles in UO 2, Phys. Rev. B, vol.85, issue.14, p.144102, 2012.

M. W. Cooper, C. R. Stanek, J. A. Turnbull, B. P. Uberuaga, and D. A. Andersson, Simulation of radiation driven fission gas diffusion in UO 2 , ThO 2 and PuO 2, J. Nucl. Mater, vol.481, pp.125-133, 2016.

M. Tonks, D. Andersson, R. Devanathan, R. Dubourg, A. El-azab et al., Unit mechanisms of fission gas release: Current understanding and future needs, J. Nucl. Mater, vol.504, pp.300-317, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02063614

S. Nicoll, . Hj, C. R. Matzke, and . Catlow, A computational study of the effect of Xe concentration on the behaviour of single xe atoms in UO 2, J. Nucl. Mater, vol.226, issue.1, pp.51-57, 1995.

H. J. Matzke, Diffusion in ceramic oxide systems, Hastings, I.J, American Ceramic Society, 1986.

H. J. Matzke, Gas release mechanisms in UO 2 -a critical review, vol.53, pp.219-242, 1980.

W. Miekeley and F. Felix, Effect of stoichiometry on diffusion of xenon in UO 2, J. Nucl. Mater, vol.42, issue.3, pp.297-306, 1972.

M. A. Mansouri and D. R. Olander, Fission product release from trace irradiated UO 2+x, J. Nucl. Mater, vol.254, issue.1, pp.22-33, 1998.

M. Hirai, J. H. Davies, and R. Williamson, Diffusivities of fission gas species in UO 2 and (U,Gd)O 2 nuclear fuels during irradiation, J. Nucl. Mater, vol.226, issue.1, pp.238-251, 1995.

P. T. Sawbridge, C. Baker, R. M. Cornell, K. W. Jones, D. Reed et al., The irradiation performance of magnesia-doped UO 2 fuel, J. Nucl. Mater, vol.95, issue.1, pp.119-128, 1980.

Y. Harada, Sintering behaviour of niobia-doped large grain UO 2 pellet, J. Nucl. Mater, vol.238, issue.2, pp.237-243, 1996.

J. C. Killeen, Fission gas release and swelling in UO 2 doped with Cr 2 O 3, J. Nucl. Mater, vol.88, issue.2, pp.177-184, 1980.

N. Djourelov, B. Marchand, H. Marinov, N. Moncoffre, Y. Pipon et al., Study of temperature and radiation induced microstructural changes in Xe-implanted UO 2 by TEM, STEM, SIMS and positron spectroscopy, J. Nucl. Mater, vol.443, issue.1, pp.562-569, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00881212

R. Bès, P. Martin, E. Vathonne, R. Delorme, C. Sabathier et al., Experimental evidence of Xe incorporation in Schottky defects in UO 2, Appl. Phys. Lett, vol.106, issue.11, p.114102, 2015.

J. H. Evans, Recent Experimental Studies on Thermal and Irradiation-Induced Resolution of Gas Atoms from Bubbles in Solids, pp.307-319, 1991.

J. R. Macewan and W. H. Stevens, Xenon diffusion in UO 2 : some complicating factors, J. Nucl. Mater, vol.11, issue.1, pp.77-93, 1964.

J. H. Evans, A. Van-veen, and K. T. Westerduin, A TEM and TDS study of gas release from bubbles in krypton-implanted uranium dioxide, J. Nucl. Mater, vol.195, pp.250-259, 1992.

C. Matzke, H. J. Ronchi, and C. Baker, Precipitation of Xe and Cs into bubbles, kinetics of bubble migration and alternative release processes, Eur. App. Res. Rept, vol.5, issue.6, pp.1105-1157, 1984.

P. V. Nerikar, D. C. Parfitt, L. A. Casillas-trujillo, D. A. Andersson, C. Unal et al., Segregation of xenon to dislocations and grain boundaries in uranium dioxide, Phys. Rev. B, vol.84, issue.17, p.174105, 2011.

S. T. Murphy, P. Fossati, and R. W. Grimes, Xe diffusion and bubble nucleation around edge dislocations in UO 2, J. Nucl. Mater, vol.466, pp.634-637, 2015.

M. V. Speight, A calculation on the migration of fission gas in material exhibiting precipitation and re-solution of gas atoms under irradiation, Nucl. Sci. Eng, vol.37, issue.2, pp.180-185, 1969.

A. D. Whapham, Electron microscope observation of the fission-gas bubble distribution in UO 2, Nucl. Appl, vol.2, issue.2, pp.123-130, 1966.

A. J. Manley, Transmission electron microscopy of irradiated UO 2 fuel pellets, J. Nucl. Mater, vol.27, issue.2, pp.216-224, 1968.

R. S. Nelson, The stability of gas bubbles in an irradiation environment, J. Nucl. Mater, vol.31, issue.2, pp.153-161, 1969.

J. A. Turnbull, The distribution of intra-granular fission gas bubbles in UO 2 during irradiation, J. Nucl. Mater, vol.38, issue.2, pp.203-212, 1971.

R. M. Cornell, An electron microscope examination of matrix fission-gas bubbles in irradiated uranium dioxide, J. Nucl. Mater, vol.38, issue.3, pp.319-328, 1971.

J. A. Turnbull, A review of irradiation induced re-solution in oxide fuels, Rad. Effects, vol.53, issue.3-4, pp.243-249, 1980.

G. T. Lawrence, A review of the diffusion coefficient of fission-product rare gases in uranium dioxide, J. Nucl. Mater, vol.71, issue.2, pp.195-218, 1978.

D. R. Olander and D. Wongsawaeng, Re-solution of fission gas -A review: Part I. Intragranular bubbles, J. Nucl. Mater, vol.354, issue.1, pp.94-109, 2006.

M. Toulemonde, E. Paumier, and C. Dufour, Thermal spike model in the electronic stopping power regime, vol.126, pp.201-206, 1993.

D. Schwen, M. Huang, P. Bellon, and R. S. Averback, Molecular dynamics simulation of intra-granular Xe bubble re-solution in UO 2, J. Nucl. Mater, vol.392, issue.1, pp.35-39, 2009.

M. Huang, D. Schwen, and R. S. Averback, Molecular dynamic simulation of fission fragment induced thermal spikes in UO 2 : Sputtering and bubble re-solution, J. Nucl. Mater, vol.399, issue.2, pp.175-180, 2010.

K. Govers, C. L. Bishop, D. C. Parfitt, S. E. Lemehov, M. Verwerft et al., Molecular dynamics study of Xe bubble re-solution in UO 2, J. Nucl. Mater, vol.420, issue.1, pp.282-290, 2012.

G. Pastore, L. P. Swiler, J. D. Hales, S. R. Novascone, D. M. Perez et al., Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling, J. Nucl. Mater, vol.456, pp.398-408, 2015.

L. Noirot, A method to calculate equilibrium concentrations of gas and defects in the vicinity of an over-pressured bubble in UO 2, J. Nucl. Mater, vol.447, pp.166-178, 2014.

R. A. Jackson and C. R. Catlow, Trapping and solution of fission Xe in UO 2 : Part 1. Single gas atoms and solution from underpressurized bubbles, J. Nucl. Mater, vol.127, issue.2, pp.161-166, 1985.

R. A. Jackson and C. R. Catlow, Trapping and solution of fission Xe in UO 2 : Part 2. Solution from small overpressurized bubbles, J. Nucl. Mater, vol.127, issue.2, pp.167-169, 1985.

J. R. Macewan and P. A. Morel, Migration of Xenon through a UO 2 matrix containing trapping sites, Nucl. Appl, vol.2, p.158, 1968.

D. A. Macinnes and I. R. Brearley, A model for the release of fission gas from reactor fuel undergoing transient heating, J. Nucl. Mater, vol.107, issue.2, pp.123-132, 1982.

I. R. Brearley and D. A. Macinnes, Modelling of fission-gas release from fuel undergoing isothermal heating, J. Nucl. Mater, vol.118, pp.68-72, 1983.

C. Ronchi, On diffusion and precipitation of gas-in-solid, J. Nucl. Mater, vol.148, issue.3, pp.316-323, 1987.

R. J. White, The growth of intra-granular bubbles in post-irradiation annealed UO 2 fuel. In IAEA, Technical committee on nuclear fuel behaviour modeling at high burn-up and its experimental support, Windermere, 2000.

I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, vol.19, issue.1, pp.35-50, 1961.

M. S. Veshchunov, On the theory of fission gas bubble evolution in irradiated UO 2 fuel, J. Nucl. Mater, vol.277, issue.1, pp.67-81, 2000.

. Hj and . Matzke, Diffusion in doped UO 2, Nucl. App, vol.2, issue.2, pp.131-137, 1966.

B. Dorado, Etude des propriétés de transport atomique dans le dioxyde d'uranium par le calcul de structure électronique : influence des fortes corrélations, 2010.

H. J. Matzke, Fundamental aspects of inert gas behaviour in nuclear fuels: oxides, carbides and nitrides, pp.401-414, 1991.

J. Janek and H. Timm, Thermal diffusion and Soret effect in (U,Me)O 2+? : the heat of transport of oxygen, J. Nucl. Mater, vol.255, issue.2, pp.116-127, 1998.

J. A. Turnbull, C. A. Friskney, J. R. Findlay, F. A. Johnson, and A. J. Walter, The diffusion coefficients of gaseous and volatile species during the irradiation of uranium dioxide, J. Nucl. Mater, vol.107, issue.2, pp.168-184, 1982.

P. Shewmon, Diffusion in Solids, 2016.

I. Kaur, Y. Mishin, and W. Gust, Fundamentals of grain and interphase boundary diffusion, 1995.

A. Atkinson, Diffusion along grain boundaries and dislocations in oxides, alkali halides and carbides, Solid State Ionics, vol.12, pp.309-320, 1984.

M. V. Speight and J. A. Turnbull, Enhanced fission-product release by grain-boundary diffusion, J. Nucl. Mater, vol.68, issue.2, pp.244-249, 1977.

J. A. Turnbull and C. A. Friskney, The release of fission products from nuclear fuel during irradiation by both lattice and grain boundary diffusion, J. Nucl. Mater, vol.58, issue.1, pp.31-38, 1975.

J. A. Turnbull, C. A. Friskney, F. A. Johnson, A. J. Walter, and J. R. Findlay, The release of radioactive gases from uranium dioxide during irradiation, J. Nucl. Mater, vol.67, issue.3, pp.301-306, 1977.

D. R. Olander, Combined grain-boundary and lattice diffusion in finegrained ceramics, Hastings, I.J

O. H. Columbus and . Usa), , 1986.

U. M. El-saied and D. R. Olander, Fission gas release during grain growth in a microstructure with a distribution of grain sizes, J. Nucl. Mater, vol.207, pp.313-326, 1993.

N. L. Peterson, Diffusion mechanisms in grain boundaries in solids. CONF-820547-16, 1982.

E. Bourasseau, M. Bertolus, M. Freyss, G. Jomard, I. C. Njifon et al., Atomic scale calculations of nuclear fuel properties to sustain multiscale modeling of fuel behavior, MMM2018, 2018.

A. Denis and R. Piotrkowski, Simulation of isothermal fission gas release, J. Nucl. Mater, vol.229, pp.149-154, 1996.

L. Bernard and E. Bonnaud, Finite volume method for fission gas release modeling, J. Nucl. Mater, vol.244, issue.1, pp.75-84, 1997.

K. Yang-hyun, S. Dong-seong, and Y. Young-ku, An analysis method for the fuel rod gap inventory of unstable fission products during steady-state operation, J. Nucl. Mater, vol.209, issue.1, pp.62-78, 1994.

C. T. Walker and M. Mogensen, On the rate determining step in fission gas release from high burn-up water reactor fuel during power transients, J. Nucl. Mater, vol.149, issue.2, pp.121-131, 1987.

C. T. Walker, P. Knappik, and M. Mogensen, Concerning the development of grain face bubbles and fission gas release in UO 2 fuel, J. Nucl. Mater, vol.160, issue.1, pp.10-23, 1988.

M. O. Tucker, Grain boundary porosity and gas release in irradiated UO 2, Rad. Effects, vol.53, issue.3-4, pp.251-255, 1980.

K. Une and S. Kashibe, Fission gas release during post irradiation annealing of BWR fuels, J. Nucl. Sci. Technol, vol.27, issue.11, pp.1002-1016, 1990.

M. E. Gulden, Migration of gas bubbles in irradiated uranium dioxide, J. Nucl. Mater, vol.23, issue.1, pp.30-36, 1967.

F. A. Nichols, Pore migration in ceramic fuel elements, J. Nucl. Mater, vol.27, issue.2, pp.137-146, 1968.

F. A. Nichols, Kinetics of diffusional motion of pores in solids: A review, J. Nucl. Mater, vol.30, issue.1, pp.143-165, 1969.

J. H. Evans, Bubble diffusion to grain boundaries in UO 2 and metals during annealing: A new approach, J. Nucl. Mater, vol.210, pp.21-29, 1994.

F. A. Nichols, Transport phenomena in nuclear fuels under severe temperature gradients, J. Nucl. Mater, vol.84, issue.1, pp.1-25, 1979.

J. H. Evans, The role of directed bubble diffusion to grain boundaries in post-irradiation fission gas release from UO 2 : A quantitative assessment, J. Nucl. Mater, vol.238, issue.2, pp.175-182, 1996.

J. H. Evans, Post-irradiation fission gas release from high burn-up UO 2 fuel annealed under oxidising conditions, J. Nucl. Mater, vol.246, issue.2, pp.121-125, 1997.

D. R. Olander, Interaction of stresses with inclusions in solids -A review, J. Nucl. Mater, vol.92, issue.2, pp.163-183, 1980.

H. V. Atkinson, Overview no. 65: Theories of normal grain growth in pure single phase systems, Acta Metall, vol.36, issue.3, pp.469-491, 1988.

R. Hargreaves and D. A. Collins, A quantitative model for fission gas release and swelling in irradiated uranium dioxide, J. Br. Nucl. Energy Soc, vol.15, issue.4, pp.311-318, 1976.

M. V. Speight and G. W. Greenwood, Grain boundary mobility and its effects in materials containing inert gases, Philos. Mag, vol.9, issue.100, pp.683-689, 1964.

M. Mogensen, C. Bagger, and C. T. Walker, An experimental study of the distribution of retained xenon in transient-tested UO 2 fuel, J. Nucl. Mater, vol.199, issue.2, pp.85-101, 1993.

J. A. Turnbull, The effect of grain size on the swelling and gas release properties of UO 2 during irradiation, J. Nucl. Mater, vol.50, issue.1, pp.62-68, 1974.

M. O. Tucker and R. J. White, The release of unstable fission products from UO 2 during irradiation, J. Nucl. Mater, vol.87, issue.1, pp.1-10, 1979.

M. Mogensen, C. T. Walker, I. L. Ray, and M. Coquerelle, Local fission gas release and swelling in water reactor fuel during slow power transients, J. Nucl. Mater, vol.131, issue.2, pp.162-171, 1985.

J. Noirot, I. Zacharie-aubrun, and T. Blay, Focused ion beam-scanning electron microscope examination of high burn-up UO 2 in the center of a pellet, Nucl. Eng. Technol, vol.50, pp.259-267, 2018.
URL : https://hal.archives-ouvertes.fr/cea-02428764

R. G. Bellamy and J. B. Rich, Grain-boundary gas release and swelling in high burn-up uranium dioxide, J. Nucl. Mater, vol.33, issue.1, pp.64-76, 1969.

M. J. Notley and J. R. Macewan, Stepwise release of fission gas from UO 2 fuel, Nucl. Technol, vol.2, issue.6, pp.477-480, 1966.

I. J. Hastings, A. D. Smith, P. J. Fehrenbach, and T. J. Carter, Fission gas release from power-ramped UO 2 fuel, J. Nucl. Mater, vol.139, issue.2, pp.106-112, 1986.

K. Une and S. Kashibe, Fission gas release during postirradiation annealing of UO 2 -2 wt% Gd 2 O 3 fuels, J. Nucl. Mater, vol.189, issue.2, pp.210-216, 1992.

R. M. Carroll, J. G. Morgan, R. B. Perez, and O. Sisman, Fission density, burnup, and temperature effects on fission-gas release from UO 2, Nucl. Sci. Eng, vol.38, issue.2, pp.143-155, 1969.

J. Rest and S. M. Gehl, The mechanistic prediction of transient fissiongas release from LWR fuel, Nucl. Eng. Des, vol.56, issue.1, pp.233-256, 1980.

W. Hering, The KWU fission gas release model for LWR fuel rods, J. Nucl. Mater, vol.114, issue.1, pp.41-49, 1983.

Y. H. Koo, B. H. Lee, and D. S. Sohn, Cosmos: A computer code to analyze LWR UO 2 and MOX fuel up to high burnup, Ann. Nucl. Energy, vol.26, issue.1, pp.47-67, 1999.

P. Van-uffelen, A. Schubert, J. Van-de-laar, and C. Gy?ri, Development of a transient fission gas release model for TRANSURANUS, Water Reactor Fuel Performance Meeting, 2008.

L. C. Bernard, J. L. Jacoud, and P. Vesco, An efficient model for the analysis of fission gas release, J. Nucl. Mater, vol.302, issue.2, pp.125-134, 2002.

G. Pastore, D. Pizzocri, J. D. Hales, S. R. Novascone, D. M. Perez et al., Modelling of transient fission gas behaviour in oxide fuel and application to the BI-SON code, 2014.

P. Chakraborty, M. R. Tonks, and G. Pastore, Modeling the influence of bubble pressure on grain boundary separation and fission gas release, J. Nucl. Mater, vol.452, issue.1, pp.95-101, 2014.

E. Ya, V. F. Mikhlin, and . Chkuaseli, Gas release and swelling in oxide fuel; modeling of the kinetics of gas porosity development, J. Nucl. Mater, vol.105, pp.223-230, 1982.

C. Baker and J. C. Killeen, Materials for nuclear reactor core applications, Int. Conf. on Materials for Nuclear Reactor Core Applications, p.153, 1987.

G. J. Small, Fission gas release and bubble development in UO 2 during high temperature transients, Proc. IAEA Specialists' Meeting on Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions, pp.209-220, 1988.

S. Kashibe, K. Une, and K. Nogita, Formation and growth of intragranular fission gas bubbles in UO 2 fuels with burnup of 6-83 GWd/t, J. Nucl. Mater, vol.206, issue.1, pp.22-34, 1993.

J. Noirot, Y. Pontillon, S. Yagnik, and J. A. Turnbull, Post-irradiation examinations and high-temperature tests on undoped large-grain UO 2 discs, J. Nucl. Mater, vol.462, pp.77-84, 2015.

H. Zimmermann, Eur. App. Res. Rept.-Nucl. Sci. Technol, vol.5, p.1349, 1984.

I. Zacharie, S. Lansiart, P. Combette, M. Trotabas, M. Coster et al., Thermal treatment of uranium oxide irradiated in pressurized water reactor: Swelling and release of fission gases, J. Nucl. Mater, vol.255, issue.2, pp.85-91, 1998.

I. Zacharie, Traitements thermiques de l'oxyde d'uranium irradié dans un réacteur à eau pressurisée (R.E.P.) : gonflement et relâchement des gaz de fission, 1997.

P. S. Copeland, Onset of gas release and grain face vesting rates in large grain fuel, AEA Technology, 1996.

A. H. Booth, A method of calculating fission gas diffusion from UO 2 fuel and its application to the X-2-f loop test, 1957.

J. R. Matthews and M. H. Wood, An efficient method for calculating diffusive flow to a spherical boundary, Nucl. Eng. Des, vol.56, issue.2, pp.439-443, 1980.

K. Ito, R. Iwasaki, and Y. Iwano, Finite element model for analysis of fission gas release from UO 2 fuel, J. Nucl. Sci. Technol, vol.22, issue.2, pp.129-138, 1985.

T. Nakajima, FEMAXI-IV: A computer code for the analysis of fuel rod behavior under transient conditions, Nucl. Eng. Des, vol.88, issue.1, pp.69-84, 1985.

K. Forsberg and A. R. Massih, Fission gas release under time-varying conditions, J. Nucl. Mater, vol.127, pp.141-145, 1985.

P. T. Elton and K. Lassmann, Calculational methods for diffusional gas release, J. Nucl. Mater, vol.101, pp.259-265, 1987.

P. Lösönen, Methods for calculating diffusional gas release from spherical grains, Nucl. Eng. Des, vol.196, issue.2, pp.161-173, 2000.

K. Lassmann and H. Benk, Numerical algorithms for intragranular fission gas release, J. Nucl. Mater, vol.280, pp.127-135, 2000.

K. Forsberg, F. Lindström, and A. R. Massih, Modelling of some high burnup phenomena in nuclear fuel, Proc. Technical Committee Meeting on Water reactor fuel element modelling at high burnup and its experimental support, IAEA-TECDOC-957, pp.251-275, 1994.

G. A. Berna, G. A. Beyer, K. L. Davis, and D. D. Lanning, FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup, vol.2, 1997.

J. Rest, GRASS-SST: A comprehensive, mechanistic model for the prediction of fission-gas behavior in UO 2 -base fuels during steady-state and transient conditions

D. M. Dowling, R. J. White, and M. O. Tucker, The effect of irradiationinduced re-solution on fission gas release, J. Nucl. Mater, vol.110, issue.1, pp.37-46, 1982.

P. Van-uffelen, J. Hales, W. Li, G. Rossiter, and R. Williamson, A review of fuel performance modelling, J. Nucl. Mater, vol.516, pp.373-412, 2019.

G. Thouvenin, J. M. Ricaud, B. Michel, D. Plancq, and P. Thevenin, AL-CYONE: the PLEIADES fuel performance code dedicated to multidimensional PWR studies, Proceedings of Top Fuel, 2006.

L. Noirot, MARGARET: A comprehensive code for the description of fission gas behavior, Nucl. Eng. Des, vol.241, pp.2099-2118, 2011.

G. Jomard, C. Struzik, A. Boulore, P. Mailhé, V. Auret et al., CARACAS: An industrial model for description of fission gas behavior in LWR-UO2 fuel, Proceedings of Top Fuel Conference, 2014.

R. L. Williamson, J. D. Hales, S. R. Novascone, M. R. Tonks, D. R. Gaston et al., Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater, vol.423, issue.1, pp.149-163, 2012.

K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater, vol.188, pp.295-302, 1992.

K. Forsberg and A. R. Massih, Diffusion theory of fission gas migration in irradiated nuclear fuel UO 2, J. Nucl. Mater, vol.135, issue.2, pp.140-148, 1985.

G. Pastore, L. Luzzi, V. D. Marcello, and P. V. Uffelen, Physics-based modelling of fission gas swelling and release in UO 2 applied to integral fuel rod analysis, Nucl. Eng. Des, vol.256, pp.75-86, 2013.

M. S. Veshchunov, A. V. Boldyrev, V. D. Ozrin, V. E. Shestak, and V. I. Tarasov, A new mechanistic code SFPR for modeling of single fuel rod performance under various regimes of LWR operation, Nucl. Eng. Des, vol.241, issue.8, pp.2822-2830, 2011.

M. S. Veshchunov, V. D. Ozrin, V. E. Shestak, V. I. Tarasov, R. Dubourg et al., Development of the mechanistic code MFPR for modelling fission-product release from irradiated UO 2 fuel, Nucl. Eng. Des, vol.236, issue.2, pp.179-200, 2006.

M. S. Veshchunov, R. Dubourg, V. D. Ozrin, V. E. Shestak, and V. I. Tarasov, Mechanistic modelling of urania fuel evolution and fission product migration during irradiation and heating, J. Nucl. Mater, vol.362, issue.2, pp.327-335, 2007.

L. Noirot, MARGARET: An advanced mechanistic model of fission gas behavior in nuclear fuel, J. Nucl. Sci. Technol, vol.43, issue.9, pp.1149-1160, 2006.

M. S. Daw, S. M. Foiles, and M. I. Baskes, The embedded-atom method: a review of theory and applications, Mater. Sci. Rep, vol.9, issue.7, pp.251-310, 1993.

D. J. Bacon, A. F. Calder, and F. Gao, Defect production due to displacement cascades in metals as revealed by computer simulation, J. Nucl. Mater, vol.251, pp.1-12, 1997.

B. Wirth, G. Odette, G. E. Maroudas, and . Lucas, Dislocation loop structure, energy and mobility of self-interstitial atom clusters in bcc iron, J. Nucl. Mater, vol.276, issue.1, pp.33-40, 2000.

N. D. Morelon, D. Ghaleb, J. M. Delaye, and L. Van-brutzel, A new empirical potential for simulating the formation of defects and their mobility in uranium dioxide, Philos. Mag, vol.83, issue.13, pp.1533-1555, 2003.

C. B. Basak, A. K. Sengupta, and H. S. Kamath, Classical molecular dynamics simulation of UO 2 to predict thermophysical properties, J. Alloys Compd, vol.360, issue.1, pp.210-216, 2003.

E. Yakub, C. Ronchi, and D. Staicu, Molecular dynamics simulation of premelting and melting phase transitions in stoichiometric uranium dioxide, J. Chem. Phys, vol.127, issue.9, p.94508, 2007.

V. Tikare, M. Braginsky, and E. A. Olevsky, Numerical simulation of solid-state sintering: I, Sintering of three particles, J. Am. Ceram. Soc, vol.86, issue.1, pp.49-53, 2003.

A. Barbu and E. Clouet, Cluster dynamics modeling of materials: Advantages and limitations, Solid State Phenom, vol.129, pp.51-58, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00171496

R. Skorek, S. Maillard, A. Michel, G. Carlot, E. Gilabert et al., Modelling fission gas bubble distribution in UO 2, Diffusion in Materials -DIMAT 2011, vol.323, pp.209-214, 2012.

T. Jourdan, G. Bencteux, and G. Adjanor, Efficient simulation of kinetics of radiation induced defects: A cluster dynamics approach, J. Nucl. Mater, vol.444, issue.1, pp.298-313, 2014.

A. Karma and W. J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, vol.57, issue.4, pp.4323-4349, 1998.

L. Q. Chen, Phase-Field models for microstructure evolution, Ann. Rev. Mater. Res, vol.32, issue.1, pp.113-140, 2002.

I. Steinbach, B. Böttger, J. Eiken, N. Warnken, and S. G. Fries, CAL-PHAD and Phase-Field modeling: A successful liaison, J. Phase Equib. Diff, vol.28, issue.1, pp.101-106, 2007.

I. Steinbach, Phase-field models in materials science, Model. Simul. Mater. Sci. Eng, vol.17, issue.7, p.73001, 2009.

M. Kuroda, K. Yoshioka, S. Yamanaka, H. Anada, F. Nagase et al., Influence of precipitated hydride on the fracture behavior of zircaloy fuel cladding tube, J. Nucl. Sci. Tech, vol.37, issue.8, pp.670-675, 2000.

C. Bailey and M. Cross, A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh, Int. J. Numer. Meth. Eng, vol.38, issue.10, pp.1757-1776, 1995.

G. A. Taylor, C. Bailey, and M. Cross, A vertex-based finite volume method applied to non-linear material problems in computational solid mechanics, Int. J. Numer. Meth. Eng, vol.56, issue.4, pp.507-529, 2003.

M. Stan, Discovery and design of nuclear fuels, Materials Today, vol.12, issue.11, pp.20-28, 2009.

Y. Li, S. Hu, R. Montgomery, F. Gao, X. Sun et al., Mesoscale simulations of intra-granular fission gas bubbles in UO 2 under post-irradiation thermal annealing, Mesoscale Benchmark Demonstration, 2012.

Y. Li, S. Hu, X. Sun, and M. Stan, A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials, Computational Materials, vol.3, issue.1, p.16, 2017.

S. Maillard, . Skorek, M. Hoang, and . Bertolus, Application of mesoscale approaches to the diffusion processes in UO 2 . F-BRIDGE Deliverable D-225, 2012.

A. F. Voter, Introduction to the Kinetic Monte Carlo Method, Radiation Effects in Solids, pp.1-23, 2007.

G. Martin, Atomic mobility in Cahn's diffusion model, Phys. Rev. B, vol.41, pp.2279-2283, 1990.

G. Martin and F. Soisson, Kinetic Monte Carlo Method to model diffusion controlled phase transformations in the solid state, pp.2223-2248, 2005.

C. S. Deo, D. J. Srolovitz, W. Cai, and V. V. Bulatov, Stochastic simulation of dislocation glide in tantalum and Ta-based alloys, J. Mech. Phys. Solids, vol.53, issue.6, pp.1223-1247, 2005.

L. Malerba, C. S. Becquart, and C. Domain, Object kinetic Monte Carlo study of sink strengths, J. Nucl. Mater, vol.360, issue.2, pp.159-169, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01828326

M. Wen, A. Takahashi, and N. M. Ghoniem, Kinetics of self-interstitial cluster aggregation near dislocations and their influence on hardening, J. Nucl. Mater, vol.392, issue.3, pp.386-395, 2009.

J. Dalla-torre, J. Bocquet, N. V. Doan, E. Adam, and A. Barbu, JERK, an event-based Kinetic Monte Carlo model to predict microstructure evolution of materials under irradiation, Philos. Mag, vol.85, pp.549-558, 2005.

V. Tikare, M. Braginsky, D. Bouvard, and A. Vagnon, Numerical simulation of microstructural evolution during sintering at the mesoscale in a 3d powder compact, Comput. Mater. Sci, vol.48, issue.2, pp.317-325, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00528004

N. Moelans, B. Blanpain, and P. Wollants, An introduction to phase-field modeling of microstructure evolution, Calphad, vol.32, issue.2, pp.268-294, 2008.

S. Rokkam, A. El-azab, P. Millett, and D. Wolf, Phase field modeling of void nucleation and growth in irradiated metals, Model. Simul. Mater. Sci. Eng, vol.17, issue.6, p.64002, 2009.

C. Ronchi, Extrapolated equation of state for rare gases at high temperatures and densities, J. Nucl. Mater, vol.96, issue.3, pp.314-328, 1981.

L. Q. Chen and J. Shen, Applications of semi-implicit fourierspectral method to phase field equations, Comput. Phys. Commun, vol.108, issue.2, pp.147-158, 1998.

Y. Li, S. Hu, R. Montgomery, X. Gao, and F. Sun, Phase-field simulations of intragranular fission gas bubble evolution in UO 2 under postirradiation thermal annealing, Nucl. Instrum. Meth. Phys. Res. Sect. B (Beam Interactions with Materials and Atoms), vol.303, pp.62-67, 2013.

M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, and P. Talbot, An objectoriented finite element framework for multiphysics phase field simulations, Comput. Mater. Sci, vol.51, pp.20-29, 2012.

E. Hernandez-rivera, Development of Hybrid Deterministic-Statistical Models for Irradiation Influenced Microstructural Evolution, 2015.

Z. H. Xiao, A. A. Semenov, C. H. Woo, and S. Q. Shi, Single void dynamics in phase field modeling, J. Nucl. Mater, vol.439, issue.1, pp.25-32, 2013.

T. Hochrainer and A. El-azab, A sharp interface model for void growth in irradiated materials, Philos. Mag, vol.95, issue.9, pp.948-972, 2015.

L. Liang, Z. Mei, Y. S. Kim, M. Anitescu, and A. M. Yacout, Three-dimensional phase-field simulations of intragranular gas bubble evolution in irradiated U-Mo fuel, Comput. Mater. Sci, vol.145, pp.86-95, 2018.

M. J. Welland, E. Tenuta, and A. A. Prudil, Linearization-based method for solving a multicomponent diffusion phase-field model with arbitrary solution thermodynamics, Phys. Rev. E, vol.95, p.63312, 2017.

R. O. Hall, M. J. Mortimer, and D. A. Mortimer, Surface energy measurements on UO 2 -A critical review, J. Nucl. Mater, vol.148, issue.3, pp.237-256, 1987.

N. F. Carnahan and K. E. Starling, Equation of state for nonattracting rigid spheres, J. Chem. Phys, vol.51, issue.2, pp.635-636, 1969.

I. R. Brearley and D. A. Macinnes, An improved equation of state for inert gases at high pressures, J. Nucl. Mater, vol.95, issue.3, pp.239-252, 1980.

. Hj and . Matzke, Atomic transport properties in UO 2 and mixed oxides (U,Pu)O 2, J. Chem. Soc., Faraday Trans. 2, vol.83, issue.7, pp.1121-1142, 1987.

. Hj and . Matzke, Surface diffusion and surface energies of ceramics with application to the behavior of volatile fission products in ceramic nuclear fuels, Surfaces and Interfaces of Ceramic Materials, pp.241-272, 1989.

E. Ya and . Mikhlin, The mobility of intragranular gas bubbles in uranium dioxide, J. Nucl. Mater, vol.87, issue.2, pp.405-408, 1979.

U. Ayachit, The ParaView Guide: A Parallel Visualization Application. Kitware, pp.978-1930934306, 2015.

R. S. Barnes and R. S. Nelson, UKAEA (Harwell) Report AERE-R4952, 1965.

J. A. Turnbull, The mobility of intra-granular bubbles in uranium dioxide during irradiation, J. Nucl. Mater, vol.62, issue.2, pp.325-328, 1976.

R. S. Barnes, G. B. Redding, and A. H. Cottrell, The observation of vacancy sources in metals, Phil. Mag, vol.3, issue.25, pp.97-99, 1958.

R. S. Barnes, The generation of vacancies in metals, Phil. Mag, vol.5, issue.54, pp.635-646, 1960.

V. F. Chkuaseli, Modelling of fission gas spatial distribution in single grains of UO 2 fuel, J. Nucl. Mater, vol.204, pp.81-84, 1993.

R. M. Cornell, The growth of fission gas bubbles in irradiated uranium dioxide, Phil. Mag, vol.19, issue.159, pp.539-554, 1969.

C. Baker, The fission gas bubble distribution in uranium dioxide from high temperature irradiated SGHWR fuel pins, J. Nucl. Mater, vol.66, issue.3, pp.283-291, 1977.

G. L. Montet, Integral methods in the calculation of correlation factors in diffusion, Phys. Rev. B, vol.7, pp.650-662, 1973.

G. L. Reynolds, The surface self-diffusion of uranium dioxide, J. Nucl. Mater, vol.24, pp.69-73, 1967.

J. Henney and J. W. Jones, Surface-diffusion studies on UO 2 and MgO, J. Nucl. Mater, vol.3, pp.158-164, 1968.

P. S. Maiya, Surface diffusion, surface free energy, and grain-boundary free energy of uranium dioxide, J. Nucl. Mater, vol.40, pp.57-65, 1971.

M. O. Marlowe and A. I. Kaznoff, Tracer study of the surface diffusivity of UO 2, J. Nucl. Mater, vol.25, pp.328-333, 1968.

W. M. Robertson, Surface diffusion of oxides (A review), J. Nucl. Mater, vol.30, pp.36-49, 1969.

D. R. Olander, Interpretation of tracer surface diffusion experiments on UO 2 -roles of gas and solid transport processes, J. Nucl. Mater, vol.96, pp.243-254, 1981.

S. Y. Zhou and D. R. Olander, Tracer surface diffusion on uranium dioxide, Surface Science, vol.136, issue.1, pp.82-102, 1984.

L. Bourgeois, P. Dehaudt, C. Lemaignan, and J. Fredric, Pore migration in UO 2 and grain growth kinetics, J. Nucl. Mater, vol.295, issue.1, pp.73-82, 2001.

M. S. Veshchunov and V. E. Shestak, An advanced model for intragranular bubble diffusivity in irradiated UO 2 fuel, J. Nucl. Mater, vol.376, issue.2, pp.174-180, 2008.

K. Ahmed, J. Pakarinen, T. Allen, and A. El-azab, Phase field simulation of grain growth in porous uranium dioxide, J. Nucl. Mater, vol.446, issue.1, pp.90-99, 2014.

J. R. Matthews and M. H. Wood, Modelling the transient behaviour of fission gas, J. Nucl. Mater, vol.84, issue.1, pp.125-136, 1979.

A. D. Whapham and B. E. Sheldon, Radiation damage in uranium dioxide, Philos. Mag, vol.12, issue.120, pp.1179-1192, 1965.

C. Onofri, M. Legros, J. Léchelle, H. Palancher, C. Baumier et al., Full characterization of dislocations in ion-irradiated polycrystalline UO2, J. Nucl. Mater, vol.494, pp.252-259, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01584641

A. Michel, Etude du comportement des gaz de fission dans le dioxyde d'uranium: mécanismes de diffusion, nucléation et grossissement de bulles, 2011.

T. Sonoda, M. Kinoshita, I. L. Ray, T. Wiss, H. Thiele et al., Transmission electron microscopy observation on irradiation-induced microstructural evolution in high burnup UO2 disk fuel, Nucl. Instr. and Meth. B, vol.191, issue.1, pp.622-628, 2002.

A. Goyal, T. Rudzik, B. Deng, M. Hong, A. Chernatynskiy et al., Segregation of ruthenium to edge dislocations in uranium dioxide, J. Nucl. Mater, vol.441, issue.1, pp.96-102, 2013.

J. Shea, An extension to fission gas release modelling at high temperatures, EHPG Storefjell, 2013.

S. T. Murphy, E. E. Jay, and R. W. Grimes, Pipe diffusion at dislocations in UO2, J. Nucl. Mater, vol.447, issue.1, pp.143-149, 2014.

M. S. Veshchunov and V. E. Shestak, Modelling of fission gas release from irradiated UO2 fuel under high-temperature annealing conditions, Journal of Nuclear Materials, vol.430, issue.1, pp.82-89, 2012.

M. V. Speight and W. Beere, Vacancy potential and void growth on grain boundaries, Metal Sci, vol.9, issue.4, pp.190-191, 1975.

A. Le-prioux-halna-du-fretay, Modélisation par théorie élastique et potentiels empiriques des boucles de dislocation interstitielles dans l'UO2 pour la dynamique d'amas, 2017.

D. D. Lanning, C. E. Beyer, and C. L. Painter, New high burnup fuel models for NRC's licensing audit code, p.141, 1996.

K. J. Geelhood and W. G. Luscher, FRAPCON-3.5: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup. NUREG/CR-7022, PNNL-19418, 2014.

P. A. Jackson, J. A. Turnbull, and R. J. White, Enigma fuel performance code, Nucl. Energy, vol.29, issue.2, pp.107-114, 1990.

Y. Rashid, R. Dunham, and . Montgomery, Fuel analysis and licensing code: FALCON MOD01, EPRI Report, p.1011308, 2004.

J. D. Hales, R. L. Williamson, S. R. Novascone, G. Pastore, B. W. Spencer et al., BISON theory manual the equations behind nuclear fuel analysis, 2016.

J. Rest, An improved model for fission product behavior in nuclear fuel under normal and accident conditions, J. Nucl. Mater, vol.120, issue.2, pp.195-212, 1984.

J. Rest and S. A. Zawadzki, FASTGRASS: A mechanistic model for the prediction of Xe, I, Cs, Te, Ba, and Sr release from nuclear fuel under normal and severe-accident conditions. NUREG/CR-5840, 1992.

D. P. , Pleiades : A unified environment for multidimensional fuel performance modeling, Proc. Int. Meeting on LWR Fuel Performance, 2004.

C. Struzik, M. Moyne, and J. P. Piron, High burn-up modelling of UO 2 and MOX fuel with METEOR/TRANSURANUS version 1.5. ANS International Topical Meeting on Light Water Reactor Fuel Performances, 1997.

F. Bentejac and N. Hourdequin, TOUTATIS: An application of the CAST3M finite element code for PCI three-dimensional modeling, Proc. Pellet-clad Interaction in Water Reactor Fuels, 2005.

, Cast3m

M. S. Veshchunov, A. V. Palagin, A. M. Volchek, N. V. Yamshchikov, A. V. Boldyrev et al., Code package SVECHA: Modelling of core degradation phenomena at severe accidents, Transactions of SMiRT-13 Conference, vol.1, pp.159-163, 1995.

A. V. Berdyshev, A. V. Boldyrev, A. V. Palagin, V. E. Shestak, and M. S. Veshchunov, Proceedings of the ninth international topical meeting on nuclear reactor thermal hydraulics, 1999.

K. Lassmann and A. Moreno, The light-water-reactor version of the URANUS integral fuel-rod code. Atomkernenergie, vol.30, pp.207-215, 1977.

K. Lassmann, URANUS -A computer programme for the thermal and mechanical analysis of the fuel rods in a nuclear reactor, Nucl. Eng. Des, vol.45, issue.2, pp.325-342, 1978.

D. D. Lanning, C. E. Beyer, and C. L. Painter, FRAPCON-3: Modifications to fuel rod material properties and performance models for highburnup application, NUREG/CR-6534, vol.1, p.11513, 1997.

W. N. Rausch and F. E. Panisko, ANS54: A computer subroutine for predicting fission gas release. NUREG/CR-1213, PNL-3077, 1979.

K. J. Geelhood, W. G. Luscher, J. M. Cuta, and I. A. Porter, FRAPTRAN-2.0: a computer code for the transient analysis of oxide fuel rods. Rev2, PNNL-19400, 2016.

I. Palmer, G. Rossiter, and R. J. White, Development and validation of the ENIGMA code for MOX fuel performance modelling

/. P. , Proc. International symposium on MOX fuel cycle technologies for medium and long term deployment, 1999.

D. Gaston, C. Newman, G. Hansen, and D. Lebrun-grandié, MOOSE: A parallel computational framework for coupled systems of nonlinear equations, Nucl. Eng. Des, vol.239, issue.10, pp.1768-1778, 2009.

C. Valot, M. Bertolus, R. Konings, J. Somers, and S. De-groot, Basic research in support of innovative fuels design for the GEN IV systems: The F-BRIDGE project, Nucl. Eng. Des, vol.241, issue.9, pp.3521-3529, 2011.

K. Bradley, NEAMS: The nuclear energy advanced modeling and simulation program. ANL/NEAMS-13/5, 2013.

, Consortium for Advanced Simulation of Light Water Reactors

T. R. Allen, Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels. INL/EXT-11-21924, 2011.

M. Bertolus, M. Freyss, B. Dorado, G. Martin, K. Hoang et al., Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation, J. Nucl. Mater, vol.462, pp.475-495, 2015.
URL : https://hal.archives-ouvertes.fr/cea-02066505

T. Watanabe, S. G. Srivilliputhur, P. K. Schelling, J. S. Tulenko, S. B. Sinnott et al., Thermal transport in off-stoichiometric uranium dioxide by atomic level simulation, J. Am. Ceram. Soc, vol.92, issue.4, pp.850-856, 2009.

D. C. Parfitt and R. W. Grimes, Predicting the probability for fission gas resolution into uranium dioxide, J. Nucl. Mater, vol.392, issue.1, pp.28-34, 2009.

S. C. Middleburgh, R. W. Grimes, K. H. Desai, P. R. Blair, L. Hallstadius et al., Swelling due to fission products and additives dissolved within the uranium dioxide lattice, J. Nucl. Mater, vol.427, issue.1, pp.359-363, 2012.

M. R. Tonks, P. C. Millett, P. Nerikar, S. Du, D. Andersson et al., Multiscale development of a fission gas thermal conductivity model: Coupling atomic, meso and continuum level simulations, J. Nucl. Mater, vol.440, issue.1, pp.193-200, 2013.

P. Van-uffelen, G. Pastore, V. D. Marcello, and L. Luzzi, Multiscale modelling for the fission gas behaviour in the TRANSURANUS code, Nucl. Eng. Technol, vol.43, issue.6, pp.477-488, 2011.

. E. Ya, M. A. Geguzin, and . Krivoglas, Migration of Macroscopic Inclusions in Solids, 1973.