, A. Synthèse des ligands organiques Synthèse du ligand BDS Structure : C6H6O6S2 Masse molaire : 237, pp.96-97

, Masse obtenue : 893 mg Rendement : 95 % Pureté : > 99 % Aspect physique

, Après 5 minutes d'agitation, l'eau oxygénée 30% (6,45 mL, 63,2 mmol, 18 eq) a été ajoutée et la suspension agitée à température ambiante pendant une nuit. Les solvants sont concentrés sous vide et la poudre blanche obtenue a été séchée sous vide poussé. Enfin, le solide a été analysé par RMN dans le DMSO-D6 et par ESI-MS dans le méthanol

, MS

, Synthèse de l'intermédiaire BDP-OiPr Structure : C18H32O6P2 Masse molaire : 406, pp.40-41

, Masse obtenue : 324 mg Rendement : 63,6 % Pureté : > 99 % Aspect physique : Solide marron

L. Dibromobenzène, le dppf (110 mg, 0,20 mmol, 0,1 eq) et le KOAc (40 mg, 0,40 mmol, 0,2 eq) ont été pesés dans un ballon bicol de 50 mL. Ensuite, le ballon a été inerté par trois cycles de vide-azote. Le mélange a été suspendu dans 16 mL de THF à 68 °C. Après 15 minutes, la di-isopropyl phosphite a été ajoutée et le mélange a été agité à 68 °c pendant une nuit. Une fois la réaction complète, le THF, l'amine et la di-isopropyl phosphite ont été éliminés sous vide à 40°C, le palladium (23 mg, 0,10 mmol, 0,05 eq)

/. Acoet and . Heptane, Après séchage sous vide poussé un solide marron a été obtenu puis analysé en RMN 1H et 31 P dans le CDCl3 ainsi que par ESI-MS dans le méthanol. 1H RMN (400 MHz, DMSO-d6) ? 7,92 -7,80 (m, 4H), vol.4

, MS (mode positif) 835 (2M + Na + )

, 1H RMN (400 MHz, DMSO-d6)

, 97 (s, 2H), ,98 (m, 4H), vol.12, pp.42-49

, 13C RMN (101 MHz, DMSO-d6)

, Synthèse de l'intermédiaire 4,4'-dibromo-3-nitro-1,1'-biphenyl Structure : C12H7Br2NO2 Masse molaire : 357, pp.0-1

, Masse obtenue : 4,48 g Rendement : 80 % Pureté : > 99 % Aspect physique

, Dans un bécher ont été mélangés 5 mL d'eau oxygénée et 10 mL d'acide sulfurique, puis le mélange a été transvasé dans l'ampoule à brome. La solution a été ajoutée au goutte à goutte après quoi, le milieu réactionnel a été agité pendant une heure à 110 °C

, 1H RMN (400 MHz, DMSO-D6)

D. and J. =. , Hz, 1H), vol.8, p.99

, Synthèse de l'intermédiaire 4,4'-dibromo-3-amine-1,1'-biphenyl Structure : C14H9Br2N Masse molaire : 327, pp.2-3

, Masse obtenue : 2,1 g Rendement : 100 % Pureté : > 99 % Aspect physique

, 6 mmol) a été suspendu dans 26 ml d'éthanol absolu. Après 5 minutes d'agitation, l'acide chlorhydrique (6 mL, 76 mmol, 12 eq), puis l'étain sous forme de petite portion (1,5 g, 13 mmol, 2 eq) ont été ajoutés. La suspension obtenue a été agitée une nuit à reflux (80 °C)

, mL, 3,6 mmol, 10 eq) a été ajoutée à la suspension jaune et l'ensemble a été agité à 50°C pendant une heure. Ensuite, les solvants volatils ont été concentrés sous vide jusqu'à l'obtention d'un solide grisâtre. Le solide obtenu a été repris dans 10 mL d'eau et la suspension a été agitée à 50°C jusqu'à la solubilisation complète du solide. La solution grise obtenue a été acidifiée avec 55 mL d'HCl à 37 %. Après une heure d'agitation à 50°C, le mélange a été ramené à température ambiante puis la suspension a été lavée plusieurs fois avec 10 mL d'eau jusqu'à ce que le pH de la solution de lavage soit supérieur à 5. Le protocole de lavage a été effectué tel que ; suspension dans le solvant, agitation sous ultrason pendant 5 minutes puis centrifugation à 4000 rpm pendant 5 minutes. Enfin, le solide blanc a été lavé (même protocole) trois fois avec 10 mL de méthanol, puis séché sous vide pour donner 164 mg de poudre blanche, L'intermédiaire réactionnel TPDCOMe-DEAP (233 mg, 0,4 mmol, 1 eq) a été pesé dans un ballon bicol de 25 mL puis suspendu dans 4mL de THF. Après 10 minutes d'agitation à 50°C, la solution de NaOH à 1 M dans l'eau

, 1H RMN (400 MHz, DMSO-D6)

, ,98 (m, 5H), vol.9, p.51

, 31P RMN (162 MHz, DMSO-D6) ? 18,08 (s), vol.20, p.42

, 13C RMN (101 MHz, DMSO-D6)

T. Synthèse-du-ligand and . Structure, C26H2608NP Masse molaire : 511, pp.47-48

, Masse obtenue : 24 mg Rendement : 10 % Pureté : > 98 % Aspect physique : Poudre blanche

, Après 10 minutes d'agitation à 25°C, la solution de NaOH à 1 M dans l'eau (1mL, 1 mmol, 2,1 eq) a été ajoutée à la suspension blanche et l'ensemble a été agité à 25°C pendant une quatre jours. Ensuite, les solvants volatils ont été concentrés sous vide poussé jusqu'à l'obtention du brut réactionnel qui a ensuite été purifié par injection directe dans le, L'intermédiaire réactionnel TPDCOMe-DEAP (282 mg, 0,5 mmol, 1 eq) a été pesé dans un ballon bicol de 25 mL puis suspendu dans 6 mL de MeOH

?. Le, été placé dans un tube Eppendorf® de 5 mL puis mis en suspension dans 5 mL de solution de désextraction par agitation sous ultrasons. les solutions de désextraction sont composées de : H2SO4 à pH 2, ou pH 5 avec 1 M en ions sulfates

, ? Le filtrat a été récupéré et dilué dans de l'acide nitrique 0,3 M avant analyse ICP-AES. Le facteur de dilution est de 10 pour l'ensemble des tests

M. Le, obtenu sur le papier filtre a ensuite été minéralisé celons le protocole suivant

, Protocole de minéralisation pour analyse ICP ? Le papier filtre contenant le MOF a été placé dans un tube Eppendorf® de 5 mL puis mis en suspension dans 4 mL d'eau oxygénée par agitation sous ultrasons

, Après quoi le papier filtre a été enlevé puis la suspension transvasée dans un réacteur micro-onde en téflon

, ? 4 mL d'acide nitrique (65 %) ultrapure ont été ajoutés et le réacteur a été placé dans le four micro-onde

, ? La suspension a été minéralisée avec le protocole suivant : 1. Rampe de chauffage de 25°C à 200°C pendant 30 minutes 2. Chauffage isotherme à 200°C pendant une heure

, Rampe de refroidissement de 30 minutes jusqu'à 40 °C

, ? La suspension obtenue a été diluée dans 20 mL puis centrifugée (4000 rpm, vol.5

, ? La solution limpide a ensuite été diluée par un facteur, vol.8

, Les analyses ESI-HRMS des ligands organiques ont été réalisées par le laboratoire de mesure physique de Montpellier sur un appareil UPLC-IMS-MS Haute résolution (Synapt G2-S). Les molécules ont été

, Spectrométrie d'émission atomique à plasma à couplage inductif (ICP-AES)

, La détermination des concentrations atomiques des ions présents dans les solutions a été effectuée par ICP-AES sur un spectromètre Perkin Elmer Optima 8300DV

, mg.L -1 . Ces étalons ont été préparés par dilution dans l'acide nitrique 0,3 M et de solutions élémentaires certifiées à 1000 mg·L -1 . La détermination des concentrations pour l'uranium a été réalisée à partir des bandes d'émissions à 367,007, L'étalonnage des éléments uranium, fer et molybdène a été réalisé à partir d'une gamme de concentration de 0 à 20 mg·L -1 à partir de huit tubes concentrés à : 0, vol.10, p.203, 2005.

T. Marie, Nucléaire, hydraulique, éolien : la répartition de la production d'électricité en France Le Figaro, 2016.

C. Poinssot, S. Bourg, N. Ouvrier, N. Combernoux, C. Rostaing et al., Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles, vol.69, pp.199-211, 2014.
URL : https://hal.archives-ouvertes.fr/cea-02434563

. Oecd/nea and . Iaea, Resources, Production and Demand, 2018.

S. Gabriel, A. Baschwitz, G. Mathonnière, T. Eleouet, and F. Fizaine, A critical assessment of global uranium resources, including uranium in phosphate rocks, and the possible impact of uranium shortages on nuclear power fleets, Annals of Nuclear Energy, vol.58, pp.213-220, 2013.
URL : https://hal.archives-ouvertes.fr/halshs-01227916

T. Yanagi, Chemical Composition of Continental Crust and the Primitive Mantle, Arc Volcano of Japan: Generation of Continental Crust from the Mantle, pp.9-17, 2011.

D. Beltrami, G. Cote, H. Mokhtari, B. Courtaud, B. A. Moyer et al., Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes, Chem. Rev, vol.114, issue.24, pp.12002-12023, 2014.

U. Cameco and . Price,

C. W. Abney, R. T. Mayes, T. Saito, and S. Dai, Materials for the Recovery of Uranium from Seawater, Chemical Reviews, vol.117, issue.23, pp.13935-14013, 2017.

G. R. Choppin, Covalency in f-element bonds, Journal of Alloys and Compounds, vol.344, issue.1, pp.55-59, 2002.

R. G. Pearson, Hard and Soft Acids and Bases, Journal of the American Chemical Society, vol.85, issue.22, pp.3533-3539, 1963.

G. Untereiner, Etude de l'impact de bactéries environnementales sur la spéculation de l'uranium en vue de processus de bioremédiation, 2008.

S. R. Taylor and S. M. Mclennan, The geochemical evolution of the continental crust, Reviews of Geophysics, vol.33, issue.2, pp.241-265, 1995.

, World Nuclear Association, World Uranium Mining Production

, Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety, and Regulatory Aspects of Uranium Mining and Processing in Virginia, 2012.

, Standard Specification for Uranium Ore Concentrate, ASTM.C967-13, 2013.

J. R. Kumar, J. Kim, J. Lee, and H. Yoon, A brief review on solvent extraction of uranium from acidic solutions, Sep. Purif. Rev, vol.40, issue.2, pp.77-125, 2011.

J. Leybros and P. Frémeaux, Extraction solide-liquide. Aspects théoriques. Techniques de l'ingénieur Opérations unitaires : extractions fluide/fluide et fluide/solide, 1990.

M. Peacock, S. Mcdougall, P. Boshoff, D. Butcher, M. Ford et al., Paladin Energy Ltd -Nano-filtration technology for reagent recovery, ALTA 2016 Uranium-REE Conference: 12th Annual Uranium Event, 2016.

G. Cote, Extraction liquide-liquide Présentation générale. Techniques de l'ingénieur Opérations unitaires : extractions fluide/fluide et fluide/solide, 2017.

M. Bourgeois, Retraitement du combustible Procédés, ingénierie et usines. Techniques de l'ingénieur Cycle du combustible nucléaire : combustibles usés et déchets radioactifs, 2000.

N. Descouls, J. Morisseau, and C. Musikas, Process for the extraction of uranium (VI) and/or plutonium (IV) present in an aqueous solution by means of N,N-dialkylamides. US4772429A, 1985.

A. Rout, K. A. Venkatesan, T. G. Srinivasan, and P. R. Vasudeva-rao, Liquid-liquid extraction of Pu(IV), U(VI) and Am(III) using malonamide in room temperature ionic liquid as diluent, Journal of Hazardous Materials, pp.62-67, 2012.

E. P. Horwltz, K. A. Martin, H. Diamond, and L. Kaplan, Extraction of Am from nitric acid by carbamoyl-phosphoryl extractants: The influence of substituents on the selectivity of Am over Fe and selected fission products, Solvent Extraction and Ion Exchange, vol.1986, issue.3, pp.449-494

D. Beltrami, G. Cote, H. Mokhtari, B. Courtaud, and A. Chagnes, Modeling of the extraction of uranium (VI) from concentrated phosphoric acid by synergistic mixtures of bis-(2-ethylhexyl)-phosphoric acid and tri-n-octylphosphine oxide, Hydrometallurgy, vol.2012, pp.118-125

R. K. Singh and P. M. Dhadke, Zr(IV) and Th(IV) from perchlorate media, by PC-88A, Journal of Radioanalytical and Nuclear Chemistry, vol.254, issue.3, pp.607-612, 2002.

N. A. Yakubu and A. W. Dudeney, A study of uranium solvent extraction equilibria with Alamine 336 in kerosene, Hydrometallurgy, vol.18, issue.1, pp.93-104, 1987.

C. F. Coleman, K. B. Brown, J. G. Moore, and D. J. Crouse, Solvent Extraction with Alkyl Amines. Industrial & Engineering Chemistry, vol.50, pp.1756-1762, 1958.

C. Woo, W. F. Wagner, and D. E. Sands, Synergistic solvent extraction of rare earths by mixtures of thenoyltrifluoroacetone and acetylacetone, Journal of Inorganic and Nuclear Chemistry, vol.33, issue.8, pp.2661-2666, 1971.

S. A. El-reefy, N. S. Awwad, and H. F. Aly, Liquid-Liquid Extraction of Uranium from Phosphoric Acid by HDEHP-CYANEX-921 Mixture, Journal of Chemical Technology & Biotechnology, vol.69, issue.2, pp.271-275, 1997.

G. Arrachart, N. Aychet, G. Bernier, F. Burdet, A. Leydier et al., Nouveaux composés bifonctionnels utiles comme ligands de l'uranium(vi), leurs procédés de synthèse et leurs utilisations. WO2013EP59352, 2013.

O. Pecheur, D. Guillaumont, S. Dourdain, L. Berthon, T. Raphaël et al., Uranium Extraction by a Bifunctional Amido-Phosphonic Acid: Coordination Structure and Aggregation, vol.34, pp.1-14, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01999402

T. Vercouter, P. Vitorge, B. Amekraz, and C. Moulin, Stoichiometries and Thermodynamic Stabilities for Aqueous Sulfate Complexes of U(VI), vol.47, pp.2180-2189, 2008.

A. Dartiguelongue, E. Provost, A. Chagnes, G. Cote, and W. Fürst, Experimental Determination and Modeling of the Speciation of Uranium(VI) in Phosphoric Acid Medium, Solvent Extraction and Ion Exchange, vol.34, issue.3, pp.241-259, 2016.

A. Andrade-eiroa, M. Canle, V. Leroy-cancellieri, and V. Cerdà, Solid-phase extraction of organic compounds: A critical review (Part I), TrAC Trends in Analytical Chemistry, vol.80, pp.641-654, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01242987

P. Kumar, A. Pournara, K. Kim, V. Bansal, S. Rapti et al., Metal-organic frameworks: Challenges and opportunities for ion-exchange/sorption applications, Progress in Materials Science, vol.86, pp.25-74, 2017.

M. R. Sohrabi, Preconcentration of mercury(II) using a thiol-functionalized metal-organic framework nanocomposite as a sorbent, Microchim. Acta, vol.181, issue.3-4, pp.435-444, 2014.

F. Dardel, Échange d'ions Applications. Techniques de l'ingénieur Opérations unitaires : extractions fluide/fluide et fluide/solide, 2016.

N. Yamamoto, I. Nakakuki, and N. Matubayasi, Free-energy analysis of physisorption on solid-liquid interface with the solution theory in the energy representation, The Journal of Chemical Physics, vol.149, issue.1, p.14504, 2018.

J. T. Amphlett, M. D. Ogden, R. I. Foster, N. Syna, K. Soldenhoff et al., Polyamine functionalised ion exchange resins: Synthesis, characterisation and uranyl uptake, Chemical Engineering Journal, vol.334, pp.1361-1370, 2018.

A. Charlot, T. Dumas, P. L. Solari, F. Cuer, and A. Grandjean, A Spectroscopic Study of Uranium and Molybdenum Complexation within the Pore Channels of Hybrid Mesoporous Silica, European Journal of Inorganic Chemistry, vol.2017, issue.3, pp.563-573, 2017.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.

K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti et al., Reporting Physisorption Data for Gas/Solid Systems, Handbook of Heterogeneous Catalysis, pp.1217-1230, 2008.

B. Yilmaz and U. Müller, Catalytic Applications of Zeolites in Chemical Industry, Topics in Catalysis, vol.52, issue.6, pp.888-895, 2009.

R. P. Townsend, E. N. Coker, H. Van-bekkum, and E. Flanigen, Chapter 11 Ion exchange in zeolites, Studies in Surface Science and Catalysis, vol.137, pp.467-524, 2001.

M. Hong, L. Yu, Y. Wang, J. Zhang, Z. Chen et al., Heavy metal adsorption with zeolites: The role of hierarchical pore architecture, Chemical Engineering Journal, vol.359, pp.363-372, 2019.

J. Weitkamp, Zeolites and catalysis, Solid State Ionics, vol.131, issue.1, pp.175-188, 2000.

L. M. Camacho, S. Deng, and R. R. Parra, Uranium removal from groundwater by natural clinoptilolite zeolite: Effects of pH and initial feed concentration, Journal of Hazardous Materials, vol.175, issue.1, pp.393-398, 2010.

, Application of Ion Exchange Processes for Treatment of Radioactive Waste and Management of Spent Ion Exchangers, Technical Reports Series, vol.408, 2002.

A. Mellah, S. Chegrouche, and M. Barkat, The removal of uranium(VI) from aqueous solutions onto activated carbon: Kinetic and thermodynamic investigations, Journal of Colloid and Interface Science, vol.296, issue.2, pp.434-441, 2006.

N. Najib and C. Christodoulatos, Removal of arsenic using functionalized cellulose nanofibrils from aqueous solutions, Journal of Hazardous Materials, vol.367, pp.256-266, 2019.

S. Sayed and A. Jardine, Chitosan Derivatives as Important Biorefinery Intermediates. Quaternary Tetraalkylammonium Chitosan Derivatives Utilized in Anion Exchange Chromatography for Perchlorate Removal, vol.16, pp.9064-9077, 2015.

, Uranium Extraction Technology, Technical Reports Series, vol.359, 1993.

M. Solgy, M. Taghizadeh, and D. Ghoddocynejad, Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: Equilibrium, kinetics and thermodynamics study, Annals of Nuclear Energy, vol.75, pp.132-138, 2015.

A. Rahmati, A. Ghaemi, and M. Samadfam, Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin, Annals of Nuclear Energy, vol.39, issue.1, pp.42-48, 2012.

C. W. Abney, S. Das, R. T. Mayes, L. J. Kuo, J. Wood et al., A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid copolymer, Phys. Chem. Chem. Phys, vol.2016, issue.34, pp.23462-23468

B. Satilmis, T. Is?k, M. M. Demir, and T. Uyar, Amidoxime functionalized Polymers of Intrinsic Microporosity (PIM-1) electrospun ultrafine fibers for rapid removal of uranyl ions from water, Appl. Surf. Sci, vol.2019, pp.648-657

F. Chi, S. Zhang, J. Wen, J. Xiong, and S. Hu, Functional polymer brushes for highly efficient extraction of uranium from seawater, Journal of Materials Science, vol.54, issue.4, pp.3572-3585, 2019.

J. Park, Y. J. Park, and C. Jun, Post-grafting of silica surfaces with pre-functionalized organosilanes: new synthetic equivalents of conventional trialkoxysilanes, Chemical Communications, vol.47, issue.17, pp.4860-4871, 2011.

A. Feinle, F. Leichtfried, S. Straßer, and N. Hüsing, Carboxylic acid-functionalized porous silica particles by a co-condensation approach, Journal of Sol-Gel Science and Technology, vol.81, issue.1, pp.138-146, 2017.

S. El-mourabit, M. Guillot, G. Toquer, J. Cambedouzou, F. Goettmann et al., Stability of mesoporous silica under acidic conditions, RSC Advances, vol.2012, issue.29, pp.10916-10924

M. N. Kouraim, M. E. Sheta, and M. M. Elaal, Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402, European Journal of Chemistry, vol.5, issue.3, pp.446-450, 2014.

S. Kitagawa, R. Kitaura, and S. Noro, Functional porous coordination polymers, Angew. Chem., Int. Ed, vol.43, issue.18, pp.2334-2375, 2004.

B. F. Hoskins and R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, Journal of the American Chemical Society, vol.111, issue.15, pp.5962-5964, 1989.

S. L. James, Metal-organic frameworks, Chemical Society Reviews, vol.32, issue.5, pp.276-288, 2003.

O. M. Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, vol.378, issue.6558, pp.703-706, 1995.

O. M. Yaghi, M. Suzuki, H. Deng, and L. Wang, Preparation of transition metal organic frameworks comprising a plurality of sbus with different metal ions and/or a plurality of organic linking ligands with different functional groups, 2015.

S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu et al., Transition-Metal (Fe, Co, Ni) Based Metal-Organic Frameworks for Electrochemical Energy Storage, Advanced Energy Materials, vol.7, issue.18, p.1602733, 2017.

P. Cheng, Lanthanide Metal-Organic Frameworks, 2015.

T. Loiseau, I. Mihalcea, N. Henry, and C. Volkringer, The crystal chemistry of uranium carboxylates, Coordination Chemistry Reviews, pp.69-109, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01780303

D. Banerjee, C. M. Simon, A. M. Plonka, R. K. Motkuri, J. Liu et al., Metal-organic framework with optimally selective xenon adsorption and separation, Nat. Commun, 2016.

C. Janiak, J. K. Vieth, and . Mofs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs), New Journal of Chemistry, vol.34, issue.11, pp.2366-2388, 2010.

J. L. Rowsell and O. M. Yaghi, Metal-organic frameworks: a new class of porous materials, Microporous and Mesoporous Materials, vol.73, issue.1-2, pp.3-14, 2004.

V. V. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti, Metal-organic frameworks: structure, properties, methods of synthesis and characterization, Russ. Chem. Rev, vol.85, issue.3, pp.280-307, 2016.

M. Feng, P. Zhang, H. Zhou, and V. K. Sharma, Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: A review, Chemosphere, vol.209, pp.783-800, 2018.

N. C. Burtch, H. Jasuja, and K. S. Walton, Water Stability and Adsorption in Metal-Organic Frameworks, Chem. Rev, vol.114, issue.20, pp.10575-10612, 2014.

X. Zhao, Y. Wang, D. Li, X. Bu, and P. Feng, Metal-Organic Frameworks for Separation, Advanced Materials, vol.30, issue.37, p.1705189, 2018.

D. Farrusseng, Metal-Organic Frameworks: Applications from Catalysis to Gas Storage, 2011.

D. Yang and B. C. Gates, Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research, ACS Catalysis, vol.2019, issue.3, pp.1779-1798

U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-arndt et al., Metal-organic frameworks-prospective industrial applications, Journal of Materials Chemistry, vol.16, issue.7, pp.626-636, 2006.

N. Stock and S. Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, Chem. Rev, vol.2012, issue.2, pp.933-969

A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz et al., Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals, Chem. -Eur. J, vol.17, issue.24, pp.6643-6651, 2011.

F. Ke, L. Qiu, Y. Yuan, F. Peng, X. Jiang et al., Thiolfunctionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water, Journal of Hazardous Materials, vol.196, pp.36-43, 2011.

B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light, 2002.

S. H. Jhung and ;. Lee,

J. Chang, Microwave Synthesis of a Nanoporous Hybrid Material, Chromium Trimesate, Bulletin of the Korean Chemical Society, vol.26, issue.6, pp.880-881, 2005.

S. H. Jhung, J. Lee, J. W. Yoon, C. Serre, G. Férey et al., Microwave Synthesis of Chromium Terephthalate MIL-101 and Its Benzene Sorption Ability, Advanced Materials, vol.19, issue.1, pp.121-124, 2007.

K. Akhbari, A. Morsali, and P. Retailleau, Effect of two sonochemical procedures on achieving to different morphologies of lead(II) coordination polymer nano-structures, Ultrasonics Sonochemistry, vol.20, issue.6, pp.1428-1435, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00852773

L. Qiu, Z. Li, Y. Wu, W. Wang, T. Xu et al., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines, Chemical Communications, issue.31, pp.3642-3644, 2008.

N. A. Khan, M. M. Haque, and S. H. Jhung, Accelerated Syntheses of Porous Isostructural Lanthanide-Benzenetricarboxylates (Ln-BTC) Under Ultrasound at Room Temperature, European Journal of Inorganic Chemistry, issue.31, pp.4975-4981, 2010.

Z. Li, L. Qiu, T. Xu, Y. Wu, W. Wang et al., Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method, Materials Letters, vol.63, issue.1, pp.78-80, 2009.

V. V. Boldyrev and K. Tká?ová, Mechanochemistry of Solids: Past, Present, and Prospects, Journal of Materials Synthesis and Processing, vol.8, issue.3, pp.121-132, 2000.

A. Pichon, A. Lazuen-garay, and S. L. James, Solvent-free synthesis of a microporous metal-organic framework, CrystEngComm, vol.8, issue.3, pp.211-214, 2006.

W. Yuan, T. Fri??i?, D. Apperley, and S. L. James, High Reactivity of Metal-Organic Frameworks under Grinding Conditions: Parallels with Organic Molecular Materials, Angewandte Chemie International Edition, issue.23, pp.3916-3919, 2010.

A. Pichon and S. L. James, An array-based study of reactivity under solvent-free mechanochemical conditions-insights and trends, CrystEngComm, vol.10, issue.12, pp.1839-1847, 2008.

U. Mueller and ;. Puetter,

M. Hesse,

H. Wessel, Method for electrochemical production of a crystalline porous metal organic skeleton material, 2005.

I. Stassen, M. Styles, T. Van-assche, N. Campagnol, J. Fransaer et al., Electrochemical Film Deposition of the Zirconium Metal-Organic Framework UiO-66 and Application in a Miniaturized Sorbent Trap, Chemistry of Materials, vol.27, issue.5, pp.1801-1807, 2015.

Y. Sun and H. Zhou, Recent progress in the synthesis of metal-organic frameworks, Science and Technology of Advanced Materials, vol.16, issue.5, p.54202, 2015.

A. Martinez-joaristi, J. Juan-alcañiz, P. Serra-crespo, F. Kapteijn, and J. Gascon, Electrochemical Synthesis of Some Archetypical Zn2+, Cu2+, and Al3+ Metal Organic Frameworks, Crystal Growth & Design, vol.2012, issue.7, pp.3489-3498

A. U. Czaja, N. Trukhan, and U. Müller, Industrial applications of metal-organic frameworks, Chemical Society Reviews, vol.38, issue.5, pp.1284-1293, 2009.

I. Richter, M. Schubert, and U. Mueller, Porous Metal Organic Framework based on Pyrroles and Pyridinones. WO2007131955, 2007.

M. Carboni, C. W. Abney, S. Liu, and W. Lin, Highly porous and stable metal-organic frameworks for uranium extraction, Chem. Sci, vol.2013, issue.4, pp.2396-2402

W. Yang, Z. Bai, W. Shi, L. Yuan, T. Tian et al., MOF-76: from a luminescent probe to highly efficient UVI sorption material, Chem. Commun, issue.88, pp.10415-10417, 2013.

Y. Feng, H. Jiang, S. Li, J. Wang, X. Jing et al., Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium, Colloids Surf., A, vol.431, pp.87-92, 2013.

L. L. Song, C. Chen, F. Luo, S. Y. Huang, L. L. Wang et al., Isoreticular MOFs functionalized in the pore wall by different organic groups for high-performance removal of uranyl ions, J. Radioanal. Nucl. Chem, issue.1, pp.317-327, 2016.

B. Luo, L. Yuan, Z. Chai, W. Shi, and Q. Tang, U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative, Journal of Radioanalytical and Nuclear Chemistry, vol.307, issue.1, pp.269-276, 2015.

T. Zheng, Z. Yang, D. Gui, Z. Liu, X. Wang et al., Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system, Nat Commun, vol.8, p.15369, 2017.

Y. Wu, H. Pang, W. Yao, X. Wang, S. Yu et al., Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(VI): batch experiments and spectroscopy study, Science Bulletin, vol.63, issue.13, pp.831-839, 2018.

T. L. Walker, Schoepite, a New Uranium Mineral from Kasolo, Belgian Congo1, American Mineralogist, vol.8, issue.4, pp.67-69, 1923.

Z. Bai, L. Yuan, L. Zhu, Z. Liu, S. Chu et al., Introduction of amino groups into acid-resistant MOFs for enhanced U(vi) sorption, J. Mater. Chem. A, vol.2015, issue.2, pp.525-534

L. L. Wang, F. Luo, L. L. Dang, J. Q. Li, X. L. Wu et al., Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide-and carboxylfunctionalized metal-organic framework, J. Mater. Chem. A, vol.2015, issue.26, pp.13724-13730

J. Zhang, N. Zhang, Y. Fang, W. Deng, J. Zhang et al., Adsorption of Uranyl ions on Amine-functionalization of MIL-101(Cr) Nanoparticles by a Facile Coordination-based Post-synthetic strategy and X-ray, Absorption Spectroscopy Studies. Sci Rep, vol.5, p.13514, 2015.

X. Min, W. Yang, Y. Hui, C. Gao, S. Dang et al., Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient UO22+ adsorption and selective UO22+/Ln3+ separation, Chemical Communications, vol.53, issue.30, pp.4199-4202, 2017.

L. Zhang, L. L. Wang, L. L. Gong, X. F. Feng, M. B. Luo et al., Coumarin-modified microporousmesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of UVI ions, Journal of Hazardous Materials, vol.311, pp.30-36, 2016.

S. J. Liu, M. B. Luo, J. Q. Li, F. Luo, L. Ke et al., Adsorption equilibrium and kinetics of uranium onto porous azo-metal-organic frameworks, Journal of Radioanalytical and Nuclear Chemistry, vol.310, issue.1, pp.353-362, 2016.

L. Li, W. Ma, S. Shen, H. Huang, Y. Bai et al., A Combined Experimental and Theoretical Study on the Extraction of Uranium by Amino-Derived Metal-Organic Frameworks through Post-Synthetic Strategy, ACS Appl. Mater. Interfaces, vol.8, issue.45, pp.31032-31041, 2016.

J. Q. Li, L. L. Gong, X. F. Feng, L. Zhang, H. Q. Wu et al., Direct extraction of U(VI) from alkaline solution and seawater via anion exchange by metal-organic framework, Chemical Engineering Journal, vol.316, pp.154-159, 2017.

D. Decker, J. Rochette, J. De-clercq, J. Florek, J. Van-der et al., Carbamoylmethylphosphine Oxide-Functionalized MIL-101(Cr) as Highly Selective Uranium Adsorbent, Anal. Chem, 2017.

B. Han, E. Zhang, and G. Cheng, Facile Preparation of Graphene Oxide-MIL-101(Fe) Composite for the Efficient Capture of Uranium, Applied Sciences, vol.8, issue.11, p.2270, 2018.

J. H. Li, L. X. Yang, J. Q. Li, W. H. Yin, Y. Tao et al., Anchoring nZVI on metal-organic framework for removal of uranium(?) from aqueous solution, Journal of Solid State Chemistry, vol.269, pp.16-23, 2019.

J. Liu, X. -m.;-yin, and T. Liu, Amidoxime-functionalized metal-organic frameworks UiO-66 for U(VI) adsorption from aqueous solution, Journal of the Taiwan Institute of Chemical Engineers, vol.95, pp.416-423, 2019.

R. Liu, Z. Wang, Q. Liu, F. Luo, and Y. Wang, A Zinc MOF with Carboxylate Oxygen-Functionalized Pore Channels for Uranium(VI) Sorption, European Journal of Inorganic Chemistry, issue.5, pp.735-739, 2019.

H. Zhang, J. Xue, N. Hu, J. Sun, D. Ding et al., Selective removal of U(VI) from low concentration wastewater by functionalized HKUST-1@H3PW12O40, J. Radioanal. Nucl. Chem, vol.308, issue.3, pp.865-875, 2016.

A. A. Alqadami, M. Naushad, Z. A. Alothman, and A. A. Ghfar, Novel Metal-Organic Framework (MOF) Based Composite Material for the Sequestration of U(VI) and Th(IV) Metal Ions from Aqueous Environment, ACS Applied Materials & Interfaces, vol.2017, issue.41, pp.36026-36037

J. Zhu, H. Zhang, Q. Liu, C. Wang, Z. Sun et al., Metal-organic frameworks (MIL-68) decorated graphene oxide for highly efficient enrichment of uranium, Journal of the Taiwan Institute of Chemical Engineers, vol.99, pp.45-52, 2019.

Y. Sun, D. Shao, C. Chen, S. Yang, and X. Wang, Highly Efficient Enrichment of Radionuclides on Graphene Oxide-Supported Polyaniline, Environmental Science & Technology, vol.47, issue.17, pp.9904-9910, 2013.

W. Song, X. Wang, Q. Wang, D. Shao, and X. Wang, Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides, Physical Chemistry Chemical Physics, vol.17, issue.1, pp.398-406, 2015.

J. Hafizovic-cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability, J. Am. Chem. Soc, vol.130, issue.42, pp.13850-13851, 2008.

G. Bai, H. W. Roesky, J. Li, T. Labahn, F. Cimpoesu et al., Synthesis, Structural Characterization, and Theoretical Treatment of an Unusual Organozirconium Hydroxide with the [Zr6(?4-O)(?-O)4(?-OH)8] Core, Organometallics, vol.22, issue.15, pp.3034-3038, 2003.

M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye et al., Synthesis and Stability of Tagged UiO-66 Zr-MOFs, Chemistry of Materials, vol.22, issue.24, pp.6632-6640, 2010.

Y. Bai, Y. Dou, L. Xie, W. Rutledge, J. Li et al., Zr-based metal-organic frameworks: design, synthesis, structure, and applications, Chemical Society Reviews, vol.45, issue.8, pp.2327-2367, 2016.

T. C. Wang, W. Bury, D. A. Gómez-gualdrón, N. A. Vermeulen, J. E. Mondloch et al., Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory, Journal of the American Chemical Society, vol.137, issue.10, pp.3585-3591, 2015.

F. Ragon, B. Campo, Q. Yang, C. Martineau, A. D. Wiersum et al., Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties, J. Mater. Chem. A, vol.2015, issue.7, pp.3294-3309
URL : https://hal.archives-ouvertes.fr/hal-01077026

Y. Li, S. Yang, Q. Li, J. Ma, S. Zhang et al., UiO-68-ol NMOF-Based Fluorescent Sensor for Selective Detection of HClO and Its Application in Bioimaging, Inorganic Chemistry, vol.56, issue.21, pp.13241-13248, 2017.

N. C. Thacker, Z. Lin, T. Zhang, J. C. Gilhula, C. W. Abney et al., Robust and Porous ?-Diketiminate-Functionalized Metal-Organic Frameworks for Earth-Abundant-Metal-Catalyzed C-H Amination and Hydrogenation, Journal of the American Chemical Society, vol.138, issue.10, pp.3501-3509, 2016.

C. Kutzscher, G. Nickerl, I. Senkovska, V. Bon, and S. Kaskel, Proline Functionalized UiO-67 and UiO-68 Type Metal-Organic Frameworks Showing Reversed Diastereoselectivity in Aldol Addition Reactions, Chemistry of Materials, vol.28, issue.8, pp.2573-2580, 2016.

M. Kaposi, M. Cokoja, C. H. Hutterer, S. A. Hauser, T. Kaposi et al., Immobilisation of a molecular epoxidation catalyst on UiO-66 and -67: the effect of pore size on catalyst activity and recycling, Dalton Trans, vol.44, issue.36, pp.15976-15983, 2015.

M. J. Katz, Z. J. Brown, Y. J. Colon, P. W. Siu, K. A. Scheidt et al., A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun, issue.82, pp.9449-9451, 2013.

R. Navarro-amador, L. Cirre, M. Carboni, and D. Meyer, BTEX removal from aqueous solution with hydrophobic Zr metal organic frameworks, Journal of Environmental Management, vol.214, pp.17-22, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01997843

B. Wang, X. Lv, D. Feng, L. Xie, J. Zhang et al., Highly Stable Zr(IV)-Based Metal-Organic Frameworks for the Detection and Removal of Antibiotics and Organic Explosives in Water, Journal of the American Chemical Society, vol.138, issue.19, pp.6204-6216, 2016.

P. L. Brown, E. Curti, B. Grambow, and C. Ekberg, Chemical thermodynamics of zirconium, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00077121

T. W. Muesmann, M. S. Wickleder, and J. Christoffers, Preparation of linear aromatic disulfonic acids: new linker molecules for metal-organic frameworks, Synthesis, issue.17, pp.2775-2780, 2011.

Z. Hu, I. Castano, S. Wang, Y. Wang, Y. Peng et al., Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal-Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance, Crystal Growth & Design, vol.16, issue.4, pp.2295-2301, 2016.

C. Ardila-suárez, J. Rodríguez-pereira, V. G. Baldovino-medrano, and G. E. Ramírez-caballero, An analysis of the effect of zirconium precursors of MOF-808 on its thermal stability, and structural and surface properties, CrystEngComm, vol.2019, issue.9, pp.1407-1415

G. Yücesan, Y. Zorlu, M. Stricker, and J. Beckmann, Metal-organic solids derived from arylphosphonic acids, Coordination Chemistry Reviews, vol.369, pp.105-122, 2018.

F. Costantino, A. Donnadio, and M. Casciola, Survey on the Phase Transitions and Their Effect on the Ion-Exchange and on the Proton-Conduction Properties of a Flexible and Robust Zr Phosphonate Coordination Polymer, Inorganic Chemistry, vol.51, issue.12, pp.6992-7000, 2012.

M. Taddei, F. Costantino, and R. Vivani, Synthesis and Crystal Structure from X-ray Powder Diffraction Data of Two Zirconium Diphosphonates Containing Piperazine Groups, Inorg. Chem, issue.20, pp.9664-9670, 2010.

M. Taddei, F. Costantino, F. Marmottini, A. Comotti, P. Sozzani et al., The first route to highly stable crystalline microporous zirconium phosphonate metal-organic frameworks, Chem. Commun, vol.50, issue.94, pp.14831-14834, 2014.

C. Gao, J. Ai, H. Tian, D. Wu, and Z. Sun, An ultrastable zirconium-phosphonate framework as bifunctional catalyst for highly active CO2 chemical transformation, Chemical Communications, vol.53, issue.7, pp.1293-1296, 2017.

K. J. Gagnon, H. P. Perry, and A. Clearfield, Conventional and Unconventional Metal-Organic Frameworks Based on Phosphonate Ligands: MOFs and UMOFs, Chemical Reviews, vol.112, issue.2, pp.1034-1054, 2012.

S. Gao, L. Zhao, P. Zhao, Y. Huang, and H. Zhao, Synthesis, structure and characterization of a new highly porous zirconium-based metal-organic frameworks, Inorganica Chimica Acta, vol.480, pp.173-176, 2018.

C. J. Salomon and E. Breuer, Efficient and selective dealkylation of phosphonate diisopropyl esters using Me3SiBr, Tetrahedron Lett, issue.37, pp.6759-60, 1995.

R. Silbernagel, C. H. Martin, and A. Clearfield, Zirconium(IV) Phosphonate-Phosphates as Efficient Ion-Exchange Materials, Inorg. Chem, vol.55, issue.4, pp.1651-1656, 2016.

A. Clearfield, Flexible MOFs under stress: pressure and temperature, Dalton Trans, vol.45, issue.10, pp.4100-4112, 2016.

V. Luca, J. J. Tejada, D. Vega, G. Arrachart, and C. Rey, Zirconium(IV)-Benzene Phosphonate Coordination Polymers: Lanthanide and Actinide Extraction and Thermal Properties, Inorg. Chem, issue.16, pp.7928-7943, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02062523

N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O'keeffe et al., Rod Packings and Metal?Organic Frameworks Constructed from Rod-Shaped Secondary Building Units, Journal of the American Chemical Society, vol.127, issue.5, pp.1504-1518, 2005.

A. D. Firmino, R. F. Mendes, D. Ananias, S. M. Vilela, L. D. Carlos et al., Microwave Synthesis of a photoluminescent Metal-Organic Framework based on a rigid tetraphosphonate linker, Inorganica Chimica Acta, vol.455, pp.584-594, 2017.

G. K. Shimizu, R. Vaidhyanathan, and J. M. Taylor, Phosphonate and sulfonate metal organic frameworks, Chem. Soc. Rev, vol.38, issue.5, pp.1430-1449, 2009.

K. Cai, N. Zhao, N. Zhang, F. Sun, Q. Zhao et al., A Homochiral Multifunctional Metal-Organic Framework with Rod-Shaped Secondary Building Units, vol.7, p.88, 2017.

C. Pagis, M. Ferbinteanu, G. Rothenberg, and S. Tanase, Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications, ACS Catalysis, vol.6, issue.9, pp.6063-6072, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382700

L. Li, J. Zou, S. You, H. Cui, G. Zeng et al., Tuning the luminescence of two 3d-4f metal-organic frameworks for the fast response and highly selective detection of aniline, Dalton Transactions, vol.46, issue.47, pp.16432-16438, 2017.

Z. Amghouz, J. R. Garcia, S. Garcia-granda, A. Clearfield, J. Rodriguez-fernandez et al., Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization, J. Alloys Compd, vol.536, pp.499-503, 2012.

X. Wang, Y. Wang, M. A. Silver, D. Gui, Z. Bai et al., Superprotonic conduction through one-dimensional ordered alkali metal ion chains in a lanthanide-organic framework, Chemical Communications, vol.54, issue.35, pp.4429-4432, 2018.

X. Liang, F. Zhang, H. Zhao, W. Ye, L. Long et al., A proton-conducting lanthanide metalorganic framework integrated with a dielectric anomaly and second-order nonlinear optical effect, Chemical Communications, vol.50, issue.49, pp.6513-6516, 2014.

Y. He, H. Furukawa, C. Wu, M. O'keeffe, R. Krishna et al., Low-energy regeneration and high productivity in a lanthanide-hexacarboxylate framework for high-pressure CO2-CH4-H2 separation, Chemical Communications, vol.49, issue.60, pp.6773-6775, 2013.

H. Jiang, N. Tsumori, and Q. Xu, A Series of (6,6)-Connected Porous Lanthanide-Organic Framework Enantiomers with High Thermostability and Exposed Metal Sites: Scalable Syntheses, Structures, and Sorption Properties, Inorg. Chem, issue.21, pp.10001-10006, 2010.

J. Duan, M. Higuchi, S. Horike, M. L. Foo, K. P. Rao et al., High CO2/CH4 and C2 Hydrocarbons/CH4 Selectivity in a Chemically Robust Porous Coordination Polymer, Advanced Functional Materials, vol.23, issue.28, pp.3525-3530, 2013.

J. Duan, M. Higuchi, R. Krishna, T. Kiyonaga, Y. Tsutsumi et al., High CO2/N2/O2/CO separation in a chemically robust porous coordination polymer with low binding energy, Chem. Sci, vol.2014, issue.2, pp.660-666

W. Mu, X. Huang, R. Zhong, W. Xia, J. Liu et al., Lanthanide contraction effects on the structures, thermostabilities, and CO2 adsorption and separation behaviors of isostructural lanthanide-organic frameworks, CrystEngComm, vol.17, issue.7, pp.1637-1645, 2015.

L. A. Boatner and M. M. Abraham, Electron paramagnetic resonance from actinide elements, Reports on Progress in Physics, vol.41, issue.1, pp.87-155, 1978.

I. Robinson and D. Tweet, Surface X-ray diffraction, Reports on Progress in Physics, vol.55, issue.5, p.599, 1992.

. Wen-yi-hang,

. Cheng-jian-kai,

. Feng-yun-long,

. Zhang-jian,

. Li-zhao-ji,

Y. Yuan-gen, Synthesis and Crystal Structure of [La(BTC)(H2O)6]n, Chinese J. Struct. Chem, issue.12, p.1440, 2005.

F. Wang, K. Deng, G. Wu, H. Liao, H. Liao et al., Facile and Large-Scale Syntheses of Nanocrystal Rare Earth Metal-Organic Frameworks at Room Temperature and Their Photoluminescence Properties, J. Inorg. Organomet. Polym. Mater, vol.2012, issue.4, pp.680-685

J. A. Smith, M. A. Singh-wilmot, K. P. Carter, C. L. Cahill, A. J. Lough et al., Eight rare earth metal organic frameworks and coordination polymers from 2-nitroterephthalate: syntheses, structures, solid-state luminescence and an unprecedented topology, New J. Chem, vol.40, issue.9, pp.7338-7349, 2016.

Z. Amghouz, S. Garcia-granda, J. R. Garcia, A. Clearfield, and R. Valiente, Organic-Inorganic Hybrids Assembled from Lanthanide and 1,4-Phenylenebis(phosphonate), Cryst. Growth Des, vol.11, issue.12, pp.5289-5297, 2011.

Y. Han, X. Li, L. Li, C. Ma, Z. Shen et al., Structures and Properties of Porous Coordination Polymers Based on Lanthanide Carboxylate Building Units, Inorganic Chemistry, issue.23, pp.10781-10787, 2010.

J. Lin, Y. Guan, D. Wang, W. Dong, X. Wang et al., Syntheses, structures and properties of seven isomorphous 1D Ln3+complexes Ln(BTA)(HCOO)(H2O)3 (H2BTA = bis(tetrazoly)amine, Ln = Pr, Gd, Eu, Tb, Dy, Er, Yb) and two 3D Ln3+ complexes Ln(HCOO)3 (Ln = Pr, Nd), Dalton Transactions, issue.44, pp.6165-6169, 2008.

K. Manna, P. Ji, F. X. Greene, and W. Lin, Metal-Organic Framework Nodes Support Single-Site Magnesium-Alkyl Catalysts for Hydroboration and Hydroamination Reactions, Journal of the American Chemical Society, vol.138, issue.24, pp.7488-7491, 2016.

D. Feng, T. Liu, J. Su, M. Bosch, Z. Wei et al., Stable metal-organic frameworks containing singlemolecule traps for enzyme encapsulation, Nat. Commun, vol.6, p.5979, 2015.

D. Decker, J. De-clercq, J. Vermeir, P. Van-der-voort, and P. , Functionalized metal-organicframework CMPO@MIL-101(Cr) as a stable and selective rare earth adsorbent, J. Mater. Sci, vol.2016, issue.10, pp.5019-5026

H. Saleem, U. Rafique, and R. P. Davies, Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution, Microporous and Mesoporous Materials, vol.221, pp.238-244, 2016.

C. A. Trickett, K. J. Gagnon, S. Lee, F. Gándara, H. Bürgi et al., Definitive Molecular Level Characterization of Defects in UiO-66 Crystals, Angewandte Chemie International Edition, vol.54, issue.38, pp.11162-11167, 2015.

C. He, K. Lu, D. Liu, and W. Lin, Nanoscale Metal-Organic Frameworks for the Co-Delivery of Cisplatin and Pooled siRNAs to Enhance Therapeutic Efficacy in Drug-Resistant Ovarian Cancer Cells, J. Am. Chem. Soc, vol.136, issue.14, pp.5181-5184, 2014.

K. Chitre, A. Batarseh, A. Kopecky, H. Fan, H. Tang et al., Synthesis of Zinc Tetraphenylporphyrin Rigid Rods with a Built-In Dipole, The Journal of Physical Chemistry B, issue.24, pp.7522-7530, 2015.

Y. Chen, F. Li, and Z. Bo, Facile Synthesis of 3,8-Dibromo-Substituted Phenanthridine Derivatives and Their Conjugated Polymers, Macromolecules, vol.43, issue.3, pp.1349-1355, 2010.

Y. Li, S. Yang, Q. Liu, G. Chen, J. Ma et al., Pd(0)@UiO-68-AP: chelationdirected bifunctional heterogeneous catalyst for stepwise organic transformations, Chem. Commun, vol.52, issue.39, pp.6517-6520, 2016.

K. Manna, T. Zhang, M. Carboni, C. W. Abney, and W. Lin, Salicylaldimine-Based Metal-Organic Framework Enabling Highly Active Olefin Hydrogenation with Iron and Cobalt Catalysts, J. Am. Chem. Soc, vol.136, issue.38, pp.13182-13185, 2014.

H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen et al., Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption, Journal of the American Chemical Society, vol.2013, issue.28, pp.10525-10532

J. Li, Y. Liu, X. Wang, G. Zhao, Y. Ai et al., Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks: Effect of defects and ligands, Chemical Engineering Journal, vol.330, pp.1012-1021, 2017.

M. Carboni, Z. Lin, C. W. Abney, T. Zhang, and W. Lin, A Metal-Organic Framework Containing Unusual Eight-Connected Zr-Oxo Secondary Building Units and Orthogonal Carboxylic Acids for Ultra-sensitive Metal Detection, Chemistry -A European Journal, vol.20, issue.46, pp.14965-14970, 2014.

L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M. H. Nilsen et al., Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory, Chemistry of Materials, vol.23, pp.1700-1718, 2011.

E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal of the American Chemical Society, vol.73, issue.1, pp.373-380, 1951.

K. S. Sing, D. H. Everett, R. A. Haul, L. Moscou, R. A. Pierotti et al., REPORTING PHYSISORPTION DATA FOR GAS/SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity, Pure Appl. Chem, vol.57, issue.4, pp.603-619, 1985.

B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, 2004.

R. Turgis, A. Leydier, G. Arrachart, F. Burdet, S. Dourdain et al., Carbamoylalkylphosphonates Type Ligand for Uranium Extraction from Phosphates Ores, Procedia Engineering, vol.138, pp.258-266, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02062545

D. Joseph-mccarthy, K. Parris, A. Huang, A. Failli, D. Quagliato et al., Use of Structure-Based Drug Design Approaches to Obtain Novel Anthranilic Acid Acyl Carrier Protein Synthase Inhibitors, J. Med. Chem, issue.25, pp.7960-7969, 2005.

G. M. Salamo?czyk, Efficient synthesis of water-soluble, phosphonate-terminated polyester dendrimers, Tetrahedron Letters, vol.56, issue.52, pp.7161-7164, 2015.

Y. J. Pu, R. K. Vaid, S. K. Boini, R. W. Towsley, C. W. Doecke et al., A Practical Method for Functionalized Peptide or Amide Bond Formation in Aqueous?Ethanol Media with EDC as Activator. Organic Process Research & Development, vol.13, pp.310-314, 2009.

J. Pharmaceutica, Hetero-substituted acetanilide derivatives as analgesic agents, 2005.

A. El-faham, R. S. Funosas, R. Prohens, and F. Albericio, COMU: A Safer and More Effective Replacement for Benzotriazole-Based Uronium Coupling Reagents, Chemistry -A European Journal, vol.15, issue.37, pp.9404-9416, 2009.

K. Muranaka, S. Ichikawa, and A. Matsuda, Design and synthesis of 3',5'-ansa-adenosines as potential Hsp90 inhibitors, Tetrahedron Lett, issue.36, pp.5102-5106, 2009.

L. Zhang, X. Wang, J. Wang, N. Grinberg, D. Krishnamurthy et al., An improved method of amide synthesis using acyl chlorides, Tetrahedron Letters, vol.50, issue.24, pp.2964-2966, 2009.

S. Zhao, Y. He, D. Wu, and Z. Guan, A new general approach to 4-substituted-3-halo-2-quinolones, J. Fluorine Chem, issue.5, pp.597-605, 2010.

J. Dziemidowicz, D. ;. Witt, S. Rachon, and J. , Potassium Trimethylsilanolate-Mediated Conversion of Dialkyl Phosphonates to Their Anhydrous Potassium Monoalkyl Phosphonates Under Mild, Non-Aqueous Conditions, pp.569-574, 2005.

A. Charlot, F. Cuer, and A. Grandjean, The effect of pore diameter in the arrangement of chelating species grafted onto silica surfaces with application to uranium extraction, New Journal of Chemistry, vol.41, issue.2, pp.503-511, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02429478

L. Nedelec, T. Charlot, A. Calard, F. Cuer, F. Leydier et al., Uranium adsorption from sulfuric acid media using silica materials functionalised with amide and phosphorous ligands, New Journal of Chemistry, vol.42, issue.17, pp.14300-14307, 2018.

G. E. Boyd, A. W. Adamson, and L. S. Myers, The Exchange Adsorption of Ions from Aqueous Solutions by Organic Zeolites. II. Kinetics1, Journal of the American Chemical Society, vol.69, issue.11, pp.2836-2848, 1947.

S. H. Chien and W. R. Clayton, Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils1, Soil Science Society of America Journal, vol.44, issue.2, pp.265-268, 1980.

F. Wu, R. Tseng, and R. Juang, Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems, Chemical Engineering Journal, vol.150, issue.2, pp.366-373, 2009.

W. J. Weber and J. C. Morris, Kinetics of adsorption on carbon from solution, Journal Sanitary Engeering Division, vol.89, pp.31-59, 1963.

I. Langmuir, . The-adsorption-of, . Gases, . Surfaces, . Glass et al., Journal of the American Chemical Society, vol.40, issue.9, pp.1361-1403, 1918.

H. Freundlich, Over the Adsorption in Solution, The Journal of Physical Chemistry, vol.57, pp.385-471, 1906.

M. I. Tempkin and V. M. Pyzhev, Kinetic of ammonia synthesis on promoted iron catalyst, vol.12, pp.327-356, 1940.

C. J. Pursell, H. Hartshorn, T. Ward, B. D. Chandler, and F. Boccuzzi, Application of the Temkin Model to the Adsorption of CO on Gold, The Journal of Physical Chemistry C, issue.48, pp.23880-23892, 2011.

N. Ayawei, A. N. Ebelegi, and D. Wankasi, Modelling and Interpretation of Adsorption Isotherms, p.11, 2017.

D. Mutavd?i?-pavlovi?, L. ?urkovi?, I. Gr?i?, I. ?imi?, and J. ?upan, Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments. Environmental Science and Pollution Research, vol.24, pp.10091-10106, 2017.

É. C. Avelar, C. L. Alvarenga, G. P. Resende, C. A. Morais, and M. B. Mansur, MODELING OF THE SOLVENT EXTRACTION EQUILIBRIUM OF URANIUM (VI) SULFATE WITH ALAMINE 336, Brazilian Journal of Chemical Engineering, vol.34, pp.355-362, 2017.

R. Guillaumont, T. Fanghanel, J. ;. Jean-fuger, I. V. Grenthe, V. Neck et al., Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, vol.5, 2003.

D. Vopálka, K. ?tamberg, A. Motl, and B. Drtinová, The study of the speciation of uranyl-sulphate complexes by UV-Vis absorption spectra decomposition, Journal of Radioanalytical and Nuclear Chemistry, vol.286, issue.3, pp.681-686, 2010.

G. Geipel, A. Brachmann, V. Brendler, G. Bernhard, and H. Nitsche, Uranium(VI) Sulfate Complexation Studied by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS)

, Radiochimica Acta, vol.75, pp.199-204, 1996.

B. Fries, C. Marie, V. Pacary, C. Berthon, M. Miguirditchian et al., Investigation of Uranium(VI) Extraction Mechanisms from Phosphoric and Sulfuric Media by 31P-NMR, Procedia Chemistry, vol.21, pp.93-100, 2016.

A. Charlot, Synthèse et évaluation de silices hybrides mésoporeuses pour l'extraction de l'uranium en milieu sulfurique, 2016.

M. F. Cheira, B. M. Atia, and M. N. Kouraim, Uranium(VI) recovery from acidic leach liquor by Ambersep 920U SO4 resin: Kinetic, equilibrium and thermodynamic studies, Journal of Radiation Research and Applied Sciences, vol.2017, issue.4, pp.307-319

H. Tutu, E. M. Cukrowska, T. S. Mccarthy, R. Hart, and L. Chimuka, Radioactive disequilibrium and geochemical modelling as evidence of uranium leaching from gold tailings dumps in the Witwatersrand Basin, International Journal of Environmental Analytical Chemistry, vol.89, issue.8-12, pp.687-703, 2009.

E. A. Guggenheim and J. C. Turgeon, Specific interaction of ions, Transactions of the Faraday Society, vol.1955, issue.0, pp.747-761

B. Fries, Compréhension des mécanismes d'extraction de l'uranium à partir des milieux phosphate et sulfate avec le DEHCNPB, 2019.

G. W. Lu and P. Gao, CHAPTER 3 -Emulsions and Microemulsions for Topical and Transdermal Drug Delivery, Handbook of Non-Invasive Drug Delivery Systems, pp.59-94, 2010.

C. Hennig, J. Tutschku, A. Rossberg, G. Bernhard, and A. C. Scheinost, Comparative EXAFS Investigation of Uranium(VI) and -(IV) Aquo Chloro Complexes in Solution Using a Newly Developed Spectroelectrochemical Cell, Inorganic Chemistry, vol.44, issue.19, pp.6655-6661, 2005.

A. Hussein, W. Youssef, M. Taha, and M. El-maadawy, Uranium Adsorption from Aqueous Nitric Acid Solution by Solvent Impregnated Polypropylene, 2017.

I. S. Ahuja, Synthesis and Structural Information on Uranyl Nitrate Complexes with Some Bidentate Ligands. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, vol.15, pp.93-107, 1985.

L. Soderholm, S. Skanthakumar, and R. E. Wilson, Structural Correspondence between Uranyl Chloride Complexes in Solution and Their Stability Constants, The Journal of Physical Chemistry A, vol.115, issue.19, pp.4959-4967, 2011.

T. Sato, The extraction of uranium (VI) from nitric acid solutions by tri-n-octylamine, Journal of Inorganic and Nuclear Chemistry, vol.26, issue.7, pp.1295-1300, 1964.

F. Baroncelli, G. Scibona, and M. Zifferero, The extraction of hexavalent uranium from nitric acid solutions by tri-n-dodecylamine nitrate, Journal of Inorganic and Nuclear Chemistry, vol.24, issue.5, pp.547-559, 1962.

T. Sato, The extraction of uranium (VI) from hydrochloric acid solutions by tri-n-octylamine, Journal of Inorganic and Nuclear Chemistry, vol.28, issue.6, pp.1461-1467, 1966.

J. Stas, A. Dahdouh, and H. Shlewit, Extraction of uranium (VI) from nitric acid and nitrate solutions by tributylphosphate/kerosene, vol.49, 2005.

L. Song, Y. Liu, S. Ding, M. Tan, Q. Li et al., Extraction kinetics of uranium(VI) and thorium(IV) with di(1-methyl-heptyl)methyl phosphonate from nitric acid medium using a Lewis cell, Separation and Purification Technology, vol.217, pp.258-264, 2019.

J. ?. Mathur, P. ?. Ruikar, M. V. Balarama-krishna, M. S. Murali, M. S. Nagar et al., Pu(IV) and U(VI) with Amides, BEHSO and CMPO from Nitric Acid Medium, Extraction of Np(IV), Np(VI), vol.73, p.199, 1996.

, Cinétique d'extraction Capacité d'extraction en mmol·mol -1

, Temps (heure) UiO-68-NMe2 UiO-69-NMe2 UiO-68-EAP