, Hip and knee replacement, Heal. a Glance Eur, pp.86-87, 2012.

C. Provines, Strategic insights into the orthopaedic industry, Orthoknow, pp.1-8, 2013.

D. B. Research, Global Hip Replacement Implants Market -Trends and Forecast to 2022, 2016.

Y. Jamie, S. Chye, J. Loo, J. Lee, and J. Ma,

L. Sun, C. C. Berndt, K. A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings : A Review, J. Mater. Res, vol.58, pp.570-592, 2001.

L. Sun, Thermal Spray Coatings on Orthopedic Devices: When and How the FDA Reviews Your Coatings, J. Therm. Spray Technol, vol.27, pp.1280-1290, 2018.

J. Henao, C. Poblano-salas, M. Monsalve, and J. Corona-castuera, Bio-active glass coatings manufactured by thermal spray: a status report, J. Mater. Res. Technol, vol.8, pp.4965-4984, 2019.

G. Bolelli, D. Bellucci, V. Cannillo, R. Gadow, A. Killinger et al., Comparison between Suspension Plasma Sprayed and High Velocity Suspension Flame Sprayed bioactive coatings, Surf. Coatings Technol, vol.280, pp.232-249, 2015.

J. Cihlá?, A. Buchal, and M. Trunec, Kinetics of thermal decomposition of hydroxyapatite bioceramics, J. Mater. Sci, vol.34, pp.6121-6131, 1999.

C. J. Liao, F. H. Lin, K. S. Chen, and J. S. Sun, Thermal decomposition and reconstruction of hydroxyapatite in air atmosphere, Biomed. Sci. Instrum, vol.35, pp.99-104, 1999.

P. Cheang and K. A. Khor, Addressing processing problems associated with plasma spraying of hydroxyapatite coatings, Biomaterials, vol.17, issue.96, pp.82729-82732, 1996.

R. B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties, J. Therm. Spray Technol, vol.25, pp.827-850, 2016.

S. Amin and H. , A Review on Thermal Spray Coating Processes, Int. J. Curr. Trends Eng. Res. Sci. J. Impact Factor, vol.2, pp.556-563, 2016.

J. Chen, W. Tong, Y. Cao, J. Feng, and X. Zhang, Effect of atmosphere on phase transformation in plasma-sprayed hydroxyapatite coatings during heat treatment, J. Biomed. Mater. Res, vol.34, 1997.

H. Li, K. A. Khor, and P. Cheang, Effect of the powders' melting state on the properties of Chapter 1: Preliminaries HVOF sprayed hydroxyapatite coatings, Mater. Sci. Eng. A, vol.293, pp.71-80, 2000.

J. L. Ong, M. Appleford, S. Oh, Y. Yang, W. Chen et al., The Characterization and Development of Bioactive Hydroxyapatite Coatings, Surf. Modif. Cation Bioapplications, pp.67-69, 2006.

G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi et al., Microstructural and in vitro characterisation of high-velocity suspension flame sprayed (HVSFS) bioactive glass coatings, J. Eropean Ceram. Soc, vol.29, pp.2249-2257, 2009.

G. Bolelli, D. Bellucci, V. Cannillo, L. Lusvarghi, A. Sola et al., Suspension thermal spraying of hydroxyapatite : Microstructure and in vitro behaviour, Mater. Sci. Eng. C, vol.34, pp.287-303, 2014.

J. H. Chern-lin, K. S. Chen, and C. P. Ju, Biocorrosion behavior of hydroxyapatite/bioactive glass plasma sprayed on Ti6A14V, Mater. Chem. Phys, vol.41, pp.80035-80037, 1995.

J. H. Lin, M. L. Liu, and C. P. Ju, Structure and properties of hydroxyapatite-bioactive glass composites plasma sprayed on Ti6AI4V, J. Mater. Sci. Mater. Med, vol.5, pp.279-283, 1994.

A. Cattini, D. Bellucci, A. Sola, L. Paw?owski, and V. Cannillo, Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass, J. Biomed. Mater. Res. Part B Appl. Biomater, vol.102, pp.551-560, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103085

K. Kulpetchdara, A. Limpichaipanit, and G. , Influence of the nano hydroxyapatite powder on thermally sprayed HA coatings onto stainless steel, Surf. Coat. Technol, vol.306, pp.181-186, 2016.

P. Gkomoza, M. Vardavoulias, D. I. Pantelis, and C. Sarafoglou, Comparative study of structure and properties of thermal spray coatings using conventional and nanostructured hydroxyapatite powder, for applications in medical implants, Surf. Coat. Technol, vol.357, pp.748-758, 2019.

R. S. Lima, K. Khor, H. Li, P. Cheang, and B. R. Marple, HVOF spraying of nanostructured Chapter

E. A. Ofudje, A. I. Adeogun, M. A. Idowu, and S. O. Kareem, Synthesis and characterization of Zn-Doped hydroxyapatite: scaffold application, antibacterial and bioactivity studies, Heliyon, vol.5, 2019.

R. H. Ali, H. Ageorges, S. Nasr, and E. B. Salem, Zinc and strontium co-substituted hydroxyfluorapatite: Synthesis, sintering and mechanical properties, Mater. Res. Bull, vol.112, pp.84-94, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02456784

L. Li, X. Lu, Y. Meng, and C. M. Weyant, Comparison study of biomimetic strontium-doped calcium phosphate coatings by electrochemical deposition and air plasma spray: Morphology, composition and bioactive performance, J. Mater. Sci. Mater. Med, vol.23, pp.2359-2368, 2012.

E. Kergourlay, D. Grossin, N. Cinca, C. Josse, S. Dosta et al., First Cold Spraying of Carbonated Biomimetic Nanocrystalline Apatite on Ti6Al4V: Physical-Chemical, Microstructural, and Preliminary Mechanical Characterizations, Adv. Eng. Mater, vol.18, pp.496-500, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01456854

W. C. Vrouwenvelder, C. G. Groat, and K. D. Groot, Better histology and biochemistry for osteoblasts cultured on titanium-doped bioactive glass: Bioglass 45S5 compared with iron-, titanium-, fluorine-, and boron-containing bioactive glasses, Biomaterials, vol.15, pp.90257-90264, 1994.

J. Pratten, S. N. Nazhat, J. J. Blaker, and A. R. Boccaccini, In Vitro Attachment of Staphylococcus Epidermidis to Surgical Sutures with and without Ag-Containing Bioactive Glass Coating, J. Biomater. Appl, vol.19, pp.47-57, 2015.

A. Hoppe, R. Meszaros, C. Stahlim, S. Romeris, J. Schmidt et al., In vitro reactivity of Cu, pp.45-50

, Bioglass® derived scaffolds for bone tissue engineering, J. Mater. Chem. B, vol.2, pp.5659-5674, 2013.

C. Y. Maurice, Inductively Coupled Plasmas: Ion Dynamics and Interactions with Bone Tissue, 2003.

M. Ozawa and S. Suzuki, Microstructural Development of Natural Hydroxyapatite Chapter

J. Fernández, M. Gaona, and J. M. Guilemany, Effect of Heat Treatments on HVOF Hydroxyapatite Coatings, J. Therm. Spray Technol, vol.16, pp.220-228, 2007.

M. G. Latorre, Recubrimientos biocompatibles obtenidos por proyección térmica y estudio in vitro de la función osteoblástica, 2007.

G. Kaur, O. P. Pandey, K. Singh, D. Homa, B. Scott et al., A review of bioactive glasses: Their structure, properties, fabrication and apatite formation, J. Biomed. Mater. Res. Part A, vol.102, pp.254-274, 2014.

D. Bellucci, G. Bolelli, V. Cannillo, R. Gadow, L. Killinger et al., High velocity suspension flame sprayed (HVSFS) potassium-based bioactive glass coatings with and without TiO2 bond coat, Surf. Coatings Technol, vol.206, pp.3857-3868, 2012.

L. Milkovic, A. Hoppe, R. Detsch, A. R. Boccaccini, and N. Zarkovic, Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblastlike cells in vitro, J. Biomed. Mater. Res. A, vol.102, pp.3556-3561, 2013.

A. A. Gorustovich, T. Steimetz, R. L. Cabrini, and J. M. Porto-lópez, Osteoconductivity of strontium-doped bioactive glass particles: A histomorphometric study in rats, J. Biomed

, Mater. Res. A, vol.92, pp.232-237, 2009.

L. A. Durand, A. Góngora, J. M. Porto-lópez, A. R. Boccaccini, M. P. Zago et al., In vitro endothelial cell response to ionic dissolution products from borondoped bioactive glass in the Si2O-CaO-P2O5-Na2O system, J. Mater. Chem. B, vol.2, pp.7620-7630, 2014.

C. Trevisan, M. Bigoni, R. Cherubini, P. Steiger, G. Randelli et al., Dual X-Ray Absorptiometry for the Evaluation of Bone Density from the Proximal Femur after Total Hip Arthroplasty : Analysis Protocols and Reproducibility, Calcif. Tissue Int, vol.53, pp.158-161, 1993.

J. Vanrusselt, M. Vansevenant, and G. Vanderschueren, Postoperative radiograph of the hip arthroplasty: what the radiologist should know, Insights Imaging, pp.591-600, 2015.

M. A. Francis, J. Annie, and P. R. Varma, Nano iron oxide -hydroxyapatite composite ceramics with enhanced radiopacity, J. Mater. Sci. Mater. Med, vol.21, pp.1427-1434, 2010.

R. Madanat, N. Moritz, E. Vedel, E. Svedstro, and H. T. Aro, Radio-opaque bioactive glass markers for radiostereometric analysis, Acta Biomater, vol.5, pp.3497-3505, 2009.

S. Prasad, I. Ratha, T. Adarsh, A. Anand, P. K. Sinha et al., In vitro bioactivity and antibacterial properties of bismuth oxide modified bioactive glasses, J. Mater. Res, vol.33, pp.178-190, 2018.

W. J. Stark, D. Mohn, M. Zehnder, and T. Imfeld, Radio-opaque bioactive glass materials, 2012.

S. V. Dorozhkin, Calcium Orthophosphates as Bioceramics: State of the Art, J. Funct. Biomater, vol.1, pp.22-107, 2010.

H. Liang, B. Shi, A. Fairchild, and T. Cale, Applications of plasma coatings in artificial joints: An overview, Vacuum, vol.73, pp.317-326, 2004.

, Hip and knee replacement, Heal. a Glance Eur, pp.86-87, 2012.

M. Mittal, S. K. Nath, and S. Prakash, Characterization of Plasma Sprayed Hydroxyapatite Coatings on AISI 316L SS and Titanium Substrate and their Corrosion Behavior in Simulated Body Fluid, vol.10, pp.1041-1049, 2011.

D. F. Williams, On the nature of biomaterials, Biomaterials, vol.30, pp.5897-5909, 2009.

D. Sola, V. Bellucci, . Cannillo, and . Cattini, Bioactive glass coatings: a review, Surf. Eng, vol.27, pp.560-572, 2011.

A. Chetty, I. Wepener, M. K. Marei, Y. E. Kamary, and R. M. Moussa, Synthesis, properties and applications of Hydroxyapatite, pp.1-477, 2012.

R. B. Heimann, Materials Science of Crystalline Bioceramics : A Review of Basic Properties and Applications, J. C, vol.1, pp.23-46, 2002.

E. Fiume, J. Barberi, E. Vern, and F. Baino, Bioactive Glasses : From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies, 2018.

S. Hampshire, Bioglasses and Bioglass-ceramics, pp.17-19, 2015.

H. R. Fernandes, A. Gaddam, A. Rebelo, D. Brazete, G. E. Stan et al., Bioactive glasses and glass-ceramics for healthcare applications in bone regeneration and tissue engineering, Materials (Basel), vol.11, pp.1-57, 2018.

T. J. Levingstone, Ceramics for Medical Applications, vol.2, p.58, 2008.

G. P. Jayaswal, S. P. Dange, and N. Khalikar, Bioceramic in dental implants: A review, J. Indian Prosthodont. Soc, vol.10, pp.8-12, 2010.

A. Cattini, Coatings of bioactive glasses and hydroxyapatite and their properties, 2013.

L. L. Hench, Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc, vol.74, pp.1487-1510, 1991.

P. Ptacek, Apatites and their Synthetic Analogues, 2016.

Y. Suetsugu and T. Tateishi, Implants and biomaterials (hydroxyapatite), in: Implants, pp.1-10, 2008.

W. L. Jaffe and D. F. Scott, Hydroxyapatite-Coated Prostheses Current Concepts Review -Total Hip Arthroplasty with Current Concepts Review Total Hip Arthroplasty with

, Hydroxyapatite-Coated Prostheses* Basic-Science and Preclinical Studies, J. Bone Jt. Surg, vol.78, pp.1918-1952, 1996.

S. Markovi?, L. Veselinovi?, M. J. Luki?, L. Karanovi?, I. Bra?ko et al., Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology, Biomed. Mater, vol.6, p.45005, 2011.

, International Organization for Standardization, ISO13779-6 Implants for surgery -Hydroxyapatite: Powders, 2015.

, Ceramic hydroxyapatite, pp.13779-13780, 2008.

I. Demnati, D. Grossin, C. Combes, and C. Rey, Plasma-Sprayed apatite Coatings: Review of physical-chemical characteristics and their biological consequences, J. Med. Biol
URL : https://hal.archives-ouvertes.fr/hal-01105362

. Eng, , vol.34, pp.1-7, 2014.

J. P. Gagne and K. A. Wylliet, Relative effectiveness of three repair strategies on the visualidentification of misperceived words, Ear Hear, vol.10, pp.368-374, 1989.

M. Ajeesh, B. F. Francis, J. Annie, and P. R. Varma, Nano iron oxide-hydroxyapatite composite ceramics with enhanced radio-opacity, State of Art, vol.21, 2010.

G. Ciobanu, A. M. Bargan, C. Luca, and O. Ciobanu, The bi-substituted hydroxyapatite as radio-opaque material, RAD Conf. Proc, pp.479-482, 2015.

K. M. Lachowski, S. B. Botta, C. A. Lascala, A. B. Matos, and M. A. Sobral, Study of the radio-opacity of base and liner dental materials using a digital radiography system, Dentomaxillofacial Radiol, vol.42, 2013.

B. Li and T. Webster, Orthopedic biomaterials: Advances and applications, 2018.

C. Berndt, G. Haddad, A. Farmar, and K. Gross, Thermal spraying for bioceramic applications, Mater. Forum (Rushcutters Bay), vol.14, pp.161-173, 1990.

M. Sadat-shojai, M. T. Khorasani, E. Dinpanah-khoshdargi, and A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures, Acta Biomater, vol.9, pp.7591-7621, 2013.

P. Ptá?ek, Synthetic Phase with the Structure of Apatite, Apatites Their Synth. Analog. -Synth. Struct. Prop. Appl, 2016.

E. Bouyer, F. Gitzhofer, and M. I. Boulos, Suspension plasma spraying for hydroxyapatite powder preparation by RF plasma, IEEE Trans. Plasma Sci, vol.25, pp.1066-1072, 1997.

A. Killinger, P. Müller, and R. Gadow, What Do We Know, What are the Current Limitations of Suspension HVOF Spraying?, J. Therm. Spray Technol, vol.24, pp.1130-1142, 2015.

A. L. Giraldo-betancur, D. G. Espinosa-arbelaez, A. Real-lópez, B. M. Millan-malo, E. M. Rivera-muñoz et al.,

. Rodriguez-garcía, Comparison of physicochemical properties of bio and commercial hydroxyapatite, Curr. Appl. Phys, vol.13, pp.1383-1390, 2013.

L. Sun, C. C. Berndt, K. A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings : A Review, State of Art, vol.58, pp.570-592, 2001.

T. Thamaraiselvi and S. Rajeswari, Biological evaluation of bioceramic materials-a review, Carbon N. Y, vol.24, p.172, 2004.

E. D. Zanotto and J. C. Mauro, The glassy state of matter: Its definition and ultimate fate, J. Non. Cryst. Solids, vol.471, pp.490-495, 2017.

J. R. Jones, Reprint of: Review of bioactive glass: From Hench to hybrids, Acta Biomater, vol.23, 2015.

B. Ratner, A. Hoffman, F. Schoen, and J. Lemons, Biomaterial Science -An Introduction to Materials in Medicine, 2004.

L. L. Hench, An Introduction to Bioceramics, 2013.

L. L. Hench and J. Wilson, Surface-Active Biomaterials, vol.226, pp.630-636, 1984.

Z. Imran and B. Glass, A Material for the Future, World J. Dent, vol.3, pp.199-201, 2012.

A. Hoppe, Bioactive Glass Derived Scaffolds with Therapeutic Ion Releasing Capability for Bone Tissue Engineering, vol.201, p.195, 2014.

R. Madanat, N. Moritz, E. Vedel, E. Svedstro, and H. T. Aro, Radio-opaque bioactive glass markers for radiostereometric analysis, Acta Biomater, vol.5, pp.3497-3505, 2009.

W. J. Stark, D. Mohn, M. Zehnder, and T. Imfeld, Radio-oupaque bioactive glass materials, vol.008658188, 2014.

M. Montazerian and E. D. Zanotto, History and trends of bioactive glass-ceramics, J. Biomed. Mater. Res. -Part A, vol.104, pp.1231-1249, 2016.

M. M. Koç, N. Aslan, A. P. Kao, and A. H. Barber, Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications, Microsc. Res. Tech, vol.82, pp.812-848, 2019.

T. J. Barrs, X-rays and radio-opaque drugs, Am. J. Heal. Pharm, vol.62, pp.2026-2030, 2005.

G. Sabbagh, J. Vreven, and J. Leloup, Radiopacity of resin-based materials measured in film Chapter 2: State of Art radiographs and storage phosphor plate, Oper. Dent, vol.29, pp.677-684, 2004.

M. Hernández-rivera, I. Kumar, S. Y. Cho, B. Y. Cheong, M. X. Pulikkathara et al.,

K. H. Moghaddam, L. J. Whitmire, and . Wilson, High-Performance Hybrid Bismuth-Carbon Nanotube Based Contrast Agent for X-ray CT Imaging, ACS Appl. Mater. Interfaces, vol.9, pp.5709-5716, 2017.

W. Dukic, B. Delija, D. Derossi, and I. Dadic, Radiopacity of composite dental materials using a digital X-ray system, Dent. Mater. J, vol.31, pp.47-53, 2012.

R. R. Vivan, R. Ordinola-zapata, C. M. Bramante, N. Bernardineli, R. B. Garcia et al., Evaluation of the radio-opacity of some commercial and experimental root-end filling materials, Oral Surgery, Oral Med. Oral Pathol, Oral Radiol. Endodontology, vol.108, pp.35-38, 2009.

V. Vega-flores, Evaluación de la radiopacidad de materiales para provisionalización, 2012.

S. Baroth, X. Bourges, B. Fellah, and G. Daculsi, Radiopaque strategy for bone injectable substitute, Key Eng. Mater, pp.39-42, 2008.

L. Tian, L. Lu, J. Feng, and M. P. Melancon, Radiopaque nano and polymeric materials for atherosclerosis imaging, embolization and other catheterization procedures, Acta Pharm. Sin. B, vol.8, pp.360-370, 2018.

Y. Cheng and H. Zhang, Novel Bismuth-Based Nanomaterials Used for Cancer Diagnosis and Therapy, Chem. -A Eur, J, vol.24, pp.17405-17418, 2018.

J. Huppert, F. Kiessling, J. Jayapaul, A. Kubelbeck, and G. Larbig, X-ray contrast agent based on bismuth oxide-nanoparticles, EP, vol.2, pp.127-682, 2009.

C. M. Hincapié, M. J. Cárdenas, J. E. Orjuela, E. R. Parra, and J. J. Florez, Physical-chemical properties of bismuth and bismuth oxides: Synthesis, characterization and applications, pp.139-148, 2012.

A. P. Reverberi, P. S. Varbanov, M. Vocciante, and B. Fabiano, Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis, Front, State of Art, vol.12, pp.878-892, 2018.

P. Patnaik, Handbook of Inorganic Chemical Compounds, 2003.

P. Shuk, H. D. Wiemhöfer, U. Guth, W. Göpel, and M. Greenblatt, Oxide ion conducting solid electrolytes based on Bi2O3, Solid State Ionics, vol.89, pp.179-196, 1996.

Y. C. Hwang, S. H. Lee, I. N. Hwang, I. C. Kang, M. S. Kim et al., Chemical composition, radio-opacity, and biocompatibility of Portland cement with bismuth oxide, Oral Surgery, Oral Med. Oral Pathol, Oral Radiol. Endodontology, vol.107, pp.96-102, 2009.

H. Lusic and M. W. Grinstaff, X-ray-computed tomography contrast agents, Chem. Rev, vol.113, pp.1641-1666, 2013.

C. E. Da, S. Bueno, E. G. Zeferino, L. R. Manhães, D. G. Rocha et al., Study of the bismuth oxide concentration required to provide Portland cement with adequate radio-opacity for endodontic use, Oral Surgery, Oral Med. Oral Pathol

, Oral Radiol. Endodontology, vol.107, pp.65-69, 2009.

E. C. Kim, B. C. Lee, H. S. Chang, W. Lee, C. U. Hong et al., Evaluation of the radioopacity and cytotoxicity of Portland cements containing bismuth oxide, Oral Surgery, Oral Med. Oral Pathol, Oral Radiol. Endodontology, vol.105, pp.54-57, 2008.

F. Du, J. Lou, R. Jiang, Z. Fang, X. Zhao et al., Hyaluronic acid-functionalized bismuth oxide nanoparticles for computed tomography imaging-guided radiotherapy of tumor, Int. J. Nanomedicine, vol.12, pp.5973-5992, 2017.

D. Mohn, M. Zehnder, T. Imfeld, and W. J. Stark, Radio-opaque nanosized bioactive glass for potential root canal application: Evaluation of radio-opacity, bioactivity and alkaline capacity, Int. Endod. J, vol.43, pp.210-217, 2010.

P. L. Fauchais, J. V. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00946557

A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C. C. Berndt et al.,

J. Boulos, A. C. Brogan, A. Bourtsalas, M. Dolatabadi, T. J. Dorfman et al.,

A. Khor, Y. C. Killinger, C. J. Lau, L. Li, J. Li et al., The 2016 Thermal Spray Roadmap, vol.25, pp.1376-1440, 2016.

F. E. García-costales and J. M. Mejido, Recubrimientos de proyección por plasma, p.10, 2001.

R. S. Lima and B. R. Marple, Superior performance of high-velocity oxyfuel-sprayed nanostructured TiO2 in comparison to air plasma-sprayed conventional Al2O3-13TiO2, J. Therm. Spray Technol, vol.14, pp.397-404, 2005.

A. Valarezo, W. B. Choi, W. Chi, A. Gouldstone, and S. Sampath, Process control and characterization of NiCr coatings by HVOF-DJ2700 system: A process map approach, J. Therm. Spray Technol, vol.19, pp.852-865, 2010.

S. Hasan, Design of experiment analysis of high velocity oxy-fuel coating of hydroxyapatite, 2009.

M. Ducos and V. Reitz, Coating properties and characteristics optimization of the operation of a plasma generator for thermal spraying, Proc. Elev. Int. Therm. Spray. Conf, p.847, 1986.

J. Cihlá?, A. Buchal, and M. Trunec, Kinetics of thermal decomposition of hydroxyapatite bioceramics, J. Mater. Sci, vol.34, pp.6121-6131, 1999.

C. J. Liao, F. H. Lin, K. S. Chen, and J. S. Sun, Thermal decomposition and reconstruction of hydroxyapatite in air atmosphere, Biomed. Sci. Instrum, vol.35, pp.99-104, 1999.

P. Cheang and K. A. Khor, Addressing processing problems associated with plasma spraying of hydroxyapatite coatings, Biomaterials, vol.17, issue.96, pp.82729-82732, 1996.

R. B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties, J. Therm. Spray Technol, vol.25, pp.827-850, 2016.

S. Amin and H. , A Review on Thermal Spray Coating Processes, vol.2, pp.556-563, 2016.

G. Goller, F. N. Oktar, L. S. Ozyegin, E. S. Kayali, and E. Demirkesen, Plasma-sprayed human bone-derived hydroxyapatite coatings : effective and reliable, Mater. Lett, vol.58, pp.2599-2604, 2004.

H. Li, K. Khor, and P. Cheang, Properties of heat-treated calcium phosphate coatings deposited by high-velocity oxy-fuel (HVOF) spray, Biomaterials, vol.23, pp.2105-2117, 2002.

J. Fernández, M. Gaona, and J. M. Guilemany, Effect of Heat Treatments on HVOF Hydroxyapatite Coatings, J. Therm. Spray Technol, vol.16, pp.220-228, 2007.

M. G. Latorre, Recubrimientos biocompatibles obtenidos por proyección térmica y estudio in vitro de la función osteoblástica, 2007.

J. H. Chern-lin, K. S. Chen, and C. P. Ju, Biocorrosion behavior of hydroxyapatite/bioactive glass plasma sprayed on Ti6A14V, Mater. Chem. Phys, vol.41, pp.80035-80037, 1995.

A. Cattini, D. Bellucci, A. Sola, L. Paw?owski, and V. Cannillo, Microstructural design of functionally graded coatings composed of suspension plasma sprayed hydroxyapatite and bioactive glass, J. Biomed. Mater. Res. Part B Appl. Biomater, vol.102, pp.551-560, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01103085

J. A. Rincon-lópez, J. A. Hermann-muñoz, A. L. Giraldo-betancur, A. Vizcaya-ruiz, J. M. Alvarado-orozco et al., Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison, Materials (Basel), vol.11, pp.1-17, 2000.

B. Li and T. Webster, Orthopedic Biomaterials Advances and Applications, 2017.

N. M. Neves and R. L. Reis, Biomaterials From Nature for Advances Devices and Therapies, 2016.

J. ,

H. Chern-lin,

S. Lin,

C. Ding and . Ju, Characterization of immersed hydroxyapatitebioactive glass coatings in Hank's solution, Mater. Chem. Phys, vol.64, pp.229-240, 2000.

H. C. Lin, Morphologic variation in plasma-sprayed hydroxyapatite-bioactive glass composite coatings in Hank's solution, J. Biomed. Mater. Res, vol.28, pp.723-730, 1994.

A. El-ghannam, E. Hamazawy, and A. Yehia, Effect of thermal treatment on bioactive glass microstructure, corrosion behavior, z potential, and protein adsorption, J. Biomed. Mater. Res, vol.55, pp.387-395, 2001.

X. Chen, Y. Meng, Y. Li, and N. Zhao, Investigation on bio-mineralization of melt and solgel derived bioactive glasses, Appl. Surf. Sci, vol.255, pp.562-564, 2008.

G. Goller, The effect of bond coat on mechanical properties of plasma sprayed bioglasstitanium coatings, Ceram. Int, vol.30, pp.351-355, 2004.

L. Altomare, D. Bellucci, G. Bolelli, B. Bonferroni, V. Cannillo et al., Microstructure and in vitro behaviour of 45S5 bioglass coatings deposited by high velocity suspension flame spraying

, J. Mater. Sci. Mater. Med, vol.22, pp.1303-1322, 2011.

R. Comesaña, F. Quintero, F. Lusquiños, M. J. Pascual, M. Boutinguiza et al., Laser cladding of bioactive glass coatings, Acta Biomater, vol.6, pp.953-961, 2010.

R. A. Martin, H. Twyman, D. Qiu, J. C. Knowles, and R. J. Newport, A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass® using surface sensitive shallow angle X-ray diffraction, J. Mater. Sci. Mater. Med, vol.20, pp.883-888, 2009.

M. Ma?kovi?, A. Hoppe, R. Detsch, D. Mohn, W. J. Stark et al., Bioactive glass (type 45S5) nanoparticles: In vitro reactivity on nanoscale and biocompatibility, J. Nanoparticle Res, vol.14, pp.1-22, 2012.

I. Halikia, L. Zoumpoulakis, E. Christodoulou, and D. Prattis, Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis, vol.1, pp.89-102, 2001.

J. Kim, Y. Lee, and H. Lee, Decomposition of Na2CO3 by Interaction with SiO2 in Mold Flux of Steel Continuous Casting, vol.41, pp.116-123, 2001.

R. V. Siriwardane, J. A. Poston, C. Robinson, and T. Simonyi, Effect of additives on decomposition of sodium carbonate: Precombustion CO2 capture sorbent regeneration, Energy and Fuels, vol.25, pp.1284-1293, 2011.

W. J. Stark, D. Mohn, M. Zehnder, and T. Imfeld, Radio-opaque bioactive glass materials, 2014.

L. Sun, C. C. Berndt, K. A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings : A Review, J. Mater. Res, vol.58, pp.570-592, 2001.

L. Sun, Thermal Spray Coatings on Orthopedic Devices: When and How the FDA Reviews Your Coatings, J. Therm. Spray Technol, vol.27, pp.1280-1290, 2018.

J. Cizek and K. A. Khor, Role of in-flight temperature and velocity of powder particles on plasma sprayed hydroxyapatite coating characteristics, Surf. Coatings Technol, vol.206, pp.2181-2191, 2012.

H. Li, K. A. Khor, and P. Cheang, Effect of the powders' melting state on the properties of HVOF sprayed hydroxyapatite coatings, Mater. Sci. Eng. A, vol.293, pp.71-80, 2000.

R. S. Lima, K. Khor, H. Li, P. Cheang, and B. R. Marple, HVOF spraying of nanostructured hydroxyapatite for biomedical applications, Mater. Sci. Eng. A, vol.396, pp.181-187, 2005.

H. Li, K. Khor, and P. Cheang, Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray, Biomaterials, vol.23, pp.85-91, 2002.

I. Bran and M. Popescu, In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods, pp.431-434, 2011.

J. L. Ong, M. Appleford, S. Oh, Y. Yang, W. Chen et al., The Characterization and Development of Bioactive Hydroxyapatite Coatings, Surf. Modif. Cation Bioapplications, pp.67-69, 2006.

C. J. Liao, F. H. Lin, K. S. Chen, and J. S. Sun, Thermal decomposition and reconstruction of hydroxyapatite in air atmosphere, Biomed. Sci. Instrum, vol.35, pp.99-104, 1999.

A. R. Boccaccini, Q. Chen, and L. Lefebvre, Sintering, crystallization and biodegradation behaviour of Bioglass-derived glass -ceramics, Faraday Discuss, vol.136, pp.27-44, 2007.

M. Lufitha, Effect of Substrate Temperature on Coating Adhesion, 2001.

T. J. Levingstone, Optimisation of Plasma Sprayed Hydroxyapatite Coatings, 2008.

M. Mellali, Influence de la rugosité et de la température de surface du substrat sur l'adhérence et les contraintes résiduelles au sein de dépôts d'alumin, 1994.

J. A. Hermann-muñoz, J. A. Rincón-lópez, G. A. Clavijo-mejía, A. L. Giraldo-betancur, J. M. Alvarado-orozco et al., Influence of HVOF parameters on HAp coating generation: An integrated approach using process maps, Surf. Coat. Technol, vol.358, pp.299-307, 2019.

T. J. Levingstone, M. Ardhaoui, K. Benyounis, L. Looney, and J. T. Stokes, Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis, Surf. Coatings Technol, vol.283, pp.29-36, 2015.

P. Sepulveda, J. R. Jones, and L. L. Hench, Characterization of Melt-Derived 45S5 and solgel-derived 58S Bioactive Glasses, J. Biomed. Mater. Res, pp.564-569, 2001.

L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet et al., Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Mater, vol.55, pp.3305-3313, 2007.
URL : https://hal.archives-ouvertes.fr/emse-00508691

J. P. Willis, Sample Preparation XRF and Glass Beads by Borate Fusions, p.57, 2010.

M. Watanabe, Sample Preparation for X-ray Fluorescence Analysis IV. Fusion Bead Method, Part 1 Basic Principals, Rigaku J, vol.31, pp.12-17, 2015.

A. Oyane, H. Kim, T. Furuya, T. Kokubo, T. Miyazaki et al., Preparation and assessment of revised simulated body fluids, J. Biomed. Mater. Res. A, vol.65, pp.19-21, 2002.

R. T. Candidato, C. Thouzellier, and L. Paw?owski, Evaluation of the in-vitro behavior of nanostructured hydroxyapatite and zinc doped hydroxyapatite coatings obtained using solution precursor plasma spraying, J. Biomed. Mater. Res. -Part B Appl. Biomater, vol.106, pp.2101-2108, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02129913

A. Maidaniuc, F. Miculescu, S. I. Voicu, C. Andronescu, M. Miculescu et al.,

I. Mocanu, I. Pencea, T. Csaki, L. T. Machedon-pisu, and . Ciocan, Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles, Appl. Surf. Sci, vol.438, pp.158-166, 2018.

K. A. Khor, H. Li, and P. Cheang, Significance of melt-fraction in HVOF sprayed hydroxyapatite particles, splats and coatings, Biomaterials, vol.25, pp.1177-1186, 2004.

W. Tong, J. Chen, X. Li, Y. Cao, Z. Yang et al., Effect of particle size on molten states of starting powder and degradation of the relevant plasma-sprayed hydroxyapatite coatings, Biomaterials, vol.17, issue.96, pp.89775-89779, 1996.

P. Cheang and K. A. Khor, Thermal spraying of hydroxyapatite (HA) coatings effects of powder feedstock, J. Mater. Process. Technol, vol.48, issue.94, p.1679, 1995.

C. Rey, M. Shimizu, B. Collins, and M. J. Glimcher, Resolution-Enhanced Fourier Transform Infrared Spectroscopy Study of the Environment of Phosphate Ion in the Early Deposits of a Solid Phase of Calcium Phosphate in Bone and Enamel and their Evolution with Age: 2. Investigations in the v3 PO4 Domain, pp.383-388, 1991.

C. Rey, M. Shimizu, B. Collins, and M. J. Glimcher, Resolution-Enhanced Fourier Transform Infrared Spectroscopy Study of the Environment of Phosphate Ions in the Early Deposits of a Solid Phase of Calcium-Phosphate in Bone and Enamel , and their Evolution with Age . I : Investigations in the v4 PO4 Domain, Clacified Tissue Int, pp.384-394, 1990.

S. Markovi?, L. Veselinovi?, M. J. Luki?, L. Karanovi?, I. Bra?ko et al.,

. Uskokovi?, Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology, Biomed. Mater, vol.6, p.45005, 2011.

D. K. Pattanayak, P. Divya, S. Upadhyay, R. C. Prasad, B. T. Rao et al., Synthesis and evaluation of hydroxyapatite ceramics, Trends Biomater. Artif. Organs

, Standard Specification for Composition of Anorganic Bone for Surgical Implants, ASTM F1581-08, 2016.

M. Jevtic, M. Mitric, S. Skapin, B. Jancar, N. Ignjatovic et al., Crystal Structure of Hydroxyapatite Nanorods Synthesized by Sonochemical Homogeneous Precipitation, Cryst. Gorwth Des, vol.8, pp.2217-2222, 2008.

C. Rey, B. Collins, T. Goehl, I. R. Dickson, and M. J. Glimcher, The Carbonate Environment in Bone Mineral : A Resolution-Enhanced Fourier Transform Infrared Spectroscopy Study Preparation of Bone Samples, pp.157-164, 1989.

F. Ren, Y. Ding, and Y. Leng, Infrared spectroscopic characterization of carbonated apatite : A combined experimental and computational study, J. Biomed. Mater. Res. -Part A, vol.102, pp.496-505, 2014.

S. V. Dorozhkin, Calcium orthophosphates (CaPO 4): Occurrence and properties, Prog. Biomater, vol.5, pp.9-70, 2016.

L. Berzina-cimdina and N. Borodajenko, Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy

. Sci and . Eng, , pp.123-148, 2012.

M. M. Figueiredo, J. A. Gamelas, and A. G. Martins, Characterization of Bone and Bone-Based Graft Materials Using FTIR Spectroscopy, Life Biomed. Sci, pp.315-338, 2012.

D. Haverty, S. A. Tofail, K. T. Stanton, and J. B. Mcmonagle, Structure and stability of hydroxyapatite : Density functional calculation and Rietveld analysis, Phys. Rev. B, pp.1-9, 2005.

J. A. Rincon-lópez, J. A. Hermann-muñoz, A. L. Giraldo-betancur, A. Vizcaya-ruiz, J. M. Alvarado-orozco et al., Characterization and In Vitro Study of Synthetic and Bovine-Derived Hydroxyapatite Ceramics: A Comparison, Materials (Basel), vol.11, pp.1-17, 2000.

A. Prokopiuk and B. Budner, Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture, J. Mol. Struct, vol.977, pp.145-152, 2010.

L. Mayer, R. Scblam, and J. D. Featberstone, Magnesium-Containing Carbonate Apatites, J. Inorg. Biochem, vol.66, pp.145-151, 1997.

R. Murugan, T. S. Kumar, and K. P. Rao, Fluorinated bovine hydroxyapatite: preparation and characterization, Mater. Lett, vol.57, pp.805-809, 2002.

M. S. Sader, K. Lewis, G. A. Soares, and R. Z. Legeros, Simultaneous Incorporation of Magnesium and Carbonate in Apatite : Effect on Physico-chemical Properties, Mater. Reserch, p.16, 2012.

C. Lin, Na2 -CaSi2O6 -P2O5 based bioactive glasses . Part 1 : Elasticity and structure, J. Non. Cryst. Solids, vol.351, pp.3195-3203, 2005.

E. Dietrich, Synthèse et études physico-chimiques de verres bioactifs denses et poreux. Applications en tant que biomatériaux en sites osseux, 2008.

L. Lefebvre, J. Chevalier, L. Gremillard, R. Zenati, G. Thollet et al., Structural transformations of bioactive glass 45S5 with thermal treatments, Acta Mater, vol.55, pp.3305-3313, 2007.
URL : https://hal.archives-ouvertes.fr/emse-00508691

T. Process and C. Centre, Crystallization of 45S5 during Isothermal Heat Treatment, Ceram. Mater, vol.62, pp.349-354, 2010.

H. Ohsato and I. Maki, Structure of Na2CaSi2O6, Acta Crystallogr. Sect. C Cryst. Struct. Commun, vol.41, pp.1575-1577, 1985.

A. R. Boccaccini, Q. Chen, and L. Lefebvre, Sintering, crystallization and biodegradation behaviour of Bioglass-derived glass -ceramics, Faraday Discuss, vol.136, pp.27-44, 2007.

D. Bellucci, V. Cannillo, A. Sola, R. Emilia, V. Vignolese et al., An Overview of The Effects of Thermal Processing on Bioactive Glasses, Sci. Sinter, vol.42, pp.307-320, 2010.

V. López, M. V. Cabedo, E. Bannier, E. C. Recacha, A. R. Boccaccini et al., 45S5 bioactive glass coatings by atmospheric plasma spraying obtained from feedstocks prepared by different routes, J. Mater. Sci, vol.49, pp.7933-7942, 2014.

N. F. Ibrahim and H. Mohamad, Effects of milling media on the fabrication of melt-derived Chapter 4: Results and Discussion bioactive glass powder for biomaterial application, AIP Conf. Proc, pp.1-7, 2016.

R. G. Hill and D. S. Brauer, Predicting the bioactivity of glasses using the network connectivity or split network models, J. Non. Cryst. Solids, vol.357, pp.3884-3887, 2011.

J. Jones and A. Clare, Bio-glasses: an introduction, 2012.

S. Fujibayashi, M. Neo, H. M. Kim, T. Kokubo, and T. Nakamura, A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O-CaO-SiO2 glasses, Biomaterials, vol.24, pp.1349-1356, 2003.

I. Farooq, Z. Imran, U. Farooq, A. Leghari, H. Ali et al., A Material for the Future, World J. Dent, vol.3, pp.199-201, 2012.

X. Chatzistavrou, T. Zorba, E. Kontonasaki, K. Chrissafis, P. Koidis et al., Following bioactive glass behavior beyond melting temperature by thermal and optical methods, Phys. Status Solidi Appl. Res, vol.201, pp.944-951, 2004.

D. Groh, F. Döhler, and D. S. Brauer, Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation, Acta Biomater, vol.10, pp.4465-4473, 2014.

J. Massera, S. Fagerlund, L. Hupa, and M. Hupa, Crystallization mechanism of the bioactive glasses, 45S5 and S53P4, J. Am. Ceram. Soc, vol.95, pp.607-613, 2012.

O. Bretcanu, X. Chatzistavrou, K. Paraskevopoulos, R. Conradt, I. Thompson et al., Sintering and crystallisation of 45S5 Bioglass ® powder, vol.29, pp.3299-3306, 2009.

A. L. Maçon, T. B. Kim, E. M. Valliant, K. Goetschius, R. K. Brow et al.,

D. Arcos, L. Fraile, A. J. Salinas, A. Teixeira, Y. Vueva et al.,

E. Vitale-brovarone, W. Verné, J. R. Höland, and . Jones, A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants, J. Mater. Sci. Mater. Med

S. Ag and . Schott, Technical Glass Powders: Product Information

A. K. Srivastava, R. Pyare, and S. P. Singh, Elastic Properties of substituted 45S5 Bioactive Glasses and Glass -Ceramics, Int. J. Sci. Eng. Res, vol.3, pp.1-13, 2012.

,

P. Sepulveda, J. R. Jones, and L. L. Hench, Characterization of Melt-Derived 45S5 and solgel-derived 58S Bioactive Glasses, J. Biomed. Mater. Res, pp.564-569, 2001.

M. Ma?kovi?, A. Hoppe, R. Detsch, D. Mohn, W. J. Stark et al., Bioactive glass (type 45S5) nanoparticles: In vitro reactivity on nanoscale and biocompatibility, J. Nanoparticle Res, vol.14, pp.1-22, 2012.

L. A. Adams, E. R. Essien, R. O. Shaibu, and A. Oki, Sol-Gel Synthesis of SiO2-CaO-Na2O-P2O5 Bioactive Glass Ceramic from Sodium Metasilicate, pp.11-15, 2013.

Y. Xiao, L. Song, X. Liu, Y. Huang, T. Huang et al., Applied Surface Science Nanostructured bioactive glass -ceramic coatings deposited by the liquid precursor plasma spraying process, Appl. Surf. Sci, vol.257, pp.1898-1905, 2011.

S. Prasad, I. Ratha, T. Adarsh, A. Anand, P. K. Sinha et al., In vitro bioactivity and antibacterial properties of bismuth oxide modified bioactive glasses, J. Mater. Res, vol.33, pp.178-190, 2018.

B. S. Kim, E. S. Lim, J. H. Lee, and J. J. Kim, Effect of Bi2O3 content on sintering and crystallization behavior of low-temperature firing Bi2O3-B2O3-SiO2 glasses, J. Eur

, Ceram. Soc, vol.27, pp.819-824, 2007.

R. B. Heimann, Thermal spraying of biomaterials, Surf. Coatings Technol, vol.201, pp.2012-2019, 2006.

I. Bran and M. Popescu, In vitro characterization of hydroxyapatite layers deposited by APS and HVOF thermal spraying methods, pp.25-31, 2011.

J. A. Hermann-muñoz, J. A. Rincón-lópez, G. A. Clavijo-mejía, A. L. Giraldo-betancur, J. M. Alvarado-orozco et al., Influence of HVOF parameters on HAp coating generation: An integrated approach using process maps, Surf. Coat. Technol, vol.358, pp.299-307, 2019.

H. Nascimento, R. Santos, C. A. Neumann, and . Ávila, Mineral Quantification with Simultaneous Refinement of Ca-Mg Carbonates Non-Stoichiometry by X-ray

, , vol.7, pp.1-14, 2017.

M. Auenue and N. Jersey, Structural refinements of dolomite and magnesian calcite and Implications for Dolomite Formation in the Marine Environment, Am. Mineral, vol.62, pp.772-783, 1977.

W. Xia, C. Lindahl, C. Persson, P. Thomsen, J. Lausmaa et al., Changes of Surface Composition and Morphology after Incorporation of Ions into Biomimetic Apatite Coatings, J. Biomater. Nanobiotechnol, vol.1, pp.7-16, 2010.

D. Yi, C. Wu, X. Ma, H. Ji, and X. Zheng, Preparation and in vitro evaluation of plasmasprayed bioactive akermanite, Biomed. Mater, vol.7, pp.1-9, 2012.

J. Ma, H. Wong, L. B. Kong, and K. W. Peng, Biomimetic processing of nanocrystallite bioactive apatite coating on titanium, Nanotechnology, vol.14, pp.619-623, 2003.

J. M. Sadowska, F. Wei, J. Guo, J. Guillem-marti, Z. Lin et al., The effect of biomimetic calcium deficient hydroxyapatite and sintered ?-tricalcium phosphate on osteoimmune reaction and osteogenesis, Acta Biomater, vol.96, pp.605-618, 2019.

V. Sergo, O. Sbaizero, and D. R. Clarke, Mechanical and chemical consequences of the residual stresses in plasma sprayed hydroxyapatite coatings, Biomaterials, vol.18, pp.477-482, 1997.

H. Li, K. A. Khor, and P. Cheang, Thermal sprayed hydroxyapatite splats: nanostructures , pore formation mechanisms and TEM characterization, Biomaterials, vol.25, p.3471, 2004.

J. Weng, Q. Liu, J. G. Wolke, X. Zhang, and K. D. Groat, Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid, Biomaterials, vol.18, pp.1027-1035, 1997.

B. Feng, J. Y. Chen, S. K. Qi, L. He, J. Z. Zhao et al., Carbonate apatite coating on titanium induced rapidly by precalcification, vol.23, pp.173-179, 2002.

Y. ,

K. Gu,

P. Khor and . Cheang, In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid (SBF), Biomaterials, vol.24, pp.1603-1611, 2003.

S. W. Kweh, K. A. Khor, and P. Cheang, An in vitro investigation of plasma sprayed hydroxyapatite ( HA ) coatings produced with flame-spheroidized feedstock, Biomaterials, vol.23, pp.775-785, 2002.

S. Ha, R. Reber, K. Eckert, M. Petitmermet, and C. Baerlocher, Chemical and Morphological Changes of Vacuum-Plasma-Sprayed Hydroxyapatite Coatings during Immersion in Simulated Physiological Solutions, J. Am. Ceram. Soc, vol.81, pp.81-88, 1998.

J. N. Barry and D. P. Dowling, Comparison between the SBF response of hydroxyapatite coatings deposited using both a plasma-spray and a novel co-incident micro-blasting technique, Key Eng. Mater, pp.483-488, 2012.

Y. Otsuka, D. Kojima, and Y. Mutoh, Prediction of cyclic delamination lives of plasmasprayed hydroxyapatite coating on Ti-6Al-4V substrates with considering wear and dissolutions, J. Mech. Behav. Biomed. Mater, vol.64, pp.113-124, 2016.

Y. Wang, X. Liu, T. Fan, Z. Tan, Z. Zhou et al., In vitro evaluation of hydroxyapatite coatings with (002) crystallographic texture deposited by micro-plasma spraying, Mater. Sci. Eng. C, vol.75, pp.596-601, 2017.

Z. Strnad, J. Strnad, C. Pový?il, and K. Urban, Effect of Plasma-Sprayed Hydroxyapatite Coating on the Osteoconductivity of Commercially Pure Titanium Implants, Int. J. Oral Maxillofac. Implant, vol.15, pp.483-490, 2000.

R. S. Lima, K. Khor, H. Li, P. Cheang, and B. R. Marple, HVOF spraying of nanostructured hydroxyapatite for biomedical applications, Mater. Sci. Eng. A, vol.396, pp.181-187, 2005.

J. Fernández, M. Gaona, and J. M. Guilemany, Effect of Heat Treatments on HVOF Hydroxyapatite Coatings, J. Therm. Spray Technol, vol.16, pp.220-228, 2007.

G. F. Dias, F. B. Alves, D. M. Samways, and F. A. Santos, Mineral exchange between dentin pre-tretament with Dolomite powder on demineralized dentin in deciduous molars, Brazilian Dent. Sci, vol.21, p.341, 2018.

E. D. Eanes and S. L. Rattner, The Effect of Magnesium on Apatite Formation in Seeded Supersaturated Solutions at pH 7.4, J. Dent. Res, vol.60, pp.1719-1723, 1981.

M. H. Salimi, J. C. Heughebaert, and G. H. Nancollas, Crystal Growth of Calcium Phosphates in the Presence of Magnesium Ions, Langmuir, vol.1, pp.119-122, 1985.

T. Aoba, E. C. Moreno, and S. Shimoda, Competitive adsorption of magnesium and calcium ions onto synthetic and biological apatites, Calcif. Tissue Int, vol.51, pp.143-150, 1992.

H. M. Kim, T. Himeno, T. Kokubo, and T. Nakamura, Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid, vol.26, pp.4366-4373, 2005.

R. B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties, J. Therm. Spray Technol, vol.25, pp.827-850, 2016.

A. M. Vilardell, N. Cinca, S. Dosta, I. G. Cano, X. Nogués et al., In-vitro comparison of hydroxyapatite coatings obtained by cold spray and conventional thermal spray technologies, Mater. Sci. Eng. C, p.110306, 2019.

A. K. Lynn and D. L. Duquesnay, Hydroxyapatite-coated Ti-6Al-4V Part 1: the effect of Chapter 4: Results and Discussion coating thickness on mechanical fatigue behavior, Biomaterials, vol.23, pp.1937-1946, 2002.

A. Cattini, Coatings of bioactive glasses and hydroxyapatite and their properties, 2013.

G. Brunello, H. Elsayed, and L. Biasetto, Bioactive Glass and Silicate-Based Ceramic Coatings on Metallic Implants: Open Challenge or Outdated Topic?, Materials (Basel), vol.12, p.2929, 2019.