D. Ahn and X. Xiao, Extended Lithium Titanate Cycling Potential Window with near Zero Capacity Loss, Electrochem. Commun, vol.13, issue.8, pp.796-799, 2011.

,

S. Goriparti, E. Miele, F. De-angelis, E. Di-fabrizio, R. Proietti-zaccaria et al., Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries, J. Power Sources, vol.257, pp.421-443, 2014.

C. K. Chan, H. Peng, G. Liu, K. Mcilwrath, X. F. Zhang et al., High-Performance Lithium Battery Anodes Using Silicon Nanowires, Nat. Nanotechnol, vol.3, issue.1, pp.31-35, 2008.

L. Wang, L. Zhuo, C. Zhang, and F. Zhao, Carbon Dioxide-Induced Homogeneous Deposition of Nanometer-Sized Cobalt Ferrite (CoFe2O4) on Graphene as High-Rate and Cycle-Stable Anode Materials for Lithium-Ion Batteries, J. Power Sources, vol.275, pp.650-659, 2015.

L. Wang, L. Zhuo, H. Cheng, C. Zhang, and F. Zhao, Porous Carbon Nanotubes Decorated with Nanosized Cobalt Ferrite as Anode Materials for High-Performance Lithium-Ion Batteries, J. Power Sources, vol.283, pp.289-299, 2015.

,

M. Zhang, X. Yang, X. Kan, X. Wang, L. Ma et al., Carbon-Encapsulated CoFe2O4/Graphene Nanocomposite as High Performance Anode for Lithium Ion Batteries

, Electrochimica Acta, vol.112, pp.727-734, 2013.

L. Yao, H. Deng, Q. Huang, Q. Su, X. Du et al., Facile Synthesis of CoFe2O4 Quantum Dots/N-Doped Graphene Composite with Enhanced Lithium-Storage Performance

, J. Alloys Compd, vol.693, pp.929-935, 2017.

C. Combelles, M. B. Yahia, L. Pedesseau, and M. Doublet, Design of Electrode Materials for Lithium-Ion Batteries: The Example of Metal?Organic Frameworks, J. Phys. Chem. C, vol.2010, issue.20, pp.9518-9527
URL : https://hal.archives-ouvertes.fr/hal-00523806

F. Ke, Y. Wu, and H. Deng, Metal-Organic Frameworks for Lithium Ion Batteries and Supercapacitors, J. Solid State Chem, vol.223, pp.109-121, 2015.

,

O. M. Yaghi and H. Li, Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels, J. Am. Chem. Soc, vol.117, issue.41, pp.10401-10402, 1995.

S. S. Chui, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, vol.283, pp.1148-1150, 1999.

J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti et al., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability, J. Am. Chem. Soc, vol.130, issue.42, pp.13850-13851, 2008.

G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau et al., A. Hydrogen Adsorption in the Nanoporous Metal-Benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M=Al 3+ ,Cr 3+ ), pp.2976-2977, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00018757

S. T. Meek, J. A. Greathouse, and M. D. Allendorf, Metal-Organic Frameworks: A Rapidly Growing Class of Versatile Nanoporous Materials, Adv. Mater, vol.23, issue.2, pp.249-267, 2011.

C. Janiak, J. K. Vieth, and . Mofs, MILs and More: Concepts, Properties and Applications for Porous Coordination Networks (PCNs), New J. Chem, vol.2010, issue.11, p.2366

N. Stock and S. Biswas, Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites, Chem. Rev, vol.2012, issue.2, pp.933-969

S. Abednatanzi, P. G. Derakhshandeh, H. Depauw, F. Coudert, H. Vrielinck et al., Mixed-Metal Metal-Organic Frameworks, Chem. Soc. Rev, vol.2019, issue.9, pp.2535-2565
URL : https://hal.archives-ouvertes.fr/hal-02307092

R. J. Marshall and R. S. Forgan, Postsynthetic Modification of Zirconium Metal-Organic Frameworks: Postsynthetic Modification of Zirconium Metal-Organic Frameworks, Eur. J. Inorg. Chem, issue.27, pp.4310-4331, 2016.

R. Navarro-amador, M. Carboni, and D. Meyer, Sorption and Photodegradation under Visible Light Irradiation of an Organic Pollutant by a Heterogeneous UiO-67-Ru-Ti MOF Obtained by Post-Synthetic Exchange, vol.7, pp.195-200, 2017.

M. Kim, J. F. Cahill, H. Fei, K. A. Prather, and S. M. Cohen, Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks, J. Am. Chem. Soc, vol.2012, issue.43, pp.18082-18088

M. Kim, J. F. Cahill, Y. Su, K. A. Prather, and S. M. Cohen, Postsynthetic Ligand Exchange as a Route to Functionalization of 'Inert' Metal-Organic Frameworks, Chem Sci, vol.2012, issue.1, pp.126-130

O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer et al., Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?, J. Am. Chem. Soc, vol.2012, issue.36, pp.15016-15021

W. Lu, Z. Wei, Z. Gu, T. Liu, J. Park et al., Tuning the Structure and Function of Metal-Organic Frameworks via Linker Design, Chem Soc Rev, vol.43, issue.16, pp.5561-5593, 2014.

T. M. Al-jadir and F. R. Siperstein, The Influence of the Pore Size in Metal?Organic Frameworks in Adsorption and Separation of Hydrogen Sulphide: A Molecular Simulation Study, Microporous Mesoporous Mater, vol.271, pp.160-168, 2018.

,

M. Eddaoudi, Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage, Science, vol.295, issue.5554, pp.469-472, 2002.

H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa et al., Large-Pore Apertures in a Series of Metal-Organic Frameworks, Science, vol.2012, issue.6084, pp.1018-1023

,

S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch et al., Stable Metal-Organic Frameworks: Design, Synthesis, and Applications, Adv. Mater, vol.30, issue.37, p.1704303, 2018.

Y. Lee, M. Jang, H. Cho, H. Kwon, S. Kim et al., ZIF-8: A Comparison of Synthesis Methods, Chem. Eng. J, vol.271, pp.276-280, 2015.

H. Wang, X. Dong, J. Lin, S. J. Teat, S. Jensen et al., Topologically Guided Tuning of Zr-MOF Pore Structures for Highly Selective Separation of C6 Alkane Isomers, Nat. Commun, vol.9, issue.1, p.1745, 2018.

F. Ke, Y. Wu, and H. Deng, Metal-Organic Frameworks for Lithium Ion Batteries and Supercapacitors, J. Solid State Chem, vol.223, pp.109-121, 2015.

,

G. Xu, P. Nie, H. Dou, B. Ding, L. Li et al., Exploring Metal Organic Frameworks for Energy Storage in Batteries and Supercapacitors, vol.20, pp.191-209, 2017.

D. F. Sava-gallis, I. Pratt, H. D. Anderson, T. M. Chapman, and K. W. , Electrochemical Activity of Fe-MIL-100 as a Positive Electrode for Na-Ion Batteries, J Mater Chem A, 2016.

D. Wu, Z. Guo, X. Yin, Q. Pang, B. Tu et al., Metal-Organic Frameworks as Cathode Materials for Li-O2 Batteries, Adv. Mater, vol.26, issue.20, pp.3258-3262, 2014.

C. Liu, F. Li, L. Ma, and H. Cheng, Advanced Materials for Energy Storage. Adv

. Mater, , pp.28-62, 2010.

L. Zhang, H. Liu, W. Shi, and P. Cheng, Synthesis Strategies and Potential Applications of Metal-Organic Frameworks for Electrode Materials for Rechargeable Lithium Ion Batteries

, Coord. Chem. Rev, vol.388, pp.293-309, 2019.

W. Xia, A. Mahmood, R. Zou, and Q. Xu, Metal-Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion, Energy Env. Sci, 2015.

Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu et al., Transition Metal Carbides and Nitrides in Energy Storage and Conversion, Adv. Sci, vol.2016, issue.5, p.1500286

M. Naguib, J. Come, B. Dyatkin, V. Presser, P. Taberna et al., MXene: A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries, Electrochem. Commun, vol.2012, issue.1, pp.61-64
URL : https://hal.archives-ouvertes.fr/hal-00864984

,

L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi et al., Metal-Organic Frameworks for Energy Storage: Batteries and Supercapacitors, Coord. Chem. Rev, vol.307, pp.361-381, 2016.

S. Maiti, A. Pramanik, U. Manju, and S. Mahanty, Reversible Lithium Storage in Manganese 1,3,5-Benzenetricarboxylate Metal-Organic Framework with High Capacity and Rate Performance, ACS Appl. Mater. Interfaces, vol.7, issue.30, pp.16357-16363, 2015.

H. H. Lee, J. B. Lee, Y. Park, K. H. Park, M. S. Okyay et al., Coordination Polymers for High-Capacity Li-Ion Batteries: Metal-Dependent Solid-State Reversibility, ACS Appl. Mater. Interfaces, vol.10, issue.26, pp.22110-22118, 2018.

Y. Zhao, Z. Song, X. Li, Q. Sun, N. Cheng et al., Metal Organic Frameworks for Energy Storage and Conversion. Energy Storage Mater, vol.2, pp.35-62, 2016.

G. Férey, F. Millange, M. Morcrette, C. Serre, M. Doublet et al., Mixed-Valence Li/Fe-Based Metal-Organic Frameworks with Both Reversible Redox and Sorption Properties, Angew. Chem. Int. Ed, vol.46, issue.18, pp.3259-3263, 2007.

Z. Liang, C. Qu, W. Guo, R. Zou, and Q. Xu, Pristine Metal-Organic Frameworks and Their Composites for Energy Storage and Conversion, Adv. Mater, vol.30, issue.37, p.1702891, 2018.

M. Zhong, L. Kong, N. Li, Y. Liu, J. Zhu et al., Synthesis of MOF-Derived Nanostructures and Their Applications as Anodes in Lithium and Sodium Ion Batteries, Coord. Chem. Rev, vol.388, pp.172-201, 2019.

X. Xu, R. Cao, S. Jeong, and J. Cho, Spindle-like Mesoporous ?-Fe2O3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries, Nano Lett, vol.2012, issue.9, pp.4988-4991

S. Maiti, A. Pramanik, T. Dhawa, M. Sreemany, and S. Mahanty, Bi-Metal Organic Framework Derived Nickel Manganese Oxide Spinel for Lithium-Ion Battery Anode, Mater. Sci. Eng. B, vol.229, pp.27-36, 2018.

F. Zheng, Y. Yang, and Q. Chen, High Lithium Anodic Performance of Highly Nitrogen-Doped Porous Carbon Prepared from a Metal-Organic Framework, Nat. Commun, vol.2014, issue.1, p.5261

X. Xu, C. Qi, Z. Hao, H. Wang, J. Jiu et al., The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery, Nano-Micro Lett, vol.10, issue.1, 2018.

E. Perez, M. Andre, R. Amador, F. Hyvrard, J. Borrini et al., Recovery of Metals from Simulant Spent Lithium-Ion Battery as Organophosphonate Coordination Polymers in Aqueous Media, J. Hazard. Mater, vol.317, pp.617-621, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01997886

J. M. Taylor, R. K. Mah, I. L. Moudrakovski, C. I. Ratcliffe, R. Vaidhyanathan et al., Facile Proton Conduction via Ordered Water Molecules in a Phosphonate Metal?Organic Framework, J. Am. Chem. Soc, issue.40, pp.14055-14057, 2010.

V. Luca, J. J. Tejada, D. Vega, G. Arrachart, and C. Rey, Zirconium(IV)-Benzene Phosphonate Coordination Polymers: Lanthanide and Actinide Extraction and Thermal Properties, Inorg. Chem, issue.16, pp.7928-7943, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02062523

,

N. Nitta, F. Wu, J. T. Lee, G. Yushin, and . Li, Ion Battery Materials: Present and Future

. Mater and . Today, , vol.18, pp.252-264, 2015.

C. R. Birkl, M. R. Roberts, E. Mcturk, P. G. Bruce, and D. A. Howey, Degradation Diagnostics for Lithium Ion Cells, J. Power Sources, vol.341, pp.373-386, 2017.

M. Cognet, T. Gutel, D. Peralta, J. Maynadié, M. Carboni et al., Communication-Iron(II)-Benzene Phosphonate Coordination Polymers as an Efficient Active Material for Negative Electrode of Lithium-Ion Batteries, J. Electrochem. Soc, vol.2017, issue.12, pp.2552-2554

A. Mietrach, T. W. Muesmann, J. Christoffers, and M. S. Wickleder, Sulfonic Acid Analogs of Terephthalic and Trimesic Acid as Linkers in Metal-Organic Frameworks -Synthesis of Thermally Robust MOFs, Eur. J. Inorg. Chem, issue.35, pp.5328-5334, 2009.

C. Zitzer, T. W. Muesmann, J. Christoffers, C. Schwickert, R. Pöttgen et al., 1,2,4,5-Benzenetetrasulfonic Acid and 1,4-Benzenedisulfonic Acid as Sulfo Analogues of Pyromellitic and Terephthalic Acids for Building Coordination Polymers of Manganese, CrystEngComm, vol.16, issue.48, pp.11064-11077, 2014.

C. Shi, X. Wang, Y. Gao, H. Rong, Y. Song et al., Nickel Metal-Organic Framework Nanoparticles as Electrode Materials for Li-Ion Batteries and Supercapacitors, J. Solid State Electrochem, vol.21, issue.8, pp.2415-2423, 2017.

M. Cognet, T. Gutel, R. Gautier, X. F. Le-goff, A. Mesbah et al., Pillared Sulfonate-Based Metal-Organic Framework as Negative Electrode for Li-Ion Batteries, Mater. Lett, vol.236, pp.73-76, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01972326

E. Perez, R. Navarro-amador, M. Carboni, and D. Meyer, Situ Precipitation of Metal-Organic Frameworks from a Simulant Battery Waste Solution, Mater. Lett, vol.167, pp.188-191, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01997891

Y. Ma, Y. Ma, D. Geiger, U. Kaiser, H. Zhang et al., ZnO/ZnFe2O4/N-Doped C Micro-Polyhedrons with Hierarchical Hollow Structure as High-Performance Anodes for Lithium-Ion Batteries, Nano Energy, vol.42, pp.341-352, 2017.

J. Tang, R. R. Salunkhe, J. Liu, N. L. Torad, M. Imura et al., Thermal Conversion of Core-Shell Metal-Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon, J. Am. Chem. Soc, vol.137, issue.4, pp.1572-1580, 2015.

H. Zhao, L. Liu, Z. Hu, L. Sun, S. Han et al., Neutron Diffraction Analysis and Electrochemical Performance of Spinel Ni(Mn2?xCox)O4 as Anode Materials for Lithium Ion Battery, Mater. Res. Bull, vol.77, pp.265-270, 2016.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. Tarascon, Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries, Nature, vol.407, issue.6803, pp.496-499, 2000.

M. Wang, Y. Ma, J. Jiang, Y. Huang, X. Li et al., Hierarchical Microspheres of Aggregated Silicon Nanoparticles with Nanometre Gaps as the Anode for Lithium-Ion Batteries with Excellent Cycling Stability, ChemElectroChem, vol.2019, issue.4, pp.1139-1148, 2019.

S. Natarajan and V. Aravindan, Recycling Strategies for Spent Li-Ion Battery Mixed Cathodes, ACS Energy Lett, vol.3, issue.9, pp.2101-2103, 2018.

,

L. Cobalt, Le boom ou la bulle ? -Mines -métaux, 2019.

E. A. Olivetti, G. Ceder, G. G. Gaustad, and X. Fu, Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals, Joule, vol.2017, issue.2, pp.229-243

G. Martin, L. Rentsch, M. Höck, and M. Bertau, Lithium Market Research -Global Supply, Future Demand and Price Development. Energy Storage Mater, vol.6, pp.171-179, 2017.

C. Pillot, Current Status and Future Trends of the Global Li-Ion Battery Market, 2018.

J. B. Dunn, L. Gaines, M. Barnes, J. Sullivan, and M. Wang, Material and Energy Flows in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion Battery Life Cycle

. Anl/esd, , pp.12-15

K. M. Winslow, S. J. Laux, and T. G. Townsend, A Review on the Growing Concern and Potential Management Strategies of Waste Lithium-Ion Batteries, Resour. Conserv. Recycl, vol.129, pp.263-277, 2018.

L. Li, J. B. Dunn, X. X. Zhang, L. Gaines, R. J. Chen et al., Recovery of Metals from Spent Lithium-Ion Batteries with Organic Acids as Leaching Reagents and Environmental Assessment, J. Power Sources, vol.233, pp.180-189, 2013.

,

E. Gies, Recycling: Lazarus Batteries, Nature, vol.2015, issue.7575, pp.100-101

S. Rothermel, M. Evertz, J. Kasnatscheew, X. Qi, M. Grützke et al., Graphite Recycling from Spent Lithium-Ion Batteries, ChemSusChem, vol.2016, issue.24, pp.3473-3484

S. Sloop and O. Technology, Giga Life Cycle: Manufacture of Cells from Recycled EV Li-Ion Batteries, p.25, 2015.

K. Vellingiri, D. C. Tsang, K. Kim, A. Deep, T. Dutta et al., The Utilization of Zinc Recovered from Alkaline Battery Waste as Metal Precursor in the Synthesis of Metal-Organic Framework, J. Clean. Prod, vol.199, pp.995-1006, 2018.

M. Joulié, E. Billy, R. Laucournet, and D. Meyer, Current Collectors as Reducing Agent to Dissolve Active Materials of Positive Electrodes from Li-Ion Battery Wastes, Hydrometallurgy, vol.169, pp.426-432, 2017.

M. Benzaqui, R. S. Pillai, A. Sabetghadam, V. Benoit, P. Normand et al., Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO2 Capture, Chem. Mater, vol.29, issue.24, pp.10326-10338, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649037

T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Férey et al., MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and µ 3 -Oxo-Centered Trinuclear Units, J. Am. Chem. Soc, vol.128, issue.31, pp.10223-10230, 2006.

C. Volkringer, D. Popov, T. Loiseau, G. Férey, M. Burghammer et al., Single-Crystal X-Ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100, Chem. Mater, vol.21, issue.24, pp.5695-5697, 2009.

M. Maes, L. Alaerts, F. Vermoortele, R. Ameloot, S. Couck et al., Separation of C5-Hydrocarbons on Microporous Materials: Complementary Performance of MOFs and Zeolites, J. Am. Chem. Soc, issue.7, pp.2284-2292, 2010.

D. Liu, Y. Liu, F. Dai, J. Zhao, K. Yang et al., Size-and Morphology-Controllable Synthesis of MIL-96 (Al) by Hydrolysis and Coordination Modulation of Dual Aluminium Source and Ligand Systems, Dalton Trans, vol.44, issue.37, pp.16421-16429, 2015.

M. Sindoro, A. Jee, and S. Granick, Shape-Selected Colloidal MOF Crystals for Aqueous Use, Chem. Commun, issue.83, p.9576, 2013.

S. S. Chui, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n. Science, vol.283, pp.1148-1150, 1999.

C. Xin, X. Jiao, Y. Yin, H. Zhan, H. Li et al., Enhanced CO 2 Adsorption Capacity and Hydrothermal Stability of HKUST-1 via Introduction of Siliceous Mesocellular Foams (MCFs), Ind. Eng. Chem. Res, vol.55, issue.29, pp.7950-7957, 2016.

S. Maiti, A. Pramanik, T. Dhawa, M. Sreemany, and S. Mahanty, Bi-Metal Organic Framework Derived Nickel Manganese Oxide Spinel for Lithium-Ion Battery Anode, Mater. Sci. Eng. B, vol.229, pp.27-36, 2018.

D. F. Sava-gallis, M. V. Parkes, J. A. Greathouse, X. Zhang, and T. M. Nenoff, Enhanced O 2 Selectivity versus N 2 by Partial Metal Substitution in Cu-BTC, Chem. Mater, vol.27, issue.6, pp.2018-2025, 2015.

Q. Liu, J. Yang, L. Jin, and W. Sun, Metal Ion Induced Porous HKUST, issue.1

, Nano/Microcrystals with Controllable Morphology and Size. CrystEngComm, vol.18, issue.22, pp.4127-4132, 2016.

D. Pant and T. Dolker, Green and Facile Method for the Recovery of Spent Lithium Nickel Manganese Cobalt Oxide (NMC) Based Lithium Ion Batteries, Waste Manag, vol.60, pp.689-695, 2017.

T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle et al., A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration, Chem. -Eur. J, vol.10, issue.6, pp.1373-1382, 2004.

,

M. Sánchez-sánchez, N. Getachew, K. Díaz, M. Díaz-garcía, Y. Chebude et al., Synthesis of Metal-Organic Frameworks in Water at Room Temperature: Salts as Linker Sources, Green Chem, vol.17, issue.3, pp.1500-1509, 2015.

X. Do, V. Hoang, and S. Kaliaguine, MIL-53(Al) Mesostructured Metal-Organic Frameworks, Microporous Mesoporous Mater, vol.141, issue.1-3, pp.135-139, 2011.

E. Haque, J. H. Jeong, and S. H. Jhung, Synthesis of Isostructural Porous Metal-Benzenedicarboxylates: Effect of Metal Ions on the Kinetics of Synthesis, CrystEngComm, vol.2010, issue.10, p.2749

X. Qian, Z. Zhong, B. Yadian, J. Wu, K. Zhou et al., Loading MIL-53(Al) with Ag Nanoparticles: Synthesis, Structural Stability and Catalytic Properties, Int. J. Hydrog. Energy, vol.39, issue.26, pp.14496-14502, 2014.

,

P. Phuengphai, S. Youngme, I. Mutikainen, P. Gamez, and J. Reedijk, A Series of Related 2D Coordination Polymers Based on [Copper(II)-4,4?-Bpy-Carboxylato] Building Blocks, Polyhedron, vol.2012, issue.1, pp.10-17

, Les difractogrammes ont été obtenus avec un diffractomètre Bruker D8 Advance. La source des rayons X est un tube à anode de cuivre, Cu K? de longueur d'onde ?=1, la plupart des cas, des palets miroir bas bruit de fond ont été utilisés, vol.5417

, la structure et les affinements finaux ont été réalisés avec SHELXL, 2016.

, Les images ont été obtenues avec un microscope électronique à balayage environnemental FEI Quanta 200 ESEM, équipé d'un détecteur d'électron secondaire (BSED) et d'un détecteur d'analyse dispersive en énergie EDX permettant l'acquisition d'analyses élémentaires quantitative et d'

. Icp-oes,

, Les analyses ont été effectuées sur un appareil Ametek Spectro Arcos. L'appareil, utilisant un système optique de détection, a été calibré avec une gamme d'étalonnage de 0 à 20 ppm préparées à partir d'étalons standarts certifiés (SCP Science). Tous les échantillons ont été dilués dans une matrice

, Les longueurs d'ondes des raies utilisées pour les différents éléments sont : Ni 221,648 ; 227,021 ; 231,604, vol.232, p.3

, Mn 257,611 ; 259,373 ; 260,569, vol.294, p.921

, Co 228,616, vol.230, p.892

, Al, vol.167, p.152, 0641.

, Cu 219,226 ; 224,700 ; 324,754, vol.327, p.396

, Li 323,261 ; 460,289, vol.670, p.780

S. Chu and A. Majumdar, Opportunities and Challenges for a Sustainable Energy Future, Nature, vol.2012, issue.7411, pp.294-303

N. Antonakakis, I. Chatziantoniou, and G. Filis, Energy Consumption, CO 2 Emissions, and Economic Growth: An Ethical Dilemma, Renew. Sustain. Energy Rev, vol.68, pp.808-824, 2017.

P. Canepa, G. Sai-gautam, D. C. Hannah, R. Malik, M. Liu et al., Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges, Chem. Rev, vol.2017, issue.5, pp.4287-4341

J. B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries ?, Chem. Mater, vol.22, issue.3, pp.587-603, 2010.

K. C. Divya and J. Østergaard, Battery Energy Storage Technology for Power Systems-An Overview, Electr. Power Syst. Res, vol.79, issue.4, pp.511-520, 2009.

K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO2 (0<x<-1): A New Cathode Material for Batteries of High Energy Density, Mater. Res. Bull, vol.15, issue.6, pp.783-789, 1980.

H. Zhang, C. Mao, J. Li, and R. Chen, Advances in Electrode Materials for Li-Based Rechargeable Batteries, vol.7, pp.33789-33811, 2017.

C. Pillot, Evolution Du Marché Mondial Des Batteries Rechargeables, 2017.

W. Lv, Z. Wang, H. Cao, Y. Sun, Y. Zhang et al., A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries, ACS Sustain. Chem. Eng, vol.6, issue.2, pp.1504-1521, 2018.

D. Larcher and J. Tarascon, Towards Greener and More Sustainable Batteries for Electrical Energy Storage, Nat. Chem, vol.7, issue.1, pp.19-29, 2015.

T. Dutta, K. Kim, A. Deep, J. E. Szulejko, K. Vellingiri et al., Recovery of Nanomaterials from Battery and Electronic Wastes: A New Paradigm of Environmental Waste Management, Renew. Sustain. Energy Rev, vol.82, pp.3694-3704, 2018.

A. Bernardes, D. C. Espinosa, and J. A. Tenório, Recycling of Batteries: A Review of Current Processes and Technologies, J. Power Sources, vol.130, issue.1-2, pp.291-298, 2004.

L. Gaines, The Future of Automotive Lithium-Ion Battery Recycling: Charting a Sustainable Course, Sustain. Mater. Technol, 2007.

M. J. Davis and P. Hiralal, Batteries as a Service: A New Look at Electricity Peak Demand Management for Houses in the UK. Procedia Eng, vol.145, pp.1448-1455, 2016.

E. Perez, R. Navarro-amador, M. Carboni, and D. Meyer, Situ Precipitation of Metal-Organic Frameworks from a Simulant Battery Waste Solution, Mater. Lett, vol.167, pp.188-191, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01997891

E. Perez, M. Andre, R. Amador, F. Hyvrard, J. Borrini et al., Recovery of Metals from Simulant Spent Lithium-Ion Battery as Organophosphonate Coordination Polymers in Aqueous Media, J. Hazard. Mater, vol.317, pp.617-621, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01997886

X. Yang, L. Chen, Y. Li, J. C. Rooke, C. Sanchez et al., Hierarchically Porous Materials: Synthesis Strategies and Structure Design, Chem. Soc. Rev, vol.2017, issue.2, pp.481-558
URL : https://hal.archives-ouvertes.fr/hal-01495958

H. Furukawa, K. E. Cordova, M. O&apos;keeffe, and O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science, vol.341, issue.6149, pp.1230444-1230444, 2013.

C. Liu, F. Li, L. Ma, and H. Cheng, Advanced Materials for Energy Storage, Adv. Mater, issue.8, pp.28-62, 2010.

M. Cognet, T. Gutel, D. Peralta, J. Maynadié, M. Carboni et al., Communication-Iron(II)-Benzene Phosphonate Coordination Polymers as an Efficient Active Material for Negative Electrode of Lithium-Ion Batteries, J. Electrochem. Soc, vol.2017, issue.12, pp.2552-2554

W. Xia, A. Mahmood, R. Zou, and Q. Xu, Metal-Organic Frameworks and Their Derived Nanostructures for Electrochemical Energy Storage and Conversion, Energy Env. Sci, 2015.

X. Xu, R. Cao, S. Jeong, and J. Cho, Spindle-like Mesoporous ?-Fe 2 O 3 Anode Material Prepared from MOF Template for High-Rate Lithium Batteries, Nano Lett, vol.12, issue.9, pp.4988-4991, 2012.

Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang et al., Metal-Organic Framework-Derived Co 3 ZnC/Co Embedded in Nitrogen-Doped Carbon Nanotube-Grafted Carbon Polyhedra as a High-Performance Electrocatalyst for Water Splitting, ACS Appl. Mater. Interfaces, vol.10, issue.7, pp.6245-6252, 2018.

Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu et al., Transition Metal Carbides and Nitrides in Energy Storage and Conversion, Adv. Sci, vol.2016, issue.5, p.1500286

M. Naguib, J. Come, B. Dyatkin, V. Presser, P. Taberna et al., MXene: A Promising Transition Metal Carbide Anode for Lithium-Ion Batteries, Electrochem. Commun, vol.2012, issue.1, pp.61-64
URL : https://hal.archives-ouvertes.fr/hal-00864984

Q. Gan, H. He, K. Zhao, Z. He, and S. Liu, Morphology-Dependent Electrochemical Performance of Ni-1,3,5-Benzenetricarboxylate Metal-Organic Frameworks as an Anode Material for Li-Ion Batteries, J. Colloid Interface Sci, vol.530, pp.127-136, 2018.

H. Zhao, L. Liu, Z. Hu, L. Sun, S. Han et al., Neutron Diffraction Analysis and Electrochemical Performance of Spinel Ni(Mn2?xCox)O4 as Anode Materials for Lithium Ion Battery, Mater. Res. Bull, vol.77, pp.265-270, 2016.

H. H. Lee, J. B. Lee, Y. Park, K. H. Park, M. S. Okyay et al., Coordination Polymers for High-Capacity Li-Ion Batteries: Metal-Dependent Solid-State Reversibility, ACS Appl. Mater. Interfaces, vol.10, issue.26, pp.22110-22118, 2018.

M. S. Whittingham, History, Evolution, and Future Status of Energy Storage, Proc. IEEE, vol.100, pp.1518-1534, 2012.

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, pp.359-367, 2001.

P. Rozier and J. M. Tarascon, Review-Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges, J. Electrochem. Soc, vol.162, pp.2490-2499, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02462040

L. Dimesso, C. Förster, W. Jaegermann, J. P. Khanderi, H. Tempel et al., ) composites based on three dimensional carbon architecture, Developments in nanostructured LiMPO4 (M = Fe, vol.41, p.5068, 2012.

C. Pillot, The rechargeable battery market and main trends, 2016.

E. J. Cheng, K. Hong, N. J. Taylor, H. Choe, J. Wolfenstine et al., Mechanical and physical properties of LiNi 0.33 Mn 0.33 Co 0, J. Eur. Ceram. Soc, vol.33, pp.3213-3217, 2017.

F. A. Susai, H. Sclar, Y. Shilina, T. R. Penki, R. Raman et al., Horizons for Li-Ion Batteries Relevant to Electro-Mobility: High-Specific-Energy Cathodes and Chemically Active Separators, Adv. Mater, vol.30, p.1801348, 2018.

H. Vikström, S. Davidsson, and M. Höök, Lithium availability and future production outlooks, Appl. Energy, vol.110, pp.252-266, 2013.

, The urban mining concept, Waste Manag, vol.33, pp.497-498, 2013.

C. P. Grey and J. M. Tarascon, Sustainability and in situ monitoring in battery development, Nat. Mater, vol.16, pp.45-56, 2017.

J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang et al., A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources, vol.177, pp.512-527, 2008.

A. Chagnes and B. Pospiech, A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries: Technologies for recycling spent lithium-ion batteries, J. Chem. Technol. Biotechnol, vol.88, pp.1191-1199, 2013.

S. P. Barik, G. Prabaharan, and B. Kumar, An innovative approach to recover the metal values from spent lithium-ion batteries, Waste Manag, vol.51, pp.222-226, 2016.

S. Rothermel, M. Evertz, J. Kasnatscheew, X. Qi, M. Grützke et al., Graphite Recycling from Spent Lithium-Ion Batteries, ChemSusChem, vol.9, pp.3473-3484, 2016.

Y. Cui, B. Li, H. He, W. Zhou, B. Chen et al., Metal-Organic Frameworks as Platforms for Functional Materials, Acc. Chem. Res, vol.49, pp.483-493, 2016.

J. Li, R. J. Kuppler, and H. Zhou, Selective gas adsorption and separation in metalorganic frameworks, Chem. Soc. Rev, vol.38, p.1477, 2009.

M. Cognet, T. Gutel, D. Peralta, J. Maynadié, M. Carboni et al., Communication-Iron(II)-Benzene Phosphonate Coordination Polymers as an Efficient Active Material for Negative Electrode of Lithium-Ion Batteries, J. Electrochem. Soc, vol.164, pp.2552-2554, 2017.

P. Silva, S. M. Vilela, J. P. Tomé, and F. A. Paz, Multifunctional metal-organic frameworks: from academia to industrial applications, Chem. Soc. Rev, vol.44, pp.6774-6803, 2015.

U. Muller, M. Schubert, F. Teich, H. Puetter, K. Schierle-arndt et al., Metal-organic frameworks-prospective industrial applications, J Mater Chem, vol.16, pp.626-636, 2006.

B. Yilmaz, N. Trukhan, and U. Müller, Industrial Outlook on Zeolites and Metal Organic Frameworks, Chin, J. Catal, vol.33, issue.10, pp.60302-60308, 2012.

S. S. Chui, A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n, Science, vol.283, 1999.

U. Muller, H. Puetter, M. Hesse, and H. Wessel, WO 2005/049892, n.d

Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha et al., Methane Storage in Metal-Organic Frameworks: Current Records, Surprise Findings, and Challenges, J. Am. Chem. Soc, vol.135, pp.11887-11894, 2013.

B. Xiao, P. S. Wheatley, X. Zhao, A. J. Fletcher, S. Fox et al., High-Capacity Hydrogen and Nitric Oxide Adsorption and Storage in a Metal?Organic Framework, J. Am. Chem. Soc, vol.129, pp.1203-1209, 2007.

J. Liu, Y. Wang, A. I. Benin, P. Jakubczak, R. R. Willis et al., CO 2 /H 2 O Adsorption Equilibrium and Rates on Metal?Organic Frameworks: HKUST-1 and Ni/DOBDC, Langmuir, vol.26, pp.14301-14307, 2010.

S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier et al., Mechanochemistry: opportunities for new and cleaner synthesis, vol.41, pp.413-447, 2012.

H. Ali-moussa, R. Navarro-amador, J. Martinez, F. Lamaty, M. Carboni et al., Synthesis and post-synthetic modification of UiO-67 type metal-organic frameworks by mechanochemistry, Mater. Lett, vol.197, pp.171-174, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01997875

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc, vol.60, pp.309-319, 1938.

E. Billy, M. Joulié, R. Laucournet, A. Boulineau, E. Vito et al., Dissolution Mechanisms of LiNi 1/3 Mn 1/3 Co 1/3 O 2 Positive Electrode Material from Lithium-Ion Batteries in Acid Solution, ACS Appl. Mater. Interfaces, vol.10, pp.16424-16435, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02099884

T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Férey et al., MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and µ 3 -Oxo-Centered Trinuclear Units, J. Am. Chem. Soc, vol.128, pp.10223-10230, 2006.

C. Volkringer, D. Popov, T. Loiseau, G. Férey, M. Burghammer et al., Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100, Chem. Mater, vol.21, pp.5695-5697, 2009.

T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. Férey et al., MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and µ 3 -Oxo-Centered Trinuclear Units, J. Am. Chem. Soc, vol.128, pp.10223-10230, 2006.

M. Maes, L. Alaerts, F. Vermoortele, R. Ameloot, S. Couck et al., Separation of C 5 -Hydrocarbons on Microporous Materials: Complementary Performance of MOFs and Zeolites, J. Am. Chem. Soc, vol.132, pp.2284-2292, 2010.