J. Campisi, Cancer and ageing: rival demons?, Nature reviews. Cancer, vol.3, pp.339-349, 2003.

E. D. Rosen and B. M. Spiegelman, What We Talk About When We Talk About Fat, Cell, vol.156, pp.20-44, 2014.

S. Enerback, Human brown adipose tissue, Cell metabolism, vol.11, pp.248-252, 2010.

J. Vague, The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease, The American journal of clinical nutrition, vol.4, pp.20-34, 1956.

S. Gesta, Y. H. Tseng, and C. R. Kahn, Developmental origin of fat: Tracking obesity to its source, Cell, vol.131, pp.242-256, 2007.

M. B. Snijder, Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study, The American journal of clinical nutrition, vol.77, pp.1192-1197, 2003.

T. T. Tran, Y. Yamamoto, S. Gesta, and C. R. Kahn, Beneficial effects of subcutaneous fat transplantation on metabolism, Cell metabolism, vol.7, pp.410-420, 2008.

J. Wu, P. Cohen, and B. M. Spiegelman, Adaptive thermogenesis in adipocytes: is beige the new brown?, Genes & development, vol.27, pp.234-250, 2013.

P. Cohen, Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch, Cell, vol.156, pp.304-316, 2014.

A. Moisan, White-to-brown metabolic conversion of human adipocytes by JAK inhibition, Nat Cell Biol, vol.17, pp.57-67, 2015.

M. Lonn, K. Mehlig, C. Bengtsson, and L. Lissner, Adipocyte size predicts incidence of type 2 diabetes in women, Faseb J, vol.24, pp.326-331, 2010.

A. Kosteli, Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue, J Clin Invest, vol.120, pp.3466-3479, 2010.

S. Wueest, Mesenteric Fat Lipolysis Mediates Obesity-Associated Hepatic Steatosis and Insulin Resistance, Diabetes, vol.65, pp.140-148, 2016.

T. Christen, Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging, JACC. Cardiovascular imaging, vol.3, pp.843-851, 2010.

A. M. Bertholet, Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling, Cell metabolism, vol.25, pp.811-822, 2017.

C. E. Macdougall, Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets, Cell metabolism, vol.27, p.588, 2018.

B. Blomberg, A. Diaz, M. Romero, T. Vasguez, and D. Frasca, Visceral adipose tissue contributes to the generation of pro-inflammatory B cell subsets in aging mice, J Immunol, vol.196, 2016.

T. Horbelt, The novel adipokine WISP1 associates with insulin resistance and impairs insulin action in human myotubes and mouse hepatocytes, Diabetologia, 2018.

D. Vilaboa, S. Navarro-palou, M. Llull, and R. , Age influence on stromal vascular fraction cell yield obtained from human lipoaspirates, Cytotherapy, vol.16, pp.1092-1097, 2014.

F. Villarroya, P. Domingo, and M. Giralt, Lipodystrophy associated with highly active anti-retroviral therapy for HIV infection: the adipocyte as a target of anti-retroviralinduced mitochondrial toxicity, Trends Pharmacol Sci, vol.26, pp.88-93, 2005.

A. Veilleux, M. Caron-jobin, S. Noel, P. Y. Laberge, and A. Tchernof, Visceral Adipocyte Hypertrophy is Associated With Dyslipidemia Independent of Body Composition and Fat Distribution in Women, Diabetes, vol.60, pp.1504-1511, 2011.

A. Wree, Adipocyte cell size, free fatty acids and apolipoproteins are associated with non-alcoholic liver injury progression in severely obese patients, Metabolism-Clinical and Experimental, vol.63, pp.1542-1552, 2014.

S. Burke, Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease, Microbes Infect, vol.16, pp.893-901, 2014.

D. A. Young, D. O. Ibrahim, D. Hu, and K. L. Christman, Injectable hydrogel scaffold from decellularized human lipoaspirate, Acta biomaterialia, vol.7, pp.1040-1049, 2011.

C. Bonnans, J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease, Nature reviews. Molecular cell biology, vol.15, pp.786-801, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01952416

B. D. Pope, C. R. Warren, K. K. Parker, and C. A. Cowan, Microenvironmental Control of Adipocyte Fate and Function, Trends in cell biology, vol.26, pp.745-755, 2016.

S. Miura, Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium, J Biol Chem, vol.277, pp.32253-32257, 2002.

J. T. Tansey, Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity, Proc Natl Acad Sci U S A, vol.98, pp.6494-6499, 2001.

M. Bluher, Role of insulin action and cell size on protein expression patterns in adipocytes, J Biol Chem, vol.279, pp.31902-31909, 2004.

B. D. Pope, C. R. Warren, K. K. Parker, and C. A. Cowan, Microenvironmental Control of Adipocyte Fate and Function, Trends in cell biology, vol.26, pp.745-755, 2016.

M. Kanzaki and J. E. Pessin, Caveolin-associated filamentous actin (Cav-actin) defines a novel F-actin structure in adipocytes, J Biol Chem, vol.277, pp.25867-25869, 2002.

N. Briand, Caveolin-1 expression and cavin stability regulate caveolae dynamics in adipocyte lipid store fluctuation, Diabetes, vol.63, pp.4032-4044, 2014.

B. R. Thompson, S. Lobo, and D. A. Bernlohr, Fatty acid flux in adipocytes: the in's and out's of fat cell lipid trafficking, Molecular and cellular endocrinology, vol.318, pp.24-33, 2010.

S. L. Zhou, D. Stump, C. L. Kiang, L. M. Isola, and P. D. Berk, Mitochondrial aspartate aminotransferase expressed on the surface of 3T3-L1 adipocytes mediates saturable fatty acid uptake, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine, vol.208, pp.263-270, 1995.

L. P. Qiao, Transcriptional regulation of fatty acid Translocase/CD36 expression by CCAAT/Enhancer-binding protein alpha, J Biol Chem, vol.283, pp.8788-8795, 2008.

A. M. Hall, A. J. Smith, and D. A. Bernlohr, Characterization of the Acyl-CoA synthetase activity of purified murine fatty acid transport protein 1, J Biol Chem, vol.278, pp.43008-43013, 2003.

A. M. Hall, B. M. Wiczer, T. Herrmann, W. Stremmel, and D. A. Bernlohr, Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice, J Biol Chem, vol.280, pp.11948-11954, 2005.

A. Stahl, J. G. Evans, S. Pattel, D. Hirsch, and H. F. Lodish, Insulin causes fatty acid transport protein translocation and enhanced fatty acid uptake in adipocytes, Developmental cell, vol.2, pp.477-488, 2002.

A. Ost, U. Ortegren, J. Gustavsson, F. H. Nystrom, and P. Stralfors, Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes, J Biol Chem, vol.280, pp.5-8, 2005.

S. Lobo, B. M. Wiczer, and D. A. Bernlohr, Functional Analysis of Long-chain Acyl-CoA Synthetase 1 in 3T3-L1 Adipocytes, J Biol Chem, vol.284, pp.18347-18356, 2009.

M. A. Herman, A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism, Nature, vol.484, pp.333-366, 2012.

A. Strawford, F. Antelo, M. Christiansen, and M. K. Hellerstein, Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with (H2O)-H-2, Am J Physiol-Endoc M, vol.286, pp.577-588, 2004.

D. Sabater, Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability, Sci Rep-Uk, vol.4, 2014.

H. Cao, Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism, Cell, vol.134, pp.933-944, 2008.

M. M. Yore, Discovery of a class of endogenous mammalian lipids with antidiabetic and anti-inflammatory effects, Cell, vol.159, pp.318-332, 2014.

I. J. Lodhi, Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARgamma activation to decrease diet-induced obesity, Cell metabolism, vol.16, pp.189-201, 2012.

K. Iizuka, R. K. Bruick, G. Liang, J. D. Horton, and K. Uyeda, Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis

, Proc Natl Acad Sci U S A, vol.101, pp.7281-7286, 2004.

M. D. Bruss, C. F. Khambatta, M. A. Ruby, I. Aggarwal, and M. K. Hellerstein, Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates

, American journal of physiology. Endocrinology and metabolism, vol.298, pp.108-116, 2010.

Y. Tang, Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism, Nat Commun, vol.7, p.11365, 2016.

L. N. Cong, Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells, Molecular endocrinology, vol.11, pp.1881-1890, 1997.

K. Nagano, Tomosyn is a novel Akt substrate mediating insulin-dependent GLUT4 exocytosis, Int J Biochem Cell B, vol.62, pp.62-71, 2015.

J. Liu, A. Kimura, C. A. Baumann, and A. R. Saltiel, APS facilitates c-Cbl tyrosine phosphorylation and GLUT4 translocation in response to insulin in 3T3-L1 adipocytes, Molecular and cellular biology, vol.22, pp.3599-3609, 2002.

V. Ribon and A. R. Saltiel, Insulin stimulates tyrosine phosphorylation of the protooncogene product of c-Cbl in 3T3-L1 adipocytes, Biochem J, vol.324, pp.839-845, 1997.

S. H. Chiang, Insulin-stimulated GLUT4 translocation requires the CAPdependent activation of TC10, Nature, vol.410, pp.944-948, 2001.

E. D. Abel, Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver, Nature, vol.409, pp.729-733, 2001.

D. Leto and A. R. Saltiel, Regulation of glucose transport by insulin: traffic control of GLUT4, Nature reviews. Molecular cell biology, vol.13, pp.383-396, 2012.

R. E. Duncan, M. Ahmadian, K. Jaworski, E. Sarkadi-nagy, and H. S. Sul, Regulation of lipolysis in adipocytes, Annual review of nutrition, vol.27, pp.79-101, 2007.

G. Haemmerle, Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase, Science, vol.312, pp.734-737, 2006.

M. Schweiger, Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice, Nat Commun, vol.8, p.14859, 2017.

J. G. Granneman, H. P. Moore, R. Krishnamoorthy, and M. Rathod, Perilipin controls lipolysis by regulating the interactions of AB-hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl), J Biol Chem, vol.284, pp.34538-34544, 2009.

S. G. Young and R. Zechner, Biochemistry and pathophysiology of intravascular and intracellular lipolysis, Genes & development, vol.27, pp.459-484, 2013.

M. P. Czech, M. Tencerova, D. J. Pedersen, and M. Aouadi, Insulin signalling mechanisms for triacylglycerol storage, Diabetologia, vol.56, pp.949-964, 2013.

S. M. Choi, Insulin regulates adipocyte lipolysis via an Akt-independent signaling pathway, Molecular and cellular biology, vol.30, pp.5009-5020, 2010.

P. Chakrabarti and K. V. Kandror, FoxO1 controls insulin-dependent adipose triglyceride lipase (ATGL) expression and lipolysis in adipocytes, J Biol Chem, vol.284, pp.13296-13300, 2009.

J. Laurencikiene, Regulation of lipolysis in small and large fat cells of the same subject, The Journal of clinical endocrinology and metabolism, vol.96, pp.2045-2049, 2011.

I. G. Shabalina, UCP1 in Brite/Beige Adipose Tissue Mitochondria Is Functionally Thermogenic, Cell Rep, vol.5, pp.1196-1203, 2013.

S. Altshuler-keylin, Beige Adipocyte Maintenance Is Regulated by Autophagy-Induced Mitochondrial Clearance, Cell metabolism, vol.24, pp.402-419, 2016.

K. Shinoda, Genetic and functional characterization of clonally derived adult human brown adipocytes, Nat Med, vol.21, pp.389-394, 2015.

W. S. Wang, Ebf2 is a selective marker of brown and beige adipogenic precursor cells, P Natl Acad Sci, vol.111, pp.14466-14471, 2014.

L. Vishvanath, Pdgfr beta(+) Mural Preadipocytes Contribute to Adipocyte Hyperplasia Induced by High-Fat-Diet Feeding and Prolonged Cold Exposure in Adult Mice, Cell metabolism, vol.23, pp.350-359, 2016.

Y. W. Jiang, D. C. Berryit, and J. M. Grain, Distinct cellular and molecular mechanisms for beta 3 adrenergic receptor-induced beige adipocyte formation, Elife, vol.6, 2017.

Y. Zhang, Positional cloning of the mouse obese gene and its human homologue, Nature, vol.372, pp.425-432, 1994.

S. B. Baver, Leptin Modulates the Intrinsic Excitability of AgRP/NPY Neurons in the Arcuate Nucleus of the Hypothalamus, Journal of Neuroscience, vol.34, pp.5486-5496, 2014.

W. Zeng, Sympathetic neuro-adipose connections mediate leptin-driven lipolysis, Cell, vol.163, pp.84-94, 2015.

W. N. William, . Jr, R. B. Ceddia, and R. Curi, Leptin controls the fate of fatty acids in isolated rat white adipocytes, The Journal of endocrinology, vol.175, pp.735-744, 2002.

P. E. Scherer, S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish, A novel serum protein similar to C1q, produced exclusively in adipocytes, J Biol Chem, vol.270, pp.26746-26749, 1995.

P. E. Scherer, Adipose tissue -From lipid storage compartment to endocrine organ, Diabetes, vol.55, pp.1537-1545, 2006.

Y. Fu, N. Luo, R. L. Klein, and W. T. Garvey, Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation, Journal of lipid research, vol.46, pp.1369-1379, 2005.

A. H. Berg, T. P. Combs, X. Du, M. Brownlee, and P. E. Scherer, The adipocyte-secreted protein Acrp30 enhances hepatic insulin action, Nat Med, vol.7, pp.947-953, 2001.

M. Awazawa, Adiponectin suppresses hepatic SREBP1c expression in an

, AdipoR1/LKB1/AMPK dependent pathway, Biochem Biophys Res Commun, vol.382, pp.51-56, 2009.

X. M. Wang, Adiponectin improves NF-kappa B-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice, Lipids Health Dis, vol.15, 2016.

J. H. Stern, J. M. Rutkowski, P. E. Scherer, and . Adiponectin, Leptin, and Fatty Acids in the Maintenance of Metabolic Homeostasis through Adipose Tissue Crosstalk, Cell metabolism, vol.23, pp.770-784, 2016.

I. Aeberli, The increase of fatty acid-binding protein aP2 in overweight and obese children: interactions with dietary fat and impact on measures of subclinical inflammation, International journal of obesity, vol.32, pp.1513-1520, 2008.

L. E. Wu, Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity, Molecular metabolism, vol.3, pp.465-473, 2014.

D. Lamers, Dipeptidyl Peptidase 4 Is a Novel Adipokine Potentially Linking Obesity to the Metabolic Syndrome, Diabetes, vol.60, pp.1917-1925, 2011.

H. Sell, Adipose Dipeptidyl Peptidase-4 and Obesity Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro, Diabetes Care, vol.36, pp.4083-4090, 2013.

D. Rohrborn, J. Eckel, and H. Sell, Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells, Febs Lett, vol.588, pp.3870-3877, 2014.

S. S. Das, Regulation of dipeptidyl peptidase 4 production in adipocytes by glucose. Diabetes, metabolic syndrome and obesity : targets and therapy, vol.7, pp.185-194, 2014.

D. J. Drucker, Incretin Action in the Pancreas: Potential Promise, Possible Perils, and Pathological Pitfalls, Diabetes, vol.62, pp.3316-3323, 2013.

M. A. Nauck, Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications, The American journal of medicine, vol.124, pp.3-18, 2011.

M. J. Yoon, SIRT1-Mediated eNAMPT Secretion from Adipose Tissue Regulates Hypothalamic NAD+ and Function in Mice, Cell metabolism, vol.21, pp.706-717, 2015.

B. Gustafson and U. Smith, The WNT Inhibitor Dickkopf 1 and Bone Morphogenetic Protein 4 Rescue Adipogenesis in Hypertrophic Obesity in Humans, Diabetes, vol.61, pp.1217-1224, 2012.

T. Thomou, Adipose-derived circulating miRNAs regulate gene expression in other tissues, Nature, vol.542, p.450, 2017.

M. Fasshauer and M. Bluher, Adipokines in health and disease, Trends Pharmacol Sci, vol.36, pp.461-470, 2015.

F. Villarroya, P. Domingo, and M. Giralt, Lipodystrophy associated with highly active anti-retroviral therapy for HIV infection: the adipocyte as a target of anti-retroviralinduced mitochondrial toxicity, Trends Pharmacol Sci, vol.26, pp.88-93, 2005.

Y. Jiang, D. C. Berry, W. Tang, and J. M. Graff, Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis, Cell Rep, vol.9, pp.1007-1022, 2014.

Y. Macotela, Intrinsic Differences in Adipocyte Precursor Cells From Different White Fat Depots, Diabetes, vol.61, pp.1691-1699, 2012.

M. S. Rodeheffer, K. Birsoy, and J. M. Friedman, Identification of White Adipocyte Progenitor Cells In Vivo, Cell, vol.135, pp.240-249, 2008.

W. Tang, White fat progenitor cells reside in the adipose vasculature, Science, vol.322, pp.583-586, 2008.

J. Sanchez-gurmaches, W. Y. Hsiao, and D. A. Guertin, Highly Selective In Vivo Labeling of Subcutaneous White Adipocyte Precursors with Prx1-Cre, Stem Cell Rep, vol.4, pp.541-550, 2015.

Y. Y. Chau, Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source, Nat Cell Biol, vol.16, p.367, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00968725

Q. Q. Tang, T. C. Otto, and M. D. Lane, Commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage, Proc Natl Acad Sci U S A, vol.101, pp.9607-9611, 2004.

R. P. Brun, Differential activation of adipogenesis by multiple PPAR isoforms

, Genes & development, vol.10, pp.974-984, 1996.

Y. Xiong, Knockdown of both FoxO1 and C/EBP beta promotes adipogenesis in porcine preadipocytes through feedback regulation, Cell Biol Int, vol.37, pp.905-916, 2013.

M. I. Lefterova, PPAR gamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale, Genes & development, vol.22, pp.2941-2952, 2008.

E. D. Rosen, C/EBP alpha induces adipogenesis through PPAR gamma: a unified pathway, Genes & development, vol.16, pp.22-26, 2002.

Z. Wu, Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity, Molecular cell, vol.3, pp.151-158, 1999.

K. M. Zhang, W. Guo, Y. Yang, and J. R. Wu, JAK2/STAT3 Pathway Is Involved in the Early Stage of Adipogenesis Through Regulating C/EBP beta Transcription, Journal of cellular biochemistry, vol.112, pp.488-497, 2011.

S. W. Qian, BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis, Proc Natl Acad Sci U S A, vol.110, pp.798-807, 2013.

S. E. Ross, Inhibition of adipogenesis by Wnt signaling, Science, vol.289, pp.950-953, 2000.

H. S. Sul, C. Smas, B. Mei, and L. Zhou, Function of pref-1 as an inhibitor of adipocyte differentiation, International journal of obesity, vol.24, pp.15-19, 2000.

K. Lee, Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (pref-1), J Clin Invest, vol.111, pp.453-461, 2003.

J. Fang, Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1, P Natl Acad Sci, vol.114, pp.8352-8361, 2017.

J. Nakae, The forkhead transcription factor Foxo1 regulates adipocyte differentiation, Developmental cell, vol.4, pp.119-129, 2003.

E. Jing, S. Gesta, and C. R. Kahn, SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation, Cell metabolism, vol.6, pp.105-114, 2007.

K. Barnett, Epidemiology of multimorbidity and implications for health care, research, and medical education: a cross-sectional study, Lancet, vol.380, pp.37-43, 2012.

M. J. Toth and A. Tchernof, Lipid metabolism in the elderly, European journal of clinical nutrition, vol.54, pp.121-125, 2000.

A. R. Folsom, Body fat distribution and 5-year risk of death in older women, Jama, vol.269, pp.483-487, 1993.

J. L. Kuk, T. J. Saunders, L. E. Davidson, and R. Ross, Age-related changes in total and regional fat distribution, Ageing research reviews, vol.8, pp.339-348, 2009.

W. Lutz, W. Sanderson, and S. Scherbov, The coming acceleration of global population ageing, Nature, vol.451, pp.716-719, 2008.

C. Guillermier, Imaging mass spectrometry demonstrates age-related decline in human adipose plasticity, JCI insight, vol.2, p.90349, 2017.

P. Arner, Dynamics of human adipose lipid turnover in health and metabolic disease, Nature, vol.478, pp.110-113, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649210

J. Garbarino and S. L. Sturley, Saturated with fat: new perspectives on lipotoxicity, Current opinion in clinical nutrition and metabolic care, vol.12, pp.110-116, 2009.

T. Tchkonia, Fat tissue, aging, and cellular senescence, Aging Cell, vol.9, pp.667-684, 2010.

D. C. Berry, Cellular Aging Contributes to Failure of Cold-Induced Beige Adipocyte Formation in Old Mice and Humans, Cell metabolism, vol.25, pp.166-181, 2017.

M. Xu, Targeting senescent cells enhances adipogenesis and metabolic function in old age, Elife, vol.4, p.12997, 2015.

A. Bartke, Can growth hormone (GH) accelerate aging? Evidence from GH-transgenic mice, Neuroendocrinology, vol.78, pp.210-216, 2003.

M. B. Stout, Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice, Aging, vol.6, pp.575-586, 2014.

D. J. Baker, Clearance of p16Ink4a-positive senescent cells delays ageingassociated disorders, Nature, vol.479, pp.232-236, 2011.

T. Minamino, A crucial role for adipose tissue p53 in the regulation of insulin resistance, Nature medicine, vol.15, pp.1082-1087, 2009.

L. L. Listenberger, Triglyceride accumulation protects against fatty acid-induced lipotoxicity, Proc Natl Acad Sci U S A, vol.100, pp.3077-3082, 2003.

A. J. Donato, The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction, The Journal of physiology, vol.592, pp.4083-4096, 2014.

V. Nunes-souza, Aging Increases Susceptibility to High Fat Diet-Induced Metabolic Syndrome in C57BL/6 Mice: Improvement in Glycemic and Lipid Profile after Antioxidant Therapy, Oxid Med Cell Longev, 2016.

S. J. Spencer, High-fat diet and aging interact to produce neuroinflammation and impair hippocampal-and amygdalar-dependent memory, Neurobiology of aging, vol.58, pp.88-101, 2017.

A. F. Kamel, Age-dependent regulation of lipogenesis in human and rat adipocytes, The Journal of clinical endocrinology and metabolism, vol.89, pp.4601-4606, 2004.

R. I. Fink, P. Wallace, and J. M. Olefsky, Effects of aging on glucose-mediated glucose disposal and glucose transport, J Clin Invest, vol.77, pp.2034-2041, 1986.

S. P. Bapat, Depletion of fat-resident Treg cells prevents age-associated insulin resistance, Nature, vol.528, pp.137-141, 2015.

M. E. Starr, Gene expression profile of mouse white adipose tissue during inflammatory stress: age-dependent upregulation of major procoagulant factors, Aging Cell, vol.12, pp.194-206, 2013.

C. D. Camell, Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing, Nature, vol.550, pp.119-123, 2017.

E. Mennes, C. M. Dungan, S. Frendo-cumbo, D. L. Williamson, and D. C. Wright, Agingassociated reductions in lipolytic and mitochondrial proteins in mouse adipose tissue are not rescued by metformin treatment. The journals of gerontology. Series A, Biological sciences and medical sciences 69, pp.1060-1068, 2014.

C. D. Camell, Inflammasome-driven catecholamine catabolism in macrophages blunts lipolysis during ageing, Nature, vol.550, pp.119-123, 2017.

M. Gomez-serrano, Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes, Redox biology, vol.11, pp.415-428, 2017.

I. Soro-arnaiz, Role of Mitochondrial Complex IV in Age-Dependent Obesity, Cell reports, vol.16, pp.2991-3002, 2016.

A. S. Rambold, S. Cohen, and J. Lippincott-schwartz, Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics, Developmental cell, vol.32, pp.678-692, 2015.

J. Lee, J. M. Ellis, and M. J. Wolfgang, Adipose fatty acid oxidation is required for thermogenesis and potentiates oxidative stress-induced inflammation, Cell reports, vol.10, pp.266-279, 2015.

C. Argmann, Ppar gamma 2 Is a Key Driver of Longevity in the Mouse, Plos Genet, vol.5, 2009.

C. Argmann, Ppargamma2 is a key driver of longevity in the mouse, Plos Genet, vol.5, p.1000752, 2009.

C. M. Kitahara, Association between class III obesity (BMI of 40-59 kg/m2) and mortality: a pooled analysis of 20 prospective studies, PLoS medicine, vol.11, p.1001673, 2014.

S. Horvath, Obesity accelerates epigenetic aging of human liver, Proc Natl Acad Sci U S A, vol.111, pp.15538-15543, 2014.

B. H. Chen, DNA methylation-based measures of biological age: meta-analysis predicting time to death, Aging, vol.8, pp.1844-1865, 2016.

B. Vergoni, DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes, Diabetes, vol.65, pp.3062-3074, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01345698

A. L. Teixeira, Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer's disease, Neuromolecular medicine, vol.15, pp.115-121, 2013.

P. Imbeault, Aging per se does not influence glucose homeostasis: in vivo and in vitro evidence, Diabetes care, vol.26, pp.480-484, 2003.

N. Barzilai and G. Gupta, Interaction between aging and syndrome X: new insights on the pathophysiology of fat distribution, Annals of the New York Academy of Sciences, vol.892, pp.58-72, 1999.

F. H. Einstein, Differential responses of visceral and subcutaneous fat depots to nutrients, Diabetes, vol.54, pp.672-678, 2005.

D. Sawaki, Visceral Adipose Tissue Drives Cardiac Aging Through Modulation of Fibroblast Senescence by Osteopontin Production, Circulation, 2018.

B. A. Benayoun, E. A. Pollina, and A. Brunet, Epigenetic regulation of ageing: linking environmental inputs to genomic stability, Nature reviews. Molecular cell biology, vol.16, pp.593-610, 2015.

S. Han, Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan, Nature, vol.544, pp.185-190, 2017.

E. Bonzon-kulichenko, Changes in visceral adipose tissue plasma membrane lipid composition in old rats are associated with adipocyte hypertrophy with aging, Biological sciences and medical sciences, 2018.

R. Muzumdar, Visceral adipose tissue modulates mammalian longevity, Aging Cell, vol.7, pp.438-440, 2008.

M. C. Wang, E. J. O'rourke, and G. Ruvkun, Fat metabolism links germline stem cells and longevity in C. elegans, Science, vol.322, pp.957-960, 2008.

M. E. Giannakou, Long-lived Drosophila with overexpressed dFOXO in adult fat body, Science, vol.305, p.361, 2004.

D. S. Hwangbo, B. Gershman, M. P. Tu, M. Palmer, and M. Tatar, Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body, Nature, vol.429, pp.562-566, 2004.

D. E. Berryman, J. S. Christiansen, G. Johannsson, M. O. Thorner, and J. J. Kopchick, Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth hormone & IGF research : official journal of the Growth Hormone Research Society and the International IGF, Research Society, vol.18, pp.455-471, 2008.

V. L. Malloy, Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction, Aging Cell, vol.5, pp.305-314, 2006.

M. Bluher, Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance, Developmental cell, vol.3, pp.25-38, 2002.

M. Bluher, B. B. Kahn, and C. R. Kahn, Extended longevity in mice lacking the insulin receptor in adipose tissue, Science, vol.299, pp.572-574, 2003.

E. Takeda, Y. Suzuki, T. Yamada, H. Katagiri, and Y. Sato,

, Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor, Insulin Receptor Substrate 1, and Insulin Receptor Substrate 2 in Their White Adipose Tissue, Journal of aging research, vol.2017, p.9851380, 2017.

C. Xu, Selective overexpression of human SIRT1 in adipose tissue enhances energy homeostasis and prevents the deterioration of insulin sensitivity with ageing in mice, American journal of translational research, vol.5, pp.412-426, 2013.

C. Vernochet, Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance, Cell metabolism, vol.16, pp.765-776, 2012.

J. M. Ellis, Adipose acyl-CoA synthetase-1 directs fatty acids toward betaoxidation and is required for cold thermogenesis, Cell metabolism, vol.12, pp.53-64, 2010.

R. S. Streeper, Deficiency of the lipid synthesis enzyme, DGAT1, extends longevity in mice, Aging, vol.4, pp.13-27, 2012.

A. Canaan, Extended lifespan and reduced adiposity in mice lacking the FAT10 gene, Proc Natl Acad Sci U S A, vol.111, pp.5313-5318, 2014.

M. A. Mori, Role of microRNA processing in adipose tissue in stress defense and longevity, Cell metabolism, vol.16, pp.336-347, 2012.

S. Hyun, Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K, Cell, vol.139, pp.1096-1108, 2009.

C. M. Kroeger, Improvement in coronary heart disease risk factors during an intermittent fasting/calorie restriction regimen: Relationship to adipokine modulations, Nutrition & metabolism, vol.9, p.98, 2012.

R. C. Lee, R. L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, pp.843-854, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

B. J. Reinhart, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans, Nature, vol.403, pp.901-906, 2000.

M. Lagos-quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, Identification of novel genes coding for small expressed RNAs, Science, vol.294, pp.853-858, 2001.

R. C. Lee and V. Ambros, An extensive class of small RNAs in Caenorhabditis elegans, Science, vol.294, pp.862-864, 2001.

G. M. Borchert, W. Lanier, and B. L. Davidson, RNA polymerase III transcribes human microRNAs, Nature structural & molecular biology, vol.13, pp.1097-1101, 2006.

Y. Lee, MicroRNA genes are transcribed by RNA polymerase II, The EMBO journal, vol.23, pp.4051-4060, 2004.

D. P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, vol.136, pp.215-233, 2009.

S. Vasudevan, Y. Tong, and J. A. Steitz, Switching from repression to activation: microRNAs can up-regulate translation, Science, vol.318, pp.1931-1934, 2007.

Y. Peng and C. M. Croce, The role of MicroRNAs in human cancer, Signal transduction and targeted therapy, vol.1, p.15004, 2016.

M. Civelek, Genetic regulation of human adipose microRNA expression and its consequences for metabolic traits, Hum Mol Genet, vol.22, pp.3023-3037, 2013.

D. N. Pan, MicroRNA-378 controls classical brown fat expansion to counteract obesity, Nat Commun, vol.5, 2014.

C. Kim, TNFalpha-induced miR-130 resulted in adipocyte dysfunction during obesity-related inflammation, Febs Lett, 2013.

Y. F. Zhou, Tumor necrosis factor-a and interleukin-6 suppress microRNA-1275 transcription in human adipocytes through nuclear factor-kappa B, Mol Med Rep, vol.16, pp.5965-5971, 2017.

Y. F. Lv, Glucocorticoids Suppress the Browning of Adipose Tissue via miR-19b in Male Mice, Endocrinology, vol.159, pp.310-322, 2018.

N. Zhang, Adipokines and free fatty acids regulate insulin sensitivity by increasing microRNA-21 expression in human mature adipocytes, Mol Med Rep, vol.16, pp.2254-2258, 2017.

R. Qi, MicroRNA-224-5p regulates adipocyte apoptosis induced by TNFalpha via controlling NF-kappaB activation, J Cell Physiol, vol.233, pp.1236-1246, 2018.

R. Mudhasani, Dicer Is Required for the Formation of White But Not Brown Adipose Tissue, J Cell Physiol, vol.226, pp.1399-1406, 2011.

L. Chen, MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling, Sci Rep, vol.4, p.3819, 2014.

P. Dong, MiR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1, Acta biochimica et biophysica Sinica, vol.46, pp.565-571, 2014.

Q. Wang, miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130, Proc Natl Acad Sci U S A, vol.105, pp.2889-2894, 2008.

L. E. Zaragosi, Small RNA sequencing reveals miR-642a-3p as a novel adipocytespecific microRNA and miR-30 as a key regulator of human adipogenesis, Genome Biol, vol.12, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00626107

M. Karbiener, MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2, RNA biology, vol.8, pp.850-860, 2011.

M. H. Li, miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D, Biol Chem, vol.396, pp.235-244, 2015.

H. Li, miR-17-5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells, Stem cell research, vol.10, pp.313-324, 2013.

J. Ahn, H. Lee, C. H. Jung, T. I. Jeon, and T. Y. Ha, MicroRNA-146b promotes adipogenesis by suppressing the SIRT1-FOXO1 cascade, Embo Mol Med, vol.5, pp.1602-1612, 2013.

L. Wang, Obesity-Associated MiR-342-3p Promotes Adipogenesis of Mesenchymal Stem Cells by Suppressing CtBP2 and Releasing C/EBP alpha from CtBP2 Binding, Cellular Physiology and Biochemistry, vol.35, pp.2285-2298, 2015.

N. Nakanishi, The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice, Biochem Biophys Res Commun, vol.385, pp.492-496, 2009.

Z. Cai, J. Liu, H. Bian, J. Cai, and X. Guo, MiR-455 enhances adipogenic differentiation of 3T3-L1 cells through targeting uncoupling protein-1, Die Pharmazie, vol.71, pp.625-628, 2016.

T. W. Sun, M. G. Fu, A. L. Bookout, S. A. Kliewer, D. J. Mangelsdorf et al.,

3. Regulates and . Adipogenesis, Molecular endocrinology, vol.23, pp.925-931, 2009.

S. Y. Kim, miR-27a is a negative regulator of adipocyte differentiation via suppressing PPAR gamma expression, Biochem Bioph Res Co, vol.392, pp.323-328, 2010.

C. C. Hsu, C. Y. Lai, C. Y. Lin, K. Y. Yeh, and G. M. Her, MicroRNA-27b Depletion Enhances Endotrophic and Intravascular Lipid Accumulation and Induces Adipocyte Hyperplasia in Zebrafish, International journal of molecular sciences, p.19, 2017.

M. Karbiener, microRNA miR-27b impairs human adipocyte differentiation and targets PPAR gamma, Biochem Bioph Res Co, vol.390, p.251, 2009.

Y. J. Zhu, Downregulated miR-29a/b/c during Contact Inhibition Stage Promote 3T3-L1 Adipogenesis by Targeting DNMT3A, Plos One, vol.12, 2017.

N. L. Price, SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation, Molecular and cellular biology, vol.36, pp.1180-1193, 2016.

M. Cioffi, MiR-93 Controls Adiposity via Inhibition of Sirt7 and Tbx3, Cell Rep, vol.12, pp.1594-1605, 2015.

Y. Xu, MicroRNA-125a-5p Mediates 3T3-L1 Preadipocyte Proliferation and Differentiation, Molecules, vol.23, 2018.

E. K. Lee, miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression, Molecular and cellular biology, vol.31, pp.626-638, 2011.

S. H. Liu, Y. Yang, and J. R. Wu, TNF alpha-induced up-regulation of miR-155 inhibits adipogenesis by down-regulating early adipogenic transcription factors, Biochem Bioph Res Co, vol.414, pp.618-624, 2011.

L. Pang, miR-1275 inhibits adipogenesis via ELK1 and its expression decreases in obese subjects, Journal of molecular endocrinology, vol.57, pp.33-43, 2016.

M. A. Mori, Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy, J Clin Invest, vol.124, pp.3339-3351, 2014.

H. J. Kim, MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes, Diabetes, vol.63, pp.4045-4056, 2014.

A. Divoux, MicroRNA-196 Regulates HOX Gene Expression in Human Gluteal Adipose Tissue, Obesity, vol.25, pp.1375-1383, 2017.

J. D. Ma, Intrinsic Features in MicroRNA Transcriptomes Link Porcine Visceral Rather than Subcutaneous Adipose Tissues to Metabolic Risk, Plos One, vol.8, 2013.

R. M. Li, MiR-145 improves macrophage-mediated inflammation through targeting Arf6, Endocrine, vol.60, pp.73-82, 2018.

A. Jaiswal, S. S. Reddy, M. Maurya, P. Maurya, and M. K. Barthwal, MicroRNA-99a mimics inhibit M1 macrophage phenotype and adipose tissue inflammation by targeting TNFalpha, Cellular & molecular immunology, 2018.

R. J. Frost and E. Olson, Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs, P Natl Acad Sci, vol.108, pp.21075-21080, 2011.

M. R. Diawara, Adaptive Expression of MicroRNA-125a in Adipose Tissue in Response to Obesity in Mice and Men, Plos One, vol.9, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01345157

M. Trajkovski, MicroRNAs 103 and 107 regulate insulin sensitivity, Nature, vol.474, pp.649-653, 2011.

E. H. Koh, Mitochondrial Activity in Human White Adipocytes Is Regulated by the Ubiquitin Carrier Protein 9/microRNA-30a Axis, The Journal of biological chemistry, vol.291, pp.24747-24755, 2016.

F. Hu, miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140, Diabetes, vol.64, pp.2056-2068, 2015.

M. Giroud, Let-7i-5p represses brite adipocyte function in mice and humans, Sci Rep, vol.6, p.28613, 2016.

M. Giroud, miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function, Molecular metabolism, vol.5, pp.615-625, 2016.

W. Liu, miR-133a regulates adipocyte browning in vivo, Plos Genet, vol.9, p.1003626, 2013.

H. Ding, Fasting induces a subcutaneous-to-visceral fat switch mediated by microRNA-149-3p and suppression of PRDM16, Nat Commun, vol.7, p.11533, 2016.

N. Kloting, MicroRNA expression in human omental and subcutaneous adipose tissue, Plos One, vol.4, p.4699, 2009.

M. Trabucchi, The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs, Nature, vol.459, pp.1010-1014, 2009.

Y. Y. Lin, KSRP and MicroRNA 145 are negative regulators of lipolysis in white adipose tissue, Molecular and cellular biology, vol.34, pp.2339-2349, 2014.

L. Ling, V. A. Kokoza, C. Zhang, E. Aksoy, and A. S. Raikhel, MicroRNA-277 targets insulin-like peptides 7 and 8 to control lipid metabolism and reproduction in Aedes aegypti mosquitoes, Proc Natl Acad Sci U S A, vol.114, pp.8017-8024, 2017.

S. K. Das, Micro RNA-124a regulates lipolysis via adipose triglyceride lipase and comparative gene identification 58, International journal of molecular sciences, vol.16, pp.8555-8568, 2015.

A. M. Johnson and J. M. Olefsky, The origins and drivers of insulin resistance, Cell, vol.152, pp.673-684, 2013.

A. Jones, Signatures of Insulin Resistance in Obesity. Obesity, vol.25, pp.1734-1744, 2017.

G. Xu, MiR-26b modulates insulin sensitivity in adipocytes by interrupting the PTEN/PI3K/AKT pathway, International journal of obesity, vol.39, pp.1523-1530, 2015.

T. Y. Chuang, MicroRNA-223 Expression is Upregulated in Insulin Resistant Human Adipose Tissue, Journal of diabetes research, p.943659, 2015.

Y. H. Chen, miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance, Diabetes, vol.62, pp.2278-2286, 2013.

Y. L. Zhu, miR-146b Inhibits Glucose Consumption by Targeting IRS1 Gene in Porcine Primary Adipocytes, International journal of molecular sciences, vol.19, 2018.

J. Peng, MiR-377 promotes white adipose tissue inflammation and decreases insulin sensitivity in obesity via suppression of sirtuin-1 (SIRT1), Oncotarget, vol.8, pp.70550-70563, 2017.

J. Peng, miR-221 negatively regulates inflammation and insulin sensitivity in white adipose tissue by repression of sirtuin-1 (SIRT1), Journal of cellular biochemistry, 2017.

W. Ying, Adipose Tissue Macrophage-Derived Exosomal miRNAs Can Modulate In Vivo and, In Vitro Insulin Sensitivity. Cell, vol.171, p.312, 2017.

R. Mysore, MicroRNA-192* impairs adipocyte triglyceride storage, Biochimica et biophysica acta, vol.1861, pp.342-351, 2016.

I. Gerin, Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis, American journal of physiology. Endocrinology and metabolism, vol.299, pp.198-206, 2010.

I. Dahlman, Comprehensive functional screening of miRNAs involved in fat cell insulin sensitivity among women, American journal of physiology. Endocrinology and metabolism, vol.312, pp.482-494, 2017.

R. Qi, Expression Pattern and Regulatory Role of microRNA-23a in Conjugated Linoleic Acids-Induced Apoptosis of Adipocytes. Cellular physiology and biochemistry : international journal of experimental cellular physiology, vol.40, pp.668-680, 2016.

Z. Zhang, S. Wu, S. Muhammad, Q. Ren, and C. Sun, promote ER stressmediated apoptosis via targeting the Wnt3a/beta-catenin/ATF6 pathway in preadipocytes, Journal of lipid research, vol.59, pp.843-853, 2018.

J. Roos, miR-146a-mediated suppression of the inflammatory response in human adipocytes, Sci Rep, vol.6, p.38339, 2016.

A. D. Gaudet, miR-155 Deletion in Female Mice Prevents Diet-Induced Obesity, Sci Rep, vol.6, p.22862, 2016.

F. J. Ortega, MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation, Plos One, vol.5, p.9022, 2010.

T. Fu, MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function, Molecular and cellular biology, vol.34, pp.4130-4142, 2014.

C. Thery, S. Amigorena, G. Raposo, and A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Current protocols in cell biology Chapter, vol.3, p.22, 2006.

B. Gyorgy, Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cellular and molecular life sciences : CMLS 68, pp.2667-2688, 2011.

Z. B. Deng, Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance, Diabetes, vol.58, pp.2498-2505, 2009.

A. Fleury, Hedgehog associated to microparticles inhibits adipocyte differentiation via a non-canonical pathway, Sci Rep, vol.6, p.23479, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01304661

M. Durcin, Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles, Journal of extracellular vesicles, vol.6, p.1305677, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01606680

Y. Chen, Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity, Nature communications, vol.7, p.11420, 2016.

J. R. Sarkanen, Human adipose tissue extract induces angiogenesis and adipogenesis in vitro, Tissue engineering. Part A, vol.18, pp.17-25, 2012.

J. Li, Secretory factors from rat adipose tissue explants promote adipogenesis and angiogenesis, Artificial organs, vol.38, pp.33-45, 2014.

Y. Zhang, miR-450a-5p within rat adipose tissue exosome-like vesicles promotes adipogenic differentiation by targeting WISP2, Journal of cell science, vol.130, pp.1158-1168, 2017.

Y. Zhang, Adipocyte-derived microvesicles from obese mice induce M1 macrophage phenotype through secreted miR-155, Journal of molecular cell biology, vol.8, pp.505-517, 2016.

S. Z. Duan, C. Y. Ivashchenko, M. W. Russell, D. S. Milstone, and R. M. Mortensen,

, Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice, Circulation research, vol.97, pp.372-379, 2005.

Y. Liu, Metabonomic profiling revealed an alteration in purine nucleotide metabolism associated with cardiac hypertrophy in rats treated with thiazolidinediones, Journal of proteome research, vol.12, pp.5634-5641, 2013.

X. Fang, Adipocyte-specific loss of PPARgamma attenuates cardiac hypertrophy, JCI insight, vol.1, p.89908, 2016.

N. Kosaka, Secretory mechanisms and intercellular transfer of microRNAs in living cells, The Journal of biological chemistry, vol.285, pp.17442-17452, 2010.

S. Ressler, p16INK4A is a robust in vivo biomarker of cellular aging in human skin, Aging Cell, vol.5, pp.379-389, 2006.

A. Perl, mTOR activation is a biomarker and a central pathway to autoimmune disorders, cancer, obesity, and aging, Annals of the New York Academy of Sciences, vol.1346, pp.33-44, 2015.

C. R. Balistreri, G. Candore, G. Accardi, G. Colonna-romano, and D. Lio, NF-kappaB pathway activators as potential ageing biomarkers: targets for new therapeutic strategies, Immunity & ageing : I & A, vol.10, p.24, 2013.

S. H. Cho, SIRT1 deficiency in microglia contributes to cognitive decline in aging and neurodegeneration via epigenetic regulation of IL-1beta, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.35, pp.807-818, 2015.

N. Noren-hooten, Metformin-mediated increase in DICER1 regulates microRNA expression and cellular senescence, Aging Cell, vol.15, pp.572-581, 2016.

S. Inukai, Z. Pincus, A. De-lencastre, and F. J. Slack, A microRNA feedback loop regulates global microRNA abundance during aging, Rna, vol.24, pp.159-172, 2018.

C. D. Green, Impact of Dietary Interventions on Noncoding RNA Networks and mRNAs Encoding Chromatin-Related Factors, Cell Rep, vol.18, pp.2957-2968, 2017.

S. Wang, X. C. Liu, and Z. J. Sun, MicroRNA-150 Knockout (miR150-KO) Prevents Age-Related Glucose Intolerance and Extends Life-Span, Faseb J, vol.29, 2015.

M. Boehm and F. J. Slack, MicroRNA control of lifespan and metabolism, Cell cycle, vol.5, pp.837-840, 2006.

P. Xu, S. Y. Vernooy, M. Guo, and B. A. Hay, The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism, Current biology : CB, vol.13, pp.790-795, 2003.

J. J. Dupont, Vascular mineralocorticoid receptor regulates microRNA-155 to promote vasoconstriction and rising blood pressure with aging, JCI insight, vol.1, p.88942, 2016.

S. Zhu, MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2, Circulation research, vol.112, pp.152-164, 2013.

J. Heid, Age-dependent increase of oxidative stress regulates microRNA-29 family preserving cardiac health, Sci Rep, vol.7, p.16839, 2017.

R. A. Boon, MicroRNA-29 in Aortic Dilation: Implications for Aneurysm Formation, Circulation research, vol.109, pp.1115-1166, 2011.

R. Menghini, MicroRNA 217 Modulates Endothelial Cell Senescence via Silent Information Regulator 1, Circulation, vol.120, pp.1524-1102, 2009.

R. A. Boon, MicroRNA-34a regulates cardiac ageing and function, Nature, vol.495, pp.107-110, 2013.

V. Jazbutyte, MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart, Age, vol.35, pp.747-762, 2013.

W. W. Du, The microRNA miR-17-3p inhibits mouse cardiac fibroblast senescence by targeting Par4, Journal of cell science, vol.128, pp.293-304, 2015.

P. Che, miR-125a-5p impairs endothelial cell angiogenesis in aging mice via RTEF-1 downregulation, Aging Cell, vol.13, pp.926-934, 2014.

M. Vasa-nicotera, miR-146a is modulated in human endothelial cell with aging, Atherosclerosis, vol.217, pp.326-330, 2011.

M. J. Drummond, Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis, Physiological genomics, vol.43, pp.595-603, 2011.

J. Y. Kim, Genome-wide profiling of the microRNA-mRNA regulatory network in skeletal muscle with aging, Aging, vol.6, pp.524-544, 2014.

K. P. Lee, miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4, Genes & development, vol.29, pp.1605-1617, 2015.

C. J. Li, MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation, J Clin Invest, vol.125, pp.1509-1522, 2015.

C. Davis, MicroRNA-183-5p Increases with Age in Bone-Derived Extracellular Vesicles, Suppresses Bone Marrow Stromal (Stem) Cell Proliferation, and Induces Stem Cell Senescence, Tissue Eng Pt A, vol.23, pp.1231-1240, 2017.

O. C. Maes, J. An, H. Sarojini, and E. Wang, Murine microRNAs implicated in liver functions and aging process, Mech Ageing Dev, vol.129, pp.534-541, 2008.

D. J. Bates, MicroRNA regulation in Ames dwarf mouse liver may contribute to delayed aging, Aging Cell, vol.9, pp.1-18, 2010.

J. H. Kim, Reverse Expression of Aging-Associated Molecules through Transfection of miRNAs to Aged Mice, Molecular therapy. Nucleic acids, vol.6, pp.106-115, 2017.

J. L. Zhao, D. S. Rao, R. M. O'connell, Y. Garcia-flores, and D. Baltimore, MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice, vol.2, 2013.

J. B. Lin, Macrophage microRNA-150 promotes pathological angiogenesis as seen in age-related macular degeneration, JCI insight, vol.3, 2018.

L. Hayflick, The Limited in Vitro Lifetime of Human Diploid Cell Strains, Experimental cell research, vol.37, pp.614-636, 1965.

K. M. Aird and R. Zhang, Detection of senescence-associated heterochromatin foci (SAHF), Methods in molecular biology, vol.965, pp.185-196, 2013.

J. M. Van-deursen, The role of senescent cells in ageing, Nature, vol.509, pp.439-446, 2014.

D. J. Baker, Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, vol.530, pp.184-189, 2016.

H. Takai, A. Smogorzewska, and T. De-lange, DNA damage foci at dysfunctional telomeres, Current biology : CB, vol.13, pp.1549-1556, 2003.

P. Yaswen and M. R. Stampfer, Molecular changes accompanying senescence and immortalization of cultured human mammary epithelial cells, The international journal of biochemistry & cell biology, vol.34, pp.1382-1394, 2002.

F. Rodier and J. Campisi, Four faces of cellular senescence, The Journal of cell biology, vol.192, pp.547-556, 2011.

Y. M. Wang, R. Medvid, C. Melton, R. Jaenisch, and R. Blelloch, DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal, Nat Genet, vol.39, pp.380-385, 2007.

D. Gomez-cabello, DGCR8-mediated disruption of miRNA biogenesis induces cellular senescence in primary fibroblasts, Aging Cell, vol.12, pp.923-931, 2013.

M. Benhamed, U. Herbig, T. Ye, A. Dejean, and O. Bischof, Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells, Nat Cell Biol, vol.14, pp.266-275, 2012.

M. G. Overhoff, Cellular senescence mediated by p16INK4A-coupled miRNA pathways, Nucleic acids research, vol.42, pp.1606-1618, 2014.

L. X. Hong, The miR-17-92 Cluster of MicroRNAs Confers Tumorigenicity by Inhibiting Oncogene-Induced Senescence, Cancer Res, vol.70, pp.8547-8557, 2010.

S. Disayabutr, miR-34 miRNAs Regulate Cellular Senescence in Type II Alveolar Epithelial Cells of Patients with Idiopathic Pulmonary Fibrosis, Plos One, vol.11, p.158367, 2016.

I. Martinez, D. Cazalla, L. L. Almstead, J. A. Steitz, and D. Dimaio, miR-29 and miR-30 regulate B-Myb expression during cellular senescence, Proc Natl Acad Sci U S A, vol.108, pp.522-527, 2011.

K. Johung, E. C. Goodwin, and D. Dimaio, Human papillomavirus E7 repression in cervical carcinoma cells initiates a transcriptional cascade driven by the retinoblastoma family, resulting in senescence, Journal of virology, vol.81, pp.2102-2116, 2007.

Z. Hu, MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways, Aging, vol.6, pp.160-175, 2014.

K. H. Shin, Identification of senescence-inducing microRNAs in normal human keratinocytes, International journal of oncology, vol.39, pp.1205-1211, 2011.

H. Al-khalaf and . Aboussekhra, A. p16 Controls p53 Protein Expression through miRdependent Destabilization of MDM2, Molecular cancer research : MCR, 2018.

R. S. Gonzalez, C. M. Mcclain, B. K. Chamberlain, C. M. Coffin, and J. M. Cates, Cyclindependent kinase inhibitor 2A (p16) distinguishes well-differentiated liposarcoma from lipoma, Histopathology, vol.62, pp.1109-1111, 2013.

T. Von-zglinicki and C. M. Martin-ruiz, Telomeres as biomarkers for ageing and agerelated diseases, Current molecular medicine, vol.5, pp.197-203, 2005.

G. Gavory, M. Farrow, and S. Balasubramanian, Minimum length requirement of the alignment domain of human telomerase RNA to sustain catalytic activity in vitro, Nucleic acids research, vol.30, pp.4470-4480, 2002.

M. A. Blasco, Telomere shortening and tumor formation by mouse cells lacking telomerase RNA, Cell, vol.91, pp.25-34, 1997.

M. Okada, Abrogation of Age-Induced MicroRNA-195 Rejuvenates the Senescent Mesenchymal Stem Cells by Reactivating Telomerase, Stem cells, vol.34, pp.148-159, 2016.

K. Burger, Nuclear phosphorylated Dicer processes double-stranded RNA in response to DNA damage, The Journal of cell biology, vol.216, pp.2373-2389, 2017.

J. H. Cho, M. Dimri, and G. P. Dimri, MicroRNA-31 is a transcriptional target of histone deacetylase inhibitors and a regulator of cellular senescence, J Biol Chem, vol.290, pp.10555-10567, 2015.

X. Y. Bai, miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes, Journal of the American Society of Nephrology : JASN, vol.22, pp.1252-1261, 2011.

E. R. Stadtman, Protein oxidation in aging and age-related diseases, Annals of the New York Academy of Sciences, vol.928, pp.22-38, 2001.

R. S. Sohal and R. Weindruch, Oxidative stress, caloric restriction, and aging, Science, vol.273, pp.59-63, 1996.

M. C. Wang, D. Bohmann, and H. Jasper, JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling, Cell, vol.121, pp.115-125, 2005.

M. Tatar, A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function, Science, vol.292, pp.107-110, 2001.

C. Selman, Ribosomal protein S6 kinase 1 signaling regulates mammalian life span, Science, vol.326, pp.140-144, 2009.

J. Wang, Differential microRNA expression profiles and bioinformatics analysis between young and aging spontaneously hypertensive rats, International journal of molecular medicine, vol.41, pp.1584-1594, 2018.

K. T. Howitz, Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature, vol.425, pp.191-196, 2003.

A. Kogure, M. Uno, T. Ikeda, and E. Nishida, The microRNA machinery regulates fasting-induced changes in gene expression and longevity in Caenorhabditis elegans, The Journal of biological chemistry, vol.292, pp.11300-11309, 2017.

M. Vora, Deletion of microRNA-80 Activates Dietary Restriction to Extend C. elegans Healthspan and Lifespan, Plos Genet, vol.9, 2013.

T. Smith-vikos, MicroRNAs mediate dietary-restriction-induced longevity through PHA-4/FOXA and SKN-1/Nrf transcription factors, Current biology : CB, vol.24, pp.2238-2246, 2014.

F. C. Reis, Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice, Aging, vol.8, pp.1201-1222, 2016.

K. Makwana, Aging and calorie restriction regulate the expression of miR-125a-5p and its target genes Stat3, Casp2 and Stard13, Aging, vol.9, pp.1825-1843, 2017.

A. Khanna, S. Muthusamy, R. Liang, H. Sarojini, and E. Wang, Gain of survival signaling by down-regulation of three key miRNAs in brain of calorie-restricted mice, Aging, vol.3, pp.223-236, 2011.

A. Schneider, Caloric restriction impacts plasma microRNAs in rhesus monkeys, Aging Cell, vol.16, pp.1200-1203, 2017.

M. Owczarz, miR-34a and miR-9 are overexpressed and SIRT genes are downregulated in peripheral blood mononuclear cells of aging humans, Experimental biology and medicine, vol.242, pp.1453-1461, 2017.

Y. Guo, Kallistatin reduces vascular senescence and aging by regulating microRNA-34a-SIRT1 pathway, Aging Cell, vol.16, pp.837-846, 2017.

H. Xiong, Activation of miR-34a/SIRT1/p53 signaling contributes to cochlear hair cell apoptosis: implications for age-related hearing loss, Neurobiology of aging, vol.36, pp.1692-1701, 2015.

A. Lang, MicroRNA-15b regulates mitochondrial ROS production and the senescence-associated secretory phenotype through sirtuin 4/SIRT4, Aging, vol.8, pp.484-505, 2016.

R. A. Mccord, SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair, Aging, vol.1, pp.109-121, 2009.

Z. Mao, SIRT6 promotes DNA repair under stress by activating PARP1, Science, vol.332, pp.1443-1446, 2011.

Y. Kanfi, The sirtuin SIRT6 regulates lifespan in male mice, Nature, vol.483, pp.218-221, 2012.

A. Sharma, The role of SIRT6 protein in aging and reprogramming of human induced pluripotent stem cells, J Biol Chem, vol.288, pp.18439-18447, 2013.

M. Rodbell, Metabolism of Isolated Fat Cells. I. Effects of Hormones on Glucose Metabolism and Lipolysis, J Biol Chem, vol.239, pp.375-380, 1964.

H. Green and M. Meuth, An established pre-adipose cell line and its differentiation in culture, Cell, vol.3, pp.127-133, 1974.

O. A. Macdougald, C. S. Hwang, H. Fan, and M. D. Lane, Regulated expression of the obese gene product (leptin) in white adipose tissue and 3T3-L1 adipocytes, Proc Natl Acad Sci U S A, vol.92, pp.9034-9037, 1995.

N. Moustaid, B. H. Jones, and J. W. Taylor, Insulin increases lipogenic enzyme activity in human adipocytes in primary culture, The Journal of nutrition, vol.126, pp.865-870, 1996.

C. W. Patrick, . Jr, P. B. Chauvin, J. Hobley, and G. P. Reece, Preadipocyte seeded PLGA scaffolds for adipose tissue engineering, Tissue engineering, vol.5, pp.139-151, 1999.

J. R. Mauney, Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds, Biomaterials, vol.28, pp.5280-5290, 2007.

C. Fischbach, Three-dimensional in vitro model of adipogenesis: comparison of culture conditions, Tissue engineering, vol.10, pp.215-229, 2004.

M. Halbleib, T. Skurk, C. De-luca, D. Von-heimburg, and H. Hauner, Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds, Biomaterials, vol.24, pp.3125-3132, 2003.

X. Kang, Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds, Biomaterials, vol.28, pp.450-458, 2007.

R. M. Shanti, In vitro adipose tissue engineering using an electrospun nanofibrous scaffold, Annals of plastic surgery, vol.61, pp.566-571, 2008.

P. Krontiras, P. Gatenholm, and D. A. Hagg, Adipogenic differentiation of stem cells in three-dimensional porous bacterial nanocellulose scaffolds, Journal of biomedical materials research. Part B, Applied biomaterials, vol.103, pp.195-203, 2015.

F. Louis, A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes, Biotechnology and bioengineering, vol.114, pp.1813-1824, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02377927

P. A. Turner, L. M. Harris, C. A. Purser, R. C. Baker, and A. V. Janorkar, A surface-tethered spheroid model for functional evaluation of 3T3-L1 adipocytes, Biotechnology and bioengineering, vol.111, pp.174-183, 2014.

H. Sugihara, N. Yonemitsu, S. Miyabara, and K. Yun, Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties, Differentiation, vol.31, pp.42-49, 1986.

H. H. Zhang, S. Kumar, A. H. Barnett, and M. C. Eggo, Ceiling culture of mature human adipocytes: use in studies of adipocyte functions, The Journal of endocrinology, vol.164, pp.119-128, 2000.

H. Sugihara, Unilocular fat cells in three-dimensional collagen gel matrix culture, Journal of lipid research, vol.29, pp.691-697, 1988.

G. Maurizi, Human White Adipocytes Convert Into "Rainbow, Adipocytes In Vitro. J Cell Physiol, vol.232, pp.2887-2899, 2017.

F. C. Reis, Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice, Aging-Us, vol.8, pp.1201-1222, 2016.

M. A. Mori, Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy, J Clin Invest, vol.124, pp.3339-3351, 2014.

B. Chaurasia, Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism, Cell metabolism, vol.24, pp.820-834, 2016.

D. B. Zorov, M. Juhaszova, and S. J. Sollott, Mitochondrial Reactive Oxygen Species (Ros) and Ros-Induced Ros Release, Physiol Rev, vol.94, pp.909-950, 2014.

L. O. Klotz, Redox regulation of FoxO transcription factors, Redox biology, vol.6, pp.51-72, 2015.

E. C. Ferber, FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression, Cell death and differentiation, vol.19, pp.968-979, 2012.

X. S. Zhao, Multiple elements regulate nuclear/cytoplasmic shuttling of FOX01: characterization of phosphorylation-and 14-3-3-dependent and -independent mechanisms, Biochem J, vol.378, pp.839-849, 2004.

A. E. Webb and A. Brunet, FOXO transcription factors: key regulators of cellular quality control, Trends in biochemical sciences, vol.39, pp.159-169, 2014.

X. Y. Jing, X. F. Yang, K. Qing, and Y. Ou-yang, Roles of the lipid metabolism in hepatic stellate cells activation big up tri, open. Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih 28, pp.233-236, 2013.

S. Bijland, S. J. Mancini, and I. P. Salt, Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation, Clinical science, vol.124, pp.491-507, 2013.

A. Abbott, Reduced-calorie diet shows signs of slowing ageing in people, Nature, vol.555, pp.570-571, 2018.

C. Lopez-otin, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, The hallmarks of aging, Cell, vol.153, pp.1194-1217, 2013.

R. I. Fink, O. G. Kolterman, J. Griffin, and J. M. Olefsky, Mechanisms of insulin resistance in aging, J Clin Invest, vol.71, pp.1523-1535, 1983.

M. Ogrodnik, Cellular senescence drives age-dependent hepatic steatosis, Nat Commun, vol.8, p.15691, 2017.

M. E. Cleasby, P. M. Jamieson, and P. J. Atherton, Insulin resistance and sarcopenia: mechanistic links between common co-morbidities, The Journal of endocrinology, vol.229, pp.67-81, 2016.

M. Noureddin, Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients, Hepatology, vol.58, pp.1644-1654, 2013.

G. D. Cartee, R. T. Hepple, M. M. Bamman, and J. R. Zierath, Exercise Promotes Healthy Aging of Skeletal Muscle, Cell metabolism, vol.23, pp.1034-1047, 2016.

J. Honek, Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues, Proc Natl Acad Sci U S A, vol.111, pp.14906-14911, 2014.

B. Chaurasia, Adipocyte Ceramides Regulate Subcutaneous Adipose Browning, Inflammation, and Metabolism, Cell metabolism, vol.24, pp.820-834, 2016.

H. Matsuzaki, Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation, Proc Natl Acad Sci U S A, vol.102, pp.11278-11283, 2005.

R. Martins, G. J. Lithgow, and W. Link, Long live FOXO: unraveling the role of FOXO proteins in aging and longevity, Aging Cell, vol.15, pp.196-207, 2016.

J. F. Morley, H. R. Brignull, J. J. Weyers, and R. I. Morimoto, The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans, Proc Natl Acad Sci U S A, vol.99, pp.10417-10422, 2002.

A. E. Webb and A. Brunet, FOXO transcription factors: key regulators of cellular quality control, Trends in biochemical sciences, vol.39, pp.159-169, 2014.

B. D. Harfe, M. T. Mcmanus, J. H. Mansfield, E. Hornstein, and C. J. Tabin, The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb, P Natl Acad Sci, vol.102, pp.10898-10903, 2005.

A. Sassmann, S. Offermanns, and N. Wettschureck, Tamoxifen-Inducible Cre-Mediated Recombination in Adipocytes, Genesis, vol.48, pp.618-625, 2010.

J. Rumin, The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae, Biotechnol Biofuels, vol.8, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01247087

M. Galarraga, Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections, Journal of lipid research, vol.53, pp.2791-2796, 2012.

H. H. Zhang, S. Kumar, A. H. Barnett, and M. C. Eggo, Ceiling culture of mature human adipocytes: use in studies of adipocyte functions, Journal of Endocrinology, vol.164, pp.119-128, 2000.

A. R. Thiam, R. V. Farese, and T. C. Walther, The biophysics and cell biology of lipid droplets, Nat Rev Mol Cell Bio, vol.14, pp.775-786, 2013.

C. W. Wang, Lipid droplet dynamics in budding yeast, Cellular and Molecular Life Sciences, vol.72, pp.2677-2695, 2015.

A. Copic, A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets, Nat Commun, vol.9, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02109449

K. Tauchi-sato, S. Ozeki, T. Houjou, R. Taguchi, and T. Fujimoto, The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition, J Biol Chem, vol.277, pp.44507-44512, 2002.

H. M. Pyle, Glycerol Preservation of Red Blood Cells, Cryobiology, vol.51, pp.57-60, 1964.