. Objectifs and . .. De-thèse,

, C{ 1 H} NMR (100 MHz, CDCl3) ? (ppm): (see Figure 79 B)

, ), vol.30, p.65

, The reaction was monitored by TLC

H. Nmr, Et); 1.41, and 1.43 (2s*, 9H, tBu), 400 MHz, CDCl3) ? (ppm): 1.27 (t, J = 7.1 Hz, vol.2, p.3

2. Hz, CH2CO2tBu or NCH2Pyr)

2. Hz and E. ,

1. Hz and P. ,

, C{ 1 H} NMR (100 MHz, CDCl3) ? (ppm): (see Figure 80 B)

, 19 (tBu{CH3})*; 30.5 (CH2CO2Bn), vol.28, p.1

, C{ 1 H} NMR (100 MHz, CDCl3) ?, vol.30

, 3 (CH2Pyr); 66.1(CH), vol.54

?. , 12-trien-6-yl)pentanedioate M-2 Formula: C27H38N4O4 Molecular mass: 482.62 g.mol -1 Exact Mass: 482.2893 g.mol -1 TLC: CH2Cl2/MeOH, vol.6, p.15

, 406 mmol), and K2CO3 (0.171 g, 1.237 mmol, p.3

H. Nmr, 400 MHz, CDCl3) ?

1. Hz and C. ). ,

, C{ 1 H} NMR (100 MHz, CDCl3) ? (ppm): 25.0 (CH2CH)

, 5 (CHPyr); 128.2, 128.3, and 128, vol.120

. Pcta-iii, -tert-butoxy-2-oxo-ethyl)-12-(2-ethoxy-2-oxoethoxy)-3,6, vol.3, p.15

H. Nmr, MHz, CDCl3) ? (ppm): (see Figure 81 B)

T. , J. Hz, 3. Et, and ). , , vol.1

, 5 Hz, 1H); 4.12 (d of AB system, J =, vol.15, issue.7

2. Hz and E. ,

, AB system, J = 16.3 Hz, p.2

2. Hz and P. ,

, 12-trien-yl]oxy]acetic acid PCTA-III Formula: C31H50N4O9 Molecular mass: 622.75 g.mol -1 Exact mass: 622.3578 g.mol -1 TLC: CH2Cl2/MeOH, vol.6, p.11

H. Nmr,

1. Hz and P. ,

1. Hz and P. ,

H. Nmr,

1. Hz and ). Ch2pyr, 79 (broad s, 1H)*; 3.90 (d of AB system, J = 14.1 Hz, vol.3, p.1

, *The chemical shift of this signal, always broad to very broad singulet is variable

, CDCl3, pH~9) ? (ppm): (see Figure 84) 27.92, 28.06 and 28, C{ 1 H} NMR (150 MHz, p.7

(. Ch2ch2n, C. , and C. , , vol.67, p.5

, HPLC: System A (LUNA C18), tr = 13.15 min and purity = 99 % (see Figure 86) Figure 82 : pH-dependence of 1 H NMR spectrum for compound PCTA

, -tert-butoxy-2-oxo-ethyl)-3,6, vol.3, p.11

, Such treatment was repeated until complete removing of unreached PCTA-based building block PCTA II (LRMS, and TLC monitoring). The organic phase was dried

, Analysis and spectral data

H. Nmr, MHz, CDCl3) ? (ppm): (see Figure 87 A)

4. Hz and (. Ch2, , pp.15-17

. Hz,

2. Hz and P. ,

, 03 (broad s, 1H, NH), vol.9

, C{ 1 H} NMR (100 MHz, CDCl3) ? (ppm): (see Figure, vol.87

*. , CH2)15CH2CO) ***, vol.34

, 12-trien-6-yl]acetic acid PCTA-DSPE Formula: C60H106N5O16P + x C2HF3O2 (1 ? x ? 3) Molecular mass: 1184.48 + x 114, vol.6, p.15

H. Nmr, MHz, CDCl3) ? (ppm): (see Figure 90)

P. Chco2tbu{1h} and C. ,

. Hz,

, C{ 1 H} NMR (100 MHz, CDCl3) ? (ppm): (see Figure 94 B)

, 2,3-di(octadecanoyloxy)propoxy]-hydroxy-phosphoryl]oxyethylamino]-5-oxopentanoic acid NODA-GA-DSPE Formula: C56H105N4O15P + x C2HF3O2 (1 ? x ? 3) Molecular mass: 1105.42 + x 114

H. Nmr, 600 MHz, CDCl3) ? (ppm): (see Figure 97

T. and J. , Hz, 6H, CH2CH3); 1.25 (broad s, 56H, CH3(CH2)14), vol.1, p.57

, Fluka) were purchased, and used without any further purification, Radiochemistry ? General Materials and methods All commercially available solvents, and reagents

M. Nanoseries and Z. Sizer, ) in triplicate at 25°C, allowing equilibration for 120 seconds and, with an angle of detection of 173°

, ? Preparation of the complex PCTA-DSPE of 68 Ga with different lipoproteins The 68 Ga 3+ solution (1.1 mL, 700-500 MBq) was added to a solution of PCTA-DSPE

. Ga-pcta, eluted with PBS 1X, and collected the desalinized fraction of 68 Ga-PCTA-DSPE (2 mL, 0.38 mM). The fraction of 68 Ga-PCTA-DSPE was added to lipoproteins (1 ml, 10 mg/mL of proteins). radiochemical purities (RCP), and the specific activities (SA) were measured with the analytical HPLC gel filtration system, DSPE was desalted with PD-10 columns

-. Ga,

/. Spectra and . Por®, Dialysis Membrane MCWO: 8, 000) against PBS 1X. After several dialyses, all the fractions were concentrated by centrifugation with Centricon

, In vitro, ex vivo, and in vivo studies

, General Materials and methods All commercially available solvents and reagents

, and C57BL/6 mice were purchased from Charles River Laboratories (Saint-Germain-sur-L'Arbresles)were handled, and cared in accordance with the Guide for the Care and Use of Laboratory Animals

, ? PET imaging and biodistribution studies

T. Pet/spect/ct and . Imaging, USA) under anesthesia (isoflurane, 3 by GIP CYROI (Sainte-Clotilde, Reunion Island). PET images were acquired on the multimodal imaging system, Trifoil Imaging

N. Townsend, Cardiovascular disease in Europe: epidemiological update, European Heart Journal, vol.37, issue.42, pp.3232-3245, 2016.

J. Balicchi, A. B. , G. Brulé, F. Caliez, C. Guy-noël-chan-wan et al., Frédéric Pages, 2017.

P. Libby, P. M. Ridker, and G. K. Hansson, Progress and challenges in translating the biology of atherosclerosis, Nature, vol.473, issue.7347, pp.317-342, 2011.

R. Ross, Atherosclerosis--an inflammatory disease, N Engl J Med, vol.340, issue.2, pp.115-141, 1999.

B. C. Kwan, Lipoprotein Metabolism and Lipid Management in Chronic Kidney Disease, Journal of the American Society of Nephrology, vol.18, issue.4, pp.1246-1261, 2007.

A. S. Go, Heart disease and stroke statistics--2013 update: a report from the American Heart Association, vol.127, pp.6-245, 2013.

S. Eisenberg, On the metabolic conversion of human plasma very low density lipoprotein to low density lipoprotein, Biochim Biophys Acta, vol.326, issue.3, pp.361-77, 1973.

M. S. Brown and J. L. Goldstein, Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis, Annu Rev Biochem, vol.52, pp.223-61, 1983.

R. Zechner, In vitro formation of HDL-2 from HDL-3 and triacylglycerol-rich lipoproteins by the action of lecithin:cholesterol acyltransferase and cholesterol ester transfer protein, Biochim Biophys Acta, vol.918, issue.1, pp.27-35, 1987.

C. Bruce, R. A. Chouinard, J. , and A. R. Tall, Plasma lipid transfer proteins, highdensity lipoproteins, and reverse cholesterol transport, Annu Rev Nutr, vol.18, pp.297-330, 1998.

S. Acton, Identification of scavenger receptor SR-BI as a high density lipoprotein receptor, Science, vol.271, issue.5248, pp.518-538, 1996.

A. J. Lusis, Atherosclerosis. Nature, vol.407, issue.6801, pp.233-274, 2000.

P. Libby, Inflammation in atherosclerosis, Nature, vol.420, issue.6917, pp.868-74, 2002.

L. Bouchareychas, Implication des phagocytes mononuclées dans l'évolution de la plaque d'athérosclérose et relation avec l'homeostasie du cholestérol et des lipoprottéines, p.194, 2014.

H. C. Stary, A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Circulation, vol.92, issue.5, pp.1355-74, 1995.

H. C. Stary, Natural history of calcium deposits in atherosclerosis progression and regression, Z Kardiol, vol.89, issue.2, pp.28-35, 2000.

H. C. Stary, A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, Arterioscler Thromb, vol.14, issue.5, pp.840-56, 1994.

P. T. Akins, Natural History of Stenosis From Intracranial Atherosclerosis by Serial Angiography. Stroke, vol.29, issue.2, p.433, 1998.

F. Cademartiri, Imaging techniques for the vulnerable coronary plaque, Radiol Med, vol.112, issue.5, pp.637-59, 2007.

L. Riou, A. B. , D. Fagret, and C. Ghezzi, Techniques d'exploration de la plaque d'athérome vulnérable. Médecine Nucléaire -Imagerie fonctionnelle et métabolique, vol.29, pp.203-212, 2005.

T. Kubo, Implication of Plaque Color Classification for Assessing Plaque Vulnerability, JACC: Cardiovascular Interventions, vol.1, issue.1, pp.74-80, 2008.

F. Ishibashi, Update on coronary angioscopy: review of a 20-year experience and potential application for detection of vulnerable plaque, J Interv Cardiol, vol.19, issue.1, pp.17-25, 2006.

L. Diamantopoulos, Arterial wall thermography, J Interv Cardiol, vol.16, issue.3, pp.261-267, 2003.

W. Casscells, Thermal detection of cellular infiltrates in living atherosclerotic plaques: possible implications for plaque rupture and thrombosis, Lancet, vol.347, issue.9013, pp.1447-51, 1996.

C. Stefanadis, Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: A new method of detection by application of a special thermography catheter, Circulation, vol.99, issue.15, pp.1965-71, 1999.

M. Naghavi, New developments in the detection of vulnerable plaque, Curr Atheroscler Rep, vol.3, issue.2, pp.125-160, 2001.

A. Nair, Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation, vol.106, pp.2200-2206, 2002.

J. Surmely, Coronary plaque composition of culprit/target lesions according to the clinical presentation: a virtual histology intravascular ultrasound analysis, European Heart Journal, vol.27, issue.24, pp.2939-2944, 2006.

I. K. Jang, Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound, J Am Coll Cardiol, vol.39, issue.4, pp.604-613, 2002.

I. K. Jang, In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography, Circulation, vol.111, issue.12, pp.1551-1556, 2005.

A. Hamdan, Imaging of vulnerable coronary artery plaques. Catheterization and Cardiovascular Interventions, vol.70, pp.66-75, 2007.

J. F. Toussaint, Water diffusion properties of human atherosclerosis and thrombosis measured by pulse field gradient nuclear magnetic resonance, Arterioscler Thromb Vasc Biol, vol.17, issue.3, pp.542-548, 1997.

J. Schneiderman, Diagnosis of thin-cap fibroatheromas by a self-contained intravascular magnetic resonance imaging probe in ex vivo human aortas and in situ coronary arteries, J Am Coll Cardiol, vol.45, issue.12, pp.1961-1970, 2005.

S. Goel, Imaging Modalities to Identity Inflammation in an Atherosclerotic Plaque, Radiology Research and Practice, p.13, 2015.

J. Wang, Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques, J Am Coll Cardiol, vol.39, issue.8, pp.1305-1318, 2002.

P. R. Moreno, Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy, Circulation, vol.105, issue.8, pp.923-930, 2002.

A. W. Leber, Composition of coronary atherosclerotic plaques in patients with acute myocardial infarction and stable angina pectoris determined by contrastenhanced multislice computed tomography, Am J Cardiol, vol.91, issue.6, pp.714-722, 2003.

B. Widder, Morphological characterization of carotid artery stenoses by ultrasound duplex scanning, Ultrasound Med Biol, vol.16, issue.4, pp.349-54, 1990.

M. Magnoni, E. Ammirati, and P. G. Camici, Non-invasive molecular imaging of vulnerable atherosclerotic plaques, Journal of Cardiology, vol.65, issue.4, pp.261-269, 2015.

B. Chu, Detection of Carotid Atherosclerotic Plaque Ulceration, Calcification, and Thrombosis by Multicontrast Weighted Magnetic Resonance Imaging, Circulation, vol.112, issue.1, p.3, 2005.

D. Delacroix, J. G. , and P. Leblanc, Guide pratique Radionucléides et Radioprotection, vol.39, 2006.

C. Beurtey, essentiel sur l'imagerie médicale, 2017.

I. Velikyan, Prospective of (68)Ga-Radiopharmaceutical Development, Theranostics, vol.4, issue.1, pp.47-80, 2014.

M. Naghavi, From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation, vol.108, pp.1664-72, 2003.

Y. Shimizu and Y. Kuge, Recent Advances in the Development of PET/SPECT Probes for Atherosclerosis Imaging, Nucl Med Mol Imaging, vol.50, issue.4, pp.284-291, 2016.

S. Krishnan, Molecular Imaging of Vulnerable Coronary Plaque: A Pathophysiologic Perspective, J Nucl Med, vol.58, issue.3, pp.359-364, 2017.

S. Yu, Review of (18)F-FDG Synthesis and Quality Control, Biomedical Imaging and Intervention Journal, vol.2, issue.4, p.57, 2006.

P. M. Smith-jones, 31 -Imaging A2 -Taylor, John B, vol.3, pp.659-677, 2007.

M. Ogawa, F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study, J Nucl Med, vol.45, issue.18, pp.1245-50, 2004.

M. Oliveira-santos, Atherosclerotic plaque metabolism in high cardiovascular risk subjects -A subclinical atherosclerosis imaging study with 18F-NaF PET-CT, Atherosclerosis, vol.260, pp.41-46, 2017.

S. J. Lee and J. C. Paeng, Nuclear Molecular Imaging for Vulnerable Atherosclerotic Plaques, Korean Journal of Radiology, vol.16, issue.5, pp.955-966, 2015.

A. S. Antonov, alphaVbeta3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-kappaB activation, J Cell Physiol, vol.226, issue.2, pp.469-76, 2011.

M. Wildgruber, F. K. Swirski, and A. Zernecke, Molecular imaging of inflammation in atherosclerosis, Theranostics, issue.3, pp.865-84, 2013.

T. Skajaa, High-density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis, Arterioscler Thromb Vasc Biol, vol.30, issue.2, pp.169-76, 2010.

C. Perez-medina, In Vivo PET Imaging of HDL in Multiple Atherosclerosis Models, JACC Cardiovasc Imaging, vol.9, issue.8, pp.950-61, 2016.

D. P. Cormode, HDL as a contrast agent for medical imaging, Clinical lipidology, vol.4, issue.4, pp.493-500, 2009.

R. Duivenvoorden and Z. A. Fayad, Utility of Atherosclerosis Imaging in the Evaluation of High-Density Lipoprotein-Raising Therapies, Current Atherosclerosis Reports, vol.13, issue.3, pp.277-284, 2011.

T. Skajaa, High density lipoprotein-based contrast agents for multimodal imaging of atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology, vol.30, pp.169-176, 2010.

T. Hevonoja, Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL, Biochim Biophys Acta, vol.1488, issue.3, pp.189-210, 2000.

W. J. De-villiers and E. J. Smart, Macrophage scavenger receptors and foam cell formation, J Leukoc Biol, vol.66, issue.5, pp.740-746, 1999.

A. M. Lees, Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins, Arteriosclerosis, vol.8, issue.5, pp.461-70, 1988.

J. M. Rosen, Indium-111-labeled LDL: a potential agent for imaging atherosclerotic disease and lipoprotein biodistribution, J Nucl Med, vol.31, issue.3, pp.343-50, 1990.

A. Shaish, Imaging of aortic atherosclerotic lesions by (125)I-LDL, (125)Ioxidized-LDL, (125)I-HDL and (125)I-BSA, Pathobiology, vol.69, issue.4, pp.225-234, 2001.

R. Kuai, High-Density Lipoproteins: Nature's Multifunctional Nanoparticles, ACS Nano, vol.10, issue.3, pp.3015-3056, 2016.

R. Kuai, High-Density Lipoproteins: Nature's Multifunctional Nanoparticles, ACS Nano, vol.10, issue.3, pp.3015-3041, 2016.

N. J. Leeper, S. Park, and B. R. Smith, High-Density Lipoprotein Nanoparticle Imaging in Atherosclerotic Vascular Disease. JACC: Basic to Translational Science, vol.2, pp.98-100, 2017.

J. C. Frias, Recombinant HDL-Like Nanoparticles: A Specific Contrast Agent for MRI of Atherosclerotic Plaques, Journal of the American Chemical Society, vol.126, issue.50, pp.16316-16317, 2004.

J. C. Frias, Properties of a versatile nanoparticle platform contrast agent to image and characterize atherosclerotic plaques by magnetic resonance imaging, Nano Lett, vol.6, issue.10, pp.2220-2224, 2006.

D. P. Cormode, An ApoA-I mimetic peptide high-density-lipoprotein-based MRI contrast agent for atherosclerotic plaque composition detection, Small, vol.4, issue.9, pp.1437-1481, 2008.

D. P. Cormode, Nanocrystal Core High-Density Lipoproteins: A Multimodality Contrast Agent Platform, Nano Letters, vol.8, issue.11, pp.3715-3723, 2008.

Y. Zhang, H. Hong, and W. Cai, PET Tracers Based on Zirconium-89. Current radiopharmaceuticals, vol.4, pp.131-139, 2011.

C. Perez-medina, PET Imaging of Tumor-Associated Macrophages with 89Zr-Labeled High-Density Lipoprotein Nanoparticles, J Nucl Med, vol.56, issue.8, pp.1272-1279, 2015.

R. L. Hayes, The medical use of gallium radionuclides: a brief history with some comments, Semin Nucl Med, vol.8, issue.3, pp.183-91, 1978.

V. Lopez-rodriguez, Preparation and preclinical evaluation of 66 Ga-DOTA-E(c(RGDfK))2 as a potential theranostic radiopharmaceutical, Nuclear Medicine and Biology, vol.42, issue.2, pp.109-123, 2015.

I. Patrascu, The purification and the quality control of 68 Ga eluates from

, Ge/ 68 Ga generator, vol.63, pp.988-996, 2011.

L. Martiniova, Gallium-68 in Medical Imaging, Curr Radiopharm, vol.9, issue.3, pp.187-207, 2016.

F. Rosch, Past, present and future of 68 Ge/ 68 Ga generators, The International Journal of Applied Radiation and Isotopes, vol.76, pp.24-30, 2013.

G. Galy and M. F. , Radiopharmacie et médicaments radiopharmaceutiques, vol.50, 2012.

T. Bjornstad, Radiotracer generators for industrial applications, IAEA Radiation Technology Series, issue.5, 2013.

R. Chakravarty, Development of a nano-zirconia based 68 Ge/ 68 Ga generator for biomedical applications, Nuclear Medicine and Biology, vol.38, issue.4, pp.575-83, 2011.

M. Asti, Validation of 68 Ge/ 68 Ga generator processing by chemical purification for routine clinical application of 68 Ga-DOTATOC, Nuclear Medicine and Biology, vol.35, issue.6, pp.721-725, 2008.

M. Ocak, Full automation of 68 Ga labelling of DOTA-peptides including cation exchange prepurification, The International Journal of Applied Radiation and Isotopes, vol.68, issue.2, pp.297-302, 2010.

D. Blois and E. , Characteristics of SnO2, p.68

, Ge/ 68 Ga generator and aspects of radiolabelling DOTA-peptides, The International Journal of Applied Radiation and Isotopes, vol.69, issue.2, pp.308-323, 2011.

A. Amor-coarasa, Comprehensive Quality Control of the ITG 68 Ge/ 68 Ga Generator and Synthesis of 6 8 Ga-DOTATOC and 68 Ga-PSMA-HBED-CC for Clinical Imaging, Journal of Nuclear Medicine, vol.57, issue.9, pp.1402-1407, 2016.

C. Gameiro, N. L. , and D. Goblet, Efficient GMP production of 68 Gapeptides on a commercial synthesizer using a 68 Ge/ 68 Ga generator with direct labelling, Journal of Nuclear Medicine, p.57, 2016.

M. A. Green and M. J. Welch, Gallium radiopharmaceutical chemistry, International Journal of Radiation Applications and Instrumentation. Part B. Nuclear Medicine and Biology, vol.16, issue.5, pp.435-448, 1989.

S. M. Moerlein and M. J. Welch, The chemistry of gallium and indium as related to radiopharmaceutical production, International Journal of Nuclear Medicine and Biology, vol.8, issue.4, pp.277-287, 1981.

P. Spang, C. Herrmann, and F. Roesch, Bifunctional Gallium-68 Chelators: Past, Present, and Future, vol.46, pp.373-94, 2016.

E. W. Price and C. Orvig, Matching chelators to radiometals for radiopharmaceuticals, Chem Soc Rev, vol.43, issue.1, pp.260-90, 2014.

M. Fani, J. P. André, and H. R. Maecke, Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals, Contrast Media & Molecular Imaging, vol.68, issue.2, pp.53-63, 2008.

L. Lattuada, The synthesis and application of polyamino polycarboxylic bifunctional chelating agents, Chem Soc Rev, vol.40, issue.5, pp.3019-3068, 2011.

S. Liu and D. S. Edwards, Bifunctional Chelators for Therapeutic Lanthanide Radiopharmaceuticals, Bioconjugate Chemistry, vol.12, issue.1, pp.7-34, 2001.

S. R. Banerjee and M. G. Pomper, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine, pp.2-13, 2013.

G. J. Kontoghiorghes, K. Neocleous, and A. Kolnagou, Benefits and risks of deferiprone in iron overload in Thalassaemia and other conditions: comparison of epidemiological and therapeutic aspects with deferoxamine, Drug Saf, vol.26, issue.8, pp.553-84, 2003.

. Newline, FDA Grants Orphan Drug Designation for 68 Ga-DOTATOC, The Journal of Nuclear Medicine, vol.55, issue.1, p.10, 2014.

E. Blom and B. , Långström, and I. Velikyan, 68Ga-Labeling of Biotin Analogues and their Characterization, Bioconjugate Chemistry, vol.20, issue.6, pp.1146-1151, 2009.

C. L. Ferreira, Evaluation of bifunctional chelates for the development of gallium-based radiopharmaceuticals, Bioconjug Chem, vol.21, issue.3, pp.531-537, 2010.

C. L. Ferreira, 68 Ga small peptide imaging: comparison of NOTA and PCTA, Bioconjugate Chemistry, vol.23, issue.11, pp.2239-2285, 2012.

B. P. Burke, Final step gallium-68 radiolabelling of silica-coated iron oxide nanorods as potential PET/MR multimodal imaging agents, Faraday Discuss, vol.175, pp.59-71, 2014.

B. P. Burke, Chelator free gallium-68 radiolabelling of silica coated iron oxide nanorods via surface interactions, Nanoscale, vol.7, issue.36, pp.14889-96, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01537630

H. Stetter, W. Frank, and R. Mertens, Darstellung und komplexbildung von polyazacycloalkan-N-essigsäuren, Tetrahedron, vol.37, issue.4, pp.767-772, 1981.

W. D. Kim, Electrophoresis, and Animal Biodistribution of Lanthanide(III) Complexes of Some Polyaza Macrocyclic Acetates Containing Pyridine. Inorganic Chemistry, vol.34, pp.2233-2243, 1995.

F. Dioury, Synthesis of an hexadentate tricyclic tetraazadiacetic ligand as precursor for MRI contrast enhancement agents, Tetrahedron, vol.65, issue.36, pp.7573-7579, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01514590

J. Siaugue, Regioselective synthesis of N-functionalized 12-membered azapyridinomacrocycles bearing trialkylcarboxylic acid side chains, Tetrahedron, vol.57, issue.22, pp.4713-4718, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00168471

M. A. Baldo, Synthesis of 2,6-Diformyl-3-hydroxypyridine Bis[N-methyl-N-(2?-pyridyl) hydrazone, pp.720-723

S. Aime, Contrast Agents for Magnetic Resonance Imaging: A Novel Route to Enhanced Relaxivities Based on the Interaction of a GdIII Chelate with Poly-?cyclodextrins, Chemistry -A European Journal, vol.5, issue.4, pp.1253-1260, 1999.

R. Hovland, Preparation and in vitro evaluation of a novel amphiphilic GdPCTA-[12] derivative; a micellar MRI contrast agent, Organic & Biomolecular Chemistry, vol.1, issue.4, pp.644-647, 2003.

C. Rouault, Mémoire ingénieur Cnam 19 avril, 2005.

C. Ferroud, Synthesis of a novel amphiphilic GdPCTA-[12] derivative as a potential micellar MRI contrast agent, Tetrahedron Letters, vol.49, issue.41, pp.5972-5975, 2008.

R. Appel, Tertiary Phosphane/Tetrachloromethane, a Versatile Reagent for Chlorination, Dehydration, and P N Linkage, Angewandte Chemie International Edition in English, vol.14, issue.12, pp.801-811, 1975.

J. Uenishi, Synthesis of ?-(bromomethyl)bipyridines and related ?-(bromomethyl)pyridinoheteroaromatics: useful functional tools for ligands in host molecules, The Journal of Organic Chemistry, vol.58, issue.16, pp.4382-4388, 1993.

R. Albert, A Simple and Convenient Synthesis of ?-Aspartates and ?-Glutamates. Synthesis, pp.635-637, 1987.

A. J. Souers, Preparation of Enantioenriched ?-Bromo Acids Incorporating Diverse Functionality. Synthesis, pp.583-585, 1999.

K. Eisenwiener, P. Powell, and H. R. Mäcke, A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling, Bioorganic & Medicinal Chemistry Letters, vol.10, issue.18, pp.2133-2135, 2000.

L. Ferruccio, C. H. Vincent, and A. M. Vitrant, Procédé de préparation d'esters oméga-benzyliques d'amino-diacides et d'alcanesulfonates de ces esters ainsi que ces alcanesulfonates, Google Patents, 2004.

G. Giovenzana, Multidentate AZA ligands able to complex metal ions and the use thereof in diagnostics and therapy, Google Patents, 2006.

D. A. Moore, Metal complexes of tetraazamacrocycle derivatives, Google Patents, 2007.

L. Lamarque, C. Montgomery, and D. Parker, Pyridyl-aza(thio)xanthone sensitizer comprising lanthanide(iii) ion complexing compounds, their luminescent lanthanide (iii) ion complexes and use thereof as fluorescent labels, Google Patents, 2010.

T. Fukuyama, C. Jow, and M. Cheung, 2-and 4-Nitrobenzenesulfonamides: Exceptionally versatile means for preparation of secondary amines and protection of amines, Tetrahedron Letters, vol.36, issue.36, pp.6373-6374, 1995.

Y. Lin, Synthesis of pyridine-based polyaminocarboxylic ligands bearing a thioalkyl anchor, Tetrahedron Letters, vol.48, pp.3463-3466, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00164716

F. Dioury, Synthesis of a tricyclic tetraazatriacetic ligand for gadolinium(III) as potential contrast agent for MRI, Tetrahedron, vol.63, issue.1, pp.204-214, 2007.

A. Eisenführ, A ribozyme with michaelase activity, Bioorganic & Medicinal Chemistry, vol.11, issue.2, pp.235-249, 2003.

M. Adamczyk, J. Grote, A. Practical, . For, . Synthesis-of-n-fluorenylmethoxycarbonyl et al., Organic Preparations and Procedures International, vol.27, issue.2, pp.239-242, 1995.

M. Chouhan, NiCl2·6H2O/NaBH4 in methanol: a mild and efficient strategy for chemoselective deallylation/debenzylation of aryl ethers, Tetrahedron Letters, vol.54, issue.34, pp.4540-4543, 2013.

J. P. Andre, Lanthanide(III) complexes of DOTA-glycoconjugates: a potential new class of lectin-mediated medical imaging agents, Chemistry, vol.10, issue.22, pp.5804-5820, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02080423

S. Li, Novel multifunctional theranostic liposome drug delivery system: construction, characterization, and multimodality MR, near-infrared fluorescent, and nuclear imaging, Bioconjug Chem, vol.23, issue.6, pp.1322-1354, 2012.

S. Hak, A high relaxivity Gd(III)DOTA-DSPE-based liposomal contrast agent for magnetic resonance imaging, Eur J Pharm Biopharm, vol.72, issue.2, pp.397-404, 2009.

S. H. Jung, Gd(III)-DOTA-modified sonosensitive liposomes for ultrasoundtriggered release and MR imaging, Nanoscale Research Letters, vol.7, issue.1, pp.462-462, 2012.

G. Ortiz-muñoz, HDL antielastase activity prevents smooth muscle cell anoikis, a potential new antiatherogenic property, The FASEB Journal, vol.23, issue.9, pp.3129-3139, 2009.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-54, 1976.

I. Suc, HDL and ApoA prevent cell death of endothelial cells induced by oxidized LDL, Arterioscler Thromb Vasc Biol, vol.17, issue.10, pp.2158-66, 1997.

M. Mougin-degraef, High-activity radio-iodine labeling of conventional and stealth liposomes, J Liposome Res, vol.16, issue.1, pp.91-102, 2006.

M. Mougin-degraef, Doubly radiolabeled liposomes for pretargeted radioimmunotherapy, Int J Pharm, vol.344, pp.110-117, 2007.

E. Jestin, Radiolabeling and targeting of lipidic nanocapsules for applications in radioimmunotherapy, Q J Nucl Med Mol Imaging, vol.51, issue.1, pp.51-60, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00258368

W. W. Overwijk and N. P. Restifo, B16 as a mouse model for human melanoma, Curr Protoc Immunol, vol.20, pp.20-21, 2001.

G. S. Getz and C. A. Reardon, Animal Models of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, pp.1104-1115, 2012.

M. Tamminen, Ultrastructure of Early Lipid Accumulation in ApoE-Deficient Mice, Arterioscler Thromb Vasc Biol, vol.19, pp.847-53, 1999.

J. M. Tarkin, Detection of Atherosclerotic Inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET Imaging, J Am Coll Cardiol, vol.69, issue.14, pp.1774-1791, 2017.

E. L. Rosen, W. B. Eubank, and D. A. Mankoff, FDG PET, PET/CT, and Breast Cancer Imaging, RadioGraphics, vol.27, issue.suppl_1, pp.215-229, 2007.

V. V. Itskovich, Characterization of aortic root atherosclerosis in ApoE knockout mice: high-resolution in vivo and ex vivo MRM with histological correlation, Magn Reson Med, vol.49, issue.2, pp.381-386, 2003.

S. Cho, The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia, J Neurosci, vol.25, issue.10, pp.2504-2516, 2005.

P. Tricoci, Infusion of Reconstituted High-Density Lipoprotein, CSL112, in Patients With Atherosclerosis: Safety and Pharmacokinetic Results From a Phase 2a

R. Trial, Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, vol.4, issue.8, p.2171, 2015.

F. Moselewski, Comparison of measurement of cross-sectional coronary atherosclerotic plaque and vessel areas by 16-slice multidetector computed tomography versus intravascular ultrasound, Am J Cardiol, vol.94, issue.10, pp.1294-1301, 2004.

C. Galaup, Novel terpyridine macrocyclic complexing agent and luminescence of its neutral Ln(III) complexes (Ln=Eu, Tb, Sm, Dy) in aqueous solution, Tetrahedron Letters, vol.42, issue.36, pp.6275-6278, 2001.

E. W. Price, H4octapa: An Acyclic Chelator for 111In Radiopharmaceuticals, Journal of the American Chemical Society, vol.134, pp.8670-8683, 1920.

Z. Zhang, S. Mikkola, and H. Lönnberg, Polyazacyclophanes Incorporating Two Pyridine Units and a Heteroaromatic Pendant Group as Potential Cleaving Agents of mRNA 5?-cap Structure, Chemistry & Biodiversity, vol.2, issue.8, pp.1116-1126, 2005.

M. Rueda-becerril, Direct C-F Bond Formation Using Photoredox Catalysis, Journal of the American Chemical Society, vol.136, issue.6, pp.2637-2641, 2014.