R. Sen and D. Baltimore, Inducibility of ? immunoglobulin enhancer-binding protein NF-?B by a posttranslational mechanism, Cell, vol.47, issue.6, pp.921-929, 1986.

S. Gerondakis and U. Siebenlist, Roles of the NF-B Pathway in Lymphocyte Development and Function, Cold Spring Harb Perspect Biol, 2010.

, , vol.2, pp.182-000182

P. J. Barnes and M. Karin, Nuclear Factor-?B -A Pivotal Transcription Factor in Chronic Inflammatory Diseases, N Engl J Med, vol.336, issue.15, pp.1066-71, 1997.

A. S. Baldwin, Regulation of cell death and autophagy by IKK and NF-?B: Critical mechanisms in immune function and cancer, Immunol Rev, vol.246, issue.1, pp.327-372, 2012.

B. Rayet and C. Gélinas, Aberrant rel/nfkb genes and activity in human cancer

, Oncogene, vol.18, pp.6938-6985, 1999.

M. Karin and V. Baud, Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls, Nat Rev Drug Discov [Internet], vol.8, pp.1811-1816, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00352349

M. Karin, Nuclear factor-kappaB in cancer development and progression

C. Nakanishi and M. Toi, Nuclear factor-?B inhibitors as sensitizers to anticancer drugs, Nat Rev Cancer, vol.5, issue.4, pp.297-309, 2005.

A. Oeckinghaus and S. Ghosh, The NF-kappaB family of transcription factors and its regulation, Cold Spring Harb Perspect Biol, vol.1, pp.1-14, 2009.

S. Vallabhapurapu and M. Karin, Regulation and function of NF-kappaB transcription factors in the immune system, Annu Rev Immunol, vol.27, pp.693-733, 2009.

S. Hailfinger, H. Nogai, C. Pelzer, M. Jaworski, K. Cabalzar et al., Malt1-dependent RelB cleavage promotes canonical NF-{kappa}B activation in lymphocytes and lymphoma cell lines, Proc Natl Acad Sci, vol.108, pp.14596-601, 2011.

V. Baud and D. Collares, Post-Translational Modifications of RelB NF-?B Subunit and Associated Functions, Cells, vol.5, issue.2, p.22, 2016.

J. Shi and S. Sun, Tumor Necrosis Factor Receptor-Associated Factor Regulation of Nuclear Factor ?B and Mitogen-Activated Protein Kinase Pathways. Front Immunol [Internet], vol.9, pp.1-13, 2018.

I. E. Wertz and V. M. Dixit, Regulation of death receptor signaling by the ubiquitin system, Cell Death Differ, vol.17, pp.14-24, 2010.

S. Sun, The noncanonincal NF-kB pathway, Immunol Rev, vol.246, issue.1, pp.125-165, 2012.

G. Cildir, K. C. Low, and V. Tergaonkar, Noncanonical NF-?B Signaling in Health and Disease, Trends Mol Med [Internet], vol.22, issue.5, pp.414-443, 2016.

M. Tegowski and A. Baldwin, Noncanonical NF-?B in Cancer, Biomedicines [Internet], vol.6, issue.2, p.66, 2018.

E. Schweighoffer and V. L. Tybulewicz, Signalling for B cell survival, Curr Opin Cell Biol [Internet], vol.51, pp.8-14, 2018.

Y. Li, J. Yang, X. Xie, Z. Jie, L. Zhang et al., Preventing abnormal NF-?B activation and autoimmunity by Otub1-mediated p100 stabilization, Cell Res, vol.29, issue.6, pp.474-85, 2019.

S. Sun, The noncanonical NF-kB pathway, Immunol Rev, vol.246, issue.1, pp.125-165, 2012.

P. Millet, C. Mccall, and B. Yoza, RelB: an outlier in leukocyte biology, J Leukoc Biol, vol.94, issue.5, pp.941-51, 2013.

G. D. Bren, N. J. Solan, H. Miyoshi, K. N. Pennington, L. J. Pobst et al., Transcription of the RelB gene is regulated by NF-?B, Oncogene

F. Weih, G. Warr, H. Yang, and R. Bravo, Multifocal defects in immune responses in RelB-deficient mice, J Immunol, vol.158, issue.11, pp.5211-5218, 1997.

H. Authier, K. Billot, E. Derudder, D. Bordereaux, P. Riviere et al., IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors
URL : https://hal.archives-ouvertes.fr/hal-02411574

, Proc Natl Acad Sci, vol.111, issue.41, pp.14794-14803, 2014.

F. Cormier, H. Monjanel, C. Fabre, K. Billot, E. Sapharikas et al., Frequent Engagement of RelB Activation Is Critical for Cell Survival in Multiple Myeloma, PLoS One, vol.8, issue.3, 2013.

S. Josson, Y. Xu, F. Fang, S. K. Dhar, D. K. St-clair et al., RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells, vol.25, pp.1554-1563, 2006.

A. Iannetti, A. C. Ledoux, S. J. Tudhope, H. Sellier, B. Zhao et al., Regulation of p53 and Rb Links the Alternative NF-?B Pathway to EZH2 Expression and Cell, PLoS Genet, vol.10, issue.9, p.1004642, 2014.

M. M. Bellet, L. Zocchi, and P. Sassone-corsi, The RelB subunit of NF?B acts as a negative regulator of circadian gene expression, Cell Cycle, 2012.

, , vol.11, pp.3304-3315

J. E. Tchenio, T. Piton, G. Romeo, P. Baud, and V. , RelA repression of RelB activity induces selective gene activation downstream of TNF receptors, Proc Natl Acad Sci, vol.102, issue.41, pp.14635-14675, 2005.

S. Hailfinger, H. Nogai, C. Pelzer, M. Jaworski, K. Cabalzar et al., Malt1-dependent RelB cleavage promotes canonical NF-B activation in lymphocytes and lymphoma cell lines, Proc Natl Acad Sci, vol.108, issue.35, pp.14596-601, 2011.

L. Yu, L. Li, L. J. Medeiros, and K. H. Young, NF-?B signaling pathway and its potential as a target for therapy in lymphoid neoplasms, Blood Rev, vol.31, issue.2, pp.77-92, 2017.

M. S. Hayden, A. P. West, and S. Ghosh, NF-?B and the immune response

, Oncogene, vol.25, issue.51, pp.6758-80, 2006.

C. E. Brown, K. Siebenlist, and U. , NF-?B guides the survival and differentiation of developing lymphocytes, Cell Death Differ, 2006.

Y. Sasaki, E. Derudder, E. Hobeika, R. Pelanda, M. Reth et al.,

N. Canonical and . Activity, Dispensable for B Cell Development, Replaces BAFF-Receptor Signals and Promotes B Cell Proliferation upon Activation

Z. B. Yilmaz, D. S. Weih, V. Sivakumar, and F. Weih, RelB is required for Peyer's patch development: Differential regulation of p52-RelB by lymphotoxin and TNF, EMBO J, vol.22, issue.1, pp.121-151, 2003.

D. L. Drayton, S. Liao, R. H. Mounzer, and N. H. Ruddle, Lymphoid organ development: from ontogeny to neogenesis, Nat Immunol, 2006.

T. L. Rothstein, X. Zhong, B. R. Schram, R. S. Negm, T. J. Donohoe et al., Receptor-specific regulation of B-cell susceptibility to Fas-mediated apoptosis and a novel Fas apoptosis inhibitory molecule, Immunol Rev, vol.176, issue.1, pp.116-149, 2000.

E. Hobeika, P. J. Nielsen, and D. Medgyesi, Signaling mechanisms regulating Blymphocyte activation and tolerance, J Mol Med, vol.93, issue.2, pp.143-58, 2015.

S. Elmore, Apoptosis: a review of programmed cell death, Toxicol Pathol, vol.35, issue.4, pp.495-516, 2007.

D. Tang, R. Kang, T. Berghe, . Vanden, P. Vandenabeele et al., The molecular machinery of regulated cell death, Cell Res, vol.29, issue.5, pp.347-64, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02125072

A. S. Baldwin, Regulation of cell death and autophagy by IKK and NF-?B: critical mechanisms in immune function and cancer, Immunol Rev, vol.246, issue.1, pp.327-372, 2012.

J. Dutta, Y. Fan, N. Gupta, G. Fan, and C. Gélinas, Current insights into the regulation of programmed cell death by NF-?B, Oncogene, 2006.

, Oct, vol.30, issue.51, pp.6800-6816

M. Barkett and T. D. Gilmore, Control of apoptosis by Rel/NF-?B transcription factors, Oncogene, vol.18, issue.49, pp.6910-6934, 1999.

J. Kucharczak, M. J. Simmons, Y. Fan, and C. Gélinas, To be, or not to be: NF-?B is the answer -role of Rel/NF-?B in the regulation of apoptosis, vol.22, pp.8961-82, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00314990

D. Bernard, B. Quatannens, A. Begue, B. Vandenbunder, and C. Abbadie, Antiproliferative and antiapoptotic effects of cRel may occur within the same cells via the up-regulation of manganese superoxide dismutase

, Cancer Res, vol.61, issue.6, pp.2656-64, 2001.

W. C. Ho, K. M. Dickson, and P. A. Barker, Nuclear factor-?B induced by doxorubicin is deficient in phosphorylation and acetylation and represses nuclear factor-?B-dependent transcription in cancer cells, Cancer Res, vol.65, issue.10, pp.4273-81, 2005.

H. Wu and G. Lozano, NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress, J Biol Chem, 1994.

, Aug, vol.5, issue.31, pp.20067-74

K. M. Ryan, M. K. Ernst, N. R. Rice, and K. H. Vousden, Role of NF-?B in p53-mediated programmed cell death, Nature, 2000.

S. A. Pileri, N. L. Harris, E. S. Jaffe, and J. Cox, WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues

L. De-leval and N. L. Harris, Diffuse large B cell lymphomas. Lymphoid Neoplasms 3ed, vol.50, pp.560-86, 2010.

A. A. Alizadeh, M. B. Eisen, M. B. Eisen, R. E. Davis, R. E. Davis et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature [Internet], vol.403, issue.6769, pp.503-514, 2000.

A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo et al., The Use of Molecular Profiling to Predict Survival after Chemotherapy for Diffuse Large-B-Cell Lymphoma, N Engl J Med, vol.346, issue.25, pp.1937-1984, 2002.

G. Lenz, G. W. Wright, N. Emre, H. Kohlhammer, S. S. Dave et al., Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways, Proc Natl Acad Sci, vol.105, issue.36, pp.13520-13525, 2008.

R. E. Davis, K. D. Brown, U. Siebenlist, and L. M. Staudt, Constitutive Nuclear Factor ?B Activity Is Required for Survival of Activated B Cell-like Diffuse Large B Cell Lymphoma Cells, J Exp Med [Internet], vol.194, issue.12, pp.1861-74, 2001.

C. P. Hans, D. D. Weisenburger, T. C. Greiner, R. D. Gascoyne, J. Delabie et al., Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray, Blood, vol.103, issue.1, pp.275-82, 2004.

V. Bobée, P. Ruminy, V. Marchand, P. Viailly, A. Sater et al., Determination of Molecular Subtypes of Diffuse Large B-Cell Lymphoma Using a Reverse Transcriptase Multiplex Ligation-Dependent Probe Amplification Classifier, J Mol Diagnostics, 2017.

J. Jais, T. J. Molina, P. Ruminy, D. Gentien, C. Reyes et al., Reliable subtype classification of diffuse large B-cell lymphoma samples from GELA LNH2003 trials using the Lymph2Cx gene expression assay
URL : https://hal.archives-ouvertes.fr/hal-02329580

, Haematologica, vol.102, issue.10, pp.404-410, 2017.

B. Chapuy, C. Stewart, A. J. Dunford, J. Kim, A. Kamburov et al., Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes, Nat Med, vol.24, issue.5, pp.679-90, 2018.

S. Monti, K. J. Savage, J. L. Kutok, F. Feuerhake, P. Kurtin et al., Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response

, , vol.105, pp.1851-61, 2005.

G. Lenz, G. Wright, S. S. Dave, X. W. Powell, J. Zhao et al., Stromal Gene Signatures in Large-B-Cell Lymphomas, N Engl J Med, vol.359, issue.22, pp.2313-2336, 2008.

R. Schmitz, G. W. Wright, D. W. Huang, C. A. Johnson, J. D. Phelan et al., Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma, N Engl J Med [Internet], vol.378, issue.15, pp.1396-407, 2018.

G. Lenz and L. M. Staudt, Aggressive Lymphomas, N Engl J Med, vol.362, issue.15, pp.1417-1446, 2010.

I. S. Lossos, Molecular Pathogenesis of Diffuse Large B-Cell Lymphoma, J Clin Oncol, vol.23, issue.26, pp.6351-6358, 2005.

S. Dubois, P. J. Viailly, S. Mareschal, E. Bohers, P. Bertrand et al., Next-generation sequencing in diffuse large B-cell lymphoma highlights molecular divergence and therapeutic opportunities: A LYSA study, Clin Cancer Res, vol.22, issue.12, pp.2919-2947, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01343064

B. Zhang, D. P. Calado, Z. Wang, S. Fröhler, K. Köchert et al., An Oncogenic Role for Alternative NF-?B Signaling in DLBCL Revealed upon

, Deregulated BCL6 Expression. Cell Rep, vol.11, issue.5, pp.715-741, 2015.

A. Rosenthal and A. Younes, High grade B-cell lymphoma with rearrangements of MYC and BCL2 and/or BCL6: Double hit and triple hit lymphomas and double expressing lymphoma, Blood Rev, vol.31, issue.2, pp.37-42, 2017.

R. M. Young, A. L. Shaffer, J. D. Phelan, and L. M. Staudt, B-Cell Receptor Signaling in Diffuse Large B-Cell lymphoma, Semin Hematol, 2015.

, Apr, vol.52, issue.2, pp.77-85

J. P. Vaque, N. Martinez, A. Batlle-lopez, C. Perez, S. Montes-moreno et al., B-cell lymphoma mutations: improving diagnostics and enabling targeted therapies, Haematologica, vol.99, issue.2, pp.222-253, 2014.

V. N. Ngo, R. M. Young, R. Schmitz, S. Jhavar, W. Xiao et al., Oncogenically active MYD88 mutations in human lymphoma, Nature [Internet], vol.470, issue.7332, pp.115-136, 2011.

M. Compagno, W. K. Lim, A. Grunn, S. V. Nandula, M. Brahmachary et al., Mutations of multiple genes cause deregulation of NF-B in diffuse large B-cell lymphoma, Nature [Internet], vol.459, issue.7247, pp.717-738, 2009.

J. D. Phelan, R. M. Young, D. E. Webster, S. Roulland, G. W. Wright et al., A multiprotein supercomplex controlling oncogenic signalling in lymphoma, Nature [Internet], vol.560, issue.7718, pp.387-91, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02117984

A. S. Baldwin, Control of oncogenesis and cancer therapy resistance by the transcription factor NF-?B, J Clin Invest, vol.107, issue.3, pp.241-247, 2001.

D. P. Calado, B. Zhang, L. Srinivasan, Y. Sasaki, J. Seagal et al.,

, Constitutive Canonical NF-?B Activation Cooperates with Disruption of BLIMP1 in the Pathogenesis of Activated B Cell-like Diffuse Large Cell Lymphoma. Cancer Cell, vol.18, pp.580-589, 2010.

B. Coiffier, E. Lepage, J. Brière, R. Herbrecht, H. Tilly et al., CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma, N Engl J Med, vol.346, issue.4, pp.235-277, 2002.

B. Coiffier, C. Thieblemont, E. Van-den-neste, G. Lepeu, and I. Plantier,

S. Castaigne, Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d'Etudes des Lymphomes de l'Adulte, vol.116, pp.2040-2045, 2010.

C. Récher, B. Coiffier, C. Haioun, T. J. Molina, C. Fermé et al., Intensified chemotherapy with ACVBP plus rituximab versus standard CHOP plus rituximab for the treatment of diffuse large B-cell lymphoma (LNH03-2B): an open-label randomised phase 3 trial, Lancet

T. J. Molina, D. Canioni, C. Copie-bergman, C. Recher, J. Briere et al., Young Patients With Non-Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma Benefit From Intensified Chemotherapy With ACVBP Plus Rituximab Compared With CHOP Plus Rituximab: Analysis of Data From the Groupe d'Etudes des Lymphomes de l'Adulte/Lympho, J Clin Oncol, vol.32, issue.35, pp.3996-4003, 2014.

C. F. Thorn, C. Oshiro, S. Marsh, T. Hernandez-boussard, H. Mcleod et al., Doxorubicin pathways: pharmacodynamics and adverse effects

, Pharmacogenet Genomics, vol.21, issue.7, pp.440-446, 2011.

P. W. Burridge, Y. F. Li, E. Matsa, H. Wu, S. Ong et al., Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin

L. P. Swift, A. Rephaeli, A. Nudelman, D. R. Phillips, and S. M. Cutts, Doxorubicin-DNA Adducts Induce a Non-Topoisomerase II-Mediated Form of Cell Death, Cancer Res, vol.66, issue.9, pp.4863-71, 2006.

S. M. Cutts, A. Nudelman, A. Rephaeli, and D. R. Phillips, The power and potential of doxorubicin-DNA adducts, IUBMB Life, vol.57, issue.2, pp.73-81, 2005.

Y. Ichikawa, M. Ghanefar, M. Bayeva, R. Wu, A. Khechaduri et al., Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation, J Clin Invest, vol.124, issue.2, pp.617-647, 2014.

P. D. Ray, B. Huang, and Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell Signal, vol.24, issue.5, pp.981-90, 2012.

C. ;. Thorn, C. ;. Oshiro, S. ;. Marsh, T. ;. Hernandez-boussard, . Mcleod et al., Doxorubicin pathways:pharmacodynamics and adverse effects, Pharmacogenet Genomics [Internet], vol.21, issue.7, pp.440-446, 2012.

X. Fang, H. Wang, D. Han, E. Xie, X. Yang et al., Ferroptosis as a target for protection against cardiomyopathy, Proc Natl Acad Sci

, , vol.116, pp.2672-80, 2019.

B. Lu, X. B. Chen, M. D. Ying, Q. J. He, J. Cao et al., The Role of Ferroptosis in Cancer Development and Treatment Response, Front Pharmacol [Internet], vol.8, issue.3, pp.231-238, 2018.

J. Savatier, T. Rharass, C. Canal, A. Gbankoto, J. Vigo et al., Adriamycin dose and time effects on cell cycle, cell death, and reactive oxygen species generation in leukaemia cells, Leuk Res

, , vol.36, pp.791-799, 2012.

G. Salles, M. Barrett, R. Foà, J. Maurer, S. O'brien et al., Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience, Adv Ther, vol.34, issue.10, pp.2232-73, 2017.

K. Tobinai, C. Klein, N. Oya, and G. Fingerle-rowson, A Review of Obinutuzumab (GA101), a Novel Type II Anti-CD20 Monoclonal Antibody, for the Treatment of Patients with B-Cell Malignancies, Adv Ther, vol.34, issue.2, pp.324-56, 2017.

R. Weil and A. Israël, T-cell-receptor-and B-cell-receptor-mediated activation of NF-?B in lymphocytes, Curr Opin Immunol, vol.16, issue.3, pp.374-81, 2004.

L. T. Lam, R. E. Davis, J. Pierce, M. Hepperle, Y. Xu et al., Small molecule inhibitors of I?B kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling, Clin Cancer Res, vol.11, issue.1, pp.28-40, 2005.

M. Roschewski, L. M. Staudt, and W. H. Wilson, Diffuse large B-cell lymphoma -Treatment approaches in the molecular era, Nat Rev Clin Oncol

, , vol.11, pp.12-23, 2014.

L. Odqvist, S. Montes-moreno, R. E. Sánchez-pacheco, K. H. Young, E. Martín-sánchez et al.,

P. Bavi, S. Uddin, R. Bu, M. Ahmed, J. Abubaker et al., The biological and clinical impact of inhibition of NF-?B-initiated apoptosis in diffuse large B cell lymphoma (DLBCL), J Pathol, 2011.

, , vol.224, pp.355-66

I. Espinosa, J. Briones, R. Bordes, S. Brunet, R. Martino et al., Activation of the NF-?B signalling pathway in diffuse large B-cell lymphoma: Clinical implications, Histopathology, vol.53, issue.4, pp.441-450, 2008.

C. V. Curry, A. A. Ewton, R. J. Olsen, B. R. Logan, H. A. Preti et al., Prognostic impact of C-REL expression in diffuse large B-cell lymphoma, J Hematop, vol.2, issue.1, pp.20-26, 2009.

H. C. Shin, J. Seo, B. W. Kang, J. H. Moon, Y. S. Chae et al., Clinical significance of nuclear factor ?B and chemokine receptor CXCR4 expression in patients with diffuse large B-cell lymphoma who received rituximab-based therapy, Korean J Intern Med [Internet], vol.29, issue.6, p.785, 2014.

J. E. Tchenio, T. Piton, G. Romeo, P. Baud, and V. , RelA repression of RelB activity induces selective gene activation downstream of TNF receptors, Proc Natl Acad Sci, vol.102, issue.41, pp.14635-14675, 2005.

L. M. Hellman and M. G. Fried, Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions, Nat Protoc, vol.2, issue.8, pp.1849-61, 2007.

S. Ramachandiran, A. Adon, X. Guo, Y. Wang, H. Wang et al., Chromosome instability in diffuse large B cell lymphomas is suppressed by activation of the noncanonical NF-?B pathway, Int J Cancer

, , vol.136, pp.2341-51, 2015.

S. Balaji, M. Ahmed, E. Lorence, F. Yan, K. Nomie et al., NF-?B signaling and its relevance to the treatment of mantle cell lymphoma, J Hematol Oncol, vol.11, issue.1, p.83, 2018.

M. A. Weniger and R. Küppers, NF-?B deregulation in Hodgkin lymphoma, Semin Cancer Biol [Internet], vol.39, pp.32-41, 2016.

M. Du, MALT lymphoma: many roads lead to nuclear factor-?b activation, Histopathology, vol.58, issue.1, pp.26-38, 2011.

A. Davies, T. E. Cummin, S. Barrans, T. Maishman, C. Mamot et al.,

, Gene-expression profiling of bortezomib added to standard chemoimmunotherapy for diffuse large B-cell lymphoma (REMoDL-B): an open-label, randomised, phase 3 trial, Lancet Oncol, 2019.

F. J. Hernandez-ilizaliturri, G. Deeb, P. L. Zinzani, S. A. Pileri, F. Malik et al., Higher response to lenalidomide in relapsed/refractory diffuse large B-cell lymphoma in nongerminal center B-cell-like than in germinal center B-cell-like phenotype, Cancer, vol.117, issue.22, pp.5058-66, 2011.

C. Thieblemont, H. Tilly, M. Gomes-da-silva, R. Casasnovas, C. Fruchart et al., Lenalidomide Maintenance Compared With Placebo in Responding Elderly Patients With Diffuse Large B-Cell Lymphoma Treated With First-Line Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone, J Clin Oncol, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01609346

, , vol.35, pp.2473-81

J. D. Phelan, R. M. Young, D. E. Webster, S. Roulland, G. W. Wright et al., A multiprotein supercomplex controlling oncogenic signalling in lymphoma, Nature [Internet], vol.560, issue.7718, pp.387-91, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02117984

A. Younes, L. H. Sehn, P. Johnson, P. L. Zinzani, X. Hong et al.,

, Randomized Phase III Trial of Ibrutinib and Rituximab Plus Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone in Non-Germinal Center B-Cell Diffuse Large B-Cell Lymphoma, J Clin Oncol, 2019.

Y. He, J. Li, N. Ding, X. Wang, L. Deng et al., Combination of Enzastaurin and Ibrutinib synergistically induces anti-tumor effects in diffuse large B cell lymphoma, J Exp Clin Cancer Res, vol.38, issue.1, pp.1-16, 2019.

B. K. Sasi, C. Martines, E. Xerxa, F. Porro, H. Kalkan et al., Inhibition of SYK or BTK augments venetoclax sensitivity in SHP1-negative/BCL-2-positive diffuse large B-cell lymphoma, Leukemia, 2019.

E. Battistello, N. Katanayeva, E. Dheilly, D. Tavernari, M. C. Donaldson et al., Pan-SRC kinase inhibition blocks B-cell receptor oncogenic signaling in non-Hodgkin lymphoma, Blood, vol.131, issue.21, pp.2345-56, 2018.

I. W. Flinn, N. L. Bartlett, K. A. Blum, K. M. Ardeshna, A. S. Lacasce et al., A phase II trial to evaluate the efficacy of fostamatinib in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL), Eur J Cancer [Internet], vol.54, pp.11-18, 2016.

Y. Yang, P. Kelly, A. L. Shaffer, R. Schmitz, H. M. Yoo et al., Targeting Non-proteolytic Protein Ubiquitination for the Treatment of Diffuse Large B Cell Lymphoma. Cancer Cell, vol.29, pp.494-507, 2016.

V. Baud and B. Eluard, Ciblage de NF-kappaB en oncologie, pp.254-60, 2019.

V. Bobée, P. Ruminy, V. Marchand, P. J. Viailly, A. Sater et al., Determination of Molecular Subtypes of Diffuse Large B-Cell Lymphoma Using a Reverse Transcriptase Multiplex Ligation-Dependent Probe Amplification Classifier: A CALYM Study, J Mol Diagnostics, vol.19, issue.6, pp.892-904, 2017.

J. Jais, T. J. Molina, P. Ruminy, D. Gentien, C. Reyes et al., Reliable subtype classification of diffuse large B-cell lymphoma samples 122 from GELA LNH2003 trials using the Lymph2Cx gene expression assay

, Haematologica, vol.102, issue.10, pp.404-410, 2017.

J. Chagraoui, P. Mangeot, P. J. Gage, N. Navarro, B. Izac et al., Expression of Pitx2 in stromal cells is required for normal hematopoiesis, Blood, vol.107, issue.2, pp.492-500, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00180299

J. M. Flaman, T. Frebourg, V. Moreau, F. Charbonnier, C. Martin et al., A simple p53 functional assay for screening cell lines, blood, and tumors, Proc Natl Acad Sci, vol.92, issue.9, pp.3963-3970, 1995.

N. A. Johnson, G. W. Slack, K. J. Savage, J. M. Connors, S. Ben-neriah et al., Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone, J Clin Oncol, vol.30, issue.28, pp.3452-3461, 2012.

T. M. Green, K. H. Young, C. Visco, Z. Y. Xu-monette, A. Orazi et al., Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone, J Clin Oncol, vol.30, issue.28, pp.3460-3467, 2012.

J. Xu, W. Li, H. Yang, Z. Shan, F. Guo et al., RelB plays an oncogenic role and conveys chemo-resistance to DLD-1 colon cancer cells, Cancer Cell Int, vol.18, issue.1, pp.1-16, 2018.

S. Francisco and S. Francisco, ?-H2AX -A Novel Biomarker for DNA Doublestrand Breaks, In Vivo (Brooklyn), vol.22, pp.305-315, 2008.

A. M. Bode and Z. Dong, Post-translational modification of p53 in tumorigenesis

, Nat Rev Cancer, vol.4, issue.10, pp.793-805, 2004.

G. Schneider, A. Henrich, G. Greiner, V. Wolf, A. Lovas et al., Cross talk between stimulated NF-?B and the tumor suppressor p53

, Oncogene, vol.29, pp.2795-806, 2010.

J. Houldsworth, M. Petlakh, A. B. Olshen, and R. Chaganti, Pathway activation in large B-cell non-Hodgkin lymphoma cell lines by doxorubicin reveals prognostic markers of in vivo response, Leuk Lymphoma, 2008.

, , vol.49, pp.2170-80

L. Pasqualucci, V. Trifonov, G. Fabbri, J. Ma, D. Rossi et al., Analysis of the coding genome of diffuse large B-cell lymphoma, Nat Genet, vol.43, issue.9, pp.830-837, 2011.

S. M. Ranuncolo, S. Pittaluga, M. O. Evbuomwan, E. S. Jaffe, and B. A. Lewis, Hodgkin lymphoma requires stabilized NIK and constitutive RelB expression for survival, Blood, vol.120, issue.18, pp.3756-63, 2012.

A. M. Hunter, E. C. Lacasse, and R. G. Korneluk, The inhibitors of apoptosis (IAPs) as cancer targets, Apoptosis, vol.12, issue.9, pp.1543-68, 2007.

J. M. Rumble, M. Bertrand, R. A. Csomos, C. W. Wright, L. Albert et al., Apoptotic sensitivity of murine IAP-deficient cells, Biochem J

, , vol.415, pp.21-26, 2008.

M. Moulin, H. Anderton, A. K. Voss, T. Thomas, W. Wong et al., IAPs limit activation of RIP kinases by TNF receptor 1 during development, EMBO J [Internet], vol.31, issue.7, pp.1679-91, 2012.

J. Silke and P. Meier, Inhibitor of Apoptosis (IAP) Proteins-Modulators of Cell Death and Inflammation, Cold Spring Harb Perspect Biol, 2013.

, Feb, vol.1, issue.2, pp.8730-008730

E. Roscioli, R. Hamon, R. E. Ruffin, S. Lester, and P. Zalewski, Cellular inhibitor of apoptosis-2 is a critical regulator of apoptosis in airway epithelial cells treated with asthmarelated inflammatory cytokines, Physiol Rep, vol.1, issue.5, 2013.

W. P. Roos, A. D. Thomas, and B. Kaina, DNA damage and the balance between survival and death in cancer biology, Nat Rev Cancer, vol.16, issue.1, pp.20-33, 2016.

S. F. Bakhoum, O. V. Danilova, P. Kaur, N. B. Levy, and D. A. Compton,

, Chromosomal Instability Substantiates Poor Prognosis in Patients with Diffuse Large B-cell Lymphoma, Clin Cancer Res, vol.17, issue.24, pp.7704-7715, 2011.

S. Zhang, X. Liu, T. Bawa-khalfe, L. Lu, Y. L. Lyu et al., Identification of the molecular basis of doxorubicin-induced cardiotoxicity, Nat Med, vol.18, issue.11, pp.1639-1681, 2012.

H. Yang, R. M. Villani, H. Wang, M. J. Simpson, M. S. Roberts et al., The role of cellular reactive oxygen species in cancer chemotherapy, J Exp Clin Cancer Res [Internet], vol.37, issue.1, p.266, 2018.

L. A. Pavelescu, On reactive oxygen species measurement in living systems

, J Med Life, vol.8, pp.38-42, 2015.

R. Sen and D. Baltimore, Inducibility of ? immunoglobulin enhancer-binding protein NF-?B by a posttranslational mechanism, Cell, vol.47, pp.921-928, 1986.

S. Gerondakis and U. Siebenlist, Roles of the NF-?B pathway in lymphocyte development and function, Cold Spring Harb. Perspect. Biol, vol.2, pp.1-29, 2010.

P. J. Barnes and M. Karin, Nuclear factor-?B-A pivotal transcription factor in chronic inflammatory diseases, N. Engl. J. Med, vol.336, pp.1066-1071, 1997.

A. S. Baldwin, Regulation of cell death and autophagy by IKK and NF-?B: Critical mechanisms in immune function and cancer, Immunol. Rev, vol.246, pp.327-345, 2012.

B. Rayet and C. Gélinas, Aberrant Rel/NF-?B genes and activity in human cancer, Oncogene, vol.18, pp.6938-6947, 1999.

W. E. Naugler and M. Karin, NF-?B and cancer-identifying targets and mechanisms, Curr. Opin. Genet. Dev, vol.18, pp.19-26, 2008.

V. Baud and M. Karin, Is NF-?B a good target for cancer therapy? Hopes and pitfalls, Nat. Rev. Drug Discov, vol.8, pp.33-40, 2009.

Y. Ben-neriah and M. Karin, Inflammation meets cancer, with NF-?B as the matchmaker, Nat. Immunol, vol.12, pp.715-723, 2011.

C. Nakanishi and M. Toi, Nuclear factor factor-?B inhibitors as sensitizers to anticancer drugs, Nat. Rev. Cancer, vol.5, pp.297-309, 2005.

A. Oeckinghaus and S. Ghosh, The NF-?B family of transcription factors and its regulation, Cold Spring Harb. Perspect. Biol, vol.1, pp.1-14, 2009.

M. Karin and Y. Ben-neriah, Phosphorylation meets ubiquitination: The control of NF-?B activity, Annu. Rev. Immunol, vol.18, pp.621-663, 2000.

S. C. Sun, The noncanonical NF-?B pathway, Immunol. Rev, vol.246, pp.125-140, 2012.

V. Baud and E. Jacque, The alternative NF-?B activation pathway and cancer: Friend or foe?, Med. Sci, vol.24, pp.1083-1088, 2008.

V. Bours, V. Azarenko, E. Dejardinn, and U. Siebenlist, Human RelB (I-Rel) functions as a ? B site-dependent transactivating member of the family of Rel-related proteins, Oncogene, vol.9, pp.1699-1702, 1994.

V. Bours, P. R. Burd, K. Brown, J. Villalobos, S. Park et al., A novel mitogen-inducible gene product related to p50/p105-NF-? B participates in transactivation through a ?B site, Mol. Cell Biol, vol.12, pp.685-695, 1992.

R. P. Ryseck, P. Bull, M. Takamiya, V. Bours, U. Siebenlist et al., RelB, a new Rel family transcription activator that can interact with p50-NF-?B, Mol. Cell Biol, vol.12, pp.674-684, 1992.

P. Dobrzanski, R. P. Ryseck, and R. Bravo, Both N-and C-terminal domains of RelB are required for full transactivation: Role of the N-terminal leucine zipper-like motif, Mol. Cell Biol, vol.13, pp.1572-1582, 1993.

E. Jacque, T. Tchenio, G. Piton, P. H. Romeo, and V. Baud, RelA repression of RelB activity induces selective gene activation downstream of TNF receptors, Proc. Natl. Acad. Sci, vol.102, pp.14635-14640, 2005.

Z. B. Yilmaz, D. S. Weih, V. Sivakumar, and F. Weih, RelB is required for Peyer's patch development: Differential regulation of p52-RelB by lymphotoxin and TNF, Embo J, vol.22, pp.121-130, 2003.

E. Derudder, E. Dejardin, L. L. Pritchard, D. R. Green, M. Korner et al., RelB/p50 dimers are differentially regulated by tumor necrosis factor-? and lymphotoxin-? receptor activation: Critical roles for p100, J. Biol. Chem, vol.278, pp.23278-23284, 2003.

G. Bonizzi, M. Bebien, D. C. Otero, K. E. Johnson-vroom, Y. Cao et al., Activation of IKK? target genes depends on recognition of specific ?B binding sites by RelB:p52 dimers, Embo J, vol.23, pp.4202-4210, 2004.

A. J. Fusco, D. B. Huang, D. Miller, V. Y. Wang, D. Vu et al., NF-?B p52:RelB heterodimer recognizes two classes of ?B sites with two distinct modes, EMBO Rep, vol.10, pp.152-159, 2009.

G. Natoli and F. De-santa, Shaping alternative NF-?B-dependent gene expression programs: New clues to specificity, Cell Death Differ, vol.13, pp.693-696, 2006.

S. Saccani, S. Pantano, and G. Natoli, Modulation of NF-?B activity by exchange of dimers, Mol. Cell, vol.11, pp.1563-1574, 2003.

L. Wu, A. D'amico, K. D. Winkel, M. Suter, D. Lo et al., RelB is essential for the development of myeloid-related CD8?-dendritic cells but not of lymphoid-related CD8?+ dendritic cells, Immunity, vol.9, pp.839-847, 1998.

F. Weih, D. Carrasco, S. K. Durham, D. S. Barton, C. A. Rizzo et al., Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-? B/Rel family, Cell, vol.80, pp.331-340, 1995.

F. Weih, G. Warr, H. Yang, and R. Bravo, Multifocal defects in immune responses in RelB-deficient mice, J. Immunol, vol.158, pp.5211-5218, 1997.

D. S. Weih, Z. B. Yilmaz, and F. Weih, Essential role of RelB in germinal center and marginal zone formation and proper expression of homing chemokines, J. Immunol, vol.167, pp.1909-1919, 2001.

F. Weih, S. K. Durham, D. S. Barton, W. C. Sha, D. Baltimore et al., Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent, J. Immunol, vol.157, pp.3974-3979, 1996.

H. C. Zhu, T. Qiu, X. H. Liu, W. C. Dong, X. D. Weng et al., Tolerogenic dendritic cells generated by RelB silencing using shRNA prevent acute rejection, Cell Immunol, vol.274, pp.12-18, 2012.

C. F. Vogel, D. Wu, S. R. Goth, J. Baek, A. Lollies et al., Aryl hydrocarbon receptor signaling regulates NF-?B RelB activation during dendritic-cell differentiation, Immunol. Cell Biol, vol.91, pp.568-575, 2013.

B. K. Yoza, J. Y. Hu, S. L. Cousart, L. M. Forrest, and C. E. Mccall, Induction of RelB participates in endotoxin tolerance, J. Immunol, vol.177, pp.4080-4085, 2006.

M. El-gazzar, B. K. Yoza, J. Y. Hu, S. L. Cousart, and C. E. Mccall, Epigenetic Silencing of Tumor Necrosis Factor ? during Endotoxin Tolerance, J. Biol. Chem, vol.282, pp.26857-26864, 2007.

X. Chen, M. El-gazzar, B. K. Yoza, and C. E. Mccall, The NF-?B factor RelB and histone H3 lysine methyltransferase G9a directly interact to generate epigenetic silencing in endotoxin tolerance, J. Biol. Chem, vol.284, pp.27857-27865, 2009.

Y. Xia, M. E. Pauza, L. Feng, and D. Lo, RelB regulation of chemokine expression modulates local inflammation, Am. J. Pathol, vol.151, pp.375-387, 1997.

Y. Xia, S. Chen, Y. Wang, N. Mackman, G. Ku et al., RelB modulation of I?B? stability as a mechanism of transcription suppression of interleukin-1? (IL-1?), IL-1?, and tumor necrosis factor ? in fibroblasts, Mol. Cell Biol, vol.19, pp.7688-7696, 1999.

N. Bakkar, K. Ladner, B. D. Canan, S. Liyanarachchi, N. C. Bal et al., IKK? and alternative NF-?B regulate PGC-1? to promote oxidative muscle metabolism, J. Cell Biol, vol.196, pp.497-511, 2012.

T. F. Liu, B. K. Yoza, M. El-gazzar, V. T. Vachharajani, and C. E. Mccall, NAD+-dependent SIRT1 deacetylase participates in epigenetic reprogramming during endotoxin tolerance, J. Biol. Chem, vol.286, pp.9856-9864, 2011.

P. Millet, C. Mccall, and B. Yoza, RelB: An outlier in leukocyte biology, J. Leukoc. Biol, vol.94, pp.941-951, 2013.

M. M. Bellet, L. Zocchi, and P. Sassone-corsi, The RelB subunit of NFkB acts as a negative regulator of circadian gene expression, Cell Cycle, vol.11, pp.3304-3311, 2012.

C. F. Vogel, E. Sciullo, W. Li, P. Wong, G. Lazennec et al., RelB, a new partner of aryl hydrocarbon receptor-mediated transcription, Mol. Endocrinol, vol.21, pp.2941-3955, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00268250

C. J. Baglole, S. B. Maggirwar, T. A. Gasiewicz, T. H. Thatcher, R. P. Phipps et al., The aryl hydrocarbon receptor attenuates tobacco smoke-induced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-?B family member RelB, J. Biol. Chem, vol.283, pp.28944-28957, 2008.

S. Vaira, T. Johnson, A. C. Hirbe, M. Alhawagri, I. Anwisye et al., RelB is the NF-?B subunit downstream of NIK responsible for osteoclast differentiation, Proc. Natl. Acad. Sci, vol.105, pp.3897-3902, 2008.

N. S. Soysa, N. Alles, D. Weih, A. Lovas, A. H. Mian et al., The pivotal role of the alternative NF-?B pathway in maintenance of basal bone homeostasis and osteoclastogenesis, J. Bone Miner. Res, vol.25, pp.809-818, 2010.

R. Taniguchi, H. Fukushima, K. Osawa, T. Maruyama, H. Yasuda et al., RelB-induced expression of Cot, an MAP3K family member, rescues RANKL-induced osteoclastogenesis in alymphoplasia mice by promoting NF-?B2 processing by IKK?, J. Biol. Chem, vol.289, pp.7349-7361, 2014.

A. Stoffel, M. Chaurushiya, B. Singh, and A. J. Levine, Activation of NF-?B and inhibition of p53-mediated apoptosis by API2/mucosa-associated lymphoid tissue 1 fusions promote oncogenesis, Proc. Natl. Acad. Sci, vol.101, pp.9079-9084, 2004.

F. Cormier, H. Monjanel, C. Fabre, K. Billot, E. Sapharikas et al., Frequent engagement of RelB activation is critical for cell survival in multiple myeloma, PLoS ONE, vol.8, 2013.

R. Schwarzer, B. Dorken, and F. Jundt, Notch is an essential upstream regulator of NF-?B and is relevant for survival of Hodgkin and Reed-Sternberg cells, Leukemia, vol.26, pp.806-813, 2012.

T. Lwin, L. A. Hazlehurst, Z. Li, S. Dessureault, E. Sotomayor et al., Bone marrow stromal cells prevent apoptosis of lymphoma cells by up regulation of anti-apoptotic proteins associated with activation of NF-?B (RelB/p52) in non-Hodgkin's lymphoma cells, Leukemia, vol.21, pp.1521-1531, 2007.

D. Santos, N. R. Williame, M. Gachet, S. Cormier, F. Janin et al., RelB-dependent stromal cells promote T-cell leukemogenesis, PLoS ONE, vol.3, 2008.

Y. Xu, S. Josson, F. Fang, T. D. Oberley, D. K. St-clair et al., RelB enhances prostate cancer growth: Implications for the role of the nuclear factor-?B alternative pathway in tumorigenicity, Cancer Res, vol.69, pp.3267-3271, 2009.

X. Wang, K. Belguise, N. Kersual, K. H. Kirsch, N. D. Mineva et al., Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2, Nat. Cell Biol, vol.9, pp.470-478, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00145547

D. W. Lee, D. Ramakrishnan, J. Valenta, I. F. Parney, K. J. Bayless et al., The NF-?B RelB protein is an oncogenic driver of mesenchymal glioma, PLoS ONE, vol.8, 2013.

M. Shen, X. Duan, P. Zhou, W. Zhou, X. Wu et al., Lymphotoxin ? receptor activation promotes bladder cancer in a nuclear factor-?B-dependent manner, Mol. Med. Rep, vol.11, pp.783-790, 2015.

F. I. Dimitrakopoulos, A. G. Antonacopoulou, A. Kottorou, H. Vlotinou, N. D. Panagopoulos et al., NSCLC and the alternative pathway of NF-?B: Uncovering an unknown relation, Virchows Arch, vol.460, pp.515-523, 2012.

S. Josson, Y. Xu, F. Fang, S. K. Dhar, D. K. St-clair et al., RelB regulates manganese superoxide dismutase gene and resistance to ionizing radiation of prostate cancer cells, Oncogene, vol.25, pp.1554-1559, 2006.

Y. Xu, F. Fang, D. K. St-clair, S. Josson, P. Sompol et al., Suppression of RelB-mediated manganese superoxide dismutase expression reveals a primary mechanism for radiosensitization effect of 1?,25-dihydroxyvitamin D(3) in prostate cancer cells, Mol. Cancer Ther, vol.6, pp.2048-2056, 2007.

E. M. Cherry, D. W. Lee, J. U. Jung, and R. Sitcheran, Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-?B-inducing kinase (NIK) and noncanonical NF-?B signaling, Mol. Cancer, vol.14, issue.9, 2015.

E. G. Demicco, K. T. Kavanagh, R. Romieu-mourez, X. Wang, S. R. Shin et al., RelB/p52 NF-?B complexes rescue an early delay in mammary gland development in transgenic mice with targeted superrepressor I?B-? expression and promote carcinogenesis of the mammary gland, Mol. Cell Biol, vol.25, pp.10136-10147, 2005.

N. D. Mineva, X. Wang, S. Yang, H. Ying, Z. X. Xiao et al., Inhibition of RelB by 1,25-dihydroxyvitamin D3 promotes sensitivity of breast cancer cells to radiation, J. Cell Physiol, vol.220, pp.593-599, 2009.

N. D. Perkins, Post-translational modifications regulating the activity and function of the nuclear factor ?B pathway, Oncogene, vol.25, pp.6717-6830, 2006.

B. Huang, X. D. Yang, A. Lamb, and L. F. Chen, Posttranslational modifications of NF-?B: Another layer of regulation for NF-?B signaling pathway, Cell Signal, vol.22, pp.1282-1290, 2010.

M. Calao, A. Burny, V. Quivy, A. Dekoninck, and C. Van-lint, A pervasive role of histone acetyltransferases and deacetylases in an NF-?B-signaling code, Trends Biochem. Sci, vol.33, pp.339-349, 2008.

T. Lu, G. R. Stark, and . Nf-?b, Regulation by Methylation. Cancer Res, vol.75, pp.3692-3695, 2015.

A. C. Schmukle and H. Walczak, No one can whistle a symphony alone-How different ubiquitin linkages cooperate to orchestrate NF-?B activity, J. Cell Sci, vol.125, pp.549-559, 2012.

K. Sasaki and K. Iwai, Roles of linear ubiquitinylation, a crucial regulator of NF-?B and cell death, in the immune system, Immunol. Rev, vol.266, pp.175-189, 2015.

A. M. Mabb, S. Miyamoto, N. Sumo, and . Ties, Cell Mol. Life Sci, vol.64, 1979.

S. T. Smale, Hierarchies of NF-?B target-gene regulation, Nat. Immunol, vol.12, pp.689-694, 2011.

A. Msaki, A. M. Sánchez, L. F. Koh, B. Barré, S. Rocha et al., The role of RelA (p65) threonine 505 phosphorylation in the regulation of cell growth, survival, and migration, Mol. Biol. Cell, vol.22, pp.3032-3040, 2011.

X. Lu and W. G. Yarbrough, Negative regulation of RelA phosphorylation: Emerging players and their roles in cancer, Cytokine Growth Factor Rev, vol.26, pp.7-13, 2015.

R. Marienfeld, F. Berberich-siebelt, I. Berberich, A. Denk, E. Serfling et al., Signal-specific and phosphorylation-dependent RelB degradation: A potential mechanism of NF-?B control, Oncogene, vol.20, pp.8142-8147, 2001.

H. J. Maier, R. Marienfeld, T. Wirth, and B. Baumann, Critical role of RelB serine 368 for dimerization and p100 stabilization, J. Biol. Chem, vol.278, pp.39242-39250, 2003.

J. Leidner, L. Palkowitsch, U. Marienfeld, D. Fischer, and R. Marienfeld, Identification of lysine residues critical for the transcriptional activity and polyubiquitination of the NF-?B family member RelB, Biochem. J, vol.416, pp.117-127, 2008.

H. Authier, K. Billot, E. Derudder, D. Bordereaux, P. Rivière et al., IKK phosphorylates RelB to modulate its promoter specificity and promote fibroblast migration downstream of TNF receptors, Proc. Natl. Acad. Sci, vol.111, pp.14794-14799, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02411574

J. Leidner, C. Voogdt, R. Niedenthal, P. Möller, U. Marienfeld et al., SUMOylation attenuates the transcriptional activity of the NF-?B subunit RelB, J. Cell Biochem, vol.115, pp.1430-1440, 2014.

S. Hailfinger, H. Nogai, C. Pelzer, M. Jaworski, K. Cabalzar et al., Malt1-dependent RelB cleavage promotes canonical NF-?B activation in lymphocytes and lymphoma cell lines, Proc. Natl. Acad. Sci, vol.108, pp.14596-14601, 2011.

. Phosphosite, , p.28, 2016.

J. Zinngrebe, A. Montinaro, N. Peltzer, and H. Walczak, Ubiquitin in the immune system, EMBO Rep, vol.15, pp.28-45, 2014.

L. A. Puto and J. C. Reed, Daxx represses RelB target promoters via DNA methyltransferase recruitment and DNA hypermethylation, Genes Dev, vol.22, pp.998-1010, 2008.

S. T. Lee, Z. Li, Z. Wu, M. Aau, P. Guan et al., Context-specific regulation of NF-?B target gene expression by EZH2 in breast cancers, Mol. Cell, vol.43, pp.798-810, 2011.

G. Gill, SUMO and ubiquitin in the nucleus: Different functions, similar mechanisms? Genes Dev, vol.18, pp.2046-2059, 2004.