, World Health Organization et al. Antimicrobial resistance: global report on surveillance. World Health Organization, 2014.

, World Health Organization et al. High levels of antibiotic resistance found worldwide, new data shows, Saudi Medical Journal, vol.39, issue.4, pp.430-431, 2018.

E. Tacconelli, E. Carrara, A. Savoldi, S. Harbarth, M. Mendelson et al., Discovery, research, and development of new antibiotics: the who priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet Infectious Diseases, vol.18, pp.318-327, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02347423

T. Kudinha, R. James, . Johnson, D. Scott, F. Andrew et al., Escherichia coli sequence type 131 (st131) as a prominent cause of antibiotic resistance among urinary escherichia coli isolates from reproductiveage women, Journal of clinical microbiology, p.1315, 2013.

Y. Sáenz, L. Briñas, E. Domínguez, J. Ruiz, M. Zarazaga et al., Mechanisms of resistance in multiple-antibioticresistant escherichia coli strains of human, animal, and food origins, Antimicrobial agents and chemotherapy, vol.48, issue.10, pp.3996-4001, 2004.

D. Philip, . Lister, J. Daniel, N. D. Wolter, and . Hanson, Antibacterial-resistant pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clinical microbiology reviews, vol.22, issue.4, pp.582-610, 2009.

J. Hugonnet, W. Lee, H. I. Tremblay, C. E. Boshoff, J. Barry et al., Meropenem-clavulanate is effective against extensively drugresistant mycobacterium tuberculosis, Science, vol.323, issue.5918, pp.1215-1218, 2009.

F. Perez, A. M. Hujer, K. M. Hujer, K. Brooke, P. N. Decker et al., Global challenge of multidrug-resistant acinetobacter baumannii, Antimicrobial agents and chemotherapy, vol.51, issue.10, pp.3471-3484, 2007.

L. Dijkshoorn, A. Nemec, and H. Seifert, An increasing threat in hospitals: multidrug-resistant acinetobacter baumannii, Nature reviews microbiology, vol.5, issue.12, p.939, 2007.

M. Exner, S. Bhattacharya, B. Christiansen, J. Gebel, P. Goroncy-bermes et al., Antibiotic resistance: What is so special about multidrug-resistant gram-negative bacteria?, GMS hygiene and infection control, p.12, 2017.

L. Edo, R. Kussell, N. Q. Kishony, S. Balaban, and . Leibler, Bacterial persistence: a model of survival in changing environments, Genetics, 2005.

K. Thomas, . Wood, J. Stephen, B. W. Knabel, and . Kwan, Bacterial persister cell formation and dormancy, Applied and environmental microbiology, vol.79, issue.23, pp.7116-7121, 2013.

. Nadia-r-cohen, A. Michael, J. Lobritz, and . Collins, Microbial persistence and the road to drug resistance, Cell host & microbe, vol.13, issue.6, pp.632-642, 2013.

S. Philip, J. Stewart, and . William-costerton, Antibiotic resistance of bacteria in biofilms. The lancet, vol.358, pp.135-138, 2001.

A. Gardner, A. Stuart, A. S. West, and . Griffin, Is bacterial persistence a social trait, PLoS One, vol.2, issue.8, p.752, 2007.

P. Lyon, The cognitive cell: bacterial behavior reconsidered, Frontiers in microbiology, vol.6, p.264, 2015.

E. Ben-jacob, Social behavior of bacteria: from physics to complex organization, The European Physical Journal B, vol.65, issue.3, pp.315-322, 2008.

N. Høiby, A short history of microbial biofilms and biofilm infections, Apmis, vol.125, issue.4, pp.272-275, 2017.

T. Arthur and . Henrici, Studies of freshwater bacteria: I. a direct microscopic technique, Journal of bacteriology, vol.25, issue.3, p.277, 1933.

H. Heukelekian and . Heller, Relation between food concentration and surface for bacterial growth, Journal of bacteriology, vol.40, issue.4, p.547, 1940.

. Jw-costerton, K. J. Ingram, and . Cheng, Structure and function of the cell envelope of gram-negative bacteria, Bacteriological reviews, vol.38, issue.1, p.87, 1974.

G. Dorken, P. Gail, C. E. Ferguson, W. French, and . Poon, Aggregation by depletion attraction in cultures of bacteria producing exopolysaccharide, Journal of The Royal Society Interface, p.20120498, 2012.

S. Yazdi, M. Arezoo, and . Ardekani, Bacterial aggregation and biofilm formation in a vortical flow, Biomicrofluidics, vol.6, issue.4, p.44114, 2012.

. William-costerton, S. Philip, E. Stewart, and . Greenberg, Bacterial biofilms: a common cause of persistent infections, Science, vol.284, issue.5418, pp.1318-1322, 1999.

M. Carrel, L. Verónica, M. A. Morales, N. Beltran, R. Derlon et al., Biofilms in 3d porous media: Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development, Water research, vol.134, pp.280-291, 2018.

K. Drescher, Y. Shen, B. L. Bassler, and H. Stone, Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems, Proceedings of the National Academy of Sciences, vol.110, issue.11, pp.4345-4350, 2013.

L. Steven, D. Percival, T. Williams, J. Cooper, and . Randle, Biofilms in infection prevention and control: a healthcare handbook, 2014.

C. Picioreanu, C. M. Mark, J. J. Van-loosdrecht, and . Heijnen, Effect of diffusive and convective substrate transport on biofilm structure formation: A twodimensional modeling study, Biotechnology and bioengineering, vol.69, issue.5, pp.504-515, 2000.

C. Jacinta, R. Conrad, and . Poling-skutvik, Confined flow: Consequences and implications for bacteria and biofilms, Annual review of chemical and biomolecular engineering, issue.0, 2018.

P. Dewi, . Bakker, J. Henk, . Busscher, C. Henny et al., Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions, Microbiology, vol.148, issue.2, pp.597-603, 2002.

J. Jan, . Swartjes, H. Deepak, . Veeregowda, C. Henny et al., Normally oriented adhesion versus friction forces in bacterial adhesion to polymer-brush functionalized surfaces under fluid flow, Advanced Functional Materials, vol.24, issue.28, pp.4435-4441, 2014.

C. Beloin, A. Roux, and J. Ghigo, Escherichia coli biofilms, Bacterial biofilms, pp.249-289, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00473297

A. Persat, D. Carey, M. K. Nadell, F. Kim, A. Ingremeau et al., The mechanical world of bacteria, Cell, vol.161, issue.5, pp.988-997, 2015.

. Ge-c-authors-fox, . Stackebrandt, . Hespell, J. Gibson, T. A. Maniloff et al., The phylogeny of prokaryotes, Science, vol.209, issue.4455, pp.457-463, 1980.

F. Matthew, D. B. Copeland, and . Weibel, Bacterial swarming: a model system for studying dynamic self-assembly, Soft matter, vol.5, issue.6, pp.1174-1187, 2009.

J. Swiecicki, O. Sliusarenko, and D. B. Weibel, From swimming to swarming: Escherichia coli cell motility in two-dimensions, Integrative Biology, vol.5, issue.12, pp.1490-1494, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01362671

N. Verstraeten, K. Braeken, B. Debkumari, and M. Fauvart, Living on a surface: swarming and biofilm formation, Trends in microbiology, vol.16, issue.10, pp.496-506, 2008.

J. Azeredo, F. Nuno, R. Azevedo, N. Briandet, T. Cerca et al., Critical review on biofilm methods. Critical reviews in microbiology, vol.43, issue.3, pp.313-351, 2017.

C. Berne, A. Ducret, G. Gail, Y. V. Hardy, and . Brun, Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria, Microbiology spectrum, vol.3, issue.4, 2015.

P. Thomen, J. Robert, A. Monmeyran, A. Bitbol, C. Douarche et al., Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing, PloS one, vol.12, issue.4, p.175197, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01509809

E. Peeters, J. Hans, T. Nelis, and . Coenye, Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates, Journal of microbiological methods, vol.72, issue.2, pp.157-165, 2008.

B. Pitts, A. Martin, N. Hamilton, P. Zelver, and . Stewart, A microtiterplate screening method for biofilm disinfection and removal, Journal of microbiological methods, vol.54, issue.2, pp.269-276, 2003.

S. Stepanovi?, D. Vukovi?, V. Hola, G. Di-bonaven-tura, S. Djuki? et al., Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci, Apmis, vol.115, issue.8, pp.891-899, 2007.

H. Ceri, C. Olson, . Stremick, . Read, A. Morck et al., The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, Journal of clinical microbiology, vol.37, issue.6, pp.1771-1776, 1999.

J. Joe, H. Harrison, J. Ceri, C. A. Yerly, Y. Stremick et al., The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the calgary biofilm device, Biological procedures online, vol.8, issue.1, p.194, 2006.

M. E. Olson, H. Ceri, W. Douglas, A. G. Morck, R. Buret et al., Biofilm bacteria: formation and comparative susceptibility to antibiotics, Canadian Journal of Veterinary Research, vol.66, issue.2, p.86, 2002.

S. Badel, C. Laroche, . Gardarin, P. Bernardi, and . Michaud, New method showing the influence of matrix components in leuconostoc mesenteroides biofilm formation. Applied biochemistry and biotechnology, vol.151, pp.364-370, 2008.

P. Chavant, B. Gaillard-martinie, R. Talon, M. Hébraud, and T. Bernardi, A new device for rapid evaluation of biofilm formation potential by bacteria, Journal of microbiological methods, vol.68, issue.3, pp.605-612, 2007.

E. Olivares, S. Badel-berchoux, C. Provot, B. Jaulhac, G. Prévost et al., The biofilm ring test®: a rapid method for the routine analysis of p. aeruginosa biofilm formation kinetics, Journal of clinical microbiology, p.2938, 2015.

D. Moira and M. Johnston, Disinfection tests with intact biofilms: combined use of the modified robbins device with impedance detection, Journal of microbiological methods, vol.21, issue.1, pp.15-26, 1995.

A. Kharazmi, B. Giwercman, and N. Høiby, [16] robbins device in biofilm research, Methods in enzymology, vol.310, pp.207-215, 1999.

M. Darla, . Goeres, A. Martin, N. A. Hamilton, K. Beck et al., A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor, Nature protocols, vol.4, issue.5, p.783, 2009.

K. Schwartz, R. Stephenson, M. Hernandez, N. Jambang, and B. Boles, The use of drip flow and rotating disk reactors for staphylococcus aureus biofilm analysis, Journal of visualized experiments: JoVE, issue.46, 2010.

R. Singh, D. Paul, and R. Jain, Biofilms: implications in bioremediation, Trends in microbiology, vol.14, issue.9, pp.389-397, 2006.

A. Ozkan, K. Kinney, L. Katz, and H. Berberoglu, Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor, Bioresource technology, vol.114, pp.542-548, 2012.

C. Sternberg, B. Bjarke, T. Christensen, A. T. Johansen, J. B. Nielsen et al., Distribution of bacterial growth activity in flow-chamber biofilms, Applied and Environmental Microbiology, vol.65, issue.9, pp.4108-4117, 1999.

L. Richter, C. Stepper, A. Mak, A. Reinthaler, R. Heer et al., Development of a microfluidic biochip for online monitoring of fungal biofilm dynamics, Lab on a Chip, vol.7, issue.12, pp.1723-1731, 2007.

. Rodney-m-donlan, Biofilms: microbial life on surfaces. Emerging infectious diseases, vol.8, p.881, 2002.

Y. Chang, A. A. Fragkopoulos, S. M. Marquez, D. Harold, T. E. Kim et al., Biofilm formation in geometries with different surface curvature and oxygen availability, New Journal of Physics, vol.17, issue.3, p.33017, 2015.

E. Lauga and . Thomas-r-powers, The hydrodynamics of swimming microorganisms, Reports on Progress in Physics, vol.72, issue.9, p.96601, 2009.

E. Lauga, Bacterial hydrodynamics, Annual Review of Fluid Mechanics, vol.48, pp.105-130, 2016.

E. Clement, A. Lindner, C. Douarche, and H. Auradou, Bacterial suspensions under flow, The European Physical Journal Special Topics, vol.225, pp.2389-2406, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404032

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, vol.517, issue.3-4, pp.71-140, 2012.

D. Saintillan, Kinetic models for biologically active suspensions, Natural Locomotion in Fluids and on Surfaces, pp.53-71, 2012.

M. Edward and . Purcell, Life at low reynolds number, American journal of physics, vol.45, issue.1, pp.3-11, 1977.

C. Howard, R. Berg, and . Anderson, Bacteria swim by rotating their flagellar filaments, Nature, vol.245, issue.5425, p.380, 1973.

J. Tailleur and . Cates, Statistical mechanics of interacting run-and-tumble bacteria, Physical review letters, vol.100, issue.21, p.218103, 2008.

C. Howard and . Berg, Random walks in biology, 1993.

L. Turner, S. William, H. Ryu, and . Berg, Real-time imaging of fluorescent flagellar filaments, Journal of bacteriology, vol.182, issue.10, pp.2793-2801, 2000.

F. Evelyn, L. A. Keller, and . Segel, Traveling bands of chemotactic bacteria: a theoretical analysis, Journal of theoretical biology, vol.30, issue.2, pp.235-248, 1971.

J. Colin, E. Ingham, and J. Ben, Swarming and complex pattern formation in paenibacillus vortex studied by imaging and tracking cells, BMC microbiology, vol.8, issue.1, p.36, 2008.

J. Lega and . Passot, Hydrodynamics of bacterial colonies, Nonlinearity, vol.20, issue.1, p.1, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00388128

A. Ruth, F. Lambert, W. Picano, L. Breugem, and . Brandt, Active suspensions in thin films: nutrient uptake and swimmer motion, Journal of Fluid Mechanics, vol.733, pp.528-557, 2013.

A. Jasmine, Y. Nirody, C. Sun, and . Lo, The biophysicist's guide to the bacterial flagellar motor, Advances in Physics: X, vol.2, pp.324-343, 2017.

H. Wioland, E. Lushi, and R. E. Goldstein, Directed collective motion of bacteria under channel confinement, New Journal of Physics, vol.18, issue.7, p.75002, 2016.

J. Feng and Y. He, Collective motion of bacteria and their dynamic assembly behavior, Science China Materials, vol.60, issue.11, pp.1079-1092, 2017.

F. Peruani, J. Starruß, V. Jakovljevic, and L. Søgaard-andersen, Andreas Deutsch, and Markus Bär. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria, Physical review letters, vol.108, issue.9, p.98102, 2012.

H. Zhang, A. Be'er, E. Florin, and H. Swinney, Collective motion and density fluctuations in bacterial colonies, Proceedings of the National Academy of Sciences, vol.107, issue.31, pp.13626-13630, 2010.

A. Sokolov, S. Igor, J. O. Aranson, R. E. Kessler, and . Goldstein, Concentration dependence of the collective dynamics of swimming bacteria, Physical review letters, vol.98, issue.15, p.158102, 2007.

E. Lushi, H. Wioland, and R. E. Goldstein, Fluid flows created by swimming bacteria drive self-organization in confined suspensions, Proceedings of the National Academy of Sciences, p.201405698, 2014.

K. Drescher, J. Dunkel, H. Luis, S. Cisneros, R. E. Ganguly et al., Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering, Proceedings of the National Academy of Sciences, vol.108, pp.10940-10945, 2011.

H. Henricus, J. Wensink, S. Dunkel, K. Heidenreich, R. E. Drescher et al., Meso-scale turbulence in living fluids, Proceedings of the National Academy of Sciences, 2012.

A. Igor-s-aranson, . Sokolov, O. John, R. E. Kessler, and . Goldstein, Model for dynamical coherence in thin films of self-propelled microorganisms, Physical Review E, vol.75, issue.4, p.40901, 2007.

A. Sokolov, R. E. Goldstein, I. S. Felix-i-feldchtein, and . Aranson, Enhanced mixing and spatial instability in concentrated bacterial suspensions, Physical Review E, vol.80, issue.3, p.31903, 2009.

H. Wioland, J. Francis-g-woodhouse, . Dunkel, O. John, R. E. Kessler et al., Confinement stabilizes a bacterial suspension into a spiral vortex, Physical review letters, vol.110, issue.26, p.268102, 2013.

H. Luis, R. Cisneros, C. Cortez, R. E. Dombrowski, J. Goldstein et al., Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations, Animal Locomotion, pp.99-115, 2010.

B. Vincenti, C. Douarche, and E. Clement, Actuated rheology of magnetic micro-swimmers suspensions: Emergence of motor and brake states, Physical Review Fluids, vol.3, issue.3, p.33302, 2018.

P. Richard and . Blakemore, Magnetotactic bacteria, Annual Reviews in Microbiology, vol.36, issue.1, pp.217-238, 1982.

M. E. Cates and J. Tailleur, When are active brownian particles and run-and-tumble particles equivalent? consequences for motility-induced phase separation, Europhysics Letters), vol.101, issue.2, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00903637

S. Ueha, Y. Hashimoto, and Y. Koike, Non-contact transportation using near-field acoustic levitation, Ultrasonics, vol.38, issue.1-8, pp.26-32, 2000.

M. Ann, H. Weiser, and R. E. Apfel, Extension of acoustic levitation to include the study of micron-size particles in a more compressible host liquid, The Journal of the Acoustical Society of America, vol.71, issue.5, pp.1261-1268, 1982.

J. Friend, Y. Leslie, and . Yeo, Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics, Reviews of Modern Physics, vol.83, issue.2, p.647, 2011.

H. Bruus, Theoretical aspects of microscale acoustofluidics, 2018.

H. Bruus, J. Dual, J. Hawkes, M. Hill, T. Laurell et al., Forthcoming lab on a chip tutorial series on acoustofluidics: Acoustofluidics-exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation, Lab on a Chip, vol.11, issue.21, pp.3579-3580, 2011.

B. Hammarström, M. Evander, H. Barbeau, M. Bruzelius, J. Larsson et al., Non-contact acoustic cell trapping in disposable glass capillaries, Lab on a Chip, vol.10, issue.17, pp.2251-2257, 2010.

C. Sho, R. D. Takatori, J. Dier, J. Vermant, and . Brady, Acoustic trapping of active matter, Nature communications, vol.7, p.10694, 2016.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, Review of cell and particle trapping in microfluidic systems, Analytica chimica acta, vol.649, issue.2, pp.141-157, 2009.

D. Bazou, T. Coakley, S. Hayes, and . Jackson, Long-term viability and proliferation of alginate-encapsulated 3-d hepg2 aggregates formed in an ultrasound trap, Toxicology in Vitro, vol.22, issue.5, pp.1321-1331, 2008.

B. Hammarström, T. Laurell, and J. Nilsson, Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems, Lab on a Chip, vol.12, issue.21, pp.4296-4304, 2012.

M. Sundvik, J. Heikki, A. Nieminen, P. Salmi, E. Panula et al., Effects of acoustic levitation on the development of zebrafish, danio rerio, embryos. Scientific reports, vol.5, p.13596, 2015.

A. Kundt, Über eine neue art akustischer staubfiguren und über die anwendung derselben zur bestimmung der schallgeschwindigkeit in festen körpern und gasen, Annalen der Physik, vol.203, issue.4, pp.497-523, 1866.

M. Dyson, J. B. Woodward, and . Pond, Flow of red blood cells stopped by ultrasound, Nature, vol.232, issue.5312, p.572, 1971.

. N-vashon and . Baker, Segregation and sedimentation of red blood cells in ultrasonic standing waves, Nature, vol.239, issue.5372, p.398, 1972.

. Eg-lierke, Acoustic levitation-a comprehensive survey of principles and applications, Acta Acustica united with Acustica, vol.82, issue.2, pp.220-237, 1996.

Z. Mao, Y. Xie, F. Guo, L. Ren, P. Huang et al., Experimental and numerical studies on standing surface acoustic wave microfluidics, Lab on a chip, vol.16, issue.3, pp.515-524, 2016.

Y. Q. Jk-luo, W. I. Fu, and . Milne, Acoustic wave based microfluidics and lab-ona-chip. In Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices, 2013.

C. Fei, J. Ma, C. T. Chiu, J. A. Williams, W. Fong et al., Design of matching layers for high-frequency ultrasonic transducers, Applied Physics Letters, vol.107, issue.12, p.123505, 2015.

L. Vessot and K. , On the acoustic radiation pressure on spheres, Proc. R. Soc. Lond. A, vol.147, pp.212-240, 1934.

K. Yosioka and Y. Kawasima, Acoustic radiation pressure on a compressible sphere, Acta Acustica united with Acustica, vol.5, issue.3, pp.167-173, 1955.

L. P. Gor'kov, On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid, Soviet Physics Doklady, vol.6, p.773, 1962.

. Wt-coakley, M. A. Hawkes, . Sobanski, J. Cousins, and . Spengler, Analytical scale ultrasonic standing wave manipulation of cells and microparticles, Ultrasonics, vol.38, issue.1-8, pp.638-641, 2000.

D. W. W-terence-coakley, M. A. Bardsley, F. Grundy, D. Zamani, and . Clarke, Cell manipulation in ultrasonic standing wave fields, Journal of Chemical Technology & Biotechnology, vol.44, issue.1, pp.43-62, 1989.

J. Jeremy, R. W. Hawkes, . Barber, W. David-r-emerson, and . Coakley, Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel, vol.4, pp.446-452, 2004.

J. Jeremy, W. Hawkes, and . Coakley, Force field particle filter, combining ultrasound standing waves and laminar flow, Sensors and Actuators B: Chemical, vol.75, issue.3, pp.213-222, 2001.

A. Lenshof, M. Evander, T. Laurell, and J. Nilsson, Acoustofluidics 5: Building microfluidic acoustic resonators, Lab Chip, vol.12, pp.684-695, 2012.

J. Nilsson, M. Evander, B. Hammarström, and T. Laurell, Review of cell and particle trapping in microfluidic systems, Analytica Chimica Acta, vol.649, issue.2, pp.141-157, 2009.

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, Measuring the local pressure amplitude in microchannel acoustophoresis, Lab on a chip, vol.10, pp.563-70, 2010.

H. Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes, Lab Chip, vol.12, pp.20-28, 2012.

S. M. Hagsater, T. Jensen, H. Bruus, and J. P. Kutter, Acoustic resonances in microfluidic chips: full-image micro-piv experiments and numerical simulations, Lab Chip, vol.7, pp.1336-1344, 2007.

H. Bruus, Acoustofluidics 7: The acoustic radiation force on small particles, Lab Chip, vol.12, pp.1014-1021, 2012.

J. Sir and . Lighthill, Acoustic streaming, Journal of Sound and Vibration, vol.61, issue.3, pp.391-418, 1978.

P. Hahn, I. Leibacher, T. Baasch, and J. Dual, Numerical simulation of acoustofluidic manipulation by radiation forces and acoustic streaming for complex particles, Lab on a Chip, vol.15, issue.22, pp.4302-4313, 2015.

J. Lei, P. Glynne-jones, and M. Hill, Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices, Lab on a Chip, vol.13, issue.11, pp.2133-2143, 2013.

P. Hahn, O. Schwab, and J. Dual, Modeling and optimization of acoustofluidic micro-devices, Lab on a Chip, vol.14, issue.20, pp.3937-3948, 2014.

V. Satya, . Kothapalli, A. Michael-b-altman, L. Partanen, M. Wan et al., Acoustic field characterization of a clinical magnetic resonance-guided high-intensity focused ultrasound system inside the magnet bore, Medical physics, vol.44, issue.9, pp.4890-4899, 2017.

G. S-melker-hagsäter, H. Jensen, J. Bruus, and . Kutter, Acoustic resonances in microfluidic chips: full-image micro-piv experiments and numerical simulations, Lab on a Chip, vol.7, issue.10, pp.1336-1344, 2007.

H. Bruus, Acoustofluidics 7: The acoustic radiation force on small particles, Lab on a Chip, vol.12, issue.6, pp.1014-1021, 2012.

R. Barnkob, P. Augustsson, T. Laurell, and H. Bruus, Measuring the local pressure amplitude in microchannel acoustophoresis, Lab on a Chip, vol.10, issue.5, pp.563-570, 2010.

A. Doinikov, Acoustic radiation forces: Classical theory and recent advances, vol.1, pp.39-67, 2003.

M. Settnes and H. Bruus, Forces acting on a small particle in an acoustical field in a viscous fluid, Phys. Rev. E, vol.85, p.16327, 2012.

. Mah-weiser, E. A. Apfel, and . Neppiras, Interparticle forces on red cells in a standing wave field, Acta Acustica united with Acustica, vol.56, issue.2, pp.114-119, 1984.

A. Alexander and . Doinikov, Acoustic radiation forces: Classical theory and recent advances, Recent Res Devel Acoustics, vol.1, pp.39-67, 2003.

A. Garcia-sabaté, A. Castro, M. Hoyos, and R. González-cinca, Experimental study on inter-particle acoustic forces, The Journal of the Acoustical Society of America, vol.135, issue.3, pp.1056-1063, 2014.

L. Rayleigh, On the circulation of air observed in kundt's tubes, and on some allied acoustical problem, Phil. Trans. Roy. Soc, vol.175, pp.1-21, 1884.

M. Faraday, On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces, Abstracts of the Papers, vol.3, p.1837

S. Boluriaan, J. Philip, and . Morris, Acoustic streaming: from rayleigh to today, International Journal of aeroacoustics, vol.2, issue.3, pp.255-292, 2003.

E. Chladni, , p.1787

M. Wiklund, R. Green, and M. Ohlin, Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices, Lab on a Chip, vol.12, issue.14, pp.2438-2451, 2012.

L. Wesley and . Nyborg, Acoustic streaming near a boundary, The Journal of the Acoustical Society of America, vol.30, issue.4, pp.329-339, 1958.

H. Schlichting, Berechnung ebener periodischer grenzschichtstromungen, Phys. z, vol.33, pp.327-335, 1932.

X. Zhang, E. Ashida, S. Shono, and F. Matsuda, Effect of shielding conditions of local dry cavity on weld quality in underwater nd: Yag laser welding, Journal of Materials Processing Technology, vol.174, issue.1-3, pp.34-41, 2006.

L. Hao, C. Liu, and . Hsieh, Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation, Ultrasonics sonochemistry, vol.16, issue.3, pp.431-438, 2009.

M. Ohlin, Ultrasonic Fluid and Cell Manipulation, 2015.

A. Samuel and . Elder, Cavitation microstreaming, The Journal of the Acoustical Society of America, vol.31, issue.1, pp.54-64, 1959.

V. Maulik, . Patel, A. Imaly, M. G. Nanayakkara, A. Simon et al., Cavityinduced microstreaming for simultaneous on-chip pumping and size-based separation of cells and particles, Lab on a Chip, vol.14, issue.19, pp.3860-3872, 2014.

Y. Wang, B. Hu, X. Diao, and J. Zhang, Antitumor effect of microbubbles enhanced by low frequency ultrasound cavitation on prostate carcinoma xenografts in nude mice, Experimental and therapeutic medicine, vol.3, issue.2, pp.187-191, 2012.

Y. Zhao, C. Lu, X. Li, and J. Cai, Ultrasound-mediated strategies in opening brain barriers for drug brain delivery, Expert opinion on drug delivery, vol.10, issue.7, pp.987-1001, 2013.

. Jf-spengler, K. T. Coakley, and . Christensen, Microstreaming effects on particle concentration in an ultrasonic standing wave, AIChE journal, vol.49, issue.11, pp.2773-2782, 2003.

A. Larisa, W. Kuznetsova, and . Coakley, Microparticle concentration in short path length ultrasonic resonators: Roles of radiation pressure and acoustic streaming, The Journal of the Acoustical Society of America, vol.116, issue.4, pp.1956-1966, 2004.

F. Johannes, W. Spengler, and . Coakley, Ultrasonic trap to monitor morphology and stability of developing microparticle aggregates, Langmuir, vol.19, issue.9, pp.3635-3642, 2003.

S. E. Kenneth-d-frampton, K. Martin, and . Minor, The scaling of acoustic streaming for application in micro-fluidic devices, Applied Acoustics, vol.64, issue.7, pp.681-692, 2003.

R. Per-augustsson, . Barnkob, T. Steven, H. Wereley, T. Bruus et al., Automated and temperature-controlled micro-piv measurements enabling long-termstable microchannel acoustophoresis characterization, Lab on a Chip, vol.11, issue.24, pp.4152-4164, 2011.

M. Wiklund, R. Green, and M. Ohlin, Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices, Lab Chip, vol.12, pp.2438-2451, 2012.

K. Yasuda, K. Shin-ichiro-umemura, K. Kawabata, K. Takeda, Y. Uchida et al., Particle handling apparatus for handling particles in fluid by acoustic radiation pressure, US Patent, vol.6, p.538, 2001.

J. Hawkes, G. Martin, B. Ewald, N. Helmut, and C. Terence,

B. Ludovic, Manipulation acoustique de cellules souches mesenchymateuses, 2017.

G. Biddell and A. , On the diffraction of an object-glass with circular aperture, Transactions of the Cambridge Philosophical Society, vol.5, p.1835

O. Dron, Micro-manipulation acoustique de particules: application aux mesures par micro-PIV, vol.7, 2011.

J. M. Steven-m-woodside, M. Piret, E. Gröschl, B. Benes, and . Bowen, Acoustic force distribution in resonators for ultrasonic particle separation, AIChE journal, vol.44, issue.9, pp.1976-1984, 1998.

M. Hill, The selection of layer thicknesses to control acoustic radiation force profiles in layered resonators, The Journal of the Acoustical Society of America, vol.114, issue.5, pp.2654-2661, 2003.

D. Zachary and . Blount, The natural history of model organisms: The unexhausted potential of e. coli. Elife, vol.4, p.5826, 2015.

C. Zimmer, Microcosm: E-coli and the New Science of Life. Random House, 2012.

J. Hacker and G. Blum-oehler, appreciation of theodor escherich, 2007.

N. Nanninga, Morphogenesis of escherichia coli, Microbiology and Molecular Biology Reviews, vol.62, issue.1, pp.110-129, 1998.

. Willliam-d-donachie, The cell cycle of escherichia coli, Annual Reviews in Microbiology, vol.47, issue.1, pp.199-230, 1993.

J. Roostalu, A. Jõers, H. Luidalepp, N. Kaldalu, and T. Tenson, Cell division in escherichia coli cultures monitored at single cell resolution, BMC microbiology, vol.8, issue.1, p.68, 2008.

D. Jue, P. Wang, and . Levin, Metabolism, cell growth and the bacterial cell cycle, Nature Reviews Microbiology, vol.7, issue.11, p.822, 2009.

C. Howard and . Berg, The rotary motor of bacterial flagella. Annual review of biochemistry, vol.72, 2003.

E. Emily, D. Riley, E. Das, and . Lauga, Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability, 2018.

T. Mora, H. Yu, Y. Sowa, and N. S. Wingreen, Steps in the bacterial flagellar motor, PLoS computational biology, vol.5, issue.10, p.1000540, 2009.

S. Chattopadhyay, R. Moldovan, C. Yeung, and X. L. Wu, Swimming efficiency of bacterium escherichiacoli, Proceedings of the National Academy of Sciences, vol.103, issue.37, pp.13712-13717, 2006.

L. Gerald, . Hazelbauer, C. Howard, P. Berg, and . Matsumura, Bacterial motility and signal transduction, Cell, vol.73, issue.1, pp.15-22, 1993.

M. Robert and . Macnab, How bacteria assemble flagella, Annual Reviews in Microbiology, vol.57, issue.1, pp.77-100, 2003.

M. Khatami, K. Wolff, O. Pohl, M. R. Ejtehadi, and H. Stark, Active brownian particles and run-and-tumble particles separate inside a maze, Scientific Reports, vol.6, p.37670, 2016.

C. Howard, D. A. Berg, and . Brown, Chemotaxis in escherichia coli analysed by three-dimensional tracking, Nature, vol.239, issue.5374, pp.500-504, 1972.

G. E. Noreen-r-francis, D. Sosinsky, D. J. Thomas, and . Derosier, Isolation, characterization and structure of bacterial flagellar motors containing the switch complex, Journal of molecular biology, vol.235, issue.4, pp.1261-1270, 1994.

S. Moens and J. Vanderleyden, Functions of bacterial flagella, Critical reviews in microbiology, vol.22, issue.2, pp.67-100, 1996.

T. Tino, Genetics of structure and function of bacterial flagella. Annual review of genetics, vol.11, pp.161-182, 1977.

E. Michael and . Cates, Diffusive transport without detailed balance in motile bacteria: does microbiology need statistical physics?, Reports on Progress in Physics, vol.75, issue.4, p.42601, 2012.

J. Alasdair-g-thompson, . Tailleur, E. Michael, R. Cates, and . Blythe, Lattice models of nonequilibrium bacterial dynamics, Journal of Statistical Mechanics: Theory and Experiment, issue.02, p.2029, 2011.

A. Patch, D. Yllanes, and M. Marchetti, Kinetics of motility-induced phase separation and swim pressure, Physical Review E, vol.95, issue.1, p.12601, 2017.

L. Hall-stoodley, P. William-costerton, and . Stoodley, Bacterial biofilms: from the natural environment to infectious diseases, Nature reviews microbiology, vol.2, issue.2, p.95, 2004.

K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, Direct measurement of the flow field around swimming microorganisms, Physical Review Letters, vol.105, issue.16, p.168101, 2010.

A. L. Glenn-l-cooper, C. Schiller, and . Hopkins, Possible role of capillary action in pathogenesis of experimental catheter-associated dermal tunnel infections, Journal of clinical microbiology, vol.26, issue.1, pp.8-12, 1988.

. Gdjf-harkes, J. Dankert, and . Feijen, Bacterial migration along solid surfaces, Applied and environmental microbiology, vol.58, issue.5, pp.1500-1505, 1992.

H. B. George-o'toole, R. Kaplan, and . Kolter, Biofilm formation as microbial development, Annual Reviews in Microbiology, vol.54, issue.1, pp.49-79, 2000.

J. Schwarz-linek, J. Arlt, A. Jepson, A. Dawson, T. Vissers et al., Escherichia coli as a model active colloid: A practical introduction, Colloids and Surfaces B: Biointerfaces, vol.137, pp.2-16, 2016.

P. Model, G. Jovanovic, and J. Dworkin, The escherichia coli phageshock-protein (psp) operon, Molecular microbiology, vol.24, issue.2, pp.255-261, 1997.

N. Figueroa-morales, T. Darnige, C. Douarche, V. Martinez, and R. Soto, Anke Lindner, and Eric Clément. 3d spatial exploration by e. coli echoes motor temporal variability, 2018.

J. Daniel, . Ferullo, L. Deani, H. R. Cooper, S. T. Moore et al., Cell cycle synchronization of escherichia coli using the stringent response, with fluorescence labeling assays for dna content and replication, Methods, vol.48, issue.1, pp.8-13, 2009.

, Global gene expression analysis of long-term stationary phase effects in e. coli k12 mg1655, PloS one, vol.9, issue.5, p.96701, 2014.

S. Sutton, Measurement of microbial cells by optical density, Journal of Validation technology, vol.17, issue.1, pp.46-49, 2011.

S. Gutiérrez-ramos, M. Hoyos, and J. C. Ruiz-suárez, Induced clustering of escherichia coli by acoustic fields, Scientific reports, vol.8, issue.1, p.4668, 2018.

L. A. Paul-n-danese, . Pratt, L. Simon, R. Dove, and . Kolter, The outer membrane protein, antigen 43, mediates cell-to-cell interactions within escherichia coli biofilms, Molecular microbiology, vol.37, issue.2, pp.424-432, 2000.

. John-s-parkinson, Complementation analysis and deletion mapping of escherichia coli mutants defective in chemotaxis, Journal of bacteriology, vol.135, issue.1, pp.45-53, 1978.

J. González-gutiérrez, J. C. Carrillo-estrada, and . Ruiz-suárez, Nucleation, aggregation, annealing, and disintegration of granular clusters, Physical Review E, vol.89, issue.5, p.52205, 2014.

J. Dunkel, S. Heidenreich, K. Drescher, H. Henricus, M. Wensink et al., Fluid dynamics of bacterial turbulence, Physical review letters, vol.110, issue.22, p.228102, 2013.

R. W. Nash, R. Adhikari, J. Tailleur, and M. E. Cates, Run-and-tumble particles with hydrodynamics: Sedimentation, trapping, and upstream swimming, Phys. Rev. Lett, vol.104, p.258101, 2010.

C. Harold and . Slavkin, Biofilms, microbial ecology and antoni van leeuwenhoek, The Journal of the American Dental Association, vol.128, issue.4, pp.492-495, 1997.

E. Hernández-jiménez, R. Del-campo, V. Toledano, M. T. Vallejo-cremades, A. Muñoz et al., Biofilm vs. planktonic bacterial mode of growth: Which do human macrophages prefer?, Biochemical and biophysical research communications, vol.441, issue.4, pp.947-952, 2013.

H. Flemming, D. Thomas-r-neu, and . Wozniak, The eps matrix: the "house of biofilm cells, Journal of bacteriology, vol.189, issue.22, pp.7945-7947, 2007.

. Bruce-e-rittmann, Biofilms in the water industry, Microbial biofilms, pp.359-378, 2004.

H. Dang and C. Lovell, Microbial surface colonization and biofilm development in marine environments, Microbiology and Molecular Biology Reviews, vol.80, issue.1, pp.91-138, 2016.

U. Münster, J. Heikkinen, and . Knulst, Nutrient composition, microbial biomass and activity at the air-water interface of small boreal forest lakes, Hydrobiologia, vol.363, issue.1-3, pp.261-270, 1997.

T. Schwartz, W. Kohnen, B. Jansen, and U. Obst, Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms, FEMS microbiology ecology, vol.43, issue.3, pp.325-335, 2003.

. Kn-kragh, G. Hutchison, C. Melaugh, . Rodesney, Y. Roberts et al., Role of multicellular aggregates in biofilm formation, mbio, vol.7, pp.237-253, 2016.

K. Minyoung-kevin-kim, . Drescher, . On-shun, B. L. Pak, H. Bassler et al., Filaments in curved streamlines: rapid formation of staphylococcus aureus biofilm streamers, New journal of physics, vol.16, issue.6, p.65024, 2014.

Z. Lewandowski and P. Stoodley, Flow induced vibrations, drag force, and pressure drop in conduits covered with biofilm, Water Science and Technology, vol.32, issue.8, pp.19-26, 1995.

R. Rusconi, S. Lecuyer, L. Guglielmini, and H. Stone, Laminar flow around corners triggers the formation of biofilm streamers, Journal of The Royal Society Interface, vol.7, issue.50, pp.1293-1299, 2010.

C. Carvalho, Marine biofilms: A successful microbial strategy with economic implications, Frontiers in Marine Science, vol.5, p.126, 2018.

Y. Jung, J. Choi, S. Kim, J. Lee, and S. Kwon, Embedded biofilm: a new biofilm model based on the embedded growth of bacteria, Applied and environmental microbiology, p.2311, 2014.

C. Margaret and . Henk, Capturing air-water interface biofilms for microscopy and molecular analysis, Microbial Biofilms, pp.301-322, 2014.

S. Neethirajan, D. Karig, A. Kumar, P. P. Mukherjee, T. Scott et al., Biofilms in microfluidic devices, Encyclopedia of Nanotechnology, pp.213-219, 2012.

M. Whiteley, G. Bangera, R. E. Bumgarner, G. M. Matthew-r-parsek, S. Teitzel et al., Gene expression in pseudomonas aeruginosa biofilms, Nature, vol.413, issue.6858, p.860, 2001.

A. Prindle, J. Liu, M. Asally, S. Ly, J. Garcia-ojalvo et al., Ion channels enable electrical communication in bacterial communities, Nature, vol.527, issue.7576, p.59, 2015.

J. Liu, A. Prindle, J. Humphries, M. Gabalda-sagarra, M. Asally et al., Metabolic co-dependence gives rise to collective oscillations within biofilms, Nature, vol.523, issue.7562, p.550, 2015.

M. Sunde and M. Norström, The genetic background for streptomycin resistance in escherichia coli influences the distribution of mics, Journal of Antimicrobial Chemotherapy, vol.56, issue.1, pp.87-90, 2005.

R. Frederick, G. Blattner, . Plunkett, A. Craig, N. T. Bloch et al., The complete genome sequence of escherichia coli k-12. science, vol.277, pp.1453-1462, 1997.

. David-van-duin and . David-l-paterson, Multidrug-resistant bacteria in the community: trends and lessons learned, Infectious Disease Clinics, vol.30, issue.2, pp.377-390, 2016.

V. M. Suchanek, Role of Motility and its Regulation in Escherichia coli Biofilm formation, 2017.

S. Ronn, N. Friedlander, J. Vogel, and . Aizenberg, Role of flagella in adhesion of escherichia coli to abiotic surfaces, Langmuir, vol.31, issue.22, pp.6137-6144, 2015.

J. Thomas, D. Silhavy, S. Kahne, and . Walker, The bacterial cell envelope. Cold Spring Harbor perspectives in biology, p.414, 2010.

S. Brown, P. John, S. Maria, and . Walker, Wall teichoic acids of gram-positive bacteria, Annual review of microbiology, vol.67, pp.313-336, 2013.

E. Olga, K. Petrova, and . Sauer, Sticky situations-key components that control bacterial surface attachment, Journal of bacteriology, p.3, 2012.

T. R. Garrett, M. Bhakoo, and Z. Zhang, Bacterial adhesion and biofilms on surfaces, Progress in Natural Science, vol.18, issue.9, pp.1049-1056, 2008.

L. Mclandsborough, . Rodriguez, J. Pérez-conesa, and . Weiss, Biofilms: at the interface between biophysics and microbiology, Food Biophysics, vol.1, issue.2, pp.94-114, 2006.

N. Jacob and . Israelachvili, Van der waals forces in biological systems, Quarterly reviews of biophysics, vol.6, issue.4, pp.341-387, 1973.

M. Hermansson, The dlvo theory in microbial adhesion, Colloids and Surfaces B: Biointerfaces, vol.14, issue.1-4, pp.105-119, 1999.

R. Belas, Biofilms, flagella, and mechanosensing of surfaces by bacteria, Trends in microbiology, vol.22, issue.9, pp.517-527, 2014.

O. Vidal, R. Longin, C. Prigent-combaret, and C. Dorel, Michel Hooreman, and Philippe Lejeune. Isolation of an escherichia coli k-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompr allele that increases curli expression, Journal of bacteriology, vol.180, issue.9, pp.2442-2449, 1998.

. Adrian-l-cookson, A. William, M. Cooley, and . Woodward, The role of type 1 and curli fimbriae of shiga toxin-producing escherichia coli in adherence in abiotic surfaces, International Journal of Medical Microbiology, vol.292, p.195, 2002.

H. Hannah, D. B. Tuson, and . Weibel, Bacteria-surface interactions, Soft matter, vol.9, issue.17, pp.4368-4380, 2013.

H. Flemming and J. Wingender, The biofilm matrix, Nature Reviews Microbiology, vol.8, issue.9, p.623, 2010.

A. George, R. O'toole, and . Kolter, Flagellar and twitching motility are necessary for pseudomonas aeruginosa biofilm development, Molecular microbiology, vol.30, issue.2, pp.295-304, 1998.

A. Leslie, R. Pratt, and . Kolter, Genetic analyses of bacterial biofilm formation, Current opinion in microbiology, vol.2, issue.6, pp.598-603, 1999.

M. Klausen, A. Heydorn, P. Ragas, L. Lambertsen, A. Aaes-jørgensen et al., Biofilm formation by pseudomonas aeruginosa wild type, flagella and type iv pili mutants, Molecular microbiology, vol.48, issue.6, pp.1511-1524, 2003.

K. Thomas, A. Wood, M. Barrios, J. Herzberg, and . Lee, Motility influences biofilm architecture in escherichia coli, Applied microbiology and biotechnology, vol.72, issue.2, pp.361-367, 2006.

E. Niba, Y. Naka, M. Nagase, H. Mori, and M. Kitakawa, A genome-wide approach to identify the genes involved in biofilm formation in e. coli, DNA research, vol.14, issue.6, pp.237-246, 2007.

F. Ken, . Jarrell, J. Mark, and . Mcbride, The surprisingly diverse ways that prokaryotes move, Nature Reviews Microbiology, vol.6, issue.6, pp.466-476, 2008.

B. Daniel and . Kearns, A field guide to bacterial swarming motility, Nature Reviews Microbiology, vol.8, issue.9, p.634, 2010.

B. Maier, C. L. Gerard, and . Wong, How bacteria use type iv pili machinery on surfaces, Trends in microbiology, vol.23, issue.12, pp.775-788, 2015.

A. Leslie, R. Pratt, and . Kolter, Genetic analysis of escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type i pili, Molecular microbiology, vol.30, issue.2, pp.285-293, 1998.

U. Jenal and J. Malone, Mechanisms of cyclic-di-gmp signaling in bacteria, Annu. Rev. Genet, vol.40, pp.385-407, 2006.

R. Hengge, Principles of c-di-gmp signalling in bacteria, Nature Reviews Microbiology, vol.7, issue.4, p.263, 2009.

U. Römling, Y. Michael, M. Galperin, and . Gomelsky, Cyclic di-gmp: the first 25 years of a universal bacterial second messenger, Microbiology and Molecular Biology Reviews, vol.77, issue.1, pp.1-52, 2013.

J. Overhage, S. Lewenza, A. K. Marr, and R. Hancock, Identification of genes involved in swarming motility using a pseudomonas aeruginosa pao1 mini-tn5-lux mutant library, Journal of bacteriology, vol.189, issue.5, pp.2164-2169, 2007.

J. Michael, W. D. Pehl, K. Jamieson, J. L. Kong, R. J. Forbester et al., Genes that influence swarming motility and biofilm formation in variovorax paradoxus eps, PloS one, vol.7, issue.2, p.31832, 2012.

B. Sarah, D. Guttenplan, and . Kearns, Regulation of flagellar motility during biofilm formation, FEMS microbiology reviews, vol.37, issue.6, pp.849-871, 2013.

. William-costerton, K. Geesey, and . Cheng, How bacteria stick, Scientific American, vol.238, issue.1, pp.86-95, 1978.

. Gg-geesey, . Richardson, . Hg-yeomans, J. W. Irvin, and . Costerton, Microscopic examination of natural sessile bacterial populations from an alpine stream, Canadian Journal of Microbiology, vol.23, issue.12, pp.1733-1736, 1977.

D. Lebeaux, A. Chauhan, O. Rendueles, and C. Beloin, From in vitro to in vivo models of bacterial biofilm-related infections, Pathogens, vol.2, issue.2, pp.288-356, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01385428

T. Coenye, J. Hans, and . Nelis, In vitro and in vivo model systems to study microbial biofilm formation, Journal of microbiological methods, vol.83, issue.2, pp.89-105, 2010.

J. Andrew and . Mcbain, In vitro biofilm models: an overview, Advances in applied microbiology, vol.69, pp.99-132, 2009.

. Jd-rudney, . Chen, . Lenton, Y. Li, . Li et al., A reproducible oral microcosm biofilm model for testing dental materials, Journal of applied Microbiology, vol.113, issue.6, pp.1540-1553, 2012.

E. Ruth, . Berry, J. David, A. Klumpp, and . Schaeffer, Urothelial cultures support intracellular bacterial community formation by uropathogenic escherichia coli, Infection and immunity, vol.77, issue.7, pp.2762-2772, 2009.

V. James-n-wilking, M. D. Zaburdaev, R. Volder, . Losick, P. Michael et al., Liquid transport facilitated by channels in bacillus subtilis biofilms, Proceedings of the National Academy of Sciences, vol.110, issue.3, pp.848-852, 2013.

Y. Kim, S. Subramanian, K. Gerasopoulos, H. Ben-yoav, H. Wu et al., Effect of electrical energy on the efficacy of biofilm treatment using the bioelectric effect, Biofilms and Microbiomes, vol.1, p.15016, 2015.

D. Silvio, C. Brugger, M. Baumberger, W. Jost, U. Jenni et al., Automated counting of bacterial colony forming units on agar plates, PloS one, vol.7, issue.3, p.33695, 2012.

M. Michelle, . Barnhart, and . Matthew-r-chapman, Curli biogenesis and function, Annu. Rev. Microbiol, vol.60, pp.131-147, 2006.

Y. Alexandre-p-solon, A. Fily, . Baskaran, E. Mickael, Y. Cates et al., Pressure is not a state function for generic active fluids, Nature Physics, vol.11, issue.8, p.673, 2015.

M. Gröschl, Ultrasonic separation of suspended particles-part i: Fundamentals, Acta Acustica united with Acustica, vol.84, issue.3, pp.432-447, 1998.

G. Thalhammer, M. Steiger, . Meinschad, . Hill, M. Bernet et al., Combined acoustic and optical trapping, Biomedical optics express, vol.2, issue.10, pp.2859-2870, 2011.

S. Garg, H. Huifu, C. Sunil, R. Kaul, and . Wadhwa, Integration of conventional cell viability assays for reliable and reproducible read-outs: experimental evidence, BMC research notes, vol.11, issue.1, p.403, 2018.

I. Wiegand, K. Hilpert, and R. Hancock, Agar and broth dilution methods to determine the minimal inhibitory concentration (mic) of antimicrobial substances, Nature protocols, vol.3, issue.2, p.163, 2008.

S. Singh, . Santosh-kumar, I. Singh, R. Chowdhury, and . Singh, Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The open microbiology journal, vol.11, p.53, 2017.