, Mise en oeuvre d'une contrainte uniaxiale, p.110

, Influence de l'orientation de la contrainte, p.113

, Forces de montée et de glissement

C. .. , 2 Forces sur les dislocations AC, p.133

, Puis, sous l'effet d'une contrainte, une force de glissement s'exerce sur les dislocations BA, entraînant une augmentation de la longueur du domaine AC et une diminution de celle de CB (Fig.IV.16(d)). Ce processus de montée et glissement conduit ensuiteà un dézippage des chevrons. Nous ne pouvons toutefois pasécarter l'hypothèse que la montée et le glissement des dislocations BA puissent se produire simultanément

. Cependant, Leurétude a porté sur un film mince d'Au(111) déposé sur un substrat de mica et déformé in situ par flexionà température ambiante. Dans la littérature, il n'existe aucune description ou image du dispositif de flexion, lequel est coupléà un STM sous ultra-vide. Le figure IV.17 montre une séquence d'images STM d'un film mince d'Au(111) sous déformation appliquée allant de = 0à = 0,4 %. Entre chaque incrément de déformation, un recuità 350 K est effectué. La figure IV.17(a) est une image STM de la structure en chevrons avant déformation. Sous l'effet de la déformation, nous pouvons voir sur la figure IV.17(c), l'allongement d'un domaine de la reconstruction et le rétrécissement du second formant les chevrons. A 0,23 %, nous pouvons voir que l'augmentation/diminution de la longueur des domaine se poursuit, tandis que certains domaines disparaissent, le facteur de Schmid des systèmes de glissement des dislocations BA et AB est nul, car l'axe de sollicitation est parallèle aux directions des vecteurs de Burgers. Le glissement ne devrait pas a priori avoir lieu, ce que montre nos simulationsà 90°. De plus, la montée négative n'a pasété mise enévidence dans ces mêmes simulations (cf. Fig.IV.11 et Fig.IV.10)

, Pour une déformation de 0, 17%, les mesures que nous avons extraites des images STM de la figure IV.17 mettent enévidence que le plus grand domaine est deux fois plus long que le second, ce qui est proche de nos valeurs théoriques et expérimentales. De plus

R. P. Feynman, There's plenty of room at the bottom. In California Institute of TECHNOLOGY, editeur : Engineering and Science magazine, vol.XXIII, 1960.

D. D. Chambliss, R. J. Wilson, and S. Chiang, Nucleation of ordered ni island arrays on au(111) by surface-lattice dislocations, Physical Review Letters, vol.66, issue.13, 1991.

D. D. Chambliss, R. J. Wilson, and S. Chiang, Ordered nucleation of Ni and Au islands on Au(111) studied by scanning tunneling microscopy, Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures, vol.9, issue.2, p.933, 1991.

I. Chado, F. Scheurer, and J. P. Bu-cher, Absence of ferromagnetic order in ultrathin rh deposits grown under various conditions on gold, Physical Review B, vol.64, issue.094410, 2001.

B. Voigtländer, G. Meyer, and N. M. , AMER : Epitaxial growth of thin magnetic cobalt films on Au (111) studied by scanning tunneling microscopy, Physical Review B, vol.44, issue.18, p.10354, 1991.

O. Fruchart, M. Klaua, J. Bar-thel, and J. Kirschner, Selforganized growth of nanosized vertical magnetic Co pillars on Au, Physical review letters, vol.83, issue.111, p.2769, 1999.

S. Padovani, I. Chado, F. Scheu-rer, and J. P. Bucher, Transition from zero-dimensional superparamagnetism to two-dimensional ferromagnetism of Co clusters on Au, Physical Review B, vol.59, issue.111, p.11887, 1999.

I. Chado, C. Goyhenex, H. Bu-lou, and J. P. Bucher, Cluster critical size effect during growth on a heterogeneous surface, Physical Review B, vol.69, issue.085413, 2004.

M. Corso, L. Fernández, F. Schiller, and J. E. Ortega, Au(111)-Based Nanotemplates by Gd Alloying, ACS Nano, vol.4, issue.3, pp.1603-1611, 2010.

C. S. Casari, S. Foglio, F. Siviero, A. Li, M. Bassi et al., Direct observation of the basic mechanisms of Pd island nucleation on Au, vol.79, 2009.

H. Bulou, F. Scheurer, P. Oh-resser, A. Barbier, S. Stanescu et al., Structure of selforganized Fe clusters grown on Au(111) analyzed by grazing incidence x-ray diffraction, Physical Review B, vol.69, issue.15, 2004.

N. A. Khan and C. Matranga, Nucleation and growth of fe and feo nanoparticles and films

, Surface Science, pp.932-942, 2008.

T. Allmers and M. Donath, Growth and morphology of thin Fe films on flat and vicinal Au(111) : a comparative study, New Journal of Physics, vol.11, issue.10, p.103049, 2009.

W. Lin, H. Chang, Y. Hu, Y. Lin, C. Hsu et al., Manipulated nucleation of Fe nanostructures on Au(111) with combined growth methods, Nanotechnology, vol.21, issue.1, p.15606, 2010.

F. Donati, A. Mairov, C. S. Ca-sari, M. Passoni, A. Li et al., Nucleation and growth mechanisms of Fe on Au(111) in the submonolayer regime, Surface Science, vol.606, issue.7-8, pp.702-710, 2012.

M. M. Biener, J. Biener, R. Scha-lek, and C. M. Friend, Surface alloying of immiscible metals : Mo on Au(111) studied by STM, vol.594, pp.221-230, 2005.

J. A. Meyer, I. D. Baikie, E. Ko-patzki, and R. J. Behm, Preferential island nucleation at the elbows of the au(111) herringbone reconstruction through place exchange, Surface Science, p.365, 1996.

W. G. Cullen and P. , FIRST : Island shapes and intermixing for submo, Surface Science, vol.420, issue.111, pp.53-64, 1999.

F. Grillo, K. Fruchtl, S. M. Francis, and N. V. Richardson, Site selectivity in the growth of copper islands on au (111), New Journal of Physics, p.13, 2011.

J. Biener, E. Farfan-arribas, M. Biener, C. M. Friend, and R. J. Ma-dix, Synthesis of tio2 nanoparticles on the au(111) surface, vol.123, 2005.

J. V. Barth, G. Costantini, and K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature, vol.437, issue.671, 2005.

T. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, and S. Ma-shiko, Selective assembly on a surface of supramolecular aggregates with controlled size and shape, Nature, vol.413, pp.619-621, 2001.

M. Bohringer, K. Morgenstein, W. D. Schneider, R. Berndt, F. Mauri et al., CAR : Two-dimensional self-assembly of supramolecular clusters and chains, Physical Review Letters, vol.83, issue.2, 1999.

S. Clair, S. Pons, K. Brune, H. Kern, and J. V. Barth, Mesoscopic metallosupramolecular texturing by hierarchic assembly, Angew. Chem. Int. Edn Engl, vol.44, pp.7294-7297, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01896153

J. Yang, D. Sordes, M. Kolmer, D. Martrou, and C. Joachim, Imaging, single atom contact and single atom manipulations at low temperature using the new ScientaOmicron LT-UHV-4 STM. The European, Physical Journal Applied Physics, vol.73, issue.1, p.10702, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01712752

M. A. Van-hove, R. J. Koestner, P. C. Stair, J. P. Bibérian, L. L. Kesmodel et al., The surface reconstruction of the (100) crystal faces of iridium, platinium et gold. Surface Science, vol.103, pp.189-217, 1981.

A. R. Sandy, S. G. Mochrie, D. M. Zehner, G. Grübel, K. G. Huang et al., Reconstruction of the pt, vol.68, 1992.

J. V. Barth, H. Brune, G. Ertl, and R. J. Behm, Scanning tunneling microscopy observations on the reconstructed Au (111) surface : Atomic structure, long-range superstructure, rotational domains, and surface defects, Physical Review B, vol.42, issue.15, p.9307, 1990.

J. Perdereau, J. P. Biberian, and G. E. Rhead, Adsorption and surface alloying of lead monolayers on (111) and (110) faces of gold, Journal of Physics F : Metal. Phys, vol.4, p.798, 1974.

J. C. Heyraud and J. J. Métois, Anomalous 13 422 diffraction spots from {111} flat gold crystallites : (111) surface reconstruction and moiré fringes between the surface and the bulk, Surface Science, vol.100, issue.3, pp.519-528, 1980.

H. Melle, MENZEL : superstructures on spherical gold crystal, Z. Naturforsch, vol.33, pp.282-289, 1978.

U. Harten, A. M. Lahee, J. Peter, T. Ch, and W. , Observation of a soliton reconstruction of Au (111) by high-resolution heliumatom diffraction, Physical review letters, vol.54, issue.24, p.2619, 1985.

K. Yagi, K. Takayanagi, K. Ko-bayashi, Y. Osakabe, Y. Tani-shiro et al., Surface study by an uhv electron microscope, Surface Science, vol.86, pp.174-181, 1979.

Y. Tanishiro, H. Kanamori, K. Takayanagi, K. Yagi, and G. Honjo, Uhv transmission electron microscopy on the reconstructed surface of (111) gold, Surface Science, vol.111, pp.395-413, 1981.

K. Takayanagi and K. Yagi, Monatom-high level electron microscopy of metal surfaces, Transactions of the Japan Institute of Matels, vol.24, issue.6, pp.337-348, 1983.

L. D. Marks, V. Heine, and D. J. Smith, Direct observation of elastic and plastic deformations at Au (111) surfaces. Physical review letters, vol.52, p.656, 1984.

W. J. Kaiser and R. C. , JAKLEVIC : Direct observation of an ordered step surface reconstruction on Au (111) by scanning tunneling microscopy, Surface Science Letters, vol.182, issue.3, pp.227-233, 1987.

V. M. Hallmark, S. Chiang, J. F. Rabolt, J. D. Swalen, and R. J. Wil-son, Observation of atomic corrugation on Au (111) by scanning tunneling microscopy, Physical review letters, vol.59, issue.25, p.2879, 1987.

C. , W. S. Chiang, R. J. Wilson, and P. H. , LIPPEL : Determination of atom positions at stacking-fault dislocations on au(111) bt scanning tunneling microscopy, Physical Review B, vol.39, issue.11, p.7988, 1989.

H. Y. Nie, W. Mizutani, and H. To-kumoto, Au(111) reconstruction observed by atomic force microscopy with lateral force detection, Surface Science, pp.649-654, 1994.

R. J. Needs, M. J. Godfrey, and M. Mansfield, Theory of surface stress and surface reconstruction, Surface Science, vol.242, issue.1-3, pp.215-221, 1991.

S. Lehwald, F. Wolf, H. Ibach, B. M. Hall, and D. L. Mills, The role of surface stress, Surface vibrations on ni, vol.192, pp.131-162, 1987.

P. Crljen, D. Lazi?, R. ?ok?evi?, and . Brako, Relaxation and reconstruction on (111) surfaces of Au, Pt, and Cu, Physical Review B, vol.68, issue.19, 2003.

B. W. Dodson, Many-Body Surface Strain and Surface Reconstructions in fcc Transition Metals, Physical Review Letters, vol.60, issue.22, pp.2288-2291, 1988.

D. Wolf, Should all surfaces be reconstructed ?, Physical Review Letters, vol.70, issue.5, 1993.

D. Sander, Surface stress : implications and measurements. Current Opinion in Solid State and Materials Science, vol.7, pp.51-57, 2003.

W. Haiss, Surface stress of clean and adsorbate-covered solids, Reports on Progress in Physics, vol.64, pp.591-648, 2001.

M. Bott, M. Hohage, T. Michely, and G. Comsa, Pt (111) reconstruction induced by enhanced Pt gasphase chemical potential, Physical review letters, vol.70, issue.10, p.1489, 1993.

R. C. , CAMMARATA : Thermodynamic model for surface reconstruction based on surface stress effects, Surface science, vol.273, issue.1-2, pp.399-402, 1992.

H. Ibach, The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures, Surface Science Reports, vol.29, pp.193-263, 1997.

A. Jaafar, C. Goyhenex, and G. Tréglia, Role of sp-d hybridization in the formation of stacking defects at metal surfaces, Surface Science, vol.602, issue.15, pp.2681-2688, 2008.

A. Jaafar and C. Goyhenex, Formation of stacking defects at surfaces : From atomistic simulations to density functional theory calculations, Solid State Sciences, vol.12, pp.172-178, 2010.

C. E. Bach, M. Giesen, H. Ibach, and T. L. Einstein, Stress relief in reconstruction, Physical review letters, vol.78, issue.22, p.4225, 1997.

S. Olivier, A. Saul, and G. Tre-glia, Relation bewteen surface stress and (1x2) reconstruction for (110) fcc transition metal surfaces, Applied Surface Science, pp.866-871, 2003.

H. Ibach, Physics of Surfaces and Interfaces, 2006.

V. Repain, J. M. Berroir, S. Rous-set, and J. Lecoeur, Interaction between steps and reconstruction on Au (111), vol.47, p.435, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01987613

. Ch, S. Wöll, R. J. Chiang, and P. Wilson, LIPPEL : Determination of atom positions at stacking-fault dislocations on Au (111) by scanning tunneling microscopy, Phys. Rev. B, vol.39, issue.11, p.7988, 1989.

C. B. Carter and R. Q. Hwang, Dislocations and the reconstruction of (111) fcc metal surfaces, Physical Review B, vol.51, issue.7, pp.4730-4733, 1995.

K. G. Huang, G. Doon, D. M. Zehner, A. R. Sandy, and S. G. Mochrie, Phase behavior of the Au (111) surface : Discommensurations and kinks. Physical review letters, vol.65, p.3313, 1990.

J. P. Hirth and J. Lothe, Theory of Dislocation, 1982.

D. Hull and D. J. Bacon, Introduction to dislocations

, Boston, 2001.

C. Wang, H. Wang, T. Huang, X. Xue, F. Qiu et al., Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed au : A first-principles calculation, Scientific Reports, vol.5, 2015.

K. Takayanagi, Y. Tanishiro, K. Yagi, K. Kobayashi, and G. Honjo, Uhv-tem study on the reconstructed surface of au(111) : metastable p" x p' and stable p x 1 surface structure, Surface Science, vol.205, pp.637-651, 1988.

F. Yin, S. Kulju, P. Koskinen, J. Akola, and R. E. Palmer, Simple metal under tensile stress : layerdependent herringbone reconstruction of thin potassium films on graphite, Scientific Reports, vol.5, p.10065, 2015.

H. Brune, M. Giovanni, K. Bro-mann, and K. Kern, Self-organized growth of nanostructure arrays on strain-relief patterns, Nature, vol.394, pp.451-453, 1998.

W. L. Ling, J. C. Hamilton, K. Thürmer, G. E. Thayer, J. De-la et al., Herringbone and triangular patterns of dislocations in Ag, Au, and AgAu alloy films on Ru(0001), vol.600, pp.1735-1757, 2006.

G. O. Potschke and R. J. Behm, terface structure and misfit dislocations in thin cu films on ru(0001), vol.44, pp.1442-1445, 1991.

A. K. Schmid, N. C. Bartelt, J. C. Hamilton, C. B. Carter, and R. Q. Hwang, Brownian motion of dislocations in thin films, Physical review letters, vol.78, issue.18, p.3507, 1997.

J. De-la, F. , K. Pohl, O. De-la, F. et al., Direct Observation of Misfit Dislocation Glide on Surfaces, Physical Review Letters, vol.86, issue.17, pp.3819-3822, 2001.

J. De-la, F. , A. K. Schmid, N. C. Bartelt, K. Pohl et al., HWANG : Determination of buried dislocation structures by scanning tunneling microscopy, Physical Review B, vol.63, 2001.

D. M. Kolb, Reconstruction phenomena at metal-electrolyte interfaces, Progress in Surface Science, vol.51, issue.2, pp.109-173, 1996.

H. Ibach, C. E. Bach, M. Giesen, and A. Grossmann, Potential-induced stress in the solid-liquid interface : Au(111) and au(100) in an hclo4 electrolyte, Surface Science, vol.375, pp.107-119, 1997.

D. Fujita, K. Amemiya, T. Yakabe, H. Nejoh, T. Sato et al., Anisotropic standing-wave formation on an Au (111)-(23$\times$ ? 3) reconstructed surface. Physical review letters, vol.78, p.3904, 1997.

W. Chen, V. Madhaven, T. Jam-neala, and M. , CROMMIE : Scanning tunnelin microscopy observations of an electronic superlattice at the surface of clean gold, Physical Review Letters, vol.80, issue.7, pp.1469-1472, 1998.

C. Didiot, Y. Fagot-revurat, S. Pons, B. Kierren, C. Cha-telain et al., Reconstruction-induced multiple gaps in the weak coupling limit : The surface bands of Au(111) vicinal surfaces, Physical Review B, vol.74, issue.8, 2006.

F. Libisch, V. Geringer, D. Su-bramaniam, J. Burgdörfer, and M. Morgenstern, Diffractivewave guiding of surface electrons on Au(111) by the herringbone reconstruction potential, Physical Review B, vol.90, issue.3, 2014.

S. Andrieu and P. Muller, Les surfaces solides : concepts et méthodes. EDP Sciences, 2005.

H. Jeong and E. D. Williams, Steps on surfaces : experiment and theory, vol.34, pp.171-294, 1999.

A. Bartolini, F. Ercolessi, and E. Tosatti, Magic"vicinal surfaces stabilized by reconstruction, Physical review letters, vol.63, issue.8, p.872, 1989.

M. Sotto and J. Boulliard, Thermally induced transitions on clean stepped gold surfaces through leed. surface Science, vol.214, pp.97-110, 1989.

R. J. Phaneuf, E. D. Williams, and N. C. Bartelt, Température dependence of vicinal si(111) surfaces, Physical Review B, vol.38, issue.3, pp.1984-1993, 1988.

G. M. Watson, G. Doon, S. Song, A. R. Sandy, S. G. Mochrie et al., Faceting and reconstruction of stepped Au (111), Physical Review B, vol.52, issue.16, p.12329, 1995.

V. Repain, J. M. Berroir, S. Rous-set, and J. Lecoeur, Reconstruction, step edges and self-organization on the Au (111) surface. Applied surface science, vol.162, pp.30-36, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01987607

M. Corso, F. Schiller, L. Fernández, J. Cordón, and J. E. Ortega, Electronic states in faceted Au(111) studied with curved crystal surfaces. Journal of Physics : Condensed Matter, vol.21, p.353001, 2009.

H. Oka and K. Sueka, Connection of herringbone ridges on reconstructed au(111) surfaces observed by scanning tunneling microscopy, Japanese Journal of Applied Physics, vol.44, issue.7B, pp.5430-5433, 2005.

J. Engbaek, J. Schiøtz, B. Dahl-madsen, and S. Horch, Atomic structure of screw dislocations intersecting the Au ( 111 ) surface : A combined scanning tunneling microscopy and molecular dynamics study, Physical Review B, vol.74, issue.19, 2006.

A. R. Sandy, S. G. Mochrie, D. M. Zehner, K. G. Huang, and G. Doon, Structure and phases of the Au (111) surface : X-rayscattering measurements, Physical Review B, vol.43, issue.6, p.4667, 1991.

P. Kowalczyk, W. Kozlowski, Z. Klusek, W. Olejniczak, and P. K. Datta, ) thin-film at elevated temperatures, STM studies of the reconstructed Au, vol.253, pp.4715-4720, 2007.

B. K. Min, X. Deng, D. Pinna-duwage, R. Schalek, and C. M. Friend, Oxygen-induced restructuring with release of gold atoms from Au, vol.72, p.121410, 2005.

M. M. Biener, J. Biener, and C. M. Friend, Revisiting the s-au(111) interaction : Static or dynamic ? Langmuir, vol.21, pp.1668-1671, 2005.

F. Yin and R. Palmer, GUO : Nanoscale surface recrystallization driven by localized electric field, Physical Review B, vol.73, issue.7, 2006.

F. Yin, R. Palmer, and Q. Guo, Faceting of nanoscale fingers on the (111) surface of gold, Surface Science, vol.600, 2006.

Y. Hasegawa and . Ph, AVOURIS : Manipulation of the Reconstruction of the Au(111) Surface with the STM, Science, vol.258, issue.5089, pp.1763-1765, 1992.

R. C. Jaklevic and L. Elie, Scanning tunneling microscope observation of surface diffusion on an atomic scale, Physical Review Letters, vol.60, issue.111, pp.120-123, 1988.

Y. I. Frankel and T. Kontorova, Zh. Eksp. Teor. Fiz, vol.8, 1938.

O. M. Braun and Y. S. Kivshar, Nonlinear dynamics of the krenkelkontorova model, vol.306, 1998.

Y. Okwamoto and K. H. Benne-mann, Theory for soliton reconstruction of the Au (111) surface. Surface Science, vol.186, pp.511-522, 1987.

M. El-batanouny, S. Burdick, K. M. Martini, and P. Stancioff, Double-sine-Gordon solitons : A model for misfit dislocations on the Au (111) reconstructed surface. Physical review letters, vol.58, p.2762, 1987.

N. Takeuchi, C. T. Chan, and K. M. Ho-:-au, A theoretical study of the surface reconstruction and the surface electronic structure, Physical Review B, vol.43, issue.111, p.13899, 1991.

R. Ravelo and M. El-batanouny, Molecular-dynamics study of the reconstructed Au (111) surface : Low temperature, Physical Review B, vol.40, issue.14, p.9574, 1989.

Y. Wang, N. S. Hush, and J. R. Rei-mers, × 3 ) surface reconstruction, Simulation of the Au, vol.111, 2007.

F. Hanke and J. Björk, Structure and local reactivity of the Au(111) surface reconstruction, Physical Review B, vol.87, issue.23, 2013.

A. P. Seitsonen, Electronic struture of reconstructed au(111) studied with density functional theory, Surface Science, vol.643, pp.150-155, 2016.

E. Torres and G. A. , DILABIO : A Density Functional Theory Study of the Reconstruction of Gold (111) Surfaces. The Journal of Physical Chemistry C, vol.118, pp.15624-15629, 2014.

C. A. Gaspari, R. Pignedoli, M. Fa-sel, D. Treier, and . Passerone, Atomistic insight into the adsorption site selectivity of stepped Au(111) surfaces, Physical Review B, vol.82, issue.4, p.41408, 2010.

H. Bulou and C. Goyhenex, Local strain analysis of the herringbone reconstruction of Au(111) through atomistic simulations, Physical Review B, vol.65, issue.4, 2002.

F. Ercolessi, A. Bartolini, M. Garfalo, M. Parrinello, and E. Tosatti, Au surface reconstruction in the glue model, Surface Science, vol.189, pp.636-640, 1987.

F. Ercolessi, M. Parrinello, and E. Tosatti, Simulations of gold in the glue model. Philosophical Magazine A, vol.58, pp.213-226, 1988.

U. Tartaglino, E. Tosatti, D. Passerone, and F. Ercolessi, Bending strain-driven modification of surface reconstructions : Au(111), Physical Review B, vol.65, issue.24, 2002.

X. Wang, Anomalous surface phonons of the reconstructed Au (111) : A molecular-dynamics simulation, Physical review letters, vol.67, issue.10, p.1294, 1991.

R. Ravelo and M. El-batanouny, Molecular-dynamics studies of temperature-dependent structural transitions on fcc (111) metallic surfaces, Physical Review B, vol.47, issue.19, p.12771, 1993.

S. Narasimhan and D. Vander-bilt, Elastic stress domains and the herringbone reconstruction on Au, vol.69, pp.1564-1567

T. M. Trimble, R. C. Cammarata, and K. Sieradzki, The stability of fcc (111) metal surfaces, Surface Sciences, vol.531, pp.8-20, 2003.

C. Goyhenex and H. Bulou, Theorical insight in the energetics of co adsorption on a reconstructed au(111) substrate, Physical Review B, vol.63, 2001.

H. Sakaguchi, Herringbone pattern for an anisotropic complex Swift-Hohenberg equation, Physical Review E, vol.58, issue.6, p.8021, 1998.

S. Quan, L. He, and Y. Ni, Tunable mosaic structures in van der waals layered materials, Physical Chemistry Chemical Physics, vol.20, pp.25428-25436, 2018.

T. J. Roussel, E. Barrena, C. Ocal, and J. Faraudo, Predicting supramolecular self-assembly on reconstructed metal surfaces, Nanoscale, pp.0-1, 2014.

G. Binnig, H. Rohrer, C. Ger-ber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, vol.49, pp.57-61

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, 7 \ifmmode\times\else\texttimes\fi{} 7 Reconstruction on Si(111) Resolved in Real Space, Physical Review Letters, vol.50, issue.2, pp.120-123, 1983.

Y. Nahas, F. Berneau, J. Bonne-ville, C. Coupeau, M. Drouet et al., An experimental UHV AFM-STM device for characterizing surface nanostructures under stress/strain at variable temperature, Review of Scientific Instruments, vol.84, issue.10, p.105117, 2013.

M. Bott, T. Michely, and G. Comsa, Design principles of a variable temperature scanning tunneling microscope, Review of Scientific Instruments, vol.66, issue.8, pp.4135-4139, 1995.

M. S. Hoogeman, D. Glastra-van-loon, R. W. Loos, H. G. Ficke, E. Haas et al., Design and performance of a programmable-temperature scanning tunneling microscope, Review of Scientific instruments, vol.69, issue.5, 1998.

J. P. Ibe, P. P. Bey-jr, S. L. Bran-dow, R. A. Brizzolara, N. A. Burnham et al., On the electrochemical etching of tips for scanning tunneling microscopy, Journal of Vacuum Science & Technology A, vol.8, issue.3750, 1990.

. Mv-r, T. Murty, A. Curcic, B. H. Judy, A. R. Cooper et al., HEA-DRICK : X-ray scattering study of the surface morphology of Au (111) during Ar+ ion irradiation. Physical review letters, vol.80, p.4713, 1998.

. Mv-r, T. Murty, A. Curcic, B. H. Judy, A. R. Cooper et al., HEA-DRICK : Real-time x-ray scattering study of surface morphology evolution during ion erosion and epitaxial growth of Au (111), Physical Review B, vol.60, issue.24, p.16956, 1999.

A. Rai, J. Nayak, and S. Roy-bar-man, Temporal evolution and nature of nanostructures on Au

, Surface Science, vol.625, pp.97-103, 2014.

P. Klapetek, Quantitative Data Processing in Scanning Probe Microscopy 2nd Edition, 2018.

S. Plimpton, Computational limits of classical molecular dynamics simulations, Computational materials science, vol.4, issue.4, pp.361-364, 1995.

E. Polak and G. Ribière, Note sur la convergence de méthode de directions conjuguées, Revue française d'informatique et de recherche opérationnelle, vol.3, pp.35-43, 1969.

L. Verlet, Computer "experiments" on classical fluids, Physical review, vol.159, issue.1, p.98, 1967.

F. Ercolessi, A molecular dynamics primer, 1997.

C. Becquart and M. Perez, Dynamique moléculaire appliquée aux matériaux, vol.136, 2010.

S. Murray, M. I. Daw, and . Baskes, Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals, Physical Review Letters, vol.50, issue.17, pp.1285-1288, 1983.

M. J. Stott and E. Zaremba, Quasiatoms : An approach to atoms in nonuniform electronic systems, Physical Review B, vol.22, issue.4, p.1564, 1980.

S. D. Murray and M. L. Baskes, Embedded-atom method : dderivation and applications to impurities, surfaces and other defects in metals, Physical Review B, vol.29, issue.12, 1984.

M. I. Baskes, Application of the embedded-atom method to covalent materials : A semiempirical potential for silicon, Physical Review Letters, vol.59, issue.23, 1987.

M. I. Baskes, Modified embeddedatom potentials for cubic materials and impurities, Physical Review B, vol.46, issue.5, p.2727, 1992.

B. Lee, J. Shim, and M. I. Baskes, Pb based on first and second nearest-neighbor modified embedded atom method, Semiempirical atomic potentials for the fcc metals Cu, vol.68, 2003.

D. Chauraud, J. Durinck, M. Drouet, L. Vernisse, J. Bon-neville et al., Influence of terrasse widths on au(111) reconstruction, Physical Review B, vol.96, issue.045410, 2017.

S. Ryu, C. R. Weinberger, M. I. Baskes, and W. Cai, Improved modified embedded-atom method potentials for gold and silicon. Modelling and Simulation in, Materials Science and Engineering, vol.17, issue.7, p.75008, 2009.

V. B. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Physical Review B, vol.71, issue.094104, 2005.

C. Robert, CAMMARATA : Surface and interface stress effects in thin films, Progress in surface science, vol.46, issue.1, pp.1-38, 1994.

J. A. Zimmermann, H. Gao, and F. F. Abraham, Generalized stacking fault energies for embedded atom fcc metals. Modelling and Simulation in, Materials Science and Engineering, vol.8, pp.103-115, 1999.

G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties : A Handbook, 1971.

A. Stukowski, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modelling and Simulation in, Materials Science and Engineering, vol.18, issue.8, p.15012, 2009.

A. Stukowski and K. Albe, Extracting dislocations and nondislocation crystal defects from atomistic simulation data. Modelling and Simulation in, Materials Science and Engineering, vol.18, issue.8, p.85001, 2010.

B. Salanon and P. Hecquet, Stress on vicinal surfaces. Surface Science, pp.639-644, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01987614

W. Li, H. Duan, K. Albe, and J. Weissmüller, Line stress of step edges at crystal surfaces. Surface Science, p.605, 2011.

J. Weissmüller and H. Duan, Cantilever bending with rough surfaces, Physical Review Letter, vol.101, 2008.

N. Shimoni, O. Biham, and O. Millo, Current-induced surface dislocations on thin gold films, Surface science, vol.414, issue.1, pp.925-931, 1998.

S. Brochard, P. Beauchamp, and J. Grilhe, Energies of the atomic steps formed on low index surfaces of fcc metals, Physical Magazine Letters, vol.77, issue.3, pp.125-134, 1998.

C. Coupeau, O. Camara, M. Drouet, J. Durinck, J. Bon-neville et al., Slip-trace-induced vicinal step destabilization, Physical Review B, vol.93, issue.4, p.41405, 2016.

L. Vitos, H. L. Skriver, and J. , KOL-LAR : the formation energy for steps and kinks on cubic transition metal surfaces, Surf. Sci, vol.425, pp.213-223, 1999.

T. Michely and G. Comsa, Temperature dependence of the sputtering morphology of Pt (111), Surface Science, vol.256, issue.3, pp.217-226, 1991.

J. Ikonomov, K. Starbova, H. Ibach, and M. Giesen, Measurement of step and kink energies and of the step-edge stiffness from island studies on pt(111), Physical Review B, vol.75, 2007.

G. Prévot, L. Barbier, and P. Stead-man, Step interactions on pt(111) vicinal surfaces determined by grazing incidence x-ray diffraction : Influence of the step orientation. Surface Science, vol.604, pp.1265-1272, 2010.

S. A. Argon and W. C. Moffatt, Climb of extented edge dislocations, Acta Metallurgica, vol.29, 1981.

G. Mills, H. Jonsson, and G. Schen-ter, Reversible work transition state theory : application to dissociative adsorption of hydrogen. Scurface Science, vol.324, pp.305-334, 1995.

G. Henkelman and H. Jonsson, Imroved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points, Journal of Chemical Physics, vol.113, issue.22, 2000.

L. B. Freund, The driving force for glide of a threading dislocation in a srained epitaxial layer on a substrate, Journal of Mechanics Physics Solids, vol.38, issue.5, pp.657-679, 1989.

F. R. , NABARRO : Fifty-year study of the peierls-nabarro stress. Materials Science and Engineering A, pp.234-236, 1997.

C. Lee and S. Li, A half-space peierls-nabarro model and the mobility of screw dislocations in a thin film, Acta Materialia, vol.55, pp.2149-2157, 2007.

K. Christmann, G. Ertl, and H. Shi-mizu, Model studies on bimetallic cu/ru catalysts, vol.61, pp.397-411, 1980.

O. Schaff, A. K. Schmid, N. C. Bartelt, J. , and R. Q. Hwang, In-situ STM studies of strain-stabilized thin-film dislocation networks under applied stress, Materials Science and Engineering : A, vol.319, pp.914-918, 2001.

, Dans un premier temps, nous étudions l'interaction entre les marches atomiques (vicinales ou traces de glissement) et la reconstruction. Nous montrons notamment expérimentalement une forte dépendance de la longueur de la reconstruction avec la largeur des terrasses, en très bon accord avec les simulations atomistiques. Nous démontrons de manière quantitative que ce comportement provient de la relaxation des contraintes de surface, à la fois le long et perpendiculairement aux marches atomiques. Par la suite, nous montrons que l'apparition d'une trace de glissement, résultant de l'émergence d'une dislocation à la surface, induit une réorganisation de la reconstruction, caractérisée par la formation d'un motif en forme de U. En outre, nous observons expérimentalement la présence de décrochements le long de la trace. Les simulations confirment que ces décrochements sont corrélés avec la modification de la reconstruction. Dans un second temps, nous axons l'étude sur l'évolution de la reconstruction en chevrons sous contraintedéformation appliquée. Les observations expérimentales montrent qu'une contrainte de compression macroscopique est à l'origine d'une modification de la structure en chevrons. Les simulations en dynamique moléculaire permetent d'analyser l'influence de l'orientation de la contrainte sur les dislocations perçant la surface, Résumé L'évolution de la reconstruction de surface de l'Au(111) sous contrainte-déformation est étudiée dans le cadre d'une approche, à la fois expérimentale par microscopie à effet tunnel sous environnement ultra-vide couplée à un dispositif en compression, et numériquement par simulations en dynamique moléculaire

, Mots-clés: microscopie à effet tunnel, dynamique moléculaire, Au, reconstruction de surface, contrainte-déformation, marches atomiques