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Introduction

Throughout history, the ocean has been a vital source of sustenance, transport, commerce,

growth, and, an inspiration for humanity. In our interactions with the ocean and all the life

within, underwater acoustics has been playing a central part. Indeed, light does not travel far

under the sea surface and, in this realm, acoustic waves became our eyes, as they can propagate

over long distances. Based on this unique property, the first "utilitarian" use of underwater

acoustics dates back to 1912. In the wake of the Titanic disaster and, at the dawn of WWI,

Fessenden proved possible the detection of an iceberg up to a range of 2 km. The following un-

derwater acoustic technological advances and research efforts were devoted to the development

of military applications such as the development of Anti-Submarine Detection Investigation

Committee (or ASDIC) and sound navigation and ranging (sonar). They contributed to the rise

of the field of underwater acoustics. The transmission of this newly-developed knowledge, from

military to civilian sciences, introduced new ways to observe, measure, and explore the oceans

(e.g., echosounder and, the beginning of fishery acoustics).

Among the 20th-century developments for ocean exploration, passive acoustics has been

proved valuable for conducting discrete, non-intrusive, long-term and often, cost-effective sur-

veys of the underwater world. Numerous information can be obtained through passive listening

of the oceanic sounds. For example, surveillance systems can be wired onboard of warships for

threat detection or, on harbor guarding systems to prevent intrusions. Passive acoustics can

also be beneficial for understanding the physics of the ocean or oceanic floor, e.g., by listening

to seismic events or ice tremors. Contemporary ecological concerns and worldwide awareness

about ocean pollution and human impacts on the environment brought the spotlight on con-

servation issues. As an integrated part of conservation efforts, passive acoustics contributes to

the monitoring of these soniferous marine species. As polar bears became synonymous with

climate change, whales are now considered as the flagship species of the support of biodiversity

conservation in the oceans.

The history between humans and the whale is complicated and, its status has constantly

changed: from a mythological creature to a monster of the sea; from an unlimited resource

to the one we must protect. It has not always been the case. Over the 18th and early 19th

centuries, whales were extensively hunted for their grease by the commercial whaling industry

and, almost brought to extinction. First whaling areas were restricted to the Northern Atlantic

Ocean. Blue whales (BWs) and rorquals were not, at first, the main target of the expeditions.
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They inhabited waters that were too remote; they were going too fast; they were too hard to catch

and process (e.g., meat, oil, baleens). But, the decrease of stocks in other preferred species and,

the introduction of new equipment (e.g., harpoon cannon and black powder harpoon), drove

men to extend their hunting territories to the resourceful southern waters. They started to prey

on larger whales. The International whaling commission (IWC) was created in 1946 with the

purpose to "provide for the proper conservation of whale stocks and thus make possible the

orderly development of the whaling industry"1. One of the IWC actions was the designation

of sanctuaries or zones where commercial whaling is prohibited. The first, the Indian Ocean

Sanctuary, was established in 1979. Still in place, it encompasses all the waters in the Northern

Indian Ocean with a southern boundary at 55° S (IWC, 1980). In 1982, the IWC moratorium

suspending commercial hunt was signed.
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Figure 1: Catch and whale number in the southern Oceans (adapted from (Leroy, 2017), based on IWC

data).

No species was brought to extinction but less than 1% of the BWs remained (Figure 1).

Nowadays in the process of recovering, they are recorded on the IUCN (International Union for

Conservation of Nature) Red List. BW worldwide is considered endangered with stocks estimated

between 5000 and 15000 individuals. The Antarctic blue whale (ABW) is considered critically en-

dangered with 3000 individuals, while the pygmy BW is still considered data deficient 2. Yet, still

impaired by the fragility of their stocks, the recovery of BWs is facing threats of the modern world.

For example, the intensification of ship traffic changed oceanic soundscapes, and ship strikes

are now whales principal cause of mortality. Besides, plastic pollution and over-fishing impact

1https://iwc.int/
2https://www.iucnredlist.org
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their food-sources, and there is still the question of the impact of climate change and oceanic

acidification. Taking the appropriate measures to ensure their thrive is crucial to marine health

and biodiversity. But, if coastal baleen whale species such as right and humpback whales are well

studied, there are still a lot of basic ecological unknowns concerning southern Ocean BWs. It is

under these considerations that the IWC southern Ocean Research Partnership was established

in 2009. It is described as "an integrated, collaborative consortium for cetacean research, which

aims at maximizing conservation-orientated outcomes for southern Ocean cetaceans through

an understanding of the post-exploitation status, health, dynamics and environmental linkages

of their populations, and the threats they face"3. The establishment of surveillance methods is

essential to attain these conservation purposes.

Classical monitoring methods such as visual surveys (from a ship or an aircraft) are expensive

and hard to deploy in remote open waters subject to heavy weather conditions. Considering the

small number of whales compared to the immensity of the ocean, it is like looking for a needle

in a haystack. Results of visual observations are too fragmented and therefore, insufficient. On

the other hand, BWs species produce loud, low-frequency, regular and regionally distinct calls,

propagating for tens to hundreds of kilometers. Eavesdropping, therefore, provides persistent

means to conduct short to long-term surveys of the target population(s). These studies often

require interdisciplinary efforts, from the understanding of sound production mechanisms and

acoustic wave propagation effects to the processing of the information; from the instrumentation

to the ecological interpretation. This process is known as passive acoustic monitoring (PAM)

(Figure 2).

Sound speed


profile

Sound source

Propagation

Reception

Processing

Survey, study and protect

Figure 2: Schematics of PAM.

3http://www.marinemammals.gov.au/sorp
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Over the last decades, numerous PAM surveys have been conducted all around the globe and

the size of collected sound archives is rapidly increasing. The analysis of the large volumes of

data resulting from continuous and long-term monitoring efforts unmistakably benefits from the

automated detection of target signals. Automatic detection methods must be reliable and robust

to gather statistically relevant elements and contribute to answer BW ecological questions. Yet,

classical detection methods such as matched filters (MFs) exploit the stereotyped features of BW

calls. But, are MFs really adapted to low-frequency passive contexts where, (1) whale sounds can

travel across long-distances and are modified by the propagation channel, (2) overlapping noises

can interfere and, (3) the contrast between the signal and the background noise is continuously

varying (Figure 3)?

Figure 3: Illustration of the difficulties of detection in a passive context with reverberated attenuated

signals, in the presence of sounds (seismic events, ship noise, and other biological sources). The number

of occurrences of the target signal is indicated in the top -right corner.

In light of the above, the context of this study is the following: even if emitted signals are

stereotyped, when received, they are modified by the propagation channel (echoes, low and

varying signal to noise ratios (SNRs)...). Therefore, this thesis aims at addressing the subsequent

questions:

1. What are the limitations of the MF?

2. How to improve signal detection in such changing conditions?

3. How to detect and automatically separate concurrently calling species?

4. How to assess the performances and compare the developed methods?

In order to provide some answers to these questions, different strategies are proposed. First,

to improve signal detection, the stochastic matched filter (SMF) has been adapted to the passive
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context. Then, the separation of concurrently calling species (concurrent and overlapping acous-

tic sources) is based on a pattern recognition system, with an additional reconstruction step.

Performance and limitations of the SMF, MF, and a recently developed detector, the Z-detector

(Socheleau et al., 2015), are assessed and compared on annotated recordings.

The dataset used in this thesis was recorded between 2012 and 2013 near La Réunion Island

by the RHUM-RUM (Réunion Hotspot and Upper Mantle - Réunions Unterer Mantel) seismolog-

ical experiment4, offering countless possibilities for methods development, testing, and, analysis.

In addition, as the second long-term BW PAM study in the Western Indian Ocean Sanctuary, this

area is a particular source of interest 5. Recording equipment lying on the bottom of the ocean

shed new light on the study of BWs and, more generally, low-frequency sounds in this area.

The thesis is articulated around five chapters. After a review of the different methods for

the survey of BWs, Chapter 1 introduces in more details the constituting fields behind PAM. It

uncoils the thread connecting the means (recording equipment) and the application (ecology),

with the focus of the thesis, underwater acoustics, and signal processing.

Chapter 2 describes the RHUM-RUM experiment and the equipment characteristics. It also

summarizes the underwater ambient sounds, their origin, and spectro-temporal characteristics

to depict an accurate representation of low-frequency soundscapes from the bottom of the

Indian Ocean. Notably, a thorough description of the recorded baleen whale sounds is provided.

Chapter 3 addresses the question of the detection of stereotyped sounds. MFs are introduced

from the point of view of noise reduction problem in a passive context. The strategy chosen to

compensate for MFs limitations, the SMF, is described along with the improvements to adapt the

method to passive contexts, followed by application to ABW call detection and, an illustration

for scuba-divers breathing detection.

The comparison of detection methods relies on a fair comparison of their performances in

different situations. Therefore, Chapter 4 deals with methods performances evaluation under

the specific constraints of the passive context, based on a ground-truth dataset. The proposed

detection method, the SMF is compared to the MF and, to the Z-detector (Socheleau et al., 2015).

Finally, multi-class detection and signal reconstruction are applied to the problem of concur-

rent calling species in Chapter 5. The method is viewed as a pattern recognition system. The

first step of signal extraction is based on tonal signal detection. A comparison of tonal signal

detectors is carried out and, preliminary results of the complete method are presented.

4www.rhum-rum.net
5Note that the first BW PAM study in the Western Indian Ocean Sanctuary, the OHASIS-BIO (Observatoire

HydroAcoustique de la SISmicité et de la BIOdiversité) observatory has been continuously recording data from the

sound fixing and ranging (SOFAR) channel since 2010 (Samaran et al., 2013; Leroy, 2017).
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Material developed as a part of this thesis work is freely available online.

Matlab code Matlab codes are shared on GitHub with DOIs under a MIT license:

• Passive SMF Package repository (Chapter 3)

https://leabouffaut.github.io/SMF_package/

DOI: 10.5281/zenodo.3613788

• Tonal detector comparison code (Chapter 5)

https://leabouffaut.github.io/tonal_detectors/

DOI: 10.5281/zenodo.3469389

Annotated datasets Datasets annotated for performance evaluation in Chapter 4 (845

ABW calls with varying SNRs ) and training of the automatic transcription method in

Chapter 5 (more than 4000 BW tonal units) are hosted on Zenodo and can be referred to

as:

• Léa Bouffaut. (2020). Western Indian Ocean blue whale dataset (Version v1.0) [Data

set]. Zenodo. DOI: 10.5281/zenodo.3624145
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Chapter 1

Passive acoustic monitoring of blue whales:

survey, study and protect the oceans

L’homme et la baleine ne se fréquentent pas. Leurs rencontres sont

hantées par la mort - baleines échouées ou scènes de chasse, de

dépeçage dans des flots de sang - ou se réduisent à des éclats fugitifs -

un souffle, une bosse sur la mer, au mieux un saut, une volte. La vie des

baleines se déroule hors de notre vue.

François Garde

La baleine dans tous ses états (2015)
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1.1 Blue whales survey methods

BWs inhabit vast areas across all oceans but are mostly found in the Southern hemisphere.

According to global migration patterns (Figure 1.1), the majority of the BW population is feeding

in the abundant polar waters during the boreal or austral summer. After the end of the feeding

season, they return to their wintering and breeding areas, in tropical-to-temperate waters. Data

from the Antarctic waters (first from hunting expeditions, now from explorations from around

the world) are available but, only a few information exists on BWs distribution during the austral

winter, especially in the Indian Ocean.

Feeding grounds

Breeding grounds

Figure 1.1: Blue whale global migratory map and patterns (adapted from: https://seethewild.org/).

Most research in the past was limited to observation of surface behavior (Zimmer, 2011) but

was hindered by of multiple factors. First, the number of individuals is limited. Besides, they are

often highly mobile and breach the surface only for a short period, for breathing. In addition, as

shown in Figure 1.1, BWs spread over wide and remote areas where severe weather conditions

prevail most of the year and, do not facilitate the access for sightings. Under these challenging

conditions, how to effectively monitor BWs?

Thankfully, the advent of new autonomous technologies for monitoring helped to make

significant advances in the marine mammal behavior field. The following paragraphs briefly

introduce different modern techniques for BW surveys.

1.1.1 Sightings

There are multiple ways for sighting whales. From shore or a boat, countless associations and

organizations offer whale watching spots and contribute to the local tourism economy. In the
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scientific community, surveillance by trained observers scanning the sea surface is still popular

and efficient to enumerate, recognize, and follow resident whales or whales that come near

shore. Individual marks or specific fin shapes are used for individual identification (e.g, photo

identification) (Hammond et al., 1990; Barlow et al., 2018). Sightings can also be completed with

mark-recaptures, information (metallic mark with a unique serial number), to help follow whales

movements. However, it provides sparse observations and can not be extensively used in the

remote area where most BWs live.

Aerial surveys provide an instantaneous measure of abundance and help to measure seasonal

occurrence and general distribution of whale species (Gill, 2002). As a part of governmental

coastal management organization’s duties, different NOAA (National Oceanic and Atmospheric

Administration) divisions deploy such surveys regularly. They cover relatively small areas in the

presence of critically endangered species such as the North Atlantic Right Whale along the Cape

Cod bay coastline or the St Lawrence Gulf, or, to survey critical habitat (i.e., Alaskan coastline)

(Cole, 2019). However, these deployments are expensive as they require human resources and

flying equipment for only limited range and punctual observations.

Over the past decade, the booming of drones also reached the marine mammal monitoring

world. With the benefits from autonomous systems such as reduction of the costs and safety,

combined with an appreciated viewing of marine mammals from aerial platforms, this new

technique can not be overlooked. Besides, multi-rotor unmanned aerial systems such as the hex-

acopter in Figure 1.2 are capable of following target individuals. On the downside, autonomous

aerial systems are still limited in flight time, although increasing battery power density and

rapid advances in charging technology are likely to increase these flight times in the near future

(Nowacek et al., 2016). They also require to be launched from the shore or a vessel, limiting the

monitoring range.

Figure 1.2: Unmanned aerial system survey of a humpback whale (for reference, the drone is 500x230

mm ) source: (Nowacek et al., 2016)).
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Recent works showed that whales could even be monitored from space with satellite imagery

(Fretwell et al., 2014; Cubaynes et al., 2019). The most recent study (Cubaynes et al., 2019)

focused on baleen whales in different oceanic regions. The equipment achieved a maximum

spatial resolution of 31 cm, sufficient for body outline and fluke identification and a first step

towards automated whale detection methods from satellite imagery. The repercussions of such

discoveries enable the studies of whales in remote and inaccessible areas where traditional

survey methods are limited or impractical. However, they require considerable satellite coverage

and cutting-edge technology that are not yet globally accessible.

All these visual methods share the same limitations: they are less effective in dim light, at dusk

or dawn and, are impaired by heavy weather conditions. Independent from their technicality or

complexity, the sea surface impedes visual surveys since it can occlude the most significant part

of the whale life, underwater.

Nevertheless, the sound generation and auditory systems of marine mammals evolved

to accommodated their submarine environment. They base their daily life on acoustics and

consequently, eavesdropping is beneficial to collect information from afar. PAM is the label that

includes all methods exploiting marine mammals soniferous abilities and is the subject of the

following section.

1.1.2 ... and why not use sounds?

Figure 1.3: Songs of Humpback whales made the cover of the magazine Science of 13 August 1971 (Payne

and McVay, 1971).
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In the mid-XXth century, the analysis of acoustic recordings from U.S. Navy SOFAR station in

Kaneohe Bay, Hawaii led to the following conclusion "These sounds (...) have a rather musical

quality. There is a marked seasonal variation in the production of these sounds (...) coincident with

the seasonal variation of whales in the area, and this feature, plus the characteristics of the sounds

themselves, has led to the belief that they are produced by whales" (Schreiber, 1952). According

to Payne and McVay (1971), this was the first-ever notification of humpback whales songs. In

the following years, the scientific community realized that some of the "intense, low-frequency,

underwater sounds" that were recorded worldwide were "apparently of biological origin" (Walker,

1963). The enthusiasm that followed these first discoveries led to the systematic characterization

of cetaceans sounds (Schevill, 1964), with the first description of BW sounds, almost ten years

later in Cummings and Thompson (1971). The same year, thanks to the analytical work of Payne

and McVay (1971), and their organization into a hierarchical structure, humpback whale sounds

made the cover of Science magazine, advertising for the new field of bioacoustics and PAM

(Figure 1.3).

As a result of this pioneering work, there is a global recognition in the biology community

of the usefulness of PAM for studying cetaceans in their natural environment. In addition, the

work summed-up in McDonald et al. (2006) and, updated as a worldwide collaborative effort

in Širović et al. (2017) (Figure 1.4) underlines bio-geographic differences in BW species sounds

allowing species recognition from any PAM recording.

Figure 1.4: Blue whale song diversity, distribution and representation in the Southern hemisphere (Širović

et al., 2017).

As heat, light and other forms of electromagnetic energy are severely attenuated in the wa-

ter, acoustics is thus the most effective method for marine mammals and whales to perform

the various functions associated with their life cycle. Consequently, eavesdropping provides
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unequaled insights into their underwater activities without interfering at all with their natural

behavior. When animals are vocally active, the study of their sounds can favor the estimation

of their location, of their movements and even, at a broader scale, help into assessing seasonal

distributions and density. In addition and, unlike sighting techniques, PAM is not dependent

(much) on the weather or brightness, it can provide and record information all day long and all

year round, in various contexts, from open waters to beneath the ice, from coastal to remote

areas.

Specifically, BWs produce high intensity and low-frequency vocalizations, probably for long-

range acoustic signaling (Payne and Webb, 1971). Their specific signatures can exceed a 100 km

range (Payne and Webb, 1971; Frank and Ferris, 2011). These extraordinary vocal abilities are a

bargain for PAM: large areas can be monitored with a single sensor.

The tremendous strengths of combining PAM with modern unmanned autonomous systems

are unequivocal. The ocean and, therefore, marine mammals can now be acoustically monitored

over long time scales. As rightfully said by Zimmer (2011), in an introduction to his book Passive

Acoustic Monitoring of Cetaceans: "As an interdisciplinary subject, successful PAM combines

physics, technology, and biology ". The relationship between these three topics is discussed

throughout this chapter. Primarily, an overview typical PAM equipment is given in section 1.2.

1.2 Passive acoustic monitoring equipment

As there are multiple ways to conduct visual surveys of marine mammals, there are also multiple

methods and equipment for PAM (Figure 1.5).

Sound speed


profile

Ocean Bottom 


Seismometer

SOFAR

Moored 


hydrophone

Oceanic Glider

Tag

Sonobuoy

Figure 1.5: Schematics of the different types of PAM recorders.
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Hydrophones are the simplest of PAM systems. Lowering a single hydrophone in the water

from a boat is the easiest way to listen to whales and dolphins. Easy to implement this approach

requires minimal hardware and software. It can be improved by the use of multiple hydrophones

such as towed arrays, to ease localization and tracking, and contribute to cover larger areas.

These types of "dropped-hydrophone(s)" surveys, efficient in coastal areas are not adapted

to BW surveys in remote locations where autonomous systems are preferred. In addition, the

low-frequency noise from the towing ship severely limits the detection range, and is the reason

why they are rarely used for PAM of BW. The following section gives a brief but non-exhaustive

summary of common autonomous instrumentation used today for PAM. A complete review of

existing fixed autonomous systems for PAM is presented in Norris et al. (2010) and, a - more

recent- full review of real-time instrumentation for PAM is the subject of Baumgartner et al.

(2018).

1.2.1 Autonomous fixed recorders

Fixed (moored) and autonomous PAM installations allow for cost-effective long-term monitoring

of delimited areas, for extended intervals (e.g., months - years – decades). They are usually

separated into two groups depending on the location of the hydrophone in the water column:

sound channel-moored hydrophones and bottom-moored hydrophones. When close to shore

either systems can be cabled for real-time analysis, overcoming any data storage or limited power

supply limits (Ward et al., 2017; Hendricks et al., 2018; Baumgartner et al., 2019).

1.2.1.1 Bottom-moored hydrophones

According to Norris et al. (2010), the first autonomous recorders widely deployed across oceans

were ocean bottom seismometers (OBSs). These instruments, typically equipped with a seis-

mometer, a data logger and batteries to power the device (and later an omnidirectional hy-

drophone) were sunk to the seafloor. Data was processed after recovery. OBSs are usually set to

have a maximum sampling rate of 100 Hz. McDonald et al. (1995) was the first to use OBSs for

PAM of blue and fin whales.

Yet, OBSs were too expensive to be purchased and deployed by PAM research teams in large

quantities and, most bioacoustics team developed their own equipment. Nowadays there is a

wide variety of bottom-mounted (or moored) hydrophones covering various frequency ranges

such as Cornell Marine Autonomous Recording Units (MARUs - 2 Hz–30 kHz frequency response)

(Williams et al., 2014), Rockhoppers 1 or Scripps HARPs (High-frequency Acoustic Recording

Package) 2 (Širović et al., 2004, 2007).

Collaborations between the bioacoustics and geophysical scientific communities expanded

the possibility of using OBSs for PAM of baleen whales e.g., Dunn and Hernandez (2009); Frank

1http://www.birds.cornell.edu/brp/rockhopper/
2http://cetus.ucsd.edu/technologies_AutonomousRecorders.html
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and Ferris (2011); Harris et al. (2013); Brodie and Dunn (2015); Dréo et al. (2019). Table 1.1

presents typical OBSs characteristics.

Autonomy 8 month to a year depending on the sampling frequency

Depth maximum 6000 m

Frequency [0−50] Hz

Table 1.1: Example of the RHUM-RUM OBS characteristics (Stähler et al., 2016).

1.2.1.2 Sound channel-moored hydrophones

The deep sound channel is typical of mid-latitude oceans. Physically, in the upper part of the

water column, the speed of sound diminishes as the temperature drops. Around depths of

1000 m, when the temperature is constant, the sound speed increases with the hydrostatic

pressure (§ 1.4.2). This inflection point provides a well-defined minimum of celerity and, if an

acoustic source is placed at the depth of this minimum, the sound will be "trapped" in this low

sound speed layer due to the effect of refraction. The sound can then travel very long distances

with little attenuation. This property of the SOFAR, discovered by Ewing and Worzel (Worzel

et al., 1948), was showed to be applicable to cross-ocean sound propagation by the Heard island

experiment (Munk et al., 1994) using a signal near 57 Hz. For that reason, many recorders are

positioned in the SOFAR channel, for example as moored hydrophones floating in the water

column, e.g., Southwest of Australia (Gavrilov et al., 2011; Gavrilov and McCauley, 2013; Ward

et al., 2017) or in the Western Indian Ocean (Samaran et al., 2013; Leroy et al., 2016, 2018) (their

characteristics are presented on Table 1.2).

Autonomy 1 to 2 years

Depth between 500 and 1500 m

Frequency [0−120] Hz

Table 1.2: Example of the OHASIS-BIO (Observatory in the Indian Ocean) network sound-channel hy-

drophones characteristics (Leroy et al., 2018).

1.2.2 Autonomous moving recorders

Autonomous moving recorders are efficient to acquire short term data. Because they do not

often require large scientific vessels to be launched, they can be deployed in areas where access is

difficult. Moreover, when launched or retrieved, they can be combined with other non-acoustic

techniques such as visual observations (or even bio sampling) for multi-approaches monitoring.

Contrary to moored devices, they can provide information as thy move, covering a vast perimeter

or by monitoring a specific individual.
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1.2.2.1 Sonobuoys

Initially used for military purposes, sonobuoys are one of the most common equipment in the

family of acoustic buoy systems for PAM activities (Clark et al., 1986; Miller et al., 2013). The

concept is simple: they relay the sound received by a single hydrophone via a radio signal to

a nearby receiver (shipboard or airboard surveys). The additional integration of an orthogo-

nally oriented pressure vector sensor and a magnetic compass allows the DIFAR (Directional

Frequency Analysis and Ranging) sonobuoy to estimate bearing angles of a sound of interest. A

method to estimate the drift direction and speed of a directional sonobuoy is presented in Miller

et al. (2018). Cross bearings of two or more sonobuoys allow real-time tracking of target species

(Miller et al., 2016; Garcia-Rojas et al., 2018). When batteries run out, the sonobuoy sinks to the

bottom of the ocean, in that sense they are disposable equipment. An example of technical sheet

is given in Table 1.3.

Autonomy between 30 min and 8 hours

Depth between 30 and 300 m

Frequency calibrated omnidirectional hydrophone [5−20k] Hz

DIFAR [5−2.4k] Hz

Table 1.3: Example of the 53-F DIFAR sonobuoys characteristics (Rankin et al., 2019).

1.2.2.2 Gliders

In the early 2000, there was a revolution in ocean science: the advent of autonomous underwater

vehicles. PAM was not left behind with, in the summer 2006, the first successful deployment of

broadband (5 Hz to 30 kHz) omnidirectional hydrophone seaglider. It recorded calls from BWs

and humpback whales as well as odontocete sounds (Moore et al., 2007).

Underwater gliders are cost-effective buoyancy-driven vehicles moving vertically up and

down in such a way that, at the same time, they gain horizontal distance. They produce almost

no self-noise and minimal low-frequency flow noise (Baumgartner et al., 2018). Thanks to con-

tinuous efforts and development, they can now be used for real-time monitoring (Baumgartner

et al., 2013), and be deployed in previously inaccessible locations such as the Mariana Trench

where baleen whale calls were recently recorded (Nieukirk et al., 2016). The characteristics

of the glider used in this experiment are presented in Table 1.4. Their continuous motion is

slow compared to most marine mammals movements. Moreover, they can offer good spatial

coverage in comparison to fixed sensors and are easier to deploy. These features are the reason

why gliders are progressively considered for classical conservation applications such as animal

density estimation (Marques et al., 2013).
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Autonomy Technically almost unlimited, virtually months

Depth between 0 and 1000 m

Frequency between 15 Hz and 97 kHz

Table 1.4: Example of the Seaglider™ characteristics (Nieukirk et al., 2016).

1.2.2.3 Bio-logging or TAGs

Bio-logging or more commonly "tagging" consists in deploying a high-resolution multi-sensor

device directly on an individual in order to document a portion of its life. In addition to the

hydrophone, acoustic tags can be equipped with a hydrostatic pressure sensor (depth), an

accelerometer, a temperature sensor and, a compass (see models Acousondes 3 and Dtags 4).

Some of these devices can also be equipped with a radio antenna for communication. These

methods are designed to be non-invasive, e.g., fixed using suction pads in order to satisfy modern

ethical standards and least affect animal behavior.

Figure 1.6: Ari Friedlaender deploys a multi-sensor suction cup tag on a humpback whale in Antarctica’s

Wilhelmina Bay (Photo by Ari Friedlaender, source: https://www.bates.edu/).

Because they require contact with the whale (Figure 1.6), they are often combined with skin

samples for sex or DNA determination. Acoustic tags have provided information on call types,

call frequencies, cue production rates, seasonality and sex differences in vocalizations for BWs

(Stimpert et al., 2015). More recently, thanks to their combination with different sensors, tags

have been used to estimate the depth(s) at which BW sing, evaluated about 30 m (Lewis et al.,

2018). Characteristics of the DTAG3 used in Stimpert et al. (2015) is presented on Table 1.5.

3http://www.acousonde.com
4https://www.soundtags.org/dtags/
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Autonomy up to 3 days depending on the sampling frequency

Depth 500 to 3000 m

Frequency between 10 Hz and 20 kHz

Table 1.5: Example of the DTAG3 characteristics (Stimpert et al., 2015).

1.2.3 Discussion

Table 1.6 summarizes all the presented visual and acoustic survey methods and, compares their

ability to conduct continuous surveys, display common time-scales, if they are communicating

and if they can identify an individual or a species. Unique sensors are considered, and tracking

opportunities are not yet discussed. In comparison to sightings, PAM offers continuous and

Method Continuous
Duration

Real-time
Identification

hours day months year Individual species

Sightings
Visual 

survey

Aerial 

surveys

Drone

Satellite 

imagery

PAM
Auto. fixed 

recorders

Sono buoy

Glider

TAG

Table 1.6: Baleen whale survey methods recap: white = no, blue = yes and gray = maybe.

multi-time scale opportunities to survey BWs without intruding their environment. However,

Table 1.6 also shows that, because sounds are subspecies-specific, it is impossible to use a

unique omnidirectional sensor to identify individuals within a species. Besides, to identify new

species-sound connections, cross-referencing with, e.g., visual observations or known migration

patterns, is essential. This is why all the methods above are complementary, to learn about,

survey, and protect efficiently marine mammals using information based multiple time, space,

and resolution scales (Nowacek et al., 2016). A brief overview of PAM fall on for animal ecology is

given in section 1.3.
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1.3 Applications of passive acoustic monitoring

The first and most direct application of PAM is to study animal sounds as part of their com-

munication. Call and song description, as well as the identification of new signatures (Leroy

et al., 2017a; Ward et al., 2017), can help to identify connected species or subspecies (McDonald

et al., 2006) and, identify vocally active populations (Balcazar et al., 2015; Brodie and Dunn,

2015). Additional information on source levels (Cummings and Thompson, 1971; Samaran et al.,

2010c; Širović et al., 2007; Weirathmueller et al., 2013) intervene in the understanding one can

have on sound production mechanisms (Adam et al., 2013; Cazau et al., 2016; Adam et al., 2018).

Tagging equipment permits the observation and sampling of individual behavior (Lewis et al.,

2018). The study of song structure and their variations recently showed gradual synchronization

and modification of song rhythms for two Californian fin whales populations over long time

scales, indicating some exchanges or visitation among populations (Širović et al., 2017). More

recently Jolliffe et al. (2019) demonstrated an increase in song diversity of pygmy BWs, consistent

with cultural evolution but, the consequence of (yet) unknown factors. Thorough call analysis

also revealed, in addition to seasonal frequency variation, a constant decline of large whale call

frequencies over the last decade (McDonald et al., 2009; Leroy et al., 2018) but explanations are

yet to be found.

Based on call analyses and pattern recognition algorithms, PAM can be used in animal

ecology (Zimmer, 2011):

· to estimate the abundance, the total number of animals in a given area or, equivalently, a

population density of the species of interest;

· to mitigate the impact of anthropogenic activity on marine mammals or, to estimate

cetacean presence/absence, necessary for risk mitigation.

Note that the method employed for ecology analyses depend on the number of sensors (mono-

sensor or multi-sensor), their type (omnidirectional or vectorial) and their spatial distribution.

Some configurations enable to localize, track and differentiate individuals.

Habitat analysis is based on the idea that whales are not uniformly distributed throughout

the world and that their distribution shows spatial and temporal heterogeneity (Zimmer, 2011).

PAM can therefore be used to determine whale-inhabited waters and identify the populations

(Delarue et al., 2009; Samaran et al., 2010b; Cerchio et al., 2015; Garcia-Rojas et al., 2018). It can

help draw geographical and seasonal patterns across vast areas (Širović et al., 2004; Stafford

et al., 2011; Tripovich et al., 2015; Leroy, 2017), refine known migratory corridors (Thomisch,

2017) and, identify and locate species-specific feeding and breeding grounds (Gedamke et al.,

2007; Samaran et al., 2013). A better knowledge of whale territories is essential for conservation

purposes, as a first step before taking measures on the management of specific areas, for example,

to mitigate ship strikes and entanglements (Irvine et al., 2014; Harcourt et al., 2019).
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Last but not least, PAM can help to evaluate whale response to global anthropogenic noise

(Melcon et al., 2012). Indeed, anthropogenic noise has the potential to mask whale communi-

cation and therefore, to limit their communication range. It has serious consequences since,

according to Williams et al. (2014), acoustic masking is "a qualitatively similar stressor to habitat

loss." For instance, ship traffic can directly affect whale acoustic environment (Redfern et al.,

2017) and have been seen to cut down by 87% the communication space of Bryde’s whales on

routine passages (Putland et al., 2018). The study of transient sounds repercussion on marine life

also demonstrated the disturbance of BWs behavior under the effect of mid-frequency military

sonar (Goldbogen et al., 2013; Harris et al., 2018). However, the effect of noise on animals and

the in-place regulations are controversial subject (Gomez et al., 2016).

To efficiently monitor blue whales, knowledge of fundamental underwater acoustic propa-

gation is essential, for all intended applications. Physical properties such as the spreading of

the acoustic wave energy or attenuation need to be taken into account in the estimate of PAM

system detection ranges. Underwater acoustics key elements are thus discussed in Section 1.4.

1.4 Underwater acoustics

1.4.1 Geometrical or Modal propagation?

The wave equation showing the relationship between the spatial and temporal variations of the

acoustic pressure p is given by

∇2p −
1

c2

∂2p

∂t 2
= 0, (1.1)

where c represents the speed of sound and where the spatial differences are described by the

Laplacian operator ∇2, the form of which depends in the coordinate system chosen for the

application.

In underwater acoustics, as presented in Figure 1.7, there are two approaches to understand

and integrate propagation in models as well as in the interpretation of observations: the geo-

metrical and the modal approach. The geometrical approach is generally considered as a "high

frequency" approximation derived from the eikonal equation. Under these assumptions the

acoustic wavefront is represented by a finite number of rays, each one following their trajectory

depending on the position of the source, the emission angle(s), and the sound speed (Urick,

1983). However, other solving methods exist. For example, the modal approach requires an

accurate resolution of the acoustic pressure field (same order as the wavelength) and is therefore

generally considered as a low-frequency approach.

In underwater acoustics, the modal approach is generally considered when the wavelength

and the characteristic dimension (the water column height, H) are of the same order: it considers

the standing waves over the vertical ocean. When considering BW sounds in the deep ocean,

the maximum wavelength of their sounds in the order of 150 m (c = 1500 (m/s) and f = 10 Hz)
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Figure 1.7: Range of validity of modal and geometrical propagation as a function of frequency and

watercolumn height (adapted from Josso (2010)).

is more than 20 time smaller than average ocean depth ≃ 3500 m. Under these considerations,

geometrical assumptions are used in this study to model the propagation of BW sounds.

1.4.2 Sound speed profile and refraction

1.4.2.1 Sound speed profile
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Figure 1.8: Sound speed profile and influential parameters (adapted from Urick (1983)).

One of the most important characteristics of underwater acoustic propagation results from
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the fact that the sound speed is not constant. In general, c is determined by a complex rela-

tionship between salinity, temperature, and hydrostatic pressure, the last two being the most

influential. In a specific area, it mostly varies with depth (therefore denoted c(z)), showing

a stratification of the ocean (Urick, 1983). An example of typical mid-latitudes deep-ocean

profile is depicted in Figure 1.8, showing the two principal characteristics of the sound speed

profile: the thermocline where c(z) drops with the temperature and, the isothermal layer, where

c(z) increases with the hydrostatic pressure. Variations in surface temperature (due to latitude,

seasonal changes or weather) change the sound speed profile.

1.4.2.2 Refraction and the Snell’s law

The stratification of the ocean (in depth) induced by variations in the water column parameters

and, especially sound speed variations, has an effect on the propagation of the acoustic wave: it

is subject to refraction. Acoustic rays are deviated according to the Snell’s law

cosθ1

c1
=

cosθ2

c2
, (1.2)

where indices 1 and 2 correspond to two different depths in the water column with z1 < z2, and θ

represents the grazing angle (Figure 1.9). Then considering a simple sound speed profile,

· if c1 < c2, the grazing angle diminishes (θ2 < θ1) until total refraction and, the ray bends

towards the surface, to the minimum sound-speed,

· if c1 > c2, the grazing angle increases (θ2 > θ1) and, the ray bends towards the ocean floor,

again to the minimum sound-speed.
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Figure 1.9: Illustration of acoustic ray deviation depending on the sound speed profile.
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In other words, the geometrical model of the underwater acoustic propagation is a complex

model where, acoustic beams do not propagate in straight lines but, bend towards the minimum

sound speed under the effect of refraction. They can reflect at the surface and bottom boundaries,

as illustrated in Figure 1.10. Consequently, a receiver can record rays that traveled different paths:

direct or with bottom and surface reflection(s). At low frequencies, the sea surface can be seen

as a perfect screen where the acoustic wave reflects with only a phase change. However, some

energy might be transmitted into the seafloor, depending on the nature of the material.

Sound speed


profile

Source Receiver

1

2

3

4

Figure 1.10: Illustration of different acoustic paths: (1) Direct, (2) one bottom reflection (3) one bottom

and one surface reflections and, (4) two bottom and one surface reflections.

In order to carry out numerical simulations of the propagation, numerous software have been

developed, the most popular being Bellhop (Porter and Bucker, 1987). This program, developed

by Porter in the 1980s is freely available online5. An example of propagation with a source placed

at a 30 m depth and a statistical deep ocean sound-speed profile for the Indian Ocean in May is

presented in Figure 1.11. Acoustic rays fill the entire water column with multiple bottom-surface

reflections. Ray tracing illustrates 2D propagation space coverage, but, the analysis can be

completed with energetic considerations.

Figure 1.11: Propagation simulation, source depth zs = 30 m, θ= [−20;45]°, propagation range r = 100 km.

5http://oalib.hlsresearch.com/Rays/
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1.4.3 The sonar equation

The conservation of the acoustic energy on the source-receiver path can be seen as a transmission

process and, can easily be converted into an equation. In underwater acoustics, the sonar

equation in its signal excess form is described as a summation of levels (in dB) such as

SL−TL− (NL−PG) ≥ DT, (1.3)

where

· SL denotes the acoustic source level;

· TL expresses the transmission losses, i.e., the effect of distance and attenuation on the

original sound;

· NL is the ambient noise level;

· PG represents the processing gain resulting from, e.g., the equipment gain, directionality,

signal processing and;

· DT is the detection threshold.

In PAM, SL corresponds to the level emitted by the studied species. A brief description of the

recent breakthrough in the understanding of sound production mechanisms of baleen whale

and, estimated SL are presented in § 1.4.3.1 while TL are the subject of § 1.4.3.2. Oceanic ambient

noise is the subject of its own chapter (Chapter 2) and, section 1.5 mitigates common signal

processing methods for PAM of BWs (both intervene in PG).

1.4.3.1 Sound production

It is only recently that anatomical pieces of evidence were found in the investigation of baleen

whales sound production: the whale possesses vocal "chords" - named vocal folds- and vocalizes

only in close-circuits when they are underwater (Reidenberg and Laitman, 2007). Baleen whales

are equipped with a laryngeal sac, in addition to the lungs, to generate the airflow necessary

to excite the folds without air exhalation (Reidenberg and Laitman, 2008). This additional and

compressible air container is attached to the folds and allows the whale to cycle air during a

diving period. Sound production mechanisms have been modeled for humpback whales and

can physically explain the production of tonal and pulsed sounds (Adam et al., 2013; Cazau et al.,

2013, 2016). Equivalent work has not yet been published for BWs. It has been shown in Adam

et al. (2018) how theses anatomical traits determine the characteristic features of BW sounds

such as high acoustic intensity, limited duration, and very low fundamental frequencies. These

observations are supported by measurements of different BW subspecies calls source levels, in

their specific frequency band such as:

· SL = 189±3 dB ref. 1 µPa @ 1m in the [25−29] Hz frequency band for BW (Širović et al.,

2007),
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· SL = 179±2 dB ref. 1 µPa @ 1m in the [22−25] Hz frequency band for Australian pygmy

BW (Gavrilov et al., 2011) ,

· SL = 179±5 dB ref. 1 µPa @ 1m in the [17−30] Hz frequency band for ABW (Samaran et al.,

2010c) and,

· SL = 174±1 dB ref. 1 µPa @ 1m in the [17−50] Hz frequency band, Madagascar pygmy

blue whale (MPBW) (Samaran et al., 2010c).

These measurements are in the same order as the values estimated initially by Cummings and

Thompson (1971). Vocal characteristics of BWs such as the production of low-frequency sounds

with strong levels indicate once again the outstanding abilities of these giant species for adapting

their communication to long-acoustic ranging in the deep and open ocean (Payne and Webb,

1971).

1.4.3.2 Long range propagation

For long-range underwater acoustics, the solution to the wave equation is rarely considered

under Cartesian coordinates (plane wave). Because a generated sound can propagate in all

directions, it is often modeled as a spherical wave in the close field. However, when the spreading

continues, the wave starts to interact and is constrained with the ocean boundaries (surface and

floor) leading to cylindrical waves. Table 1.7 shows the expression of the spatial evolution of the

pressure p(r, t) = p(r )e jωt (with ω= 2π f ) for outgoing plane, spherical and cylindrical waves

(Urick, 1983).

The losses associated to the geometrical spreading of the acoustic wave can hence be ex-

pressed as a logarithmic function of the propagation distance and are presented for their as-

sociated wave type in the second column of Table 1.7. The plane wave does not suffer from

geometrical spreading. However, losses from spherical spreading are doubled compared to

cylindrical spreading (6 versus 3dB when doubling the distance).

p(r) Geometrical losses (dB)

Plane wave Ae− j kr (1.4) None

Spherical wave
A

r
e− j kr (1.5) 20log10 r

Cylindrical wave
A
p

r
e− j kr (1.6) 10log10 r

Table 1.7: Evolution of the acoustic pressure for plane, spherical and cylindrical wave and their associated

geometrical spreading losses.

The transmission losses TL are due to the coupled effect of the aforementioned geometrical

losses and absorption. In seawater, absorption is due to the combined effect of viscosity, heat
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transfers and, molecular relaxation of both magnesium sulfate and boric acid. It is taken into

account using a complex wavenumber k = kr − j ki in the expression of p(r, t), introducing an

exponential decay in the amplitude such as Aabs = Ae−ki r where ki is the absorption coefficient

in Neper/m. Yet, absorption is highly frequency-dependent and does not critically affect low

frequencies (less than 0.01 dB/km under a 100 Hz) (Urick, 1983). It is therefore not taken into

account in the TL of low-frequency BW sounds that are hence uniquely dependent on the geo-

metrical losses.

Thanks to the loudness of their calls and absence of absorption, BW calls propagate over

very long distances. This property also implies that a sensor can record signals of interest as

well as various noise sources originating from a large surrounding radius. It is then necessary to

sort the content of the recordings. Besides, the size of sound archives related to baleen whales

monitoring is rapidly increasing. Efficient analysis of these large volumes of data resulting from

such continuous and long-term recordings requires reliable automated detection algorithms.

The success of PAM hence relies on well-designed and robust signal processing methods to

detect and classify signals of interest in the variety of sounds present in the oceans. A review

of the commonly used signal processing methods for the detection of BW sounds is given in

Section 1.5.

1.5 Signal processing

Analyzing a PAM experiment, requires to transform raw acoustic data into legible pieces of infor-

mation. This crucial phase relies on signal processing and can take various forms. Initial manual

detection consisting in reviewing multiples hours of recordings is still an essential and non-

negligible task. It can help documenting the different encountered sounds, for example, to assess

the soundscape diversity (Cerchio et al., 2015; Brodie and Dunn, 2015). However, manual anno-

tation can be tedious, time-consuming and repetitive. Hence, annotation quality is variable and

depends on the fatigue of the operator (Leroy et al., 2017b). To deal with the increasing amount

of data from continuous and long-term recordings, robust automatic detection-classification

methods are required. This expression conveys multiple underlying concepts that can briefly be

described as (1) detection: the action of finding signals of potential interest, (2) classification:

the action of sorting signals of interest into different categories. Moreover, the adjectives can

be explained as (3) robust: the ability to detect a signal in noise with a known error rate, (4)

automatic: ability to process data with minimum user-set parameters and without supervision.

These different elements are discussed in the following paragraphs.

1.5.1 Pattern recognition: detection, classification or both?

Pattern recognition is the global term to designate detection-classification systems and is a

branch of artificial intelligence. Generally, pattern recognition systems rely on features extrac-

tion to generate a profile of the signal(s) of interest and, classify based on the similarity between
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the measured features and those learned from multiple exemplars (Bittle and Duncan, 2013).

A fitting pattern recognition system relies on what makes a particular signal of interest (or

call) distinct, from the noise and other transient look-alike signals. The different developed

methods, often exploit BW subspecies specificity and the stereotyped features of their vocaliza-

tions (§ 2.3). Specifically, they use the characteristics of their short-band frequency modulated

signals (found in many bioacoustic signals).

Pre-processing Segmentation Features extraction Classification

One-class
Pre-filtering, 

SNR measurement
Signal template and filtering Threshold

Multi-classes
Filtering, 

TF analysis

Extraction of signals 

of interest

Discriminative  

features
Sort

Table 1.8: One-class and multi-classes pattern recognition layout.

As presented by Table 1.8, various types of algorithms have been developed and used for

PAM. Some, uses one-class pattern recognition (§ 1.5.2), others considered as "generalized"

detection-classification systems are discussed in § 1.5.3 and § 1.5.4.

1.5.2 The specific case of one-class pattern recognition

One-class pattern recognition is a type of detection, restricted to the class of signals of interest

(binary detection). As reported in the sonar equation (1.3), a sensor records a mix of ambient

sound (hence considered as background noise) and, the signal of interest with an energy balance

indicated by the SNR. The detection problem can then be viewed as a noise reduction problem

where the solution consists in finding the optimal filter that maximizes the output SNR. Specifi-

cally, it can be shown that the MF is the optimal filter to detect a deterministic signal of interest

embedded in white noise (Van Trees, 2002). The MF is referred to as an adapted filter because

its impulse response is a reversed version of the signal of interest. In practice, this operation is

performed in the time domain by the convolution between the recordings and a signal template

(Samaran et al., 2008; Weirathmueller et al., 2017).

The work of Mellinger and Clark (1997, 2000) introduced the PAM community to spectrogram

correlation (2D MFs). It has since been implemented in various automatic detection software
6 7 and is still commonly used (Stafford et al., 2011; Samaran et al., 2013; Balcazar et al., 2015;

Shabangu et al., 2017). In Gavrilov and McCauley (2013) a step is added to reduce false alarms

6http://ravensoundsoftware.com
7https://www.pamguard.org/
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(the detection of a non-desired event ).

Marginally, a simpler version, the energy detector consists in evaluating energy variations

in short frequency bands, tailored to the useful signal. It conveys the same principle in terms

of noise reduction but, might be more subject to false detections (Širović et al., 2004; Gedamke

et al., 2007; Tripovich et al., 2015).

Other specific detection methods such as MFs, achieve both the detection and classification

(one class of signal of interest) of a specific signal or call type simultaneously. For example,

the Z-detector is a method recently introduced based on the subspace-detection of sigmoidal-

frequency signals with unknown time-varying amplitude (Socheleau et al., 2015). This detector

has been developed to be able to take into account the main issues in MF methods: frequency

variations of BW calls and the presence of other unwanted transient sounds.

In cases where the goal is to detect different types of signals, for example, call types from

different species wandering in a common area, running a specific binary detection algorithm can

become a bit tedious. This is why other categories of pattern recognition algorithms consider

simultaneously multiple classes. The first step is the detection of the potential signals of interests

or, segmentation.

1.5.3 Segmentation

In order to exploit frequency-modulated specificities of whales calls, signals are typically de-

scribed based on the time-varying shape of the vocalization in the time-frequency (TF) domain.

The first step of most segmentation method is, therefore, often to represent the observation

as a spectrogram. Segmentation can be performed from arbitrary samples (i.e., spectrogram

temporal bins) or, directly from signals of interest "box" information (minimum and maximum

frequencies, begin and end times). However, the first one does not provide temporal coherence

and, the second one requires mandatory pre-processing by an operator. Automatic methods are

thus preferred.

Once again, various detection techniques can be used to segment BW signals from am-

bient noise such as the detection of the connected elements (Harland and Armstrong, 2004),

pitch-tracking (Baumgartner and Mussoline, 2011), edge detection (Gillespie, 2004), clutter map

constant false alarm rate detector (also named energy detector) (Mouy et al., 2008; Thode et al.,

2012), spectrogram-based detector (Urazghildiiev et al., 2009), contour detection and Bayesian

filtering (Roch et al., 2011; Madhusudhana et al., 2016) or local-max detector (Lin et al., 2013),

transient signal detector (Gavrilov et al., 2011).

Following data segmentation comes the characterization phase that aims at extracting spe-

cific and discriminative features, to classify the signals. Classical features often express spectro-
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temporal variations of the signal such as peak frequency, duration, slope, bandwidth (Gillespie,

2004; Urazghildiiev et al., 2009; Gavrilov et al., 2011; Trygonis et al., 2013). These features can be

amplitude-weighted (Baumgartner and Mussoline, 2011) or SNR-weighted (Thode et al., 2012).

Some other types of features are based on cepstral coefficients or wavelets (Mouy et al., 2008).

1.5.4 Classification

The classification is the last step of pattern recognition processes and is based on the extracted

feature vectors. The outcome of the classification can be binary (seek to determine if a sample

is the signal dominant or not) or multi-class. Supervised methods are the most common in

PAM as they tend to replace human analysis and are designed for a specific task. Supervised

classification maps the attributes into call classes after learning from labeled data. Dimension

reduction can be employed, such as principal component analysis (PCA). Classification methods

include the use of discriminant analysis (Binder and Hines, 2012), multivariate discriminant

analysis (Gillespie, 2004), neural networks (Dugan et al., 2010; Thode et al., 2012; Halkias et al.,

2013), Gaussian mixed models (Mouy et al., 2008), Hidden Markov Models (Pace et al., 2012) and,

Classification trees (Trygonis et al., 2013).

More recently, a global detection-classification approach based on sparse call representa-

tion (directly from the waveform) and dictionary learning has been proposed (Socheleau and

Samaran, 2017; Guilment et al., 2018). Unlike MFs, this novel approach has the advantage of

accounting for call variability in its sparse models. Besides, these compact representation types

enable the building of large dimension dictionaries for better call representation and, dealing

with less-stereotyped signals such as BWs D-calls (Guilment et al., 2018).

1.5.5 Discussion

As discussed in the introduction to section 1.5, acoustic detection, and classification can be

achieved "manually" by an expert with the appropriate training. Still, automated methods have

unequivocal advantages: they can process data faster, more efficiently and, are unbiased (or

rather their bias is constant (Mellinger and Clark, 1997)).

On the one hand, because it is specific, easy to implement and has low computational com-

plexity, binary detection, and especially MF (§ 1.5.2) is by far the most common strategy for the

detection of BW calls. Besides, it does not require much training (only high-quality signals or

models of the signals of interest) and, can reliably detect medium to high SNRs signals (Bouffaut

et al., 2018). Nonetheless, the simultaneous or quasi-simultaneous detection of different types

of signals (e.g., multiple-species call detection) tends to increase the number of filters (or call

templates). The filtering must be performed for all filters, processing data in parallel or, indepen-

dently. Expanding the number of signals of interest increases the computational complexity of

the method: MFs are therefore not well adapted to the detection of multiple call types.
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On the other hand, generalized pattern recognition systems (§ 1.5.3-1.5.4) are more adapt-

able. They can detect and classify different types of signals at once. Besides, even if some a

priori knowledge on the call types to detect might be helpful to find relevant features to extract,

perfect knowledge of useful signals is not mandatory. Furthermore, these types of algorithms

can offer more flexibility, for example, to sort a new incoming signal into a rejection class. The

quality and performances of the overall method are variable. It depends on the discriminative

qualities of the extracted features as well as the quality of the training data. Ideally, in supervised

learning, training data should cover all signals of interest in addition to various samples of noise,

to design efficient rules of separation. However, only a few of these annotated datasets are freely

available for baleen whale sounds, such as the detection, classification, localization and density

estimation of marine mammals (DCLDE) low-frequency dataset 8 (where annotated D-calls and

fin whale 40-Hz calls are available).

Automatic pattern recognition algorithms can be proved to be affected by long-distance

acoustic propagation effects, resulting in the distortion of the received calls, echoes, low SNRs

or, various environmental transient noises (Binder and Hines, 2019). It is therefore essential to

assess the performances of such detectors, e.g., evaluate the detection and false alarm probability,

the miss-detection rate or the quality of the retrieved calls, in order to assess the limitations and

range of applications for a given method.

1.5.6 Performance analysis

The evaluation of the performances aims at quantifying in what terms and to what extent a

method is reliable in different conditions, e.g., various SNRs, transient sounds or, changing

ambient noises. In other words, performance scores are indicators of the confidence one can

have in a method, based on a statistical analysis of its results.

There are multiple ways for demonstrating the performances of a method. Formal (analytical)

and controlled performance serve as reference in the field of signal processing. However, they

are not always available for more practical or data-driven methods. Because any evaluation

requires large testing samples to ensure statistical robustness, the solution is often to rely on the

use of ad-hoc procedures and extensive Monte Carlo simulations. These types of simulations

are often implemented using noise and synthetic signals. They have the advantage of complete

control over the SNR. Difficulties are reached when performance assessment requires datasets

that are representative of oceanic soundscapes and signals that reflect propagation distortion.

The last possibility, to show the effectiveness of algorithms on real recorded signals, is to resort to

human inspected data. Thus, a large panel of soundscapes and signals can be covered. However,

annotations for performances and testing suffer from the same issues than manual detection and

classification: they are subject to the operator instant sensitivity and therefore biased, especially

at low SNRs (Leroy et al., 2017b).

8http://www.cetus.ucsd.edu/dclde/datasetDocumentation.html
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Performance scores can be used to evaluate the detection and classification abilities of a

method under a particular setup (e.g., for MFs, if I set the threshold to X value, I can not detect

calls with a SNR lower than Y). On the contrary, they can be used to constrain the method to a

specific range of applications (if I want a probability of false alarm or probability of detection

of X, I need to fix the detection threshold to Y). In cases where the classification is based on

extracted features, classification performances can be used to find the best set of discriminative

features.

As a statistical evaluation of the outcomes of the method, performance scores are an unbi-

ased way of comparing methods and can be used to make a knowledgeable choice regarding the

desired application. Note that it is crucial, for the comparison to be unequivocal, to be "fair" to

all methods and compare them under similar setups.

Performances evaluation is essential for most of PAM applications. For example, estimating

the detection probability within a specific detection range is essential for call density estimation

or, evaluating the precision of the detected frequency is required for precise call description and

variation analysis.

1.6 Conclusion

In this chapter, PAM was presented as an autonomous, discrete, low-cost, and, efficient multi-

disciplinary mean to conduct BW surveys across oceans. The ambient sound, recorded by these

autonomous systems depends on multiple environmental factors such as the deployment re-

gion, the season, the moment of the day, the weather, human activity, as well as equipment

characteristics such as the recorded frequency band, self-noise or depth of the sensor.

The work presented in this thesis is based and illustrated on an opportunistic source of data

acquired in the Western Indian Ocean during the RHUM-RUM seismological experiment. OBSs

were deployed in an un-monitored part of the Indian Ocean whale sanctuary, providing exclusive

seasonal information of local baleen whale activity (Dréo et al., 2019). Chapter 2 presents the

multifariousness of the low-frequency soundscapes recorded by the OBSs.
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Chapter 2

Low frequency sounds from the bottom of

the Indian Ocean

The hypothesis that whale voices could be heard across an ocean was

almost too grand to believe. Furthermore, the notion that noise from

commercial shipping might be interfering with whale communication

seemed far-fetched and was essentially forgotten.

Christopher W. Clark

Testimony for the hearing on "Examining the Threats to the North

Atlantic Right Whale" (2019)
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2.1 RHUM-RUM data

2.1.1 RHUM-RUM network

Data used in this work were collected by the RHUM-RUM (Réunion Hotspot and Upper Mantle -

Réunions Unterer Mantel) seismic network 1 (Barruol and Sigloch, 2013). This project aimed

at imaging the mantle structure beneath the Western Indian Ocean and the dynamics of La

Réunion volcanic hotspot. To that extent, 57 OBSs were deployed on the ocean floor, covering

an area of 2000×2000 km2 (Lat. 16−34°S, Long. 048−070°E; Figure 2.1), from October 2012

to November 2013. Each one of these autonomous OBSs was equipped by a three-component

seismometer and a hydrophone, recording data continuously 2. Deployed instruments were

from different origins; therefore, sensor types and sampling frequencies were not homogeneous

among the 57 OBSs. Paragraph 2.1.2 introduces the characteristics of the OBSs of interest. For

more information, the technical description of the network with deployment positions, recording

times, sensor types, stations’ performances, data quality, and instrumental failures is detailed in

RHUM-RUM technical report (Stähler et al., 2016).

Figure 2.1: RHUM-RUM seismic network of 57 Ocean Bottom Seismometers (OBSs) in the Western Indian

Ocean and the denser Southwest Indian Ridge (SWIR) sub-array, deployed on the sea-floor (Dréo et al.,

2019).

1www.rhum-rum.net
2Recorded data are currently hosted on the RESIF French national seismic archive center (Barruol et al., 2017).
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The OBSs of the RHUM-RUM project were fully autonomous from deployment to recovery

and, despite the wide area covered by the experiment, instruments set up (and then recovery)

took less than a month. However, OBS deployment technique raises some technical issues.

· The instruments, deployed from a surface vessel, fall freely into the water. Due to ocean

currents and, depending on the water column height, they can drift up to hundreds of

meters relative to the surface deployment location: landing positions of the OBSs are not

known and, are considered ±500 m from the drop-off location.

· Also, the available amount of battery is limited and, sensor failure might occur before

recovery. In addition to lacking part of the data, early failure prevents the synchronization

of the internal clocks with the GPS signal that normally occurs immediately after the

station recovery.

For the present dataset, clock drift was post-synchronized using the results of multi-component

noise cross-correlation presented by Hable et al. (2018). Uncertainties on the OBSs locations are

in the process of being solved using ship-generated noise as localized (AIS) source of opportunity

(Trabattoni et al., 2020).

2.1.2 SWIR array

In order to characterize the micro-seismicity associated to an active seamount located on the

Southwest Indian Ridge (SWIR), the extensive tectonic plate boundary between Africa and

Antarctica, RHUM-RUM deployed a local and denser sub-array of 8 OBSs, henceforth denoted

as the SWIR array. These instruments belong to the German OBS pool DEPAS (Deutscher Geräte-

Pool für Amphibische Seismologie) and are of the LOBSTER (Long-term OBS for Tsunami and

Earthquake Research) type (Figure 2.2). The SWIR array covered an area of 70 km×40 km with

depth varying from 2822 m at the top of the seamount to 5430 m in the trench. Inter- OBS

distances were in the order of 20 km. Their sampling frequency fs was 100 Hz (except for OBS

RR42, fs was 50 Hz ). The hydrophone frequency response for the OBSs is known to be mostly

flat from 1 Hz to 90% of the Nyquist frequency (45 Hz) (Stähler et al., 2016). Position, sampling

frequency, sensitivity, and sensor recording period are summarized in Table 2.1.

The location and frequency band covered by the RHUM-RUM recordings provided unique

and unpredicted opportunities to observe and study the numerous low-frequency sound sources

of the Western Indian Ocean. Besides, the SWIR array positioning and inter-sensor distances

were ideal for multi-sensor observations, especially of whale sounds. The array arrangement

enables the possibility of localization and tracking and, therefore, conduct PAM of baleen whales

in the area.
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Figure 2.2: Picture of a LOBSTER (Schmid and Schlindwein, 2016).

Lat. Long. z fs sensitivity Recording

OBS (°) (°) (m) (Hz) (mV/Pa) period

RR41 -27.7330 65.3344 5430 100 1.2 16 Oct. 2012 - 17 Jun. 2013

RR42 -27.6192 65.4376 4776 50 1.1 16 Oct. 2012 - 10 Aug. 2013

RR43 -27.5338 65.5826 4264 100 1.1 16 Oct. 2012 - 15 Jun. 2013

RR44 -27.5324 65.7480 4548 100 1.2 16 Oct. 2012 - 03 Jun. 2013

RR45 -27.6581 65.6019 2822 100 1.2 16 Oct. 2012 - 04 Jun. 2013

RR46 -27.7909 65.5835 3640 100 1.1 16 Oct. 2012 - 26 May 2013

RR47 -27.6958 65.7553 4582 100 1.0 16 Oct. 2012 - 22 Jun. 2013

RR48 -27.5792 65.9430 4830 100 1.1 16 Oct .2012 - 10 Jun. 2013

Table 2.1: SWIR array OBSs characteristics: position (Latitude (Lat.), Longitude (Long.), Depth (z)),

sampling frequency fs , sensitivity and recording period (Stähler et al., 2016).

2.2 Low-frequency soundscapes from the bottom of the Indian

Ocean

2.2.1 Introduction

Poetically, the concept of soundscape was introduced in 1977 by the composer and environ-

mentalist Murray Schafer, in his book The tuning of the world (Schafer, 1980), setting the basis
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of acoustic ecology. To this day, his definition of three classes of sound to sort the composing

elements of ambient sound are still widely used (Krause, 2008; Pijanowski et al., 2011). They are

illustrated in Figure 2.3 and their definition is given as follows:

- the biophony includes all non-human biological sound sources, e.g., baleen whale songs,

dolphins whistles, fish sounds, seals thrills or, smaller-scale coral reefs and benthic sounds;

- the geophony regroups the sound sources generated by non-biological natural sources,

e.g., meteorological noises, earthquakes and, iceberg tremors; and,

- the anthrophony comprises all sounds generated by humans such as ship or harbor

wideband noise, airguns explosions, or drilling noise.

GEOPHONY

BIOPHONY

ANTHROPOPHONY

Figure 2.3: Illustration of underwater soundscape categories.

Studying ocean’s soundscapes is equivalent to monitoring spectral characteristics (levels and

frequency) over time and space in order to point out the different trends in sounds in different

frequency bands. The exciting thing is that each one of these specific sounds interests a particular

scientific community, that considers all the other sounds as ambient noise.

Empirically tested for decades, Wenz curves (Figure 2.4) specifically take into account the

global contribution of each soundscape category and, give an estimate of frequency distribution

as well as energy contribution to the oceanic ambient noise level (Wenz, 1962).

Contribution of each soundscape category can be found in the frequency band recorded by

the OBSs [0−50] Hz. Notably, because low-frequency sources experience little attenuation, they

have a significant potential for long-range propagation. "The low-frequency ambient noise field,

therefore, can be a summation of noise across an entire ocean basin" (Hildebrand, 2009).
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Figure 2.4: Wenz curves: spectra and frequency distribution of underwater sound sources (Miksis-Olds

et al., 2013), (reproduction from Wenz (1962)).

2.2.2 Anthrophony

The principal source of anthropogenic noise in the area covered by the SWIR array is ship noise.

It is identified as one of the major contributors to the increase of low-frequency sound floor
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(quietest ocean conditions) in the Indian Ocean over the 2002-2012 decade, mainly due to an

increase of traffic (Miksis-Olds et al., 2013). As an example, Figure 2.5, is an instant capture of

the maritime traffic in the Indian Ocean on May 24th , 2019. The SWIR array is located south

from the principal lane between the Cape of Good Hope and India/Thailand but is on the route

connecting South Africa to Indonesia. The selected tanker is within the vicinity of the area

previously covered by the SWIR array. Most of the vessels are cargo or tankers.

Figure 2.5: Instant capture of Indian Ocean statellite ship traffic on May 24th , 2019 whith a tanker passing

on the former SWIR array location. Green = cargo, red = tanker, orange = fishing, blue = tugs and special

craft, dots = pleasure crafts (source: http://www.shiptraffic.net/2001/04/indian-ocean-ship-

traffic.html).

Ship noise, in general, is described as the combination of two physical processes (Ross, 1976)

(Figure 2.6): a broadband hydrodynamic noise ([0−10] kHz) generated by cavitation, modulated

by low-frequency propulsion noise. Propulsion noise is directly related to the propeller mech-

anism, frequencies are proportional to the number of blades of the propeller, to the rotation

speed of the shaft(s) and to the engine rate. Propulsion-related sources are dominant in the ship’s

radiated noise at high speeds (Arveson and Vendittis, 2000). This phenomenon is characterized

by low-frequency spectral lines and their harmonics < 500 Hz.
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Figure 2.6: Large ship radiated noise spectrum diagram.

The low-frequency band covered by the OBSs provides direct observations of ship radiated

noise as spectral lines that can be recorded continuously for multiple hours. As an example

Figure 2.7 shows the spectrogram of a ship passing nearby the SWIR array and, recorded for more

than ≃ 10 hours (equivalent to a pursuit of more than 300 km at 16 knots).
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Figure 2.7: Example of the spectrogram of the noise radiated from ship, recorded by an OBS.

Other anthropogenic sources such as airguns for seismic exploration are usually in the 5 to

300 Hz frequency range (Hildebrand, 2009); however, none were recorded during the deployment

period.

2.2.3 Geophony

Geophony is by far the soundscape category that regroups the most eclectic range of sources. As

a rough approach to the types of sounds that might be recorded by OBSs, they are sorted into

two categories: below 2 Hz and broadband [2 -50] Hz.
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The ultra-low frequency band, below 2 Hz, is highly energetic in most recordings from the

bottom of the ocean. It regroups signals issued from:

- geophysical sound sources such as micro-seismicity (principal micro-seism band [0.1 -

0.2] Hz (Sutton and Barstow, 1990; Schmid and Schlindwein, 2016)),

- tidal cycles that manifests themselves as a 2 Hz "whistle" (Duennebier et al., 1981),

- exceptional events, such as tsunamis, that can also be detected as ultra-low frequency

chirps ([1-25] mHz) (Hanson and Bowman, 2005) or even,

- variation of level, temporally correlated with storms, hurricanes or wave height

(Sutton and Barstow, 1990).

In the recordings, earthquakes appear as short duration (intermittent) highly energetic broad-

band noises, lasting from few seconds to ≃ 2 min as presented in Figure 2.8.

Other region-specific sound sources might occur: "In the Southern Hemisphere, the natural

sounds associated with the breakup of icebergs represent an important and potentially underap-

preciated acoustic noise source. Annually tens of thousands of icebergs drift out from Antarctica

into the open waters of the Southern Ocean, creating a ubiquitous natural source of sound as

they disintegrate" (Matsumoto et al., 2014).

Figure 2.8: Earthquake and whale calls. Figure 2.9: Ice tremor and whale calls.

Indeed, Antarctic icebergs generate two types of sounds: long harmonic duration tremors

(Figure 2.9) and broadband bursts. Harmonic tremors spectral characteristics are variable. They

are described as signals with prominent eigenfrequencies in the 4–7 Hz range, often accompa-

nied by overtones (Talandier et al., 2006). They typically last 2–10 min. They are shown (Chapp

et al., 2005) to widely cover the spectrum, up to 100 Hz and, their frequency fluctuate upwards
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or downwards by 10–20 %. They are generated by the collision between icebergs (Matsumoto

et al., 2014). Iceberg burst signals cover a broader spectrum. They are more common and are

associated with iceberg breakup in the open sea (Talandier et al., 2006).

Finally, the full bandwidth can be impacted by geophysical sounds, e.g., the wind increases

ambient noise level in the [30−800] Hz frequency band (Kewley et al., 1990; Cato and McCauley,

2002), especially in areas unaffected by anthropogenic sound sources (Haver et al., 2017).

2.2.4 Biophony

In the OBS-monitored frequency band, prevalent biological sound sources originate from baleen

whales (Wilcock et al., 2014). Bioacoustical studies such as McDonald et al. (2006) reinforced the

idea that whale song is an indicator of baleen whale (and especially BW) population structure

worldwide. During the recording period, regionally-distinct songs of:

- Antarctic blue whales (ABWs) (Balaenoptera musculus intermedia (Leroy et al., 2016),

- Madagascar pygmy blue whales (MPBWs) (Balaenoptera musculus brevicauda)

(Samaran et al., 2013),

- Fin whales (FWs) (Balaenoptera physalus) (Samaran et al., 2010a) and,

- an unknown caller that produces P-calls (Leroy et al., 2017a)

(or "spot" call (Ward et al., 2017)),

were recorded across the RHUM-RUM deployment zone. Characteristics of these baleen whale

song signatures are described in section 2.3.

2.3 Baleen whale acoustic signatures

Acoustic characteristics of regionally-distinct baleen whale songs recorded during the RHUM-

RUM deployment are described in this paragraph for ABW (§ 2.3.1), MPBW (§ 2.3.2), P-calls

(§ 2.3.3) and, Fin whale (FW) (§ 2.3.4). These descriptions follow the naming system of McDonald

et al. (2006). Analysis results of this section are based on the work we presented in Dréo et al.

(2019) characterizing individuals acoustic signature from hand-picked annotations. This study

focuses on classical features such as, mean values of (Figure 2.10):

- units characteristic frequencies (Hz), usually the most energetic frequencies sometimes

called peak frequency,

- units duration (s),

- inter-call interval (ICI) (s), the interval between the beginning of a call and the beginning

of the following one and,
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- inter-series interval (ISI) (s) the interval between two series,

among the observed panel. These attributes were measured on good quality signals, i.e., calls

with high SNRs.
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Figure 2.10: Illustration of units, call, ICI, series and ISI definitions on an ABW song.

In the following paragraphs, spectrograms and associated power signal densitys (PSDs) are

displayed for each species, from the recording of a whale going through the SWIR array. In order

to show the effects of propagation on whales stereotypical songs, a series is observed from two

recording locations, close and remote from the whale. Knowledge of the whale location is used

to comment on propagation attenuation of whale signals.

2.3.1 Antarctic blue whale

In the Southern Hemisphere, ABW call is the most widely distributed BW vocal signature. It is

found near Antarctica (Širović et al., 2004; Thomisch, 2017) up to mid-latitudes of all oceans,

including the Indian Ocean (Leroy et al., 2016; Balcazar et al., 2017).

Unit A

Unit B

Unit C

Unit A reverberation

ICI

Figure 2.11: Annotated spectrogram of an ABW

call recorded on May 31st , 2013 by OBS RR43.

Peak frequency and duration of each units are:

Unit A 26.2 Hz (≃ 12 s), unit B joins units A and

C (2 s), unit C 18.7 Hz (12.2 s). The ICI is of

≃ 66.4 s.
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The ABW call, also commonly named Z-call because of its recognizable Z-shape in the time-

frequency domain, is constituted of three short successive units (Figure 2.11). Unit A is a slightly

modulated pure tone lasting 12 s with a maximum at 26.2 Hz. It is followed by unit B, a 2 s

down-sweep (DS) that joins units A and C. Unit C is also a slightly modulated pure tone lasting

12.2 s with a maximum at 18.7 Hz. ABW calls are regularly repeated in series with ICI of 66.4 s.

Series are separated by longer intervals of about ISI = 206.4 s corresponding to the breathing of

the animal (Dréo et al., 2019).

Series of five ABW calls recorded on May 31st , 2013 at 12:33 by (a) OBS RR43 and (b) OBS RR48,

respectively estimated ≃ 2 km and ≃ 36 km away from the location of the ABW are represented

in Figure 2.12 (a)&(b). Figure 2.12 (c) represents the PSD of each observation.
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(a) RR43
(b) RR48

Figure 2.12: Propagation effect on ABW call series of 5 Z-calls recorded on May 31st , 2013 at 12:33 (D151).

Spectrogram of the series received by OBSs (a) RR43 at ≃ 2 km and (b) RR48 at ≃ 36 km (nfft = 1024, overlap

= 98%) and, comparison of the associated PSD.

On the closest observation (a), the three units appear distinctively, on each repetition of the

call. Tonal units A and C affect the PSD (c) by showing peaks on their characteristic frequencies.

Unit A peak is ≃ 20 dB higher than unit C. With the distance (b), unit A and unit B "bump" at

≃ 23 Hz, in the first half of the chirp, are attenuated with transmission losses consistent with the

area and the distance. Recordings background noises show high energy between 15 and 32 Hz, a

larger bandwidth than typical whale chorus (§ 2.3.5). This might be the effect of fin whale calls

(§ 2.3.4) or higher frequency-modulated (90 to 25 Hz) "D-calls" which have been attributed to

BW feeding activity (Samaran et al., 2010b). Because they exceed sensors frequency boundaries,

"D-calls" are not characterized in this work. Probably because of this background noise, the

low parts of the call, under 22.8 Hz (second part of unit B and unit C) are no longer visible in

Figure 2.12 (b).
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2.3.2 Madacascar pygmy blue whale

Out of the four known populations of pygmy BW, three inhabit the Indian Ocean. They are

distinguished by their geographic range, morphological and vocal characteristics (Stafford et al.,

2011; Gavrilov and McCauley, 2013). They form: the Northern Indian Ocean population (Sri

Lanka pygmy BW call), the Eastern Indian Ocean population found west and south of Australia

(Australia pygmy BW call) (Gavrilov and McCauley, 2013) and, the Madagascar population found

in the Western Indian Ocean (MPBW call or song type 9A (McDonald et al., 2006)). Only calls

from this last population are present in our recordings.

Unit A

Unit B

Unit C

Unit 1

13.5 Hz

34 Hz

21 Hz

27 Hz

Unit 2

Down-

sweep

low

high

Figure 2.13: Annotated spectrogram of a MPBW

call recorded on May 28th , 2013 by OBS RR43.

Unit 1 peak frequencies are ≃ 13.5 Hz, 21 Hz,

27 Hz and 34.0 Hz, it has a duration of 27.3 s.

Unit 2 down-sweep peak frequency is 23.3 Hz

with a duration of 24.4 s. The ICI is of ≃ 103.1 s.

MPBW calls consists of two successive units that are long complex tones (Figure 2.13). The

first one, is composed of four partials with inharmonic frequencies spanning from a ≃ 13.5 Hz

fundamental (named MPBW unit 1 low) up to 34.0 Hz (named MPBW unit 1 high) with 7 Hz

intervals. The 27 Hz partial seems to often have less energy than the others. Unit 1 lasts 27.3 s.

Ten to twenty s later follows the second complex tone, named unit 2, where most of the energy

is concentrated on a DS that follows three successive laws of frequencies (or three rates of fre-

quency changes) from ≃ 24.4 to 21.6 Hz with a maximum at 23.3 Hz. It is thereafter named

MPBW unit 2 DS. Unit 2 lasts 24.4 s. Both units start by a short broadband signal constituted of

multiple ≃ 1.4 Hz-spaced low energy partials (see Figure 2.13 at 20 and 65 s). Calls are repeated

with ICIs of 103.1 s and series are separated by ISIs of 302.4 s (Dréo et al., 2019).

Series of seven MPBW calls, recorded on May 28th , 2013 at 18:46 by (a) OBS RR47 and (b)

OBS RR41, respectively estimated ≃ 2 km and ≃ 48 km away from the location of the MPBW

are represented in Figure 2.14 (a)&(b). Figure 2.14 (c) represents the PSD for each observation.

On the closest observation (a), all elements that compose the MPBW call appear distinctively,

on each repetition of the call. Prominent frequency on the PSD (c) of the close recording are

the MPBW unit 1 low (13.5 Hz) and high (34 Hz) partials as well as the MPBW unit 2 DS. A high
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(a) RR47
(b) RR41

Figure 2.14: Propagation effect on MPBW call series of 7 calls recorded on May 28th , 2013 at 18:46 (D148).

Spectrogram of the series received by OBSs (a) RR47 at ≃ 2 km and (b) RR41 at ≃ 48 km (nfft = 1024, overlap

= 98%) and, comparison of the associated PSD.

frequency peak at ≃ 27 Hz for RR41 indicates the presence of remote P-calls (§ 2.3.3) in the

background noise of both observations: they are not correlated with the recurrence of units

1. Remote observation of the call series (b) highlights that only the prominent frequencies of

the call (MPBW unit 1 high and low, unit 2 DS) remain while units short broadband signal and

in-between partials with inharmonic frequencies are attenuated, confirmed with the PSD plot.

2.3.3 P-calls

The OBSs network recorded a type of call with similar features to a recently described vocaliza-

tion called "P-calls" or "Spot-call" (Leroy et al., 2017b; Ward et al., 2017). So far, the source has

not yet been identified, but many pieces of evidence suggested the call is produced by a giant

whale but not by Antarctic nor pygmy BWs. These recent PAM studies revealed detection of this

call type in deep-ocean waters across the Indian Ocean from 26°S to 42°S and from 058°E to

083°E (Leroy et al., 2017a) and in the Southern and Indian Oceans off Australia within 32°S to

38°S and 110°E to 141°E (Ward et al., 2017).

The P-call is a single pure tone at a frequency of 26.7 Hz, with a duration of 14.5 s. It is

repeated in series with an ICI of 132.1 s. No recurrent longer intervals, indicating specific ISI

were measured. Series of five P-calls, recorded on May 17th , 2013 at 20:30 by (a) OBS RR48 and

(b) OBS RR43, respectively at ≃ 20 km and 50 km away from the estimated location of the whale

(outside of the SWIR array) are represented in Figure 2.15 (a)&(b). Figure 2.15 (c) represents the

PSD for each observation. Figure 2.15 highlights that P-calls frequency seems to limit the upper

frequency of whale chorus frequency band 2.3.5. High intensity calls in Figure 2.15 (a) generates

strong echoes that are attenuated with the distance. Ship noise is responsible for the spectral

lines below 15 Hz and at 30 Hz.
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(a) RR48
(b) RR43

Figure 2.15: Propagation effect on series of 5 P-calls recorded on May 17th , 2013 at 20:30 (D137). Spectro-

gram of the series received by OBSs (a) RR48 at ≃ 20 km and (b) RR43 at ≃ 50 km (nfft = 2048, overlap =

98%) and, comparison of the associated PSD.

2.3.4 Fin whales

FW habitat spreads across all oceans, however, the structure of their songs varies geographically

(Delarue et al., 2009). Typically their songs are composed of sequences of pulses centered around

20 Hz (the "20 Hz pulse"), with highly stereotyped repetitions intervals. Geographical variations

impact higher frequency components and ICIs (Gedamke, 2009).

20 Hz pulses

IPIICI

pulse 


reverberationBackbeats

Figure 2.16: Annotated spectrogram of FW

pulses and backbeats recorded on May 24th ,

2013 by OBS RR41. Pulses occur between 31.5

and 13 Hz and are shorter than a second. Back-

beats are visible between 18 and 13 Hz. The

interpulse interval (IPI) is of 9.9 s, the ICI of

20.4 s and the ISI of 107.6 s.

Two FW-characteristic units were recorded by the OBSs. The 20 Hz pulse is a short duration

(< 1 s) down-sweep between 31.5 and 13 Hz. Most of its energy is concentrated around its

maximum at 18.1 Hz, between 16.9 and 20.2 Hz (-3 dB peak width). In our data set, pulses are

repeated in groups of 2 to 5, with interpulse intervals of 9.9 s. These groups are separated by ICIs
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of 20.4±0.09 s, and repeated in series, with ISI of 107.6 s. The other recorded FW characteristic

unit is a small pulse covering a shorter frequency range (≃ 13 to 18 Hz), the "backbeat". It

sometimes occurred by itself or between the groups of 20 Hz pulses. Due to the limited sample

rate of the recordings, it is not known if these 20 Hz-pulses occurred along with higher frequency

components, as observed for instance near the Antarctic Peninsula (Širović et al., 2004).

Two series of 20 Hz pulses and inserted backbeats, recorded on May 24th , 2013 at 23:00 by

(a) OBS RR41 and (b) OBS RR48 are represented in Figure 2.15 (a)&(b). The presence of strong

echoes on such signals indicates that recording (a) is close (< 5 km) from the emitting FW. The

two OBSs are ≃ 70 km apart. Figure 2.15 (c) represents the PSD for each observation.
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(a) RR41
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Figure 2.17: Propagation effect on FW call series of 23 calls and incomplete series of 20 calls recorded on

May 24th , 2013 at 23:00 (D144). Spectrogram of the series received by OBSs (a) RR41 and (b) RR48 (nfft =

512, overlap = 98%) and, comparison of the associated PSD.

With the distance and due to multipath propagation, clear and distinct pulses of (a) are

strongly attenuated. Echoes from all directions are mixed into an unintelligible hubbub. With the

same spectrogram parameters, individual pulses are no longer visible. However, global energy

variations can be associated with the series. On the PSD, the 20 Hz "bump" looses ≃ 16 dB with

the distance. Seven backbeats that were not recorded on OBS RR41 were recorded on RR48.

Peaks at ≃ 13.5 Hz and ≃ 34 Hz are due to distant MPBW calls(§ 2.3.2).

2.3.5 Chorus

Animal chorus is generally described as a sustained component of the ambient noise, showing

through an increase of noise levels in the specific frequency range of the calling species (Cato

and McCauley, 2002; Haver et al., 2018). From a sensor perspective, the limit between individual

calls and the unintelligible chorus is often subjective (Leroy et al., 2017b).

Baleen whale chorus manifests itself in the soundscape as an enhanced energy band between

15 and 27 Hz. It has mostly been studied in the SOFAR: hydrophones positioned at these depths
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can record chorus energy from long-range whales calls (up to hundreds of km) (McCauley et al.,

2018). This is why, the chorus has been used for assessing acoustic whale presence in an area,

larger than "clear call" detection radius (Leroy et al., 2016; McCauley et al., 2018). Because they

lay on the sea-floor, OBSs are less subject to long-range effects. They still record choruses but,

from sources in a supposedly shorter radius. Chorus recorded by the SWIR OBSs change with

the types of signals thereof. It is a combination of all whale sounds emitted in the vicinity of the

sensor: it might be the effect of remote FW such as Figure 2.17 (b) and ABWs for the upper limit,

but the width of its spectrum might be enlarged by the presence of P-calls (Figures 2.15 (b) and

2.14 (b)) or even by "D-calls" Figure 2.12.
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Figure 2.18: Spectrogram and normalized received levels (dB/Hz) of FW pulses (a-b) and ABW calls (c-d).

Received levels are measured between 15 and 25 Hz for FW pulses. For the ABW they are measured in the

[25.7-26.7] Hz frequency range for unit A and [19.2-25.6] Hz for unit B.
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There is a close relationship between chorus and reverberation. The following development

illustrates that, from a single sensor point of view, even a close whale can contribute to this

sustained component of the ambient noise and that, the reverberation changes regarding the

type of signal emitted and the propagation. Figure 2.18 shows examples of the variations of

received level per Hz for FW pulses and ABW unit A and C. A logarithmic fitting curve is applied

to each song type, starting on the last vocalization of a series.

Reverberation induced by the FW pulse measured in the [15 - 30] Hz as well as ABW unit B,

decay in −10log t dB/Hz while the ABW unit A-induced reverberation decays in −20log t dB/Hz.

The ×2 difference might be due to the duration of unit A: same −20log t dB/Hz decay is found

on unit C (not plotted in Figure 2.18). However, these results highlight that the reverberation of a

single close whale also contributes to the global chorus: ICIs are not long enough to retrieve "no

whale" ambient noise levels. Building on this thought, ICIs seem to be an interesting indicator

relative to the maximum detection range of distinct calls on the OBSs.

2.3.6 Discussion

The focus of section 2.3 is to carefully describe and underline song characteristics of regionally

specific species in the Western Indian Ocean. However, it is important to keep in mind that

baleen whale share anatomical features, especially when considering sound production (See

§ 1.4.3.1).

Recent acoustic behavioral studies of BW and FWs were conducted on vocally active tagged

animals (Stimpert et al., 2015; Lewis et al., 2018). Emission depths of BWs songs were found

between 15 and 30 m (Northeast Pacific BWs) and shallower (<15 m) for FWs (Southern California

Bight). Baleen whales seem to dive longer while singing (Stimpert et al., 2015). However, as a

marine mammal, they need to breathe at the surface, which brings regular and more extended

intervals in songs, associated with ISIs.

Figure 2.19 presents a synthetic scheme of the baleen whale calls recorded by the OBSs,

showing their relative frequency spans and intensities. As discussed in paragraph 2.3.5 and

highlighted in Figure 2.19, all acoustic signatures overlap and hence, can contribute to the

specific chorus bandwidth. However, it appears that each species has at least a characteristic

high-intensity unit (or partials) out or at the limit of the chorus span. These specific units appear

never to overlap, which makes sense in terms of interspecific competition for auditory space

(Pijanowski et al., 2011).

In terms of long-range communication, baleen whale signals seem to satisfy both sides of

Naguib and Wiley (2001) paradigm. On the one hand, the tonal parts favor the transmission of

the information with minimum degradation through propagation. On the other hand, "pulsed"

or vertical parts degradation help receiver to extract information about the signaler’s range. The
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same observation can be attributed to the difference between FW pulses and backbeats.
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Figure 2.19: Recap of the observed baleen whale calls frequency spans and relative intensities recorded

by the RHUM-RUM OBSs in the Western Indian Ocean, between October 2012 and November 2013.

2.4 Multi-sensor observations

2.4.1 Baleen whale seasonal occurrence

The analysis of energy variations in the characteristic frequency bands of the baleen whales

species presented in paragraph 2.3 reveals the presence and passage of multiple individuals

during the deployment period (Dréo et al., 2019). Six OBSs from the edges of the RHUM-RUM

network are processed. The chosen instruments are differentiated in Figure 2.1 by white-circled

black stars. The resulting baleen whales spatio-temporal distributions are presented in Fig-

ure 2.20.

In the Indian Ocean, the general pattern of baleen whale seasonal migration describes feed-

ing on the Antarctic feeding grounds during austral summer and presence in warmer Indian

Ocean waters during winter (Samaran et al., 2013). Figure 2.20 supports these observations, with

the acoustic activity of all whales recorded during an "extended winter," from February (for the

first ABWs) to November (for the last recordings of FW and P-calls.). The observed portion of the

Western Indian Ocean might be part of the migration route, breeding area, or winter location of

the observed species (Dréo et al., 2019).
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Figure 2.20: Spatio-temporal distribution of baleen whale vocal activity on the RHUM-RUM network,

revealed by characteristic frequency band energy variations (Dréo et al., 2019).

MPBW call types were detected mostly by the Western instruments between March and June,

confirming their presence only during summer and fall months (January to June) (Samaran et al.,

2010c; Stafford et al., 2011; Samaran et al., 2013; Leroy, 2017). The Western Indian Ocean is not a

winter or spring location for this population.

P-calls were recorded from April to November confirmed the presence of the species in the

Western Indian Ocean with a limit of distribution at 25° S and 056° E.

Figure 2.20 is also used to determine a study period before the SWIR array OBSs failure in ≃
early June (Table 2.1). The closest OBS to the SWIR array is RR40 and, RR40 energy variations

reveal an overlapping time period for all species during the month of May 2013 and, therefore, is

chosen for training, testing and illustrations in the manuscript.

2.4.2 Localization

The dimension of the SWIR array and the 100 Hz sample frequency of the OBSs are ideal for the

multi-sensor observation of whales, and consequently for their localization (Dréo et al., 2019).

Vocalizing whales in the vicinity of the array can be localized using a Bayesian inversion method:

it generates a probability density function of the location of the acoustic source by comparing

some observations to predicted model parameters (Dunn and Hernandez, 2009; Frank and Ferris,

2011).
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In the present case, the method compares theoretical time difference of arrival (TDOAth) of

acoustic rays, simulated using a discretization of the enlarged SWIR surface as a set of possible

sound sources to, measured time difference of arrival (TDOAm) from whale emissions. The

best match indicates the most likely location of the whale. The method processing steps and

succession are illustrated in Figure 2.21.

Figure 2.21: Localization method (Dréo et al., 2017; Dréo et al., 2019)

The SWIR surface is split as a spacial matrix of theoretical sources with a maximum precision

of 0.01°(about 900 m). It represents a grid of approximatively 20,000 points. Depth of the source

is set at 20 m. Acoustic rays are simulated between all possible combinations of sources-OBS

eigen-paths using BELLHOP3, to take into account the acoustic propagation and include envi-

ronmental characteristics such as the region’s complex bathymetry. Bathymetry of the survey

area is known from previous experiments (Cannat et al., 2006). Statistical velocity profile of May

is used 4. These simulations estimate theoretical time of arrival (TOAth) then, all TDOAth are

calculated.

Measured time of arrival (TOAm) and TDOAm ensue from annotated calls. The similarity

between each TDOAm and all TDOAth of the spatial matrix is then measured with a L1 norm.

Results are represented as a probability of presence map of the source. Successive locations are

connected into a track.

2.5 Conclusion

To close this chapter addressing low-frequency soundscapes recorded by RHUM-RUM OBS

and illustrate their diversity, let’s look at long-term spectrogram (LTS) representations of the

chosen study period, the month of May 2013. LTS representations allow capturing changes in

ambient noise as well as soundscapes diversity through time (Curtis et al., 1999; Haver et al.,

2017; Miksis-Olds et al., 2013). To represent the contribution of the different source types over

3Ocean Acoustics Library web page http://oalib.hlsresearch.com/Rays/
4Statistical profile from the SHOM database http://www.shom.fr
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the month, LTSs of OBSs RR41 and RR48 are respectively represented in Figure 2.22 (a) and (b).

Spectrogram number of sampling points, nfft is fixed to 215, to draw one point per 10 minutes of

recording, with 10% of overlap.

The high energy frequencies, below 2 Hz are attributed to seismic activity (§ 2.2.3). On these

representations continuous horizontal lines represent regular acoustic activity at a constant

frequency: some characteristic frequencies can be attributed to whale vocal activities, e.g.,

ABW calls at 26.2 and 18.7 Hz (§ 2.3.5), MPBW at 13.5, 23 and 34 Hz (§ 2.3.2) and, P-calls at

27 Hz (§ 2.3.3). The 15−27 Hz frequency band conveys more energy than the rest of the sensor

bandwidth. This is attributed to whale chorus, from received activity of remote baleen whale

vocalizations (§ 2.3.5). At the passage of a FW, this frequency band is enlarged and amplified

(§ 2.3.4). The passage of a ship is revealed by multiple concurrent harmonic frequencies, often

covering the entire observed frequency band (§ 2.2.2).

Underwater soundscapes are rich, diverse, and continuously changing. Therefore, the au-

tomatic detection of a specific signal among all these overlapping acoustic sources requires

dedicated signal processing tools. Regarding that general problem, the main issue faced by

current tools is that even signals that are well known at the emission (such as whale calls), change

under the constraint of propagation. This issue is tackled in Chapter 3, where the proposed

strategy based on the SMF takes into account eventual signal distortion and attenuation and

therefore, provides robust detection.
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3.1 Are received signals random?

Oceanic physical properties involved in sound propagation, e.g., sound speed profile hence

temperature, salinity, depths, or seafloor properties can be season-, region-, range-, depth, and

even time-dependent. It leads to differences in how a sound can be modified as it propagates

along the source-receiver path and finally affects detection (Binder and Hines, 2019). This section

examines if deterministic signals such as BW vocalizations may be considered stochastic after

propagation.

3.1.1 Impulse response of the propagation canal

In the time domain, pressure variations of acoustic signals are described as a product, homoge-

neous to amplitude a(t ) and phase ϕ(t ) variations. In its complex form, an emitted signal can

hence be expressed as s(t ) = a(t )e jϕ(t ). Propagation through the underwater medium (see § 1.4)

affects the emitted signal (attenuation, geometrical spreading, ambient noise) in a way that the

received signal z(t ) can be modeled as the convolution between s(t ) and the impulse response

of the propagation canal hP(t ), embedded in colored ambient noise n(t ).

z(t ) = [s(t )∗hP(t ))]+n(t ). (3.1)

Considering an omni-directional source and using ray-tracing models (§ 1.4.1), the received

signal at a given location results from the additive combination of multiple beams, each one

representing an acoustic wavefront. Each source-receiver path is referred to as eigenray. The

impulse response of the medium along the source-receiver path (respectively located at rs and

r ) is expressed in the frequency domain as

HP(r,rs , f ) =
Π(r )∑

i=1
Ai (η, f )e jωτi (η), (3.2)

where

- rs and r are the source and receiver coordinates;

- Π(r ) is the number of eigenrays reaching r ;

- η describes each eigenray trajectory;

- f is the emitted signal’s frequency and ω= 2π f its angular frequency;

- Ai (η, f ) = Ai (η)e−β( f )η is the amplitude associated to each eigenray where Ai (η) represents

the amplitude along the trajectory and depends on: the soundspeed in the medium,

the source-sensor distance, and the emission angle. The other term, e−β( f )η represents

absorption along the trajectory which is a frequency variant parameter and;

- τi (η) is the delay (propagation time) associated to each eigenray which depends on sound

speed variations along the trajectory (Josso, 2010).
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Evaluation of HP(r,rs , f ) therefore requires accurate knowledge of multiple physical parameters

along the source-receiver path(s). Some of these parameters can be acquired along experiments,

other can be simulated.

3.1.2 Comparison between real and simulated signals

This paragraph aims at illustrating how complex the propagation can be in a mountainous area

such as the SWIR array and, show limitations of classical 2D ray tracing propagation simulations

in 3D environments. In order to do so, a comparison is performed between a real recording of an

ABW call and the corresponding simulated signals. On May 31st, 2013 at 11:00, an ABW is in the

middle of the SWIR array (§ 2.4.2), passing over the central seamount. Measured spectrograms

of the same call received on different OBSs are displayed in Figure 3.1 (1-5 a). OBS depths and

locations are displayed in Table 2.1.
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Figure 3.1: Spectrograms of (a) real and (b) simulated received ABW calls on OBS (1) RR41 13 (2) RR43 15

(3) RR44 75 (4) RR47 5 (5) RR48 108, where italic value indicates the number of eigenrays. Simulations in

2D are conducted using BELLHOP considering source-OBSs eigenrays (time of arrival - amplitude).
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Similarly to the localization process, source-OBS bottom profiles are extracted and May statis-

tical velocity profile is used (cf. Figure 1.11 ). The sound speed is thus considered range invariant

(but still is depth-dependent c(z)). Received signals are simulated according to eq. (3.1), as the

convolution between a synthetic ABW call (§ 3.5.1.1) and each source-OBS channel-specific

impulse response. The impulse response of the medium is estimated in 2D using BELLHOP1,

with a source depth of 30 m. This representation illustrates different source-receiver paths with

distinctive distances and bathymetry. Technically, and, from the sensor perspective, this can

be understood as the summation of delayed and attenuated synthetic calls corresponding to

the different eigenrays. This reverberated signal is drawn into a background noise with higher

energy in the [18−27] Hz frequency band. Simulation results are displayed in Figure 3.1 (1-5 b).

In the simulation, the call is emitted by the whale at t = 0 s. For visualization and comparison,

the time of the recorded data spectrograms are set such as the closest OBSs RR43 (Figure 3.1 (2))

and RR47 (Figure 3.1 (4)) times of arrival of unit B matched the equivalent simulated data. Times

of arrival of the most energetic received signal measured on unit B are consistent between

simulated and recorded data, except for RR48 (Figure 3.1 (5)). Simulations do not explain the

strong unit A reverberations. It may suggest reverberation from the surrounding mountainous

sea-floor and therefore, 3D effects that are not considered in the present simulations. Besides,

due to the limited discretization of emission angles, simulations underestimate the number

of source-receiver eigenrays. Simulations of HP(r,rs , f ) provide valuable estimates of most

energetic received signal. However, they can not cover the full complexity of the propagation in

the SWIR area.

3.1.3 Limitations and position

As described in the section 3.1.2, the estimation of HP(r,rs , f ) requires accurate knowledge of

the source-receiver environment which in many cases can not be fulfilled, especially in a passive

context. The location of the source is indeed rarely known beforehand and, is often one of the

purposes of PAM systems. Without the knowledge of this crucial point, it is difficult to simulate

source-receiver paths and hence estimate HP(r,rs , f ). SWIR array uncertainties in OBSs loca-

tions also contribute to the randomness of received signals (§ 2.1.1). In addition, the complex

bathymetry introduces 3D reverberation that cannot be modeled by bottom-surface reflections

only.

In a more global perspective, even if it were possible to model source-receiver paths and

received signal accurately, it would still be extremely time-consuming. Most detection meth-

ods consider a more practical approach to overcome this issue. It consists in seeing recorded

observations as a mixture of the signal of interest and noise, with varying proportions2. However,

different assumptions can be made on the received signal properties. Instead of considering

1Ocean Acoustics Library web page: http://oalib.hlsresearch.com/Rays/
2The word observation is henceforth used according to this definition, while signal refers to the useful signal
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the received signal as deterministic, it is possible to account for any multi-path propagation by

considering the received signal stochastic, with known second-order statistics.

Under these considerations, detection methods have been developed under both signal

assumptions (deterministic and stochastic) and rely on noise reduction of the recorded obser-

vation. Such a problem can classically be solved through SNR improvement. The following

Section (section 3.2) introduces the theoretical elements of the noise reduction problem in the

time domain. Two approaches for SNR improvement are considered: the MF that works under

assumptions of deterministic signals and white noise (section 3.3) and the SMF derived for

stochastic signals and colored noises (section 3.4). Both methods were originally developed or

applied in the active signal processing field. Thanks to the reproducibility of BW sounds, MFs

have been widely used in the PAM community for detection, but with known limitations (§ 1.5.2).

These limitations can be overcome, considering the underlying theoretical assumptions of the

SMF. Following the work of Bénard et al. (2011); Caudal and Glotin (2008), the SMF is extended

in this thesis to the passive context (Section 3.5). Performances of both methods are presented

in Section 4 against a ground-truth dataset.

3.2 Noise reduction problem formulation in the time domain

The foremost goal of the noise reduction problem is to recover the signal of interest (or clean

signal) from a noisy observation. The model used through this work, is a superposition of a

signal of interest and some noise. Thus, in the discrete time domain, when processing data by

blocks of L-samples to ensure stationarity, the observation z(k), the signal of interest s(k) and

the noise n(k) vectors are related by

z(k) = s(k)+n(k) (3.3)

where the signal of interest and noise are zero-mean and uncorrelated. Their respective cor-

relation matrices are given by Rs = E[s(k)sT(k)] and Rn = E[n(k)nT(k)] where E[·] denotes the

mathematical expectation, (·)T the transpose operation and, where the discrete time index k

denotes the center sample of the observation e.g.

z(k) =
{

z

[
k −

L−1

2

]
, · · · , z[k], · · · , z

[
k +

L−1

2

]}
. (3.4)

Since the signal and noise are uncorrelated, the correlation matrix of the observation Rz =
E[z(k)z T(k)] is given by

Rz = Rs +Rn . (3.5)
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The estimation of the signal of interest s̃(k) and, therefore, noise reduction is achieved by the

application of a linear transformation to z(k) such as

s̃(k) = Hz(k) (3.6)

= Hs(k)+Hn(k), (3.7)

where H is a L×L filtering matrix (Benesty et al., 2009). Hence, the correlation matrix of the

estimated signal Rs̃ = E[s̃(k)s̃T(k)] can be expressed as the application of H respectively to the

signal and noise correlation matrices such as

Rs̃ = HRsHT +HRnHT. (3.8)

Finally, with this time-domain formulation, the resolution of the noise reduction problem relies

on finding an optimal filter that would attenuate the noise as much as possible while keeping a

clean and undistorted signal.

One of the most important measures to noise reduction is the SNR. The input SNR (i SNR) is

the ratio of the power of the signal of interest σ2
s = E[s2(k)] over the power of the background

noise σ2
n = E[n2(k)] such as

i SNR =
σ2

s

σ2
n

(3.9)

=
tr(Rs)/L

tr(Rn)/L
=

tr(Rs)

tr(Rn)
, (3.10)

where tr(·) is the trace operator (sum of the diagonal elements). The power expressed as the

operator σ2
. also represents the variance of the considered signal.

After the application of the filter and using (3.8), the output SNR (oSNR) can be written such

as

oSNR(H) =
tr(HRsHT)

tr(HRnHT)
. (3.11)

The noise reduction goal is to find the filtering matrix H in order to improve the SNR such as

oSNR(H) ≥ i SNR.

3.3 Matched Filter

3.3.1 Theory

To deal with deterministic signals, one of the most popular detection methods is the MF. This

process is achieved by cross-correlating a template of the known signal with the incoming

recording in order to detect the presence of this template in the observation. In other words,

the MF theory shows that the impulse response of the filter optimizing (3.11) for deterministic
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signals embedded in white noise, is the reversed signal itself (Van Trees, 2002; Max, 1981). The

signal’s power is known, consequently (3.11) becomes

oSNR(H) =
|s(k)HT|2

HRnHT
. (3.12)

To determine the oSNR(H) upper bound, the Cauchy-Schwarz inquality can be drawn from

matrix manipulation of (3.12), such as

oSNR(H) =
|(HR1/2

n )T(s(k)R−1/2
n )|

(HR1/2
n )T(HR1/2

n )
≤ s(k)R−1

n s(k)T. (3.13)

The upper-bound is reached if HR1/2
n = αs(k)R−1/2

n where α is a real number. Therefore, the filter

can be expressed as

H = αs(k)R−1
n (3.14)

with an impulse response equivalent to the conjugate time reversal of s(k).

3.3.2 Discussion

In practice, templates (and therefore, filters) are usually determined from the recording of a

real call, preferably with a high SNR and little distortion or, they are generated synthetically

(McCauley et al., 2018). The second option has the advantage of being free of noise and can be

adapted, e.g., to long-term variations.

Due to the MF conceptual simplicity and computational efficiency, it is widely used in

PAM applications. It has been used for stereotypical call detection directly in the time domain

(Samaran et al., 2010a), or in the TF domain as spectrogram correlation to be less sensitive to

background noise variations and small frequency shifts (Širović et al., 2004; Balcazar et al., 2015).

Besides, it is even implemented as a standard detection tool in bio-acoustic sound analysis

software such as PAMGuard and Ishmael.

The definition of the filter requires perfect knowledge of the signal s(k) at all times, as well

as white Gaussian background noise to be optimal. These assumptions are hard to meet in

experimental conditions and, according to paragraphs 2.2 and 3.1, cannot be satisfied in PAM

contexts. The use of the MF in sub-optimal conditions leads to lesser noise-reduction (and

detection) performances.

For detection, a more realistic approach consists in considering the signal as stochastic

where each realization matches a specific source location (i.e., specific impulse response of the

propagation channel). However, because the signal is originally deterministic, it is possible to

estimate its second-order statistics. This is one of the assumptions for the SMF, presented in

section 3.4. Detection under these considerations improves robustness and is less sensitive to

long-distance propagation and reverberation (Mori and Gounon, 2000; Bouffaut et al., 2018).
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3.4 Stochastic Matched Filter

3.4.1 Introduction

The SMF was presented for the first time by Jean-François Cavassillas (1991). This extension

of the MF for stochastic signals embedded in an additive colored noise was rapidly applied to

the detection of sonar signals (Cavassillas and Xerri, 1993). In 1997, the SMF was presented as

a new formulation for the Karhunène-Loève expansion (KLE) and applied for the first time to

2D signals for image interpolation (Courmontagne and Cavassilas, 1997). As a reminder, a brief

note on the KLE theory is presented in § 3.4.2. Based on the KLE approach, dimension-reduction

is introduced to the SMF often referred to as Constrained SMF (C-SMF): the number of signal

classes (Xerri and Borloz, 2004; Juennard, 2007; Borloz and Xerri, 2011), or the number of filters

(Courmontagne et al., 2010; Julien, 2012) can be fixed a priori. This last development, allows

to describe the SMF as a time-varying linear filter and provides faster online data processing

and significant representations of the method’s filters (Courmontagne et al., 2010). On this

theoretical basis, the SMF has been used in multiple applications: in one dimension (in the time

domain) for modulated wide-band signal detection in active sonar (Mori and Gounon, 2000;

Courmontagne et al., 2010) or audio pattern detection in automatic speech recognition(Bonnal

et al., 2010) and, in 2D for synthetic aperture radar (SAR) (Courmontagne, 1999) and synthetic

aperture sonar (SAS) (Courmontagne and Chaillan, 2006) imaging improvement.

The SMF is a solution to the problem formulated in (3.11): it maximizes the oSNR of stochas-

tic signals embedded in additive colored noises (Cavassillas, 1991). Corresponding theoretical

elements, following up on the time-varying filter approach can be found in § 3.4.3. Unlike MF

methods and according to section 3.1, the SMF assumptions are rigorously adapted to detection

in a passive context. Based on this understanding, the SMF has recently been used for sperm

whale click and echo detection (Courmontagne, 2010) that even outperforms Teager-Kaiser-

Mallat filter method (Caudal and Glotin, 2008). To pursue this work, an extension of the SMF to

the passive context for the detection of BWs calls was developed and is presented in Section 3.5.

3.4.2 The Karhunen–Loève expansion

Let the L×1 vector x(k) denote a sequence of data drawn from a zero-mean stationary process

with a correlation matrix Rx (Benesty et al., 2009). The matrix Rx can be diagonalized as

QTRx Q =Λ (3.15)

where Q = [q 1, q 2 · · ·q L] are the orthonormal eigenvectors associated to the eigenvalues Λ =
diag[λ1,λ2, · · · ,λL] of the matrix Rx . Therefore, the KLE of x(k) describes the vector as a pondered

combination of the eigenvectors Rx such as

x(k) =
L∑

l=1

cx,l (k)q l , (3.16)
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where the expansion coefficients are

cx,l (k) = q T
l x(k) and, (3.17)

l = 1,2, · · · ,L are the sub-band indices. In a sense, the KLE can be seen as analogous to a Fourier

transform but with random variables instead of fixed coefficients and an expansion basis derived

from Rx instead of sinusoidal functions.

A few properties can be derived from equations (3.16) and (3.17):

· coefficients cx,l (k) are zero-mean on each sub-band such as

E[cx,l (k)] = 0, l = 1,2, · · · ,L, (3.18)

· the covariance matrix of the coefficients is null, except on diagonal terms such as

E[cx,i (k)cx, j (k)] =




λi , i = j

0, i 6= j
, (3.19)

· the KLE allows energy conservation such as

L∑

l=1

c2
x,l (k) = ‖x(k)‖2

2 (3.20)

where the operator ‖.‖2 is the Euclidean norm.

3.4.3 Theory

Due to the propagation, the model of the signal of interest is never perfectly known. However, it

can be considered as a random signal with known second-order statistics. Both signal and noise

lie in unknown subspaces. In that context, the SMF was introduced as an extension of the MF, in

the sense of optimal filtering and SNR maximization. The process uses a new formulation of

the observation input SNR, expressed in the form of a Rayleigh quotient. The optimization of

this ratio leads to the construction of a set of sub-band filters, designed to maximize the oSNR.

The filters separate the signal and noise when projected onto an optimal subspace. The optimal

filters are hence, the set eigenvectors, associated with the greatest eigenvalues of the generalized

eigenvalue problem (GEP) involving the signal and noise covariance matrices. They maximize

the oSNR.

Note: For additional details on the SMF theory, the reader can refer to Courmontagne (2010)

where the complete method is thoroughly described.

3.4.3.1 Output SNR improvement formulation

In the discrete time domain, the received observation follows (3.3), where s(k) and n(k) are

realizations of random functions whose second order statistics are known as covariance matrices.

68



Chapter 3: Detection of stereotyped sounds: the Stochastic Matched Filter

Using the signal of interest and noise variances, respectively σ2
s = E[s2(k)] and σ2

n = E[n2(k)], the

observation is re-written as

z(k) = s(k)+n(k) (3.21)

=σs s0(k)+σnn0(k), (3.22)

with E[s2
0] = 1 and E[n2

0] = 1. Recall that these vectors correspond to L successive samples. The

reduced signal s0(k) and noise n0(k) are both assumed centered, second-order stationary and

mutually independent (Courmontagne et al., 2010). Under these assumptions, it is easy to show

the relationship between the correlation matrix of s(k) and the covariance matrix of s0(k) such

as

Rs =σ2
sΓs0 , (3.23)

with Γs0 the covariance matrix of the reduced signal. The same observation can be shown for the

reduced noise, with covariance matrix denoted by Γn0 . Covariance matrices are assumed diago-

nalized and, to avoid any confusion, H is replaced by Φ. Therefore, with these new notations,

(3.11) becomes

oSNR =
tr(ΦΓs0Φ

T)

tr(ΦΓn0Φ
T)

(3.24)

=
σ2

s

σ2
n

∑L
l=1Φl

Γs0Φ
T
l∑L

l=1Φl
Γn0Φ

T
l

, (3.25)

where the ratio
σ2

s

σ2
n

is the i SNR (3.9). Using matricial notation, the SMF oSNR optimization can

be written in the form of a generalized Rayleigh quotient such as

oSNR =
σ2

s

σ2
n

ΦΓs0Φ
T

ΦΓn0Φ
T

, (3.26)

The oSNR improvement relies on finding Φ such as the
ΦΓs0Φ

T

ΦΓn0Φ
T
≥ 1. In this well known opti-

mization problem, oSNR is maximum if Φ is the eigenvector associated to the greatest eigen-

value of C = Γ−1
n0
Γs0 , if the noise matrix is invertible. In other words, the basis {Φl }l=1,2,···L (of

L-dimensional deterministic vectors) that ensures the maximization of the SNR is solution to the

GEP that links the respective signal and noise reduced covariance matrices such as

Γs0Φl = λlΓn0Φl , (3.27)

withλl andΦl the eigenvalues and associated eigenvectors of C. TheΦi vectors are normalized in

order to satisfy ΦT
l
Γn0Φl = 1. It is also possible to derive another L-dimensional basis {Ψl }l=1,2,···L

formed with the eigenvalues of CT such as

Ψ=Γn0Φ, (3.28)

if i 6= j , Φi and Ψ j are orthogonal.
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3.4.3.2 KLE and signal estimation

Relying on the KLE, the observation vector z(k) can be decomposed into a sum of known

deterministic functions (vectors) weighted by uncorrelated random coefficients zl ,k (3.17). The

SMF theory (Cavassillas and Xerri, 1993) demonstrates that theses functions are determined by

the Ψ basis such as

z(k) =
L∑

l=1

zl ,kΨl . (3.29)

The random coefficients zl ,k are determined using the scalar product between z(k) and the

deterministic vectors Φl such as

zl ,k = z(k)TΦl . (3.30)

The noise, decomposed on the Ψ basis gives uncorrelated coefficients with unit power while the

signal expanded on Ψ has uncorrelated coefficients of power equal to λl . In other words, the new

representational orthogonal space determined by Ψ and Φ allows the differentiation between

observation coefficients (zl ,k ) that are carrying more signal than noise. Since the development is

performed on reduced values, it makes sense that the distinction between the signal and noise

occurs at a threshold Q representing the number product between the eigenvalues λl and oSNR

that exceed one (Courmontagne, 2010).

The dimension reduction properties of the KLE can, therefore, be applied. The signal is

estimated from the observation by a reconstruction up to the order Q. Then, (3.29) becomes

s̃(k) =
Q≤L∑

l=1

zl ,kΨl . (3.31)

The order Q is the dimension of the basis Ψ that minimizes the mean square error between the

signal of interest and its approximation.

3.4.3.3 Time-varying linear filter

In practice, to overcome the stationary issue of the noise, the L-sample block of the observation

presented by (3.4) is considered as an odd sliding window, centered on the k th sample. As

opposed to the full observed window still denoted as z(k), variables depending on the specific

sample k are denoted with brackets, e.g., z[k]. The i SNR is also a time-dependent parameter,

the i SNR of the k th sample is noted ρ[k].

An approximation of the signal of interest is then reconstructed by keeping only Q[k] compo-

nents associated to the eigenvalues greater than a given threshold such as

s̃Q[k][k] =
Q[k]∑

l=1

zl ,kΨl [ L+1
2 ], (3.32)

with zl ,k = z(k)TΦl and, where Ψl [ L+1
2 ] denotes the center sample of the vector Ψl . The order

Q[k] is then mathematically expressed as

Q[k] = #
(
ρ[k]×λl ≥ 1

)
(3.33)
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where #(.) is used as an abbreviation for the number of.

In the form of a linear transformation (3.6), the approximation of the signal of interest is then

reconstructed for the central sample of the sliding window, using the product of the observation

z(k) and a Q[k]-dimensioned filter hQ[k] such as

s̃Q[k](k) = z(k)ThQ[k], (3.34)

where the filter being expressed as

hQ[k] =
Q[k]∑

l=1

Ψl [ L+1
2 ]Φl (3.35)

and where {Ψl } and {Φl } are the SMF L-dimensional basis determined using equations (3.27)

and (3.28).

The order of the filter Q[k], takes values between 1 and L, limiting (3.35) to compute a

maximum of L vectors filters (hQ[k] with 1 ≤ Q[k] ≤ L). Each one of these filters can be seen as

a sub-band filter. The first filter h1 ensures the maximization of the SNR. A Qmax ≤ L can be

set, and, then hQmax is given by the superposition of all filters up to Qmax, covering the entire

useful signal bandwidth (Courmontagne, 2010). All eigenvectors associated with eigenvalues

greater than 1 contribute into improving the SNR; therefore, choosing a Qmax ≤ L only helps to

reduce the size of the filter bank (Cavassilas et al., 1997). The different filters representation in

the frequency domain and comparison to the signal’s spectrum are presented in § 3.5.1.2.

3.4.3.4 Discussion

Theoretical elements presented in this Section are general in the sense that they are valid for

both active and passive acoustic signal detection. In this development, equation (3.35) presents

the SMF in the form of a classical noise-reduction problem, where the signal is estimated by

filtering the observation. This filter, or more exactly, this filter bank to consider all sub-band

filters in the appellation, is seen to be directly dependent on the a priori knowledge of the signal

and noise covariances matrices (equations (3.27) and (3.28)). The filter bank is adapted to the

signal class (Juennard, 2007). An underlying advantage of the time-varying filter approach of

the SMF is to separate the processing into two steps, summarized in Figure 3.2. The first step

aims at determining the filter bank and, can be seen as an offline process. The second one is the

application of the time-varying filter to the observation, to preserve and reconstruct the signal

only. Therefore, it is referred to as an online process. The terms online and offline are used as

opposites. The offline process is not time-dependent and can be computed beforehand and

stored. The online process is time-dependent and, except for differences accounted for by the

sliding window of size L, can be achieved in real-time.

In active sonar applications, because they are essential to the experiments, the emitted signal

characteristics, e.g., exact time and duration of the emission, signal spectro-temporal evolution
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⊗

Figure 3.2: Scheme of classical SMF processing, as a succession of offline and online processes.

are known (and so is Γs0 ). In these circumstances, it is quite easy to determine a signal-free

portion of recordings, i.e., as a background noise measurement before starting the experiment.

Applying the principle of ergodicity, it is hence, possible to estimate the reduced noise covariance

matrix Γn0 and the noise power σ2
n . Therefore, the time-dependent i SNR ρ(k) is described as

the ratio between the residual power of the observation after removing the noise power, over the

noise power (Julien, 2012)

ρ(k) =
σ2

z(k) −σ2
n

σ2
n

. (3.36)

The noise covariance matrix Γn0 and hl can be updated as often as required.

The application of the SMF to the passive context is not as straightforward as in active

applications. As discussed in § 3.3.2, the advantage of stereotypical baleen whales calls is

that it is possible to determine their templates and then estimate the signal covariance matrix

(§ 3.5.1.1). Classical SMF noise estimation is built on the strong assumptions that a portion of

the observation can be signal-free. In the passive context, there is no a priori knowledge on

signal times of occurrence; a signal of interest can occur anytime. One solution to that particular

issue would be noise annotation in datasets. Although efficient, this solution diverges from

the principle of fully automatic detectors, designed for large dataset analysis. The problem of

background noise estimation is addressed in § 3.5.2.1. Last, due to the plurality of sound sources

overlapping in close frequency bands (paragraph 2.2), SNR estimation is a widely acknowledge

challenge in the passive context (Mellinger and Clark, 2006). Ratio as expressed by (3.36) are

indeed not sufficient to describe SNR variations. Keeping in mind the idea behind (3.36), ρ(k)

estimation issue is tackled in § 3.5.2.2 for the passive context.
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3.5 Extension of the Stochastic Matched Filter to the passive

context

The extension of the SMF to the passive context is decomposed in two processes: first offline

§ 3.5.1, then online § 3.5.2. This development is illustrated for the detection of ABW calls.

3.5.1 Offline SMF

The offline SMF aim at generating a filter bank, matching the signal and adaptable to a large

class of noises. To solve the GEP (3.27), the signal covariance matrix is required (§ 3.5.1.1). The

noise covariance matrix is calculated over a classical simulated underwater colored noise, with

higher energy at low frequencies. The resulting filter bank is presented in § 3.5.1.2.

3.5.1.1 Signal’s covariance matrix estimation

The SMF requires an accurate knowledge of the signal’s covariance matrix. Computing Γs0

requires the signal’s probability density function. This can be obtained either by the estimation

of an acoustic pattern from a dataset of multiple high SNR representative signals (Stafford et al.,

2004; Balcazar et al., 2015) or spectrum modeling using, for example, a mixture Gaussian models

(Samaran et al., 2008, 2010c).

For a signal with a known instantaneous frequency such as the ABW call, it is possible to

find a corresponding parametric model that describes the time variations of the amplitude and

phase (Socheleau et al., 2015; Leroy et al., 2016; Bouffaut et al., 2018). Such parametric models

are based on the complex form of an amplitude modulated and frequency modulated acoustic

signal s(n) = a(n)e jϕ(n), with a(n) the time-varying amplitude and ϕ(n) the time-varying phase.

From the definition of the instantaneous frequency and its parametric expression as a function

of the (continuous) time

f (t ) = fc +
1

2π

dϕ(t )

dt
= fc +L+

U−L

1+eα(t−M)
, (3.37)

it is possible to derive the expression of the time-varying phase ϕ(n), where n denotes the

discrete time, as

ϕ(n) = 2π

(
L

n

fs
+

U−L

α
ln

(
1+e−αM

1+e
α( n

fs
−M)

))
+ϕ0, (3.38)

where fc = 22.6 Hz is the central frequency in the [15−30] Hz bandwidth, L and U are respectively

linked to the lower and upper asymptotes of the Z-call, M represents the time shift and α the

grow rate. The amplitude a(n), is set to vary in accordance with the energetic difference between

unit A and C (Section 2.3.1). To compensate observed annual and seasonal frequency variations

within the call, the signal is built as a summation of multiple frequency modulated signals with

the following parameters: fs = 100 Hz, TZcal l = 20 s, L = [−4.5;−4;−3.5] Hz, U = [3.2;3.6;4] Hz,

M = [ TZcal l

2 ; (TZcal l+0.5)
2 ; (TZcal l+1)

2 ] s and α= 1.8. This temporal signature is then used to compute

the signal’s reduced covariance matrix Γs0 . The dimension of the signal is also chosen to be the

size of the z(k) sliding window: therefore L = 2001 bins.
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3.5.1.2 Filter bank

The earlier discussion in § 3.4.3.4 led to a key element of the extension of the SMF to the pas-

sive context: it is essential to design a filter bank that is applicable at all time with no a priori

knowledge on the instantaneous variations of the noise. The considered approach is to com-

pute the filter bank using a simple low-frequency synthetic sea-colored noise (white noise with

-6 dB/decade) to estimate Γn0 . All required elements are then gathered to solve Ψl

[
L+1

2

]
Φl from

(3.34). Filters are saved and stored for further processing in the online application of the SMF.

Observation noise-dependent parameters such as ρ[k] and and λl are estimated online after a

pre-processing of the observation (§ 3.5.2.1).

Figure 3.3 illustrates the frequency response of filters h1, h10 and hQmax . Symbol hQ denotes

the superposition of the Q-first filters of the optimal linear filter bank for ABW call detection

and capital HQ denotes their spectral representation. They are compared to the spectrum of the

simulated reference signal (§ 3.5.1.1) considered as the optimal filter, HOpt . Note that HOpt is

also the Z-call MF filter. The reduction of the matrix dimension of the filter bank is performed by

setting the order Qmax to select only the 10th percentile of the eigenvalues (Qmax = 201). The

L×L filter bank matrix is then reduced to L×Qmax .
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Figure 3.3: Spectrum of three filters (H1, H10, HQmax ) of the permanent filter bank compared to the

spectral representation of the reference signal (HOpt).

To maximize oSNR, the first filter H1 is a short-band filter centered on the most energetic

component of the call, unit A at ∼ 26.3 Hz. This filter is applied when the estimation of ρ[k]

indicates that there is no signal and achieves "noise cancellation." The superposition of the
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first 10 filters H10 leads to two slightly larger band-pass filters, respectively centered on units A

(∼ 26.3 Hz) and C (∼ 18.6 Hz) of the call. HQmax represents the superposition of the maximum

number of filters that are applied when the estimated input ρ[k] (Section 3.5.2.2) is high enough.

The filter’s pattern is then close to HOpt, but when applied, it band-pass filters the observation

in the signal frequency band: it reconstructs the entire signal.

3.5.2 Online SMF

The outcome of the online step of the SMF is the detected signals. To perform detection, the ob-

servation backgound noise is first estimated using a TF analysis (Section 3.5.2.1). This estimation

provides both the real noise covariance matrix Γn0 and a noise reference for online input SNR,

i.e., ρ(k) estimation (Section 3.5.2.2). Knowing all the parameters of the GEP for the observation

(3.27), eigenvalues λl are evaluated. According to (3.33), for each sample of the observation, it is

then possible to evaluate the corresponding Q[k], and apply the appropriate number of filters

corresponding to the current observation.

3.5.2.1 Online noise’s covariance matrix estimation

The SMF has been used for the passive acoustic detection of whales clicks but, the noise co-

variance matrix is estimated on annotated signal-free samples (Courmontagne, 2010; Bénard

et al., 2011). Although it is quite convenient for supervised detection on relatively short records,

it becomes tedious and unpractical for automatic detection on multiple-hours-long passive

acoustic monitoring datasets with highly varying background noise. Consequently, the following

development deals with finding a way to blindly take into account noise variations despite

frequency dependence and high energy events occurrence, aiming at performing accurate esti-

mation of Γn0 even in the presence of the signal of interest s(k) (Bouffaut et al., 2017b).

To that extent, the proposed method relies on a TF analysis: in these representations, tran-

sient signals are concentrated around a few TF bins (Socheleau et al., 2015). The noise statistics

can hence be estimated after the application of a filter aiming at attenuating the contrast between

transient signals and the noise. A three-step procedure is presented.

First, the observation is converted into the TF domain by a short time fourier transform

(STFT) noted γz (k ′, f ). The STFT is a complex transformation, its squared modulus, represents

the energy of the observation. The STFT of the observation is calculated using weighted over-

lapping windows and, the associated parameters (window size and type, overlap rate, number

of samples for the spectral analysis) are related to the sampling frequency, the duration of the

observation and the duration of the useful signal.

Then, the STFT modulus, |γz (k ′, f )| is used to filter transient signals. The attenuation of the

transient signal to noise contrast is performed using median absolute deviation (Rousseeuw

and Croux, 1993; Khalil et al., 2008). It is realized by the application of an odd-lengthen median
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filter through time, on each frequency canal (or sub-band) of γz (k ′, f ). The length of the median

filter is chosen greater than a useful signal duration in the TF representation to benefit from

its outliers smoothing property. Transient signals in filter window are then replaced with the

median of neighboring entries (in time), without any effect on the overall amplitude. With an

adequate filter length, the filter smooths out the presence of whale calls or short seismic events

and provide a TF estimate of the background noise, denoted |γñ(k ′, f )|.

Finally, the Wiener-Khintchine theorem (Max, 1981) that links |γz (k ′, f )|2 and the autocorre-

lation of the signal is applied, to estimate online the noise covariance matrix Γn0 . It is used to

solve online the GEP and calculate the eigenvalues λl .

3.5.2.2 Time-varying SNR estimation

The estimation of the current input SNR of the observation ρ[k], is essential for the online appli-

cation of the SMF. This time-varying SNR has a strong impact on the calculation of Q[k] (3.33)

giving the number of filters to be applied to the kth sample. The classical definition of the SNR is

the power ratio between the signal and the noise (3.9). In practice, as the power of the received

signal of interest is unknown, it is usually estimated as the difference between the instantaneous

power of the observation and the noise’s as in (3.36) (Courmontagne et al., 2010). However, PAM

records are noisy (section 2.2) and therefore, there is a need for a more accurate ρ[k] estimation.

The strategy to sharpen ρ[k] estimation when dealing with real underwater noises and de-

crease the false alarm rate, is again to use the TF representation of the observation. The matrix

|γz (k ′, f )| is compared |γñ(k ′, f )| to provide valuable information of the energetic variations in

the known signal’s bandwidth. Yet, other signals of no interest might occur in the same band-

width (other biological sources, distant ship noise or transient noise), so the previous calculation

is compared to the nearest frequency bands (Gavrilov and McCauley, 2013).

For ABW call detection investigated in this work, the ρ[k] estimation strategy results in

3 steps, using the previously computed TF estimate of |γz (k ′, f )| and the noise’s |γñ(k ′, f )|
(Section 3.5.2.1) described by the following algorithm on each time segment (denoted by k ′):

7→ Step 1: The signal presence is evaluated in the ABW call unit A frequency band (A =
[25.5−26.5] Hz) by the absolute ratio between the maximum value of the observation’s

absolute spectrum and the mean value of the estimated background noise

zcal l [k ′] =
max

f

{
|γz (k ′, f )|

}

|γñ(k ′, f )|
, f ∈ A (3.39)

A ratio greater than 1, indicates the presence of a short-duration signal in unit A frequency

band but does not differentiate signal from "non-signal" short duration events.

7→ Step 2: The false alarm due to energetic transient wide band noises is estimated by the

ratio between the observation absolute and the estimated background noise, outside the
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ABW call frequency band ( f ∈ [0,15[∪]27, fs/2[).

tr ans[k ′] = max
f

∣∣∣∣
γz (k ′, f )

γñ(k ′, f )

∣∣∣∣ . (3.40)

7→ Step 3: The time-varying SNR ρ[k], is then determined in dB using the ratio:

ρ[k ′] = 20log

(
zcal l [k ′]

tr ans[k ′]

)
. (3.41)

To take into account global changes in the acoustic environment, mostly due to continuous

sounds, ρ[k] is shifted by a value β such as ρ[k] ← ρ[k]−β for the entire observation duration,

depending on the background noise estimation as

β=





0 if M > 0

M elsewise,
(3.42)

with M =
1

L

L∑

l=1

(zcal l [k]− tr ans[k]). To go back to the time domain k, data are interpolated.

Only positive values of ρ[k] trigger the reconstruction of the observation (3.33). An application

of this improved SMF is presented in section 3.6.
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3.6 Results

The SMF described for passive application in section 3.5 is applied for ABW call detection in

paragraph 3.6.13. To show other potential applications of such a method in the passive context,

the SMF is applied in paragraph 3.6.2 for the detection of high frequency (frequency of the signal

of interest > 5 kHz) and less deterministic anthropogenic signals: scuba-divers breathing.

3.6.1 Antarctic blue whale call detection

The two detection strategies, based on the MF and, the SMF adapted to a passive context, are

applied to two simultaneous observations of the same ABW call series but, recorded from dif-

ferent locations in order to observe SNR variations. To that extent, the detectors are applied to

10-min-long observations from May 31st, 2013 recorded at 12.30 by OBSs RR43 (Figure 3.4 ) and

RR44 (Figure 3.5). At this moment (Figure 4.1), the whale is estimated ≃ 2 km away from the

closest sensor (RR43) and ≃ 22 km away from RR44.

The observation input waveform is bandpass-filtered between 15 and 30 Hz (denoted

z [15−30](k)), before the MF application, where the filter is the signal presented in § 3.5.1.1. The

SMF is applied directly to z(k). Its output, the estimation of the useful signal s̃Q[k](k) is, by itself,

an audio vector with all its inherent properties. For a fair comparison with the MF, this recon-

structed signal is also correlated with the reference signal. This complete process is denoted

SMF + MF.

Results on high and low SNR recordings of ABW calls are reported in Figures 3.4 and 3.5:

(a) the spectrogram of the observation is plotted, (b) z [15−30](k) is presented along with the

noise-reduced SMF output s̃Q[k](k). Waveforms are normalized by the maximum absolute value

of z 15−30(k). The envelop of the MF and SMF + MF result are respectively displayed in (c) and(d).

Calls are manually red-marked from (b) to (d).

The observation is composed of 8 ABW calls and two seismic events near 5 and 8.5 min.

Time shifts between the two OBSs confirm that the whale is closer to RR43, in accordance with

ABW calls estimated SNR presented in Table 3.1. Time shifts also indicate that the seismic event

occurs closer to RR44.

Call number 1 2 3 4 5 6 7 8

SNR on RR43 8.1 14.8 14.4 15.0 17.5 17.5 4.5 15.2

SNR on RR44 - 5.9 7.1 2.2 8.9 9.5 7.0 5.0

Table 3.1: ABW call SNRs (dB) estimated according to § 3.5.2.2 on recordings from OBSs RR43 and RR44

on May 31st, 2013 at 12.30.

3The developed passive SMF Matlab package is available online: https://leabouffaut.github.io/SMF_

package/
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3.6.1.1 High SNR observation

Figure 3.4 (b) shows that ABW calls are entirely reconstructed by the SMF. On the waveform,

seismic noise seems to be completely filtered out. The second to last call is reconstructed on a

shorter duration, probably due to the concurrent noise (also indicated by a smaller SNR ). For

these high SNR calls, the MF (c) and SMF + MF (d) perform similarly: there is a detection peak

of equivalent amplitude for each call. However, the MF output presents a little bump at 5 min

that might be related to seismic noise. The amplitude of this bump is no higher than some of the

amplitudes of the MF-detected call echoes and, depending on the Ts choice might trigger false

positives.
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Figure 3.4: Comparison between the SMF + MF and MF on a high SNR recording of ABW calls (a)

observation spectrogram (b) observation filtered waveform and output of the SMF (estimated signal) (c)

MF (d) SMF + MF.

3.6.1.2 Lower SNR observation

The recording of OBS RR44 depicted in Figure 3.5 (a), shows the same call series but from a

further distance. They hence have a lower SNR. On this observation, the most energetic event
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is the seismic event at 5 min. Because of the normalization used for the waveform plot, it

compresses the ABW calls amplitudes on (b). However, the waveform of the signal reconstructed

by the SMF reconstructs only ABW calls. The MF amplitudes (c) are strongly attenuated: the

maximum correlation amplitudes on calls decreases from ≃ 0.19 on the close observation to 0.07.

One of the strongest amplitudes is due to the first seismic event. It is hard to differentiate the

second to last call from the second seismic bump. The SMF + MF is not affected by the seismic

events. Despite the distance, the highest peak is in the same order as previously (≃ 0.19). The

other peaks are attenuated (lowest peak at 0.9) but are in general greater than the ones of the MF.
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Figure 3.5: Comparison between the SMF + MF and MF on a low SNR recording of ABW calls (a) observa-

tion spectrogram (b) observation filtered waveform and output of the SMF (estimated signal) (c) MF (d)

SMF + MF.

3.6.1.3 Discussion

Results presented in § 3.6.1.1 and 3.6.1.2 compare the MF and the SMF + MF on high and low

SNR recordings of the same series of calls. Both perform similarly on high SNR calls. However,

when the SNR decreases, as discussed in paragraph 3.3.2, the MF reaches its limits: the detection
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peaks are attenuated in amplitude and spread wider. Besides, the MF is also sensitive to other

broadband transient noise that might introduce false detections. The comparison between the

two methods identifies the SMF as an excellent asset for the detection of calls with low SNRs.

The noise reduction properties clean out the data, and consequently, the SMF + MF drastically

reduces the probability of false alarm in comparison with the MF.

3.6.2 Scuba-divers breathing detection

To show the benefits of using the SMF on another type of sounds, paragraph 3.6.2 is dedicated to

scuba-diver breathing detection.

There are no reasons for passive acoustics to be limited to environmental applications. It has

been used since the cold war by armies for defense purposes and threat detection. Nowadays,

new applications such as harbor surveillance and protection emerge, especially for intruders

detection such as small speed boats and combat divers. The problem is that the range of passive

acoustic surveillance systems remains considerably below other known methods (optics, electro-

magnetic detection, active sonar...) (Stolkin et al., 2006). To be able to develop efficient devices,

enabling instantaneous decision and reaction facing external threats, there is a need for robust

and reliable signal processing tools.

Acoustical methods for scuba divers detection mostly exploit periodicity in the breathing

using band-pass filtering and envelope detection (Stolkin et al., 2006; Labat and Daré, 2014;

Slămnoiu et al., 2017). This method is called DEMON for Detection of Envelope Modulation

On Noise. Autonomous diver source level is estimated in the [1−16] kHz frequency band at an

average value of 116 dB ref. 1 µPa @ 1m (Slamnoiu et al., 2016). Logically, due to attenuation

and noisy harbor conditions in this frequency band, detection ranges are often limited to tens of

meters (Lennartsson et al., 2009). In order to expand the detection range and improve detection

probability, the SMF, as presented in section 3.5 is applied to scuba-divers breathing detection.

3.6.2.1 Scuba-divers breathing signal and associated filters

During a diver breathing cycle, due to the turbulent decompression of the gas in the high-

pressure regulator, inhalation phases are characterized by broadband noises that are louder

and more broadband than the bubble noise (Fillinger et al., 2012). In this process, gas relax-

ation (from pressurized breathing gas to ambient pressure gas) provided by the diving regulator

modulates the noises in frequency. Modulation signatures can be found in open and closed

circuits (Donskoy et al., 2008). Figure 3.6 presents diver breathing frequency-modulated signals

recorded in an acoustic tank using a Reson TC 4034 hydrophone with a sampling frequency

of fs = 44.1 kHz. Two energetic frequency bands can be identified at ≃ 6 kHz and ≃ 11 kHz.

This characteristic is used to reproduce scuba-divers acoustic signature (using modulated white

noise) and hence, estimate the matrix Γs0 (Bouffaut et al., 2017a; Bouffaut and Boudraa, 2017).
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Figure 3.6: Scuba-diver breathing spectrogram recorded in a tank, fs = 44.1 kHz.

The filter bank is then designed as in § 3.5.1.2 for this new signal. Figure 3.7 depicts the

frequency response of filters h1, h10 and hQmax against the spectrum of the reference signal

HOpt. The first filter H1 is a short-band filtered centered on ∼ 11 kHz. The superposition of

the 10 first filters H10 is a slightly larger band-pass filter in the same frequency band. HQmax

represents the superposition of the maximum number of filters and is applied when ρ[k] is high

enough. Notice that HQmax covers the same frequency band as HOpt.
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Figure 3.7: Scuba-divers: spectrum of three filters (H1, H10, HQmax ) of the permanent filter bank compared

to the spectral representation of the reference signal (HOpt).
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3.6.2.2 Online SNR estimation

The, online SNR estimation is the key parameter that determines the number of filters to apply

to the observation. It is derived to correspond to scuba-divers signals. For this application, (3.41)

becomes

ρ[k] = 20log




1

J

∑

j=1,...,J

∣∣∣∣∣∣∣∣∣

max
f ∈A j

γz (k ′, f )

1
K

K∑
k ′=1

γñ(k ′, f ′)

∣∣∣∣∣∣∣∣∣


 , f ′ ∈ A j (3.43)

with J the number of modulated energy band considered and A j their frequency interval.

3.6.2.3 Application

The SMF is applied a the recording of two scuba-divers in a swimming pool. Figure 3.8 presents

(a) the spectrogram of the recording sampled at fs = 96 kHz, (b) the estimated input SNR ρ[k]

and, (c) the observation z(k) and the noise-reduced SMF output s̃Q[k](k) waveforms. Compared
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Figure 3.8: Application of the SMF to the recording of two scuba-divers in a swimming pool ( fs = 96 kHz).

(a) Spectrogram of the observation, (b) Estimated input SNR ρ[k], (c) SMF input (blue) and output (white)

waveforms. Annotated divers 1 ▽ and 2 ∗ inhalations.
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to Diver 2, Diver 1 is closer to the hydrophone and its breathing stand out in the spectrogram

(a). The acoustic presence of the second diver is almost undetectable, only a few inhalations are

visible, e.g., at 22 et 26 s. It is possible to notice all breathing from ρ[k] estimation. Comparing

ρ[k] to the noise-reduced SMF output s̃Q[k](k) in (c), highlights that only positive values of ρ[k]

trigger signal reconstruction. The noise is strongly attenuated (filtered) for negatives values of

the iSNR. It is now possible to recognize two breathing cycles on s̃Q[k](k).

The SMF applied to recordings taken in the swimming pool, extended the detection range

from 20 m (on the spectrogram) to 25 m, which was the maximum diver-hydrophone distance

possible in the configuration. The same strategy was applied to noisy observations (sea and loud

electrical noises), recorded at sea in front of the Ecole Navale. Visually (on the spectrogram)

inhalations are visible up to ≃ 3 m. The SMF extended the detection range up to 20 m.

3.6.2.4 Discussion

This new application demonstrates the efficiency of the SMF to detect signals, different from the

class of whale calls: scuba-divers inhalations. These two types of signals are different in terms of

structure and frequency bands: whale calls are ultra-low frequency deterministic signals (§ 2.3)

whereas scuba-divers inhalations are characterized as high-frequency modulated noise. Due to

that aspect, divers inhalations can not be simulated from varying instantaneous phase and, clean

signals can not be used as templates. Their stochastic properties do not satisfy classical MFs

assumptions (§ 3.3). However, second-order statistics can be estimated based on the modulation

in the signature: the SMF can, therefore, be applied.

Additional experiments should be performed to assess the detection range reached by the

SMF and compared to the DEMON (as well as both combined). However, the SMF remains

limited by the a priori knowledge on the modulated frequency bands and, scuba divers signatures

have been proven to vary with the equipment (regulator) (Donskoy et al., 2008) and might be

sensitive to variations in the volume of liquid air available in the bottles.

3.7 Conclusion

As a conclusion, Figure 3.9 summarizes the extended version of the SMF for SNR maximiza-

tion and detection in a passive context. The SMF, originally based on the MF, is based on the

second-order statistics of the signal and the noise. It can be seen as a time-varying linear filter

adjusted in accordance with the estimation of the input SNR. The processing can be separated

into two steps. First, the offline processing only requires the reduced covariance matrix of the

signal and simulated sea-colored noise to compute the filter bank. Then, during the online

application of the SMF to the observation, the background noise reduced covariance matrix, and

the time-varying SNR are estimated. They are based on the observation’s median-filtered TF

analysis and, bypass the selection by an operator.
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Figure 3.9: Scheme of the SMF improved for a passive application.

The SMF has been applied to two different types of signals. Results obtained demonstrated

its ability to detect low-SNR ABW calls and, showed greater robustness to impulsive noise and

false alarm reduction than the MF. In addition to call detection and counting, the output of the

filter can be used for subsidiary analysis, such as measurement of similarities between calls or,

determine call-time of arrivals, providing new opportunities for automatic source localization

and whale tracking. The application to scuba divers breathing detection highlighted the ability

of the SMF of detecting other types of signals (other than whale calls), in a different frequency

band. Results also demonstrated how the SMF could be used to extend detection ranges.

This first and instinctive quantification of the quality of detectors with respect to, e.g., detec-

tion thresholds or false detections, introduces the need of a more robust and systematic analysis

of methods’ range of action and limitations. These types of analysis are grouped under the label

performance analysis and are the subject of Chapter 4.
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4.1 The performance analysis dilemma

Passive detection algorithm performance assessment is a tricky subject (Leroy et al., 2017b). The

formal expression of a detector’s performances are derived from information on the probability

of false alarm and the probability of true detection, when they are available (Van Trees, 2002).

However, in the absence of this knowledge, the theoretical analysis of the performances can

not be easily carried out. A solution to this problem is to resort to ad-hoc approaches such

as Monte-Carlo simulations. They rely on an extensive computation over an artificial dataset.

Monte-Carlo simulations have been conducted for the classic SMF in numerous publications

(Courmontagne, 2010; Bénard et al., 2011; Mori and Gounon, 2000). The problem is that per-

formance simulations might not be representative of the method’s robustness to noise in real

conditions. The third option is to confront the algorithm to a ground truth dataset (Mellinger

and Clark, 2000; Socheleau et al., 2015; Gavrilov and McCauley, 2013), keeping in mind that the

annotation process has been shown to be subjective and quite variable, especially in low SNR

conditions (Leroy et al., 2017b) and, that in a passive context, there are no a priori knowledge

of the contents of the recordings. The choice was made to use additional information from

multi-sensor observation and whale localization to reduce the subjectivity of the annotation

process and evaluate the SMF’s performances on a robust ground-truth dataset. The SMF’s

performances are assessed on real marine signals by the comparison of the method output with

human inspected and annotated data (Section 4.2). Results are compared to the commonly used

temporal MF (§ 3.3) and to the Z-detector presented in Socheleau et al. (2015).

4.2 Groundtruth dataset context

The localization method (§ 2.4.2) is applied to track a calling ABW swimming through the SWIR

array on May 31st, 2013 (Fig. 4.1). This individual’s song is recorded continuously on the array,

for more than 21 hours (from 01:20 to 22:40 on OBS RR48). OBS RR48 is the farthest from the

trajectory. It is therefore chosen for annotations to provide the widest SNR range, with the use

additional information from multi-sensor observation and whale localization to reduce the

subjectivity of the annotation process (Leroy et al., 2017b; Bouffaut et al., 2018)1.

This dataset, is corrupted with different noise sources (Figure 4.2 (a)):

- tonal noise radiated from a close ship between 01:20 and 08:00,

- P-calls from 20:10 to the end,

- D-calls from 10:40 to the end,

- a continuous chorus all-day, strong in the FW frequency range before 08:00,

- more than 50 seismic events.

1The annotated dataset, SMF + MF detections and corresponding whale locations is available online, DOI:

10.5281/zenodo.3624145
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Figure 4.1: ABW passive acoustic monitoring tracking through the SWIR array. Star denotes OBSs locations

(Dréo et al., 2019).

Considering an average swim speed of 10 km/h, the whale trajectory is extrapolated (linear

South-East to North-West trajectory relative to the SWIR array) as range indicator (Figure 4.2 (b)).

Form the extrapolation, at 1:30, the ABW is estimated about 100 km away in the South direction

from OBS RR48 (ρ[k] ≃ 2 dB) and 130 km North West at 22:30 (ρ[k] ≃ 3 dB). The closest point of

approach at 10:30 is 35 km away from the sensor (ρ[k] ≃ 13.4 dB).

Along this trajectory and recording period, 845 ABW calls are annotated. Calls SNRs are

estimated with the method described in § 3.5.2.2. The dataset shows significant SNR variations

from the first contact to the last (Figure 4.2 (c)), that mainly follow a −20log10(r ) tendency. It

appears that the −20log10(r ) fitting is slightly shifted in time and should have a maximum near

12:00. One of the possible explanations is that this estimation of the whale’s location ±5 km (the

difference between the distances estimated at 10:30 and 12:00) is within the localization margin

of error. The trajectory is assimilated to a straight line, the best resolution of the localization

method is 900 m (grid definition § 2.4.2) and uncertainties on the OBS location is ±500 m

(§ 2.1.1). The other possible explanation could be, changes in the background noise delaying the

maximum measured SNR: in the first hours of recording, FW and ship noise increases ambient

noise levels in the frequency band of the call impacting the SNR. Variability in SNRs measurement

methods is discussed in § 4.6.1.

89



Chapter 4: Performance analysis of stereotyped sounds detectors

(a)

2 4 6 8 10 12 14 16 18 20 22

10

20

30

40

50

F
re

q
u

e
n

c
y
 (

H
z
)

2 4 6 8 10 12 14 16 18 20 22
20

40

60

80

100

120

140

D
is

ta
n

c
e

 (
k
m

)

(b)

2 4 6 8 10 12 14 16 18 20 22

Time (h)

-10

0

10

20

[k
] 

(d
B

)

(c)

[k]

[k] smooth

-20log
10

(r)

Ship noise and FW
D-calls

P-calls

Tracking~ 100 km

~ 35 km

~ 130 km

~ 2 dB

~ 13 dB

~ 3 dB

Figure 4.2: Temporal evolution of (a) the soundscape (nfft = 2048, overlap = 95%), (b) estimated and

extrapolated ABW-OBS RR48 distance, (c) SNR variations (ρk estimated according to § 3.5.2.2) relative to

the ABW of May 31st , 2013 dataset.

4.3 Method

4.3.1 General experiment setup

This day-long record is divided by portions of 80 min for the TF analysis. As described in sec-

tion 3.6.1, the signal reference for both the SMF and the Z-detector is similar. This signal is also

used for inter-correlation with z [15−30](k) for the MF and on the SMF-noise-reduced cleaned

data (SMF + MF) for similar comparison. It is a 20 s-long signal of 2001 samples.

For the SMF, |γz (k ′, f )| is evaluated using Hann window of 2048 samples, with 98% overlap-

ping. The median filter applied to each frequency canal for the background noise estimation has

201 samples (Section 3.5.2.1). Its equivalent duration is 83 s, which is four times longer than an

ABW call. After retrieving real-time k (Section 3.5.2.2), the size of the sliding window, used to

assume the stationarity of the noise during the online application of the SMF, is set to match the

signal with L = 2001 samples.
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Before applying the Z-detector, the observation is down-sampled to a base-band signal for

better computation time. The Ts of the Z-detector automatically adapts to deal with noise varia-

tions in the environment (e.g. transient signal) and authorizes ABW call variations in frequency,

amplitude or duration (Socheleau et al., 2015; Leroy et al., 2016). The Z-detector also has an

additional threshold (denoted τ in Socheleau et al. (2015)), used to separate the signal and the

noise. It is fixed to 0.15% and, the worst-case user-defined probability of false alarm is fixed to

3%, as in Socheleau et al. (2015).

For each annotated call, the maximum of the SMF ρ[k] estimation (Section 3.5.2.2) is mea-

sured and, an arbitrary confidence index is assigned by the operator. The index reveals to be

following SNR variations (the lower the SNR, the harder it is to classify an event). Outcomes of

the detection methods are automatically checked. The performance analysis is carried out with

the help of different standard scoring metrics presented in § 4.3.2.

4.3.2 Scoring metrics

In order to evaluate the detection performances of the MF, SMF + MF and the Z-detector,

outputs are compared with the groundtruth annotations and, according to the detection theory

(Van Trees, 2002), they are sorted into four classes (Table 4.1).

Groundtruth

signal present signal absent

Detection
signal present true positive false positive

signal absent false negative true negative

Table 4.1: Detection theory (Van Trees, 2002).

The number of detections corresponding to each class is counted. In this context true

negative is a silent class. Performances are then evaluated as rates:

• the true positive rate (TPR) (also called recall, sensitivity or detection probability depending

on the field) indicates the rate of detected true calls overall annotations, i.e., how many

relevant items are detected

TPR =
nb. of true positives

nb. of true positives + nb. of false negatives
; (4.1)

• the missed detection rate (MDR) (also called miss rate or false negative rate) indicates the

rate of true calls that are not detected

MDR =
nb. of false negatives

nb. of true positives + nb. of false negatives
; (4.2)
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• the positive predictive values (PPV) (also called precision) indicates the rate of detected

true calls overall detections, i.e., how many detected items are relevant

PPV =
nb. of true positives

nb. of true positives + nb. of false positives
; (4.3)

• the false discovery rate (FDR) indicates the rate of detections that are not calls

FDR =
nb. of false positives

nb. of true positives + nb. of false positives
. (4.4)

Note that TPR + MDR = 1 and, PPV + FDR = 1.

4.4 Performances versus threshold

The first performance analysis is completed by characterizing the detection outputs for different

Ts varying from 0 to 0.1 of correlation amplitude with an increment of 0.001. The choice of the

threshold is indeed essential to adjust the method for the intended application. If set too low, it

might not be able to differentiate true positives from false positives and, set too high, it might

miss detections (false negatives). Figure 4.3 illustrates the threshold limitations for low SNR data

recorded simultaneously as data presented in section 3.6.1 but by OBS RR47.
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Figure 4.3: Illustration of detection threshold limits on an observation from May 31st, 2013 at 12.30,

recorded by OBS RR47.

The threshold Ts1 = 0.01 seems adequate for both detectors, it differentiates peaks from

background line. Because SMF + MF peaks are higher, the second threshold Ts2 = 0.04 is also

satisfactory. However, Ts2 is not appropriate for the MF: only the seismic events have amplitude

above this value. This threshold is too high to provide true positives and only generate false

positives.
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4.4.1 Scores depending on the threshold

In order to compare the SMF + MF and the MF, Figure 4.4 presents the evolution of the supple-

mentary TPR and MDR along with the FDR against different threshold values. Overall observation

of the performances curves highlights that increasing the threshold value reduces the FDR faster

than it decreases the TPR. For a given threshold value, the SMF+MF generally performs better

than the MF. Below Ts = 0.005, the MF reaches higher TPR than the SMF + MF but with 2 to

4 times its FDR. This higher MF TPR might be due to the concurrence of some ABW calls and

seismic events, impacting ρ(k) estimation (§ 3.5.2.2) and hence leading to a SMF false negative.

However, for all other threshold values, the SMF + MF TPR is always greater than the MF’s.
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Figure 4.4: TPR, MDR and FDR of the MF and the SMF + MF as a function of the detection threshold.

The SMF + MF FDR is always lower than the MF’s , except for Ts = [0.013 - 0.015] where

they perform similarly. For this threshold range, SMF + MF and MF TPRs are respectively [90 -

89]% and [58 - 50]%, therefore the first method still performs better. The maximum threshold

delimiting this equality (Ts = 0.015) marks the beginning of the invalidity of the MF: the FDR

increases again, corresponding to the limit presented in Figure 4.3. Therefore, in § 4.4.2, MF

performances are only considered for thresholds between 0 and 0.015.

4.4.2 Receiver operating characteristics

To compare directly TPRs and FDRs (or PPVs and TPRs) independently from the threshold,

receiver operating characteristics (ROC) and Precision-Recall curves are displayed for the MF

and the SMF + MF respectively in Figures 4.5 and 4.6. The Z-detector performances on the ABW
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dataset are also indicated on both figures for comparison.
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Figure 4.5: ROC comparison between the MF, the

SMF + MF and the Z-detector.
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Figure 4.6: Precision-Recall comparison between

the MF, the SMF + MF and the Z-detector.

The interpretation of a ROC curve is simple; the ideal detector should have a TPR as high as

possible for, at the same time a low FDR (ideally as close as possible to the upper left corner).

The ROC curve of a detector should be greater than the TPR = FDR line, that marks a random

outcome of the detector. Same types of observations are applied to Precision-Recall graphs,

PPV > 0.5, and the curve should approach the upper right corner. On both representations, the

SMF + MF shows the best performances. The Z-detector point, shows a FDR of approximately

3.5%, which is consistent with its settings (§ 4.3.1 (Socheleau et al., 2015)). The MF curve for Ts =

[0 - 0.015], shows lower performances, but they are still over the random line.

4.4.3 Discussion

Results presented in this section (§ 4.4) underline the performances of each detector against a

varying threshold. This threshold is crucial to provide reliable detection performances. However,

to perform the analysis on a significant number of calls and provide a robust performance

analysis, this study uses the entire dataset, regardless of the SNR. On the one hand, it means

that the results are valid for any SNRs in the dataset. On the other hand, it does not indicate the

performances of each detector for a specific SNR range. Evaluation of the response of methods

to SNR changes is the purpose of the second part of the analysis of the performances and, is

investigated in section 4.5.

4.5 Performances against the SNR

The evaluation of the performances of the MF, SMF + MF and the Z-detector against SNR

variations is also carried out on the dataset presented in § 4.2. Detection thresholds are then
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fixed, according to the results of section 4.4, to Ts = 0.016 Ts = 0.01 and Ts = 0.005 for the SMF +

MF and, to Ts= 0.01 for the MF. According to Figure 4.4, same FDR than the Z-detector (of 3.5 %)

is reached by the SMF + MF and the MF at a Ts= 0.016.

4.5.1 True positive rate against the SNR
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Figure 4.7: Comparative performance analysis between the MF Ts = 0.01, the SMF +MF Ts =

{0.005;0.01;0.016} and, the Z-detector on real data. (a) TPR against measured SNR applied on the correla-

tion output. (b) Stacked bar representation of the number of annotated calls per SNR for TPR estimation.

Figure 4.7 (a) displays detection results, as TPR against the SNR for the MF Ts = 0.01, the SMF +

MF Ts = 0.005, 0.01 and 0.016 and, the Z-detector. Figure 4.7 (b) bar representation, highlights the

number of annotated calls on which the TPR is estimated. The higher the number of annotated

calls the more reliable the estimate of the TPR is.

TPR reaches one at a lower SNR for the SMF +MF (≃ 3 dB, ≃ 4 dB, and ≃ 9 dB respectively for

Ts = 0.005, Ts = 0.01 and Ts = 0.016) than for the Z-detector (14 dB) or the MF (≃ 16 dB).

4.5.2 Performances evolution during the day

Figure 4.8 (a) highlights the correspondence between May 31st, 2013 timing and SNR variations

introduced by the whale movement and background noise evolution. Figure 4.8 (b) presents the

estimated TPR, (c) FDR and (d) MDR per 80 min portions of observation for the three compared

methods, the MF Ts = 0.01, the SMF + MF Ts = 0.005, Ts = 0.01 and Ts = 0.016 and, the Z-detector.
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Figure 4.8: Time-dependent compared performance analysis of MF, SMF + MF and the Z-detector on a

ground truth dataset of 845 annotated calls, on May 31st, 2013. (a) Detected call measured input SNR ρ[k]

(Section 3.5.2.2). Performance criterion are measured on 80 min portions of observation containing on

average 53 calls (min. 43-max. 62). (b) TPR (c) FDR (d) MDR.

First, the analysis of Figure 4.8 shows that, for all methods, the TPR increases with the mea-

sured input SNR ρ[k], i.e., when the whale-sensor distance is shorter, while the FDR and the

MDR decrease. This first observation agrees with the results presented in Figure 4.7 and with

general understanding of the detection theory (if the SNR increases, so should the TPR). The

MF has higher FDR than the other two methods, independently of the other method thresholds,

except for the last portion of observation (addressed in the following paragraphs). The Z-detector

has higher MDR (and therefore lower TPR) than the SMF + MF, particularly when ship noise and

fin whale pulses are present in the recordings, before 08:00. The MF also presents high MDR

which is non-consistent with the SNR variations. More specific analysis of the data is conducted

in the following paragraphs, separating the day in three zones: before 08:00, between 08:00 and

16:00 and after 16:00.

In zone 1, before 08:00, ρ[k] is < 10 dB and ship noise is present. For the first three portions

of observation, the best TPR is reached for the SMF + MF for all thresholds, then for the MF. The
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smallest TPR is obtained by the Z-detector. On the 4th portion starting at 05:20, TPR of the MF

is greater than the other two methods: the SMF + MF misses a detection occurring at the same

time as a seismic event. In this portion, the Z-detector reaches TPR > 0.5. For the observation

starting at 06:40 (the last of zone 1), TPR of the MF is low. It might be due to changes in the

background noise when the ship noise fades away while the whale calls are still quite low: the

detection threshold is not adapted.

The SMF +MF false alarms, as well as some of the MF’s in the first two windows of analysis,

might be triggered by a continuous remaining signal in the unit A band. This signal probably

comes from distant calls (§ 2.3.5) but, could not be strictly assigned to one. The other MF false

alarms were mostly due to seismic events.

In the second zone, between 08:00 and 16:00, the ρ[k] is > 10 dB and the three methods

perform similarly. However, in the first portion, the MF behaves similarly to the last portion of

zone 1, likely for the same reasons. There are only a few missed detections probably due to the

simultaneous occurrence of ABW calls and short larger band noise (fin whale pulse or seismic

event).

After 16:00 in the third zone, ρ[k] decreases to values lower than 10 dB. For the first three

portions, MDRs raise as TPRs decrease but, the methods FDRs are still lower than before 08:00

probably because there are less continuous sound-sources. However, TPR and MDR results are

similar to the ones before 08:00. For the last observed portion, FDRs are high for all methods,

but still with TPR > 0.5. At that moment, the signal is faint and, as for the firsts sections of zone 1,

it is hard to differentiate a call from the reverberated unit A in the annotation process. A closer

look at the results shows that the MF is only triggered by a call and a seismic event, hence the

FDR = 0.5. However, the SMF still shows patterns of ≃ 60−70 s spaced detections, that could be

attributed to ABW but are classified as false detections.

Zones 1 and 3 are comparable in terms of SNR. However, the whale is estimated to be 65 km

away from OBS RR48 at 05:00 and 130 km away at 22:00. Due to the ship noise present at the

beginning of the record, ρ[k] is of the same order (Section 3.5.2.2). Those too low or negative

estimations of ρ[k] impact not only the SMF +MF but also the other methods by increasing the

number of missed detections.

4.6 Discussion

4.6.1 SNR estimation

It is important to give some perspectives to the analysis of the comparison between the SMF

+ MF and the Z-detector. Although the SNR definition remains the power ratio between the

signal and the noise in the data, its estimation differs between the SMF and the Z-detector.
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As presented in Section 3.5.2.2, the SMF’s input SNR ρ[k] is measured continuously in the TF

domain, with a parameter to prevent positive values on non-Z-call events (and therefore avoid

reconstruction of noise events). This definition is set to allow positive evaluation of ρ(k) (3.33)

even in the presence of uncompleted calls. For the Z-detector, a base-band representation of the

observation is used (15 Hz bandwidth centered around 22.5 Hz). The input SNR is then estimated

from energy variations and the diagonal values of the noise covariance matrix (Socheleau et al.,

2015): it can be negative.
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Figure 4.9: Comparison of different SNR estimation methods: SMF (Section 3.5.2.2), Z-detector (Socheleau

et al., 2015) and, Mellinger’s (Mellinger and Clark, 2006)) on the ABW of May 31st , 2013 dataset.

To better understand differences between the two SNR estimation methods, a comparison is

carried out with the "standard" SNR used in the PAM community (Mellinger and Clark, 2006).

Results are illustrated in Figure 4.9, on the ABW of May 31st dataset. The method presented

in Mellinger and Clark (2006) is based on the annotations of the dataset, where a call power is

measured within the indicated time and frequency bounds and, the noise power is estimated

in the times between adjacent calls. Here, powers are strictly measured between 26 and 27 Hz.

SNRs are smoothed using a Savitzky-Golay finite impulse response smoothing filter.
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Estimated SNRs evolution is consistent with the whale-sensor distance and follow a−20log10(r )

(Figure 4.2, shifted by + 1 hour to correspond to the ground-truth, the Mellinger and Clark (2006)

method. It appears that the SMF estimation of ρ(k) is similar to the ground-truth, especially in

the presence of ship noise, before 08:00. After 12:00 ρ(k) is between 5 and 7 dB higher than the

ground-truth, and returns to similar values after 21:00. On the contrary, the Z-detector method

mostly underestimates the SNR, with value consistently 5 to 7 dB below the ground-truth esti-

mation. They are closer when the ground-truth shows a "drop": at 09:00 due to a seismic event

and between 15:00 and 16:00. This analysis highlights the variability of SNR estimation in the

passive context but also validates ρ(k) as a robust SNR estimator that does not require any a

priori information.

4.6.2 Detection range

Results presented in Figure 4.8 and knowledge of the whale-OBS distance from the tracking

(paragraph 4.2) are used to estimate the detection range at a fixed TPR threshold. With a

TPR> 75%, Table 4.2 presents the estimated detection ranges for each method. Ranges are

measured at the extreme time of each 80 min analysis window and are rounded down (to the

tens). In the absence of ship noise, detection ranges increase by at lesr 30 km. They are even

Detection range (km)

Method with boat noise without boat noise

MF Ts = 0.005 85 ∗ 120 ∗

SMF + MF Ts = 0.005 100 130

SMF + MF Ts = 0.01 85 120

SMF + MF Ts = 0.016 85 120

Z-detector 60 120

Table 4.2: Detection range of the MF, SMF + MF and the Z-detector reached for TPR> 75% and estimated

from the whale tracking paragraph 4.2 and the results of Figure 4.8. The symbol ∗ indicates that there are

gaps in the TPR values.

doubled for the Z-detector. The SMF + MF Ts = 0.005 expands the detection range of the sensor

up to 100 km in the presence of ship noise, which is 40 km more than the Z-detector.

4.6.3 SMF limitations

The method reaches its limitations when the estimated value of ρ[k] is equal to zero or negative

(3.33). In that case, the SMF applies the first filter, and therefore, the observation is not considered

as a signal. Due to the definition of the estimation of ρ[k] used in § 3.5.2.2, it might occur in

different contexts. If the call is completely embedded in short duration noises, but in the same

bandwidth, e.g., seismic event or high-intensity fin whale pulses, the noise estimation might

overcome the estimated presence of the call. This combination of events is quite unusual and
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might be hard to detect even by an experimented analyst. The second source of error occurs on

remote calls. As discussed in § 2.3.5, only unit A remains from long-distance propagation. The

emitted calls follow multiple-path spreading denoted on recorded data by multiple echoes. In

some circumstances, it leads to an almost uninterrupted signal in the unit A frequency band,

where the dissociation of singular calls is complicated, even for an automatic detection algorithm.

It might lead to missed detections.

4.7 Conclusion

To conclude, Figure 4.10 compares the performances of the studied methods over the entire

dataset in the form of a bubble chart where the axis represents the TPR and the FDR and circles

size represents the shorter detection radius, in the presence of ship noise. The best detector

should be in the lower right corner, with the biggest circle. This is where the SMF + MF circles
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Figure 4.10: Recap of the experimental performances of MF, SMF +MF and, Z-detector on a 22h long

noise-corrupted database with 845 annotated ABW calls. Circles represent the most limited detection

radius, in presence of ship noise.

are located, whatever th threshold. With Ts= 0.005, the method performs the best TPR and best

detection range. The Z-detector and SMF + MF with Ts= 0.016 share the same FDR however, the

SMF + MF exceed the Z-detector performances on the two other criteria.

Overall, in passive contexts, it is challenging to control the content of recorded data. There-

fore, the evaluation of detection algorithm performances has to be either assessed using simula-

tions or confronting the detector to a ground truth dataset. The first one, related to the detection

theory, provides a probabilistic approach of the method’s performances and satisfies classic
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signal processing techniques. It is often not representative of the method’s robustness against

noise, to the detection of degraded signals, etc. Ground truth datasets provide a large variety

of observations and set of events that would be hard to recreate. However, data annotation is

subjective and highly variable between data analysts, and even one can not always be consistent

(Leroy et al., 2017b). Creation of an open-source dataset would be beneficial for algorithm

training, performance analysis, and detector comparison.

Until this point, this thesis focused on binary detection, the detection of one call type at a

time. However, there are often multiple calling species in the recordings and, detectors such as

the MF, SMF and, Z-detector are not designed to detect different types of signals at once. Multi-

species detection, therefore, requires another set of signal processing strategies. The detection of

multiple types of signals often resorts to more generalized detection and classification systems:

pattern recognition algorithms (§ 1.5.1). A generalized method, based on the classification of BW

tonal signals and their reconstruction is presented in Chapter 5.
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5.1 Introduction

As discussed in section 1.5, binary detection is rapidly limited when there is more than one

target signal. Figure 5.1 displays an example of concurrently calling species with simultaneous

calls from ABWs, MPBWs and remote P-calls. In this context, where signals of interest are

overlapping in time and frequency and, recordings are subject to various noise conditions, the

detection of multi-class signals often relies on a pattern recognition system. The proposed

method is an automatic transcription algorithm which can identify multiple concurrently calling

species in sound recordings. This algorithm is based on pattern recognition of tonal calls in the

TF domain, and follow a classical sequence (Figure 5.2): (1) detection of signals of interest, (2)

features extraction and, (3) classification. The classified tonal signals are then used to reconstruct,

separately, the underlying songs.
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Figure 5.1: Illustration of concurrently calling species identified as TF overlapping calls (ABW, MPBW

and, P-calls).

The success of the transcription algorithm depends on the quality of the automatic extraction

of signals of interest. This crucial step relies on what makes BW calls distinct from each other

and, from the noise or other transient look-alike signals. Based on the knowledge of their calls,

portions of calls that favor the transmission of the information with less degradation through

propagation (§ 2.3.6) are selected: the tonal parts. The determination of which call parts identify

as tonal is discussed in § 5.2.1 before the presentation of the different steps and results.
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Figure 5.2: Automatic transcription algorithm flow chart.

5.2 Segmentation of blue whale calls

5.2.1 Are baleen whale calls tonal signals?

Mathematically, a pure tone is determined as a simple sine function with a constant frequency

(and linear phase). However, a chirp is determined as a pseudo-periodic signal, sine function

with non-linear phase and varying frequency. For the observed baleen whale song units (or in

the case of MPBW calls, partials), most are not perfect pure tones. To analyze which units (or

partial), can be considered tonal for subsidiary detection and transcription, two parameters are

estimated (Figure 5.3):

· the rate of frequency change (or chirpyness)
fmax − fmi n

∆T
and,

· frequency variations f , representing how much a signal frequency evolves through time

compared to its maximum frequency (in %/s) such as

f =
fmax − fmi n

fmax
×

100

∆T
. (5.1)

For the characterization, measurements were done using Raven Pro1 on recordings centered on

the high SNR observations from section 2.3 and, 20 to 30 units were analyzed for each category.

Results are presented in Table 5.1. The evaluation of chirpyness and f stresses faster and

steeper frequency variations for FW pulses and ABW unit B, with values > 1 (when other units

are < 1), due to important frequency variations over short periods.

1http://ravensoundsoftware.com
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Time (s)

Frequency (Hz)

fmax

fmin

ΔT

Figure 5.3: Illustration of the time and frequency parameters for chirpyness and frequency variation

analysis.

fmax (Hz) fmi n (Hz) ∆T (s) Chirpyness (Hz/s) f (%/s)

FW 29.9 16.2 1.5 9.13 30.5

MPBW unit 1 high 34.9 33.9 18.6 0.05 0.2

MPBW unit 1 low 14.1 13.4 20.6 0.03 0.2

MPBW unit 2 DS 24.0 22.3 23.6 0.07 0.3

ABW unit A 26.6 25.9 12.7 0.06 0.2

ABW unit B 25.9 18.8 2 3.55 13.7

ABW unit C 18.8 18.3 11.1 0.05 0.2

P-call 27.3 26.6 19.8 0.04 0.1

Table 5.1: Analysis of baleen whale call units and partials for chirpyness (Hz/s) and frequency variations

f (%/s). Analysis performed on 20-30 high SNR units per type.

A decrease in ABW call frequencies, among other large whales, have been observed over the

past decade (Leroy et al., 2018). Annual decay is estimated to be −0.14 Hz/year. At these very

low frequencies, it represents a 0.6% change of unit A peak frequency. Hence, small frequency

variations are significant. This is why, in accordance with results of Table 5.1, FW pulses and

ABW unit B are considered as chirps and the other analyzed units (or partial) are considered

tonal. Automatic tonal signal detection methods are investigated in § 5.2.2 for further use in the

transcription algorithm.

5.2.2 Tonal signal detection

Multiple tonal signal detection algorithms are available in the literature. They can be classified

as time-domain, frequency-domain, or spectro-temporal domain methods. Some of these are

from the field of speech and musical signal processing where they are often referred to as pitch

detection or pitch tracking algorithms (Babacan et al., 2013). Methods operating in the time
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domain, such as the instantaneous frequency estimator (Boashash, 1992) (§ 5.2.2.1 ), are straight-

forward to implement but are known to not being robust in case of polychromatic signals. For

speech and musical sounds, fundamental frequency ( f0) estimators such as auto-correlation

function (ACF) and its extension, the YIN estimator are well known and are commonly used

(De Cheveigné and Kawahara, 2002) (§ 5.2.2.2).

Methods operating in the frequency-domain exploit the harmonicity of voiced or instru-

mental signals to estimate f0 and are extensively used in speech processing. Examples include

cepstrum-based methods, the summation of residual harmonics, and harmonic product spec-

trum (HPS)(Noll, 1969). HPS measures the maximum coincidence of harmonics for each spectral

frame (§ 5.2.2.3). Another method, the statistical maximum likelihood pitch detection algorithm

(Noll, 1969; De La Cuadra et al., 2001), also uses this characteristic of voiced sound by searching

through a set of possible ideal spectra (impulse train convoluted with the signal window’s spec-

trum) and choosing the one which best matches the shape of the input spectrum. Since BW calls

do not always exhibit harmonicity in their songs (or at least not in the investigated frequency

band), HPS was the only frequency-domain method that provided results worth presenting here.

Methods operating in the spectro-temporal domain often employ image-processing opera-

tions such as image-thresholding, edge-detection (Baumgartner and Mussoline, 2011; Gillespie,

2004) and ridge (intensity) detection (Kershenbaum and Roch, 2013; Madhusudhana, 2015). Two

such methods are included to our comparative study (Cost-function based detector § 5.2.2.4 and

ridge detector § 5.2.2.5).

Theoretical elements of the five compared methods (instantaneous frequency estimator, Yin

estimator, HPS, Cost-function-based detector, and ridge detector) are briefly described in the

following paragraphs 2.

5.2.2.1 Instantaneous Frequency estimator

The instantaneous frequency is a time-dependent characteristic of a signal. It searches for

the location of its "peak frequency" (frequency with maximum amplitude) over time. For the

discrete and complex observation, denoted z(n) = A(n)e jϕ(n), where A(n) and ϕ(n), respectively,

stand for the time-varying amplitude and phase that can be obtained using the discrete Hilbert

transform operation (Boashash, 1992), the instantaneous frequency can be estimated as

f̂ (n) =
fs

2π
(ϕ(n +1)−ϕ(n)). (5.2)

For increased accuracy, this estimation is followed by a third-order one-dimensional median

filter of 21 samples (≃ 0.2 s). Relation (5.2) indicates that the instantaneous frequency estimator

can detect only one frequency at a time and therefore is only meaningful for monochromatic

and narrow-band signals.

2The Matlab code developed for each method is available online: https://leabouffaut.github.io/tonal_

detectors/
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5.2.2.2 YIN estimator

The YIN algorithm (De Cheveigné and Kawahara, 2002), originally developed for speech and

musical applications, is a fundamental frequency ( f0) estimator derived from the ACF. The ACF

is the inverse Fourier transform of the power spectrum. In response to a periodic signal, it shows

peaks at multiples of the signal’s period. Frequency f0 can then be estimated by choosing the

highest non-zero-lag peak (zero is always the highest peak). Using this approach, an error might

occur if the lowest peak is too close to zero or by choosing higher-order peaks (if their amplitudes

are higher). In order to prevent sensitivity to amplitude changes, erroneous peak selection,

global error, and, to improve precision, the YIN estimator presents multiple improvements to

the ACF.

5.2.2.3 Harmonic Product Spectrum

The HPS has been used for detecting fundamental frequency in periodic signals and for estimat-

ing pitch in human speech (Schroeder, 1968; Noll, 1969). It relies on the simple idea that pitch

peaks in the log spectrum are harmonic multiples of the fundamental frequency. Therefore the

product of r -integer compressed versions of the log spectrogram should enhance the peak of the

fundamental frequency. Estimation of the fundamental frequency is given by

f̂0 = argmax
f

R∏

r=1
|Z(r f )|, (5.3)

where R is the number of harmonics to be considered (and also is the number of frequency-

compressed copies of the original spectrum), r is the decimation factor, |Z( f )| is the amplitude

spectrum of the observation and |Z(r f )| is the r th compressed version of the original spectrum.

It is applied to each time frame of the spectrogram. However, the observed baleen whale calls do

not present harmonic characteristics.

5.2.2.4 Cost-function-based detector

The detection method described in Baumgartner and Mussoline (2011), referred to as the cost-

function-based detector, is applied to the spectrogram. First, the spectrogram is amplitude

thresholded. Tonal detection is performed by applying a cost function for each successive

time bin of the remaining spectrogram pixels. The cost function penalizes large frequency,

and amplitude jumps over short time steps. The path with the minimum cost is reconstructed.

During tonal tracking, amplitude weighting is applied, so that louder parts of the call are weighted

higher compared to quieter parts.

5.2.2.5 Ridge detector

This method relies on ridge detection, a widely used image-processing technique for automatic

feature selection and image segmentation. This detector treats spectrogram regions correspond-

ing to tonal signals as intensity ridges, and determines their TF contours (Kershenbaum and

Roch, 2013; Madhusudhana, 2015).
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Figure 5.4: Illustrations of ABW (column a) and MPBW (column b) calls obtained with a spectrogram

window of 5.12 s (512 samples, 80% overlap) and 0.2 Hz frequency resolution. Dark lines show output from:

the instantaneous frequency estimator* (row 1), YIN estimator* (row 2), HPS (row 3), cost-function-based

detector (row 4; Ts = 40%), and ridge detector (row 5).

*Outputs derived from the time-domain processing results, the spectrogram is computed for display only.
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First, TF points along intensity ridges in the spectrogram are identified. Then, using ad-

ditional information from the immediate spectro-temporal neighborhood of the previously

identified points, TF points corresponding to tonal signals are connected using a Bayesian

filtering strategy. The source code and method are available online (Madhusudhana, 2018).

5.2.2.6 Application

The different methods are illustrated on series of five ABW calls (FIG 5.4 column (a)) and three

calls and one unit produced by MPBW (FIG 5.4 column (b)), respectively recorded by OBS RR43

(on May 31st , 2013 at 12:33 UTC - § 2.3.1) and RR47 (on May 28th , 2013 at 18:18 UTC - § 2.3.2).

This observation set can be used for qualitative evaluation of the detectors. It can be used to

analyze the response of each tonal detector to (1) a single tonal (ABW unit A), (2) sharp frequency

variations (ABW unit B), (3) varying frequency content (MPBW unit 2 Down-sweep) and (4) to

polychromatic signals (on ABW when unit A echoes and C are concurrent or on MPBW unit 1).

Spectrograms are computed for cost-function and ridge-detector methods using a Hann

window of 5.12 s (512 samples) with 80% overlap, resulting in a ≃ 0.2 Hz frequency resolution

and 1.02 s time resolution. The YIN estimator minimum detectable frequency is set to 4 Hz. HPS

number of harmonics is set to 2, due to the low fs of our data. A spectral threshold is empirically

set to −20 dB for both the cost-function and ridge detector. Further, to increase computational

efficiency, the frequency range was limited to the range of 10 Hz to 40 Hz. For a ’fair’ comparison,

detection results of the time-domain methods (instantaneous frequency and YIN estimator)

were limited to [10−40] Hz also.

In order to compare the methods similarly, detection outputs of the instantaneous frequency

estimator, YIN estimator, and HPS are sorted into detected tonals TF vectors. A few rules are

applied using the knowledge on the content of each recording: tonal minimum duration is set to

5 s and, minimum TF distance between two successive tonals is set to 3 s or 0.8 Hz. When these

requirements are not fulfilled, detected points are discarded. Unlike the first three methods, the

cost-function and ridge detector perform in the TF domain and, fill detection vectors only in the

presence of salient tonal signals.

With the ABW Z-calls (Figure 5.4 column a), unit A and the beginning of unit B, where most

energy is concentrated, are well detected by all the methods. However, this is not the case for

unit C with the first three methods (Instantaneous frequency (1.a), YIN (2.a) and HPS (3.a)). This

is likely due to the simultaneous reverberation of unit A. HPS (3.a) generates upper harmonics

artifacts, but thanks to the cleaning process, they do not affect the estimation of the Z-calls

(except at ≃ 40 s where few points remain at ≃ 38 Hz, which is 2 × unit C’s frequency). The

cost-function-based approach (4.a) detects Z-call unit As and some of the unit Cs while the ridge

detector (5.a) detects all unit As (including the reverberation) and most unit Cs.

For the MPBW calls (Figure 5.4 column b), the first units are not detected by either the in-

111



Chapter 5: Automatic transcription

stantaneous frequency (1.b) nor the YIN estimator (2.b), probably because of multiple strong

co-existing tonal signals. The second unit down-sweep is not precisely determined by the instan-

taneous frequency (large frequency span surrounding the "true" tonal signal) and estimated a

few hertz off by the YIN estimator. When the HPS (3.b) is used, harmonic artifacts emphasize a

≃ 27 Hz tonal signal instead of the expected ≃ 13.5 Hz MPBW unit 1 fundamental. It is one of the

known limitations of the HPS (octave error) (De La Cuadra et al., 2001). The 34 Hz tonal of unit 1

appears on the estimate, only when reverberated (otherwise, ≃ 27 Hz is predominant). Since

unit 2 down-sweep does not present harmonics, it is correctly estimated. The cost-function

detector (4.b) detects the first unit lowest tonal (13.5 Hz) as well as the second unit down-sweep.

The ridge detector (5.b) shows that one of the main advantages of this method is that it can

detect more than the f0. Indeed, all main tonal components of both the first and second unit are

detected. However, some unexpected tonals are detected, e.g., at ≃ 27 Hz, which are attributable

to non-target P-calls.

5.2.2.7 Discussion

The application of five tonal signal detectors (instantaneous frequency estimator, YIN estimator,

HPS, cost-function detector, and ridge detector) to high SNR recordings of ABW and MPBW calls

showed that, two methods stand out:

- the cost-function detector due to its ability to retrieve the highest intensity frequency (peak

frequency) and,

- the ridge detector for its ability to detect MPBW concurrent tonal signals.

Ground truth information of tonal contour is required to evaluate the performances of these

algorithms. In order to characterize methods robustness against SNR variations, crucial in

passive acoustic monitoring applications, annotated data should cover various SNR ranges. Such

publicly available annotated databases do not exist for low-frequency baleen whale calls. It is

yet possible to add simulated signals to various recorded background noises with a controlled

SNR. ABW calls were chosen for the simulations because of the simplicity of their TF contours.

Simulation for detectors comparison and performance analysis are discussed in section 5.2.3.

5.2.3 Tonal detector comparison and performances analysis

5.2.3.1 Evaluation data

A ground-truth dataset is generated by embedding synthetic Z-calls with controlled SNR values

in real recordings obtained with OBSs. First, a 79-hour noise dataset is selected from the RHUM-

RUM data. Records are picked from November 2012 (7 hours on RR42) and from January 2013

(72 hours on RR47) and do not contain any biological sources (Figure 2.20)(Dréo et al., 2019).

However, the noise dataset features various ship noises and seismic events.
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Synthetic ABW Z-calls are generated according to the parametric model presented in sec-

tion 3.5.1.1, from which it is possible to retrieve the phase information of the call and simulate

a Z-call waveform (Socheleau et al., 2015). Z-calls present two tonal units (A and C), each one

lasting ≃ 8 s and, units are linked by a 4 s linear down-chirp, meaning that 75% of the call is

fully tonal. Twenty 20 s-long Z-calls, with a non-overlapping random time of occurrence, are

added to 1800 s long noise tracks randomly extracted from the 79-hour noise dataset. Each SNR

is controlled according to the description proposed in Mellinger and Clark (2006) and varies

between 0 and 15 dB. The accurate knowledge of the signal instantaneous frequency, SNR, and

offset of superposition constitute the ground-truth information.

5.2.3.2 Evaluation method

Silbido3 scoring metrics (Roch et al., 2011) are employed to describe the effectiveness of these

detectors to retrieve tonal signals and to describe the quality of the detections. Silbido scoring

examines the set of detected tonal signals for possible correspondence to tonal signals in the

ground-truth dataset (Roch et al., 2011). The detection outputs are therefore processed as in

§ 5.2.2.6.

Silbido and its scoring tool were originally developed (in Matlab) for automated extraction

of higher frequency odontocete whistles. Therefore, the scoring method need some alterations

to be able to work with the low-frequency calls of baleen whales. The following parameters are

changed in the dtPerformances.m file: the framing duration is set to Length_ms = 512 ms

and the advance to Advance_ms = 256 ms. The search range for detection around the ground-

truth frequency is changed to ± PeakTolerance_Hz = 1.5 Hz (± 4 frequency bins). For each

point retrieved in this search range, the absolute frequency difference between the detection

and ground truth is computed. The tolerance for a match (a valid detection) is changed to

MatchTolerance_Hz = 1.5 Hz. Detections outside of this range are considered false posi-

tives. The higher and lower cutoff frequencies are set to thr.high_cutoff_Hz = 40 Hz and

thr.low_cutoff_Hz = 10 Hz.

Silbido offers multiple scoring metrics when using the function dtAnalyzeResults.m: Pre-

cision, Recall, Frequency deviation, Coverage and Excess. Precision (or TPR equation (4.1))

measures the percentage of detections that are correct, and, Recall (or PPV, equation (4.3)))

evaluates the percentage of the expected detections that are retrieved. The Frequency deviation

quantifies the average distance (in Hz) between points on the TF contour of the ground-truth

tonal signal to those of a matched detection. Coverage is the percentage of duration of each

ground-truth signal that is detected. Excess indicates ’extra’ duration (in seconds) compared

to the ground-truth signal. Fragmentation counts the number of fragmented detections per

ground-truth signal (Figure 5.5).

3https://roch.sdsu.edu/index.php/software/
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Figure 5.5: Illustration of Silbido scoring metrics (Fragmentation, Coverage, Deviation and Excess).

For statically robust evaluation of the performance scores, Monte-Carlo experiments are

conducted with 20 iterations per SNR in the range 0 to 15 dB. Results produced by Silbido’s

dtAnalyzeResults.m function are discussed in § 5.2.3.3.

5.2.3.3 Results

Mean scores over the 20 Monte-Carlo simulations for different SNR ranges are presented in

Figure 5.6. For illustration purposes, values are displayed as ratios between 0 and 1 except for the

frequency deviation (absolute value in Hz). The displayed Fragmentation is calculated as 1/N,

where N is the number of fragments describing a ground-truth tonal, e.g., if a tonal is detected

as one single track, Fragmentation = 1, however, if it is detected as 4 fragments, Fragmentation

= 0.25. The Excess is plotted as a percentage of the duration of the ground-truth call, e.g., if the

detected tonal exceed the signal by 5 s, Excess = 5/20 = 0.25. Ideal values are also displayed on

the spider plots for reference: 1 for Recall, Precision, Fragmentation and Coverage, and 0 for

Deviation and Excess.

As a general trend, all methods perform better with increasing SNR. Note that the instan-

taneous frequency does not detect tonals below SNR = 3 dB and thus is not shown on the

corresponding plot.

At SNRs below 3 dB, Precision is ≃ 0.4 for the HPS and about 0.8 for the other methods.

With increasing SNR, the ridge detector and cost function detector reach a Precision of 1 in the

[4−6] dB SNR range, followed by the instantaneous frequency in the [7−9] dB SNR range.

Recall spans between ≃ 0.7 and 0.85 for SNRs below 3 dB, the highest Recall is obtained by
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the ridge detector. At higher SNR values, a Recall close to 1 is obtained by the YIN estimator,

closely followed by the two TF methods in the SNR [7−9] dB range.

Best results in the Deviation category are obtained by the HPS and ridge detector (≃ 0.1 Hz),

about half of the spectrogram frequency resolution. Results suggest that half of the detected

frequencies are in the correct frequency bin while the other half is in an adjacent one. Other

methods are closer to 0.25 Hz.

About 65−75 % of the call is covered by the cost-function and ridge detectors, 75% corre-

sponding to 100% of the Z-call fully tonal signals (unit A and C § 5.2.3.3). The YIN estimator

Coverage evolves from 50% at SNRs lower 3 dB to 75−80% for higher SNR values. The instan-

taneous frequency estimator Coverage raises from 50% for the [4−6] dB SNR range to 90% for

higher SNR ranges. HPS Coverage is lower than the other methods, around 50%.

For most methods, Excess is close to 0, except for the HPS with an Excess of ≃ 0.2 s.

Fragmentation also improves with the SNR, getting closer to one. No values are lower

than 0.5, i.e., calls are detected in a maximum of two parts. Using the cost-function and the

ridge detector, it is close to 0.6: ≃ 65% of the calls are detected in 2 parts, which is consistent

with Coverage values (no detections of unit B). For the Yin estimator, HPS and instantaneous

frequency estimator (from the [7− 9] dB SNR range and higher), Fragmentation is between

0.8−0.9. Only 10−20% of the calls are fragmented in 2 parts (so for 80−90% of the calls, units A,

B and C are detected at once, consistently with Coverage values).

5.2.3.4 Discussion

Comparison against common scoring metrics is performed on those simulations (§ 5.2.3.3).

Methods that achieved best overall scores and are the least sensitive to SNR variations are the

YIN estimator (temporal method), the cost-function and ridge detectors (both operating in

the TF plane). As for the other methods, robustness could be improved by reducing noise in a

pre-processing step.

The choice of the detector highly relies on the intended application. The YIN estimator is

straightforward to implement. It provides results that are robust to noise, where almost all tonals

are retrieved, and with few false positives. For higher SNRs, this estimator achieves satisfying

Coverage, but, its Frequency deviation is higher than other methods. It can be used in cases

where no further classification is required, e.g., for source-level measurement. Both the cost-

function and the ridge detector are reliable from low to high SNR values. They provide similar

tonal-retrieval scores and generate only a few false positives. At SNRs lower than 3 dB, the ridge

detector generates a lower number of false negatives that manifests through higher recall. The

tendency is inverted at higher SNRs, but both methods keep similar recall values. Independently

of the SNR, ridge detection has lower Frequency deviation. Low deviation is of importance if the
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detected tonals are being classified at a second stage.

For the subsequent use of the detected tonal signals for classification and reconstruction, the

chosen tonal detector should (1) be reliable with high Precision, and Recall scores, (2) provide

satisfying Coverage of the tonal units, and equivalent Fragmentation and, (3) detect with low-

Frequency deviation for robust features extraction. Besides, even if not taken into account in the

analysis of the performances, the method should be able to detect multiple concurrent tonal

signals, e.g., in the presence of MPBW partials, in recordings of multiple concurrently calling

species or, when strong reverberation of ABW unit A leaking into unit C occurs. In light of the

above, the chosen method is the ridge detector (Kershenbaum and Roch, 2013; Madhusudhana,

2015).
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Figure 5.6: Spider plots of the tonal-detection algorithms mean scores for different SNR ranges (6 3 dB, [4−6] dB, [7−9] dB,> 10 dB.). They are assessed on

simulations run over 20 Monte-Carlo iterations on 20 synthetic Z-calls randomly drawn in a 30-min long real marine noise records with a controlled SNR. The

compared algorithms are the instantaneous frequency estimator, the YIN estimator, the HPS, the Cost function detector and the Ridge detector. Precision, Recall,

Coverage, Excess and Fragmentation are expressed as percentages between 0 and 1. Deviation is given in Hz (Bouffaut et al., 2020).
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5.3 Classification and reconstruction

5.3.1 Training dataset

The training dataset comprises data from OBS RR48 recorded on May 18th , 2013 (day 138)

and from OBS RR41 recorded on May 15th , 2013 (day 135), respectively. All BW vocalizations

within the data were manually annotated by drawing a box (describing begin and end times

and, minimum and maximum frequencies) around the units using the software Raven Pro 1.5.

Out of the 48 hours of recordings, more than 4000 individual units were selected in various SNR

ranges 4. Tonal units distribution over the dataset is represented in Figure 5.7. The dataset is

representative of the different types of signals present in the recordings, the classes are evenly

distributed and contain between 555 and 1133 tonals.

P-call
12!%

MPBW unit 2 DS

15!%

MPBW unit 1 low
25!%

MPBW unit 1 high
18!%

ABW unit C

14!%

ABW unit A
15!% (674)

(603)

(806)

(555)

(681)

(1133)

13%

Figure 5.7: Tonal units number of instances and distribution in the training dataset, out of 4000 annotated

signals.

5.3.2 Features extraction

Tonal signals detected by the ridge detector are characterized using different attributes or features.

Features have to facilitate the sorting of the detected tonal signals into different categories. They

should also be simple to measure and robust to noise (Duda et al., 2012). They are generally

closely related to the application. Based on the work presented in Urazghildiiev et al. (2009) and

Baumgartner and Mussoline (2011) for baleen whale signal characterization, the selected set of

features measures temporal, spectral, and amplitude variations and includes:

• average frequency f (Hz - Figure 5.8(a)),

• center frequency (frequency reached at half of the cumulative signal amplitude; Hz),

• bandwidth (Hz),

• average amplitude and amplitude standard deviation (dB),

• minimal, maximal, average and instantaneous slopes (Hz/s) and,

4The annotated dataset is available online: DOI: 10.5281/zenodo.3624145
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• least concurrent frequency ratio Ω (dimensionless; described below - Figure 5.8(b)).

When multiple tonal signals occur concurrently (M, number of tonals), ratios of the average

frequencies ( f ) are computed for each pair of concurrent tonal signals, with the higher f of a pair

as the numerator so that the ratios are ≥ 1. For a tonal signal mi (i ∈ {1,2, ...,M}), the associated

least concurrent frequency ratio Ωmi
is taken as the least of such ratios among all pairs mi and

m j ( j ∈ {1,2, ...,M} and i 6= j ). In the absence of concurrent signals, Ω= 1. Ω provides a way for

quantifying the polychromatic nature of tonal signals (Figure 5.8):

· for ABW calls when units A and C are concurrent, Ω=
f unit A

f unit C

=
26.2

18.7
= 1.45;

· for MPBW unit 1, Ω=
f unit 1 high

f unit 1 low

=
34

13.5
= 2.5 and;

· for MPBW unit 2 DS and P-calls (no expected concurrent tonals), ω= 1.
L
e
a
s
t 

c
o

n
c
u
rr

e
n
t 

fr
e
q

u
e
n
c
y
 r

a
ti
o

(a)
40

35

30

25

20

15

10

3

2

1

ABW 

unit A

ABW 

unit C
MPBW  

unit 1 

low

MPBW  

unit 1  

high

MPBW  

unit 2  

DS

P-callABW  

unit A

ABW  

unit C
MPBW  

unit 1 

low

MPBW  

unit 1 

high

MPBW  

unit 2  

DS

P-call

0

20

40

60

50

70

1.45

2.5

30

10

(%)

F
re

q
u
e
n
c
y
 (
H

z
)

(b)

Figure 5.8: Illustration of features of (a) average frequency and (b) least concurrent frequency ratio Ω on

the training dataset. (a) Each tonal is represented as a round marker with transparency: accumulation

of markers at a specific location shows as more intense color. Each color corresponds to a specific unit

and, mean values and standard deviations are indicated. (b) Ω values are indicated and, amplitudes are

displayed as the percentage of concurrent tonal units found with each ratio among all annotated units of

the same type.

However, Ω could be adversely impacted by the simultaneous occurrence of multiple whale

species tonal signals or shipping noise. As an example, an examination of ABW measured ratios

for unit A on the training dataset (Figure 5.8), indicates that 50 % of the annotated units are

recorded simultaneously with unit C (Ω = 1.45) and 20 % are recorded alone (Ω = 1). Yet, a
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smaller portion of the set is recorded with MPBW Unit 1 high (Ω =
34

26.2
= 1.3; 11 %) and low

(Ω =
26.2

13.5
= 1.9; 13 %). Shared ratio between classes indicate tonals that have been recorded

simultaneously.

Multiple-path arrivals (reverberation) caused by the deep-sea bathymetry makes it difficult

to isolate and extract the direct signal. Measuring the duration of tonal signals in these condi-

tions can produce inaccurate estimates that may not be representative of the actual signal. For

example, estimated duration of ABW unit A calls from the training dataset is 20±12 s, whereas

the known duration is 12 s (cf. § 2.3.1). Hence, the signal duration is not considered as a feature

for classification purposes.

5.3.3 Dimension reduction and classification

PCA is a tool for features transformation that aims at finding mutually orthogonal global direction

in data that maximize variance (Comon and Jutten, 2010). PCA is an application of the KLE

(§ 3.4.2), often used for dimension reduction. In the present case, features measured on each

detected tonal signal are put together as a table, or input matrix D of size [N tonal signals ×10

features]. PCA transformation of the input matrix into L dimensions (denoted TL is expressed as

the product between the original data matrix D and a weight matrix WL such as

TL = DWL. (5.4)

The weight matrix is composed of the eigenvectors of the covariance matrix of D (DTD), sorted

by descending eigenvalues order. The eigenvalue problem is solved by singular value decompo-

sition. Explicitly, WL expresses the influence of each one of the original features on the principal

component (PC) dimensions. For dimension reduction, L is chosen smaller than the original

number of dimensions (L < 10). Here the number of PCs is reduced to 2, conveying 98.5% of the

data total variance. Compared to similar algorithms such as independent component analysis,

PCA gives the best reconstruction: each tonal signal is represented in the new L dimensions. TL

is of size [N tonal signals ×L]. Training is used to estimate WL and, is saved to reproduce the

same transformation on other datasets.

In the reduced 2-dimensional space, points corresponding to call units are grouped into clus-

ters using Gaussian mixture models (GMMs). GMMs are commonly used to estimate of the prob-

ability density functions in statistical classification systems (Duda et al., 2012). GMMs, unlike

K-means, account for data variance (hence it makes sense to use it after variance maximization

by PCA). For the training data, six distinct clusters were observed, and they corresponded well

with the six annotated tonal types (see Figure 5.7).
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5.3.4 Reconstruction

Detected tonal signals associated with a particular class are used in the reconstruction of a

putative independent song. First, the STFT X(t , f ) ∈ C of the input signal x(t) is calculated.

Complex STFT enables the subsequent reconstruction of a signal without phase information

losses. A binary mask Yi (t , f ) ∈ {0,1} for the i th class (prepared by setting points along all detected

TF contours in the i th class to 1, and 0 elsewhere) is applied to the STFT as

Zi (t , f ) = Yi (t , f )⊙X(t , f ), (5.5)

where ⊙ is the Hadamard product. Finally, the time-series data representing an independent

song is obtained by computing the inverse STFT of Zi (t , f ), i.e., zi (t ) = iSTFT{Zi (t , f )}.

5.4 Results

5.4.1 Training performances

Training data projected on the first and second PC are presented in Figure 5.9 and color-coded

according to the clustering. PC1 conveys 55.5% of the total variance, 94% of PC1’s weight is

attributed to frequency features ( f and center frequency). PC2 conveys 43% of the total variance,

88% of PC2’s weight is attributed to the average amplitude.

Figure 5.9: Training data projected on the first and second PCs. Colors represent the results of the GMM

clustering with precision and recall of Table 5.2.
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Three classes are completely distinct due to their distinct frequency differences: MPBW unit 1

low, ABW unit C and, MPBW unit 1 high. Most of GMMs are narrow ellipses. However, the MPBW

unit 2 DS ellipse is wider than the others and, its orientation is different: the cluster overlaps with

ABW unit A and P-call clusters. Therefore, the clustering performances are quantified using the

metrics Precision and Recall (§ 4.3.2). A confusion matrix of the classification outcomes, along

with the per-class Precision and Recall values, are presented in Table 5.2.

ABW MPBW ?
Precision (%) Recall (%)

unit A unit C unit 1 low unit 1 high unit 2 DS P-call

C
lu

st
er

N
o.

1 93.28 - - - 2.09 0.12 97.69 93.28

2 - 99.67 - - 0.25 - 99.75 99.67

3 - - 99.92 - 0.25 - 99.75 99.92

4 - - - 99.37 - - 100.00 99.37

5 6.24 0.33 0.08 0.63 97.29 7.87 86.52 97.29

6 0.47 - - - 0.12 92.01 99.36 92.01

Table 5.2: Classification results presented as a confusion matrix, along with per-cluster Recall and

Precision values.

The higher values in the confusion matrix occur along its primary diagonal, indicating high

Recall rates. ABW unit A and P-calls that exhibit strong similarities in frequency and, for this

reason they are easily mistaken (§ 2.3.3) (Leroy et al., 2017a; Ward et al., 2017). However, PCA and

clustering approaches employed here readily separate the two signal types (see Figure 5.9). As

can be seen from Table 5.2, only 0.12% of P-call occurrences were incorrectly classified as ABW

unit A and, reversely 0.47% of ABW unit A were assimilated to P-calls.

The spreading of the MPBW unit 2 DS ellipse affects the classification within the classes it

overlaps. P-calls (7.87%) and ABW unit A (6.24%) are wrongly attributed to cluster 5, lowering

the cluster’s precision and, decreasing their recall scores. Yet, average precision and recall of

respectively 97.18% and 96.92%, indicate satisfying classification performances for the different

units of the annotated training dataset.

5.4.2 Testing: unsupervised application

The proposed transcription process is applied and illustrated on a recording containing multiple

MPBW calls and P-calls as well as FW chorus and seismic noise (Figure 5.10(a-b)). The output

of the ridge detector is shown in Figure 5.10(c) where colors represent the associated data

clusters. Detected tonals occurring outside of the [10−40] Hz frequency range and with power

(on the normalized spectrogram) below −60 dB were discarded. Transcribed and reconstructed

waveforms are displayed in Figure 5.10(d). A MPBW song, constructed by associating clusters

3 (MPBW unit 1 low) and 4 (MPBW unit 1 high), is displayed in pink. Another MPBW song
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consisting of the unit 2 DS only (cluster 5) is displayed in purple. A song consisting of tonals

from the P-call cluster (6) is plotted in orange.
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Figure 5.10: Illustration of the performance of the developed method using a recording (waveform (a) and spectrogram (b)) containing MPBW calls and P-calls,

FW chorus and two strong seismic events (at 180 s and 420 s, respectively). Tonal detector outputs are shown in (c) and color-coded by the classification results.

Waveforms of reconstructed songs are shown in (d) (Bouffaut et al., 2019). 12
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5.5 Discussion

The results presented in Figure 5.10 highlight the effectiveness of the proposed automatic tran-

scription algorithm to retrieve and regroup tonal signals for the reconstruction of independent

song tracks. Interfering noises, such as seismic events, have been successfully removed from

the resulting tracks. However, the obtained results on tonal extraction using the ridge detector

are impacted by the differences between a unit and its echoes: such spectro-temporally disjoint

components are detected as independent units. For example, in Figure 5.10, at 110-120 s the

MPBW unit 2 DS is detected in at least two parts (fragmentation). This can have many conse-

quences.

First, in the annotated dataset, a unit and its echoes are considered as one annotated tonal

signal with a unique label. Therefore, multiple fragments are affected with a label corresponding

to a single annotation. As a consequence, in the training process, the percentages reported in

Table 5.2 are reflective of the number of fragmented signals associated with each class and are

not representative of the actual number of annotated signals.

Fragmentation also impacts classification performances. As discussed in § 5.4.1, MPBW

unit 2 DS, is a relatively complex signal in comparison to the other units and, its frequency

range is close to that of P-calls and ABW unit A. When the extracted TF contours are fragmented,

subsequent estimation of attributes (especially f and center frequency) is less accurate. Given

that frequency attributes convey most information on the PC1 axis (§ 5.4.1), Fragmentation

significantly influences the location of the data point on the PCs axes. The spread of the MPBW

cluster and the resulting misclassifications can be attributed to Fragmentation of the extracted

TF contours. Furthermore, echoes of the following segments of MPBW unit 2 DS might also yield

into incorrect classifications as the corresponding detections present non-typical attributes. As

an example, the echoes, at ≃ 340 s and ≃ 710 s in Figure 5.10, were wrongly classified as P-calls.

5.6 Conclusion

To address the issue of the automatic analysis of PAM recording of BW, the proposed strategy

is to perform song transcription based on the TF representation of acoustic signals and pat-

tern recognition. The different steps are summarized in Figure 5.11. First, the observation is

represented in the TF domain. Then, signals of interest are detected: the tonal parts of BW

calls are chosen because they are less degraded by the propagation channel. This step can be

assimilated to segmentation and, is carried out using the ridge detector (that was chosen after

performance comparison with other tonal detectors). Then, features describing tonal signal

TF-amplitude information are extracted. For classification, data are represented on the first

two principal components, describing 98.5% of the total variance and, GMM clustering is then

applied, performing training performances of 97.2% precision and 96.9% recall. Reconstruction

of the hence classified signals is finally performed, providing one separate waveform for each
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class of signals. In a preliminary application, non-supervised transcription of a recording of

MPBW and P-calls, polluted with seismic noise, provides supportive results of the interest of

such method.

1 Spectrogram

5 Reconstruction

Goal: Reconstruct independant songs

Strategy: Use a TF binary mask per class

Tools: iSTFT

4 Classification

Goal: Sort and identify tonals by similarity

Strategy: Dimension reduction and 
clustering

Tools: Principal component (PC) analysis 
and Gaussian mixture models

3 Features extraction

Goal: Facilitate the sorting of the detected tonal 
signals into different categories

Strategy: characterize tonals using different 
attributes or features

Tools: Temporal, spectral, and amplitude variations
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Goal: Data segmentation
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Tool: Ridge detector, detect salient intensity 
ridges in spectrograms 

Figure 5.11: Flowchart of the pattern recognition strategy for automatic transcription of BW songs.

Application of the pattern recognition method can be used for a multi-species detection

and classification in different PAM applications. Because of the low complexity of each task,

it is possible to have a solid understanding of all inputs and outputs and, adapt the method

to other types of signals. Besides, PCA transformation and resulting GMMs (after training) are

computationally efficient and, could be implemented without much adaptation to real-time

on-board processing for event detection, e.g., on gliders or communicating buoys. The additional

reconstruction step exhibited possible application for aural and visual analysis. For example, it

could intervene in annotation processes, to improve efficiency and reduce variability in order to

generate larger ground-truth datasets.

Future work discussed with more details in the general conclusion should focus on:

• improving the algorithm to lower false alarms on broader units such as MPBW unit 2 DS,

• separating songs from individuals of the same species and,

• finding scoring metrics, able to evaluate the complete transcription process performances

and conduct comparisons to similar algorithms.
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Conclusion and future work

This thesis was devoted to the challenging problem of the detection and classification of stereo-

typed signals modified by the propagation channel (echoes, low and varying SNRs...) in a passive

acoustic context. Solutions to this problem were proposed in a framework that can be adapted

to diverse types of stereotyped signals. Strategies were demonstrated and validated on BW low-

frequency signals. In the following, an overview of the contributions of this thesis is presented

and directions for future work are outlined.

The specificity of the application to BW signals was discussed in Chapter 1. First, an overview

of BW classical methods for visual surveys was presented, and their limitations were pointed

out. It led to the conclusion that information collected visually is too sparse for continuous

monitoring in remote areas where most BW populations are. To overcome this limitation, PAM

was then introduced as a supplementary approach to conduct long-term surveys, resulting in

the combination of different fields such as ecology, acoustics, and signal processing. A focus

on propagation showed that BW low-frequency calls are good candidates for long-distance

propagation and, a literature review on detection methods revealed that the MF is the most

common detection strategy.

The development of appropriate detection and classification methods requires prior knowl-

edge on signals of interest, the detection context, and the possible issues (e.g. overlapping

transient noise sources). To that extent, data used in this work, recorded from the bottom of the

Indian Ocean by the RHUM-RUM OBSs was presented in Chapter 2. The different components

of the soundscapes were then analyzed and, signals of interest were described (ABW, MPBW,

and P-calls). The calls were shown to be overlapping in frequency and share the same bandwidth

than FW pulses, all contributing to the whale chorus. Besides, this already busy soundscape was

also affected by ship noise and seismic events.

Chapter 3 first confirmed that stereotyped signals propagating over long-distances are re-

ceived with echoes and varying SNRs and, should be considered as random signals. Therefore,

MFs are no longer optimal. To improve signal detection in such changing conditions, the pro-

posed strategy was based on the SMF which is an extension of the MF, in the sense of optimal

filtering and SNR maximization, for stochastic signals embedded in additive colored noise. The

filtering strategy uses a new formulation of the observation input SNR, expressed in the form of

a Rayleigh quotient. The optimization of this ratio leads to the construction of a set of sub-band
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filters designed to maximize the output SNR. The adaptation of the SMF to the passive context

is one of the principal contributions of the work. The proposed method overcomes the noise

selection step and a new method is introduced for the automatic estimation of the time-varying

SNR. In this Chapter, the SMF + MF was successfully applied and compared to the MF for the

detection of ABW calls at high and low SNRs. It presented better detection amplitudes and was

less inclined to false detection. The SMF was also illustrated on the detection of scuba-divers

breathing signals. The two detected signals are different in terms of structure and frequency

bands: whale calls are ultra-low frequency (initially) deterministic signals, whereas scuba-divers

inhalations are characterized as high-frequency modulated noise.

Performance analysis of the SMF + MF compared to the MF and, the Z-detector was in-

vestigated in Chapter 4. It was performed on recordings from an ABW singing continuously

for more than 21 hours with various SNRs and available tracking information. Received calls

were annotated on the farthest OBS from the trajectory, chosen for important SNR variability

and, compared to closer sensor for cross-reference. Numerous other sound sources were also

denoted during the day (ship noise, P-calls, D-calls, chorus, seismic events), providing subse-

quent SNR variations. Classic supplementary TPR/MDR and PPV/FDR were estimated after the

automatic comparison between detector outputs and the ground-truth data. Performances were

displayed: depending on the threshold, as ROC curves; and, with fixed thresholds: against the

SNR and during the day. These analyses showed that all methods performed similarly on high

SNRs (estimated > 13 dB). However, for lower SNRs, the MF performances rapidly decreased

with higher MDR and FDR. The analysis also underlined the critical role of the MF detection

threshold. Comparison between the Z-detector and the SMF + MF (with threshold set so both

method achieve similar FDR of 3.5 %) showed that the SMF + MF reached TPR = 1 at a lower

SNR, therefore increasing the detection range in the day-long analysis. In presence of ship noise,

the detection range was extended by 25 km (with a minimum TPR of 75 %) and, for a threshold

corresponding to an FDR of 6 %, the SMF + MF was proven to detect signals up to 100 km under

the same conditions.

The proposed method for the automatic evaluation of the SNR was compared to the Z-

detector’s and to the reference method in the DCLDE community (that requires annotation

information). Our method matched the reference in the presence of ship noise but overesti-

mated the SNR (+[5−7] dB) on less noisy parts. The Z-detector mostly underestimated the SNR

(−[5−7] dB).

Performance analysis also helped to demonstrate the SMF limitations. Detections were

missed when the estimated value of the input SNR ρ[k] was equal to zero or negative. This situa-

tion occurred when a call was embedded entirely in short duration noises, but with the same

bandwidth, e.g., seismic event or high-intensity fin whale pulses. However, this combination of

events was not common in the dataset and might be hard to detect even for a trained analyst.

Source of error might also be related to remaining energy in the ABW unit A frequency band
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due to echoes making the dissociation of singular calls complicated. On the tested data, ship

noise did not cover this frequency band. However, if that had happened, it would have prevented

detections or trigger a false alarm.

Finally, Chapter 5 dealt with the detection and separation of concurrent calls from different

species. The proposed strategy was based on a pattern recognition scheme. A first analysis was

proposed to determine how to detect BW tonal signals, responsible for long-range propagation

and, often used for calls characterization. Different tonal detection methods (instantaneous

frequency estimator, Yin estimator, HPS, Cost-function-based detector, and ridge detector) were

investigated and tested on a ground-truth dataset generated by embedding synthetic ABW calls

in noise recordings for an OBS, with controlled SNR values. Performances of these different

methods were evaluated using Silbido scoring metrics: Precision, Recall, Frequency deviation,

Coverage, Excess, Precision, and Recall. Results showed that the ridge detector satisfied all

criteria for subsequent classification (high Precision and Recall, satisfying Coverage and low-

frequency deviation) in addition to being able to detect concurrent tonal signals. The elaboration

of performances evaluation and method comparison strategies for passive acoustic is another

contribution of this thesis.

Once a tonal detection method was selected, the following steps of pattern recognition

consisted in the extraction of TF-amplitude features to characterize the tonal signals and, their

classification using GMM clustering on their projection onto a reduced number of PCs (2). The

method was trained on more than 4000 annotated units with overall precision and recall of

respectively 97.2% and 96.9%, showing reliable classification. Notably, despite being close in

frequency, P-calls and ABW unit A were correctly identified, with less than 0.5% error between

classes. However, the MPBW unit 2 DS class was problematic due to the fragmentation of the

detected signal. It led to the misclassification of other close units into its cluster.

A first unsupervised application to a recording containing MPBW calls and P-calls showed

promising results for the proposed method. The last step of the process, the reconstruction of the

classified signals was then applied, providing a waveform for each class of signals and therefore,

reconstruction of each underlying song. Even if preliminary examples of song reconstruction

require further work, they constitute the last contribution of this thesis. Our analysis of the

developed methods and obtained results led to interesting observations; some of which could be

lines for future work and, are detailed in the following paragraphs.

Perspectives for the Stochastic Matched Filter

The SMF was extended to the passive context in Section 3.5.1.1 under considerations of a time-

varying linear filter for SNR maximization. This filter, was composed of sub-band filters that can

be designed offline and, the adaptation to the passive context relied on the online estimation of

noise covariance matrix and, the estimate the time-varying SNR.
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To design a filter bank that can be applied to a large class of observations with no a priori

knowledge on the instantaneous variations of the noise, the chosen approach was to resort to

the simulation of low-frequency synthetic sea-colored noise (white noise with -6 dB/decade) to

estimate the noise covariance matrix Γn0 and solve the GEP. Even though this simulated noise

was sufficient for OBS recorded data, it might be of interest to consider "a statistical" approach,

for example, when SOFAR-recorded data are considered. The chorus has more impacts on

this type of data and consequently, SMF performances could be improved with specific SNR

maximizing sub-band filters.

Another topic for future work is the signal’s covariance matrix Γs0 in the design of the filters.

In the developed method, it was estimated based on a parametric model of the signal of interest.

However, recent studies have shown a global decay and seasonal variations in the frequency of

BW calls, ABW included (−0.14 Hz/year) (McDonald et al., 2009; Leroy et al., 2018). As illustrated

in Figure 3.3, the bandwidth of the maximum filter (applied when Q[k] = Qmax) is wide around

ABW peak frequencies. However, if the frequency decay persists, the re-evaluation of the signal

parameters would be necessary. For an improved use of the method, an additional "learning"

step could be added, learning the parametric model values from a set of selected signals. An-

other option would be the automatic analysis of the detected signals, to learn directly from the

incoming signal and provide auto-adaptative parametric values (this would, hence, require a

regular actualization of the filter bank).

Based on the work from Xerri and Borloz (2004); Borloz and Xerri (2011); Chagmani et al.

(2017), an additional study could be conducted to evaluate the optimal number of filters for

SNR maximization in an automatic way. In addition to spectrogram set up, the last user-defined

parameter is the size of the median filter for the noise estimation (median absolute deviation).

The size of such filter could be automatically estimated from knowledge on the signal’s duration

and the spectrogram parameters.

Finally, regarding the application of the SMF, an additional study could be conducted to

precisely evaluate the detection range (and gain from using the SMF). Such information is crucial

for both of the presented applications: for ABW it intervenes in density estimation and, for

scuba-divers, it is essential to perform threat detection at the earliest.

Perspectives for the automatic transcription

Results of the automatic transcription method were presented in Section 5.4.2. This experiment

focused on a short (< 17 min) recording containing MPBW and P-calls, used for unsupervised

testing. Next step of this work would be to test the method on a new, extended annotated dataset

and, the evaluation of the classification performances (confusion matrix) on this test dataset.

Regarding the classification performances on the training data, lower miss-classification

on broader units such as MPBW unit 2 DS, could be achieved with less fragmentation. One
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of the options would be the improvement of the detection method to increase robustness to

reverberated sound. However, this could be fulfilled only by imposing a detection threshold or,

by introducing less strict rules in amplitude variation separation to connect units and reverber-

ated signals. These solutions are not ideal: the first would reject lower intensity signals such

as echoes but also remote calls and, the second would impact the classification because tonal

and reverberated signals do not necessarily share the same features. The last option to improve

classification precision and, to increase its robustness to reverberations is to apply a probability

threshold to the GMM clusters. It would delimit the confidence region for the assignment of

a tonal signal to the distribution. In this case, tonals out of the predefined boundaries could

automatically be discarded. Note that other set of features (e.g., cepstral coefficients) or different

classifiers (e.g., machine learning) could be considered. However, the interest of the presented

approach is the low complexity of each step, where all parameters are understandable and can

be checked.

The separation of songs of individuals from the same species could improve the utility of

the transcription algorithm in visual and aural analyses. It could subsequently be used to study

individual behavior (acoustic behavior, communication, tracking), count, and, on a further

extent, improve density estimations. Consideration of ICI (Stafford et al., 2011) in the signal

reconstruction step of the algorithm could help achieve individuals song separation. Besides,

other options might be taken into account, i.e., received level comparison and echoes analysis.

Perspectives for performance analysis

Systematic performance analysis of detection and classification methods developed for the

passive context is crucial. For example, estimating the detection probability within a specific

detection range is essential for call density estimation. In addition, performance scores based

on a statistical evaluation of methods outcome, can be used for reliable and unbiased com-

parison between methods. Comparison is essential to make a knowledgeable choice between

the available detection techniques to address a specific application. However, performance

evaluation should be conducted preferably on ground-truth data, resulting from the annotations

of experienced analysts. Indeed, recordings are more representative of soundscapes diversity

and the effects of the propagation canal on received signals.

The problem is that performance evaluation suffers from the few ground-truth datasets

available (especially for BW low-frequency signals) and the lack of standardized procedures for

assessment and method comparison. Besides, it is often impaired by the difficulty and variability

of the annotation process. This is why initiatives to provide freely available annotations such

as offered by the DCLDE community should be encouraged as well as collaborative annotation

actions such as the currently developed Aplose, the online multi-analyst annotation platform of

the Ocean Data Explorer project 5.

5https://oceandataexplorer.org
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Traditional performance evaluation metrics (e.g., precision and recall) do not suffice in

quantifying the performance of transcription methods. The evaluation of the performances

requires to determine new scoring metrics to assess the accuracy of the transcription or, the

percentage of transcribed songs, compare its efficiency on different types of signals or, evaluate

units associations in a multi-individuals context. Perception experiences could be conducted to

evaluate the quality of transcribed signals. However, for human auditory analysis, they require

the transposition of the signals to a higher frequency range. Another approach consists in rely-

ing on simulated signals. This procedure could be completed with a method already used for

odontocetes whistle detection and, part of the Silbido6 software: it consists in comparing point

by point the original and reconstructed signals in the TF domain (Roch et al., 2011). However,

such dataset does not yet exist for BW signals.

Aware of the difficulties of cross-fields collaborative efforts required by PAM and, to generalize

the use of automatic detection methods, the community should support (or continue to support)

the development of comprehensive methods with thorough explanations, examples of the

parameters to set and, shared code; the setting of standardized procedures for performance

evaluation and, the development of comparison datasets to favor exchanges on the existing

methods.

6https://roch.sdsu.edu/index.php/software/
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Titre : Détection et classification dans un contexte acoustique passive : application à la détection des signaux 
basse-fréquences des baleines bleues

Mots clés : Détection automatique, filtrage adapté stochastique, performances de détection, transcription 
sonore, monitoring par acoustique passive, baleine bleue.

Résumé : L’analyse des grands volumes de données générés par la surveillance par acoustique passive 
long-terme et continue des baleines bleues (BW) est améliorée par la détection automatisée des signaux 
d’intérêt. Le travail présenté dans cette thèse s’attaque au problème de la détection et classification de 
signaux stéréotypés dans un contexte passif basse fréquence où les signaux sont modifiés par le canal de 
propagation, bruités et où le SNR varie continuellement. Les méthodes développées sont appliquées à des 
enregistrements issus d’OBS déployés dans l'océan Indien occidental. 

Premièrement, le filtrage adapté stochastique (SMF) est étendu au contexte passif en adaptant l’estimation du 

bruit et du SNR. Ce filtre est appliqué avec succès pour la détection des calls de baleine bleue antarctique et 

est comparé aux MF et Z-detector sur données annotées présentant de nombreux bruits et d’importantes 

variations du SNR. Les excellentes performances du SMF passif permettent d’augmenter la portée de 

détection jusqu'à 100 km en présence de bruit de bateau. 

La détection simultanée de différentes espèces s’appuie sur un schéma de reconnaissance de formes où les 

signaux tonaux de BW sont extraits, caractérisés et classifiés pour la transcription automatique des chants. 

Les signaux ainsi identifiés sont ensuite reconstruits avec des formes d'onde distinctes reproduisant les 

chants sous-jacents. Le succès de la reconstruction repose sur la qualité de la détection de tonales: le 

détecteur de crêtes est choisi pour son efficacité. Les résultats d'apprentissage et la première application non 

supervisée de la transcription ont révélé des résultats prometteurs et son utilité pour l’analyse multi-espèces.

Title: Detection and classification in passive acoustic context: Application to blue whale low-frequency signals

Keywords: Automatic detection, stochastic matched filter, detection performances, sound transcription, 
passive acoustic monitoring, blue whale.

Abstract: The analysis of the large volumes of data resulting from continuous and long-term monitoring 
efforts of blue whales (BWs) benefits from the automated detection of target signals. This thesis investigates 
the challenging problem of the detection and classification of stereotyped signals in a low-frequency passive 
acoustic context where (1) signals traveling long distances are deteriorated by the propagation channel, (2) 
overlapping noises interfere and, (3) SNRs vary continuously. Developed methods are applied to recordings 
from ocean bottom seismometers deployed in the western Indian Ocean.  

First, the stochastic matched filter (SMF) is adapted to the passive context by overcoming noise estimation 

and estimating the SNR automatically. This filter is successfully applied to the detection of Antarctic blue 

whales calls and is compared to the MF and the Z-detector on an annotated ground-truth dataset exhibiting 

various SNRs and noises. The passive SMF showed better performances, increasing the detection range up 

to 100 km in the presence of ship noise. 

The problematic of the detection of concurrently calling species is addressed based on a pattern recognition 

development for the automatic transcription of BW songs where, tonal signals are extracted, characterized, 

and classified. The hence identified signals are then reconstructed as separate waveforms reconstructing of 

the underlying songs. The success of the reconstruction relies on the quality of the tonal detector: the ridge 

detector was chosen for its efficiency. Training and unsupervised application revealed promising results of the 

proposed transcription method and its utility for multi-species analysis.


