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Résumé

Le comportement extréme joint entre variables aléatoires revet un intérét par-
ticulier dans de nombreuses applications allant des sciences de 1’environnement
a la gestion du risque. Par exemple, ce comportement joue un role central dans
I’évaluation des risques de catastrophes naturelles. Une erreur de spécification
de la dépendance entre des variables aléatoires peut engendrer une sous-estima-
tion dangereuse du risque, en particulier au niveau extréme. Le premier ob-
jectif de cette these est de développer des techniques d’inférence pour les cop-
ules Archimax. Ces modeles de dépendance peuvent capturer tout type de
dépendance asymptotique entre les extrémes et, de maniere simultanée, mo-
déliser les risques joints au niveau moyen. Une copule Archimax Cy, est car-
actérisée par ses deux parametres fonctionnels, la fonction de dépendance cau-
dale stable ¢ et le générateur Archimédien v qui agit comme une distorsion affec-
tant le régime de dépendance extréeme. Des conditions sont dérivées afin que ¢
et ¢ soient identifiables, de sorte qu'une approche d’inférence semi-paramétrique
puisse étre développée. Deux estimateurs non paramétriques de ¢ et un esti-
mateur de 1 basé sur les moments, supposant que ce dernier appartient a une
famille paramétrique, sont avancés. Le comportement asymptotique de ces es-
timateurs est ensuite établi sous des hypotheses de régularité non restrictives et
la performance en échantillon fini est évaluée par le biais d’une étude de simula-
tion. Une construction hiérarchique (ou en “clusters”) généralisant les copules
Archimax est proposée afin d’apporter davantage de flexibilité, la rendant plus
adaptée aux applications pratiques. Le comportement extréme de ce nouveau
modele de dépendance est étudié, ce qui engendre un nouvelle maniere de con-
struire des fonctions de dépendance caudale stable. La copule Archimax est
ensuite utilisée pour analyser les maxima mensuels de précipitations observées
a trois stations météorologiques en Bretagne. Le modele semble tres bien ajusté
aux données, aussi bien aux précipitations faibles qu’aux fortes. L’estimateur
non paramétrique de £ révele une dépendance extréeme asymétrique entre les sta-
tions, ce qui reflete le déplacement des orages dans la région. Une application
du modele Archimax hiérarchique a un jeu de données de précipitations con-

tenant 155 stations est ensuite présentée, dans laquelle des groupes de stations



asymptotiquement dépendantes sont déterminés via un algorithme de “clus-
tering” spécifiquement adapté au modele. Enfin, de possibles méthodes pour

modéliser la dépendance inter-cluster sont évoquées.



Abstract

In various applications in environmental sciences, finance, insurance or risk
management, joint extremal behavior between random variables is of particular
interest. For example, this plays a central role in assessing risks of natural disas-
ters. Misspecification of the dependence between random variables can lead to
substantial underestimation of risk, especially at extreme levels. This thesis de-
velops inference techniques for Archimax copulas. These copula models can ac-
count for any type of asymptotic dependence between extremes and at the same
time capture joint risks at medium levels. An Archimax copula C),, is charac-
terized by two functional parameters, the stable tail dependence function ¢, and
the Archimedean generator ¢ which acts as a distortion of the extreme-value
dependence model. Conditions under which v and ¢ are identifiable are derived
so that a semiparametric approach for inference can be developed. Two non-
parametric estimators of £ and a moment-based estimator of v, which assumes
that the latter belongs to a parametric family, are proposed. The asymptotic
behavior of the estimators is then established under broad regularity conditions;
performance in small samples is assessed through a comprehensive simulation
study. In the second part of the thesis, Archimax copulas are generalized to a
clustered constructions in order to bring in more flexibility, which is needed in
practical applications. The extremal behavior of this new dependence model
is derived. Finally, the methodology proposed herein is illustrated on precip-
itation data. First, a trivariate Archimax copula is used to analyze monthly
rainfall maxima at three stations in French Brittany. The model is seen to fit
the data very well, both in the lower and in the upper tail. The nonparametric
estimator of ¢ reveals asymmetric extremal dependence between the stations,
which reflects heavy precipitation patterns in the area. An application of the
clustered Archimax model to a precipitation dataset containing 155 stations is
then presented, where groups of asymptotically dependent stations are deter-
mined via a specifically tailored clustering algorithm. Finally, possible ways to

model inter cluster dependence are discussed.
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First, this chapter establishes conditions under which Archimax copulas are
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the Archimax copula. This was not addressed previously in the literaturee.
Chapter 4

This chapter contains a two new nonparametric estimators for the stable tail
dependence function of Archimax copulas. These are novel estimators and
can be seen as generalizations of the Pickands and CFG estimators for extreme-
value copulas. The proof of weak convergence of these estimators is also original

scholarship, as is the finite sample simulations study at the end of the chapter.
Chapter 5

The moment-based parametric estimator for the Archimedean generator of an
Archimax copula proposed in this chapter is new. The asymptotic behavior
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scholarship as well.
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Chapter 1

Introduction

Extreme environmental events such as floods, heat waves and cold spells can have catas-
trophic effects on the natural world and human society in the form of loss of infrastruc-
ture, capital and life. High precipitation in the province of Quebec has caused devastating
floods when coupled with snow melt during the spring season. In the Cévennes region
of southern France, moisture accumulated on the Mediterranean Sea over the summer is
blown onto the region and trapped on the mountainside. This leads to stationary ex-
treme precipitation events during the Fall season known as “Orages cévenols”, which in
turn cause destructive floods. It is important for public safety to be able to predict the
risks of environmental disasters in order to establish preventive measures.

Extreme value theory had been a growing area of research since the first half of the 20th
century. Developments in the area were first motivated by environmental applications.
The gargantuan Delta Works designed to protect the Netherlands from storm surges
are an excellent example of this. A large amount of infrastructure such as storm surge
barriers, dams and levees were planned and built in the aftermath of the North Sea Flood
of 1953 which devastated the Netherlands, Belgium and England. Nearly 2000 deaths
were reported in the Netherlands alone. The most ambitious part of the Delta Works is
a 9 kilometer long dam called the Oosterscheldekering which was designed to guarantee
the safety of the population of Rotterdam for an event with a return period of 10,000
years (4,000 for Zeeland). Roughly speaking, an event with a return period of 10,000
years is defined as an event exceeding a certain threshold in a year with probability
1/10,000. Such extreme events are difficult to model due to the fact that they are also,
by definition, extremely rare. While traditional statistical problems require modeling the
center (or bulk) of the observed data, we find ourselves needing to model the tails of the
distribution where information is scarce. This issue is especially prevalent in the field of
environmental sciences where measurements of high quality rarely go back very far in time.
How can one determine a 10,000 year return level with, say, 40 years of observations? To
alleviate this fundamental issue, extreme value theory draws on more mathematical tools

than other areas of statistics: stability properties and asymptotic behaviors are sought



in order to extrapolate and infer on events which often fall outside the observed range of
the data.

In the case of the North Sea Flood of 1953, on the night of the 31st of January, the
sea level rose more than 5.6 meters above its average value in several locations. At first
glance this event can be seen as a univariate statistical problem where the variable of
interest is simply the sea level anomaly at a given location. However, a storm surge is
caused by a combination of wind, high tide and low sea surface pressure. Moreover, the
fact that we are often interested in quantifying risk at not one but multiple locations
makes the problem all the more multi-dimensional. Indeed, understanding the behavior
of each of the variables individually such as wind speed and pressure won’t paint the whole
picture. A crucial part of analyzing risk in environmental applications is to quantify the
dependence between the variables of interest. The purpose of this thesis is to contribute
to the array of tools available to model multivariate extremes, specifically focusing on
modeling dependence.

The problem of sparsity of extremes is amplified in the context of dependence model-
ing. While the expression “curse of dimensionality” refers to various issues surrounding
high dimensions in statistical learning, it is also partivularly relevant to our setting. To
infer the dependence structure between several random variables, say d of them, one
needs to have a sufficiently large sample in order to adequately fill the d-dimensional
observation space. With extreme values being so few in occurrence, it could seem like
an impossible feat, especially when dealing with hydro-meteorological applications. One
popular approach to this issue is to impose a parametric model on the data which also
greatly facilitates inference since well studied likelihood based methods can be applied
with good quantification of uncertainty. Another solution is dimension reduction, which
has recently garnered interest in the field of extreme value analysis. The idea explored
in this thesis is instead to lower the barrier to what is considered an extreme in order
to retain a larger portion of the dataset at hand. Traditionally, data points are selected
to be extreme enough to apply models that are asymptotically justified, i.e. Generalized
Extreme Value or Generalized Pareto univariate distributions tied together by so-called
extreme-value copulas. Real datasets being finite in size, this is never verified but can be
checked to be a reasonable modeling assumption to make.

Here, the asymptotic modeling assumption is relaxed. The terms subasymptotic (or
pre-asymptotic) can have different meanings, in this thesis the intended definition is that
the data is not deemed “extreme enough” to use asymptotic models. Instead of studying
the class of extreme-value (or max-stable) copulas, the more general Archimax family is
considered. Archimax copulas have the advantage of being particularly flexible. Fore-
most, it is fully flexible in the extreme regime, meaning that any asymptotic dependence
structure can be attained by a subclass of Archimax copulas. The size of the family allows

to simultaneously model dependence at medium levels as well. In fact, other desirable



properties such as asymmetry and lower tail dependence are also possible to capture.
While Archimax copulas have been known for some time, lack of proper inference tools
have left the family rarely used in practice. The first goal of this thesis is to develop
inference techniques for this family and evaluate their performance through convergence
results, simulation studies and applications. The second goal is to expand the class to a
hierarchical construction, in order to allow for even more flexible modeling of clustered
data. Indeed, while being able to capture asymptotic dependence is necessary, it can also
be of interest to additionally allow for asymptotic independence. This is possible in the
hierarchical Archimax model, where asymptotic dependence and independence is possible
within and between clusters. Clustering in multivariate extremes finds its use not only
in exploratory data analysis but can also be employed to pool data in a spatial setting
between asymptotically dependent stations.

All preliminary notions needed to understand the original research presented in this
thesis can be found in Chapter 2. Namely, dependence modeling via copulas is presented,
along with the Archimedean, extreme-value and Archimax families. Concepts of weak
convergence for empirical processes are also presented as they are used later in the the-
sis. Essential properties of the Archimax family of copulas, namely identifiability and
smoothness, are elicited in Chapter 3. This chapter verifies that powerful theorems can
be applied to justify the inference tools developed herein, and it is thus often referred to
in statements of important results throughout. Chapter 4 develops a non-parametric esti-
mator for one of the two functional parameters of the Archimax copula, namely the stable
tail dependence function. While not directly applicable to a real dataset, essential results
concerning the asymptotic behavior of the estimation techniques are proved here. Small
sample performance is also assessed via an extensive simulation study, whose detailed
results can be found in Appendix A. Chapter 4 serves as a stepping stone to Chapter 5,
where full inference for Archimax copulas is developed. Indeed, a moment-based proce-
dure is proposed to estimate the other functional parameter, the Archimedean generator.
The nonparametric approach of the previous chapter thus completes the procedure, hence
the title of Chapter 5, “Semiparametric inference for Archimax copulas”. Convergence
results which are involved extensions of those from Chapter 4 are also obtained. Chap-
ter 6 presents a new hierarchical (or clustered) Archimax model which addresses some
shortcomings of the simple Archimax model. This allows to broaden the applications,
while offering interpretability and preserving the strengths of the Archimax copula. The
behavior of the model at the extreme regime is studied and points toward a new way to
build dependence structures for extremes. Applications to real datasets are gathered in
Chapter 7. First, a trivariate precipitation dataset is studied to illustrate the methodol-
ogy developed in Chapter 5. The Archimax approach to assessing joint risk is compared
to other techniques and thanks to a pilot simulation study, it is shown to be advanta-

geous in certain situations. The scope of the dataset is then dramatically broadened from



three to over a hundred stations in France. In order to model the precipitation amounts
over this large geographical area, the hierarchical model from Chapter 6 is applied thanks
to a clustering algorithm tailored to it. Finally, Chapter 8 concludes this thesis with a

discussion and possible directions for future work.

En Francais

Les événements environnementaux extrémes tels que les inondations et les vagues de
chaleur ont des effets catastrophiques sur les milieux naturels ainsi que sur la société
humaine en matiere de perte d’infrastructure, de capital et de vie. Par exemple, des
précipitations extrémes au Québec causent des inondations dévastatrices lorsqu’elles sont
combinées aux fontes des neiges printanieres. Dans la région des Cévennes en France,
I’humidité accumulée durant 1’été a la surface de la mer Méditerranée est acheminée au
dessus de la région par des vents venant du sud, provoquant ainsi des orages stationnaires.
Ces orages, appelés “orages cévenols”, sont connus pour leur conséquences destructrices.
Il est donc important, pour des questions de sécurité publique, de pouvoir prédire les
risques de catastrophes environnementales afin d’établir des mesures de prévention et de
protection.

La théorie des valeurs extrémes est un domaine de recherche qui connait une forte
croissance depuis la premiere moitié du vingtieme siecle. Ce développement fut princi-
palement motivé par des applications environnementales : le gargantuesque projet Delta
congu pour protéger les Pays-Bas des inondations maritimes en est un parfait exemple.
Il comprend de nombreuses infrastructures, notamment des barrages, des digues et des
clotures, planifiées et réalisées suite au raz-de-marée de 1953 en Mer du Nord. Cette
année-la, le raz-de-marée causa la mort d’environ 2000 personnes. La construction la
plus ambitieuse de ce projet est un barrage long de 9 km, appelé Oosterscheldekering.
Il a été pensé pour protéger la population de Rotterdam contre un événement dont la
période de retour est de 10 000 années (4000 années pour la population de la Zélande).
De maniere simplifiée, on définit un événement avec une période de retour de 10 000
années par le seuil dépassé, en une année donnée, avec une probabilité de 1/10 000. De
tels événements sont difficiles a modéliser statistiquement dans la mesure ou ils sont,
par définition, extrémement rares. Si les problemes statistiques traditionnels requierent
souvent de modéliser le centre des données observées, ici le besoin est plutot celui de
modéliser les queues des distributions, la ot I'information est tres peu abondante. Ce
manque d’information est d’autant plus présent dans les applications environnementales
ol les séries de mesures de quantités physiques, telles que des débits d’eau, sont souvent
courtes ou de qualité médiocre. Comment déterminer un événement avec une période
de retour de 10 000 années avec seulement 40 années d’observations 7 Pour pallier cette

difficulté, la théorie des valeurs extrémes emprunte de nombreux outils mathématiques en



comparaison a d’autres domaines de la statistique. En effet, on recherche des propriétés
de stabilité et des comportements asymptotiques afin de pouvoir extrapoler et inférer des
valeurs qui sortent souvent du champ des données observé.

Si on reprend 'exemple du raz-de-marée de 1953, dans la nuit du 31 janvier, le niveau
de la mer s’est élevé de plus de 5,6 metres au-dessus du niveau moyen, et ceci a plusieurs
endroits le long de la cote Néerlandaise. A premitre vue, on pourrait croire qu'il s’agit
d’un probleme statistique univarié, ou la variable d’intérét est simplement I’anomalie du
niveau de la mer en un lieu donné. Or, les raz-de-marée sont causés par une combinaison
de vent, de haute marée et de basse pression atmosphérique. Ajoutons a cela le fait que,
la plupart du temps, il est nécéssaire d’évaluer le risque en plusieurs lieux différents, il est
évident que le probleme en est d’autant plus multidimensionnel. En effet, étudier chaque
variable individuellement ne permettra pas de dresser un portrait complet du phénomene,
c’est pourquoi lors de I’analyse du risque dans les sciences environnementales, il est crucial
de quantifier la dépendance entre les variables d’intérét. L’objectif de cette these est de
contribuer a ’éventail des outils permettant de modéliser les extrémes multivariés, et
particulierement la dépendance entre ceux-ci.

La sparsité des valeurs extrémes est exacerbée dans le contexte multivarié, de fait,
I’expression courante du “fléau de la dimension” est pertinente ici. Afin d’inférer la struc-
ture de dépendance entre plusieurs variables aléatoires, disons d d’entre elles, il nous faut
un échantillon de données suffisamment grand pour couvrir I'espace d’observation a d di-
mensions. Etant donnée la rareté inhérente aux événements extrémes, ceci peut sembler
étre une cause perdue surtout dans le domaine hydrométéorologique, qui, comme nous
I’avons précisé plus tot, est un domaine qui manque de données. Une approche courante
est d'imposer un modele paramétrique sur les valeurs extrémes du jeu de données, ce
qui facilite grandement l'inférence grace a 1’abondance de résultats déja établis sur les
méthodes d’ajustement par maximum de vraisemblance. Celles-ci permettent une bonne
quantification de I'incertitude, qualité également présente dans les méthodes bayésiennes.
Une autre approche assez populaire aujourd’hui consiste a effectuer une réduction de
dimension. [’idée avancée par cette these est plutot d’élargir la classe d’événements con-
sidérés comme étant extrémes, afin de conserver une plus grande proportion des données
disponibles. Traditionnellement, on sélectionne les observations suffisamment extrémes
pour ajuster des modeles asymptotiquement justifiés, tels que des lois de valeurs extrémes
généralisées, liées par des copules de valeurs extrémes. Les jeux de données étant finis,
ils ne peuvent jamais étre parfaitement décrits par de tels modeles, bien qu’il existe des
méthodes pour vérifier si leur utilisation est judicieuse.

Dans cette these, le régime asymptotique n’est pas imposé. L’expression subasymp-
totique (ou pré-asymptotique) a différentes significations, ici, elle indique le fait que les
données ne sont pas suffisamment extremes pour employer des modeles asymptotiques.

Nous nous pencherons sur une famille de copules, appelée Archimax, qui généralise les



copules de valeurs extrémes communément utilisées dans ce domaine. La classe Archimax
a l'avantage d’etre tres flexible. D’une part, cette flexibilité est présente dans son com-
portement extréme, puisque n’importe quelle structure de dépendance asymptotique peut
étre atteinte par une sous-classe de copules Archimax. D’autre part, la grandeur de cette
famille permet de modéliser de maniere simultanée la dépendance a plusieurs niveaux.
De plus, d’autres propriétés désirables, comme 'asymétrie et la présence de dépendance
caudale inférieure, peuvent également étre capturées. Bien que cette famille soit con-
nue depuis un certain temps, le manque d’outils d’inférence a limité son utilisation dans
des contextes applicatifs. Le premier objectif de cette these est donc de développer des
techniques permettant d’ajuster des lois Archimax et d’en étudier les propriétés a travers
des résultats de convergence, des simulations et des applications a des données réelles.
Le deuxieme objectif est d’élargir cette classe de distributions, grace a une construction
hiérarchique, afin d’apporter plus de flexibilité. Effectivement, bien que la dépendance
asymptotique soit un régime important a modéliser, il est aussi intéressant de capturer
I'indépendance asymptotique. Ceci est rendu possible grace au modele hiérarchique pro-
posé par cette these. Plus précisément, le modele permet de lier plusieurs clusters de
variables, avec suffisamment de flexibilité pour permettre a la fois de la dépendance et de
I'indépendance inter et intra-cluster. Ce “clustering” est utile dans un contexte d’analyse
exploratoire des données mais peut également étre utilisé plus largement, notamment pour
mettre en commun des variables ayant un comportement extréme semblable.

Toutes les notions préliminaires nécessaires a la compréhension de cette these sont
présentées dans le Chapitre 2. Il contient une section sur la modélisation de la dépendance,
présentant ainsi les trois familles de copules importantes pour nous: les Archimédiennes,
celles de valeurs extrémes et les Archimax. En deuxieme partie, le Chapitre 2 développe
le concept de convergence faible pour les processus empiriques, nécessaires aux résultats
théoriques des chapitres suivants. Des propriétés essentielles de régularité sont étudiées
dans le Chapitre 3. Celui-ci permet de vérifier que certains théoremes fins peuvent
étre appliqués aux méthodes développées et ainsi apporter une justification théorique.
Le Chapitre 4 propose une méthode d’estimation non paramétrique pour 'un des deux
parametres fonctionnels de la copule Archimax, la fonction de dépendance caudale stable.
Bien qu’elle ne puisse pas étre directement appliquée a un jeu de données, des résultats
essentiels concernant son comportement asymptotique sont prouvés et sa performance en
échantillon fini est également étudiée et détaillée en Annexe A. Le Chapitre 4 pose les
bases d’une inférence complete pour les copules Archimax que nous développerons dans
le Chapitre 5. En effet, on y trouve une estimation par moments de l'autre parametre
fonctionnel, le générateur Archimédien. La méthode non paramétrique du Chapitre 4 va
ainsi compléter la procédure d’ajustement, expliquant le titre du Chapitre 5, “Inférence
semi-paramétrique pour copules Archimax”. Nous obtiendrons des résultats de conver-

gence, versions généralisées des résultats du Chapitre 4. Ensuite, le Chapitre 6 propose un



nouveau modele Archimax hiérarchique pour combler certaines lacunes du modele Archi-
max simple. Il permet d’élargir les possibilités d’application en offrant une interprétabilité
intéressante tout en conservant les atouts des copules Archimax. Nous y étudierons le
comportement extréme du modele et suggérerons une nouvelle méthode pour constru-
ire des structures de dépendance de valeurs extrémes. Les applications a des jeux de
données réelles se trouvent dans le Chapitre 7. En premiere partie, un jeu de données
de précipitations trivarié est utilisé pour illustrer la méthodologie développée dans le
Chapitre 5. Ensuite, la modélisation par copule Archimax de risques extrémes est com-
parée a d’autres techniques courantes grace a une étude de simulation qui souligne ses
avantages. En deuxieme partie, le jeu de données est élargi a plus de cent cinquante
stations météorologiques en France. Le modele hiérarchique du Chapitre 6 est convoqué,
notamment via un algorithme de clustering adapté, afin de modéliser les précipitations
sur un territoire si grand. Le Chapitre 8 conclut cette these par une discussion et des

perspectives de recherche futures.



Chapter 2

Background

This chapter contains all necessary background information needed to read the chapters
that follow. Section 2.1 treats the subject of copulas, most importantly defining the Archi-
max family in Section 2.1.4 which are studied in depth in this thesis. Section 2.2 defines
the notions relating to weak convergence needed to validate non-parametric approaches
to estimate copulas.

In what follows, vectors in R? are denoted by boldface letters, viz. ® = (z1,...,7q).
Binary operations such as  + y or a - , £* are understood as component-wise opera-
tions. In particular, for any function f : R — R and € R? f(x) denotes the vector
(f(z1),..., f(zq)). Furthermore, | - || stands for the ¢;-norm, viz. ||z| = z1 + -+ + 4.
For any z,y € R, let © Ay = min(z,y) and = V y = max(z,y). Finally, R? is the positive

orthant [0, 00)¢ and for any x € R, x, denotes the positive part of z.

2.1 Copulas

A copula is simply a d-dimensional distribution function on the unit hypercube with
uniform margins. A formal definition is given below.
Definition 2.1. A d-dimensional copula is a function C : [0,1]¢ — [0, 1] satisfying
(1) Cluy,...,uq) =0 whenever u; =0 for at least one j € {1,...,d}.
(i) C(uy,...,uq) =uj ifu; =1 foralli e {1,...,d} and i # j.
(iii) C' is d-nondecreasing on [0,1]%. That is, for each hyperrectangle R = H?Zl[aj, b;] C

[0,1]%, the C-volume of R is nonnegative, i.e.

2 2

/ dC(’U,) - Z . Z<_1)i1+m+id0(ulil7 . ,udid) >0,
R ZA1:1 id:1

where for j € {1,...,d}, uj; = a; and uj = b;.

Copulas arose when probabilists were interested in the properties of multivariate dis-

tributions with given marginal distributions. Specifically, given d univariate distributions
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Fi, ..., Fy, how can a d-dimensional distribution F' be constructed so that the margins are
precisely Fi, ..., Fy? Standardization of the marginals to a common distribution helps in
isolating the underlying dependence structure. In the case of a continuous real random
vector (X1,...,Xy), applying the probability integral transforms component-wise, viz.
(F1(X1),. .., Fa(Xyg)), yields a random vector whose distribution is supported on the unit
hypercube [0, 1]? and has uniform margins. In the following theorem due to Sklar (1959),
the link between F' and the marginals Fi, ..., Fy is established via copulas. The result
below is stated for the case of continuous marginals, since extensions to discontinuous
margins are not needed in this thesis. Such extensions can be found, for example, in
Nelsen (2006) and Genest and Neslehova (2007).

Theorem 2.1. Letd € N, d > 2.

o Let F be a distribution function on R? with continuous margins Fy, ..., Fy and X =
(X1,...,Xy) ~ F. Then there exists a unique distribution function C' on [0, 1]¢ with

uniform margins, named the copula of X, such that, for all x = (xy,...,14) € RY,
F(x) = C(Fi(x1),..., Fy(zq)) ,
and C' is defined for all w = (uy,...,uq) € [0,1]¢ by
Clu) = F(Fy (w),- ., Fy ' (ua))

where for j € {0,...,d}, F; '(u;) = inf{z; € R : Fj(x;) > u;} for u; € [0,1].

e Conversely, if I, ..., Fy are distribution functions on R, and C is a copula, then F

as given for all ® = (z1,...,24) € RY by
F(x) = C(Fi(z1),..., Fiy(zq))
is a joint distribution on RY with copula C and marginal distributions Fy, ..., Fy.

The implications of the above theorem for dependence modeling are important. In-
deed, it effectively separates marginal distributions from the underlying dependence struc-
ture characterized by the copula. This means that in practice, marginal effects can be
modeled separately (usually before) modeling the dependence between them. This also
means that given a set of marginal distributions, a variety of joint distributions can be
created by tying them together with copulas. There is a vast amount of literature focusing
on the use of copulas for dependence modeling in multivariate statistical problems. One
can refer to the comprehensive monographs by Joe (2014) and Nelsen (2006). Copulas
have been applied in many fields ranging such as hydrology (see Salvadori et al. (2007)),
risk management (see McNeil et al. (2005)) and finance (see Mai and Scherer (2014) or
Cherubini et al. (2004) for example).



An analogous theorem links multivariate survival functions to marginal survival func-
tions via survival copulas. Survival copulas, denoted C, are also copulas and are often
employed in this thesis. One can refer to Chapter 2.6 in Nelsen (2006) for an overview in

the bivariate case. The following result is also stated in the special case of continuity.

Theorem 2.2. Letd € N, d > 2.

o Let F be a survival function on R with continuous marginals Fy, ..., Fy; and X =
(X1,...,X4) ~ F. Then there exists a copula C' on [0,1]% with uniform margins,

named the survival copula of X, such that, for all x = (x1,...,14) € R?,

F(z) = C(Fi (1), .., Fa(za)) ,

and C is defined for all w = (uy, ..., uq) € [0,1]¢ by

Clu) = F(F7Y 1 —w),..., FiY (1 — ug)) .

o Conversely, if I, ..., Fy are continuous survival functions on R, and C' is a copula,

then F as given for all x = (x1,...,14) € R? by

F(x) = C(Fy(x1), ..., Fy(xq))

is a joint survival function on R® with survival copula C and margins Fy, ..., Fy.

Suppose that (X7,...,X,) is a random vector with continuous margins Fi, ..., Fy,
copula C' and survival copula C. Let C(uy, ..., uq) = Pr(Fi(X1) > u, ..., Fy(Xq) > ug).
The survival copula is related to the copula through the following expression. For all
u € [0,1]%,

Clu)=C(1 —uy,...,1—uy),

where C' can be written in terms of C' viz.

Clu)= Y (1) Clug Vg, ug Vi)
Conversely,

Clu)= Y (1) Ol =y, 1= ugta) . (2.1)

The following properties concerning copulas are helpful and used throughout this

thesis. Let C' be any d-dimensional copula of a random vector (X7, ..., Xy). Then,

(A) If Xy,..., X, are continuous, then
Xi,...,Xg are independent <= C(u) =Cnp(u) =u;...uq .
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(B) (Fréchet-Hoeffding bounds) For all u € [0, 1]%,

max{1l —d + Zuj,()} =W(u) < C(u) < Cy(u) = minfuy, ..., ug} .

j=1

(C) C is Lipschitz continuous with respect to the £; norm. That is, for u, v € [0, 1]¢,
d
Clu) = Cv)| < |lu—wvlli =) [u;— v,
j=1

(D) Let j € {1,...,d}. Then the partial derivative C;(u) = 9C(u)/du; exists for all
uj € [0,1] and almost all u; € [0, 1], j* # j. Moreover, due to Lipschitz continuity,
0< Cj < 1 wherever it exists.

These properties are proved, for example, in the monograph by Nelsen (2006).

Remark 2.1. Note that the upper bound Cyy in (B) above is a bona fide copula while the
lower bound W is not for d > 3. In the case d = 2, W corresponds to perfect negative
dependence, a concept which is not generalizable to higher dimensions. It is however a
pointwise sharp bound. See Theorems 3.3 and 3.9 in Joe (2014), or Theorems 2.10.12
and 2.10.13 in Nelsen (2000).

2.1.1 Measures of dependence

While copulas paint the whole picture regarding the dependence between several random
variables, it is often of interest to report summarizing measures of dependence. Such
dependence concepts are important to acquire an intuition about joint behavior of random
variables and help communicate results of statistical analysis. In the following, we define
the dependence measures used in this thesis. While generalizations to higher dimensions
exist, they are best understood in the bivariate setting. Examples will be given in the

subsequent sections regarding specific copula families.

Definition 2.2 (Rank correlation). Let X1, Xy be random variables with joint distribution

F' and marginal distribution functions Fy and Fy. Spearman’s rank correlation is given by

ps(X1, Xo) = p(F1(X1), F2(X2)) ,

where p is the well-known Pearson’s linear correlation. Let (X1, Xs) and (X], X)) be
two independent realizations from F. Then Kendall’s rank correlation (also called the
coefficient of agreement, see Kendall and Babington Smith (1940)) is defined as

(X1, X5) = Pr[(X] — X)(X) — X5) > 0] — Pr[(X] — X,)(X} — X,) < 0] .

11



These two concepts of correlation avoid many pitfalls of the traditionally used linear
correlation (see the cautionary article by Embrechts et al. (2002) for more details). Most
relevant to this thesis, these measures do not depend on the margins, hence depending
only on the underlying copula C. If the margins are continuous, they take following

integral forms.

(X17X2) —12/ / {C ul,u2) — UQUQ}duldUQ s

Xl,XQ / / ul,ug duldu2 —1.

This thesis being concerned with modeling at extreme levels, a measure of dependence
which focuses on the tails of joint distributions is of interest. In the following, tail depen-

dence coefficients are defined in the monograph by Joe (2014).

Definition 2.3. Let Xy, X5 be random variables with distributions Fy and F,. The

coefficients of upper and lower tail dependence are
Ay = 1;%{1PT(F2(X2) > q|Fi(X1) > q) (2.2)

provided the limits A\p, \y € [0, 1] exist. In the case of continuous margins, then noting
that there is a unique copula C such that (F1(X1), F5(X3)) = (U1,Us) ~ C, Ay = 2 —
limgri {1 = Clq,¢)}/(1 — q) and A = limgyo Cq,9)/q.

The pair (X3, X3) is said to be asymptotically dependent if Ay > 0 and asymptotically
independent if Ay = 0. Since the case of asymptotic independence is reduced to only one
point of the unit interval, a coefficient which allows to discriminate within this class of
bivariate distributions is needed. Initially proposed by Ledford and Tawn (1996), residual

tail dependence coefficients are introduced.

Definition 2.4. Let X, X5 be continuous random variables with distributions Fy and F3

and copula C. The residual upper and lower tail dependence indices

iy o8l —q) oy, = lim —128(9)

2.4
a1l log C(q,q) 010 log C(q,q) (24)

where é’(ul,ug) =1—u; —ug+ C(uy, ug).

Here, ny,ny € [0, 1], with 1 representing asymptotic dependence. Within asymptotic
independence, Ledford and Tawn (1996) identify three types of dependence depending on

where 7 falls within the unit interval.

Remark 2.2. The two previously defined measures of tail dependence are, by definition,
asymptotic. Functions that capture the penultimate tail behavior are also used, as is the

case in Chapter 7.
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2.1.2 The Archimedean family

Archimedean copulas are a convenient and broadly studied class of copulas with many
applications in areas such as finance and insurance. They are generated by a particular

class of functions called Archimedean generators.

Definition 2.5. A non-increasing and continuous function 1 : [0,00) — [0,1] which
satisfies ¥(0) = 1, lim, oo ¥(x) = 0 and is strictly decreasing on [0,zy), where x, =
inf{x : (x) = 0}, is called an Archimedean generator. By convention, ¥)(c0) = 0. The
inverse ¢ : [0, 1] — [0,00] of an Archimedean generator is defined as the inverse of 1 on
(0,1] and by ¢(0) = xy.

Archimedean copulas take the following form, for w € [0,1]? and an Archimedean

generator 1,
C¢(U1,...,Ud) :w{gb(ul)—l——l—qﬁ(ud)} (25)

However, for this to be a copula, the notion of d-monotonicity is needed.

Definition 2.6. An Archimedean generator v is called k-monotone, k € N and k > 2, if
it is differentiable on (0,00) up to the order k—2, the derivatives satisfy (—1)"™ (z) > 0
for all x € (0,00) and m € {1,...,k — 2}, and further if (—1)*=2¢ =2 s non-increasing

and convex on (0, 00).

Note that 2-monotone simply means that ¢ is convex, and that a d-monotone Archi-
medean generator is also k-monotone for all £ < d. McNeil and Neslehova (2009) show
that a function of the form (2.5) is a copula if and only if the generator v is d-monotone.
It is also known that for an Archimedean generator to generate a copula in any dimension,
it must be completely monotone, that is (—1)™ ™ (z) > 0 for all m € N (see Kimberling
(1974)). As will be explained shortly, the following transform due to Williamson (1956)

is used to produce Archimedean generators from nonnegative random variables.

Definition 2.7. If R is a nonnegative random wvariable with distribution Fr satisfying
Fr(0) = 0 and d > 2 is an integer, then the Williamson d-transform of Fr is a real
function defined for x € Ry by

d—1

o d—1 E(l-% ' >0
W, Fr(z) = / <1 _ f) dFg(r) = (1-%)% Z'f x |
@ T 1 — Fr(0) if x=0
As shown in Proposition 3.1 by McNeil and Neslehova (2009), the distribution of a
nonnegative random variable is uniquely given by its Williamson d-transform. Moreover,
if f=,Fg, then for z € R,, Fr(x) =20, f(x) where

W fla) = 1 - (2.6)

d—2 (=1)kak F®) (2) (_1)(d—1)xd_1fid—1)<x)
- ! - (d—1)!

k=0
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Table 2.1: Archimedean generators and their dependence measures.
Dy denotes the Debye function (see Chapter 27 from Abramowitz
and Stegun (1964)). (%) corresponds to the analytic form 1 —
4592 1/(k(0k 4+ 2)(0(k — 1) +2)). (1) indicates that ny = 1/2 if 6 = 1,
and (f) that np =1/2if 6 = 0.

Family Po(x) (@] T Au AL nu nL
Clayton (14 0z)~1/?¢ (0,00)  0/(0+2) 0 2-1/0 172 1(h)
Frank —(1/0)log{l1+e (e —1)} R 1—-4/0(1—-D1(0)) O 0 /2 1/2
Gumbel  exp(—z!/?) [1,00) 60/(0+1) 22/ ¢ 1(f) 1-1/6
Joe 1—{1—e*}1/0 [1,00) (%) 221/ ¢ () 1/2

Another important notion in order to elicit the stochastic representation of Archimedean
copulas is the class of /1-norm symmetric distributions. In the following, the unit simplex
is defined as

Ayg={s e Ri sl =1} .

Definition 2.8. A random vector X on R% follows an (1-norm symmetric distribution if
and only if there exists a nonnegative random variable R independent of S, where Sy is a
random vector uniformly distributed on the unit simplex so that X permits the stochastic
representation

X LRS,.

All the elements needed for the stochastic representation being defined, Theorem 3.1
from McNeil and Neslehova (2009) is reproduced below.

Theorem 2.3. (i) Let X have a d-dimensional {1-norm symmetric distribution with
radial distribution Fg satisfying Fr(0) = 0. Then X has an Archimedean survival
copula with generator 1) = 0 Fg.

(1) Let U be distributed according to the d-dimensional Archimedean copula Cy with
generator ¢ (itself having the inverse ¢). Then (¢(Uyr),...,o(Ug)) has an €1-norm
symmetric distribution with survival copula Cy and radial distribution Fr satisfying

Fr=20,".

This stochastic representation allows to create a variety of Archimedean copulas and
sample from them. Table 2.1 presents a limited selection of generators and their depen-
dence measures. For a larger variety, one can refer to Table 4.1 from Nelsen (2006) for
example. The tail behavior of Archimedean copulas was extensively studied by Charp-
entier and Segers (2009), Table 2.1 only reports the measures of dependence presented

before.
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2.1.3 The Extreme-Value family

This section introduces the family of extreme-value copulas, which are crucial to the work
presented in this thesis. However, before defining them, important results in univariate
extreme value theory are given. Indeed, these results for univariate random variables are
often called upon in the later chapters of this thesis. Comprehensive books on this subject
include those from Resnick (1987), Coles (2001), Beirlant et al. (2004), Embrechts et al.
(1997) and de Haan and Ferreira (2006).

A natural approach to statistical analysis of extremes, the so-called block-maxima
approach, is to study the distribution of the maximum of n independent and identi-
cally distributed random variables X;,...,X,, ~ F. The variable of interest M, =
max{Xy,..., X, } is often taken over a block size motivated by the specific problem at
hand, and large enough to warrant the use of an extreme distribution. For environmental
applications, yearly or seasonal maxima are often considered. However, as n — oo the
distribution of M,,, which is equal to F", converges to a degenerate limit with point mass
at the upper end-point xp of the support of F, viz z; = sup{x € R : F(z) < 1}. It is
therefore useful to find normalizing sequences a,, > 0 and b,, € R such that for all x,

lim Pr (M < ZL‘) =G(x),

n—oo

for some non-degenerate distribution G. If the above limit does exist, then F' is said
to be in the maximum domain of attraction of G, which is denoted F' € M(G) in this
thesis. The possible forms G can take were determined by Fisher and Tippett (1928) and
proved by Gnedenko (1943). Before stating the said theorem, recall the notion of regular

variation.

Definition 2.9. f: R, — R, s regularly varying with index o € R if and only if for all
t>0,

fxt)/ fz) =t

as x — 00, in notation f € R,.

Theorem 2.4 (Fisher-Tippett-Gnedenko Theorem). Let X,...,X,, be i.i.d. random
variables with distribution F. Let a, > 0 and b, € R be sequences such that lim,,_,, Pr
(M, —bn)/a, <x) = G(z) for a non-degenerate G and all continuity points x of G.

Then, up to location and scale, for o > 0, G is of one of the following three forms:
(Fréchet) For x € R,
Do) = exp(—z~)1(z > 0),
and F € M(®,) if and only if for all t > 0,

. 1—F(tx)
lim ———— —¢
2500 1— F(x)

that is, if and only if F € R_,.

—Q
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(Gumbel) For x € R,
A(z) = exp{—exp(—2)} ,

and F € M(A) if and only if for some positive function a, for all t > 0,

lim 1 — F(x +ta(x)) et
T—=eE 1 — F(x)

where xp 15 the upper end-point of the support of F.

(Weibull) For x € R,
\Ila(.flf) _ exp{—|x|a} Zf x < 0 ’
1 if x>0
and F € M(V,,) if and only if vp < oo and for all t > 0,

lim 1 — F(zp — {tz})
B T P — @)

=@

For the Gumbel domain of attraction, the function a, called an auxiliary function, is
not unique. It can be chosen to be [* F(t)/F(z)dt for © < z,. The standard represen-
tation for these three limiting distributions, due to Mises (1936) and Jenkinson (1955), is

as follows.

Definition 2.10 (Generalized Extreme Value (GEV) distribution). For £ € R, the GEV
distribution is defined for 1 +&x > 0 by

Hee) = {exp{—u +&n) "} for €40
¢ exp{—exp(—z)} for €=0

Clearly, the shape parameter ¢ in the above definition corresponds to 1/« in the
previous theorem. GEV distributions are exactly the distributions which are max-stable,
that is, distributions F' such that for all n > 2, there exists ¢, > 0 and d,, € R so that

max{Xy,..., X,} 4 e, X +d,

where X1, ..., X, are independent and identically distributed according to F'. See Theo-
rem 3.2.2 in Embrechts et al. (1997) for example.

In the multivariate setting, consider an i.i.d. sample X, ..., X, from a d-dimensional
distribution F' with marginals Fi,..., Fy. Define the component wise maxima M, =
max{X;;...,X;,} for j € {1,...,d}. Suppose that there exists sequences aj, > 0 and
bjn €R, j€{1,...,d}, such that for & = (x1,...,74) € RY,

(Mln - bln Mdn - bdn) — G (2 7)
Sy . , .

Q1n Q,

as n — oo for some non-degenerate G where ~» denotes convergence in distribution. If

this is the case, then these margins are GEV by Theorem 2.4. Moreover, G is called a
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multivariate extreme-value distribution (MEV) and F' € M(G). Since the margins are
continuous, Theorem 2.1 guarantees the existence of a unique copula for G. Analogously
to the univariate setting, G must be max-stable, which is the case if and only if its margins
are GEV and its copula C' is extreme-value (see Theorem 7.44 in McNeil et al. (2005)).

Theorem 2.5. If (2.7) holds for some G with GEV margins, then the unique copula C
of G must be extreme-value. That is, for all w € [0,1]¢ and all t > 0:

C(u) = CH(u'?) .

There are many mathematical characterizations of MEV distributions. In this thesis,
the characterization of MEVs by stable tail dependence functions is the most convenient

approach. They were first introduced by Huang (1992).

Definition 2.11. A function ¢ : Ri — RT is called a d-variate stable tail dependence

function (stdf) if there ezists a finite measure H on the d-dimensional unit simplex A4
such that for all j € {1,...,d}, fAd s;dH(s) =1, and such that for all x € R,

lx) = max (181, ..., 2qs8q)dH(S).
Ag

Stable tail dependence functions are fully characterized by Ressel (2013) as follows.

Theorem 2.6. ¢ : ]Rﬁlr — RT is a d-variate stdf if and only if

(a) ¢ is homogeneous of degree 1, i.e., for allk > 0 and x4, ..., x4 € [0,00), l(kz1, ..., kzg)
=kl(xq,...,2q);
(b) l(e1) = --- = L(eq) = 1 where for j € {1,...,d}, e; denotes a vector whose compo-

nents are all 0 except the jth which is equal to 1;

(c) £ is fully d-max decreasing, i.e., for any k € N, xq,... 24, h1,..., hqg € [0,00) and
J C{1,...,d} with |J| =k,

Z (1)) + nhiliey, - o, Ta + tahalaes) < 0.
L] yeeny Lke{o,l}

With the notion of stable tail dependence functions, we can now characterize extreme-

value copulas.

Theorem 2.7. A copula C' is extreme-value if and only if there exists a stable tail depen-
dence function such that C' = Cy, where for all u € [0, 1]¢

Co(u) = exp{—{(—loguy,...,—logug)} .
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Another characterization of extreme-value copulas, initially proposed in the bivariate
setting only, relies on the so-called Pickands dependence function denoted A and due to
Pickands (1981). Due to homogeneity (Property (a) in Theorem 2.6), an stdf ¢ is uniquely
determined by its restriction A to the unit simplex via {(z) = ||z||A(z/||z|]), © € RL.
For pair of random variables X;, Xy with bivariate extreme-value copula Cy, = Cy, the

Pickands dependence function A is in fact defined on [0, 1] and it is easily shown that
Mo( X1, Xo) =2—-2A(1/2) =2 —((1,1) , A(X1,X2) =0.

1/2 if A(1/2) =1

1 otherwise ’ np(X1, Xa) = 1/(24(1/2)) = 1/¢(1,1) .

nu (X1, Xo) = {

Note that if A(1/2) = 1, then by convexity A(t) = 1 for all ¢ € [0,1] so that Cy = Cy.
Moreover, Kendall’s tau has can be written in integral form viz. 7(X;, Xs) = fol{t(l —
t)/A(t)}dA'(t), as shown by Ghoudi et al. (1998).

Weakening the independence assumption on the convergence to extreme value distri-
butions is of course desirable and still an active area of research today. Leadbetter et al.
(1983) established the so called D(u,) and D’(u,,) conditions on temporal dependence for
the univariate theory and Hsing (1989); Hiisler (1990) studied the multivariate setting
using beta-mixing (stronger than the alpha-mixing to be introduced in Section 2.2).

We can now state conditions under which F' € M(G) and define the so-called copula

domain of attraction.

Theorem 2.8. Let F(x) = C(Fi(z1),...,Fa(zq)) for continuous marginal distribution
functions Fy, ..., Fy and some copula C. Let G(x) = Co(G1(21),...,Ga(xq))be an MEV
distribution with extreme-value copula Cy. Then F € M(G) if and only if F; € M(G,)
for j €{1,...,d} and for all u € [0, 1]¢,

tlggo C’t(ui/t, . ,ué/t) = Colug, ..., uq) .

Moreover, we say that C is in the copula domain of attraction of Cy, written C' €
CDA(Cy).

2.1.4 The Archimax family

The class of so-called Archimax copulas was proposed by Capéraa et al. (2000) in the
bivariate case and extended to higher dimensions by Mesiar and Jagr (2013) and Charp-
entier et al. (2014). The latter are, at any u € [0, 1]¢, of the form

Cye(u) = [{p(w), . .., d(ua)}], (2.8)

where ( is an arbitrary d-variate stdf and ¢ : [0,00) — [0, 1] is an Archimedean generator

with inverse ¢, as in Definition 2.5. One can think of the function ¢ as distorting the
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extreme-value dependence structure. Indeed, if ¢(x) = e~ %, then Cy , = C} is an extreme-
value copula.

The density of an Archimax copula ¢, can be obtained with the application of Faa
di Bruno’s formula, as shown for example by Hofert et al. (2018). It can be written, for
all w € (0,1)4, as

Cw,z(U)Z{Hd(uj)}zwk)[ﬁ{qﬁ(w}] Y. 1I@e0{s(w)},

well:|n|=k Ben
where Dgl denotes the partial derivatives of ¢ with respect to the variables in the index
set B and II denotes the set of all partitions of {1,...,d}. We begin with a definition of

several key concepts including Archimax copulas.

Definition 2.12. A d-dimensional copula C' s called Archimaz if it permits the repre-
sentation (2.8) for some d-variate stdf ¢ and an Archimedean generator 1 with inverse ¢
as defined in Definition 2.5.

As the name suggests, the class of Archimax copulas includes both Archimedean and
extreme-value copulas. When ¢ is the stdf pertaining to independence, i.e., {(x) = =1 +
oot axg forall x € RY, Cyy in (2.8) becomes the Archimedean copula Cy, with generator
1. When ¢ (z) = e~ * for any = > 0, Cy, reduces to the extreme-value copula C; with
stdf £. An interesting special case arises when ¢ = ¢); with (y/(x) = max(zy,...,z,) for
all x € R‘i. Because ¢ is strictly decreasing on (0, 1], one has that for all w € [0,1]%
Cyay (w) =min(uy, ..., ug). In other words, Cy 4, is the Fréchet-Hoeffding upper bound
whatever the generator v; this copula characterizes the dependence between comonotonic
variables.

The right-hand side in (2.8) is not a bona fide copula for all choices of Archimedean
generators and d-variate stdfs and d-variate stdf. As proved by Charpentier et al. (2014),
a sufficient condition is that ¢ is d-monotone. When ¢(x) = 1 + - - - + x4, i.e., when Cy
is Archimedean, the d-monotonicity of v is also necessary as discussed by Malov (2001);
Morillas (2005); McNeil and Neslehova (2009). However, this condition is not necessary in
general; Example 3.7 of Charpentier et al. (2014) shows that for some stdfs, it suffices that
1 is k-monotone for some k < d. In fact, 1) can be an arbitrary Archimedean generator
when ¢ = 0.

An Archimax copula can also be defined Cy 4, i.e. in terms of a Pickands dependence

function instead of an stdf, and expressed, for any u € [0,1]%, as

Cya(u) = ¢ [|o(u)[[A{o(w)/[[o(w)[}] (2.9)

Archimax copulas admit a stochastic representation similar to that of Archimedean
copulas. Let R be a nonnegative random variable, with distribution Fr, independent of

S4, a random vector with survival function defined, for s € Ri, by

Pr(Sy > s1,...,54 > sq) = [max{0,1 — £(s)}]*"" | (2.10)
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where / is a stable tail dependence function. As was the case for Archimedean copulas,

we are interested in the survival copula of vectors of the form
X =RS;=Rx(S,...,54), (2.11)

but here S belongs to a larger class of distributions. This stochastic representation is
formally shown in Theorem 3.3 from Charpentier et al. (2014). In this representation, R

can again be interpreted as a distortion variable; when its law is Erlang with parameter d,
Cyo = Co.

Theorem 2.9. (i) If (X1,...,Xy) is a random vector of the form (2.11), then its sur-
vival copula is the Archimaz copula Cy e, where ¢ is the Williamson d-transform of
Fg.

(11) Let € be a d-variate stable tail dependence function anf 1 be a generator of a d-
dimensional Archimedean copula. Then Cy ¢ is the survival copula of a random vector
of the form (2.11), where the distribution function Fg is the inverse Williamson d-

transform of 1.

The Archimax copulas have given extreme-value attractors; Propositions 6.1 and 6.4
from Charpentier et al. (2014), regarding the maximum and minimum domains of attrac-

tion respectively, are reproduced in the following.

Proposition 2.1. Suppose that 1 is a generator of a d-variate Archimedean copula with
1 — (1)) € Ry for some a € (0,1]. Then the Archimaz copula Cy, belongs to the

copula domain of attraction of the extreme-value copula C, where for all x € RY,
lo(x) = 0 (x'/%) .
Equivalently, lim, ., C71 ,(u'/") = Cy, (u).

Remark 2.3. It is clear from this result that Archimedean copulas belong to the copula
domain of attraction of the Gumbel (or logistic) family. Indeed as noted earlier, if {(x) =
T+ -+ g, then Cyyp = Cy and provided 1 —(1/-) € R_q, lim, 0 Cg(ul/”) =Cy,(u)
where (,(x) = (xi/a +oee xtli/a)a, the logistic stable tail dependence function. This was

initially proved by Genest and Rivest (1989).

Suppose X has copula C. To find the minimum domain of attraction of C, the
variable of interest is the component-wise minimum, i.e. W, = (Wy,,...,Wy,) where
Wi, =min{X;,...,X;n}, 7 =1,...,d. Using (2.1) and elementary algebra, one has that
for u € (0,1)4, the copula of W, is as follows:

Cw,(u)= > (=)0 {(1 = o)™ (1= rqv))"}

t15,La€{0,1}

where C' is the survival copula of C. The following proposition by Charpentier et al.

(2014) determines the limit of Cy, as n — oo when C' is Archimax.
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Proposition 2.2. Suppose that 1) is the generator of a d-variate Archimedean copula with
#(1/) € Ry for some a € (0,00). Then the survival copula of Cy,, denoted Cyy, is in
the copula domain of attraction of D* defined, for all w € (0,1) by

D*(’u,) = Z (—1)L1+"'+LdK(L1U1, ey Ldud> ,

Ll,...,LdG{O,l}
where for arbitrary vy, ... vy € [0, 1],
K(vy,...,v4) =expg — Z (1)t n Cpe (1 — g, .oy 1 —tqva) ¢
L1ye5tqg€{0,1}

with Y*(t) = exp(—t~Y) for allt > 0. That is, Cy, € CDA(D*). This is also equivalent
to saying that the Archimaz copula Cy, belongs to the minimum domain of attraction of

an extreme-value distribution whose unique underlying copula is D*.

It is clear from the two previous propositions that the stable tail dependence func-
tion ¢ of an Archimax copula is the main driver of its extreme behavior. However, the
regular variation of the generator also plays a role. This regular variation translates to
tail behavior of the radial variable R in the stochastic representation in (2.11). Indeed,
Theorem 2 from Larsson and Neslehova (2011) shows that 1 —¢(1/-) € R_, if and only
if 1I/R € M(®,) for a € (0,1). Moreover, 1 —¢(1/-) € R_; if 1/R is in the maximum
domain of attraction of the Weibull distribution, Gumbel distribution or Fréchet distribu-
tion with @ > 1. For the minimum attractor, the condition that ¢(1/-) € R, occurs if and
only if R € M(®,,). Biicher et al. (2019) have linked these indices of regular variation

with the speed of convergence of Archimax copulas to their extreme-value attractor.

2.2 The empirical copula process

This section defines the convergence concepts used later in Chapters 4 and 5. However,
only the essential and necessary elements to understand the derived asymptotic results

are summarized here.

2.2.1 Weak convergence

This section is based on the text by van der Vaart and Wellner (1996), in which one will
find a much deeper view into this area. For a metric space (D, d), let (P,)>; and P be
Borel probability measures defined on (D, D), where D is a Borel o-algebra on D. Let
Cy(D) denote the space of bounded, continuous, real functions on D. The sequence P, is

said to converge weakly to P if and only if for all f € Cy(D),

/D fdp, — /D fdpr
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as n — oco. This is denoted by P, ~» P. The equivalent definition of weak convergence
for D-valued random variables (X)), and X is that X, ~» X if and only if for all
fe D),

Ef(X.) = Ef(X) (2.12)

as n — oo. Classically, the theory requires that for each n, P, is defined on the Borel
o-field D, which is equivalent to saying that X,, is Borel measurable. If D is separable
this condition usually holds but if it is non-separable it can sometimes fail. For example,
it holds for C[0, 1] (the space of continuous functions on [0, 1]) with the supremum norm,
but it fails on D0, 1] (the Skohorod space of cadlag functions on [0, 1]) with the supremum
norm.

Pursuing the latter example, let Uy, . . ., U, be independent random variables uniformly
distributed on [0, 1]. Now let the empirical distribution function F,, be defined for u € [0, 1]

as
n

1
F, = — 1(U; <
OEEIRILEN
and the uniform empirical process, for u € [0, 1], as

Xo(u) = Vi(Fa(u) —u)

Both F,, and X,, are maps from [0, 1]" to D[0,1]. However, neither is Borel measurable
if D[0,1] is equipped with the supremum norm. Out of all possible solutions to alleviate
this, the monograph from van der Vaart and Wellner (1996) focuses on the notion of outer

expectation and probability as proposed by Hoffman-Jorgensen (1994).

Definition 2.13. Let (Q, A,P) be a probability space and T : Q — R an arbitrary map.

e The outer expectation of T with respect to P is defined as
E*T = inf{EU : U > T, U : Q — R measurable and EU exists} ,

where EU is understood to exist if E|U| exists.

e The outer probability of any B C €2 s defined as
P*(B) =inf{P(A): ADB:Ac A} .
Inner expectation and probability are then easy to define as well.

Definition 2.14. Let (Q, A, P) be a probability space and T : Q — R an arbitrary map.

e The inner expectation of T with respect to P is defined as

E.T = —E*{-T},
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e The inner probability of any B C () is defined as
P.(B)=1-P*(B°).

We now have the ingredients to define weak convergence for possibly non Borel-

measurable maps.

Definition 2.15. Let X,, : 0, = D, n € N and X : Q@ — D be arbitrary maps from
the probability spaces (0, An, Py) and (2, A, P) respectively. Let X be Borel-measurable.
The sequence X,, converges weakly to X, that is X,, ~ X, if for any f € Cy(D),

E{f(Xn)} = E{f(X)}
asn — 00.

Many tools available to the classical concept of weak convergence such as the contin-
uous mapping theorem are available for this concept as well (as shown by van der Vaart
and Wellner (1996)). Inner expectation allows us to define asymptotic measurability and

tightness.

Definition 2.16. Let (Q,,A,,P,) be arbitrary probability spaces and X,, : 0, — D be
arbitrary mappings, n € N. The sequence (X,)0, is asymptotically measurable if and

only if EX{f(X,)} — EA{f(X,.)} = 0 asn — oo for all f € Cy(D).

Definition 2.17. Let (Q,, A,,P,) be arbitrary probability spaces and X,, : Q,, — D be
arbitrary mappings, n € N. The sequence (X)), is asymptotically tight if and only if
for any € > 0, there exists a compact set K C D such that liminf, P, (X, € O) > 1—¢
for any open set O D K.

The following Lemma 1.3.8 from van der Vaart and Wellner (1996) shows the connec-

tion between weak convergence and asymptotic measurability and tightness.
Lemma 2.1. e If X, ~ X asn — oo then (X,)5°, is asymptotically measurable.
o If X, ~ X asn — oo, then (X)), is asymptotically tight if and only if X is tight.
To get to an intuitive notion of weak convergence using asymptotic tightness, we re-
strict ourselves to spaces of uniformly bounded functions. The following result is proved in
Theorem 1.5.4 from van der Vaart and Wellner (1996). Recall that for an arbitrary domain
S, 0°(S) denotes the space of functions f : .S — R such that || f||e = sup,cg|f(s)] < o0

equipped with the supremum norm.

Theorem 2.10. Suppose that X, : €, — (2(S), n € N, are arbitrary maps. Then
X~ X in £2°(S) if and only if
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o (X,(81),..., Xn(sk)) converges weakly to (X (s1),..., X (sx)) in R* for any finite sub-

set s1,...,8, of S.

o (X,)52, is asymptotically tight.

Equivalently, the second condition in the above theorem can be replaced by asymptotic

uniform equicontinuity as defined below.

Definition 2.18. Let X, : Q, — (2(S5), n € N, be arbitrary maps. The collection
(X0n)2, is asymptotically uniformly equicontinuous in probability with respect to a semi-
metric p if and only if, for every e,n > 0 there exists a 0 > 0 such that

limsup P*( sup |X,(s) — X,.(t)] >¢€) <n.

n—00 p(s,t)<o

2.2.2 The empirical process

The empirical measure of a sample of random variables, as introduced below, is simply a

linear combination of Dirac measures at the observations, each with weight 1/n.

Definition 2.19. Let X,..., X, be a random sample in the measurable space (X, A).
The empirical measure of Xy,..., X, is defined for any A € A as

n

P, (A) = %Z 1(X; € A) .

For any signed measure () and a measurable function f : X — R, let Qf = [ fdQ.
For a collection F of such measurable functions, an empirical measure P, induces a map
from F to R by

f—=P.f.

Definition 2.20. Let X;,...,X, be a random sample in the measurable space (X, A)
with common distribution P and F be a collection of measurable functions f : X — R.
The empirical process of Xy, ..., X, indexed by F is defined as the following rescaled and

centered map

f s Guf = V(B — P)f = % S () - ).

The classical empirical process is obtained by simply restricting the sample space X to
be [0,1], R, [0,1]¢ or R? and F to be the collection of indicator functions of left half-lines
(or lower-left orthants of R?).

Glivenko-Cantelli and Donsker classes can now be defined. The uniform version of the

law of large numbers becomes
||P, — Pllx — 0
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as n — oo, where ||Q||z = sup{|Qf| : f € F} and the convergence is either in outer
probability or outer almost surely. A class F for which this is true is called a P-Glivenko-
Cantelli class. To consider a uniform version of the central limit theorem, one needs to

assume that for all x,
sup | f(z) — Pf] < oo
fer

This implies that G,, € (>°(F). Under assumptions on F, one can show that
G,=vnP,—P)~G

in (>°(F), for some Borel-measurable and tight limit G € ¢>°(F). A class of functions F
for which this holds is called P-Donsker. These conditions for F to be P-Donsker, namely
bounded uniform (or bracketing, alternatively) entropy, are discussed in Chapter 2.5 in
van der Vaart and Wellner (1996). Clearly, a Donsker class is also a Glivenko-Cantelli
class but the converse is not always true. Naturally, one would want to know more about
the limiting process G. Firstly, the marginals G, f converge if and only if f are square-
integrable. If this holds, the multivariate central limit theorem implies that for any finite

set f1,..., fx,
(anlyaank> ~ N(O’ Z) )

where N (0, ) is a k-dimensional standard normal distribution whose variance-covariance
matrix ¥ has (¢, j)-th entry P(f; — Pf;)(f; — Pf;). It follows that {Gf : f € F} is a

zero-mean Gaussian process with covariance

EGfGfy = P(f1 —Pfl)(fz _PfQ) =Pfifo—PhHPfs.

Due to its tightness, Lemma 1.5.3 from van der Vaart and Wellner (1996) ensures that the
distribution of G in ¢*°(F) is completely determined by the above covariance function. G

is called a P-Brownian bridge (or sheet when the dimension of X is larger than 1).

2.2.3 Weak convergence of the empirical copula process

Now that notions regarding weak convergence and empirical processes are defined, empha-
sis is made on the specific case of the empirical copula process. Let X1,..., X, be an in-
dependent and identically distributed (i.i.d.) sample from a d-dimensional distribution F
with continuous marginal distribution functions Fi, ..., F; and unknown copula C. A nat-
ural and non-parametric estimate of each marginal distribution is the so-called empirical
distribution function given for j € {1,...,d} and x € Rby Fj(z) =n"'> "  1(X;; < ).
This can be naturally extended to the multivariate setting by letting, for = € R,
F,(z) =n"'>"  1(X; < x). To construct the empirical copula, first define the normal-
ized ranks as follows, for i € {1,...,n} and j € {1,...,d},

A~
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The rank-based empirical copula can now be defined for u € [0, 1]¢ by

A 1 ~
2 (w) Zl(UZ < u) nZHl(Um < u;) (2.14)
i=1 =1 j=1
The above is simply the empirical distribution of the renormalized ranks of the observed
data (see results from Riischendorf (1976) for example). This empirical copula is slightly
different than as first introduced by Deheuvels (1979), for u € [0, 1]%,

Co() = Fo(F (w), ..., Fotug)) - (2.15)

Note that neither expressions (2.15) nor (2.14) is a copula stricto sensu. Also note
that (2.15) and (2.14) are asymptotically equivalent. It is even shown in Lemma 4.6 by
Berghaus et al. (2017) that sup,,e(o 1ja |Cn(u) — Co(u)| = 0,(n~"/?) for weakly dependent

samples. The empirical copula process is then simply defined for all u € [0, 1]? as
Ealus) = Vi {Co(ar) — Cu)} (2.16)

Of course, replacing C, by C, in the above does not change the limit of the process.
This asymptotic behavior has been the subject of many papers over the years. Overall,
smoothness conditions on C' have been weakened and convergence results are also now
available under certain serial dependence conditions on X, Xo,.... First, the limiting
distribution under independence of the margins was established by Deheuvels (1981a,b).
Weak convergence in the Skorohod space D([0, 1]¢) was established by Riischendorf (1976)
and Gaenssler and Stute (1987), with less restrictive assumptions in the latter. One can
also refer to Example 3.9.29 in van der Vaart and Wellner (1996) for another convergence
result in the Skorohod space restricted to a closed set in the interior of [0,1]%. Weak
convergence in £°([0,1]¢) was established by Fermanian et al. (2004) with conditions
on the first order derivatives of C. Convergence rates were proposed by Stute (1984)
and studied by Tsukahara (2000) under assumptions on second order derivatives. These
assumptions were then weakened by Segers (2012). In the work of Biicher and Volgushev
(2013), convergence is established for weak serial dependence of the sample, a much more
realistic condition than serial independence. To allow for broader applications, Berghaus
et al. (2017) proved weak convergence of the empirical process with respected to stronger
weighted metrics. Convergence of the empirical copula process was also studied in the
case where the underlying distributions lack a certain degree of smoothness. Genest
et al. (2017) study the asymptotic behavior of the empirical copula process under broad
conditions that include, for example, discrete margins. Weak convergence with respect
to a metric related to epi- and hypo-convergence is established by Biicher et al. (2014).
The asymptotic behavior of the estimators proposed in this thesis is established thanks
to the work of Berghaus et al. (2017). Firstly, the following notion of asymptotic serial

independence allows to relax serial independence.
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Definition 2.21. For —oo < a < b < oo, let F? be the o-field generated by (X ;)iez with
i €{a,a+1,...,b}. Fork > 1, define aX)(k) = sup{|Pr(AN B) — Pr(A)Pr(B)|: A €
F'oo,B € Fp i € L} as the alpha-mizing coefficient of (X;)icz. The series is called
alpha-mizing (or strongly mizing) if &' X/(k) = 0 as k — .

Next, smoothness assumptions on the true copula C' are needed.

Condition 2.1. For | € {1,...,d}, let Vg = {u € [0,1]* : w; € (0,1)}. For each
j e {1,...,d}, the partial derivative C; given for all w € [0,1]% by C;(u) = dC(u)/du;

exists and is continuous on the set Vy ;.

For a d-variate copula C, let a be a C-Brownian bridge, i.e., a tight, centered Gaussian

process with covariance function given, for all u,v € [0,1]¢ by

covia(u),a(v)} =Y cov{1(Uy < u), 1(U; < v)} | (2.17)
€7
where U; = (Fi(Xi),..., Fi(Xia)). Note that in the case of serial independence, this
covariance function simplifies to cov{a(u), a(v)} = C(u Av) — C(u)C(v). Finally, let C
be the process defined, for any u € [0, 1]¢, by

Clu) = a(u) = > Cj(u)a(u?) (2.18)

with u) = (1,...,1,u;,1,...,1). For any j € {1,...,d} and u € [0,1]%, if the derivative
dC (w)/u; does not exist, set C;j(u) = limsup,_,o{C(u + he;) — C(u)}. The following
result was proved by Biicher and Ruppert (2013) (Theorem 1).

Theorem 2.11. If Condition 2.1 holds and if (X;)icz are alpha-mizing with oX(k) =
O(k™®) with a > 1, then C,, ~ C in (¢=([0,1]%), || - ||o0)-

Define the (unobservable) empirical process based on U; = (F1(Xn), ..., Fa(Xia)),
i €{1,...,n}, for any u € [0,1], by

an(u) = Vn{G(u) - C(u)} , (2.19)

where G,(u) = n~'>"  1(U; < u). In the above Theorem, the copula could be esti-
mated by G, if the margins were known. The limit in that case is simply « without the
extra terms involving the first order partial derivatives. In fact, no assumptions on C' and
its derivatives would be needed. As explained by Segers (2012), these extra terms encode
the impact of not knowing the quantiles Fj’1 and replacing them with their empirical
counterparts. It is not surprising to see how these ‘penalty’ terms depend on the sensitiv-
ity of the copula C' to change in the marginals via C’] What is surprising however is that

in some cases, ignoring known information about the marginal distributions can lead to
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a better estimation of the copula, as explored in the bivariate case by Genest and Segers
(2010) and in the multivariate case in the upcoming paper from Genest et al. (2019).
The convergence results needed in this thesis required slightly more powerful tools,

which is where the following condition comes into play.

Condition 2.2. For everyi,j € {1,...,d}, the second-order partial derivative C’Z] given
for allu € [0,1]4 by Cy;(u) = 9*C(w)/Ou;0u; exists and is continuous on the set Vy jNVy,,
and there ewists a constant K > 0 such that for all w € Vy; N Vy,,

1 1
Ul(l — ’U/i)’ uJ(1 — Uj>

This smoothness condition was first proposed by Segers (2012), in which the almost
sure convergence rate elicited by Stute (1984) is recovered. This condition, along with
Condition 2.1 and alpha-mixing, is used to establish the weak convergence of the empirical
copula process with respect to weighted metrics by Berghaus et al. (2017). The proof of the
weak convergence of the estimators derived in this thesis hinge on their result, reproduced
in the following. As alluded to, a weight function is used. For w > 0, it is defined for
u € [0,1]? by

gu( —mln{/\uj,/\ 1—III171£I]1’LLJ } . (2.20)

A slight variation preventing the weight function from vanishing is also needed. For
u € [0, 1]%, let
Ju(u) = gu,(u) + 1(g,(u) =0) . (2.21)

Theorem 2.12. Suppose that (X;)icz are an alpha-mizing series with o/X(k) = O(k™?)
with a > 1. Suppose that the marginal distributions Fy, ..., F; are continuous and the

underlying copula C' satisfies Conditions 2.1 and 2.2. Then, for any ¢ € (0,1) and w €

0,1/2) A

Cn(u) Cn(u)
gw(“) gw(u)

sup
u€le/n,1—c/n]d

where for u € [0,1]4,
d
C,(w) )= Ci(u)an(u?) .
7j=1
Moreover, C,, /Gy ~ C/gu, in (€([0,1]7), ]| - I]c)-

The restriction of the supremum in the first result to [¢/n, 1 — ¢/n]? is due to the fact
that Cn /9., would otherwise be unbounded if the set were to be extended towards the
borders of the unit hypercube.
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Chapter 3

Identifiability and smoothness of the
Archimax family

This chapter establishes properties of Archimax copulas that are needed for the modeling
of real datasets. As shown in Section 2.1.4, this family is characterized by two functional
parameters: the Archimedean generator and the stable tail dependence function. It is
necessary for any inference procedure developed for Archimax copulas to be able to dis-
tinguish these two functions, and as such Section 3.1 explores the conditions under which
the latter are identifiable. The inference tools developed in this thesis are justified by both
simulation studies and theoretical convergence results. For the latter results, regularity
assumptions are often needed in order to use powerful theorems on the asymptotic behav-
ior of empirical copula processes. These assumptions translate to conditions on the two
functional parameters of the Archimax copulas. Such conditions are stated and verified

in Section 3.2.

3.1 Identifiability

In this section, we establish conditions under which ¢ and 6 are identifiable when ¢ €
U = {1y,0 € O}. To accomplish this, we first consider two arbitrary d-variate Archimax
copulas Cy = Cy, », and Cy = Cy, o, whose generators v, 1, are not necessarily from a
parametric class. The lemmas below investigate the question whether C, = C5 implies

that the generators and stdfs are equal.
Lemma 3.1. Suppose that C; = Cy and 1, = 1y = 1. Then (1 = (5.

Proof. For all u € [0,1]%, £1{¢(u)} = lo{p(u)}, and since ¢ is one-to-one, {1(x) = l(x)
for all x € RY. O

Lemma 3.2. Suppose that Cy = Cy and 1 = Uy = { is a d-variate stdf such that € # {yy,
where for each x € RL, {y(x) = max(z1,...,24). Suppose also that ¢y and 1y are 2-

monotone Archimedean generators. Then there exists a constant ¢ > 0 such that, for all

x>0, () = (cx).

29



Proof. If {(x) = {y(x) = max{zy,..., x4} for all x € R?, then regardless of ¢y and v,
we have that C| = Cy = (', the copula corresponding to the Fréchet-Hoeffding upper
bound.

Now suppose that ¢ # ¢y;. Then it is clear that Cy # C)y for both k € {1,2}.
Indeed, fix k € {1,2}. Note that {(x) > {y/(x) for some € R%. By the homogeneity
of ¢, there also exists an @ € R% such that 0 < ¢ {l(x)} < Yp{lr(x)}. Therefore,

Cr(u) = g o {dr(u)} < g o by{dr(u)} = Cryr(u) for u = ¢y (x). Consequently, there
exists at least one pair i,j € {1,...,d}, ¢ < j, such that the bivariate margin of Cj, given,
for all u;, u; € [0, 1], by

C’,gij)(ui,uj) =Cp(1,..., Lu, 1, o0 w1, 000 1)
is not the Fréchet-Hoeffding upper bound copula. Next note that for all u;,u; € [0, 1],

O (ug, uz) = 1 0 €9 {3 (us), ¢ (uy)}
= 5 0 £ { o), da(uz)} = O (s, u;),

where (%) denotes the bivariate margin of ¢, given, for all z;,z; € Ry, by
09D (x5, 25) = £(0,...,0,2;,0,...,0,2;,0,...,0).

Therefore, C,gm , k € {1,2} are bivariate Archimax. According to Equation (13) of
Capéraa et al. (2000), they have the following Kendall’s function for w € [0, 1],

Ki(w) = myanw + (1 — 765 ) Ky, (w),

where 7,5 is the Kendall’s tau of the extreme-value copula Cju; and Ky, (w) is the
Kendall’s function of the bivariate Archimedean copula Cy,. Since () % (5, we know
that 7,6, < 1 and thus that Ky, (w) = Ky, (w). From Genest et al. (2011) and Genest and
Rivest (1993), it follows that Cy, = Cy,. By the identifiability of Archimedean copulas,
this yields the equality of ¥ and v, up to scaling (see for example Chapter 4 of Nelsen
(2006)). O

The first part of the following lemma is an extension of Theorem 4.5.1 in Nelsen (2006)
and has been shown by Hofert (2008) in the case where 1 is completely monotone. In the
following, for any 3 € (0, 1], 13 is defined by v¥5(t) = (%) for all t > 0, and ¢5 denotes
Bay/?, .. P for all @ e RY.

Lemma 3.3. (i) Let ¢ be a d-monotone Archimedean generator and 5 € (0,1]. Then

Y is a d-monotone Archimedean generator.

(ii) Let € be a d-variate stdf and B € (0,1]. Then lg is a d-variate stdf.
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Proof. Proof of part (i). Clearly, 15 is a continuous and decreasing function such that
¥p(0) =1 and Yg(z) — 0 as @ — oo. Let {4 be the logistic stdf given, for all & € R% by
Uy, ... 2q) = (:Ei/ﬂ +--- 4+ J:Ll/ﬁ)'g. The Archimax copula Cy g, is a bona-fide copula
by Theorem 2.1 of Charpentier et al. (2014). However, it is easily seen that Cy g, = Cy,,
where Cy, is the d-variate Archimedean copula with generator vs. By Theorem 2.2 of
MecNeil and Neslehova (2009), 13 must be d-monotone.

Proof of part (ii). Let ¢35 be the generator of the Gumbel copula given, for all z > 0,
by ¥s(z) = e~ Then 1 is a completely monotone Archimedean generator and 1 —
p(1l/x) € R_z. By Proposition 6.1 of Charpentier et al. (2014), the d-variate Archimax
copula Cy, ¢ is in the maximum domain of attraction of the extreme-value copula with

stdf £5. Consequently, {3 is a d-variate stdf, as claimed. m

Now suppose that 1 is a d-monotone Archimedean generator and ¢ is an arbitrary
d-variate stdf. By Lemma 3.3, 13 is a d-monotone Archimedean generator and /g is a d-
variate stdf for some 3 € (0, 1]. It is then easily seen that the Archimax copulas C, , and
Cyu, coincide. Thus one cannot expect £ to be unique and ¢ to be unique up to scaling.
As stated below, however, under a mild regularity condition on 1, power transformations

of ¢ and ¢ are the only possible sources of non-identifiability.

Lemma 3.4. Suppose that ¢y # (y; and Uy # Ly are arbitrary d-variate stdfs and 1y, 1
are d-monotone Archimedean generators with the property that for k € {1,2}, 1= (1/-) €
R_1/m,, withmy > 1. Assuming, without loss of generality, that m; < mo, Cy, ¢, = Cy, 0,
holds iff for all x € R,

m1/m2 mg/ml mg/m1
EQ (xl gt 7xd )

£1<J]1, ce ,ZEd) =
and there exists ¢ > 0 such that, for all t > 0, 1 (ct™/™2) = )y (t).

Proof. Proposition 6.1 of Charpentier et al. (2014) implies that, for all £ € {1,2}, that
Cyy e, 1s in the maximum domain of attraction of the extreme-value copula with stdf
given, for all z € R%, by 6,16/ " (x™). Because Cy, ¢, = Cy,q, by assumption, this implies
that for all & € R%, it holds that £;/™ (&™) = /™ (x™2). Hence, for all 2 € RY,

él(xl, e 7I’d) = 672711/777,2 <xT2/ml’ o ’wng/TTLl) )
Thus, for all u € [0,1]%,
Cunin () = iy 0 6™ [ ()™ ™ o {7 ) )™

Now set ¥7(t) = 1 (tml/ mz) for t € R, and note that 7 is a d-montone Archimedean
generator by Lemma 3.3. Therefore, Cy, ¢, = Cyrp, = Cy,p,. Given that ly # £y by

assumption, the rest of the claim follows from Lemma 3.2. O]
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Lemma 3.4 allows us to formulate the following main result of this section that de-
lineates the conditions under which an Archimax copula model is identifiable assuming
that the Archimedean generator belongs to a parametric family. Its proof is a direct

consequence of Lemma 3.4.

Proposition 3.1. Let Cy be a class of d-variate Archimax copulas whose stdfs are arbi-
trary with ¢ # £y and whose Archimedean generators belong to W = {1y,0 € O}, O C RP.

Assume also that the following conditions hold:
(i) for all® € O, 1 —y(1/) € R_1m,, with mg > 1;

(ii) for all @ € O, ¢ > 0, and 8 > 0, the function given, for all t > 0 by y(ct?) is an
element of W if and only if c= 0 = 1.

Then for any Cyyr, Cy, 00 € Cy, Cyyo = Cy,, o holds iff £ =" and 0 = 0'.

Condition (i) in Proposition 3.1 returns as Condition 3.1 in Section 4.1, where it
is discussed in detail. As shown by Charpentier and Segers (2009), it holds for many
Archimedean families, including those in Table 4.1 of Nelsen (2006). Condition (ii) is
satisfied by most commonly used one-parameter families of Archimedean generators, e.g.,
the Ali-Mikhail-Haq, Clayton, and Frank models. The only exceptions we could find
are Families 4.2.2, 4.2.4 (Gumbel), 4.2.12, and 4.2.18 in Nelsen (2006), and the outer
power family ¢, 3 from Theorem 4.5.1 therein. Lack of identifiability is not a concern
for these models, however, because through Lemma 3.4, # can be absorbed into the stdf
so that the generator v of the resulting Archimax model is fixed. For example, for the
Gumbel generator given by 1y(x) = e’ and an arbitrary d-variate stdf ¢, the Archimax
copula Cy, ¢ coincides with the Archimax copula Cy, (,, where the Archimedean generator

Y1(x) = e™® no longer contains any parameters, and f4(x) = ¢1/?(z?).

3.2 Smoothness

The result in Berghaus et al. (2017) requires smoothness assumptions, namely Condi-
tions 2.1 and 2.2 in the previous chapter. These are the same assumptions that appear in
Segers (2012). We verify that these conditions indeed hold for Archimax copulas under
suitable assumptions on the generator and the stdf, and this is nontrivial. To start, these

said assumptions on v and /¢ are stated and discussed.

Condition 3.1. For d > 2, ¢ is a d-monotone Archimedean generator and 1 —(1/x) €

R_1/m for some m > 1.

Condition 3.1, which is equivalent to ¢(1 — 1/x) € R_,,, is very general and satisfied
by virtually all d-monotone Archimedean generators as seen in Charpentier and Segers
(2009); Larsson and Neslehova (2011). This is because it holds whenever 1/R with R as
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in (2.11), is in the domain of attraction of the Fréchet (®,), Gumbel (A) or Weibull (¥,,)
distributions for some o > 0, in notation 1/R € M(®,), 1/R € M(A) or 1/R € M(V,,).
Moreover, Condition 3.1 with m = 1 further holds as soon as E(1/R'™¢) < oo for some

e > 0; see Proposition 2 in Belzile and Neslehova (2017).

Condition 3.2. Ford > 2, 1 is a d-monotone Archimedean generator that satisfies either
(a) Y € R_g for s > 0;
(b) Y € M(A), where Y has distribution function 1 — 1);
(¢) ¢(0) < 0o and Y(xy —1/x) € R_q_gs1 for a > 0.

Most Archimedean generators satisfy Condition 3.2. As shown by Larsson and Neslehova
(2011), Condition 3.2 (a) holds whenever R in (2.11) is such that R € M(®;) and is fur-
ther equivalent to ¢(1/x) € Ry/,. Condition 3.2 (b) is equivalent to 1/¢ being I'-varying
which is in turn equivalent to ¢(1/x) being Il-varying, as defined and proved, e.g., in
Section 0.4.3 in Resnick (1987). It is further shown by Larsson and Neslehova (2011) that
Condition 3.2 (b) holds whenever R € M(A). Finally, Condition 3.2 (c) is equivalent to
R € M(¥,) and further to {¢(0) — ¢(1/x)} € R_1/(a+d—1)-

Condition 3.3. For d > 2, { is a d-variate stdf that is twice continuously differentiable
and for which there exists M > 0 such that for any i,j € {1,...,d} with i # j, and for
any = € (0,00),

62 .. 1 1
O0x;0x; Uy, .., xq) = —Lij(z1,...,29) <M <_ A _) .

ZT; xZ;

Condition 3.3 extends Condition 5.2 in Segers (2012) to the case d > 2. The following
example demonstrates that it is satisfied by the logistic stdf.

Example 3.1. The logistic stdf is given for any @ € R and 6 > 1 by ly(z1,...,24) =
(2 + ...+ 29V It is easily seen that for any ¢ € RZ,

() = (0= 12020 (@ 4+ 2 T < (0 1) (i A i) .

Z; X

Proposition 3.2 below is the main result of this section, as it delineates the assumptions
under which Conditions 2.1 and 2.2 hold.

Proposition 3.2. Suppose that Cy, is a d-variate Archimaz copula with Archimedean
generator v that is g-monotone for some q > 0 and such that 1" exists and is continuous
on (0,00). Further assume that Conditions 3.1 and 3.3, and that either Condition 3.2 (a)
is satisfied or Condition 3.2 (b) is satisfied with the additional requirement that —log 1 is

concave on (0,zy). Then Conditions 2.1 and 2.2 are met.
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Remark 3.1. Proposition 3.2 also shows that Condition (4.1) in Segers (2012) holds for
an Archimedean copula Cy if 1) is g-monotone for some q > 3, )" exists and is continuous

n (0,00), Condition 3.1 holds, and either Condition 3.2 (a) is satisfied or Condition 3.2
(b) is satisfied with the additional requirement that —log () is concave.

The proof of proposition 3.2 requires many auxiliary results that are presented in
Section 3.2.1 below. The result is then proved in two parts, formulated as Propositions 3.3
and 3.4 in Section 3.2.2.

3.2.1 Auxiliary results

Before getting to the main results, some auxiliary results are needed. Let C' be a d-
dimensional Archimax copula Cy, . With the notation ¢(u) = {¢(u1),...,¢(uq)}, the
partial derivatives of C' can be computed for each i,j € {1,...,d}, i # j, as

Ciu) = o' [({o(w)}] (i{o(u)}¢' (i), (3.1)

Cij(w) = (0" o io(w)} o)} + v o i{ow)})  (32)
x ¢ (us) @ (),

Cala) = (" (o)} Ao (w) P + o' [H{o(w)}] Fufo(w)}) (33)
X {0 (o)} + 0 [0 ()} Ci{ ()} (1)

Lemma 3.5. Let { be a d—variate stdf whose first order partial derivatives exist on RZ.
Then, for any i € {1,...,d} andx € R%, 0 < &(a:) <1.

Proof. Both inequalities can be derived from the properties (a)-(c) in Theorem 2.6. Fix
ie{l,...,d}and x € Ri. Since ¢ is fully d-max decreasing, it is increasing in each argu-
ment. This yields the first inequality. To show the second inequality, note that properties
(a) and (b) imply €(0,...,0,2;,0,...,0) = x;, and hence £;(0,...,0,2;,0,...,0) = 1.
From property (c), it also follows that l; is non-increasing in the j-th argument for all
j # i. Therefore (;(x) < £;(0,...,0,2;,0,...,0) = 1. [

Lemma 3.6. Let ¢ be a d-monotone Archimedean generator for some d > 2 such that 1)’
exists and is continuous on (0,00) when d = 2. Assume that Conditions 3.1 and 3.2 hold
and let xy, = inf{z € [0,00) : ¥(x) = 0}. Then the function given for any x € (0,zy) by
fx) =y (@){l —¢(x)}/{—2y(z)} is continuous on (0,zy) and has finite limits at 0 and
Ty
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Proof. Given that the continuity of f is immediate, it suffices to show that its limits at 0

and z,, are finite. Because Condition 3.1 holds,

| B Vel e Ve S
o) = i e ) |

where the last equality follows from Equation (12) of Larsson and Neslehova (2011).

Turning to the limit of f at x, three cases have to be distinguished.

Assume first that Condition 3.2 (a) holds. In this case, x, = co and Equation (7) of
Larsson and Neslehova (2011) implies lim, , f(x) = 1/s. Next, assume that Condition
3.2 (b) holds. Because the function given for all x € (0,zy) by ¥(z)/{—¢'(z)} is an
auxiliary function by the calculations in the proof of Theorem 1 (¢) on p. 213 of Larsson
and Neslehova (2011), lim, ., f() = 0 by Lemma 3.10.1 of Bingham et al. (1989).

Finally, assuming Condition 3.2 (c¢), x, < oo and

lim f(z) = lim {1 —d(ay — 1/z)}(ay —1/2)

) = ey = 1)y — 1)
o me = 1/a) () e - Y2))
S P V7 RIS Y ’
since the first ratio in the last expression tends to 1/(a + d — 1) thanks to Condition 3.2
(¢) and the proof of Theorem 1 (b) on p. 211 of Larsson and Neslehova (2011). O

Lemma 3.7. Let ¢ be a d-monotone Archimedean generator for some d > 3 such that
" exists and is continuous on (0,00). Assume that Conditions 3.1 and 3.2 hold and
let xy, = inf{x € [0,00) : Y(z) = 0}. Then the function given for any x € (0,xy) by
f(z) = Y(x){1 — (x) " (x)/{ (2)}? is continuous on (0,2y) and has finite limits at 0

and T.

Proof. As in the proof of Lemma 3.6, the continuity of f is immediate and hence it suffices
to show that its limits at 0 and x,, are finite. From Condition 3.1 and Equation (12) of
Larsson and Neslehova (2011),

s o) =t P/ = 012 1)1/
=0 700 {—=(1/z)y'(1/x)}?

Turning to the limit of f at x, three cases have to be distinguished.

Assume first that Condition 3.2 (a) holds. In this case, x,, = co and Equation (7) of
Larsson and Neslehova (2011) implies lim, o f(z) = (s +1)/s.

Next, assume that Condition 3.2 (b) holds. By the calculations in the proof of Theo-
rem 1 (c) on p. 213 of Larsson and Neslehova (2011), the functions given for all x € (0, zy)
by aj(xz) = ¢¥(z)/{—v¢'(x)} and ai(z) = —'(x)/¢"(x) are auxiliary functions that are

asymptotically equivalent to the auxiliary function a of v. Consequently, aj(z)/a(x) — 1

=m-1,

as x — xy so that lim, ., f(r) = 1.

35



Finally, assuming Condition 3.2 (¢), z, < oo and

) — fi L@ = @) 2)*" (g — 1/x)
a+d—2
a+d—1"

{1 —9(xy —1/2)}

where the last equality follows from the calculations on p. 211 in the proof of Theorem 1
(b) of Larsson and Neslehové (2011). O

3.2.2 Proof of Proposition 3.2

Proposition 3.2 is an immediate consequence of the following two propositions.

Proposition 3.3. Let C = Cy, be a d-variate Archimax copula such that ' exists and
is continuous on (0,00) when d = 2, and the first order partial derivatives of ¢ exist and

are continuous on Ri. Then Condition 2.1 holds.
Proof. Fix j € {1,...,d}, u € Vy;, set x = ¢(u) and using (3.1) write

/
Cytuta)) = HEE,

Because ¢/ > 0 on (0,zy), and {(x) > z; > 0 on Vg, the assumptions imply that
C; is continuous on (0,1] N V. If u; — 0 for at least one i # j, 2; — ¢(0) and
Ux) — Uz, .. 21, 0(0), g1, ..., 2q) > ¢(0). By Lemma 1 of Williamson (1956),
Y'(x) — 0as x — ¢(0) and if ¢(0) < oo, ¥'(z) = 0 for x > ¢(0). Consequently, as
i = ¢(0), Ci{(x)} — 0. -

Proposition 3.4. Let C = Cy 4 be a d-variate Archimax copula such that 1 is k-monotone
for some k > 3 and V" exists and is continuous on (0,00). If Conditions 3.1, 3.2 (a)
and 3.3 hold, or if —log(v) is concave and Conditions 3.1, 3.2 (b) and 3.3 hold, then
Condition 2.2 is satisfied.

Proof. For any u € [0,1]%, set * = ¢(u) and for any i,j € {1,...,d}, introduce the

following terms:

SN i (1) SN VT2 (1C0)
Tirl®) = w92 = G i@y @)
Ty < L@ @)

{o'(2i)}?

By the d-monotonicity of 1, observe first that for & € {1,2,3}, T;;x > 0. Now let
zy = inf{z € [0,00) : ¢¥(z) = 0}. From (3.2), (3.3), Lemma 3.5, and Condition 3.3 it
follows that for any @ € (0, z,,)?,

ICii{v(@)} < Tyja(x) + Tyo(x), [Colv(@)}| < Tiin(x) + Tiin(x) + Tiis().
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Next, note that for any i # 7, CZ] and C’m are continuous on (0, 1]d N Vg N Vg;. The
d-monotonicity of ¥ and Lemma 1 of Williamson (1956) implies that for k£ € {1,2},
Yv®(z) — 0 as z — z, and if 2, < oo, Y®¥(z) = 0 for z > z,. Consequently, for
each k € {1,2}, T};x(x) — 0 as x, — x, for at least one r ¢ {7,j} and that for each
ke {1,2,3}, Tyk(x) — 0 as x, — xy for at least one r # 7. This in turn implies that
Cij{1(x)} — 0 and Cy{p(x)} — 0 as z, — x,, for at least one r in {1,...,d}\ {i,5} and
{1,...,d} \ {i}, respectively. Hence for i # j, C;; and Cj; are continuous on Vz,; N V.

Now introduce the functions given, for any 2y, 2o € (0,2y), by

[ (21, 2 :M [5(21, 29) = “MYH Y z)
T1( 1 2) ¢’(Z1)¢'(Z2)’ TQ( 1 2) (zlvzz)w’(21)¢’(22)7
Ty(z) = vlaee)

{y'(z)p?

Note first that for k € {1,2,3}, T, > 0 on its domain. Because (—1)%)(@ is nonincreasing
on [0,00) for ¢ € {1,2} and l(x) > x1 V-V x4 for any € R%, one has that for any
i# jand any & € {¢(u),u € Vy; NVy;} and x € {p(u),u € Vy,},

respectively. Note that for k € {1,2}, the term T, is symmetric. To show the inequality

Cij(w)| < K min {ui(ll— u;)’ Uj(ll— uj)}

it thus suffices to prove that for & € {1,2}, the function given for all z1, 2, € (0,2,) by
(21){1 — 1(21)} Tk (21, 22) is bounded on (0,,)?, and further that the function given
for all z; € (0,24) by ¥(21){1 — 1(21)}T5(21) is bounded on (0,z,). First observe that

because —v' is nonincreasing,

Y(z){1 — 770(Z1)}T2(Z1, 29) < Mw(z_li{;,(_;ﬁ(m)},

VT (o) < P E)YE{L — ¥z}
V() {1 —P(21)}T3(21) < WP )

The function on the right-hand side in the first and second inequality is bounded on

(0,24) by Lemma 3.6 and Lemma 3.7, respectively.
It remains to consider the function 7;. For all z1, 2y € (0,2y), denote h(z,z2) =
(20){1 = ¥(21)}T1(21, 22). First note that because —i is decreasing on (0, z),

P(2){l —P(21)} (21 V 22)0" (21 V 22)
—209'(21) — (1 V 22)

h(z1, 2z2) < = f(z1)9(z1 V 22) , (3.4)
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in terms of f(x) = ¢(x){1 = P(x)}/{—2¢'(x)} and g(z) = 2¢"(x)/{=¢'(x)}. Now fis
bounded on (0, z,) by Lemma 3.6. Furthermore, ¢ is continuous and because Condition
3.1 holds, it satisfies

L ey
) = I ) (o ()

where the last equality follows from Equation (12) of Larsson and Neslehova (2011).

=1-1/m,

Therefore, h is bounded on (0, x]? for any k < z,. To conclude that h is bounded on
the entire set (0,2,)?, two cases have to be distinguished. First, assume that Condition
3.2 (a) holds. In this case, x;, = oo and Equation (7) of Larsson and Neslehova (2011)
implies lim, ., g(x) = s + 1 and hence the upper bound in (3.4) is bounded on (0, z)*.
Next, assume that Condition 3.2 (b) holds, and that —log(v)) is concave. In this case, the
upper bound in (3.4) is too crude because g(x) — oo as x — . Instead observe that,

because v is decreasing,

’1/1(21 V ZQ)'lp”(Zl V 22) ’1/1(21) "Lp/(Zl V 22)
{w’(zl \Y 22>}2 w(zl V 22) w/(Zl N 22)
Y(z1 V 22)Y" (21 V 22) af (21 A 22)
- {Yamva)P ez V)

where for any x € (0,2y), af(z) = ¥(x)/{—¢'(z)}. From the proof of Lemma 3.7,
Y(x)Y"(x)/{¢'(x)}* — 1 as © — xy. Furthermore, because —log(v)) is concave, af is

h(Zl, 22) =

(3.5)

increasing and hence the upper bound in (3.5) is bounded on (0,z4)* \ (0, ]* for any
k € (0,z,). Put together, h is bounded on (0, z,)% O
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Chapter 4

Estimating ¢/ when ¢ is known

In this chapter, we introduce two nonparametric estimators of the stdf ¢ of an Archimax
copula Cy, , under the assumption that the Archimedean generator v is known. As stated
in Chapter 3, ¢ is identifiable under this assumption. Recall that ¢ is uniquely determined
by the corresponding Pickands dependence function A, and hence it suffices to estimate
the latter. To see how to proceed, consider a random vector U with distribution Ci 4

given by (2.9). For any w in the unit simplex Ay, let

§(w) = min{g(Uy)/ws, . .., ¢(Us) /wa}

with ¢(U;)/w; = oo when w; = 0 for some j € {1,...,d}. Then

Pr{¢(w) >z} = Cy a{d(2w)} = ¥ {zA (w)} .

If (z) = ™", {(w) is exponential with rate A(w). This leads to Pickands and Capéraa—
Fougeres—Genest (CFG) type estimators of A; these estimators are investigated, e.g., in
Pickands (1981); Capéraa et al. (1997); Zhang et al. (2008); Genest and Segers (2009);
Gudendorf and Segers (2011).

Now let Z denote a random variable with survival function v, i.e., for all x > 0,
Pr(Z > x) = ¢(x). Then for any w € A4, {(w) has the same distribution as Z/A(w).
One finds in particular that

E{{(w)} = E(Z2)/A(w), Ellog{¢(w)}] = E(log Z) — log{A(w)}. (4.1)

When 1 is known, so are E(Z) and E(log Z). Provided the latter are finite, (4.1) leads to
the Pickands and CFG-type estimators of A, as explained next.

Let X4,..., X, be arandom sample from a d-variate distribution H with continuous
margins F, ..., Fy and an Archimax copula Cy 4 with known v and unknown A. When
the margins are unknown, a sample from Cy 4 is unavailable, but as in Genest and Segers

(2009) and Gudendorf and Segers (2012), one can base inference on normalized ranks
given, for all i € {1,...,n} and j € {1,...,d} by Uy = nF,;(X;;)/(n + 1), where for
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any j € {1,...,d}, F,; is the empirical distribution function of Xj;,..., X,,;, as defined
in Equation (2.13). Now, for every w € Ay and i € {1,...,n}, let

&(w) = min{p(Un) /w1, ..., ¢(Ua) /wa}

again with the convention that ¢(U;;)/w; = oo when w; = 0. However, note that for any
w € Ay, w; > 0 for at least one j, so that & (w) is finite for every i € {1,...,n}. Then,
provided that E(Z) exists, the Pickands-type estimator AP is defined, for any w € Ay, by

AP (w) /sz (4.2)

Similarly, if E(log Z) exists, the CFG-type estimator ASFC is defined through
I -
log A %(w) = Elog Z — — ) log&;(w). 4.
og A" (w) = Elog 7 — — 2; 0g &i(w) (4.3)

If Y(z) = e, then E(Z) = 1 and E(log Z) = —~, where v is the Euler-Mascheroni con-
stant, and A and ASYY reduce to the rank-based Pickands and CFG estimators studied
by Genest and Segers (2009) in dimension d = 2 and extended to higher dimensions by
Gudendorf and Segers (2012).

In general, AY and AS¥“ are not Pickands dependence functions. In order to enforce

the endpoint constraints A(e;) =1 for j € {1,...,d}, introduce

1 & i 1 & i
= - p==>1 .
= 2o (i) rm e ()

The endpoint-corrected Pickands and CFG-type estimators now arise by replacing E(Z)

by fi in (4.2) and E(log Z) by © in (4.3), respectively, viz.

w) = nﬂ/i &(w), log A (w) =0 — = Z log & (w (4.4)
i=1

These corrected versions avoid the generally cumbersome computation of E(Z )or E(log Z).
In addition, the following holds, owing to the fact that g = 321" ¢(Uy;)/n and o =
>, log o Uy;)/n almost surely for all j € {1,...,d}.

Proposition 4.1. For j € {1,....d}, A} .(e;) = 1 and A EC(e;) = 1 almost surely.
Moreover, A}, (w) > max(wy, ..., wq) and ASES (w) > max(wy, ..., wa) almost surely for

all w e Ay.

Note that when d = 2 and ¢(z) = e %, AF _is the corrected rank-based Pickands

n,c

estimator from Genest and Segers (2009) with end-point correction as by Hall and Tajvidi
(2000).
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4.1 Asymptotic behavior

In this section, we investigate the asymptotic behavior of the Pickands and CFG-type
estimators under the assumption that v is known. This section elicits the limiting behavior

of the processes

Ay =vn (A, —A) and AJYY =/n(AJFC - A). (4.5)

n n

The main ingredients of the proof are then made explicit in Section 4.2.
The following Lemma explains that under Conditions 3.1 and 3.2 studied in Section 3.2
of the previous chapter, the Pickands and CFG-type estimators are indeed well-defined

and have the same limiting behavior as their end-point corrected versions.

Lemma 4.1. (i) Suppose that 1) is differentiable on (0,00) and satisfies either Condi-
tion 3.2 (a) with s > 1, (b) or (¢). Then E(Z) < 0o and i — E(Z) as n — oo.

(i1) Suppose that ) is differentiable on (0,00) and satisfies Conditions 3.1 and 3.2. Then
E(log Z) < 00 and v — E(log Z) as n — oo.

Proof. For part (i), note that Condition 3.2 (a) with s > 1 is equivalent to Z € M|(®y)
with s > 1. Similarly, Condition 3.2 (b) is equivalent to Z € M(A), and Condition 3.2 (c)
implies that Z is bounded from above. In either case, E(Z) < oo, see, e.g., Chapter 3 of
Embrechts et al. (1997). Before showing that i — E(Z) as n — oo, note that for any
positive random variable with finite expectation and a differentiable survival function F,

integrating by parts and a change of variable yields

/0 T Fiydt = /O () (s)ds (4.6)

given that limy ,., tF(t) = lim;_,otF(t) = 0. Eq. (4.6) then gives

/(ﬁds_/w (Z) < o0,

and hence i — E(Z) as n — oo, as claimed.
To show part (ii), write
E(log Z) = E{log(Z v 1)} + E{log(Z A1)} = E{log(Z V 1)} — E{log(1/Z Vv 1)} .

When Condition 3.2 holds, Z is in the domain of attraction of either the Fréchet, the
Gumbel or the Weibull distributions. In either case, E{log(Z Vv 1)} < oo; see Corollary
3.3.32 and Examples 3.3.33 and 3.3.34 of Embrechts et al. (1997). Furthermore, given
that 1—1(1/x) is the survival function of 1/Z, Condition 3.1 implies that 1/Z € M(®1,,)
and hence E{log(1/Z V 1)} < oo again using Example 3.3.33 of Embrechts et al. (1997).
As in part (i), 7 — E(log Z) as n — oo then follows directly from

00 1
BllosZ) = | vexp(t)}dt = [ log(o(s)}ds < .
0 0
which holds by Eq. (4.6) given that 1(e') is the survival function of log Z. O
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Theorems 4.1 and 4.2 below respectively specify the limiting behavior of the processes
ASTS and AP defined in (4.5). These convergence results require an alpha-mixing (see
Definition 2.21) sequence of random variables with a time-invariant Archimax copula.
This allows to forgo independence for a form of asymptotic independence in time.

Beforehand, note that the interior of the unit simplex is
Ay = {fwe[0,1]¢: w4+ +wg = 1, wqy > 0},

where w(;y = min(wy,...,wy). To simplify notation, write, for any = € R%, ¢(z) =
((z1), ..., 0(xy)). Furthermore, for any compact subset K of Ay, let C(K) denote the
space of continuous functions on K equipped with the supremum norm. For a d-variate
copula C, let a be a C-Brownian bridge as defined in Chapter 2, (see Equation (2.17))

and recall the definition of the corresponding process C from Equation (2.18).

Theorem 4.1. Suppose that X1, Xo,... is a stationary, alpha-mizing sequence with
aXl(k) = O(d*), as k — oo, for some a € (0,1). Suppose that the marginals of the
stationary distribution are continuous and the corresponding copula C' = Cyy = Cy a
1s Archimax and follows the assumptions of Proposition 3.2. Then for any compact set
K C Ay, ASFC s ASFC 450 — 00 in C(K), where for any w € Ay,

du

ulogu

ACFG (4p) = A(w)/o Cly{—wlog(u)}]

Theorem 4.2. Under the assumptions of Theorem 4.1 and the requirement that s > 2
when Condition 3.2 (a) holds, one has that, for any compact set K C Ad, AP~ AP g5
n — oo in C(K), where for any w € Ay,

du

- = [ cwt-wiosuy 2

A" (w) =

First observe that the conditions of Theorem 4.2 are stronger than those of Theo-
rem 4.1; this was further investigated in Chapter 3. Also note that the generator given,
for all > 0, by ¥(z) = e™* is completely monotone and satisfies Conditions 3.1 and 3.2
(b) and is such that —log(t)) is linear. Hence, Theorems 4.1 and 4.2 remain valid in the
special case when C' is an extreme-value copula. Finally, note that because of Lemma 4.1,
the asymptotic behavior of the endpoint corrected versions of the CFG and Pickands-type

estimators is the same, as stated below.

Corollary 4.1. Theorems 4.1 and 4.2 also hold when ASTS and AL are respectively re-
placed by ASES = /n (ASEC — A) and A}, = /n (A}, — A).
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4.2 Proofs of Theorems 4.1 and 4.2

In this section, Theorems 4.1 and 4.2 are proved. To ease the reading, the main ar-
guments are presented in Section 4.2.1. As will be seen therein, the proofs hinge on
Proposition 4.2. Auxiliary results are then gathered in Section 4.2.2, with Proposition 4.2
being subsequently proved in two parts in Sections 4.2.3 and 4.2.4.

4.2.1 QOutline of the main arguments

To establish weak convergence of ASFS and AP the weak convergence of the empirical
copula process with respect to weighted metrics established by Berghaus et al. (2017) is
used. The result, Theorem 2.2 in said paper, is also reported in Chapter 2 as Theorem 2.12.

Following Genest and Segers (2009), we introduce the processes defined, for any w €
Ay, by

IB%SFG(w) =/n {log ASFG(w) — log A(w)} ,
B, (w) = vn {1/A; (w) — 1/A(w)} .
The next lemma establishes that these processes are functionals of the empirical copula
process previously defined in (2.16) by C,(u) = /n {C,(u) — C(u)} for any u € [0,1]7,

where C(u) = n 'S0, H;lzl 1(U;; < u;) denotes the rank-based empirical copula de-
fined in (2.14) via the pseudo-observations U;; as specified in (2.13).

Lemma 4.2. Fiz an arbitrary w € Ay. Then, provided E(log Z) exists,

du
ulogu’

BOFG (1) = / El{—wlog(w)}]

Furthermore, provided E(Z) exists,

Bl (w) = 5oz | Colt-wloa} T

0
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Proof. Using the fact that log(t) = [;°{1(z <t) — 1(z < 1)} 2~ dx, for w € Ay, write
BEYC (w) = —v/n {—ElogZ + % anlogé,-(w) + Elog Z — Elogf(w)}
- —ﬁ(%z | [ <én -1 <)
B [ e <ew)} - 1{e < 1) d;)
- —ﬁ(/om [%Zn{ < éw)} - 1{r < 1}] £

- [l < gw)) - e < 1) d—)

A~

_ _\/g/ooo [% Z_: 1{Uy < (unz), ..., Uy < Y(wgz)}

=1

~P{Un < y(wrz),. U < w(wdx)}] df

_ /0 - vn [C’n{w(wx)} - C{w(wx)}] i—x

du
ulogu

_ / &, { —wlog(u)}]

Similarly, for the Pickands-type estimator, for w € Ay,

Py SrG(w)  Alw)
]B%n(w)—\/ﬁ{ WE(Z) _E(Z)}
Jn

00 _1 n R
Sl _;;ﬂ{exw)zx}dx—fz{s(w)}] dr

— [ _%;n{éxw) > 7} - P¢(w) > x}] o

57 | Vi [t - )] do

L du
= M/o CnW{—ng(U)}]; :

O

Recall that the required existence of the expectations E(log Z) and E(Z) is treated
in Lemma 4.1 and is satisfied under the assumptions of Theorems 4.1 and 4.2, respec-

tively. Weak convergence of BS¥® and BY is established next. The proof is provided in
Sections 4.2.3 and 4.2.4.

Proposition 4.2. Let IC be any compact subset of Ay.
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(a) Under the assumptions of Theorem 4.1, BSYS ~ BCYC as n — oo in C(K), where

for any w € Ad,
du

ulogu

BCFG(w):/O Clyp{—wlog(u)}]

(b) Under the assumptions of Theorem 4.2, BY ~ BY asn — oo in C(K), where for any

w € Ad,
1 du

1
B (w) = —— [ Cly{-wl -
)= 5777 | Clo{-wlozw}
The validity of Theorem 4.1 now follows directly from Proposition 4.2 (a) and Theorem
3.9.4 of van der Vaart and Wellner (1996), given that the map 7 : C(K) — C(K) defined by
n(f) = exp(f) is Hadamard differentiable. Similarly, Theorem 4.2 is a direct consequence
of Proposition 4.2 (b) and Slutsky’s Lemma, as for any w € Ay,

b —ABw)
Al = P A (w)BE (w)

Remark 4.1. Theorems 4.1 and 4.2 can in fact be shown to hold for any compact subset
K of Ay ={w € [0,1]¢: wy + -+ +wy = Lwa < 1}, where wgy = max(wy, ..., wg).
Such sets allow for several components of w to be equal to zero. Proposition 4.2 can be
proved as follows. Let IC be any compact subset of AY. For any w = (wy,...,wq) € K, let
w* be the subvector consisting of its non-zero components. Thus w* is a d*-dimensional
vector, with d* < d, and

dr _»
Y

BOFS (ap) = — / T e} L B (w) = ﬁ / " E {p(wn) ),

r
where C, = /n (C* — C*). Note that C* = Cy e has the same Archimedean generator 1)
as C, and the marginal stdf £* defined as the original £ with zero arguments corresponding
to the zeros of w. It is then possible to find K € N such that K C Byjx = {w € [0,1]*:
wy+ - wg = Lwyy = /K, where wiy) = min{w; : w; > 0}. The rest of the proof
18 1dentical to that of Proposition 4.2. FExtending the weak convergence to the entire unit
simplexr Ag would require a different approach, and it remains to be seen whether such an

extension is possible at all.

4.2.2 Auxiliary results

In the following, lemmas that are used in the proof of Proposition 4.2 are stated and

proved.

Lemma 4.3. Suppose that 1 is a 2-monotone Archimedean generator. Then for any
K €N and c € (0,1/K), there ezxists Nx € N so that for all n > N,

ko (D))
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Proof. Let Ng be such that for all n > Ny, ¢ < n/{K(n+1)}. Fix an arbitrary n > N
and define, for all z > 0, ¥y (z) = max(1 — 2,0) and observe that 1, is a 2-monotone
Archimedean generator with inverse given, for all x € [0, 1], by ¢r(z) = 1 — z. Because ¢
is convex, the function f = ¢, 01 on [0, 00) is concave and such that f(0) = 1—1(0) = 0.
From Lemma 4.4.3 of Nelsen (2006), f is subadditive. The latter property means that for
all z,y € [0,00), f(z +vy) < f(x) + f(y). Successive application of this inequality yields
that for all z € [0, 00),

f(Kz) < Kf(x).
Because 11, is non-increasing, applying it on both sides gives ¢y o f(Kz) > ¢ {K f(z)}.
Given that ¢y o f =1 one has, upon setting x = ¢(1 — ¢/n),

oo (1-£)) v {0 (1- )} e (1 50) <1 5

where the last equality follows from the fact that K¢ < 1 by assumption. Clearly, 1 —
(Kc/n) >n/(n+1) given that ¢ < n/{K(n+1)}. O

Lemma 4.4. (i) If Condition 3.2 holds, then for any w € (0,1/2) and a € (0,zy),
[P (@)Y fx da is finite.

(11) If Condition 3.2 (a) holds with s > 2, then for any w € (1/s,1/2) and any a > 0,
() yoda s finite.

(111) If Condition 2 (b) or (c) holds, then for any w € (0,1/2) and any a € (0,xy),
JEe ()Y da s finite.

Proof. (i) If Condition 3.2 (a) holds, z, = oo and the integrand has index of regular
variation —sw — 1 < —1; the integral is thus finite by Karamata’s Theorem (Embrechts
et al., 1997, Theorem A3.6). If Condition 3.2 (b) holds and z, = oo, then ¢ is rapidly
varying and the result follows from Theorem A3.12 (a) of Embrechts et al. (1997). If
Condition 3.2 (b) holds and z, < oo or Condition (c) is satisfied, then z, < co and the
integrand is bounded on [a, 7).

(ii) Given that the integrand is regularly varying with index —sw < —1, the result follows
from Karamata’s Theorem, as in (i).

(iii) In this case, the result follows from Theorem A3.12 (a) of Embrechts et al. (1997) if
Condition 3.2 (b) holds and zy = oo, and from fact that z,, < oo otherwise. O

Lemma 4.5. (i) If Condition 3.2 holds, then for any c € (0,1),

lim v/n " ¢<x)dx =0.

e ¢lc/n) ¥

(i) If either Condition 3.2 (a) with s > 2, (b) or (c) holds, then for any ¢ € (0,1),

lim v/n " Y(z)dr =0 .

e o(c/n)
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(111) If Condition 3.1 holds, then for any ¢ € (0,1) and ¢ € {1,2},
o 11— (1
lim /7 de — 0.
oo L/{Ko(1—c/n)} X
Proof. (i) If Condition 3.2 (a) holds, x, = co. By Karamata’s Theorem the integral is a

regularly varying function of ¢(c/n) with index —s. For some slowly varying function L,
< ), .
vn o dv = /n{e(c/n)} " L{g(c/n)} .
#(c/n)

Due to the regular variation of ¢ at zero, there exists a slowly varying function L* such
that

Vi {o(e/n)} " L{g(c/n)} = Vn{(n/e)/*L*(n/e)} " L{d(c/n)} (4.7)

which may be written as (¢/\/n)LT(n), where Li(n) = L*(n/c)"*L{¢(c/n)} is a slowly
varying function of n, see, e.g., Proposition 0.8 (iv) of Resnick (1987). Consequently, the
left-hand side of (4.7) converges to zero as n — oco.

If Condition 3.2 (b) holds and zy = oo, Theorem A3.12 (b) of Embrechts et al. (1997)

implies that
lim 2 / de =0,
e € Jg(e/n) T

from which the result follows at once. Finally, if Condition 3.2 (b) holds and z, < oo
or if Condition 3.2 (c) is satisfied, z,, < oo and ¥(x) = 0 for all > x,. Because 1 is
decreasing,

[ ve) e [T vdele/n))  logay —log{g(c/n)}
f/qxc/n) r s oefm) T ! Ve |

Clearly, the last expression converges to zero as n — co.

11 ondition 3.2 (a) holds with s > 2, z,, = oo and one can argue as 1 the proot o
ii) If Condition 3.2 holds with 2, xy d in th f of

(i) using Karamata’s Theorem that
Vi | (a)de = nt2HETL (),
bn

where LT is slowly varying. Since 1/2+1/s—1 < 0, the right-hand side converges to 0 as
n — oo. If Condition 3.2 (b) holds and z, = oo, Theorem A3.12 (b) of Embrechts et al.
(1997) and the fact that ¢(1/x) is slowly varying (Bingham et al., 1989, Theorem 2.4.7)
imply that .

lim \/ﬁ/oo Y(z)dr = lim cole/n) f¢(c/n)¢(t)dt =0

o0t Jo(e/n) nooe /no (¢/n)gc/n)

If Condition 3.2 (b) holds and z, < oo or Condition 3.2 (c) is satisfied, then z, < oo.

Consequently,

\/ﬁ/% U(x)dr < /n(c/n){zy — dlc/n)} ;
o(c/n)
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the last expression clearly converges to zero as n — oco.

(iii) Because for sufficiently large n,

0<\/_/ (l/xd <f/ Mdm,

1/{K¢(1—c/n)} ? 1/{K¢(1—c/n)} €

it suffices to consider the case ¢ = 1. Karamata’s Theorem implies that there exists a

slowly varying function L; such that

il 1w (),
1/{Kp(1—c/n)} z 1 )
va{ro (-5} [{ro (-2} ]

Because ¢(1 — 1/z) is regularly varying with index —m, there exists a slowly varying

function Lo such that

Gifwo(1- D) [ (-9} ]
— Vi {K(n/e) ™ La(n/e)} ™ Ly [{m (1- g)}l} )

where Ls(z) = cKY™Ly(z/c)Y"Li[{K¢ (1 —c/x)}~!]. As Ls is slowly varying (Resnick,
1987, Proposition 0.8 (iv)), n=*/2Ls(n) — 0 as n — oo. O

Remark 4.2. It emerges from the proofs of Lemma 4.4 and 4.5 that these results remain
valid if instead of Condition 3.2 (b) or (c), ¥ satisfies the weaker condition that either
Ty < 00, or that x, = oo and 1 is rapidly varying as defined, e.g., on p. 83 in Bingham
et al. (1989).

4.2.3 Proof of Proposition 4.2 (a)

=1,...,

.....

IC is compact, there exists an integer K > 1 such that L C By/x C Ad. Next, pick an
arbitrary ¢ € (0,1/KY™) with m from Condition 3.1, and define

an:qS(l—E), bn:¢<%). (4.8)

n

By Lemma 4.3 and because ¢ < 1, there exists Ng € N so that for any n > Nk,

c<nL+1 and ¢{K¢<1—%>}>nil. (4.9)

Next, for any ¢ > 1 and j € {1,...,d}, let U;; = F;(X;;) and set U; = (Uy1, ..., Uiq).
Recall from Chapter 2 that the empirical copula and empirical copula process pertain-

ing to the unobservable sequence Uy, ...,U, are given for any u € [0,1]%, by G,(u) =
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E DD H;.lzl 1(Uy; < w;) and a,(u) = /n{G,(u)—C(u)} respectively (see
Equation (2.19)). Recall also from Chapter 2, Theorem 2.12, the process defined at
any u € [0,1)? by Cp(u) = o () — 327, Cj(u)a, (u®).
Before proceeding, recall that for any @ € R%, o (z) = (¢(z1),...,1¢(z4)) and note
the following lemma.
Lemma 4.6. As n — oo, sSup fx””/w“) |C {Y(wx)} — @n{w(wx)}\% converges in
wEB /¢

probability to 0.

Proof. Using triangle inequality and a,, b, as in (4.8), write, for any w € Bk,

Ty /W) . dr 5
| wwn) - € un) S < 3 1w
j=1
where

bn/w(q)
hiw) = [ Eufutwn) - Eafotwn)|

nw) = [ i 2,
Ii(w) = /bj/i::)(d) Co{t(wz }‘ Li(w) = /Oan/w<1> |Co{to(wa)}] dx—x,

xw/w d
@uw:=l’ 7 e 2

n/W(a)

In the sequel, we show that for any p € {1,...,5}, SUDye, I,(w) — 0 in probability as

n — oQ.

Treatment of I,. Fix an arbitrary w € Bj/kx and introduce, for any w € (0,1/2), the
weight function g, from Theorem 2.2 in Berghaus et al. (2017) reported in (2.20). The
latter is given at any u € [0, 1]¢ by

d w
) = min [/\uj,/\{l— Erlund(ul,.. JUG1, Uj s - - e ud)}] . (4.10)

77777

Because a,/wn)y < x < b,/w(g) implies that, for all j € {1,...,d}, ¢/n < Y(w;z) <

1 — ¢/n, one has
_ e Cofy(wa)}  Coft(wa)}
h“”‘LWm)gdwww} g{0(wn)}

- /xzp/w(d) gw{w;wx)}dx

gw{w(’wiﬂ)}dx

)

where

~ —

Cu(u)  Cy(u)
gw(u) gw(“) '

Sy = sup (4.11)

u€lc/n,1—c/n]d
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By the first part of Theorem 2.12, S,, converges to 0 in probability as n — oco. The
conditions of the latter Theorem are indeed fulfilled because of Proposition 3.2. To con-
clude that sup,,cp, I (w) — 0 in probability as n — oo, it thus suffices to show that

fox’”/ ) de is finite. To this end, note that because v is decreasing,

gl (wa)} < [min{¢(zw,), ..., Y (zwa) }* = {¢ (W)} (4.12)

and that, since w; <1 for all j € {1,...,d},

geo{(wr)} < [1 —min{(zwr), ... Plrwa) ] = {1 = P(war)}* . (4.13)

Choosing an arbitrary a € (0, ), one then has

xw/w(d) a/w(d) 1 _ w
/ golt(wa)} < / {1 —Y(waz)} Jr (4.14)
0 Z 0 Z
Zw/’u)(d) w
+/ ) dx = Iy + 1y < o0,
a/w(d) x

where

R (4.15)

xz

Indeed, under Condition 3.1, Iy, is finite by Karamata’s Theorem, since the integrand has
index of regular variation —mw — 1 which is strictly less than —1. Finally, [, is finite
under Condition 3.2 by Lemma 4.4 (i).

Treatment of I. Without loss of generality, suppose that n > Nk so that (4.9) holds.
Fix an arbitrary w € By, and observe that from the definition of By, x one has, for any
z € (0,a,/way) and j € {1,...,d},

wiz < ﬂ¢(1—5) < K¢(1—5) .

w(l) n

This and (4.9) imply that

Ywe) = YKo - c/m)} >

Consequently, for any = € (0, a,/w()), Co{¢(wz)} = 1. Using (2.8), one thus has

an/w an/w _ wr
w) =i [ ey - v [ IRy,

Because for any z > 0, {(wz) = zl(w), {(w) < 1, and wr) > 1/K one further has that

o 1 1
L(w) < Vi 1=ol/z),, <\/_/ 1=ol/z),,
w(l)/an z Kan T
The last term in the above inequality is independent of w and converges to 0 as n — oo

by Lemma 4.5 (iii).
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Treatment of I3. Without loss of generality, suppose that n > Ny so that (4.9) holds.
Fix an arbitrary w € By/x and observe that if © > b, /wy, ¥ (zwe) < ¢/n < 1/(n+1)
and consequently C’n{w(wz)} = 0. Thus

Ty /W (d) dr
Iy(w) = Vi Cliwn) ™ < Vi

bn/w(ay

o /W) 4y (wigyx oz
vwae) e [T YE)
bn/W(d) bn x
The last term in the above inequality is independent of w and converges to 0 as n — oo

by Lemma 4.5 (i).

Treatment of 1. Recall the second weight function g, from Berghaus et al. (2017) repro-
duced in (2.21). Fix an arbitrary w € By /g, let

Cn(u)‘
7, — - 4.16
R A rre o
and observe that
e | Cfdwa)} | uflwa)} [ g (e (we))
) = [ [y | e s [ 2
Kan =~
- Zn/ ol (wa)} ,
0 x

Given that Z, ~ sup,e(1j¢ |C(w)/gu(u)| as n — oo by Theorem 2.12, it suffices to prove
that

[ ptvtwn,

x
converges uniformly to 0 as n — oo. To this end, note that g, (u) = 0 occurs either when

at least one component of u is equal to 0 or at least d — 1 components are equal to 1.
Given that a,, — 0 as n — 0o, one thus has, for sufficiently large n,
Kan ~ Kan
wr wr
[ vty [ deton),,
0 2 0 T

Using (4.13), the integral on the right-hand side can be bounded above by

/ e ol (wa)} , / R {1 — p(waz) } dx
0 —Jo

_ /°° {1-y /o)),

/(Kan) v

The last expression converges to 0 as n — oo, given that it is bounded above by Iy,

in (4.14), which is finite, and given that a, — 0 as n — co.

Treatment of I5. Let g, be as in the preceding paragraph concerning I,. Fix an arbitrary

w € Bk and note that, using (4.12) and performing a change of variable,

Ty /Wy Ty /W(q
Is(w) < Zn/ § ()de:Zn/ v ()gw{@b(wx)}dx
b b

n/W(q) z n/W(a) L

gzn/” W@,

X

n

o1



The claim follows since fbai”’ L@ g2 — 0 as n — oo by Lemma 4.4 (i) given that b, — Ly

xT

as n — oo. O]

Returning to the proof of Proposition 4.2 (a), fix an arbitrary w € B;/x and observe
that from Lemma 4.2 and the fact that C,{¢(wz)} = C{¢(wz)} = 0 whenever z >

Top [W(ay

Now introduce the process BSFS given, for any w € Ay, by

_ Ty /W) _ d
BOw) = [ Cuulwn)) T

CFG

CFG (w) — BEFS (w)| converges to zero in

From Lemma 4.6, it follows that sup,cp, , [B
probability. It thus remains to show that BSFS ~» BYFC in C(By, k) as n — oo. To do so,

consider the map
Do (2(0,0%, 01 Mla) — ((Bix)s 1] - ll) (4.17)
Ty /w(a T
f '—>{’w H—/ Hf{zﬁ(wx)}%},
0

where || f]|z, = supyep e [f(w)/du(w)]. Let fi, fo be arbitrary functions in (€>([0, 1]%),
|- llg.)- Then

B /v f {(wz)} — fo{t(wa)} g {y(wr)}
b ) =TR)[ = s 1= / 5 (0(wa)} P
Ty /W(a o T
< sup / ()||f1—f2||§wwdx
weBy /i |J0 x

<|[f1 = fellg, (T1x + L2),

where the last inequality follows from (4.14). The map I is thus Lipschitz. Theorem 2.12
and the Continuous Mapping Theorem then imply that BS¥¢ = T'(C,,) ~ I'(C) = B®F¢ as
n — oo weakly in £>°(B; / K). Since BCYG has continuous paths on B, /K, the convergence
takes place on C(By/k). O

4.2.4 Proof of Proposition 4.2 (b)

The proof of Proposition 4.2 (b) is similar to the proof of part (a) detailed in Section 4.2.3.
For the sake of brevity, only the differences are pointed out.

Let K be a compact subset of Ad. Let By/k and ¢ be as in Section 4.2.3 and ay,, b,
as in (4.8). Furthermore, assume without loss of generality that n is sufficiently large so
that (4.9) holds. Finally, recall the weight function g, given in (4.10) for some arbitrary
fixed w € (0,1/2); if Condition 3.2 (a) holds, w € (0,1/2) must in addition be such that

sw > 1. The following result is the analogue of Lemma 4.6.
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Lemma 4.7. As n — oo, sup f%/w(d’ ICo{¢(wz)} — Co{t(wz)}|dz converges in

weBy Kk

probability to 0.

Proof. Fix an arbitrary w € By . Then

Iw/wd _ 5
| Ctwwn)} - €t wn}ar < > i

where

bn /w(q)
hw)= [ Eufutwn) - Cafotwn)| @

an/we) |
h(w) = [ [Eufvwn)]ds
0
x¢/w(d)
h(w) = [ /
n/W(a)

A

an/w(y B
Cofptwa)de, hiw) = [ € v )]

Ty /W(a)

Iy(w) = / 1€ (o (wa)}| da.
b /w(a)

To prove the claim, we show that for any p € {1...,5},

SUDweB, I,(w) — 0 in probability as n — oo.

Treatment of I;. Define S,, as in (4.11) and observe that

bn/w(d)

Ty /W(a)
L(w) < 5, 0o {(wa)}dz < S, / g {(wz) }dz

an/w(1)

For an arbitrary a € (0,x,) one further has, using (4.12) and (4.13) and the fact that
W(d) Z 1/d7

/Ox¢/W< iV (wz)}dx <d/ {1—-v }“dx—ird/ Y(z)?dx. (4.18)

The upper bound in the preceding display is finite; this follows from Lemma 4.4 (ii)—(iii)
and the fact that {1 — ¢(z)}* is bounded on [0,a]. Given that S,, converges to 0 in
probability as n — co by Theorem 2.12, SUDweB, )\ I (w) — 0 in probability as n — oo,

as claimed.

Treatment of I. Fix an arbitrary w € Bj/kx. Using the same arguments as in the

paragraph concerning the treatment of /5 in the proof of Lemma 4.6, one has that

an/w( n
w<vi [ - s < %w ~e/n) < K/ng(1 - c/n) .

Given that /z¢(1 — ¢/x) is regularly varying of index 1/2 —m < 0, the expression on the

right-hand side converges to 0 as n — oo.
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Treatment of I3. Fix an arbitrary w € Bj/kx. Using the same arguments as in the
paragraph concerning the treatment of I3 in the proof of Lemma 4.6 and the fact that
w) > 1/d, one has that I3(w) < dy/n fbiw Y (x)dx. The upper bound converges to 0 as
n — oo by Lemma 4.5 (ii).

Treatment of 1. Fix an arbitrary w € By k. Arguing as in the paragraph concerning the

treatment of I, in the proof of Lemma 4.6 and using the fact that w) > 1/d one has that

L(w) < Z, /O " g ltb(w) < Zod /0 " = (@) d

The upper bound converges in probability to 0 as n — oo, given that Z, converges in
distribution by Theorem 2.12, and fOKa"{l —(x)}¥dx — 0 as n — oo, given that a,, — 0

as n — o0.

Treatment of I5. Fix an arbitrary w € By/x. Arguing as in the paragraph concerning the

treatment of I5 in the proof of Lemma 4.6, one has that
Ty
Is(w) < Z,d {Y(z)}dx .
b,

As in the preceding paragraph, the claim follows from the fact that
fbi’” Y(z)dxr — 0 as n — oo given that b, — xy as n — oo. ]

Returning to the proof of Proposition 4.2 (b), introduce the process BE given, for all
w € Ay, by

_ 1 Ty /W@y
ng:—/ Co{v(wz)}dx .
w) =57 | {w(wn))
From Lemma 4.2 one has that
B(w) = oo [ M 6 ()}
(W) = —— i (wex) e |
E(Z) Jo

and Lemma 4.7 implies that sup,,cp, . By, (w) — BP (w)| — 0 in probability as n — oo.
As in the proof of Proposition 4.2 (b), one can establish that BY ~ BY as n — oo in

C(B1/k) using Theorem 2.12 and the Continuous Mapping Theorem featuring the map
Do (20,2, 11 Mla) — ((Byx), 1] - )
Ty /W ()
fom e [ fuwn)ds
0

which is easily shown to be Lipschitz. O

54



Table 4.1: Archimedean generators and stdfs used in the simulation study in

Section 4.3.
Archimedean generators
Family Yo (x) (@] Cond. 3.1  Cond. 3.2
Clayton (14 0z)~1/?¢ (0, 00) vV im=1) V (a;s=1/0)
Frank —(1/0)log{l +e (e ? -1)} R vV im=1) v (b)
Gumbel  exp(—z!/?) [1,00) vV (m=80) Vv (b)
Joe 1—{1—e*}1/0 [1,00) vV im=0) v (b)
Stable tail dependence functions
Family Lz1,...,2q) Parameters
1

LG (@8 +...+a)e 0 € [1,00)

Iai+-—+ag—p) x; D5 T (o) ~ Diri
NSD ot tag) E{lgl]aé(d( F(LJ ) )} (D1,..., Dyg) ~ Dirichlet(aq,...,aq)

al,...,aq >0, p € (0,min(ay,...,aq))

DSM dY ey max(riwy, ..., Tqwg) W is a finite subset of Ay with cardinality m

given in (A.1)—(A.3) in Appendix A

4.3 Simulation study

We investigate the performance of the endpoint-corrected estimators defined in (4.4)
through simulations using R package simsalapar by Hofert and Maechler (2016). The
design is as follows: (i) dimension d € {2,4,10}; (ii) sample size n € {200,500, 1000};
(iii) Archimedean generator from the Clayton, Gumbel, Frank and Joe families (see, for
example, Nelsen (2006)); (iv) stdf from the following families: Logistic (LG), scaled neg-
ative extremal Dirichlet (NSD) of Belzile and Neslehova (2017), and discrete spectral
measure (DSM) of Fougeres et al. (2013). The definition of these models may be found
in Table 4.1.

The parameters of the Archimedean generator and the stdf were chosen as to cover
various scenarios in terms of association, lower/upper tail dependence, and asymmetry.
We also intentionally challenge Conditions 3.1-3.3 to explore the robustness of the conver-
gence results. For the sake of brevity, we present the main conclusions of this simulation
study and provide representative illustrations; the complete results are available in Ap-
pendix A. To evaluate the performance of the estimators, the integrated squared error
(ISE) and integrated relative absolute error (IRAE) defined below were used.

L ) = Aw)y aw, (4.19)

1 [An(w) — A(w)|
|Ad] Ay A(w)

ISE(A,) =

IRAE(4,) = dw.

ISE and IRAE were computed using Monte Carlo integration with 10,000 uniformly dis-
tributed samples on A,. For each scenario, 1000 Monte Carlo replicates were deemed
sufficient to capture the behavior of ISE and IRAE.
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Figure 4.1: Boxplots of IRAE(A,, ) (left) and ISE(A, .) (right) for the Pickands (blue)
and CFG (red) type estimators for n = 200, d = 4, various Archimedean generators with
7(1)) = 1/5 and the NSD stdf with parameters a = (1,2, 3,4), p = 0.59.

Additionally, the finite-sample behavior of the estimators is compared to that of
the asymptotic limits obtained in Section 4.1. Observe that from Theorems 4.1-4.2,

var A“FY(w) and var AP (w) are respectively given by

du dv
uloguvlogv’
{A(w)}4 A du dv
L [ [ corCtvt-wiogtu). Clvf-wlogto) 22

u v

{A(w))? / / cov (Clp{—wlog(w)}], Clg{ ~wlog(v)})

whenever w € A,. Plots of these asymptotic variances are provided in Figures 4.2 and
and corroborate the conclusions drawn from the simulations. They are shown for d = 2

as functions of w € (0, 1), where w = (w,1 — w).

4.3.1 Comparisons between the Pickands and the CFG-type es-
timators

We first compared the Pickands and the CFG-type estimators in various scenarios; the
results are reported in Tables A1-A6 in Appendix A. Figure 4.1 is representative of the
overall pattern, namely that the CFG-type estimator performs better on average both in
terms of ISE and IRAE. The superiority of the CFG-type estimator is further supported
by Figure 4.2, which shows that in the bivariate case, var A°¥C (w, 1 — w) is smaller than
var AP (w,1 — w) for any w € (0,1). This is in agreement with Genest and Segers (2009),
who observed a similar behavior of the asymptotic variance of the CFG and the Pickands
estimator in the bivariate case. In higher dimensions however, the Pickands estimator
can sometimes outperform the CFG estimator, although the differences in IRAE and ISE
are small; see, e.g., Table A.5 for d = 10, small values of 7(¢), and the Frank, Gumbel
and Joe generators. Figure 4.1 also shows that IRAE is more revealing than ISE, and we

concentrate on the former henceforth.
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Figure 4.2: Plots of var A®¥Y(¢) (dashed) and var AP (¢) (dotted) for bivariate Archimax
copulas with LG stdf with parameter o = 2. Left: Clayton generator vy with § = 1/s for
values of s equal to 5 (black), 5/2 (red), 5/3 (green), 5/4 (blue). Middle: Joe generator
1y with values of = m equal to 1.44 (black), 2.22 (red), 3.83 (green), 8.77 (blue). Right:
Frank generator 1y for values of 7(¢) equal to 1/5 (black), 2/5 (red), 3/5 (green), 4/5
(blue).
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Figure 4.3: Boxplots of IRAE for the Pickands (blue) and CFG (red) estimators for
n = 200, d = 4, and the Clayton generator 1) with § = 1/s for various values of s (left),
the Joe generator for various values of # = m (middle) and Frank for various values of
() =1—(4/0){1 — D1(0)} (right), where D; denotes the Debye function. The stdf is
NSD with a = (1,2,3,4), p = 0.59.

Given that the behavior of ¢ at zero and infinity played a key role in the conditions
of Theorems 4.1 and 4.2, we next investigate the impact of the index of regular variation
of ¢ and 1 —#(1/-). Figure 4.3 shows the performance of the estimators for the NSD
stdf with parameters a = (1,2, 3,4), p = 0.59. In the left panel, the generator is Clayton
with parameter 0; the latter satisfies Condition 3.2 (a) with s = 1/6. This plot reveals
that decreasing s has a detrimental effect on A}, while ASES is hardly affected. When
s < 2, conditions of Theorem 4.2 are no longer met; it is therefore not surprising that the
behavior of Af;c deteriorates quickly as s — 0. The middle panel of Figure 4.3 explores

the effect of m when the generator is Joe, which satisfies Condition 3.1 with § = m.
ACFG

n,c

One can again see that A} . performs worse than but this time, increasing m has a

negative effect on both estimators. Finally, the right panel of Figure 4.3 shows the effect of
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dependence of the Archimedean copula Cy, with generator 1) measured by 7(¢), Kendall’s
tau of the bivariate Archimedean copula with generator v, for the Frank generator. In
this case, m = 1, and increasing 7(1)) negatively affects both estimators, although AS}ZG is
less sensitive. From Figure 4.2, the same conclusions can be drawn about the asymptotic

variances.

4.3.2 The effect of the sample size, dimension, and dependence

P

n,c)

Given that the CFG-type estimator performed consistently better than A, ., we con-
centrate on the former hereafter and explore the effect of sample size, dimension and
dependence. We choose the stdf to be either LG with parameter ¢ = 2 (all dimensions)
or NSD with parameters a = (1,2), p = 0.59 (for d = 2), @ = (1,2,3,4), p = 0.59 (for
d=4)and = (1,1,1,1,2,2,2,3,3,4), p = 0.69 (for d = 10). These parameters are cho-
sen so that the average of pairwise Kendall’s taus (see Definition 2.2) of the corresponding
d-variate extreme-value copula C4 is 1/2. The Archimedean generator is chosen to be
Gumbel with § = 5/3, which corresponds to Kendall’s tau of 2/5 of the corresponding
bivariate Archimedean copula Cy. The left panel in Figure 4.4 shows the IRAE for various
sample sizes when d = 4. It is clear that the performance of AS’EG improves with sample
size, but also that it depends on the stdf; the CFG-type estimator performs worse when
A is LG. Other dimensions and Archimedean generators led to the same conclusions. It
is worth noting that the asymmetric stdf NSD does not lead to better or worse results
overall.

The right panel of Figure 4.4 shows the effect of dimension. Unsurprisingly, the per-
formance of ASEG deteriorates with d. The choice of A has an effect; the latter is most
pronounced when d = 4, although this may be merely due to the choice of parameters.
Again, the same pattern was observed for other sample sizes and Archimedean generators.
We also tried the DSM Pickands dependence function, which does not satisfy Condition
3.3, because it is not differentiable everywhere. The performance of the CFG-type esti-
mator remained essentially unaffected by this choice of A; see Tables A7-A9 in Appendix
A. This is comforting, because Condition 3.3 is virtually impossible to verify from data.

Our next aim was to study the effect of dependence. We restricted ourselves to the
LG Pickands dependence function; in that case, Cy 4 is exchangeable and measuring de-
pendence can be reduced to the bivariate setting. The first study we conducted focused
on Kendall’s tau. For a bivariate Archimax copula Cy 4, let 7, 4 denote its Kendall’s tau
7(Cy,a); let also 7(A) = 7(C4) and 7(¢») = 7(Cy) denote Kendall’s tau of the correspond-
ing bivariate extreme-value and Archimedean copula, respectively. From Capéraa et al.

(1997),
Tya = T(¥) + 7(A) — 7(¥)7(A). (4.20)
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Figure 4.4: Boxplots of IRAE of AEY when d = 4 and n € {200,500, 1000} (left), and
when d € {2,4,10} and n = 200 (right). The Pickands dependence functions are LG

(red) and NSD (blue) with coefficient of agreement 1/2; the Archimedean generator is
Gumbel with § = 5/3.
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Figure 4.5: Plots of var A“¥9(¢) (dashed) and var AF(¢) (dotted) for bivariate Archimax
copulas with stdf LG. Left: Joe generator 1, 7(A) set for values of 1/5 (black), 2/5 (red),
3/5 (green) and fixed 7(¢), A) = 0.84. Middle: Frank generator ¢, values of A\y(A) equal
to 1/5 (black), 2/5 (red), 3/5 (green) and fixed Ay (1), A) = 0.6. Right: Clayton generator
1, values of n(A) equal to 0.57 (black), 0.66 (red), 0.76 (green), 0.87 (blue) and fixed
AL(p, A) = 04.

The left panel in Figure 4.6 shows the IRAE of the CFG-type estimator for various
values of 7, 4 and 7(A) when n = 200 and d = 10. The observed trend is that for a
fixed Ty 4, an increase in 7(A), which implies a decrease in 7(1), results in lower IRAE.
This is corroborated in the asymptotic setting by the left panel of Figure 4.5. There is
also a performance gain as 7, 4 increases. Conclusions for other Archimedean generators,
dimensions and sample sizes are the same; see Tables A10-A12 in Appendix A. The second
study focused on the effect of upper tail dependence as measured by Ay in (2.2). For a
bivariate Archimax copula Cy 4 whose generator 1 satisfies Condition 3.1, Ay(Cy.a) =
2 —{2A(1/2)}"/™. In the middle panel of Figure 4.6, the stdf is again LG with parameter
0, so that A(1/2) = 2/¢=1 and the Archimedean generator is Joe with parameter 6 = m.
Consequently, various values of A\i;(Cy 4) can be obtained by varying g and 6. There is
a noticeable decrease in IRAE when the contribution of A to Ay(Cy, 4) increases, and a
slight increase in error for a fixed § when Ay (Cy 4) increases. A similar conclusion can

be drawn in terms of the asymptotic variances from Figure 4.5 (middle panel). The same
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Figure 4.6: Boxplots of IRAE of ASEG when n = 200, d = 10 and the Pickands dependence
function is LG for all panels. The Archimedean generators are Frank (left), Joe (middle)
and Clayton (right). In the right panel, n,(A) = 1/{2A(1/2)} = 2717 is the lower tail
dependence index of Ledford and Tawn (1996).

pattern was observed for other choices of n and d; see Table A13 in Appendix A.

The last study focused on the effect of lower tail dependence as measured by Ap
in (2.3). For a bivariate Archimax copula Cy 4 whose generator 1 satisfies Condition
3.2 (a), AL(Cya) = {2A(1/2)}°. Again, we considered the LG Pickands dependence
function. As the Archimedean generator we choose the Clayton generator, which is such
that s = 1/6. The right panel of Figure 4.6 shows that the effects of lower and upper
tail dependence are similar: an increase in the contribution of A to A; leads to lower
IRAE. This agrees with the right panel of Figure 4.5. There is also a slight decrease in
performance when 6 is fixed and Aj(Cy 4) increases. The same pattern occurred for other
choices of n and d; see Table A14 in Appendix A.
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Chapter 5

Semiparametric inference for
Archimax copulas

Chapter 4 focused on the nonparametric estimation of the stable tail dependence function
under the assumption that the distortion function ¢ is known. Building upon these results,
we can now relax this assumption by supposing instead that 1) belongs to a parametric
family, i.e. ¥ € ¥ = {¢y,0 € O}, O C RP. The Archimedean copula family has a
very rich literature surrounding it with many parametric families having been studied
extensively studied. Their flexibility translates well into modeling with Archimax copulas
since generators can be chosen to capture certain aspects of the data at hand. For example,
if the dataset exhibits lower tail dependence, the Clayton generator could potentially be
a good candidate. Once the parametric family is chosen, 6 needs to be estimated without
the knowledge of ¢, and we present an idea on how to do this for one-parameter families
in Section 5.1. Section 5.2 contains the estimators of the stable tail dependence function,
which are adapted from those of Chapter 4. Section 5.3 gathers the conditions on the
parametric family for ¢ needed in order to study the convergence of the estimators as is

done in Section 5.4. Finally, Section 5.5 contains the proofs of said convergence results.

5.1 Estimation of 1

How 1 can be estimated without the knowledge of ¢, again assuming that ¢ € ¥ where
U = {1y, 0 € O}? Recall that under the assumptions of Proposition 3.1, # and ¢ are then
identifiable. In this section, we propose a simple moment-based procedure for the most
common scenario where O C R.

First consider an arbitrary bivariate copula C' and a pair (U, Us) ~ C. The dis-
tribution function Ko of the random variable We = C(Uy, Us) is called the Kendall
distribution, see Barbe et al. (1996). If C' = C, 4 is Archimax, it is known from Eq. (13)
in Capéraa et al. (2000) that for any w € [0,1], K¢, ,(w) = K¢, (w) + ¢(w)/¢' (w)7(A),
where 7(A) is Kendall’s tau of C4. Hence for any k € N, the kth moment of W, ,
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satisfies

mi = BWE, ) = 7(A) %ﬂ (1= T(A)}EWE,) (5.1)

Equations (5.1) for k£ =1 and k& = 2 then lead to the following identity:

1-2E(Wg,)  1-2m,
1-3E(Wg,) 1-3my

(5.2)

The left-hand side depends only on the Archimedean generator and is thus a function of
0, say f. Assuming that 1 is twice differentiable, Theorem 4.3.4 in Nelsen (2006) and
partial integration yield that for any 6 € O,

C1-2B(We,) [ a{y(a)fde
L=3EWE, ) 35" ave(x){vy(z)}de

f(9) (5.3)
The following example provides explicit expressions for f for three families of generators;

in each case, f is strictly monotone in 6.

Example 5.1. For the Clayton generator given in Table 4.1, E(W} ) = (0 + 1)/{(k +
1)@+ k+ 1)} for any k € N. Consequently,

f(O)=0+3/{2(0+2)}.

Next, consider the Genest—Ghoudi family Genest and Ghoudi (199]) whose generator
is given, for any x € [0,1], by vo(x) = (1 —a”)? for 6 € (0,1]. Here, E(W}) =
(1—0)/(k+1—0), for any k € N. Hence,

F(0) =3—0/(4—20).

Finally, consider the Frank generator given in Table 4.1. For j € N, let D;(0) =
(7/67) f00 t7 /(e!=1)dt denote the Debye function (Abramowitz and Stequn, 1964, Chap. 27).
Here, (5.3) yields that for any 6 € R,

40 — 40D, (0)

f0) = 3{20 — 9D,(0) + 4Dy (0) — 4}

If f is one-to-one, as was the case in Example 5.1, Eq. (5.2) can be used to construct
an estimator of 6. Following Ben Ghorbal et al. (2009), let [;; = 1(X; < X;,Y; <Yj) for
alli,j € {1,...,n} and set

1 1
m ,1 n<n _ 1) Z J m ,2 n(n _ 1)(72 _ 2) Z jtkj
7] i#jF#k

As m,; and m, s are U-statistics with square integrable kernels, the results of these
authors imply that /n{(m,1,m,2) — (E(We), E(WE))} ~ N(0,%) as n — oo; the

entries of X are given in Proposition 2 therein.
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Next, provided f has an inverse <, define h : R? — R by

h(my,ms) = f< (1__27”1)

1—37712

and set 0, = h(my 1, m,2). Assuming h has continuous partial derivatives that are non-
zero at (my, my) and using the delta method, one gets that \/n (6, —60) ~> N[0, J,(my, ms)
YJn(my, me) ], where Jj, is the 2x 1 Jacobian matrix of h. Consistent plug-in estimators of
the entries of ¥ are provided in Ben Ghorbal et al. (2009). For small n, the calculations
presented in that paper can also be used to compute and estimate the finite-sample

variance-covariance matrix of (1,1, My 2).

Example 5.2. For the Clayton family, 0, = S, /R,,, where
Sn = 8mn71 — 9mn72 — ]_, Rn =1- 4mn,1 + 3mn72. (54)

Then /n (0, — 0) = /n{h(my, 1, mn2) — h(my, ma)} ~ N(0,0?), where o is defined as

follows as a function of S =8m; —9my —1 and R =1 — 4my + 3ma:

1
0% = ﬁ{RQ(GZLZH + 8155 — 144%1,)
+ S%(16511 + 9890 — 24%15) — 2RS (32811 — 2789 + 50%12) }. (5.5)

Note that the numerator S, in (5.4) is the quantity on which the test for bivariate extreme-
value dependence of Ghoudi et al. (1998) is based. These authors showed that when C' is
an extreme-value copula, 8 E(We)—9E(WZ)—1=10. When 6§ = 0, the Clayton generator
becomes (t) = et and Cy 4 = Cy4 is an extreme-value copula.

For the Genest—Ghoudi family, 0,, = —S,,/ R, where S,, and R,, are as in (5.4). Hence
Ve (0, —0) ~ N(0,0%), where o* is given by (5.5).

For the bivariate Frank family, the function f is one-to-one but its inverse is not
explicit. Therefore, both the estimator and the asymptotic variance are not explicit either.
An estimate of 6 can be obtained numerically and its asymptotic variance can be studied

via resampling.

In the multivariate case, a generalization of (5.1) does not seem possible. We thus
propose to use 0, =23, ; 0 jr/{d(d — 1)}, where 0, j; is the above moment-based esti-
mator of # based on the bivariate sample (X1;, X1x), ..., (Xnj, Xnk). A heuristic approach
for checking whether averaging the pair-wise estimates is reasonable is presented in the

next section.

5.2 Estimation of / when 1 is unknown

We now focus on the nonparametric estimator of A and its asymptotic properties assuming

that an estimator of # is available. Once 6 has been estimated by 6,, in such a way that
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0,, € O for all n € N, the Pickands or CFG-type estimators of A can be constructed as in
Chapter 4 with 1 replaced by 1)y, . For every w € Ay, and i € {1,...,n}, let

& n(w) = min{ey, (Uy;)/wi, ..., do, (Us)/wa}

with the convention that ¢y, (U;;)/w; = co when w; = 0. As before, & ,(w) is finite
for every i € {1,...,n}. When E(log Z) and E(Z) exist, respectively, the CFG and

Pickands-type estimators are given, for each w € Ay, by
. ] — - . L
log A" (w) = Blog Z — — 3 log&n(w),  Af(w) = nB(2) /3 &nlw).
n
i=1 i=1

Because 1 is estimated by 1y, rather than fixed, the weak limit of

ASFG = VR (ATC — 4), AT = V(A7 - 4) 59)

n n

is no longer the process given in Theorems 4.1 and 4.2, respectively.

5.3 Regularity conditions

The conditions on the parametric family W = {1y, 0 € O} are considered. In what follows,

| - |2 denotes the £y-norm and O denotes the interior of .
Condition 5.1. For all § € O, ¢y(0) = xy, is identical and equal to xy.

Condition 5.2. Let O, = /n (6, — 6y). Whenever 6 € O, n — oo, (C,,0,) ~ (C,O)

in £°([0,1]4) x RP and the limit is centered Gaussian.
Condition 5.3. For any 0 € (5, the gradient
Yolt) = (Po(t), ... Yop(t) = (O(t)/001,. .. Oe(t)/00,)"
exists and is continuous for all t € [0, xy).
The following condition is needed for the CFG-type estimator.

Condition 5.4. For any 0 € O, there exists anw € (0,1/2) and a bounded, non-negative
function he on [0, xy) such that for each j € {1,...,p}, g |/he is bounded on [0,zy),

/Whgj—@)dt<oo /xWhe—(t>dt<oo
0 t ’ 0 4 ’

and such that Yg(€) — 0 for e — 0, where for any € > 0,

e
Tole)=  sup sup [ () = Yo (t)ll2
0'€0,||0’—0]|2<e te[0,xy) he(t)

The following condition pertains to the Pickands-type estimator.
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Condition 5.5. For any 0 € O, there exists an w € (0,1/2) and a bounded, non-negative
function hg on [0,xy) such that for each j € {1,...,p}, Wg,j]/hg is bounded on [0, xy),

Ty T
/ W@ﬁ<m,/im®ﬁ<m
0 0
and such that Yy(e) — 0 for e — 0, where Yy(€) is as in Condition 5.4.
Finally, two more conditions are needed, each assuming Condition 5.3.

Condition 5.6. For any 6 € O, the Hessian 1g(t) = (Vo ix(t));n = (0%0a(t)/00,001); 1
exists and is continuous for all t € [0,xy). Furthermore, for each j k € {1,...,p},

Q,Lo’jk-(t) —0ast— 0 and ast — xg, and

lim  sup sup |4 (t) — 4y (t) |6 = 0,
el0 90,167 —0]|2<e te[0,zq)

where || - || denotes the entrywise 1-norm, i.e., ||Allg = >_; . |Ajl-

Condition 5.7. For each j € {1,...,p}, 0 € O and any 6 > 0 such that {0/ € RP :
16— 8] <6} O,

=0.

' /s ’ i ; , 1 _
lim  sup M =lim  sup Yo {00 ( u)}
ul0 0":)|0—0"||2<d \/ﬁ ul0 0:)10—0" || 2 <5 \/ﬂ

In the following, the above conditions are validated for the Clayton family of Archi-

medean generators.

Example 5.3 (Verification of the regularity conditions for the Clayton family). Consider
the Clayton family with generator given, for any x > 0, by vg(z) = (1 + 0z)~Y where
0 € O =[0,00); when 8 = 0, ¥o(x) = e *. For this family, 6 may be estimated for
example as in Example 5.2; to make the estimator intrinsic, one can use 0% = max(6,,0).
Because 0, is consistent, |0 —0,| = op(1) whenever the true parameter value 6y is strictly
positive. Thus for 0y > 0, \/n(0% —6y) is asymptotically centered Gaussian, with the same

2

variance o as given in Fxample 5.2.

Condition 5.1. For this family, for any 0 >0, ¢¢(0) = ¢ = 0.

Condition 5.2. The validity of this condition follows from the joint convergence of (@n,
V{(ma 1, my2)—(E(We), E(WE))}). Because my, 1 and m,, » are U-statistics with squared-
integrable kernels, the latter can be established using Hajek’s projection technique; see
van der Vaart (1998), for example.

Condition 5.3. For all § € (0,00) and = € (0,00), 1y exists and is continuous for all
z € [0,00). In fact,

. 1 Ox 1 1+0w
= —(1+02)""{In(1 + 0z) — =—(1+6 —1/9-1/ In(t)dt
dolw) = g1+ 00) (14 00) = b = (6077 | )
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giwen that the derivative of {xIn(x) —x + 1} is In(x).

Condition 5.4. An admissible function hg is defined for any x > 0 by
ho(z) = h(x;0,8,m) = 2°(1 + 0z) 7",

where 0 < 6 < n satisfy 0 <0 <1 andn— 9 < 1/0. One can first quickly check that the
Ty Ty
integrals / hy (t)dt/t and he(t)dt/t are both finite, as soon as § > 0 and § < n,
0 0
and this for any w € (0,1/2). Besides,
||

1
h—e(:n) =27%(1 + )"~ 1/? {9—2 In(1+ Ox)

- %(1 + 91.)—1} )
so that it is a bounded function on [0,00) as soon as 0 < J <1 andn—0 < 1/0. The last
point to check is then that To(€) — 0 when ¢ — 0, where Ty(€) is defined for any e > 0 in

Condition 5.4. As soon as 1 is C*, one can write that for any x € [0,00), and for any
0" € O such that |0 — 0| < e,

: o ) L P
i) —do@)] e 00 @)
ho(z) 0"€0,|0" 0| <c he(z) orco,jor—oj<c ho(T)
Now choose an arbitrary ey such that 0 < e < ¢y. One can also write
(e = do@| _ o e
h@(fﬁ) 0"€0,|0" —0]<eo h/g(l')

For the Clayton generator, one gets for any 0 > 0 and any = € [0, 00),

. 1 10 Or 2

do(w) = 57 (1+ 6a) {m(l +0r) — - +ex}

Ox Ox

—|—%(1+0m)_1/6{—21n(1+0x)+3 } (5.7)

146z (1+0x)?

Thus for any 0" € (0 — €0,0 + €) and x € [0,00), Ygr(x) = S0, gi(x,0") in terms of siz
functions g;(x,t) = g t* (1 4+tx)*2i {In(1+tx) }*s, for fized reals oy ;, where k =0,...3
andi=1,...,6. Making use of the fact that 0 — ey < 0" < 0+ €g, one can then majorize
each of the terms |g;(xz,0")| by, say, Mi_(x), and obtain that

9a60

wp @)
07€0,|6" —6)|<eo ho(x)

S M@,eo (l’) )

where My, (x) is defined as My, (z) = S0, Mg,m (x)/hg(x). One can then check that
when x tends to 0, My, (x) = O(z'7%), which tends to 0 since § < 1. Analogously,
when x tends to infinity, one gets that My, (v) = O(x"97Y%) which tends to 0 since
n—0<1/0. As a consequence,

My, == sup My (z) < oo.
z€[0,00)
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This allows to conclude that

Toe)= sup  sup 1P = ¥el@)

h S € MO,EO )
0€0,|0'—0|<e ze[0,29) o(2)

which tends to 0 as € tends to 0 and leads to the desired result.

Condition 5.5. For the Clayton family, Condition 3.2 (a) holds with s = 1/6. Because
s > 2 in Theorem 5.2, 0 < 1/2. Furthermore, from the proof of Lemma 5.10, sw > 1 so
that w € (0,1/2). For a fized w in this interval, a suitable choice for hy is

ho(z) = (1+ 6z)7",

where n € (1/w,1/0). One can then easily check that [ ho(x)dx and [ hy(x)dx are
finite and also that |1g|/hg is bounded on [0,00). It remains to verify that Ye(e) — 0 as
e — 0. To this end, recall from (5.7) that 1 is twice continuously differentiable w.r.t. 0;
it is helpful to note that for all @ > 0 and x € [0,00),

1+60x

Jolw) = 51+ )02 / In(t)dt}

N %(1 +9x)_1/9—1{/11+9x 1n(t)dt}{—2 1 ixex}

1 —1/0—
—I—ﬁ(l—i—@x) V0=11n(1 + 6x)

1+ 0x (5:8)

and that for all v € [0,zy), 8 > 0, and k € N,
140z k
(14 fz)" 10+ ( / ln(t)dt) < (14 602)" Yo {In(1 + )}~ (5.9)
1

Because n < 1/0, there exists some small €9 € (0,0) so that n < 1/(0 + €). Given that

for any € < eq, one has that

| ()]
To(e) <e sup sup
( ) 9”3|9—9//|§€ x>0 hg ($)

and hence it suffices to show that |1hgn(x)|/he(x) is bounded from above for all z > 0 and
0" € (0 — €y,0 + €0). From (5.9) and the fact that for any t € [1,00), k € N and A\ > 0,
t=MIn(t)}* is bounded above by (k/\e), one has that |1pg(z)|/he(z) is bounded above by

G {G) ) () 1) g ) (O

Condition 5.6. Clearly, the function in (5.7) is continuous for all x and 1y(x) — 0 when

x — 0 as well as when x — oo. To verify the smoothness condition of Ve, fix an arbitrary
e € (0,0). It suffices to show that |14 ()| is bounded from above for all 0" € (0 —¢,0+¢)
and = € [0,2y). Using (5.8) and (5.9), 1y (x) can be computed to be a sum of finitely
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many terms, each of which is, for any x € [0, zy), bounded in absolute value from above

by a term of the form
c

(6")m
for some positive constant c, independent of 6 and e, and some m, k € N. Because for any
t € [1,00), t=V9"{In(t)}* is bounded above by (8")*(k/e)*, the term in (5.10) is further
bounded above, for 0" € (0 —¢,0 +¢€), by {c/(0 — €)™} (0 + €)*(k/e)* which converges to
{c/0m™}0%(k/e)* as e — 0.

Condition 5.7. Because for all u € (0,1], ¢g(u) = (u=% —1)/0,

(1+0"2)" Y {In(1 + 0"z)}* (5.10)

; u
Yo{po(u)} = ﬁ{—eln(u) - (1- ua)}
Fiz an arbitrary 6 > 0 and 0 € (0,0). Then for any 0" € (6 — 6,0 + 9),

SR Vu Vu %
T2l {0} < =)} + 21— )
\/ﬂ (1 . u0+5)'

\/ﬂ
S e Ol 3

Clearly, the upper bound converges to 0 as u — 0. Similarly, for any 6" € (0 — 6,0 +9),
(o {do(1 — u)}|//u is at most

Vull —u) {=In(l —w)}  Vul—u)1- (1 -
0—0o u (6 —0)? u '

Again, the upper bound converges to 0 as u — 0.

5.4 Asymptotic behavior

Under the conditions elicited in Section 5.3, the following two results may be established.
The proofs are rather tedious and may be found in Section 5.5. In the following, © denotes
the weak limit of \/n (6,, — 0y) and vy() is the derivative of 1(z) with respect to 6. The
existence of the latter for all z € [0, z,) is guaranteed by Condition 5.2; we set ¢(z) = 0

for > x, in order to simplify the expression of the limiting process.

Theorem 5.1. Suppose that X, Xo,... is a stationary, alpha-mizring sequence with
aXl(k) = O(a*), as k — oo, for some a € (0,1). Suppose that the marginals of
the stationary distribution are continuous and the corresponding copula belongs to the
class of d-variate Archimax copulas Cy whose stdfs are arbitrary with ¢ # £y and whose
Archimedean generators belong to a parametric family U = {1y, 0 € O}, O CRP. Assume
that Cy satisfies the conditions of Proposition 3.1. Suppose further that the true parame-
ter value Oy is in the interior @ of O, that 1y, is g-monotone for some q > 3 and such
that vy exists and is continuous on (0,00). Further assume that 1y, satisfies Conditions
3.1 and 3.3, as well as either Condition 3.2 (a) or Condition 3.2 (b) with the additional
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requirement that —log(iy,) is concave on (0, x,%). Finally, assume that Conditions 5.1—
5.4, 5.6 and 5.7 are satisfied. Then for any compact set K C Ay, ACFG s ACFCG 4
n — oo in C(K), where for any w € Ay,

A7 (w) = A(w) [ (Cli{—wlogu)}]
d

+ 7 5l {—wlog(w) i {—w; log(w)}0)

j=1

du

ulogu’

Theorem 5.2. Under the assumptions of Theorem 5.1 with the additional assumption
that s > 2 in case 1y, satisfies Condition 3.2 (a), and with Condition 5.4 replaced by
Condition 5.5, one has that, for any compact set K C Ad, AE ~ AP asn — 0o in C(K),

where for any w € Ad,

i) = 2 [ (v -wiog)
30 Gl o) i, s oa()}0) 2

With £ and 7 as defined in Chapter 4, the end-point corrected versions of the CFG

and Pickands-type estimators estimators are

R . . 1 — .

AP (w) =it /3" Eonlw), log A (w) =i~ Y logbiuw).  (5.11)

’ ’ n
i=1 i=1

By Lemma 4.1, the asymptotic behavior of the uncorrected and end-point corrected ver-
sions of the CFG and Pickands-type estimators is the same.
Corollary 5.1. Theorems 5.1 and 5.2 also hold when AT(L}FG and AE are respectively re-

placed by ASEG =n (ASEG — A) and AE,C =Vn (AE,C —A).

5.5 Proofs of Theorems 5.1 and 5.2

This section is devoted to the proof of Theorems 5.1 and 5.2. Consequences of the regu-
larity conditions from Section 5.3 are first discussed in Section 5.5.1 and auxiliary results
are gathered in Section 5.5.2. Theorems 5.1 and 5.2 are then proved in Sections 5.5.3 and

5.5.4, respectively.

5.5.1 Implications of the regularity conditions

First recall that it is assumed that 6, is intrinsic, that is 6, € O for all n. Expressions
like 1), and ¢y, are then well defined.
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Under the conditions of either Theorem 5.1 or 5.2, Condition 5.2 implies that (Cn, O,)
~ (C,0) in £°°(]0, 1]%) x R from Proposition 3.1 of Segers (2012). From Berghaus et al.
(2017) it further follows that

(@n/gun 0,) ~ (C/j.,0) (5.12)

in ([0, 1]4) x R?, where for any w € [0, 1]¢, §,,(u) = g,,(u)+1{g.(u) = 0} for g, given by

(4.10). Note that the requirement that © is Gaussian is actually not needed. In case © is

centered but not Gaussian, the limiting process will be centered, but no longer Gaussian.
Next, Condition 5.4 implies that for each j € {1,...,p} and 0 € O,

/Om W@’i—(mdt < oo and /:\P H%(t g dt < oo (5.13)

the latter holds because [|1g(t)||5/h% (t) is bounded on [0, zy). Because hy is bounded,

the same condition also implies that

sup |[¢g(x)||2 < oo (5.14)

z€[0,zy)

and that

im  sup  sup [[du(t) — do(t)]2 = 0. (5.15)
0 910,16 —0]|2<e te[0,2)

Moreover, given that for any w € (0,1) and any a,b > 0, (a+b)¥ < a¥ + b, we have that
la® — b*| < |a — b|*. Hence, for any ¢ € [0, z) and 6,0 € O,

o (t) — o (t)1l5 > [l (B)ll2 = e ()12 [llve (B — lla()]l5]

hg (t) hi (t) B hg (t)
so that ) )
AN = [y (8)||€
Togle) = sup sup !Hwe()llzw Hwe()lbl_)() (5.16)
0'€0,[|0' 02 <e te[0,24) hi (t)

¢ — 0. Similarly, Condition 5.5 implies (5.14), (5.15), and that (5.16), and that for each
je{l,...,d} and 0 € O,

/W o s(8)]dt < 00 and /W [ (®)]|2dt < oo. (5.17)
0 0

5.5.2 Auxiliary results

aw; and wg) =

77777

.....

Lemma 5.1. Suppose that as n — oo, 6, = /n(6, — 0) converges in law to a nonde-
generate limit © and that 0 € O. Further assume that Condition 5.3 holds and either
Condition 5.4 or Condition 5.5 is satisfied. Then
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(i) /n(bg, —g) ~> g © as n — oo in C([0, zy)).
(ii) /n|g, —|/he ~ ¥ ©|/hg inC([0,2¢)) asn — oo, where hy is the weight function
from Condition 5.4 and Condition 5.5, respectively, depending on which of these two

conditions holds.

(i1i) If Condition 5.4 holds, then for any 0 < a < b < zy, f: Ve, (x) — Yo(x) L~
ff |¢J(:U)@\%‘” as n — oo.

(iv) If Condition 5.5 holds, then for any 0 < a < b < zy, fab Ve, () — Yg(x)|dae ~
ff lthy (2)O|dz as n — co.

Proof. (i). Because 1)y is continuous by assumption and bounded in view of (5.14),
)9 O, ~ 1] © as n — oo in C([0, zy)). Now let

Q@n = sup ) [V {v, (z) — do(z)} — g ()00 (5.18)

z€[0,zg

and choose an arbitrary € > 0. Because (0,,) is tight, for any given 6 > 0 there exists
Ms > 0 and Ns > 0 such that for all n > Ny, Pr(||©,||s > Ms) < §. For any such n,

Pr[Q, > £] < Pr[Q, > &, [|Onls < M) + 6.

Suppose that n is large enough so that {#' € O,]|¢' — 0]|s < n=*/2M;} € O. Whenever
10, — 0|2 < n~Y2Mjs, an application of the Mean-Value Theorem implies that for every
realization w and t € [0, 2y ), ¥y, (=) (t) —Yo(t) = ¢g;(t,w) (t)(0,(w) —0), where O (t,w) =
0 + e(t,w)n"/?0,,(w) for some (t, ) € [0,1]. Hence,

lim Pr(Q > €, [|Onll2 < Mj]
n—oo

< h_{n Pr[[|©, |2 S[Up )W@;;(x)(x) — %(m)Hg > &, ]|On|l2 < My
n=ree z€|0,zy
< lim Pr| sup sup H%/(g[;) — ¢9(x)“2 > ¢/Mj] =0,
"0 €0 |l0—l|<n=V/2M; v€aw)
where the last equality follows from (5.15). Given that ¢ can be chosen arbitrarily small,

claim follows.
(ii). By the Continuous Mapping Theorem, [¢)] ©,|/hg ~ |1y ©|/hg in C([0,zy)) as

n — oo given that for each j € {1,...,p}, ¢Q’j/h9 is bounded and continuous on [0, zy)
by Condition 5.4 or 5.5. It suffices to show that

V() — @] 9@,
= T @) hota) |

in probability as n — oco. As in the proof of (i), for any given § > 0 there exists Mz > 0
and Ns > 0 such that for all n > Nj, Pr(]|©,||2 > Mj;) < 6. Suppose that n > Ny is large
enough so that {¢' € O, |0 — 0|, < n~Y2Ms} C O. Whenever |6, — 0]]s < n~Y/2M;,
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an application of the Mean-Value Theorem implies that for every realization w and ¢t €
10,20), o) (1) ~0(t) = 0 1y (D)0 () ~6), where O (t, ) = 0-+<(t, @)n "2, ()
for some €(t,w) € [0, 1]. Hence,

[V (1) (@)Onl — |45 ()O0]

V, =
x€[0,xy) hg(l')
<0l sup 1esle) = ul2)le
z€[0,y) 9(1’)

For any such n and arbitrary ¢ > 0, Pr(V,, > ¢) is at most
) + Pl"(Vn > €, ||@n||2 S M(g) S 0 + PI"{M(;TQ(M(;/\/E) > 8}
The second expression converges to 0 as n — oo by Condition 5.4 or 5.5. Hence,

lim,, ., Pr(V,, > ¢) < 4. Since ¢ was arbitrary, the claim follows.

(iii) and (iv). This is a direct consequence of part (i), the fact that either [ ho(z)dz/x
or OW he(z)dz is finite by assumption, as the case may be, and the Continuous Mapping
Theorem. O

Lemma 5.2. Suppose that n — oo, ©,, = \/n(0, —0) converges in law to a nondegenerate
limit © and that 0 € O. Assume that Conditions 5.3,5.6 and 5.7 hold and that either
Condition 5.4 or Condition 5.5 is satisfied. Then for any ¢ € (0,1),

(i) Asn — o0, ¢y, (c/n) — xy and ¢p, (1 — c¢/n) — 0 in probability.
(ii) If Condition 3.2 holds for 1,

$on(c/m) ¥

converges in probability to 0 as n — oo.

(iii) If either Condition 3.2 (a) with s > 2, (b) or (¢) holds for 1y, then for any c € (0,1),

Ty
vn Yo(z)dz
b, (c/n)

converges in probability to 0 as n — oo.

(iv) If Condition 3.1 holds for 1y, then for any K € N, K > 2,

o 1-— 1
1/(Kég, (1=c/n))

¢

converges in probability to 0 as n — oo, where £ € {1,2}.
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Proof. (i). It suffices to show that ¥p{¢s,(c/n)} — 0 and ¥y{¢y, (1 — c¢/n)} — 1 in
probability; the claim then follows from the Continuous Mapping Theorem. From the
proof of Lemma 5.1 (i) we have that as n — oo, ), — 0 in probability, where @, is as in
(5.18). Also, recall from (5.14) that M = sup,¢( ., [4hg]|2 < 0o. Therefore, for arbitrary
e >0,

Pr[ve{ds, (c/n)}] > €]
< Pr{(c/n) > e} + Pr[|vpg, { ¢, (c/n)} — 1o{ s, (c/n)}| > €}

and similarly

Pr{[1 = ¢o{ds, (1 —c/n)}| > ¢
< Pr{(c/n) > e} + Pr{lv, {¢o. (1 — ¢/n)} — vo{do,(1 —¢/n)}| > €}

In both cases, the upper bound is at most
Pr{(c/n) > e} + Pr(Q,/v/n > €) + Pr(M]0, — 0|2 > ¢)

which converges to 0 as n — oo.
(ii) and (iii). First, observe that

1 .
Ry = 591%{%”(0/”)}@71 = op(1); (5.19)
this follows readily from the Continuous Mapping Theorem, part (i) and Condition 5.6.

Second, observe that
R = /g {60, (c/n)}0, = op(1). (5.20)

To show this, it suffices to prove that for any given j € {1,...,p},

Vi {0, (c/n)} = op(1). (5.21)

To this end, let QL@J'. denote the j-th row of the Hessian 1%. Because (0,,) is tight, for
any given 0 > 0, there exists Ms > 0 and N; > 0 such that for all n > Nj, Pr(||©,|2 >
Ms) < 4. Suppose that n > Nj is large enough so that {§' € O, |0/ — 0], < n~'/2M;s} C
O. Whenever [|6, — 0], < n~'/2M;, the Mean-Value Theorem implies that for every
realization w and t € [0,2g), Yo, (@) ;(t) — Yo (t) = zﬁgz(t7w)7j.(t)(9n(w) — ), where
O (t,w) = 0 + €(t,w)n"/?0,(w) for some €(t,) € [0,1]. Thus for any such n and
arbitrary ¢ > 0,

Pr(|v/nls, {0, (c/n)} — bo{ds,(c/n)}] = g o0, (c/n)}Ou] > €)

< 0+ Pr(M; sup sup |4 () — o (t)||e > €)
0/€0,|0'—0]| < Ms//n tE[0,xw)
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By Condition 5.6, the right-hand side converges to § as n — co. Because 6 > 0 was

arbitrary,

Vilde, (0o, (c/n)} = doi{do,(c/n)}] — Ggulda.(c/n)}On = op(1). (5.22)

Next, because for any j, k € {1,...,p} 12;90'16(1') — 0 as ¢ — xy by Condition 5.6, part (i)
implies that for arbitrary j € {1,...,p},

Vg jel 00, (c/1) 100 = 0p(1). (5.23)

Finally Condition 5.7 implies that for any ¢ > 0 sufficiently small and arbitrary ¢ > 0,

Pr{\/n|tg, {0, (c/n)}| > €}
< Pr(||6,, — 0| > ) + Pr sup \/7|w9/]{¢9/ (¢/n)}| > ¢

9/ 0"—0]|<é

so that /nt, ;{ds, (c/n)} = op(1). Combined with (5.23) and (5.22), we have that (5.21)
holds for any j € {1,...,p}, and this in turns implies (5.20).

Next, observe that also
. 1
Ry = up )In{wen(x) — Yo(@)} = vty (2)On — 50, %0(x)0n| = op(1). (5:24)
z€[0,xy

Indeed, by Taylor’s Theorem with the mean-value remainder and the tightness of ||©,]|2,
for any ¢ > 0 and 6 > 0, and all n > N; large enough so that {6’ € O,[|¢/ — 0|» <

nfl/ZM(s} C (/O),
M2 ) )
Pr(Rpy > e) <8+ Pr(=% sup sup (| (8) = do(0)lle > ¢),
2 geo,|o—o|<Ms//m tel0,ry)

where Ms, N5 > 0 are such that for all n > Nj, Pr(||0,]s > M;) <.
Putting all the pieces together, we have that

nl(c/n) — ol s, (c/n)} < [Bni| + [Rnz| + Bng = op(1). (5.25)
Whenever n|(¢/n) —e{ds, (c/n)}| < 0 for some 6 € (0, min{c, 1 — c}), the fact that 1)y is
decreasing gives that
Sul(e-+8)/n} < bu,(c/n) < dot(c — 6)/n)
Hence, for arbitrary ¢ > 0 and 6 € (0, min{c, 1 — ¢}),
Pr{\/ﬁ Md;ﬂ > 5} <
o, (c/n) T

Pr[n|(c/n) — o{do,(c/n)}| > 0] + Pr{\/ﬁ/w Yol@) 4 > 5}.

po((c+d)/n) L
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As n — oo, the first expression converges to 0 by (5.25), while the second converges to 0
by Lemma 4.5 (i). To establish part (iii), one can proceed exactly as above and conclude
based on Lemma 4.5 (ii).

(iv). The proof is similar as that of part (ii). For,
nl(1 —c¢/n) = vo{do, (1 — c/n)}| < (R + | Ryl + Rug = 0p(1), (5.26)

where R,3 is as in (5.24),

Riy = 507 da{0n, (1 — ¢/n)}6, = 0p(1)

from the Continuous Mapping Theorem, part (i) and Condition 5.7, and

R}y = Vg {0, (1 — ¢/n)}0, = op(1)

using the same arguments as in the proof of part (ii) and Condition 5.7. Then for arbitrary
e>0and ¢ € (0,min(c,1 — c)),

> 1— 4y (1
Pr{\/ﬁ/ 1= (/) s} <
V(K 0, (1—c/n))

Pr[n|(1 — ¢/n) — vo{ds, (1 — c/n)}| > 0]
+Pr \/—/ 1—%(1/5’7)d$>5}.

ViKooli—(c-o)my) L
As n — oo, the first expression converges to 0 by (5.26), while the second converges to 0

by Lemma 4.5 (iii). O

Lemma 5.3. Suppose that as n — oo, ©,, = /n(6, — 0) converges in law to a nondegen-
erate limit © and that § € O. Further assume that Condition 5.3 holds and that either
Condition 5.4 or 5.5 is satisfied. Then for any K € N, K > 2,

(1) If Condition 5.4 holds,

T /wig d
sup [ g, (w) — gufun(wa)} | 0

weEBy /¢ JO

in probability as n — oo.

(11) If Condition 5.5 holds,

T /w(a)
sup / 190 {0, ()} — g {tbp (w) |z > 0

weBy /K JO

in probability as n — oo.
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Proof. (i). Using the fact that for any w € (0,1/2), the function ¢ on [0,1] is C%*
Holder continuous and g¢; is Lipschitz continuous, there exist xq, k9 > 0 such that, for all
w € Bk and x € (0, 2y /w ),

|90 {%0, (W)} = go{to(wz)}| <f€1/€22\% w;z) — Po(w;z)[*

j=1

Consequently,

2o /W) dx
Lttt we)) = gutvntwon)|F <

d Ty /w;
g 3o [ o) — i)
j=1"0
By change of variable, the upper bound equals
Kiksd [0, (t) — 1e(1)] e (5.27)
0

Whenever 6, € (5, an application of the Mean-Value Theorem implies that for every
realization w and ¢t € [0,29), [to,=)(t) — Yo(t)] < ||0n(w) — 9|||W@;(t,w)(t)||, where
Oi(t,w) = 0 + e(t,m)n 1?0, (w) for some e(t,w) € [0,1]. Consequently, (5.27) is
bounded above by
w — w e wdt
argdln POl [ ey 0l T
which may be rewritten as
w — w e wdt o ; w p dt
angdln P01z [ [0l + [ (el — o5} 7]

Now fix an arbitrary ¢ > 0 and § > 0 sufficiently small so that {¢' € O,]|¢ — 0|2 <
n~2Ms} € O. Then

Pr

Ty /w(q T
sup [ (’|gw{¢en<wx)}—gw{wwx)}%>e]

weBy /K JO

<pr fmgas { [T 1l + Too0) [ 0% ] >

t
0
+ Pr(||n 20,2 > 6),

where Y, 4 is as in (5.16). Since Pr(|[n="20,]||s > §) — 0 as n — oo, one has, for any
0 >0,

fE\I//wd
lim Pr[ sup / ()|gw{w9n<wx>}—gw{¢e<wx>}|d§>e] <

pr [chww {/ " [t e i ng(é)/ h;’(t)dt} . e] .

0 0 2
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The right-hand side converges to 0 as § — 0. Indeed, (5.16) implies that
: waoew |0 LAt e dt
lim [mzdé {/ [0 (t)]l5 — +Tw,9(5)/ hy (t)—H =0
340 0 t 0 t

given that both integrals are finite by Condition 5.4 and (5.13).

(ii). The proof is completely analogous to the proof of (i). Using the same arguments,

there exist constants k1, ko > 0 such that for w € By,

T /wig Ty
/0 ol (W)} — glvp(wa)}lde < ringdK / o (t) — olt)dt.

One can proceed as above using Condition 5.5 and (5.17). [

5.5.3 Proof of Theorem 5.1

.....

-----

K is compact, there exists an integer K > 1 such that K C By/x C Ad.

To simplify notation, we denote the true parameter value by ¢ instead of 6, henceforth
and set ©,, = /n(6, — 0).

As in Section 4.1, introduce the process

BT (w) = v/ {log AT (w) — log A(w) }

BSFG given, for all w € Ay, by

Proceeding as in the proof of Lemma 4.2, I@SFG may be rewritten as

BS"S(w) =~ [ Vi [l (wa)) - Clntewon))]

o /qu//ww) /i [én{wn (wz)} — C{qpe(wx)}} d?x

where the second equality follows because C, {1y, (wz)} = C{iy(wz)} = 0 whenever
x> xy/wg if Condition 5.3 holds. Next, write BSFG = BIFG + BCYG | where for all

w € Ay,
5 CFG i dux
BOw) = = [ Colua, (wa))

and
. Ty /(g T
BYOw) == [ ValCtm. o)} - Clintwa | T 629

For reasons that will become apparent in the proof of Lemma 5.6 below, it is important

to first establish the asymptotic behavior of the drift B, To this end, let BSFS be the

process given for all w € Ay by B (w) = o (w)0,, where a(w) = (ay(w), . .. ,ay(w)) "

with
dz
T

d Ty [w; . .
atw) = =3 [ Esuntwn (i) (5.29)
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The following lemma establishes that |a;(w)| < oo for any k € {1,...,p} and w € Ay,

and specifies the weak limit of BSC.

Lemma 5.4. Asn — oo, BOYG ~ BSFC in C(By ), where for all w € Ay, BSFG (w) =
a’ (w)e.

Proof. First, note that for any k£ € {1,...,p} and w € Ay, lag(w)| < co. Indeed, since
0<C;<1forallje{l,... d},

T /w; dzx

s (aw |<Z [ St st

<Z/

The last expression is finite by Condition 5.4. The next step is to show that a is uniformly

Ty /w;

. d : d
|t 1 (wjx )|§—d/0 [0, (t )’_t

continuous on Bk, viz.

lim sup la(w) — a(w’)||2 = 0. (5.30)

010 4 W' EBy /i lw—w'|[2<d

To show that (5.30) holds, define, for all j € {1,...,d} and k € {1,...,p},

Ty /w; . "
by (w) = / (o) s wy) 2.

Then (5.30) follows if for all j € {1,...,d} and k € {1,...,p},
lim sup 1bjk(w) — bjk(w')| = 0.
640 w,w' €By g, ||lw—w’|[2<8
Pick an arbitrary j € {1,...,d}, k € {1,...,p}. Then for any w,w’ € Bk,
o dt
[bje(w) — bjp(w')] S/O 1€ {wo(wt/w))} — Cy{e(w't/w))}|[vor(t )~

by the change of variable. Now pick an arbitrary n, u € (0, 1) and note that because )y is
uniformly continuous, there exists A > 0 such that for all |z —2'| < A, [¢p(z) —1e(2’)] < p.
Also note that if [|w —w'[ly < 0, |(wit/w;) — (wit/w})] < 2Kt6. Because 2K>dp(1)d < A
for all ¢ sufficiently close to 0 and because 0 < C; <1,

, . . , ®o(n) dt
lim —sup  [bjp(w) = bjp(w)[ < sup |C(u) — Cj(u)] [ox(t by
) w,w EBl/K u7u/€A7]7j bo(1—n)
Jw—w’l2<6 o |2
d9(1—n) . dt Ty dt
w2 [T el o+ [ a7},
0 Po(n)

where A, ; = {u € [0,1]? : u; € [,1 —7]}. Because C; is uniformly continuous on the set
A, ; by Proposition 3.2, the first expression on the right-hand side tends to 0 as © — 0.
Because foqu{’1b.97k(t)‘} /tdt is finite by Condition 5.4, the second expression tends to 0 as
n — 0. O
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The next step is to establish, through the following lemma, that the limiting behavior

of BCFG is the same as that of BSFC.

Lemma 5.5. As n — 00, SuPyep, IBCEG (w) — BEFS (w)| converges in probability to 0.

Proof. Let BCEFC be given, for all w € Ay, by

B d Ty /wj . T
B G0) = =30 [ Vi, () — (s o)}

We will first show that

sup  [BJ3 (w) — By (w)| = op(1). (5.31)

’wEBl/K
Using the Mean-Value Theorem, write

~ Ty /w(q T
BSS % (w) = —/0 v V1 [C{we, (wz)} — Clbp(wz)}] d?

d Ty /w; . €T
=3 [ ) — ol )

where for every wx and realization @, Uy, (w) = e(wz, @)Yy, () (wx) + {1 — e(wz, @)}
Yy(wz) for some e(wzx,w) € [0,1]. It thus suffices to show that for all j € {1,...,d},

Ty /w; . ) dr
Vi, = sup V|, (wjz) — to(w;z)||Ci{the(wr)} — Ot )| —
’wEBl/K 0 T
converges in probability to 0 as n — oco. To accomplish this, fix an arbitrary j € {1,...,d}
and let
T, = up )W{wen () — ho(x)}] - (5.32)
z€[0,xy

From Lemma 5.1 (i), it follows that the sequence (7,) is tight. For any § > 0 there
exists My > 0 and N; > 0 such that for all n > Ny, Pr(7,, > Ms) < 6. Pick an
an arbitrary e > 0, n € (0,1) and let n > N; be such that Ms/\/n < n/2. Then
Pr(V, >¢) <0+ Pr(V, > ¢, T, < M) and Pr(V,, > ¢,T,, < Ms) may be bounded above
by Pr(V,1 > €/2) + Pr(V,2 > ¢/2), where

do(1—n)/w;
V=2 s {7 il ) — vl
Ty /w; d
+ V|, (wz) — %(wﬂ?”—x}
Go(n)/w; &
do(1—m) dt Tw dt
= 2{/0 Ve, () — ()]~ + . Vi, (t) — wo(t)|7}
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and
®o(n)

. dt
Vie= sup  [Cj(u) - Cj(w) Ve, (8) = do(t)| =,
uvu/eAn/Q,j ¢0(1 77)
u—u'||[<Ms/v/n
where A,/ ; = {u € [0,1)% : u; € [n/2,1 —n/2]}. Because C; is uniformly continuous on

Ay 25 and
b0 (n) dr do(n) dr
Vnle, (x) — o(x )=~ Wér(l’)@l?

Po(1—m) do(1-n)
as n — oo by Lemma 5.1 (iii), V,,2 — 0 in probability as n — oo. The same lemma, again

part (iii), also implies that as n — oo,

o [ W el [ wiwel}

0 (1)

The limit is non-negative and bounded above by

2 sup [V (t)) |{/0¢9 o hg(x)d—x—l—/:;) he(x)d—x} :

te[0,xy) he( X X

By the Portmanteau Lemma, the lim sup of Pr(V,,; > £/2) is at most

t $o(1-n) d Ty d

Pr[2 sup 46 (09 |{/ hg(m)—x—i—/ ho(x) x}>€/2]
telog) No(t) 0 xr o (1) r

This probability can be made arbitrarily small given that

B0 (1—m) d Ty d
hm{/ hg(x)—x+/ hg(x)—x} ~0.
n—0 0 X é xr

0(n)

Since ¢ was arbitrary, Pr(V,, > ¢) — 0 as n — oo, and (5.31) holds.

Next, we establish that

sup  [Bys “(w) — B4 (w)] = op(1) . (5.33)

weBy /K

To this end, it suffices to show that for each j € {1,...,d},

ry/wj . dx
sup / |Ci{bo(w)}[tg (w;z)8, — v {ts, (wjz) — bo(wsa) }—

weBy /¢ JO

converges to 0 in probability as n — oo. Using the fact that 0 < Cj < 1 and making a

change of variable, this expression is bounded above by

W, = / 1 (00, — Vi, () — v}

We can now proceed similarly as in the proof of (ii) of Lemma 5.1. Because (0,,) is
tight, for any given 6 > 0, there exists My > 0 and Ny > 0 such that for all n > Ny,
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Pr(]|©,]l2 > Ms) < d. Suppose that n > Nj is large enough so that {6’ € O, ||0' — 0||» <
n=Y2M;} ¢ O. Whenever ||6, — 0|5 < n~'/2M,

by ) (1) — o dt
W, < (0], sup 1Per@(®) —vo(@)]: /
0

z€[0,2y) h@ (I’)

he(t)77

where for any realization @, ©* (z,w) = 0 + ¢(x, w)n"/20,,(w) for some e(x, w) € [0, 1].

For any such n and arbitrary € > 0, Pr(W,, > ¢) is at most
o dt
5+ Pr(W, > ¢, [|Onlls < Ms) <6+ Pr{M(;Tg(Mg/\/ﬁ) ho(t) 7 > 5}
0

Clearly, the second expression converges to 0 as n — oo by Condition 5.4. Hence,
lim,, oo Pr(W,, > ) < 4. Since 0 was arbitrary, (5.33) follows. O

Combining Lemmas 5.4 and 5.5, we thus have that
BCFG ., BOFG (5.34)

as n — 0o in C(By/k ), where for all w € Ay, BSTG(w) = o (w)O. Next, let C,, be as in
Theorem 2.12 in Chapter 2 and define for all w € Ay,

HCOFG v/ dx
B w) =~ [ Colia, wn)) (5.3)
0
The following lemma is the analogue of Lemma 4.6.

Lemma 5.6. Asn — oo,

Ty /W) _ d
sup [ 1€, (wa)} = Cofun, (wr))| T

’UJGBl/K
converges in probability to 0.

Proof. First, pick an arbitrary ¢ € (0,1/K) and define

o (1-5). = (0)

Let Nk € N be such that for any n > Ng, ¢ < n/{K(n+ 1)}. Throughout the proof,
assume that n > Ng. Then ¢ < 25 and, by Lemma 4.3,

Yo, { K0, (1- =)} > nil. (5.36)

As in the proof of Lemma 4.6, use the triangle inequality to write

To/way _ dx
[ et )} = €, (wa Y
< L(w) + L(w) + Ii(w) + Li(w) + Is(w),
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with

bn/fw(d) | i d
Bw) = [ |t )  Cag, (we)]
Qan ’l,U(l)

an/w(1) Tw/way | dx
h(w) = [ [Eufvnw) T Bw) = [ |Efin, (wn)]
0 by Jw(d) x
an/w<1) B dr x\y/w(d>
nw) = [ Cafun 0] . w) = [ [Cafun, (0]
0 by Jw(d)

Each integral will be treated separately, showing that for all p € {1,...,5},
SUDyweB, I,(w) — 0 in probability as n — oo.

Treatment of I,. Fix w € By/k and let g, be the weight function given by (4.10) for any
w € (0,1/2). Since a,/way < x < by/wy, ¢/n < g, (w;r) < 1—c/nforall j € {1,...,d}.
Thus with S, as in (4.11),

s /:C\I//W(d) gw{¢0n (’LUI)} "

I (w) i .

IN

/mw/w<d) gw{iﬂa(’w@} e

0 Z

IN

S

Ty /wg) d
oo [ v, (wo)} - gfuatwn)|

weEBy /i JO

By the first part of Theorem 2.12, S,, converges to 0 in probability as n — oo, while

Lemma 5.3 implies that the expression in the square brackets converges in probability to

/qu/w(d) gw{we(wx)} e
0

x
which was shown to be finite while discussing I; in the proof of Lemma 4.6.

Treatment of I. Fixing an arbitrary w € By, for any = € (0,a,/w@)) and j €
{1,...,d}, wir < (w;/way)ge, (1 —c/n) < Ky, (1 —c/n). Together with (5.36), this im-
plies that vy, (w;x) > 10, { K¢g,(1—c/n)} > n/(n+1). Therefore, for any x € (0, a,/wq)),
Co{thg, (wz)} = 1 and L(w) = L (w) + Ly (w), where

an /w1 T
nfw) =it [ 1 = Cpatwn |5

CLn/w1 T
Ins(w) = i / YO twnwn)} — O, (w2

As in the treatment of I, in the proof of Lemma 4.6, we have that

Iy < vi [ 0B < g [ LG

(1y/an /(Kan) Z
The upper bound is independent of w and converges in probability to 0 by Lemma 5.2
(iii).
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To show that sup,cp, |I2(w)| converges to zero in probability, note that s (w)
is the same integral as —BSYG(w), except for the upper limit of integration. Pick an
arbitrary 0 < § < xy/K; this way, for any w € By gk, 0/wq) < ww/w;. Then, for any
e >0,

Pr{ sup |ln(w)|>c}="Pr{a, >0}+

weBy Kk

prf sup [V / Ww(”[C{wa(wx)}—cwenmm)}]df\ > e}

’LUGBl/K

The first term on the right-hand side converges to zero because a,, — 0 in probability by
Lemma 5.2 (i). As for the second term, the same arguments as in the proof of Lemma
5.5 can then be used to show that

sup VilC{eo(wz)} — C{tg, ()} — — as(w) " O,
weby  k
converges in probability to 0, where as(w) = (as1(w),. .., as5,(w))" with

§/way | r
Z [ sttt

Observe that as in the proof of Lemma 5.4, for any k € {1,...,p},

s |<Z/ ()| 5
Ké/w;
<Z/

so that, using (5.13), [|bs|la — 0 as & — 0, where bs = (bs1, ..., bsq) . Hence,

. dx . dt
s S = [ a1 = b

limsup Pr( sup |as(w)'0,| > ¢) < limsup Pr(||0,[2]|bs]l2 > ¢)
n—oo

n—00 weBy /K

< Pr([|©]2[bs]l2 > €),

where the last inequality is due to the Portmanteau lemma. As 6 — 0, the last expression
tends to 0. Put together, we have that sup,ep, | Ioo(w)| converges in probability to 0,

as was to be shown.

Treatment of I5. Fixing an arbitrary w € By, note that if x > b, /w(a), then 1y, (zw(q)) <
¢/n < 1/(n+1) so that C,{ty, (wz)} = 0. Consequently, I3(w) = I3 (w)+ I3 (w), where

Ty /wig
atw) =i [ )T
n/W(d)
Ty /w(a) dx
fatw) =i [0, fw) — Clyn(wn))
n/W(a)
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As in the treatment of I3 in the proof of Lemma 4.6,

I (w) < vn rel M \/— o 1/’9_()

bn/w(a) z
The upper bound is independent of w and converges in probability to 0 by Lemma 5.2
(ii).
To show that sup,,cp, |I32(w)| converges to zero in probability, pick an arbitrary 0 <
k < xy. Then, for any € > 0, and x arbitrarily close to zy,

Pr{ sup |Iz(w)|>c}=Pr{b, < k}+

’UJGBl/K
Ty /w(a)
Pr sup ‘\/_/ [C{1y, (wz)} — C{1p(wx)} —‘ > 5}
wEBl/K /w(d)
The first term on the right-hand side converges to zero because b, — xy in probability
by Lemma 5.2 (i). As for the second term, the same arguments as in the proof of Lemma

5.5 can then be used to show that

Ty /wg) dx

sup Vnl[C{we(wa)} — i, (wo)}— — az(w) ' 6y,
wEBy /' K w(g z
converges in probability to 0, where af(w) = (af,(w), ... a; (w))" with
Ty /way | dr
Z [ st st
K/ w(a) &
Because 0 < C; < 1, for any k € {1,...,p},
Ty /way dr
. w |<Z/ [oswsa)|
K/ W) v

In the case when xgy < 00, let M = sup,¢( ) [4hg()]|2; from (5.14) we have that M < co.
Then |ay, . (w)]> < b, where

bppy =dM(Inzy —Ink).

Clearly, [|b%]| — 0 as k — xy, where b = (b:

i1, 05 g) 7. In the case when zy = oo,

|y, p(w)| < b, where this time,

melei da dt
* — R d -
ok = E / e Vo5 (w;x )laz //K!%k()‘t
so that, using (5.13), we again have that [|bj|l, — 0 as k — oo, where b} = (bj ..., b% ;)"

Thus when xy < 0o as well as when xy = o0,
lim sup Pr( sup |a:(w)T@n| > ¢) < limsup Pr(||O,]|2/|b5 |2 > ¢€)

n—r00 weEBy /i n—00

< Pr([|O]l2[|bk 2 = #),
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where the last inequality is due to the Portmanteau lemma. As kK — g, the upper bound

tends to 0, so that sup,cp, ,, [fs2(w)| = op(1).

Treatment of I,. Here the second weight function defined for w € [0,1]¢ by g,(u) =
gw(w) + 1{g.(u) = 0} is used. Letting w € By x and Z, defined as in (4.16),

_ [ | Codo, (wa)}] Gu{ts, (wa)}
nw = [ ey
<7 /a"/w“) gw{%;(wx)}dx <7 /Ka" gw{%;(wx)}dx'

Now suppose for a moment that a,, < ¢ for some ¢ small enough so that K < xy. Under

this assumption,

€T T

= PR e R U1

because g, (u) = 0 occurs either when at least one component of u equals 0 or at least

d — 1 components equal 1. Write the right-hand side as
Kan Kan _
[ ) g [ el w00} i),
0 0

i T

and note from the proof of Lemma 4.6 (Treatment of I,) that this expression is bounded

above by
=G
1/(K3) X

Ty /w(g
w2 sw [ o, wo)) - vatwa)}

'weBl/K

Now fix an arbitrary ¢ > 0 and pick a 0 > 0 so that K¢ < xg. Then

Pr( sup ILi(w)>e¢e) <Pr( sup L(w)> e, a, <0)+ Pr(a, >9)

wGBl/K ’IUGBI/K

Given that a,, — 0 in probability from Lemma 5.2 (i), it suffices to show that the first
term on the right-hand side tends to 0 as n — oo. Write

Pr( sup ILi(w)>e,a, <9)
’wGBl/K

< Pr[Zn /00 {19y <1/x)}wdx > E]

J(K5) 35 2

Ty /wg
+Pe[Z, sup / g, (wa)} — g lo(wn)} 2 > ]

wGBl/K 2

Given that Z, ~ Z = sup,c(91j¢ |C(u)/gu(w)| as n — oo by Theorem 2.12, the Portman-

teau lemma implies that the lim sup of the first term is bounded above by

Pr[z/lf"’ {1—¢9(1/a:)}wdx2 g] .

/(K9) r
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This probability can be made arbitrarily small given that

[ e,

/(K9) z

is bounded above by [; in (4.15), which is finite, and tends to 0 as § — 0. Lemma 5.3
and the fact that Z,, ~» Z imply that

Ty /w(q
lim Pr[Zn sup /0 " lgu{ts, (wz)} — gw{1/19(wx)}|i—x Sl

n—oo 'LUEB]_/K 2

which concludes that supyep, I;(w) — 0 in probability as n — oo.

Treatment of Is. We can proceed similarly as in the preceding paragraph. Fix any
w € Bk and suppose that b, > ¢ for some 0 € (0, zy) arbitrarily close to xy. Using the

arguments from the proof of Lemma 4.6 (treatment of I5), one has that

Ty /w(g)
Iy(w) = / /
n/W(a)

Cr {1y, (wz)} ‘ Guie, (WU)}dx
} z

gw{¢9n(wx)
_y /“’/“’“’ Julvo,(wr)} / " g, (wa)}
- bn/w(d) . b"/w(d> &

and that the upper bound is bounded above by

“ {4 (w) }¢
I /5 ——dx

T

Ty /w(q d
2y sw [ gt (wa)} - ()} 5

wEBl/K

Proceeding as in the proof of sup,cp, Iy(w) = op(1), we thus have that
SUDyep, Is(w) = op(1), since b, — xy in probability as n — oo by Lemma 5.2 (i) and

fém {tg(2)}*/dz — 0 as 6 — xy by Lemma 4.4 (i). ]

CFG

From Lemma 5.6, supyep, . IBCFC (w) — BEFC (w)| converges to 0 in probability as

n — oo. Finally, introduce BSFS given, for all w € Ay, by

. Ty /Wy
BOw) == [ Cutwn(wn)) T (5.31)

and note the following result.

Lemma 5.7. Asn — 00, SUPyep, IBEFC (w) — BEFC (w)| converges in probability to 0.
Proof. Introduce the process IE%SIF G given, for all w € Ay, by

B (w) = - [ el €, i, (wa))

; m%{%(w@}%
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and observe that, with Z,, as in (4.16),

sup  [Bry(w) — B ¢(w)] <
’wEBl/K

Ty /w(q) B B dx

Zo swp [ e, (we) - gu{vatwa)|
weBy /K JO z

From Theorem 2.12, Z,, converges in law to sup,e(o 1« |C(u)/gu(u)| as n — oo. Further-

more, because ¢y(0) = ¢, (0) = zy from Condition 5.3,

Ty /Wy d
sup / " |gw{ 0, (wzx) — f]w{z/)g(wxﬂf =

wEBy /i JO
dx

Ty /weg
sup [ gt (w0) - gt

weBy /¢ JO

The expression on the right-hand side tends to zero in probability by Lemma 5.3. Conse-
quently, sup,ep, IBCFG (w) — BEFS (w)| converges to 0 in probability as

n — 0o. Next, recall that the sequence (7},) with 7T}, as in (5.32) is tight. Hence, for any
d > 0 there exists Ms > 0 and N5 > 0 such that for all n > Ng, Pr(T,, > Ms) < 6. Let
€ > 0 be arbitrary. Then

Pr( sup \]E%SlFG(w) — ]’B%SFG(w)\ >¢e) <0+

wGBl/K

sup — —
u,u’€[0,1]¢ gw('ll,
lu—u'll2<Ms/v/n

Pr{ Cu(u) C,(u)

> }
I+ 1)

~—
i
€
—~
:\
~—

using (4.14); I3 and I2 are as in (4.15). Because 0 > 0 was arbitrary, the conclusion
follows from Equation (4.2) of Berghaus et al. (2017). O

Putting all the pieces together, we have that

sup B (w) — BT (w) — B (w)| = op(1).

wEBl/K
Equation (5.12) and the Continuous Mapping Theorem then imply that
Tw/w; dx

Ty /wiq
B - [ ”cwewx}——z / Cy{ta(wa) ] (w;1)0 ™

in ([0, 1]4), as was to be shown. The continuity of the mapping follows from (5.30) and
the calculations in the last paragraph of Section 4.2.3. Because for any j € {1,...,d},

C'j(u) = 0 if uy = 0 for some k # j, the limit can be written more succinctly as

dx

_ /Orw/w(oﬂ [({j{%(wx)} + Zd: Cj{¢g(wx)}¢;(wjx)@] =
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and by change of variable as

du
ulogu

1 d )
| (Ctvnt-wiosu}] + 3 Clunt—w oz} (-uslog(w)}e)
j=1
with the convention that, if xy < oo, %T(x) = 0 whenever z > zy.

5.5.4 Proof of Theorem 5.2

The proof proceeds along the same path as the proof of Theorem 5.1. Let I be a compact
subset of Ad. For an arbitrary w € Ay, set w() = min;—;

Define, for any k € N, the set By, = {w € Ay : wqy > 1/k}. Since K is compact, there
exists an integer K > 1 such that K C Bk C Ad.

-----

Again, to simplify notation, we denote the true parameter value by 6 instead of 6y
henceforth, and write ©,, = /n(6,, — 0).

As in Section 4.1, introduce the process I@%E given, for all w € Ay, by
B (w) = v {1/ A% (w) = 1/A(w) }
Proceeding as in the proof of Lemma 4.2, I@E may be rewritten as
BE(w) = (E(2)) ™ | vt [Cufvn, (wo) = Clun(wn))] do
. zw/w(d) .
2y [ i [Cutia wo)} - Cluawn))] do
0

where the second equality follows because C, {1y, (wz)} = C{iy(wz)} = 0 whenever
x> xy/w( if Condition 5.3 holds. Next, write BE = BF, + BF,, where for all w € Ay,

. Ty /wa)
B, (w) = {E(Z)} / &, {5, (w)}de
and ) ref
B, (w) = {E(2)}! / Vi [C by, (w2)} — C{tp(we)}] de

As in the proof of Theorem 5.1, it is important to establish weak convergence of the
drift BP, first. To this end, let BE, be the process given for all w € Ay by BE,(w) =
a’ (w)0,, where a(w) = (a1 (w), ..., a,(w))" with

Ty /wj

ax(w) 7))} Z / Ci{e(wr) Yo (w;z)dz. (5.38)

The following lemma shows that |ay(w)| < oo for any k € {1,...,p} and w € Ay, and

determines the asymptotic behavior of PBEQ
Lemma 5.8. Asn — 0o, BY, ~ BY in C(Byk), where for allw € Ay, BY (w) = a (w)O.
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Proof. Fix an arbitrary K > 2. and note that for any k£ € {1,...,p} and w € Ay,
|a(w)| < oo. Indeed, since 0 < C; < 1 for all j € {1,...,d}, we have that

Ty /wj

2)an(w |<Z / &, (oo (wa) Yo wy) | do

<Z/ b 1 (W |dx—z / .k (t)|dt

The last expression is finite by Condition 5.5. Next we show that a is uniformly continuous

Ty /w;

on By /i viz.

lim sup la(w) — a(w')||2 = 0. (5.39)

N0 '€ By g [Jw—w'|| <5

To show that (5.39) holds, define, for all j € {1,...,d} and k € {1,...,p},

Ty /w; . )
biatw) = [ Cfvn(wn)}dustwa)de.
0
Then (5.39) follows if for all j € {1,...,d} and k € {1,...,p},

lim sup |bje(w) —b;(w')]| = 0.

N0 w ' eBy i |lw—w' | 2<5

Pick an arbitrary j € {1,...,d}, k € {1,...,p}. Then for any w,w’ € Bk,

[bj.k(w) — bjx(w')]

g/“’ Coltn(wtfuwy)}  Ci{wo(w ft/w )

< / w | O {a (wt /w;)} — ch'*j{w(w’t/w;)}l

/

|g,1,(t) |t

[0, (t)|dt

< szj/o ) |Ci{o(wt/w;)} — Ci{wg(w't/w))} [ (t)|dt
Ty —y / " o wt10;)} (1) dt
<K / 1o (wt ;) } — C{abp ('t /! Y [k (1)
K2 w;: —w' T dt .
Ty —y / o)t
Due to the fact that [ [t (t)|dt is finite by (5.17),

Ty .
sup K |w; — wé]/ 1o (t)|dt — 0O
1.U,’U.J/€Bl/[(7 0

[[w—w’||2<d

as 0 — 0. The rest of the argument follows as in the proof of Lemma 5.4. Pick an

arbitrary n,u € (0,1) and note that because 1y is uniformly continuous, there exists
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A > 0 such that for all |z —2'| < A, [p(z) —g(2')| < p. Also note that if ||Jw —w'||2 < 0,
|[(wit/w;) — (wit/w})| < 2K7t6. Because 2K*py(1)d < X for all § sufficiently small and
because 0 < Oj <1,

lim sup  [bj(w) = bjx(w)] <
610 4 ,w GBl/K
[w—w'|l2<5

) . do(n)
E* sup  |Cj(u) — Cj(u)] ol
u,u’' €A, Po(1—m)
[u—ull2<p
9 do(1-m) Ty
w2k [ aatld+ [ inaolar}.
0 bo(n)

where A, ; = {u € [0,1]% : u; € [,1 —1n]}. Because C; is uniformly continuous on the set
A, ; by Proposition 3.2, the first expression on the right-hand side tends to 0 as © — 0.
Because [ |1hg 1 (t)|dt is finite by Condition 5.5, the second expression tends to 0 as
n — 0. [

The following result shows that BF, behaves asymptotically as BF,
Lemma 5.9. Asn — 00, SUPycp, IBY, (w) — BE,(w)| converges to 0 in probability.
Proof. Let BE, be given, for all w € Ay, by

Ty /w;

BY,(w) — {E(2)} Z / Vi, () — v )} v (we) Y.
We will first show that

sup Bl (w) — Bl (w)| = op(1). (5.40)

wEBl/K
To this end, use the Mean-Value Theorem to write

BY (w) = {E(2)}! / VO, (wa)} — Cliy(wa))] da

Ty /w;

7}y Z / Vit (wyz) — o(w;2) ), (s ),

where for every wz and realization @, Uy, (w) = e(wz, @)y, (o) (W) +{1—€(t, @) }1hg(w)
for some e(wz,w) € [0,1]. It thus suffices to show that for all j € {1,...,d},

Ty /w; . )
Vo= sup Vi, (wjz) — Po(w;z) HOH{ve(wa) } — Cj(wuwe)]dz
web) Kk
converges in probability to 0 as n — oco. To accomplish this, fix an arbitrary j € {1,...,d}

and let T;, be defined as in (5.32). From Lemma 5.1 (i), it follows that the sequence (7},)
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is tight. For any 6 > 0 there exists My > 0 and Ns > 0 such that for all n > Nj,
Pr(T,, > Ms) < 6. Pick an arbitrary ¢ > 0, n € (0,1) and let n > Ns be such that
Ms/v/n < n/2. Then Pr(V,, > e) < §+ Pr(V, > ¢,T,, < Ms) and Pr(V,, > ¢,T,, < Ms)
may be bounded above by Pr(V,,; > ¢/2) 4+ Pr(V,2 > €/2), where analogously to the proof
of Lemma 5.5,

do(1—-n)/w;
V=2 sw { [ Vi, (wz) — g (w;)
0

wEBl/K
Ty /w;
+ Vilto, (wiz) = o (w;e) |z}
do(n)/w;
®e(1—1) Ty
—2n{ [ Valun, ()~ va(olat + [ Vb, (0) = valt)lit}
0 do(n)
and
) ®o(n)
Vo= swp  [Cj(u) = Cj(u)[K V|, (t) — Yo(t)]dt,
u7ul€An/2,j ¢9(1 77)

lu—u'|la<Ms/v/n

where A,/ = {u € [0,1)% : u; € [n/2,1 —n/2]}. Because C; is uniformly continuous on

AH/QJ and
bo(n) ®e(n) -
V|, () — Ye(2)|dr ~ |thg (2)O|dz

bo(1—n) Po(1—n)
as n — oo by Lemma 5.1 (iv), V,,» — 0 in probability as n — oco. The same lemma, again

part (iv), also implies that as n — oo,

do(1—m)
Vit~ 2K{/ g (2)O|dx +/
0 @

The limit is non-negative and bounded above by

2K sup W;;(t)) |{ /0 T h(a)do + /¢ v ho()dz }

te[0,zy) 0(n)

Ty

7 (2)©]dr }.

0(n)

By the Portmanteau lemma, limsup,,_, . Pr(V,; > ¢/2) is at most

W (t)O)| bo(1—n) Ty
Pr [QK sup o~ {/ hy(x)dx +/ hg(x)dx} > 5/2]
te[0,z) ho(t) 0 Bo(n)

This probability can be made arbitrarily small given that

¢9(1_77) Ty
lim{/ hy(x)dx +/ h@(fE)de} = 0.
n—0 0 é

0 (1)
Since ¢ was arbitrary, Pr(V,, > ¢) — 0 as n — oo. This establishes (5.40).

Next, we will prove that

sup |By,(w) — Byy(w)| = op(1). (5.41)

weBy /k
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To this end, it suffices to show that for each j € {1,...,d},

Ty /w;j . .
sup | [ Cotuntawn) 6] (wy)0, = Vil (w0) = dofu) Yo

’UJEBl/K

converges to 0 in probability as n — co. Given that this expression is bounded above by
Ty .
W= K [ 16§ (000 — Virlin, () ~ va(t)) .
0

one can proceed as when showing (5.33) in the proof of Lemma 5.5. O]

From Lemmas 5.8 and 5.9,
BE, ~ BY (5.42)
as n — 00 in C(By/k), where for all w € Ay, BY (w) = a7 (w)O. Next, let C, be as in

Theorem 2.12 in Section 4.2.3 and define for all w € Ay,

_ Ty /wa) _
BY, (w) = {E(Z)}! / €.y, (we)}d,

where C,, is as defined in Theorem 2.12. The following result is the analogue of Lemma
4.7.

Lemma 5.10. As n — oo,

Tw/wgy B
sup / {5, ()} — Co{thy, (wr)}|da

’U)GBl/K
converges to 0 in probability.

Proof. Fix w € (0,1/2); if Condition 3.2 (a) holds, it is also required that sw > 1. Define
the sequences a,, and b, and the constant Nk as in Lemma 5.6 and fix ¢ € (0,1/K).
Then,

Ty /W) B 5
| €t (wn)} = €, (wa)}ds < 3 L)

by Jw(d)
I (w) Z/
an/w()
an /w1y
I (w) :/
0

an/w(q _
Ii(w) :/0 ) |C{te, (wa)| dz, I5(w) = /

b /w(d

where

Coo{t, (wz) — Cn{wgn(wa:)‘ dz,

A

. Tw /W (a)
Cult, (wa)| do, Iy(w) = /b o Cuft, (wa)| de,

Ty /w(a)

) |Cn{w9n(wx)} dx .

Next, each integral is shown to converge to zero in probability as n — oo.
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Treatment of I;. With S, is as in (4.11), for any w € Bk,

[1(’11]) < Sn

Tw /W (a)
/0 u{te(wz)}dx

Ty /w(q)
b sup / {0, (w2)} — go{tp(wa)}|dz

weBy /K JO

By the first part of Theorem 2.12, S,, converges to 0 in probability as n — oo, while

Lemma 5.3 (ii) implies that the term in the square brackets converges in probability to

Ty /w(q)
/0 0o {to(w2) }do,

which was shown to be finite while discussing /; in the proof of Lemma 4.7.

Treatment of I. Fix w € By k. Similarly to the treatment of I in the proof of Lemma
5.6, Ir(w) = Iy (w) + Iy (w) where

an/w(l)

Loy (w) = v/t / 1 — C{tp(wa)})da
an/w(l)

Inn(w) = v/t / (C{ts(w)} — C s, (w)}]dz

Since Iy (w) < \/ﬁfl/(Kan){l —(1/x)}/2*dz, Lemma 5.2 (iv) ensures convergence to
zero in probability, uniformly on By/x. The second integral Iy, is the same as E(Z )IEABE
but with a different upper limit of integration. Fix an arbitrary 6 € (0, xy/K) so that for
all w € By, 0/wqy < xg/wj for all j =1,...,d. Then for any € > 0,

Pr{ sup |ln(w)|>c}="Pr{a, >0}+

’wEBl/K
5/w(1)
Pr{ sup ‘\/ﬁ / (C{o(wz)} —C{@bgn(wx)}]‘da: > g}.
wEBl/K 0
By Lemma 5.2 (i), Pr{a, > 6} — 0 as n — oco. The same approach as in the proof of

Lemma 5.9 can then be used to show that

6/w(r)
sup | [ VRl = L, (wn) Yo = astw)

wEBl/K

converges in probability to 0, where as(w) = (as1(w),. .., as5,(w))" with

3/w( .
Z / " Gy {n(wa) W k(wie)da.

Analogously to the proof of Lemma 5.8, for any k € {1,...,p},
6/7,U(1)

ass(w |<Z/ [ (w52)

d

Kbjw; Ko
< Z/ Ve (wjz)|dz < Kd/ |[Ve.x(t)|dt = bs .,
170 0

j=
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and using (5.17), ||bs||a — 0 as & — 0, where bs = (bs1, ..., bsq) . Hence,

limsup Pr( sup |as(w)'0,| > ¢) < limsup Pr(|0,[2]|bs]l2 > ¢)
n—oo

n—00 wEBy /K

< Pr([|©]2[bs]l2 > €),

where the last inequality is due to the Portmanteau lemma. As § — 0, the last expression
tends to 0. We can conclude that sup,cp, |I22(w)| converges in probability to 0, as

needed.

Treatment of Is. For any w € By, Is(w) = Is1(w) + I32(w), where

Ty /wg
In(w)=vn [ Clys(ws)}d
bn /w(q)
Ty /w(g
Iaw) = Vi | (O, (wir)} — C{abpawer)}da
bn/w(q)

As in the treatment of I3 in the proof of Lemma 4.7,
Ty [W(a) Ty
I3 (w) < /n Yo(wgyz)de < K/n Y(z)dz

By Lemma 5.2 (iii), the upper bound converges in probability to 0.

Now pick an arbitrary x € (0, zy). Then, for any € > 0, and x arbitrarily close to zy,

Pr{ sup |Isn(w)| > e} =Pr{b, <r}+

’U)GBl/K

Pr sup ‘\/_/w/wm [C{1y, (wx)} — C{1hy(wr) ‘da:>5}

wEBl/K K/w(a)

By Lemma 5.2 (i), the first term on the right-hand side converges to zero. For the second

term, the same arguments as in the proof of Lemma 5.9 can then be used to show that

Ty /w(q)
sup | [ ValC{awn)} = v, (wo)de ~ a(w)
'wEBl/K N/w(d)
converges in probability to 0, where a}.(w) = (af,(w), ..., a; (w))" with
Ty /w)
Z// Ci{wo(wa) g i (w;)d.
W(d)

Since for any k € {1,...,p} and u € [0, 1]%, C;(u) € [0, 1], we have that
Ty /W)

o74w) <Z/ (sl

/w(a)
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In the case when xgy < oo, let M = sup,¢p ., [4b6(2)]|2; from (5.14) we have that M <
co. Then [a},(w)] < MK(ry — r) = by ;. Clearly, [bi — 0 as k — zy, where

bp = (051, bhg) " If g = 00, |af (w)] < bf, with
Ty /w; .
b i —Z/ Yo,k (wjz)|dx < dK/ |,k (1) dt,
/(Kwj) /K
so that, using (5.17), we again have that ||bj|l, — 0 as k — oo, where b} = (b} 1,..., 0% ;)"

Hence,

limsup Pr( sup |a(w)'©,| > ¢) < limsup Pr(||0,]2||b%]l2 > ¢)
n—oo

n—00 weBy /K

< Pr(|[©]]2[[ill2 = €),

where the last inequality is due to the Portmanteau lemma. As Kk — g, the upper bound
tends to 0, so that sup,cp, ,, [fs2(w)| = op(1).

Treatment of I;. Recall that for uw € [0,1]¢, g, (u) = g, (u) + 1{g,(u) = 0}. Letting
w € By/i and Z,, defined as in (4.16),

_ [ | G, (wa)}
li(w) = /0 5 e, (D))

an /w1y Kan
<z, / G {100, (wa)}dz < Z, / G {1bp, (w2) }da
0 0

9{t0, (wi) }dx

Suppose that a,, < ¢ for some o small enough so that K¢ < zy. Then

Kan Kan
z /0 G, (w2) ez = 7, /0 gu{tts, (wz)}dz

because g,(u) = 0 occurs either when at least one component of w equals 0 or at least

d — 1 components equal 1. The right-hand side further equals

[ st + [ gt o) - gty

From the proof of Lemma 4.7 (Treatment of 1), this is bounded above by
K§ Ty /w(a)
Znd | Al — Wp(x)}de + Z, sup / |9{ 0, (W)} — gu{vo(wz)}|dr.
0

weEBy /K JO

Now fix an arbitrary ¢ > 0 and pick a 0 > 0 so that K¢ < xg. Then

Pr( sup Ii(w)>¢e) <Pr( sup L(w)>e,a, <)+ Pr(a, >9).

weBy weBy i
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Given that a, — 0 in probability by Lemma 5.2 (i), it suffices to show that the first term
on the right-hand side tends to 0 as n — oo. Write

Pr( sup Ii(w)>e,a, <9)
weBy i
K6

< Pr [an {1 — o(z)}¥dz > g

0

Ty /wig
+ Pr [Zn sup /0 v |gu{ 0, (W)} — gu{to(wz)}|dx > E] .

wEBl/K 2

Given that Z, ~ Z = sup,epje |C(w)/gu(w)| as n — oo by Theorem 2.12, the Port-
manteau lemma implies that the lim sup as n — oo of the first term is bounded above
by

Pr [Zd 0K6{1 — ()} dr > g] < Pr [ZdK(S > g]

The last probability tends to 0 as § — 0. Lemma 5.3 (ii) and the fact that Z,, ~ Z imply
that

Ty /w(g
i Pr[Z, swp [ lgutn, (w) - a{vn(wo)ido > 5] —o

n—00 weBl/K 2
which concludes that sup,,cp, I4(w) — 0 in probability as n — oo.
Treatment of Is. We can proceed similarly as when treating /. Fix an any w € By /g

and suppose that b, > § for some 0 € (0, xy) arbitrarily close to xy. Using the arguments

from the proof of Lemma 4.7 (treatment of [5), one has that

Ty /w(q) C_'n B
n/W(d) w n
Ty /w(q) T /w(a)
<Zy [ g twn)hds = 2, [ guun, (i)
bn /w(a) br /w(q)

and that the upper bound is bounded above by

Ty Ty /wig
Z[[ oaydss sw [T g, (w0} - g fvowa)}da].

’LUGBl/K

The fact that sup,,c Bk Is(w) — 0 in probability as n — oo can now be shown using the
same arguments as were used in the preceding paragraph to prove that sup,,. Bix Ii(w) —
0 in probability as n — oo, given that b, — xy in probability as n — oo by Lemma 5.2
(i) and that [ {¢g(2x)}*dz — 0 as 6 — 2y by Lemma 4.4. O

Finally, introduce BF, given, for all w € Ay, by

. Ty /W) _
Bhw) = (B2 [ Cufvolwa)yds
which by Lemma 5.11 behaves asymptotically as BE,.
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Lemma 5.11. Asn — 00, SUpy,ep, IBE, (w) — BE, (w)| converges to 0 in probability.

Proof. Introduce the process BY n1 given, for all w € Ay, by

B w) = iy [ Selte o)

RN )}gw{%(wm)}dl‘

and observe that, with Z,, as in (4.16),

sup |By); (w) — By, (w)| <

’LUeBl/K o

Ty /w(a)

ZAB2) " sw [ jguun, (wn)} - {dslwn)}do
weEBy /x JO

From Theorem 2.12, Z, converges in law to sup,¢(o 14 |C(w)/gu(u)| as n — co. Further-

more, because ¢y(0) = ¢, (0) = xy from Condition 5.3,

Ty /w(g
sup / 5o (w2)} — G (o)} do =

WEBl/K 0

Ty /w(q)
sup / 190 {0, (w2)} — g {bp(we)}|de

weBy /K JO

The expression on the right-hand side tends to zero in probability by Lemma 5.3 (ii).
Consequently, sup,cp, IBY (w) — BP, (w)| converges to 0 in probability as n — oo.
Next, recall that the sequence (7},) with 7;, as in (5.32) is tight. Hence, for any 6 > 0
there exists Ms > 0 and N; > 0 such that for all n > Ny, Pr(T,, > Ms) < §. Let £ > 0 be
arbitrary. Then

Pr( sup |By,(w) — B (w)] > ¢) < 6+

’U)EBl/K

" g nlwa))
Pr{/ Jw {Ve(wz)} dx sup — — —
0 u,u’€[0,1]4 o (u
lu—u'l|2<M5/v/n

~—

As shown in (4.18), W/ YD g, {1e(wz)} dr is bounded. Because § > 0 was arbitrary, the
conclusion follows from Equation (4.2) of Berghaus et al. (2017). O

Combining the above lemmas,

sup || By (w) — By, (w) — By, (w)l| = op(1).

wEBl/K

Equation (5.12) and the Continuous Mapping Theorem then imply that

Ty /w;

R Ty /w(g
B ﬁ[/o ()C{@/Jﬂ (wz)}dr + Z/ Ci{ho(wx) }oy (w;z)Odx

97



in £>°([0,1]%), as was to be shown. The continuity of the mapping follows from (5.30) and
the calculations in the last paragraph of Section 4.2.4. Because for any j € {1,...,d},

Cj(u) = 0 if ux = 0 for some k # j, the limit can be written more succinctly as

1

Ty /wig d ‘ .
M/O ’ [C{%(wx)} + ;Cj{%(w@}wg(wjx)@} dx

and by change of variable as

d

7 | (Ctvnt=wlozy + 3 Clun{-wlog(ii (-usloz(w}e)

du
E(Z ,
7=1

u

with the convention that, if ¢ < oo, ¥ (z) = 0 whenever z > .
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Chapter 6

Clustered Archimax model

So far in this thesis, the Archimax model has been advocated as a flexible way to model a
group of variables whose asymptotic dependence is driven by a stable tail dependence
function; or more precisely a random vector whose dependence structure follows the
asymptotic extreme-value regime perturbed by the same distortion. However, as it is
the case for rainfall over large territories for example, asymptotic independence between
certain variables is likely to be present and this phenomenon cannot be handled by a
single Archimax model without limiting the marginal dependence structure to be an (ex-
changeable) Archimedean copula. Likewise, assuming the same distortion for all variables
may not be realistic when the number of variables is large. How to introduce a greater
flexibility within the model?

The aim of this chapter is to propose a dependence model in a way that its higher-
dimensional margins are Archimax copulas but with possibly different distortions or stable
tail dependence functions. To this end, recall that a random vector with stochastic rep-
resentation (2.11) has an Archimax survival copula; it can thus be seen as a cluster of
variables Si,...,Sy affected by the same random distortion R. Suppose for the moment
that the variables X1, ..., X4 can be clustered in a way that each group is a random vector
of the form (2.11). This means that each cluster has an Archimax survival copula, with a
cluster-specific stdf and distortion variable. The idea pursued here is to introduce depen-
dence between the clusters by making the cluster-specific distortion variables dependent.
The advantage of this hierarchical approach is that the entire d-variate copula needs not
be constructed explicitly and that within-cluster dependence is Archimax by design.

The clustered Archimax model is introduced formally in Section 6.1; it only concerns
the underlying copula and thus has the added flexibility that the margins can be arbitrary.
Section 6.2 studies properties of clustered Archimax copulas, specifically how the depen-
dence between the distortions Ry, ..., Rg impacts the dependence between the clusters.
More importantly, extremal behavior of clustered Archimax copulas is established in the
same section. Proofs are reported in Section 6.3, while Section 6.4 formulates a conjecture

extending Theorem 6.1.
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6.1 Model specification

For a given stdf ¢ and d > 2, recall first the random vector S = (S, ..., S;) with survival
function Gy of the form (2.10), that is, for all s € [0, 1]¢,

Ga(s) = [max{0,1 — £(s)}]*"" . (6.1)

Note in particular that the margins of S are Beta; specifically, S; ~ B(1,d — 1) for
all i € {1,...,d}. Furthermore, let G = {G,...,Gk} be a partition of {1,...,d} into
K sets. Because the stochastic representation (2.11) only makes sense in dimensions
two and higher, we shall require, throughout this chapter, that dy = |Gg| > 2 for all
ke {l,...,K}. Hence K < [d/2] and of course also d; + --- + dx = d. Unless stated
otherwise, whenever we write G, = {i1,...,44, } we assume that the indices are ordered,
Viz. 1) < g < -or < g,

As we shall see shortly, a clustered Archimax copula is specified through a partition G
as well as K stdfs and Archimedean generators, respectively. To ease the notation, £ will
denote (01, ..., k) where for each k € {1,..., K}, ¢ is a dj-variate stdf. Similarly, ¢ will
stand for (¢4, ...,9¥x) where for each k € {1,..., K}, ¢} is a dy-monotone Archimedean

generator.

Definition 6.1. A d-variate copula C' is called clustered Archimax copula with cluster
partition G = {G1,...,Gk}, stdfs £ and Archimedean generators 1, in notation Cgype, if

it is the survival copula of a random vector X that satisfies the following:
(i) For each k € {1,...,K} and i; € Gy = {ir,... i}, Xi, = Rij(-k) where S® =
(Sik), ce Sg,?) has survival function Gy and Ry, is distributed as the inverse Williamson

dy-transform of ..

(i) The random vectors SW. . S gre mutually independent.

(i1i) The random vector R = (Ry, ..., Rk) is independent of sW. .., 8.

As the name suggests, certain multivariate margins of a clustered Archimax copula
are Archimax. Specifically, if X is as in Definition 6.1, Theorem 2.9 ensures that for
each k € {1,..., K} with G = {i1,...,14q4,}, the survival copula of (X;,... ,Xidk) is the
di-dimensional Archimax copula Cy,,, . In particular, in the boundary case when K = 1,
the entire copula is Archimax.

Before we investigate clustered Archimax copulas in more detail in the next section, we
will henceforth assume for simplicity that the partition G is contiguous. This means that
G ={1,...,d1}, Go={dy +1,...,d, + dy} and so on, and leads to no loss of generality.

The random vector X in Definition 6.1 is then

(RiS{Y,. . RSP, RS, RS (6.2)
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Furthermore, from the proof of Theorem 3.3 in Charpentier et al. (2014), the clustered
Archimax copula C' with cluster partition G = {Gy,...,Gk}, stdfs £ and Archimedean

generators 1 is the distribution function of

(W1 (RSO, (RSP, bk (RS, i (RieST)) (6.3)

6.2 Model properties

In this section, we investigate the extremal behavior of a clustered Archimax copula Cg 4 ¢.
The main result, Theorem 6.1 below, delineates the conditions under which Cg 4 ¢ is in a
copula domain of attraction of some extreme-value copula and identifies the latter. Again,
without loss of generality, we shall assume that the partition G is contiguous. Because
Cg.p.e 1s also the copula of 1/X with X as in (6.2), extremal behavior of 1/X will be
needed.

Given a contiguous partition G, we will need to introduce the following indexing of
components of (random) vectors. Specifically, we shall write X = (XU, . X)),
where for each k € {1,.... K}, X® = (x{* ..., x{"). Similarly, we shall partition

an arbitrary & € R? as & = (z,... %)), where for each k € {1,...,K}, ¥ =
(xgk), . ,xéi)). Finally, the margins of a d-variate distribution function H will be denoted
as H(V, o1 ™

The distortion vector R has an effect on both inter- and intra-cluster dependence at
extreme levels. Its extreme behavior is important, so it is natural to make the following

two assumptions. The first concerns the properties of the margins of 1/R.

Assumption 6.1. For a clustered Archimaz copula as in Defintion 6.1, assume that
{1,..., K} is the union of disjoint sets Dy and Do, such that

(i) k € Dy if and only if 1/Ry, € M(®,,) for some p; € (0,1).
(i1) k € Dy if and only if there exists an e > 0 such that E{l/R,(CHG’“)} < 00.

If Assumption 6.1 holds, k& € D; means that 1/Ry is heavy-tailed and holds if and
only if v, satisfies Condition 3.1 with my = 1/p, > 1. In contrast, k € Dy implies that )y,
satisfies Condition 3.1 with my = 1 by Proposition 2 in Belzile and Neslehova (2017). By
the same proposition, one then has that 1/XZ»(k) e M(®,,) for ke Dy andie {1,...,d;}
and 1/Xi(k) e M(®,,) for k € Dyandi € {1,...,d;}. This means that under Assumption
6.1, the respective clustered Archimax copula is in the copula domain of attraction of an
extreme-value copula Cj if and only if 1/X is in the maximum domain of attraction of an
extreme-value distribution with copula Cj. Such a domain of attraction result requires

further assumptions on the extremal behavior of the entire vector 1/R.
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Assumption 6.2. For a clustered Archimax copula as in Definition 6.1, assume that
the reciprocal distortion vector 1/R is in the maximum domain of attraction of a mul-

tivariate extreme-value distribution with stable tail dependence function {y/r given, for
('rla"‘)xK) € Rf; by

byr(Tr,... oK) = E[krrllax {2 Wi }]

.....

for some positive random variables Wy, ..., Wy with unit mean.

Here, we choose the d-norm representation for stable tail dependence functions as
discussed in Aulbach et al. (2015). The characterization of (standard) max-stable dis-
tributions can be attributed to Pickands (1975), de Haan and Resnick (1977) and Vatan

(1985). We are now in position to formulate the main result of this Chapter.

Theorem 6.1. Let Cg e be a clustered Archimaz copula with a contiguous partition
G and such that Assumptions 6.1 and 6.2 hold. For k € Dy, let by, = E{(1/Z;)"*},
Zy ~ B(l,d,—1). Then1/X € M(H), where the univariate margins of H are H( ) = =0,
fork €Dy andie {1,...,dy} and H, ") — &, fork € Dy andi € {1,...,dx}. The stable
tail dependence function of H is gien for all € R% by

(k W
lgype(x) =E [max{ max ( k ) }
keDy i=1,..., b {S }pk

Example 6.1 (Clayton Generator). Using the inverse Williamson d-transform (see Equa-

+ > (@) (6.4)

keDo

tion (2.6)), one can obtain the distribution of R in the case when 1y is Clayton with
parameter 6. When 1 is d-times differentiable, its inverse Williamson d-transform has

the density, given, for r >0, by

FA=1y(d) (-
falr) = (1

viz. Eq. (2) in McNeil and Neslehova (2010). In the Clayton case, one has for r > 0,

o' {TT5o(1/0 +3)}
(d—1)!

fr(r) = (1 + )~ /0-dpd=1

We can see that for d > 2 and any < d,

g {H?:o(l/e + j)} /oo pd—1-8

(d—1) (1 + Or)i/0+d

E(1/R") = dr < oo .

Thus if the k-th cluster has a Clayton distortion, then its components are asymptotically

independent from all other clusters since k € Dy in Theorem 6.1.

102



Example 6.2 (Joe generator). Recall the form of the Joe generator 1 from Table 2.1.
Since 1 —g(1/-) € R_19, 1/R € M(P1s9) by Theorem 2 from Larsson and Neslehova
(2011). Therefore if the k-th cluster has a Joe distortion, then it is asymptotically de-
pendent with all other clusters j € Dy, whose distortions R; are asymptotically dependent

Inter-cluster asymptotic independence can also be achieved if the distortions are

asymptotically independent, as shown in the following corollary.

Corollary 6.1. If {1/R; : j € D1} are asymptotically independent, then the limiting stdf
in (6.4) simplifies to

fg,{,e prk l/pk.., I/Pk Zf cey dk)‘
keDy keDo
Remark 6.1. Note that under the hypothesis of Theorem 6.1, the asymptotic behavior of
{1/Ry : k € Dy} has no influence on the form of {g.p.e.

The following corollary to Theorem 6.1 compares the inter-cluster stable tail depen-
dence function to that of the reciprocal distortions (1/Ry,...,1/Rk).

Corollary 6.2. Under the hypothesis of Theorem 6.1, let T = (i1, ...,ix) be a vector of
indices such that 1 <, < dj, for each k € {1,...,K}. Then, for all x € RY,

byr(x) < lgye(Tr) |

where w7 = (&, ..., &) is defined as follows: For k € {1,... K}, 2 = (x(IKl),
,J:(I]il)k) where for each j € {1,...,dy}, x(zk; =uxp if j =i and I(Ikz = 0 otherwise.

Remark 6.2. The first component of (6.4) elicits a new method to combine different
stdfs in a non-trivial way. Since the second component of (6.4) does not reveal any new
combination of stdfs, suppose for now that Dy = (. For a given k € {1,..., K} (and
therefore in Dy ), setting xl(-l) =0 foralll # k and allt = 1,...,d; recovers the marginal
stdf of the cluster k. Recall that by = E{(1/Zy)P*} with Zy ~ B(1,dy — 1). This marginal
stdf is equal to the following for (a:gk), o ,xg’?) € Ri’“,

e
A maX +
i=1,..., (bk{s }Pk)

which itself is equal to (}* ({a:gk)}l/”’f, ce {azsz)}l/”’ﬂ) by Proposition 2.1. In the bivariate
case, the form above is a special case of (7) in Engelke et al. (2019). The complete stdf,

defined in RL by
E |max ¢ max | ———
keDy | i=1,....ds bk{Si( )}pk




essentially mizes the marginal cluster stdfs (0" ({xM}Yer) 00K ({2 FEY/PK) with the
limiting stdf of (1/Ry,...,1/Rk). Corollary 6.2 shows that this mixing results in a
weaker asymptotic dependence between clusters than that of the reciprocal distortions
(1/Ry,...,1/Rg), characterized by {1 /g.

The clustered Archimax model studied in this chapter is related to several other recent
articles in the literature. Hierarchical constructions based on Archimax copulas were
proposed by Hofert et al. (2018). Specifically, their construction is based on the frailty
representation of Archimax copulas, which only holds for completely monotone generators.
Hierarchies can be induced via the frailties, the stdf, or both. It would be interesting to
establish the attractor of their proposed hierarchical Archimax copula and compare it to
that of the clustered Archimax copula. The extremal dependence structure of Liouville
copulas is established in Belzile and Neslehova (2017). The stochastic representation of
Liouville copulas is similar to that of Archimax copulas, as they are survival copulas of
vectors of the form RD), with R a nonnegative random variable and D a Dirichlet random
vector. The work presented in this chapter differs from this by replacing the Dirichlet
component by a vector S characterized by an stdf and by allowing for multiple distorting
random variables Ry, ..., Rk, thus inducing a hierarchy (or clustering). Finally, Engelke
et al. (2019) establish the extremal dependence of bivariate vectors of the form R X
(W1, Ws) for an extensive combination of asymptotic behaviors of both R and (W5, W5).
The attractor of the bivariate Archimax copula is in particular obtained as a special case

of their Proposition 1 and equation (6), see Sections 2.1 and 4 therein.

6.3 Proofs

This section contains the proofs of the results from the previous section. We begin with
auxiliary results in Section 6.3.1; Theorem 6.1 and its Corollaries are proved in Sections
6.3.2 and 6.3.3, respectively.

6.3.1 Auxiliary results

The following proposition is used to prove Theorem 6.1 but is also of independent interest.

Proposition 6.1. Let S = (51,...,S4) be a random vector with joint survival function
Gq as in (6.1) for some stdf £. Then 1/8 belongs to the mazimum domain of attraction

of a multivariate extreme-value distribution with unit Fréchet margins and stdf (.

Proof. For the margins, recall that for each i € {1,...,d}, S; ~ B(1,d —1). The survival
function of 1/S; is thus given by Fjss,(s) = 1 — (1 — 1/s)%7!; it is easily seen that
Fiss, € Ro1. Now set ¢, = {1 — (1 — 1/n)"/@"D}~1 From Equation 3.13 in Embrechts
et al. (1997), for all s; € R, it then holds that Pr(1/S; < ¢,s;) — ®4(s;) as n — oco. Thus
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1/S is in the domain of attraction of a multivariate extreme-value distribution with unit

Fréchet margins and stdf ¢ if and only if for all s € R‘i,
lim n {1 —Pr(1/S) <cps1,...,1/5 < cnsa)}
n—oo
= lim n[1 — Ga{1/(cns1),...,1/(cnsa) }] = €(1/51,...,1/54a).

n—oo

To show this, fix an arbitrary s € Rd and observe that because ¢, — o0 as n — oo,

Ga{l/(cns1), ..., 1/(casa)} = {1 — (1/cy)C (1/81;-“71/5d)}d_1

for all n sufficiently large. Now note that as n — oo, n/cf converges to 0 for all k €
{2,...,d—1} and to 1/(d — 1) for k = 1. Consequently,
lim n [1 —{1—=(1/e)l(1 )51, ..., 1/3d)}d_1}

n—00
d
nlrgokzzj( ) k+12€k(1/817"'71/8d):E(l/sl,...,l/sd)

as claimed. ]

The following lemma determines the normalizing sequences needed for the proof of
Theorem 6.1.

Lemma 6.1. Let Cg ¢ be a clustered Archimaz copula with a contiguous partition G and
such that Assumptions 6.1 and 6.2 are satisfied. Then the following hold:

(i) For each k € Dy andi € {1,...,dy}, 1/(R,S™) € M(®,,). Recall that for k € Dy,
= E{(1/Zy)P*} where Z, ~ B(1,d, — 1). Moreover, there exists a sequence of
positive constants {an} such that for all x > 0, nPr(1/Ry > anex) — xP* as

n — oo ananr(l/(Rk )>an bl/p’“x)—mv_pk as n — 00.
(i) For each k € Dy andi € {1,...,dy}, 1/(RkSi(k)) € M(®y). Moreover, there ezists a
sequence of positive constants {an} such that for all x > 0, nPr(l/Si(k) > AppT) —
7' as n — oo and nPr(l/(RkSi(k)) > aprbrr) — 7!

E{1/Ry}.

Proof. (i) Let k € Dy and i € {1,...,d;}. We then have (1/Ry) € M(®,,) by assumption
and 1/51-(k) € M(®P,) owing to the fact that SZ-(k) ~ B(1,d —1). By Proposition 3.1.1 in

Embrechts et al. (1997), there exists a sequence of positive constants {a,x} such that for

as n — oo, where b, =

all z > 0, nPr(1/Ry > apx) — P as n — oo. Because pp < 1, 1*3(1/*5*14(I<”))'0’€JrE < o0
for some ¢ sufficiently small. Using the lemma of Breiman (1965) and the fact that
by = E{(1/5")#} we then have, for all z > 0,

lim n Pr

1 1/p
— > auib ’“x) =
n—o0 <Rksi(k) k

1 PI‘(R o > ankbl/p’“ >
lim nPr( > ankbl/p’“ ) i = (:10(),16/"’“)_"’“61C =x . (6.5)
n—roo Rk PI‘<RLI@ > ankbk/pk.]f)
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Indeed, nPr(1/Ry > anby/™x) — (xb,/"*) 7% as n — oo by the choice of normalizing
constants {a,;}. The convergence of the fraction in the above display is due to Breiman’s
Lemma. Theorem 2.4 implies that since 1/Rj, € M(®,,) and p;, € (0,1), Fi g, € R—p,.
We also have that 1/Si(k) and 1/Ry, are independent, positive, and E[{l/Si(k)}V] < oo for
v € (pk, 1). By Breiman’s lemma, 1/(Rk52-(k)) e M(®,,) and

PI"(R S(k) > ankb L/px )

Pr(R—k > ankbk/p’“x>

E({S{V} %) = by

as n — o0.

(ii) Let k € Dy and i € {1,...,dg}. The proof of the result relies again on Breiman’s
lemma; see also Proposition 2(b) of Belzile and Neslehova (2017). Since 1/S% € M(®,),
Proposition 3.1.1 in Embrechts et al. (1997) implies that there exist sequences of positive
constants {a,x} such that for all z > 0, nPr(l/Si(k) > apr) — 7' as n — oo, and
this for all ¢ = 1,...,d,. Recall that by = E(1/Ry). Similarly to the proof of part (i),

Breiman’s lemma then implies that for all = > 0,

1
lim nPr(—k > ankbkx)
RS

n—oo

Pr(R > ankbkx>

kS

= (.Ibk)_lbk == I_l . (66)
nree Sz PI‘(W > ankbkx)

The convergence of the first part of the above is due to the choice of the normalizing

constants {a,x}. For the convergence of the second term, note that F 1/s®) € R_; and by

assumption, E{1/R,**} for some ¢, > 0. Finally, since 1/ Si(k) and 1/ Ry are independent
and positive, Breiman’s lemma implies that 1/(RkSZ-(k)) € M(®,) and that

Pr( 5 > ankbkm>

Pr (W > ankbk:v>

as n — 0o. This completes the proof. O]

The lemma below establishes asymptotic independence between clusters in D; and

clusters in Ds.

Lemma 6.2. Suppose that k € Dy, | € Dy, i € {1,...,dx} and j € {1,...,d;}. Let
{ank} and {an;} be normalizing sequences as in Lemma 6.1. As in Lemma 6.1 (i1), let

=E{1/R;}. Then for all z,y >0,

lim 7 Pr{1/(RS{") > aub, 2,1/ (RiS\") > ambiy} =0 .

n—oo
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Proof. Fix x,y > 0 and recall that p; € (0,1). The probability of interest can be written
as follows
nPr{l/(RkSi(k)) > ankb,lg/p’“x, 1/(RlS](-l)) > anbiy}

— / nPr{l/Sz(k) > (Inkbllc/pkxﬁc, 1/Sj(l) > anlblyrl}dFRle (Tk, Tl)
R

2
+

:/ nPr{l/Si(k) > ankbi/perk} Pr{l/Sj(.l) > apbiyri }dFg, g, (re, 1)
R

2
+

where the first equality is due to the independence between (Ry, R;) and (SZ-(k), Sj(.l)) and
the last equality is due to the independence of SZ-(k) and S ](-l). Next, consider the integrand

as a sequence of functions {f,} defined on Ri. Observe that for each 7,7, > 0,
fa(rie, ) < gulre,mi)
where {g,,} is itself a sequence of functions on R defined by
(T, 71) = gn(ry) = nPr{l/S](l) > anbyr} .

From the choice of {a; }nen, for all rg,r > 0, lim g,(rg, 7)) = g(rg, 1), where g(ry, ) =
n—ro0

1/(byyr;). Moreover,
J
1

/ gn (s 7)dF g, g, (1, 71) = nPr{1 /(Rlsy)) > amby} — J
R

2
+

1 1
g(re, r)dFp, g, (T, 71) :/ ——dFp, r,(rk,11) = '

byyr
2 R?2 YT

and

as n — 0o. We therefore have a sequence of nonnegative functions {g,} bounding {f,}

from above such that

lim /
n—oo R

Finally, note that

Gn Tk 71)dF R, R (T8, T1) :/ lim g, (r, r1)dFp, g, (7K, 1) -

%r R%r n—oo
fo(rg,m) = nPr{l/Sz-(k) > ankb,lg/perk} Pr{l/SJ(-l) > anbyr} — 0
as n — oo since
Pr{l/Si(k) > ankb,lg/p’“xrk} — 0 and nPr{l/SJ(-l) > ambyr} — 1/{byr}

as n — o0o0. The desired result then follows by the generalized Lebesgue dominated

convergence theorem (see Theorem 1.21 in Kallenberg (2002), for example). [

We now have enough preliminary results in order to prove Theorem 6.1.
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6.3.2 Proof of Theorem 6.1

A random vector (Yi,...,Yy) is in the maximum domain of attraction of the extreme-
value distribution H with Fréchet margins if and only if there exist sequences of positive
constants (a,;) € (0,00), i € {1,...,d}, so that, for all (y1,...,yq4) € RL,

lim n{l —Pr(Y1 <anvi,.., Yo < anya)} = —InH(y1,...,ya) -

n—oo

This is a multivariate extension of Proposition 3.1.1 in Embrechts et al. (1997), as used
in Belzile and Neslehova (2017). For each k € {1 ..., K}, set the sequences {an;} as done
in Lemma 6.1. Then the fact that the marginals of H are Fréchet follows from the said

Lemma. With the normalizing constants now set, the limit of interest is, for any fixed

K K
(xgl),.. xilll) .,:c§ ),...,.I((jK)) eR?,
lim n{l —Pr (1/(R1 N < a2V, /(R15 N < anlbl/plxg), ey (6.7)
n—oo

/(R S™) < anicblf 2™ 1)(RicSE)) < anKb}(/”KxéI,f)ﬂ ,

where for k € Dy, by = E{1/Ry} as in Lemma 6.1 (ii) and for ease of notation, p, = 1.
Let Z = {(k,i) : k=1,...,K,i =1...,d;} and P(Z) denote its power set. Then (6.7)

can be rewritten as

lim n —1)lP+tpy 1 > ap, bl/p’“ (k) . 6.8

imn 3 -1 N /st } 63
Let P(Z)|p, p, denote the subset of P(Z) such that for all p € P(Z)|p, p,, there exists
at least one (k,i) € p, and one (l,j) € p so that & € Dy and | € Dy. Now fix an
arbitrary p € P(Z)|p, p, and pick (k,1), (l,j) € p so that k € Dy and | € Dy. Then for all
{2+ (c,a) € p} € RY,

n Pr n {1/(R.S\)) > a,b/Peal}
(c.a)ep

< nPr{1/(RS™) > a, bl/pk ® 1/(R, ) . bl/pl u L0

as n — oo by Lemma 6.2. Thus the summands in (6.8) for which p € P(Z)|p, p, are
asymptotically negligible.

Now let P(Z)|p, be the subset of P(Z) such that for all p € P(Z)|p,, (¢,a) € p implies
that ¢ € D;. In other words, P(Z)|p, contains only sets of indices (¢, a) with ¢ € D;. Let
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N1 = Y ep, di and rewrite the summands in (6.8) with p € P(Z)|p, as follows:

no > )P () {1/(RSE) > anbleald} )

pEP(T)|p, (c,a)ep
_ (1 _ pr[ M) /(RSP < and™ o . 1/(RSE) < ar W”’dk)}D
keDy
_ / n<1 — Pr[ M {1/Rs < audy PP,
[071]N1 keDy

1/ Ry < a2 }])dF{S<k> repy (¥ ke Dy)

:/ n(l—
[0,1]M

[ﬂ {1/Rk < a,ib /Pki {mln {QS k) (k }}])dF{S(k) keDy }( ke Dl) .

keDy T

Now consider the integrand as a sequence of functions { f,,} defined on [0, 1]™* and observe
that for each n € N, 0 < f,, < gy, where g, is given, for each (s¥) : k € D;) € [0,1]™, by

dy
gu({s® : keD})=n Z ZPI‘ (1/R}c > ankbi/pkxgk)sgk))

keD; i=1
Clearly,
gn(s®) 1 ke D)) — g(s®™ : ke D)

as n — oo where

with
dy
/ g(s® ke Dl)dF{S(k):kefDl}(S(k) tkeDy) = Z Z(xl(‘k))_pk
[0,1]M keD; i=1
Moreover,

/ i gn(8") : k € D1)dF g0 4epyy (™) k € Dy)
o.M

dy, 0
- { > > P (10 > sty >} SPIPIC U

keD; i=1 keDy =1

as n — oo. Therefore, we have a sequence of majorants {g,} such that lim,_,. f Jn =
f lim;, 0 gn- Now recall that the vector of distortions 1/R has a limiting stdf ¢,z defined
in terms of the positive, unit-mean variables W7, ..., Wi in Assumption 6.2. Therefore,
fn — f point-wise, where for all (s*) : k € D;) € [0,1]™,

W,
(k) . — Bln b
f(s™ ke Dy) E[ke%x{ (b7 min {zMsM})en H '

109



Now, integrating over the ({s® : k € D;}) yields the following:
/ f(s™) 2 k € D1)dF g0 4epyy (87 k € Dy)
[0,1]

= el pos, (o))

Using the generalized Lebesgue dominated convergence theorem, we can thus conclude

that for all (z® : k € D;) € RY",

lim n Z (_1>\p|+1 Pl"( m {1/(RCS((I,C)> > anbbgcxg)}>

n—oo
PEP(I)|p, aldep

= el s ()

Analogously to P(Z)|p,, let P(Z)|p, contain only sets of indices (¢,a) with ¢ €
Dy. Let Ky = |Dy| and Ny = 5, di, and recall that p, = 1 for k& € D,. Next,
({a:l(-k) .k € Dy}) € RY? and rewrite the summands of (6.8) with p € P(Z)|p, as follows:

no > PP () {1/(RSY) > ancbilal))

PeP(Dlp, (c;a)€p
= n[l — Pr< ﬂ {1/(Rk5§k))§ankbkxgk)7 o 1/(Rk5§l’;))§ankbkxgz)}ﬂ
keDo
RlDll
+ keDsy

. 71/Séi)§ankbkxg;)rk})i|dF{Rkk6D2}<Tk ck c Dg) .

Now consider the integrand as a sequence of functions {f,} defined on RX* and observe
that for each n € N, 0 < f,, < g, where g, is given, for all (r, : k € D) € ]Rf?, by

dy,
gn(ri 1 k€ Dy) = n{ Z Z Pr(l/gi(k) > ankbmz(k)rk)}

keDy i=1

Clearly, for all (ry : k € Dy) € RE? and as n — oo,

gn(Tk : k € Dy) = g(rg - k € Dy) = ZZ

keDy =1 bkx Tk

Furthermore,

dj, 1

/Rm2 g(ri + k € Do)dF (R, kep,}(ri - k € Da) = Z (k)

+ keDy i=1 T
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and as n — 00,

/ . gu(Tr 1 k € D2)dF (R, kepyy (11 1 k € Dy)
RY

—n{z ZPI 1/ Rk >6Lnkbkl’ }—) Z (1k .
keDy 1

keDs i=1 i=

Analogously to the treatment of P(Z)|p, we have a sequence of majorants {g,} such that

limy, o0 [ gn = [ limy, 00 gp. It remains to determine the limit of the sequence of functions
{f,} defined for all (1}, : k € D) € RE? by

n[l — Pr< ﬂ {1/5@ > ankbkxgk)rb . 1/5((;:) > ankbkxgz)rk})}

keDo

By assumption, S*) = (SYC), . ,Sg;)) and SV = (Sfl), ce Sg)) are independent if k # [
and are therefore asymptotically independent as well. Using Proposition 6.1 and the
fact that 1/S™ € M(®y) for all k € {1,...,K}, i € {1,...,d;} one has that f, — f
point-wise, where for all (ry : k € Dy) € Rf,

f(?”k k€ Dl) = Z gk ({bkﬂ?gk)h@}il, ceey {bkl'((ilz)rk}il)

keDo
= > o) (01 ()
keDo
Integrating the limit f yields
Sk € Da)dFpuperny (k€ Do) = 3 6 ({271 (21
R? keD;

Thus for all (mgl), . ,xglll), . ,ng), ng)) € R?, the limit (6.7) is equal to
Wi
Bl o, (g ) + 2 6 (6 )

Recalling that 1/ (RkSi(k)) € M(®,,), one obtains (6.4) by plugging in the appropriate

Fréchet margins. O

6.3.3 Proofs of Corollaries 6.2 and 6.1

Proof of Corollary 6.1. Let K; = |D;| and recall that E[maxyep, ypWy| is the limiting
stdf of {1/Ry, : k € Dy}, defined for all (yi,...,yx,) € RE'. Letting {W, : k €
D;} be a (uniformly) random permutation of (K7,0,...,0) yields the independence stdf
Emaxgep, ysWi] = y1 + ... + Ym,. Due to the fact that the W}, are independent of all
5" plugging this into (6.4) yields, for all @ € R?,

lgape(x) = Z E[i:r{la}(‘:lk(bk{SZk }pk)} Z O ( xl . :r;dk M.

keDy 7 kE€Do



By Proposition 2.1, for each k € Dy,

o

s iy )] = Gy )

This completes the proof. m

Proof of Corollary 6.2. Fix an arbitrary & € RY and observe first that by Assumption

6.2 and the fact that the variables W) have unit mean,

lr(z) = E[kirllax {kak}] < E[gé%}f{kak} + Z kak]

K
k€Do

= E[géagl({kak}} + Z xr. (6.9)

keDo

-----

Next, note that {g 4 e(x7) = A(x) + B(x), where

and

xz,‘sz Wi
Be) = Bfma] max TVl e )
J=1,...dg bk(Sj )Pk keD, bk(Sj )Pk

Because for each k € Dy, b, = E{(I/Sj(k))pk}, we have that for any w € R and k € Dy,

E{max%} 2 E{xk—(l:)k} = TpWg ,
keDy bk(Sj )Pk bk:(Sj )Pk
so that

LW
E{ma —}>ma TrWp b
=N bk(Sj(k))Pk _keD}l({ kwih

['his implies that
B(x) > F W
(z) = [Iklel%f{% k}}

which together with (6.9) yields the desired result. O

6.4 Conjectured extension of Theorem 6.1

As it is stated, Theorem 6.1 does not account for the boundary case when 1/ Ry, € M(®,),
which can occur. It would thus be desirable to replace Assumption 6.1 of Theorem 6.1

by the following requirement.

Assumption 6.3. For a clustered Archimax copula as in Definition 6.1, assume that
{1,..., K} is the union of disjoint sets Dy, Dy, and D3 such that

(i) k € Dy if and only if 1/Ry, € M(®,,) for some p; € (0,1).
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(i1) k € Dy if and only if there exists an € > 0 such that E{l/R,(CHG’“)} < 00.
(111) k € Dy if and only if 1/ Ry, € M(P1) and E{1/Ry} = oo.

We conjecture that the variables whose distortions are in D3 have the same asymp-
totic behavior as those whose distortions are in Dy. More precisely, we surmise that the

following statement holds.

Conjecture 6.1. Let Cg e be a clustered Archimaz copula with a contiguous partition
G and such that Assumptions 6.3 and 6.2 hold. For k € Dy, let by = E{(1/Zy)*},
Zy ~ B(1,d,—1). Then1/X € M(H), where the univariate margins of H are Hi(k) =,

fork € Dy andi € {1,...,dy} andHi(k) =&, fork € DyUDs and i € {1,...,dy}. The
stable tail dependence function of H is given for all x € Ri by

)y
_ L k (k) (k)
logpe(x) = E [i%%}f{ii?a’ék (bk{sgm}pk)}] + > G@wg)) . (610)

""" k€DoUD3

One part of Conjecture 6.1 is clear, namely that Hi(k) = &, for k € D;. Indeed,
for any such k, the Corollary to Theorem 3 in Embrechts and Goldie (1980) implies
that 1/(RkSi(k)) € M(®q). So one can again find a sequence {an;} of positive constants
ensuring that for all z € R, nPr(l/(RkSi(k)) > aprx) — 1/x as n — oo. The main
difficulty in establishing the validity of Conjecture 6.1 that arises is the fact that, for
k € Dy and ¢ € {1,...,d;}, the relation between the above normalizing sequence {a,;}
and the normalizing sequences for 1/ Ry, 1/ Si(k) is unclear.

In order to prove the conjectured result, it suffices to prove the following three sister
lemmas. The first two, analogous to Lemma 6.2, are proved below. The third, conjecturing
asymptotic independence between different clusters in Ds, is the missing result that if

established would prove that Conjecture 6.1 is indeed true.

Lemma 6.3. Under the hypothesis of Conjecture 6.1, suppose that k € Dy, | € Ds,
ie{l,....dy} and j € {1,...,d;}. Let {an} be a sequence of positive constants such that
forall x > 0, nPr(1/Ry > appx) — x~P% as n — oo and nPr(l/(RkSZ-(k)) > ankbi/pkx) —
x =Pk as n — oo. Furthermore, let {a,} be a sequence of positive constants so that for all

x>0, nPr(l/(RlSZ-(l)) > ayr) = 1/x asn — oo. Then for all x,y € Ry,

lim n Pr{1/(ReS®) > auby/™e,1/(RSV) > auy} = 0.

n—oo
Proof. The proof is quite similar to the one of Lemma 6.2. Observe first that the assumed
sequences {a,} and {a,;} indeed exist, by Lemma 6.1 and the discussion in the paragraph
following Conjecture 6.1. Fix some arbitrary z,y > 0 and recall that p, € (0,1). The

probability of interest can be written as follows
nPr{1/(RpSM) > anby/ 2, 1/(RiSY) > auby}

= / nPr{l/Ry > ankbllf/pkxsgk), 1/R; > anlysgl)}dFsgk) 50 (sgk), sgl))
(0,1)2 K
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Consider the integrand as a function f, defined on (0,1)* and note that for all n € N,
0 < fo < gn, where g, is given, for all (s!¥), gl)) € (0,1)% by

gn(sgk), sgl)) = gn(sgk)) =nPr(1/Ry > anby Lok, ))

As in the proof of Lemma 6.2, for all ( s; (Z)) € (0,1)%

J

lim g, (s, s) = g(st, 1) = 1/{bp(xs?)Pr}

n—o0
Moreover,
(k) D w @ 1
/(0 e 9(s; ;8 )dFsg’“),S](l)(Si 5 ) = -
and
1
/ gn(sgk), Sg'l))dFs.(k[s(n(Sgk)a Sgl)) = nPr{l/(Rk ) > Angb /ka} - Pk
(0,1) i S,

as n — 0o. We therefore have a sequence of functions {g,} bounding {f,} from above
such that
lim gn(sgk), S§l)>dFS(k) S(z)(sgk),sél)) = / lim gn( ), )dF ®) S(z)(SEk), sgl)) :
(0 %

n—oo (0’1)2 i Mg ’1)2 n—o0

Finally, note that

fn(s(k), sy)) =nPr{l/Ry > a,;bj L/Pk g ), 1/R; > anlbll/mysy)} —0

7

asn — oo since n Pr{1/Ry > ankbllg/p’“xsgk)} — {b,lg/pkxsl(-k)}*pk and Pr{l1/R; > anlbll/plysy)}
— 0 as n — oo. The desired result now follows by the generalized Lebesgue dominated

convergence theorem. O

Lemma 6.4. Under the hypothesis of Congjecture 6.1, suppose that k € Dy, | € D3, 1 €
{1,...,dx} and j € {1,...,d;}. Let {an;} such that for all x > 0, nPr(l/Si(k) > Appd) —
z~! asn — oo and nPr(l/(RkSi(k)) > anpbpx) = 271 as n — oo. Furthermore, let {a,;}
be a sequence of positive constants so that for all x > 0, nPr(l/(RlSi(l)) > az) — vt
as n — 0o. Then for all x,y € Ry,

lim n Pr{1/(RiS\") > aub,/ 2,1/ (RiS\") > auy} = 0.

n—o0

Proof. This proof is almost exactly the same as the proof of Lemma 6.2. Again, the
existence of the norming constants {a,;} and {a,} follows from Lemma 6.1 and the
discussion in the paragraph following Conjecture 6.1. Fix some arbitrary z,y > 0. We

are interested in the limit as n — oo of

nPr{1/(RiS") > aubr, 1/(RiSY) > auy)

= /2 nPr{l/Si(k) > ankberk}Pr{l/Sj(.l) > ayyri }dFp, g, (Tr,71) -
R+
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Consider the integrand as a function f, defined on R2. Observe that for each n € N,
0 < f, < g, where for all (ry, ;) € R,

In (T, 1) = gn(T8) = nPr{l/Si(k) > anibrary}
From the choice of {a,}, for all (ry, ) € R3,
nggogn(rk,rl) = g(ri, ) = 1/(brary) .

Moreover, since b, = E(1/Ry),
/
1

/ gn(’f’k, rl>dFRk,Rl (Tk, 7’1) = nPr{l/(RkSz(k)) > (Inkbk%} — E
R

2
+

1 1
dFRth(Tk,Tl) - E .

(e, m)dFp, g, (T, T1) :/

2 2 byar
2 R2 OkTTk

and

as n — 0o. We therefore have a sequence of functions {g,} bounding {f,} from above
such that

lim Gn(Tks 71)dF R, R (T8, T1) :/ im g, (rk, r1)dFp, g, (7K, 1) -

oo Jr2 R2 "0
Finally, note that
fulre,m) = nPr{l/Si(k) > anibrary} Pr{l/S](-l) > anyrt — 0
as n — oo since
nPr{l/Si(k) > appbrparyt — 1/{bpxry} and Pr{l/Sj(-l) > ayyr} — 0

as n — oo. Using the generalized Lebesgue dominated convergence theorem concludes
the proof. O

Conjecture 6.2. Under the hypothesis of Conjecture 6.1, suppose that k,l € D3, i €
{1,...,dy} andj € {1,...,d;}. Let{ank} and{a,} be sequences of positive constants such
that for all > 0, nPr(1/(ReS™) > ama) = 271 and nPr(1/(R,SY) > apz) — 271 as
n — oo. Then for all x,y € R,

li_>m nPr{l/(RkSi(k)) > ankb,ﬁ/p’“x, 1/(RISJ(.Z)) > anyt=0.
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Chapter 7

Data applications

This chapter contains two applications of the models and methods developed in this
thesis to precipitation datasets. This data was kindly provided by Météo France, for
which I am very grateful. In Section 7.1, the semiparametric estimation procedure for
Archimax copulas, as introduced in Chapter 5, is applied to monthly maxima of daily
precipitation for three stations in French Brittany. The strengths of the Archimax model
are shown through this illustrative application, and are further pointed out via a small
comparative simulation study. Section 7.2 studies a much larger precipitation dataset,
weekly maxima for 155 stations spread over metropolitan France. Here, the heterogeneity
of the data discourages the use of a single Archimax copula model, so we instead turn
to the clustered Archimax copula presented in Chapter 6 which will also allow to model
asymptotic independence between stations that are far apart. After discussing certain
model choices and implications, a method for finding appropriate clusters is proposed,
using an established algorithm equipped with a distance which is tailored to the model.
In the second part of Section 7.2, possible directions for modeling joint risk of precipitation

at the medium level are discussed.

7.1 Precipitation over French Brittany

In this section, the practical usefulness of the proposed estimation procedure for simple
Archimax copula models is illustrated in the context of precipitation monitoring. The
data is a trivariate sample of daily precipitation amounts in French Brittany from 1976 to
2016 provided by Météo France. To avoid seasonality, the series is restricted to September
to February, during which most extreme events occur. The position of the three stations
Belle-Ile, Groix, and Lorient is shown in the left panel of Figure 7.1.

To remove time dependence, and since our primary focus is on extreme precipitation,
we considered monthly maxima at each station, totalling 240 observations. Blocking the
data by months also eliminates ties; in particular, it avoids the large number of zeros in
the sample of daily maxima. This series shows no departures from stationarity; the Ljung

and Box—Pierce tests do not reject the hypothesis of temporal independence except at
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Figure 7.1: Satellite map of French Brittany, showing the sites Belle-Ile, Groix, and
Lorient (left). Rankplots of monthly maximum precipitation for the months of September
to February, from 1976 to 2016 (right).

Groix, where there is slight evidence of dependence at lags 1 and 2. As the asymptotic
results hold for alpha-mixing sequences, time dependence is allowed.

The pairs of the normalized component-wise ranks of monthly maxima are displayed
in the right panel of Figure 7.1. These plots show strong correlation between Lorient
and Groix, which is not surprising given their geographical proximity. Also apparent is
asymmetry between Belle-Ile on the one hand and both Lorient and Groix on the other,
in the sense that large precipitation amounts at Groix correspond to large precipitation
amounts at Belle-Ile, but not necessarily vice versa, and similarly for Lorient.

Because the data at hand are monthly maxima, one might first think of fitting an
extreme-value copula model. However the test of Kojadinovic et al. (2011) clearly rejects
the hypothesis that the underlying copula is an extreme-value copula (p ~ 5 x 1079).
This may be explained by the presence of lower-tail dependence, which manifests itself
by the clumping of points in the bottom-left corner of the rankplots in the right panel of
Figure 7.1. The empirical estimates of the tail probabilities plotted against ¢ in the bottom
row of Figure 7.2 also indicate that Ay in (2.3) for all pairs is likely greater than 0. This
phenomenon is not present in multivariate extreme-value distributions, whose pair-wise
lower tail dependence coefficients are 0. Archimax copula models advocated in this paper
may capture lower-tail as well as extremal dependence. The Clayton-Archimax model
is particularly well suited. The latter assumes continuous marginals and an Archimax
copula of the form (', 4, where A is an arbitrary Pickands dependence function and 1)y is
the Clayton generator given in Table 4.1. Because 1y for any 6 > 0 satisfies Condition 3.2
(a) with s = 1/6, A, of each bivariate margin of Cy, 4 equals {24(1/2)}~/%. Furthermore,

Condition 3.1 holds with m = 1, so that Uy, 4 is in the domain of attraction of the extreme-
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Table 7.1: Pair-wise estimates of # along with 90% asymptotic confidence intervals in the
Clayton-Archimax model, model-based estimates of pair-wise Kendall’s tau of €, ; in

1)

the Clayton-Archimax model, and empirical estimates 7,, of pair-wise Kendall’s tau.

O 90% C.I T(Cwen,A> T
Belle-Ile & Groix 1.58 (0.77, 2.39) 0.54 0.56
Belle-Ile & Lorient 1.08 (0.49, 1.67) 0.51 0.52
Groix & Lorient 1.27 (0.54, 1.99) 0.64 0.67

value copula C4. The Clayton-Archimax model is fitted to the data in Section 7.1.1;

comparisons with other estimators of the limiting A are considered in Section 7.1.2.

7.1.1 Fitting the Clayton-Archimax model

We begin by estimating the Clayton distortion using the moment-based method pre-
sented in Section 5.1. The pair-wise estimates of # are given in Table 7.1, along with
90% confidence intervals. Because these intervals overlap, there is no evidence against a
trivariate Clayton-Archimax model with a common value of . The latter is estimated by
the average of the pair-wise estimates to be #,, = 1.31.

The next step consists of estimating A. We use the CFG-type estimator ASEG given
in (5.11) with ¢ replaced by vy, . The Pickands-type estimator is not well suited here,
because for the estimated value of 6, s ~ 0.76 < 2, so that the requirements of Theorem 5.2
are likely not met. In contrast, assuming that Condition 3.3 holds, the assumptions of
Theorem 5.1 are fulfilled; Conditions 5.1-5.7 are validated in Example 5.3. Comparing
the limiting processes in Theorems 4.1 and 5.1, the additional uncertainty stemming from
estimating @ clearly has an impact on the variability of the estimator. To assess the latter
in finite samples, we run a pilot simulation which is detailed in Section 7.1.2 and the
results of which are shown in Figure 7.4. The boxplots AXC(1) and AXC(2) summarize
the IRAE when 1 is known and estimated parametrically, respectively. Unsurprisingly,
parameter uncertainty increases the variability of the estimator.

A contour plot of AS@G is shown in the left panel of Figure 7.3. The contour levels of
ASEG show a clear global asymmetry, but axial symmetry with respect to Belle-Ile. This
pattern corroborates what was seen on the rankplots in Figure 7.1. This asymmetry may
be explained by the fact that Belle-Ile is located far off shore. This can lead to strong
localized rainfall which does not affect the stations at Groix and Lorient. Although Groix
is also an island, it lies much closer to the coast, and is hence not affected by the localized
rainfall phenomenon. Furthermore, it can also be seen from pressure maps and radar
images that heavy rainfall at Groix and Lorient is mainly due to large-scale weather

systems that affect Belle-Ile as well.
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Figure 7.2: Empirical estimates of xy(q) (top) and xp(¢) (middle) plotted against ¢
(Quantile) along with 95% confidence bands (black). The red lines indicate the model-
based estimates of Ay (top) and Ay (middle). Contour plots (bottom) of the empirical
copula (black dashed) and the fitted Clayton-Archimax copula (red). The plots cor-
respond to Belle-Ile & Groix (left), Belle-Ile & Lorient (middle), and Groix & Lorient
(right).

Finally, we check the fit of the Clayton-Archimax model. Because ASEG is nonpara-
metric, no existing formal goodness-of-fit test for copula models can be used. However,
the contours of the fitted trivariate Clayton-Archimax copula seem fairly close to the
empirical copula, as evidenced by the bottom panel of Figure 7.2. We also compared
various sample dependence measures to their model estimates. To assess the fit in the
tails, we consider each pair of stations j # k, say. Following Coles et al. (1999), we plot

the empirical estimates of
xv(q) = 2 — log[Pr{F;(X;) < ¢, Fi(Xk) < ¢}]/log(q)
xz(q) = 2 = log[Pr{F}(X;) > 1 — q, Fi(Xy) > 1 — q}]/log(q),

against ¢ together with the model-based estimates of the lower and upper tail dependence
coefficients Ay, and Ay for that pair, respectively. To compute the latter, we use that in a

bivariate Clayton-Archimax model, as

Ap=Timx(g) = {24(1/2} 7, Ao = limxu(g) = 2 - 24(1/2).
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The top two panels of Figure 7.2 show that the model-based estimates approximate the
empirical probabilities quite nicely when ¢ — 1, which indicates a good fit in the tails. The
contour plots of the empirical copula and the fitted Clayton-Archimax model displayed
in the bottom panel of the same Figure match nicely as well. Finally, we compared
empirical estimates of pair-wise Kendall’s tau with model-based estimates. To compute
the latter, we used (4.20) with 7, = 6/(6 + 2) and 7(A4) = fol {t(1 —1t)}/A(t)]dA'(t), and
approximated the integral in the expression for 7(A) with finite differences. Table 7.1
shows that the empirical and model-based estimates are very close. Overall, the fit of the
Clayton-Archimax model seems adequate, and allows to model the dependence in this

trivariate precipitation dataset, not only in extremes, but also in a medium size regime.

7.1.2 Comparison with other estimators of A

If the objective is to specifically assess the joint risk of extreme precipitation, then the
estimation of the Pickands dependence function A of the extreme-value attractor of the
distribution of the monthly maxima at the three stations is of interest. Because the
Clayton-Archimax copula Cy 4 is in the domain of attraction of C4, the estimator ASEG
calculated in the preceding section is also an estimate of the limiting Pickands dependence
function. As such, it can be compared to other nonparametric estimators considered in
the literature.

The first idea would be to block the data by seasons and consider the maxima over
the period from September to February. This reduces the sample size to n = 40, but the
hypothesis that the underlying copula is an extreme-value copula is no longer rejected
by the test of Kojadinovic et al. (2011) (p ~ 0.43). Consequently, the multivariate rank-
based CFG estimator of Gudendorf and Segers (2012) can be used. Another option would
be to use nonparametric estimators of A that only assume that the underlying copula is
in the domain of attraction of C'4y. We consider the FHM and EKS estimators of Fougeres
et al. (2015) and Einmahl et al. (2017), respectively. The FHM estimator is denoted as
lolagg in Section 5.1 of Fougeres et al. (2015), built from Eq. (15) therein, and its tuning
parameters are r, = 239,a = 0.8, = 0.8, k, = 237. The bias-corrected EKS estimator
is denoted En’k,kl and its parameters were set to the default choices from the R package
tailDepFun.

The three competing estimators CFG, FHM, and EKS are displayed in Figure 7.3
along with ASEG from Section 7.1.1. The contours of the CFG estimator are rougher,
which is not surprising given that it is based on 40 observations. Although we expect this
estimator to be more variable because it is based on a smaller sample, it is comforting
that it shows a similar pattern as AS}ZG; this further confirms that the Clayton-Archimax
model is adequate for the data at hand. The contours of the FHM and EKS estimators

are much more irregular which makes the plots difficult to interpret.
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To compare these estimators further, we ran a pilot simulation study mimicking the
data. We generated N = 1000 samples of size n = 240 from a trivariate Clayton-Archimax

copula with # = 1.31 and the scaled negative extremal Dirichlet Pickands dependence
CFG.

function parameters a = (1,2, 3) and p = 0.9 whose shape roughly resembles An’c ; see
the left panel of Figure 7.4. For each sample, we estimated A by: (i) the CFG-type
estimator from (4.4) assuming ¢ known; (ii) the CFG-type estimator from (4.4) with
0 estimated by the moment estimator 6, from Section 7.1.1; (iii) the CFG estimator
of Gudendorf and Segers (2011) based on block maxima with 40 blocks; (iv) the FHM
estimator of Fougeres et al. (2015); (v) the EKS estimator of Einmahl et al. (2017). The
boxplots of the IRAE are shown in Figure 7.4. Even if ¢ is estimated by vy, , ASEG is
superior to the CFG, FHM and EKS estimators especially in terms of bias.

To sum up, this application on precipitation data demonstrates the feasibility of the
proposed inference techniques but more importantly illustrates the potential of Archimax
copulas to model joint risk in subasymptotic settings. Since the max domain of attrac-
tion of Archimax copulas is known, one can check the performance of the latter model
by comparing it to models using the max-stable assumption. In this particular data ap-
plication, the Archimax model accurately captures the bulk and both tails of medium to
high precipitation observations. Performance at extreme levels is no doubt also due to
the fact that the studied weather stations are located in a relatively small area. To model
extremes over larger spatial scales however, more flexible models than those studied herein
are required in order to capture asymptotic independence, as noted, e.g., by Huser et al.

(2017) and Wadsworth et al. (2017).

7.2 Precipitation over France

This section is concerned with a much larger data set than the one studied in Section 7.1.
Here, we have access to precipitation measurements from Météo France at 155 stations
across France, for the years 1976 to 2016. As seen in Figure 7.5, some regions such as Cote

d’Azur and Tle-de-France (the Parisian metropolitan area) feature higher concentrations
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Figure 7.3: AXC: CFG-type estimator AS@G based on monthly maxima and the Clayton-
Archimax model. CFG: Rank-based CFG estimator of Gudendorf and Segers (2011) based
on seasonal maxima. FHM and EKS: Estimators of Fougeres et al. (2015) and Einmahl
et al. (2017) based on monthly maxima.
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Figure 7.4: Left: NSD Pickands dependence function A from Table 4.1 with e = (1, 2, 3)
and p = 0.9. Right: Boxplots of IRAE(A,) based on N = 1000 samples of size n = 240
from a 3-variate Clayton-Archimax copula Cy, 4 with § = 1.31 and the NSD A with
a=(1,2,3) and p = 0.9. AXC(1): ASEC from (4.4); AXC(2): ASEC from (5.11) with 6,
from Example 5.2; CFG: the CFG estimator of Gudendorf and Segers (2011) based on
block maxima with 40 blocks; FHM: the estimator of Fougeres et al. (2015); EKS: the

estimator of Einmahl et al. (2017).
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Figure 7.5: Map of the studied 155 weather stations located in metropolitan France.

of stations while other locations are lacking, for example the North-East region of the

Ardennes. Since the stations cover a large territory, we need to be more restrictive than
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in Section 7.1 in order to avoid seasonality in the dataset. As was done in the work of
Bernard et al. (2013), which also studied a precipitation dataset with several stations
spanning metropolitan France, we restrict the observations to the months of September,
October and November. Although the different regions of France can exhibit different
weather patterns, this season usually features the heaviest rainfall. For example, the
“Orages cévenols”, mentioned in the introduction, occur during this time period. Here,
the dependence of weekly maxima of daily precipitation measurements is modeled. Since
the block size is obviously smaller than the monthly maxima of Section 7.1, an extreme-
value copula is not appropriate and lower tail dependence between stations is present as
well.

The objective of this section is to fit a clustered Archimax copula Cgye proposed and
studied in Chapter 6 to this selected dataset. This entails that a partition of the d stations
into K sets, denoted G, must be made. Each resulting ordered set G, = {i1,..., %4},
k€ {l,..., K}, represents a cluster modeled via an Archimax copula, itself characterized
by a stable tail dependence function ¢ and an Archimedean generator v;; as such £ =
{l1,..., U} and ¥ = {¢1,..., YK}

The proposed approach is to first determine an appropriate partition G via a clustering
algorithm presented in Section 7.2.1. Then, an Archimax copula is fit to each cluster using
the semiparametric procedure of Chapter 5. As was the case in Section 7.1, the Clayton
family was deemed a good choice to model the distortions across all clusters. Of course,
in other applications, several distinct Archimedean families for different clusters could be
a valid choice. Here, the presence of lower tail dependence made the Clayton family a
good candidate; it will be made apparent that a single Archimedean family also greatly
simplifies the clustering procedure. One should also note that as shown in Example 6.1,
the choice of a Clayton generator for all distortions implies asymptotic independence
between all clusters, regardless of the dependence structure of the distortions. Once the
Clayton Archimededean generators {1y, }&* ;| are estimated, the stdfs {¢;}/, can also be
estimated nonparametrically.

The inter-cluster dependence is modeled through the distortions (R, ..., Ry), which
is the topic of Section 7.2.2. The choice of Clayton generators implies that the distor-
tions have marginal densities, and we further assume that the vector (Ry, ..., Ry) has a
parametric copula Cg with copula density cg, where § € = for some parameter space =.
For example, were we to chose a normal copula for C¢, & would be the correlation matrix.
Therefore, the density of (R, ..., Rg) is given for all (r1,...,rx) € R, by

fr(r - ri) = ce(Fry(r), - Frg (ric)) T [ fr (i) (7.1)

k=1
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where, as seen in Example 6.1, for each k € {1,..., K} and r, € Ry,

0 {T10(1/06 + )}
(d, —1)!

(1 + rik)_l/ek_dszk_l

fr,(rx) =

and Ff, is the corresponding cumulative distribution function (see Equation (2.6)):

dj—2 a0 _1\(de—1),.dk—1 ) (dp—1)
_ g1 _ (=1)rite, (re) (1) Vr g (k)
Fry{re) = Mg () = 1= ) === - 5,y

7.2.1 Clustering the stations

In the aforementioned work of Bernard et al. (2013), the partitioning around medoids
(PAM) algorithm, introduced by Kaufman and Rousseecuw (1990), is argued to be well
suited to cluster asymptotically dependent groups of random variables. To do so, Bernard

et al. (2013) use a the PAM algorithm with the F-madogram employed as a distance, viz.
dij = E|F;(X;) — Fi(X;)]

where for each station k, X; ~ F} is the random variable of interest. Clearly, the above
distance is not affected by marginal behavior and can be seen as being copula-based.
As shown by Cooley et al. (2006), the F-madogram is in fact linked to the upper tail
dependence coefficient (see Definition 2.3). Indeed, if X; and X; have max-stable joint
distribution Fj; composed of an extreme-value copula C;; with margins F; and F}, then

11—\

di': )
J 23—)\”

(7.2)
where \;; = A(Cj;). In Bernard et al. (2013), it is argued that the PAM algorithm is
effective at clustering extremes. Unlike the k-means algorithm which takes averages as
cluster centers, the PAM algorithm selects medoids instead, meaning that the distance
defined by the equation above remains interpretable at any step of the algorithm.

The dataset of weekly precipitation maxima at hand is clearly not distributed ac-
cording to a max-stable distribution, as was the case for the monthly maxima of Sec-
tion 7.1. However, as shown in Proposition 2 p.83 in Murphy (2018), C;; need not be
an extreme-value distribution for (7.2) to be a bona fide distance. Indeed it suffices that
Ci; € CDA(C)) for some extreme-value copula Cy.

To compute the distances, we chose to fit the bivariate Clayton-Archimax to all pairs
of stations by using the semiparametric approach of Chapter 5. Thus for each i # j, we
have at our disposal an estimate 6;; for the Clayton generator as well as A;; = 2—£;;(1, 1),
recalling that the stdf of the attractor of a Clayton-Archimax copula is equal to that
of the Clayton-Archimax copula itself. Note that for these pairwise estimates, zeros

were not considered, as is the case in Bernard et al. (2013) (though their threshold is
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3mm). Since the objective is to model medium to extreme precipitation and since \;; in
(7.2) is a measure pertaining to the upper tail, removing the zeros removal was deemed
acceptable. One can also note that as the model is specified, the dependence between
stations that do not belong to the same cluster is not modeled by a bivariate Clayton-
Archimax copula. However, the Clayton generator proved to be flexible enough and the
estimated tail dependence coefficients were very similar when estimated via two other
techniques, a non-parametric estimator (see Figure 7.2) and a parametric approach using
a t-copula. An estimator for (7.2) is then simply obtained by plugging in j‘w

Grouping stations which exhibit strong asymptotic dependence is not sufficient for
the clustered Archimax copula model to be applied. For each cluster k € {1,..., K}, the
assumption of a single distortion Ry affecting the extreme regime of the dj stations char-
acterized by (SYC), o ,Sc(lz)) also needs to be reasonable. To account for the assumption

of a single distortion per cluster, we introduce weights for each pairwise distance, viz

where e R
 Dngligy Nia Akl Ok — Oji
D k(i) Mk

Theses weights encourage stations within the same cluster to have pairwise estimates 0

]

that are similar. The product S\US\M ensures that for stations & which are “far” (in the
sense of extremal dependence) from ¢ and j, the differences |é,k — éjk| have less of an
impact.

We also mix dV above with the classical euclidean distance betweens stations d%. For
two stations 7, j with longitudes lon;, lon; and latitudes lat;, lat;, this distance is simply
d = {(lon; — lon;)? + (lat; — lat;)*}'/? and the resulting distance d* is defined by

W ple
di; = (1—a)—r— +a—2
K maxdy)  maxdg
i#] i#]

with a = 1/3. This mixing parameter was chosen to be small since the geographic distance
d% was employed to avoid rare and spurious groupings of stations that were far apart, and
does not represent “climatological” distance well. For example, the east and west coast
of Corsica will often observe different weather, even though the distance between them is
relatively small. In the case of Corsica, this is explained by the mountainous topography
of the island.

For a given number of clusters K, the PAM algorithm, which is implemented in the R
package cluster, consists in choosing K cluster medoids at random and following three

steps:

(1) Each station is assigned to the nearest medoid according to dj;.
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(2) For each cluster k € {1,..., K}, find the new medoid that minimizes the total intra-

cluster distances based on d;.
(3) Repeat steps (1) and (2) as long as at least one medoid has changed.

To chose the number of clusters K, we us the average silhouette coefficient as introduced
by Rousseeuw (1987) and implemented in the cluster package. According to this method,
K = 41 clusters is a good choice; the result of the PAM algorithm can be seen in Figure 7.6.
The mean silhouette coefficient for & = 41 is about 0.32. The closer a coefficient is to 1, the

better the clustering, while a value of 0 is synonymous for a non-informative clustering.
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Figure 7.6: Map of the clustered 155 weather stations resulting from the PAM algorithm
using d;;.

The resulting clustering exhibits interesting cluster shapes. Unfortunately, the 40th
cluster is a singleton and cannot be captured by our modeling procedure. One can note
that mountainous regions are often more heterogeneous, which can be seen in the south-
east and south-west of the territory. Moreover, the 1st and 11th clusters seem to follow
the Rhone valley. The Cévennes region, roughly corresponding to cluster 27, is separated

from other neighboring stations which is expected.
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Once the clusters are determined, each Archimedean generator vy, for k € {1,..., K},

can be estimated by averaging the pairwise estimates, viz.

~ 2 ~
O = di(dy, —2) Z .Oij ’
INISIPRE]
where I;, = {j : station j is in cluster k}. The stable tail dependence functions {¢;}5~_,
can then be estimated nonparametrically. For ease of notation, let {{,}X | and {1, 1
denote the estimated stdfs and Archimedean generators, respectively.

This clustering procedure is work in progress whose quality needs to be evaluated via
simulations. Generating data from the model would allow to test the robustness of the
choices made, such as the distance matrix used, the estimation of the );; coefficients or
the choice of the number of clusters K. The procedure will also be evaluated by applying
it to other datasets, such as a portfolio of stocks from various industries. The use of
Fuclidean distance between stations is an ad-hoc way to avoid the very rare but obvious
misclassifications that occurred without it. The drawbacks involve the risk of over-fitting
and inducing user bias in the clustering; the objective in the future is to create a robust

algorithm that does not require this type of tuning and can be applied in other settings.

7.2.2 Modeling the distortions

At this stage, suppose that G as well as the functional parameters {1y}, and {f;},
have been estimated. Recall the form of the density of R = (R, ..., Rxk) given in (7.1).
The aim of this section is to discuss a strategy on how the parameter £ of the copula of the
distortions R can be estimated. To begin, suppose that U = (U(l), ey U(K)) ~ Cgpe, SO
that (o {UW}, ..., ¢ {UT}) < (RS ... Rk S™)). The main difficulty in estimating
& lies in the fact that even if U were observable, R cannot be observed. However, the

following result will prove to be helpful.

Proposition 7.1. Suppose that (R15(1>, o ,RKS(K)) isad= Zszl dy.-dimensional ran-
dom wvector as in Definition 6.1 and assume further that (Ry, ..., Rk) has a density fg.
Forallk e {l,...,K}, let

B, = {(x(1) min {SZ-(k)} ,

’L'G{].,...,dk}
where 1 is a vector of 1’s of dimension dy. Then, the density of Y = (Y1,...,Yk) =
(R1Bu, ..., RkBk) is given, for all (yi,...,yx) € RE, by

fR(yl/Dl--->yK/DK)>
Di...Dg ’

v, yK) :E< (7.3)

where Dy, ..., Dk are independent and such that Dy, ~ B(1,d, — 1) for k € {1,..., K}.
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Proof. The distribution of By can be seen to be Beta B(1,d; — 1):

Pr(By, > s) = Pr(S{” A ... A S > s/6,(1))
= Pr(S{Y > s/6:(1),..., 80 > s/6,(1)) = (1 — s)%7".

To obtain the density of Y, we simply apply the transformation theorem. To do so, define

the said transformation t as follows:
t: (Rl,...jRK,Bl,...,BK) — (RlBl,...,RKBK,Bl,...,BK) .
Thus, the components of the inverse of ¢ are as follows:

yi/yjerx  for je{l,...,K}

t Ny, Yk, .
7 (n YK, YK +1 Yorc) = {yj for je{K+1,...,2K}

The Jacobian is then an upper triangular matrix with determinant equal to Hjil (1/yjtk)-
Therefore, the density of (R1By,..., RxkBk, Bi,...,Bg) is given, for (y;,...,yx) € Rf
and (y1+K7 oo 7y2K) S (07 1)K7 by

)k—2

K
1—?/+K

IR /Yisks -, Yk /YK 4
(1 /914 / H T

To get to the density of (R By, ..., Rk Bk), we must integrate out the second half of the

vector:

dy]—i—K

L 1 K — K)d
/0 / P e ) T S
j=1

dk: - 1)y]+K

This is equal to

E (fR(yl/ll))ll,‘.‘.'i)iK/DK)) .

[]

If the density of is the form (7.1), then (7.3) only depends on the parameter £&. One
can therefore attempt estimating £ using maximum likelihood techniques. However, max-
imizing the likelihood based on (7.3) directly is unwieldy since the expectation cannot be
calculated explicitly. Instead, we propose to use an EM algorithm. To this end, suppose
for the sake of simplicity that Uy, ..., U, is a sample from Cgye where G, 9 = {; }5_| and
£ = {{;}K | are all known. Suppose also that the ¥ = {1}/, are Clayton, hence their
parameters {0}, are also known. Then, let Y, ..., Y, be defined, for alli = 1,...,n,

as follows:

Jje{1,...,d1} Jje{1,....dx }

((1) k(1)

min {¢g, (U)} min {¢g, (US))}
Yi:(}/;la--'ay;K):( )a (74)
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making it a random sample from (7.3). In the above display, Ui(f) is the i-th copula
observation of the j-th component of the cluster k. To devise the EM algorithm, write

the log likelihood as follows:
ln L(S, Yl, ey Yn, ) Bl, e ,Bn) = Zln fX\B(Xz|Bza £> + Zln fB(Bz) .
i=1 i=1

Conveniently, the second part in the above does not depend on & and can be dropped.
Therefore,
1nL(€> Y17 s 7Yn7 ; B17 s aBn) X Zlan\B(Xl‘B’M £) :
i=1
Recalling the form of the density in (7.1), one can further simplify the above to obtain

the form
InL(E&Yy,....Y,:By,...,B,)x WLE&Y,....,Y, By, ... B,

= Z Ince(Fr(Y:/By)) ,

i=1
where the marginal densities of R were removed as they do not depend on &£. The E step
at time step s consists in computing the conditional expectation to define the following

objective function:
Q(S)g(k)) =E [lni(gv Y17 s 7Yn7 ;B17 s 7Bn)|Y17 s 7Yn7£{s} )

where 5{8} denotes the parameter estimate at time step s. The M step is then to maximize

() with respect to &, viz.
g = argmax (& €")

The E and M steps are repeated until convergence ensues. To perform the E step, the
expectation needs to be approximated via Monte Carlo. This is done by drawing from
the distribution of B|Y, whose density is proportional to fy p. These draws can be
performed using either importance sampling or rejection sampling, which is currently
being investigated.

Of course, the properties of the resulting estimator é need to be investigated, both
theoretically and via simulations; this is the objective of the immediate future. In fact,
the matter is further complicated by the fact that we have to resort to using pseudo-
observations. The first level of approximation is that the copula sample is in fact a
rank-based pseudo sample as given in Equation (2.13). Moreover, the inverse generators
{1} | are estimated parametrically and the stdfs {¢;}5 | are estimated nonparametri-
cally. Thus (7.4) is replaced by the following, for i = 1,... n:

~

( min, {95, (U]} min {¢;, (U1)} wmin {aséK(Uf“)})

goee ey ~

(1) l(1) k(1)

g e e ey
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where (A]Z-(f) is the normalized rank of the i-th observation of the j-th component of the
cluster k. The pseudo-observations in the above display therefore inherit uncertainty due
to the estimation of the copula sample, the partition G, the generators {u;}, and the
stdfs {¢;} . In the near future, this should be further investigated through simulation

studies.
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Chapter 8

Conclusion and future work

The first objective of my Ph.D. was to develop inference techniques for the Archimax
class of copulas. My understanding is that this family, introduced in the bivariate setting
by Capéraa et al. (2000), was mostly seen as a tool for simulation studies. Indeed, one
can test the effectiveness of estimation techniques for asymptotic dependence structures
using a variety of Archimax copulas with known extreme-value attractor. In Fougeres
et al. (2015), the proposed inference procedure for limiting stable tail dependence func-
tions only assumes the existence of an extreme-value attractor and involves the choice
of a threshold. The simulation study therein uses Archimax copulas to study the finite
sample performance since a variety of asymptotic regimes can be tested. In Biicher et al.
(2019), the efficiency of the block maxima and peaks over threshold methods are com-
pared in the multivariate setting. Through second order methods, the authors find that
the convergence of one method usually implies the convergence of the other; however the
rates might be different depending on the underlying copula. The Archimax family is
employed in this paper to illustrate this fact both theoretically and through a simulation
study. Depending on the choice of the Archimedean generator and its index of regular
variation at zero, either the block maxima or the peaks over threshold method will prove
to be asymptotically superior. This result is particularly interesting given the preference,
in recent years, for the latter method in the extreme value analysis community.

While there is still work to be done to improve its ease of use, I believe that the
Archimax family also has its place in applications to risk modeling, in areas ranging from
insurance to environmental sciences. As seen in Chapter 7, it appears that this family can
be well suited to fit multivariate datasets which are not “yet” distributed according to an
extreme-value distribution. Taking large block sizes or imposing high thresholds can be
quite costly; using an Archimax model allows for the retention of a greater proportion of
the data. The estimation procedure proposed in this thesis is geared toward inference on
the extremal dependence regime of the data at hand. Since the main driver of the said
regime is the stable tail dependence function, a nonparametric approach offers a certain

flexibility and granularity. This of course comes with typical drawbacks, for example
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the fact that the estimator itself is not a valid stdf and the fact that goodness-of-fit is
hard to check. The parametric estimation of the Archimedean generator comes with
several advantages. Firstly, many single parameter families have already been extensively
studied in the literature. With some exploratory data analysis, one can identify certain
properties that seem to be present and choose an appropriate Archimedean family, as
is done in Chapter 7. Since the indices of regular variation at zero and infinity of the
generators are often linked to their parameter, this allows to estimate the maximum and
minimum attractor of the (assumed) underlying Archimax copula, when combined with
the estimated stdf. Finally, the assumption of a parametric family for the Archimedean
generator made the extension of the weak convergence results presented in Chapter 5,
more manageable. Three other estimation procedures were considered during the course
of my Ph.D. but did not make it into this thesis, nor the resulting paper. The first was a
completely parametric approach; but having to choose a family for the stdf was not ideal,
especially in higher dimensions where asymmetry often implies many extra parameters
to estimate. However, likelihood-based estimation boasts many advantages and this is an
option worth having in my opinion. Secondly, I attempted a pairwise semi-parametric
approach where the stdf and Archimedean generator were iteratively estimated assuming
the knowledge of the other functional parameter until some stability was attained. The
estimator of the stdf was the same as the one proposed in this thesis while the estimator
of the Archimedean generator was based on inverting Kendall’s tau. In simulations, this
procedure would sometimes diverge and theoretical grounding to study the method was
lacking. Finally, I attempted a completely non-parametric estimation of the Archimedean
generator using the nested diagonal property also present in Archimedean copulas. This
is in fact an extension of the work of Di Bernardino and Rulliere (2013), but results of
the procedure in simulations were not encouraging. Thus the semiparametric approach
was retained and extensively studied via asymptotics, simulations and an illustrative
application to a trivariate rainfall dataset. This work makes up for most of this thesis
and resulted in the paper titled “Inference for Archimax copulas” to be published in the
Annals of Statistics this year. I also plan to write an R package in the upcoming months
to make the tools developed for Archimax models available online.

Given the promising results for the simple Archimax model, it appeared natural to
extend it to a hierarchical construction as done in Chapter 6. For two univariate mar-
gins of a distribution with an Archimax copula to be asymptotically independent, their
marginal bivariate copula must necessarily be Archimedean. To avoid this restriction
and to allow for a more parsimonious model in higher dimensions, Archimax copulas
can be linked together via a dependence structure on their distortions, giving rise to the
clustered Archimax copula. In Chapter 6, the maximum domain of attraction of a clus-

tered Archimax copula is found and shown to have certain desirable properties. Namely,
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extreme-dependence between clusters is found to be very flexible, due to both the distor-
tions and their own asymptotic dependence having an impact. Notably, an interesting
by-product of this work is the discovery of a new way to construct stable tail dependence
functions. I hope to complete the proof of the extension proposed in Section 6.4 which
would cover virtually all possible cases of distortions and their attractors. Additionally,
determining the minimum domain of attraction of a clustered Archimax copula appears
to be an achievable goal in the near future, most likely by employing similar techniques
to those used in Section 6.3. These results put together will make up for a paper on
clustered Archimax copulas that I am expecting to submit in the upcoming months.

Section 7.2 contains work in progress for a paper in preparation with Samuel Per-
reault from Université Laval. The objective is to develop tools to use clustered Archimax
copulas in an applied setting. To do so, we are working with two datasets. The first, as
presented in the aforementioned section, is a dataset consisting of precipitation measured
at over one hundred stations spread across a large territory. Here we want to identify
small regions which have high risk of joint extreme precipitation, with their shape de-
scribing storm patterns during the studied season. The second, which we are currently
working with and therefore did not make into this thesis, is a portfolio dataset consist-
ing of stock returns where one can easily imagine different groups of stocks in the same
industry being asymptotically dependent, while stocks from different industries might be
less intertwined. Our approach so far has been to adapt existing clustering algorithms to
the model in order to find groups of variables with strong asymptotic dependence, and for
whom the assumption of a single distortion affecting the said extreme regime is a reason-
able assumption to make. The second step is then to fit Archimax copulas to each cluster
with the semiparametric approach discussed earlier. Finally, the dependence between the
distortions is inferred upon. This sequential approach clearly has the drawback of not
taking into account the uncertainty of the clustering when fitting the Archimax copulas
and the distribution of the distortions. I think an interesting project would be to borrow
from bayesian methodology to improve on this, as is done, for example, in Vettori et al.
(2019).

From the work I have done during my Ph.D., three problems for future research have
become apparent to me. Although they are related to this thesis, they are more ambitious
than the extensions and improvements already suggested in the previous paragraphs. The
first one is related to the stochastic representation of simple and clustered Archimax
copulas. The representation used in this thesis is the most general as it works for any
Archimedean generator, while the frailty representation (see Section 4.2 in Joe (2014), or
McNeil (2008)) is only valid for completely monotone generators. However, this generality
comes at the expense of handiness. It is not known how to simulate from the random

vector S of RS in (2.11) apart for some examples such as the logistic stdf. However,
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there appears to be some parallels to be drawn from the spectral representation of max-
stable processes of De Haan et al. (1984). It seems like the Poisson process in the latter
can be replaced by a binomial process whose parametrization depends on the stable tail
dependence function that characterizes S, however many complications arise. This would
amount to sampling from any multivariate extreme dependence structure and to the best
of my knowledge, this is a high-reaching problem that has been sought after for some
years. The second long term project I have in mind stems from the precipitation dataset
I have available from Météo France. While the multivariate approach from this thesis can
answer some questions, there is an obvious flaw in that inference at locations between
stations is not available. The spatial nature of the data calls for a spatial model, and one
could argue that the temporal aspect should also be modeled. In the current literature,
a lot of effort is being put into developing models that are able to capture the extremal
dependence structure of precipitation (see, for example, Huser et al. (2017), Wadsworth
et al. (2017) and Bacro et al. (2019)). Indeed, as previously discussed, there is evidence
that rainfall quickly loses its extreme dependence as distance between locations grows.
Can the distortion on an extreme regime paradigm be applied in a spatial setting? While
there are similarities with random scale mixtures, the work done in Chapter 6 points
toward the distortions being themselves a field over the observed domain. The margins
would no longer be Archimax copulas, as it is the case with inter-cluster margins in
the clustered Archimax copula model, but perhaps this could be an interesting area to
explore. Finally, causality and extremes has garnered a lot of interest recently, especially
in applications related to climate change research. In the data applications presented
in this thesis, storm patterns were picked up both by the asymmetry in the stable tail
dependence and the shapes of the regions identified as asymptotically dependent clusters
of stations. This constitutes, in my opinion, a very compelling reason to explore how

concepts in extremal dependence can be linked to causality.
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Appendix A

Detailed simulation study results

This section contains the detailed results of the simulation study from Section 4.3 in the

form of tables containing the means of errors obtained from 1000 Monte Carlo replicates.
Tables A.12, A.13 and A.14 compare results for logistic (LG) and discrete spectral

measure-type (DSM) Pickands dependence functions. Following the notation of Fougeres

et al. (2013), the parameter choices for the latter are provided below. We have m = 10

and w® the matrix of weight parameters, where d denotes the dimension.

[1.00
0.00

[0.67
o [033
0.00
10.00

0.33
0.33
0.00
0.00
aoy 0.3
0.00
0.00
0.00
0.00
10.00

0.93
0.07

0.00
1.00
0.00
0.00

0.00
0.00
0.33
0.33
0.00
0.33
0.00
0.00
0.00
0.00

0.87
0.13

0.33
0.33
0.33
0.00
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0.00
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0.00
0.33
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0.00
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0.00

0.33
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0.00
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0.00
0.00

0.73
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0.00
0.00
1.00
0.00

0.00
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Table A.7: Average Integrated relative absolute error (IRAEx100) and Integrated squared
error (ISEx10000) of AFES for 2-dimensional Archimax copula Cy 4 samples of size
n € {200,500, 1000}. The Pickands dependence function A is LG with four choices
of parameters so that 7(A) € {1/5,2/5,3/5,4/5}, where 7(A) = 7(C}y) is Kendall’s tau
of the bivariate extreme-value copula C,. There are four choices for the Archimedean
generator 1, Clayton, Frank, Gumbel and Joe, each with four parameter choices so
that 7(¢) € {1/5,2/5,3/5,4/5}, where 7(¢)) = 7(Cy) is Kendall’s tau of the bivariate
Archimedean copula . There are 1000 Monte Carlo replicates.

error IRAE(x100) ISE(x10000)
n P () | 7(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5
200 Clayton 1/5 6.6 3.23 1.03 0.17 222 172 1.04 0.4
2/5 8.68 3.9 1.2 0.2 254 1.88 1.11 0.44
3/5 10.01 44 151 0.36 27 196 1.23 0.6
4/5 16.01 7.96 3.49 1.08 3.4 262 1.9 1.12
Frank 1/5 6.49 3.11 1 0.15 223 1.7 1.03 0.38
2/5 716 3.19 1.01 0.16 231 169 1.01 0.39
3/5 6.94 297 094 0.18 231 166 0.99 0.42
4/5 7.56 3.3 124 039 236 1.72 1.13 0.65
Gumbel  1/5 759 346 1.09 0.16 239 1.77 1.06 0.4
2/5 895 3.78 1.19 0.19 261 1.87 1.12 0.43
3/5 10.13  4.31  1.39 03 275 196 1.19 0.55
4/5 134 6.17 248 0.75 3.1 233 1.6 0.93
Joe 1/5 799 3.64 1.14 0.18 245 1.82 1.08 0.42
2/5 9.54 4.09 1.28 0.22 27 193 1.15 047
3/5 11.67 5.13 1.71 037 294 213 131 0.62
4/5 18.06 8.65 3.74 1.11 3.62 275 198 1.14
500 Clayton 1/5 2.52  1.23 04 0.06 138 1.06 0.64 0.24
2/5 3.25 147 046 0.07 157 1.16 0.69 0.26
3/5 412 1.75 0.55 01 174 124 074 0.32
4/5 5.66 258 0.96 0.26 20 148 099 0.55
Frank 1/5 248 1.22 038 0.05 1.36 1.05 0.63 0.23
2/5 271 121 037 0.05 144 106 0.62 0.23
3/5 278 117 036 0.06 144 1.03 0.61 0.23
4/5 261 1.12 0.38 0.09 1.39 1.0 0.63 0.3
Gumbel 1/5 3.06 142 043 0.06 152 1.14 0.67 0.24
2/5 3.7 1.57 047 0.07 1.67 1.2 069 0.26
3/5 4.15 1.69 051 0.08 1.75 1.22 0.72 0.29
4/5 4.77 2.06 074 0.19 188 135 0.88 0.46
Joe 1/5 3.33 149 045 0.06 159 1.16 0.68 0.24
2/5 42 174 052 008 1.77 1.25 0.73 0.27
3/5 494 2.01 062 0.11 1.9 133 0.78 0.34
4/5 6.32 277 1.03 029 213 156 1.04 0.59
1000 Clayton 1/5 1.42 0.7 022 0.03 1.03 0.8 048 0.17
2/5 1.78 081 0.25 0.03 1.17 086 0.51 0.19
3/5 222 0.95 0.3 0.05 1.3 094 0.56 0.22
4/5 289 126 044 0.11 146 1.07 0.68 0.35
Frank 1/5 1.37 068 0.21 0.03 1.02 0.79 0.47 0.16
2/5 1.5 066 0.19 0.03 1.07 0.78 045 0.16
3/5 1.51 064 0.19 0.03 1.07 076 0.45 0.16
4/5 1.42 06 0.18 0.03 1.04 074 045 0.19
Gumbel  1/5 1.66 076 0.23 0.03 1.13 084 049 0.17
2/5 195 083 0.25 0.03 1.22 087 0.51 0.18
3/5 2.2 0.9 027 0.04 1.3 092 0.53 0.2
4/5 254 1.07 0.35 0.07 1.39 1.0 0.61 0.28
Joe 1/5 1.77 078 024 003 1.16 0.85 0.5 0.18
2/5 2.17 09 026 004 1.28 091 0.53 0.19
3/5 256 1.04 031 005 1.39 098 0.57 0.23

4/5 3.21 138 047 0.11 156 1.13 0.71 0.36




Table A.8: Average Integrated relative absolute error (IRAEx100) and Integrated squared
error (ISEx10000) of ASYS and for 4-dimensional Archimax copula Cy 4 samples of size
n € {200,500,1000}. The Pickands dependence function A is LG with four choices of
parameters so that 7(A) € {1/5,2/5,3/5,4/5}, where 7(A) = 7(C4) is Kendall’s tau
of the corresponding bivariate extreme-value copula C,e. A® is a 2-dimensional LG
Pickands dependence function with the same parameter as A. There are four choices for
the Archimedean generator v, Clayton, Frank, Gumbel and Joe, each with four parameter
choices so that 7(¢) € {1/5,2/5,3/5,4/5}, where 7(¢) = 7(Cy) is Kendall’s tau of the
bivariate Archimedean copula Cy. There are 1000 Monte Carlo replicates.

error IRAE(x100) ISE(x10000)
n P () | 7(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5
n = 200 Clayton 1/5 17.84 7.55 205 0.26 433 349 222 0.9
2/5 20.5 7.71  2.08 0.3 4.65 3.56 223 0.96
3/5 25.09 898 258 052 512 3.76 242 1.28
4/5 37.15 14.51 5.2 1.58 592 4.68 3.49 2.4
Frank 1/5 17.12 7.02 188 024 424 336 211 0.85
2/5 18.62 7.03 183 024 445 3.38 2.09 0.86
3/5 16.1 5.68 1.52 0.27 4.06 3.02 1.9 0.92
4/5 15.33 5.72 197 0.59 3.93 3 215 146
Gumbel 1/5 20.93 8.01 206 0.25 4.71 3.62 224 0.9
2/5 24.64 8.63 221 032 504 374 2.3 1
3/5 27.75 9.35 2.5 0.46 53 3.84 243 1.22
4/5 33.36 1227 417 1.14 571 432 3.12 2.05
Joe 1/5 23.9 877 223 028 503 379 233 094
2/5 29.48 10.16 2.53 0.36 549 4.02 245 1.06
3/5 35.24 1221 331 0.63 585 432 274 142
4/5 51.43 19.1 6.54 1.74 681 525 387 254
n = 500 Clayton 1/5 6.95 289 077 0.09 271 217 137 0.54
2/5 7.63 3.11  0.84 0.11 28 224 141 0.6
3/5 9.81 3.67 1.01 017 3.15 241 154 0.74
4/5 14.66 5.6 1.88 0.45 3.78 2.93 21 1.31
Frank 1/5 6.15 254 0.67 0.08 253 203 1.27 0.51
2/5 6.24 247 0.66 0.08 253 199 126 0.51
3/5 6.08 2.17 057 0.08 252 1.8 1.18 0.52
4/5 5.74 2.02 0.6 0.13 243 1.8 119 0.67
Gumbel 1/5 8.01 3.06 0.8 0.1 29 223 139 0.55
2/5 9.74 3.38 0.8 0.11 3.19 234 1.44 0.6
3/5 11.18 3.67 096 0.14 3.41 243 1.51 0.68
4/5 13.1 449 135 031 362 265 178 1.07
Joe 1/5 8.95 3.26 0.83 0.1 3.06 2.3 142 0.56
2/5 11.12 3.71 094 012 339 246 151 0.63
3/5 13.39 4.5 116 0.19 3.66 2.67 1.67 0.79
4/5 17.54 6.34 196 048 4.15 3.13 218 1.34
n=1000 Clayton 1/5 3.47 1.48 0.4 0.05 1.9 156 0.99 0.39
2/5 4.01 1.59 042 0.05 2.01 1.58 1 041
3/5 5.11 1.85 048 0.07 23 173 1.08 048
4/5 6.46 235 0.71 0.16 2.52 1.9 1.3 0.76
Frank 1/5 3.22 1.36 036 0.04 181 1.48 094 0.37
2/5 3.26 1.26 032 0.04 186 145 089 0.35
3/5 3.23 1.14 028 0.04 183 136 083 0.34
4/5 2.9 1.02 027 0.05 1.73 128 0.82 0.4
Gumbel 1/5 4.31 1.61 041 0.05 212 1.62 1 0.39
2/5 4.91 1.67 041 0.05 227 1.66 1.01 0.4
3/5 5.27 1.73 042 0.06 234 168 1.02 0.43
4/5 5.86 1.97 054 0.11 245 1.77 1.14 0.61
Joe 1/5 4.87 1.74 043 0.05 225 1.69 1.03 0.4
2/5 6.08 2 048 006 249 179 1.08 0.43
3/5 7.1 231 0.56 0.08 2.66 1.9 1.15 0.5

4/5 8.69 297 085 0.18 291 215 1.43 0.8




Table A.9: Average Integrated relative absolute error (IRAEx100) and Integrated squared
error (ISEx10000) of ASES and for 10-dimensional Archimax copula Cy 4 samples of size
n € {200,500,1000}. The Pickands dependence function A is LG with four choices of
parameters so that 7(A) € {1/5,2/5,3/5,4/5}, where 7(A) = 7(C4) is Kendall’s tau
of the corresponding bivariate extreme-value copula C,e. A® is a 2-dimensional LG
Pickands dependence function with the same parameter as A. There are four choices for
the Archimedean generator v, Clayton, Frank, Gumbel and Joe, each with four parameter
choices so that 7(¢) € {1/5,2/5,3/5,4/5}, where 7(¢) = 7(Cy) is Kendall’s tau of the
bivariate Archimedean copula Cy. There are 1000 Monte Carlo replicates.

error IRAE(x100) ISE(x10000)
n ) T(¥) | T(A) 1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5
n = 200 Clayton 1/5 32.88 9.78 1.97 0.2 71 574 3.73 1.6
2/5 35.12 9.92 2.03 0.23 7.36 5.7 3.7 1.72
3/5 43.17 11.68 2.48 0.38 8.1 6.22 4.1 219
4/5 54.62 15.64 4.19 1.08 887 7.01 521 3.93
Frank 1/5 31.49 9.01 1.82 0.18 7 5.5 3.54 1.55
2/5 28.42 796 1.62 0.18 6.61 5.15 3.34 1.51
3/5 26.69 6.88 1.36 0.19 6.43 4.82 3.07 1.57
4/5 21.7 5.79 1.46 0.4 5.67 4.3 3.1 2.39
Gumbel 1/5 40.74 10.81 2.05 0.21 7.89 6.02 3.77 1.64
2/5 48.43 11.84 218 0.24 854 6.31 391 1.76
3/5 52.22  12.45 236 0.35 874 6.37 399 212
4/5 61.23 15.44 3.7 0.85 9.08 6.79 4.88 3.47
Joe 1/5 47.39 11.98 223 0.22 8.46 6.3 391 1.68
2/5 59.62 14.23 2,59 0.29 9.27 6.76 4.16 1.89
3/5 71.83 16.91 3.2 045 9.86 7.13 451 2.39
4/5 95.53 2421 559 1.19 10.97 83 597 4.15
n = 500 Clayton 1/5 13.8 4.34  0.87 0.08 459 3.82 247 1.04
2/5 16.11 4.59 0.89 0.09 494 3.93 2.5 1.08
3/5 18.48 5.05 1.01 0.12 5.22 4.07 263 1.28
4/5 23.39 6.41 1.52 0.31 591 457 3.21 2.1
Frank 1/5 13.16 4.01 0.78 0.07 448 3.66 232 0.97
2/5 11.96 3.41  0.67 0.07 424 334 214 0.92
3/5 10.51 2.74 053 0.06 3.95 3 191 0.89
4/5 8.29 2.13 047 0.09 347 262 1.78 1.14
Gumbel 1/5 17.62 4.68 0.88 0.08 5.1 393 247 1.04
2/5 21.52 5.16 0.93 0.09 5.61 4.12 2.54 1.09
3/5 23.46 5.45 098 0.11 5.85 4.22 261 1.22
4/5 24.49 5.89 1.25 0.22 5.96 4.35 29 1.78
Joe 1/5 20.08 5.01 0.93 0.09 545 4.05 254 1.08
2/5 25.61 5.85 1.04 0.1 6.14 441 271 1.18
3/5 29.34 6.66 1.19 0.14 6.51 4.67 287 1.38
4/5 34.69 839 1.81 0.34 6.93 5.1  3.47 2.2
n=1000 Clayton 1/5 6.53 2.03 0.4 0.04 3.11 26 1.68 0.71
2/5 7.1 2.09 042 0.04 3.21 262 1.71 0.74
3/5 8.9 2.38 047 0.05 3.65 2.81 1.8 0.83
4/5 10.7 2.76 0.6 0.11 3.99 3.01 203 1.23
Frank 1/5 6.57 2.01 0.39 0.04 3.11 259 1.65 0.69
2/5 5.9 1.65 0.32 0.03 297 235 1.5 0.63
3/5 5.4 1.42 027 0.03 283 217 1.38 0.61
4/5 4.06 1.05 0.22 0.03 243 185 1.22 0.67
Gumbel 1/5 8.53 2.23 041 0.04 3.56  2.72 1.7 0.7
2/5 9.91 2.38 043 0.04 3.81 28 1.74 0.73
3/5 10.61 249 045 0.05 3.94 286 1.77 0.79
4/5 11.09 2.68 0.54 0.08 4.04 299 195 1.09
Joe 1/5 10.08 247 045 0.04 3.85 285 1.76 0.73
2/5 12.37 2.82 049 0.05 4.18 3.01 184 0.79
3/5 13.83 3.13  0.56 0.06 442 3.16 1.95 0.9

4/5 15.34 3.7 076 0.13 4.64 342 228 1.35




Table A.10: Average Integrated relative absolute error (IRAEx100) and Integrated
squared error (ISEx10000) of ASYS and for d-dimensional Archimax copula Cy 4 sam-
ples of size n € {200,500, 1000} for dimensions d € {2,4,10}. The Pickands dependence
function A is LG with four choices of parameters so that A\y(A) € {1/5,2/5,3/5,4/5},
where A\y(A) = Ay(Ca) is the upper tail dependence coefficient of the corresponding bi-
variate extreme-value copula C4z. A® is a 2-dimensional LG Pickands dependence
function with the same parameter as A. The Archimedean generator v is Joe and
vy, A) € {5/10,6/10,7/10,8/10,9/10}, where A\y(¢), A) = Ay(Cy.a) is the upper tail
coefficient of the bivariate Archimax copula Cy, 4. There are 1000 Monte Carlo repli-
cates.

error IRAE(x100) ISE(x10000)
d A, A) | Adp(A)  1/5 2/5 3/5 4/5 1/5 2/5 3/5 4/5
n=200 2 5/10 9.34  4.63 2.6 1.98
6/10 10.37  5.04 2.74  2.07
7/10 11.38  5.49 1.94 2.88 2.16 1.38
8/10 13.18  6.11 211 3.07 226 1.45
9/10 173 822 273 .39 348 259 1.61 .63
4 5/10 29.13  11.76 5.25  4.02
6/10 33.02 13.18 5.55  4.27
7/10 37.03  14.6 4 5.82  4.47 2.89
8/10 41.83 16.44 447 6.08 4.66 3.03
9/10 54.45 20.81 5.78 .65 6.73 51 3.34 1.39
10 5/10 63.58 17.87 8.88  6.64
6/10 73.1  20.78 942 7.14
7/10 82.19 23.37 4.53 9.89 7.51 4.78
8/10 94.21 27.01 5.21 10.34  7.87 5.12
9/10 112.8 31.95 6.53 .56 10.93 8.37 552 2.44
n=>500 2 5/10 3.91  1.83 1.67 1.26
6/10 445  2.08 1.78 1.33
7/10 502 235 .77 1.89 141 .88
8/10 564  2.63 .88 1.98 148 .93
9/10 6.65 3.11 1.03 .14 213 159 .99 .38
4 5/10 10.98  4.37 3.2 244
6/10 12.59  4.88 3.42  2.59
7/10 14.08  5.45 1.52 3.6 274 1.76
8/10 16.22  6.12 1.7 3.83 29 1.88
9/10 19.48  7.63 212 .24  4.16 3.17 207 .86
10 5/10 2719  7.63 5.74  4.32
6/10 31.54  8.71 6.16 4.58
7/10 35.6 9.87 1.9 6.55 4.87 3.11
8/10 39.37  11.02 2.17 6.88 5.17 3.34
9/10 4477 1264 252 22 7.19 546 3.58 1.58
n=1000 2  5/10 2.06 1 1.22 .92 EE
6/10 2.31 1.1 1.3 .98
7/10 26 122 41 1.37  1.02 .64
8/10 295 137 .45 1.45 1.08 .67
9/10 347 162 .53 .07 158 1.17 .73 .28
4 5/10 598  2.38 2.36  1.81
6/10 6.8  2.64 25 1.9
7/10 771 295 8 2.65 2.01 1.29
8/10 868 3.31 .89 279 2.1 1.36
9/10 10.12  3.88 1.05 .12 297 225 145 6
10 5/10 13.72  3.82 4.06  3.07
6/10 15.62  4.31 428 3.24
7/10 17.26  4.84 .93 447 339 219
8/10 18.7 533  1.04 465 3.53 229

9/10 20.29 5.89 1.2 .11 4.85 3.7 244 1.08




Table A.11: Average Integrated relative absolute error (IRAEx100) and Integrated
squared error (ISEx10000) of ASYY and A}, . for d-dimensional Archimax copula Cy, 4 sam-
ples of size n € {200,500, 1000} for dimensions d € {2,4,10}. The Pickands dependence
function A is LG with four choices of parameters so that n;(A) € {0.57,0.66,0.76,0.87},
where 1y (A) = n(Ca) is the index of lower tail dependence Ledford and Tawn (1996)
of the corresponding bivariate extreme-value copula C,e. A® is a 2-dimensional LG
Pickands dependence function with the same parameter as A. The Archimedean gen-
erator ¢ is Clayton and A; (¢, A) € {1/5,2/5,3/5,4/5}, where A (¢, A) = A(Cy.a) is
the lower tail coefficient of the bivariate Archimax copula C, 4. There are 1000 Monte
Carlo replicates.

error IRAE(x100) ISE(x10000)
d AL, A) | nL(A) 057 066 076 087 057 0.66 076 0.87
n = 200 2 1/5 6.39 3.24 106 0.15 217 171 1.05 0.39
2/5 6.81 323 104 016 226 171 1.04 0.39
3/5 8.33 3.47 107 015 254 179 1.06 0.39
4/5 9.96 4.07 122 017 271 1.9 1.12 0.4
4 1/5 16.81 6.99 192 0.23 4.22 3.4 216 0.86
2/5 18.08 7.21 2 023 437 342 218 0.85
3/5 20.02 742 207 025 458 346 222 0.89
4/5 24.27 8.11 213 027 4.97 3.6 226 091
10 1/5 33.23  10.06 2 019 715 5.8 3.72 1.58
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4/5 3.79 1.5 046 0.06 169 117 0.69 0.24
4 1/5 6.52 2.88 077 0.09 262 215 136 0.53
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2/5 13.81 4.17 0.79 0.08 4.57 3.77 235 1.01
3/5 15.36 4.09 0.86 0.08 4.81 3.71 2.46 1.0
4/5 17.48 4.89 0.93 0.08 5.1 4.05 256 1.05
n = 1000 2 1/5 1.37 0.69 0.22 0.03 1.02 0.8 048 0.17
2/5 1.52 0.68 0.22 0.03 1.07 0.8 048 0.17
3/5 1.71 0.73 0.23 003 114 081 049 0.17
4/5 2.07 0.84 0.24 003 126 0.88 0.5 0.17
4 1/5 3.41 145 039 0.04 188 1.53 097 0.37
2/5 3.5 1.5 0.38 0.04 1.9 156 096 0.38
3/5 3.73 146 039 0.04 196 153 097 0.38
4/5 4.84 1.66 043 005 224 164 101 0.39
10 1/5 6.54 2.02 039 0.04 3.09 2.6 1.63 0.7
2/5 6.68 1.97 0.4 004 312 256 1.68 0.69
3/5 7.11 2.08 042 0.04 322 262 171 0.71

4/5 8.37 2.17 042 0.04 349 267 1.72 0.7
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tion (A.1). The parameter in LG is set o = 2.87 so that the averaged
pairwise Kendall’s tau of both Pickands dependence functions is approxi-
mately equal to 0.65. There are four choices for the Archimedean generator
1, Clayton, Frank, Gumbel and Joe, each with four parameter choices so
that 7(¢) € {1/5,2/5,3/5,4/5}, where 7(¢) = 7(Cy) is Kendall’s tau of
the bivariate Archimedean copula Cy. There are 1000 Monte Carlo replicates. 147
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A.13 Average Integrated relative absolute error (IRAEx100) and Integrated squared
error (ISEx10000) of ASES for 4-dimensional Archimax copula Cy 4 sam-
ples of size n € {200,500,1000}. The Pickands dependence function A is
either DSM or LG. Parameters for the DSM case are reported in Equa-
tion (A.2). The parameter in LG is set o = 2.17 so that the averaged
pairwise Kendall’s tau of both Pickands dependence functions is approxi-
mately equal to 0.54. There are four choices for the Archimedean generator
1, Clayton, Frank, Gumbel and Joe, each with four parameter choices so
that 7(¢) € {1/5,2/5,3/5,4/5}, where 7(¢) = 7(Cy) is Kendall’s tau of
the bivariate Archimedean copula Cy. There are 1000 Monte Carlo replicates. 148
A.14 Average Integrated relative absolute error (IRAEx100) and Integrated squared
error (ISEx10000) of AZES for 10-dimensional Archimax copula Cy 4 sam-
ples of size n € {200,500,1000}. The Pickands dependence function A is
either DSM or LG. Parameters for the DSM case are reported in Equa-
tion (A.3). The parameter in LG is set o = 1.56 so that the averaged
pairwise Kendall’s tau of both Pickands dependence functions is approxi-
mately equal to 0.36. There are four choices for the Archimedean generator
¥, Clayton, Frank, Gumbel and Joe, each with four parameter choices so
that 7(¢) € {1/5,2/5,3/5,4/5}, where 7(¢) = 7(Cy) is Kendall’s tau of
the bivariate Archimedean copula C. There are 1000 Monte Carlo replicates.149
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Résumé: Cette these développe des techniques d’inférence pour copule Archimax Cl 0. Des conditions
sont dérivées afin que v et £ soient identifiables, de sorte qu'une approche d’inférence semi-paramétrique
puisse étre développée. Deux estimateurs non paramétriques de ¢ et un estimateur de 1) basé sur les
moments, supposant que ce dernier appartient a une famille paramétrique, sont avancés. Le comportement
asymptotique de ces estimateurs est ensuite établi sous des hypotheses de régularité et la performance
en échantillon fini est évaluée par le biais d'une étude de simulation. Une construction hiérarchique qui
généralise les copules Archimax est proposée afin d’apporter davantage de flexibilité. Le comportement
extréme de ce nouveau modele de dépendance est ensuite étudié. La copule Archimax est ensuite utilisée
pour analyser des maxima mensuels de précipitations. L’estimateur non paramétrique de ¢ révele une
dépendance extréme asymétrique entre les stations, ce qui reflete le déplacement des orages dans la région.
Une application du modele Archimax hiérarchique a un jeu de données de précipitations contenant 155
stations est ensuite présentée, dans laquelle des groupes de stations asymptotiquement dépendantes sont
déterminés via un algorithme de “clustering” spécifiquement adapté au modele.

Mots clés: modélisation de la dépendance; extrémes; pré-extrémes; copules; inférence semi paramétrique;
modélisation hiérarchique; processus empiriques; asymptotique; convergence faible; précipitation
extréme.

Dependence modeling for pre-asymptotic extremes

Abstract: This thesis develops inference techniques for Archimax copulas, which are denoted Cly .
Conditions under which v and ¢ are identifiable are derived so that a semiparametric approach for inference
can be developed. Two nonparametric estimators of £ and a moment-based estimator of ¢/, which assumes
that the latter belongs to a parametric family, are proposed. The asymptotic behavior of the estimators
is then established under broad regularity conditions; performance in small samples is assessed through
a comprehensive simulation study. Archimax copulas are then generalized to a clustered constructions
in order to bring in more flexibility. The extremal behavior of this new dependence model is derived.
Finally, the methodology proposed herein is illustrated on precipitation data. First, a trivariate Archimax
copula is used to analyze monthly rainfall maxima. The nonparametric estimator of ¢ reveals asymmetric
extremal dependence between the stations, which reflects heavy precipitation patterns in the area. An
application of the clustered Archimax model to a precipitation dataset containing 155 stations is then
presented, where groups of asymptotically dependent stations are determined via a specifically tailored
clustering algorithm.

Keywords: dependence modeling; extremes; pre-extremes; copulas; semiparametric inference; hierarchi-
cal modeling; empirical processes; asymptotics; weak convergence; extreme precipitation.
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