. .. Supplementary-materials,

, 161 Recovery of alcohols by an in-house synthesized polymeric gel

. .. Abstract, 167 6.2.1 Materials, synthesis and consecutive studies

D. .. Results, 3.2 Influence of dipole moment on swelling characteristics of the gels

. .. Kinetics-of-deswelling,

, Practical applications of the synthesized gel

. .. Conclusions,

. .. References,

, Chapter

.. .. Outlook,

, 194 7.2 Detoxification and valorization of liquid wastes from the petroleum refinery

. .. , 197 7.5 Novel application of a polymeric gel for the adsorptive recovery of alcohols

, Future perspectives

. .. References,

A. K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energ. Combust, vol.33, issue.3, pp.233-271, 2007.

D. Cai, C. Huidong, C. Changjing, H. Song, W. Yong et al., Gas strippingpervaporation hybrid process for energy-saving product recovery from acetone-butanolethanol (ABE) fermentation broth, Chem. Eng. J, vol.287, pp.1-10, 2016.

A. Deveau, B. Gregory, U. Jessie, P. Mathieu, B. Matthias et al., Bacterial-fungal interactions: ecology, mechanisms and challenges, FEMS Microbial. Rev, vol.42, issue.3, pp.335-352, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01954717

M. Diender, J. M. Alfons, and D. Z. Sousa, Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas, Biotechnol. Biofuels, vol.9, issue.1, p.82, 2016.

E. J. Espinosa-ortiz, R. E. Rene, E. D. Van-hullebusch, and P. N. Lens, Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor, Int. J. Bidet. Biodeg, vol.102, pp.361-369, 2015.

Á. Fernández-naveira, M. C. Veiga, and C. Kennes, H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas, J. Chem. Technol. Biotechnol, vol.92, issue.4, pp.712-731, 2017.

U. K. Gangopadhyay, S. S. Dongre, and P. R. Salunkhe, Biological method to reduce phenol content for efficient and environment friendly effluent treatment, Man-Made Tex. in Ind, vol.46, issue.11, pp.367-371, 2018.

B. Jiang, L. Zhi-gang, D. Jian-ying, Z. Dai-jia, and X. Zhi-long, Aqueous two-phase extraction of 2, 3-butanediol from fermentation broths using an ethanol/phosphate system, Process Biochem, vol.44, issue.1, pp.112-117, 2009.

S. Lawson and J. M. Macy, Bioremediation of selenite in oil refinery wastewater, Appl. Microbiol. Biotechnol, vol.43, pp.762-765, 1995.

M. Lenz and P. N. Lens, The essential toxin: the changing perception of selenium in environmental sciences, Sci. Tot. Env, vol.407, issue.12, pp.3620-3633, 2009.

L. Lindholt, The tug-of-war between resource depletion and technological change in the global oil industry 1981-2009, Energy, vol.93, pp.1607-1616, 2015.

K. T. Klasson, M. D. Ackerson, E. C. Clausen, and J. L. Gaddy, Bioreactor design for synthesis gas fermentations, Fuel, vol.70, pp.605-614, 1991.

K. T. Klasson, M. D. Ackerson, E. C. Clausen, and J. L. Gaddy, Bioconversion of synthesis gas into liquid or gaseous fuels, Enzyme Microb. Technol, vol.14, pp.602-608, 1992.

K. Michael, N. Steffi, and D. Peter, The past, present, and future of biofuels -biobutanol as promising alternative, Biofuel Production-Recent Developments and Prospects, vol.15, pp.451-486, 2011.

O. Abdelwahab, N. K. Amin, and E. Z. El-ashtoukhy, Electrochemical removal of phenol from oil refinery wastewater, J. Hazard. Mater, vol.163, pp.711-716, 2009.

H. N. Abubackar, M. C. Veiga, and C. Kennes, Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract, Bioresour. Technol, vol.114, pp.518-522, 2012.

F. Ammam, P. L. Tremblay, D. M. Lizak, and T. Zhang, Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Spormusa ovuta, Biotechnol. Biofuels, vol.9, pp.163-172, 2016.

J. R. Andreesen and K. Makdessi, Tungsten, the surprisingly positively acting heavy metal element for prokaryotes, Ann. N. Y. Acad. Sci, vol.1125, pp.215-229, 2008.

A. Hashemi, W. Maraqa, M. A. Rao, M. V. Hossain, and M. M. , Characterization and removal of phenolic compounds from condensate-oil refinery wastewater, Desalin. Water Treat, vol.54, pp.660-671, 2015.

S. R. Blum and B. Kaiser, Buss-SMS-Canzler GmbH and 2S-sophisticated systems Ltd, Distill. Method. U.S. Patent, vol.7, p.727, 2010.

T. G. Chasteen and R. Bentley, Biomethylation of selenium and tellurium, Chem. Rev, vol.103, pp.1-25, 2003.

M. Diender, A. J. Stams, and D. Z. Sousa, Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas, Biotechnol. biofuels, vol.9, p.82, 2016.

S. Dhanjal and S. S. Cameotra, Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil, Microb. Cell Fact, vol.9, pp.52-62, 2010.

K. S. Dhillon and S. K. Dhillon, Distribution and management of seleniferous soils, Sparks D

A. Agro, , pp.119-184, 2003.

J. Dobias, E. I. Suvorova, and R. Bernier-latmani, Role of proteins in controlling selenium nanoparticle size, Nanotechnol, vol.22, pp.195605-195614, 2011.

M. H. El-naas, S. Al-zuhair, and M. A. Alhaija, Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon, Chem. Eng. J, vol.162, pp.997-1005, 2010.

H. El-ramady, N. Abdalla, T. Alshaal, E. Domokos-szabolcsy, N. Elhawat et al., Selenium in soils under climate change, implication for human health, Environ. Chem. Lett, vol.13, pp.1-19, 2014.

M. Errico, B. G. Rong, G. Tola, and M. Spano, Optimal synthesis of distillation systems for bioethanol separation. Part 1: Extractive distillation with simple columns, Ind. Eng. Chem. Res, vol.52, pp.1612-1619, 2013.

E. J. Espinosa-ortiz, G. Gonzalez-gil, P. E. Saikaly, E. Hullebusch, . Dv et al., Electrochemical removal of phenol from oil refinery wastewater, J. Hazard. Mater, vol.163, pp.711-716, 2009.

F. J. Almendariz, M. Meraz, A. D. Olmos, and O. Monroy, Phenolic refinery wastewater biodegradation by expanded granular sludge bed bioreactor, Water. Sci. Technol, vol.52, pp.391-396, 2005.

C. N. Banwell and E. M. Mccash, Fundamentals of Molecular Spectroscopy, 1983.

Z. Cheng, C. Li, C. Kennes, J. Ye, D. Chen et al., Improved biodegradation potential of chlorobenzene by a mixed fungal-bacterial consortium, Int. J. Biodet. Biodeg, vol.123, pp.276-285, 2017.

E. J. Espinosa-ortiz, G. Gonzalez-gil, P. E. Saikaly, E. Hellebusch, and P. N. Lens, Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol, Biofuels, Bioprod and Bioref, vol.99, pp.93-114, 2011.

H. N. Abubackar, M. C. Veiga, and C. Kennes, Biological conversion of carbon monoxide to ethanol: effect of pH, gas pressure, reducing agent and yeast extract, Bioresour. Technol, vol.114, pp.518-522, 2012.

H. N. Abubackar and M. C. Veiga, Kennes. C. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid, Bioresour. Technol, vol.186, pp.122-127, 2015.

H. N. Abubackar, A. Fernández-naveira, M. C. Veiga, and C. Kennes, Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum, Fuel, vol.78, pp.56-62, 2016.

K. V. Alsaker, C. Paredes, and E. T. Papoutsakis, Metabolite stress and tolerance in the production of biofuels and chemicals: gene-expression-based systems analysis of butanol, butyrate, and acetate stresses in the anaerobe Clostridium acetobutylicum, Biotechnol. Bioeng, vol.105, pp.1131-1147, 2010.

F. R. Bengelsdorf, M. Straub, and P. Dürre, Bacterial synthesis gas (syngas) fermentation, Environ. Technol, vol.34, pp.1639-1651, 2013.

J. Bertsch and V. Müller, Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria, Biotechnol biofuels, vol.8, p.210, 2015.

N. Shen, K. Dai, X. Y. Xia, R. J. Zeng, and F. Zhang, Conversion of syngas (CO and H2) to biochemicals by mixed culture fermentation in mesophilic and thermophilic hollow-fiber membrane biofilm reactors, J. Cleaner Prod, vol.202, pp.536-542, 2018.

B. Omar, R. Abou-shanab, M. El-gammal, I. A. Fotidis, P. G. Kongins et al., Angelidaki, I. Simultaneous biogas upgrading and biochemical production using anaerobic bacterial mixed culture, Water Res, vol.142, pp.86-95, 2018.

M. N. Ukopong, H. K. Atiyeh, M. J. De-lorme, K. Liu, X. Zhu et al., Physiological response of Clostridium carbioxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor, Biotech Bioeng, vol.109, pp.2720-2728, 2012.

J. W. Van-groenestijn, H. N. Abubackar, M. C. Veiga, and C. Kennes, Air Pollution Prevention and Control: Bioreactors and Bioenergy, vol.18, pp.431-463, 2013.

J. B. Van-lier, F. P. Van-der-zee, C. T. Frijters, and M. E. Ersahin, Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment, Rev. Environ. Sci. Biotechnol, vol.14, pp.681-702, 2015.

N. Wan, A. Sathish, L. You, Y. J. Tang, and Z. Wen, Deciphering Clostridium metabolism and its responses to bioreactor mass transfer during syngas mass transfer during syngas fermentation, Sci. Rep, vol.7, pp.10090-10100, 2017.

J. Wang and W. Wan, Kinetic models for fermentative hydrogen production: a review, Int. J. Hydrogen Energy, vol.34, pp.3313-3323, 2009.

T. M. Webster, A. L. Smith, R. R. Smith, A. J. Pinto, K. F. Pinto et al., Anaerobic microbial community response to methanogenic inhibitors 2-bromoethanesulfonate and propionic acid, Microb. Open, pp.537-550, 2016.

B. Wilbanks and C. T. Trinh, Comprehensive characterization of toxicity of fermentative metabolites on microbial growth, Biotechnol. Biofuels, vol.10, p.262, 2017.

S. Xu, B. Fu, L. Zhang, and H. Liu, Bioconversion of H2/CO2 by acetogen enriched cultures for acetate and ethanol production: the impact of pH, World J. Microbiol. Biotechnol, vol.31, pp.941-950, 2015.

F. Zhang, J. Ding, Y. Zhang, M. Chen, Z. W. Ding et al., Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor, Water Res, vol.47, pp.6122-6129, 2013.

J. Abrini, H. Naveau, and E. J. Nyns, Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide, Arch. Microbiol, vol.161, issue.4, pp.1994345-351, 1994.

H. N. Abubackar, F. R. Bengelsdorf, P. Dürre, M. C. Veiga, and C. Kennes, Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by Clostridia, Appl. Energy, vol.169, pp.210-217, 2016.

H. N. Abubackar, M. C. Veiga, and C. Kennes, Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol, Biofuel. Bioprod. Biorefin, vol.5, pp.93-114, 2011.

H. N. Abubackar, M. C. Veiga, and C. Kennes, Carbon monoxide fermentation to ethanol by

H. N. Abubackar, Á. Fernández-naveira, M. C. Veiga, and C. Kennes, Impact of cyclic pH shifts on carbon monoxide fermentation to ethanol by Clostridium autoethanogenum, Fuel, vol.178, pp.56-62, 2016.

J. I. Alves, A. J. Stams, C. M. Plugge, M. Alves, and D. Z. Sousa, Enrichment of anaerobic syngasconverting bacteria from thermophilic bioreactor sludge, FEMS Microbiol. Ecol, vol.86, pp.590-597, 2013.

J. Bertsch and V. Müller, Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria, Biotechnol. Biofuels, vol.8, pp.210-231, 2015.

S. Chakraborty, E. R. Rene, P. N. Lens, M. C. Veiga, and C. Kennes, Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols, Bioresour. Technol, vol.272, pp.130-136, 2019.

Á. Fernández-naveira, M. C. Veiga, and C. Kennes,

, HBE (hexanol butanol ethanol) fermentation for the production of higher alcohols from syngas/waste gas, J. Chem. Technol. Biotechnol, vol.92, pp.712-731, 2017.

Á. Fernández-naveira, M. C. Veiga, and C. Kennes, Glucose bioconversion profile in the syngas metabolizing species Clostridium carboxidivorans, Bioresour. Technol, vol.244, pp.552-559, 2017.

Á. Fernández-naveira, M. C. Veiga, and C. Kennes, Selective anaerobic fermentation of syngas into C2-C6 organic acids or ethanol and higher alcohols, Bioresour. Technol, vol.280, p.387, 2019.

C. R. Fischer, D. Klein-marcuschamer, and G. Stephanopoulos, Selection and optimization of microbial hosts for biofuels production, Metab. Eng, vol.10, pp.295-304, 2008.

P. He, W. Han, L. Shao, and F. Lü, One-step production of C6-C8 carboxylates by mixed culture solely grown on CO, Biotechnol. Biofuels, vol.11, pp.4-16, 2018.

D. Kennes, H. N. Abubackar, M. Diaz, M. C. Veiga, and C. Kennes, Bioethanol production from biomass: carbohydrate vs syngas fermentation, J. Chem. Technol. Biotechnol, vol.91, pp.304-317, 2016.

R. Khanongnuch, F. Di-capua, A. M. Lakaniemi, E. R. Rene, and P. N. Lens, H2S removal and microbial community composition in an anoxic biotrickling filter under autotrophic and mixotrophic conditions, J. Hazard. Mat, vol.367, pp.397-406, 2019.

M. Köpke, C. Mihalcea, J. C. Bromley, and S. D. Simpson, Fermentative production of ethanol from carbon monoxide, Curr. Opin. Biotechnol, vol.2, pp.320-325, 2011.

D. K. Kundiyana, L. H. Raymond, and M. R. Wilkins, Effect of nutrient limitation and two-stage continuous fermentor design on productivities during Clostridium ragsdalei syngas fermentation, Bioresour. Technol, vol.102, pp.6058-6064, 2011.

D. Li, C. Meng, G. Wu, B. Xie, Y. Han et al., Effects of zinc on the production of alcohol by Clostridium carboxidivorans P7 using model syngas, J. Ind. Microbiol. Biotechnol, vol.45, pp.61-69, 2018.

K. Liu, H. K. Atiyeh, B. S. Stevenson, R. S. Tanner, M. R. Wilkins et al., Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols, Bioresour. Technol, vol.152, pp.337-346, 2014.

K. Liu, H. K. Atiyeh, B. S. Stevenson, R. S. Tanner, M. R. Wilkins et al., Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol, Bioresour. Technol, vol.151, pp.69-77, 2014.

P. C. Munasinghe and S. K. Khanal, Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations, Biotechnol. Prog, vol.26, pp.1616-1621, 2010.

D. J. O'-brien, C. C. Panzer, and W. P. Eisele, Biological production of acrylic acid from cheese whey by resting cells of Clostridium propionicum, Biotechnol. Prog, vol.6, pp.237-242, 1990.

X. Ou, X. Zhang, Q. Zhang, and X. Zhang, Life-cycle analysis of energy use and greenhouse gas emissions of gas-to-liquid fuel pathway from steel mill off-gas in China by the LanzaTech process, Front. Energ, vol.7, pp.263-270, 2013.

J. Phillips, H. Raymond, and A. Hasan, Syngas fermentation: a microbial conversion process of gaseous substrates to various products, Fermentation, vol.3, pp.28-53, 2017.

J. Roussel, F. G. Fermoso, G. Collins, E. Van-hullebusch, G. Esposito et al., Trace element supplementation as a management tool for anaerobic digester operation: benefits and risks, IWA publishing London, p.15, 2018.

J. Saxena and R. S. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei, J. Ind. Microbiol. Biotechnol, vol.38, pp.513-521, 2011.

Y. Shen, R. Brown, and Z. Wen, Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: Evaluating the mass transfer coefficient and ethanol production performance, Biochem. Eng. J, vol.85, pp.21-29, 2014.

A. Singla, D. Verma, B. Lal, and P. M. Sarma, Enrichment and optimization of anaerobic bacterial mixed culture for conversion of syngas to ethanol, Bioresour. Technol, vol.172, pp.41-49, 2014.

A. J. Ungerman and T. J. Heindel, Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations, Biotechnol. Prog, vol.23, pp.613-620, 2007.

N. Wan, A. Sathish, L. You, Y. J. Tang, and Z. Wen, Deciphering Clostridium metabolism and its responses to bioreactor mass transfer during syngas fermentation, Sci. Rep, vol.7, pp.10090-10100, 2017.

I. Yamamoto, T. Saiki, S. M. Liu, and L. G. Ljungdahl, Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungstenselenium-iron protein, J. Bio. Chem, vol.258, pp.826-1832, 1983.

S. Yan, D. Dong, and . Bera, Improvement of caproic acid production in a Clostridium kluyveri H068 and Methanogen 166 co-culture fermentation system, AMB Expr, vol.8, pp.175-187, 2014.

, Figure 6.8: SEM images of the NtBA/AA copolymer gel: (a) dry, 100× (b) swelled in ethanol, 100× and (c) cryo-SEM image of the swelled gel at 500×

. Weihn, observed that the amount of energy required for recovering References Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Prog. Energy. Combust. Sci, vol.33, pp.233-271, 2005.

D. J. Abdallah, L. Lu, and R. G. Weiss, Thermoreversible organogels from alkane gelators with one heteroatom, Chem. Mat, vol.11, pp.2907-2911, 1999.

D. J. Abdallah and R. G. Weiss, Organogels and low molecular mass organic gelators, Ad. Mater, vol.12, pp.1237-1247, 2000.

R. Bera, A. Dey, and D. Chakrabarty, Studies on Gelling Characteristics of N-Tertiary Butyl Acrylamide-Acrylic Acid Copolymer, Adv. Polym. Technol, vol.33, p.21387, 2014.

L. Brannon-peppas and N. A. Peppas, Solute and penetrant diffusion in swellable polymers. IX. The mechanisms of drug release from pH-sensitive swelling-controlled systems, J. Control. Release, vol.8, pp.267-274, 1989.

J. Chen and J. Shen, Swelling behaviors of polyacrylate superabsorbent in the mixtures of water and hydrophilic solvents, J. Appl. Polym. Sci, vol.75, pp.1331-1338, 2000.

A. O. Dada, A. P. Olalekan, A. M. Olatunya, O. Dada, and F. Langmuir, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk, IOSR J. Appl. Chem, vol.3, pp.38-45, 2012.

A. Deyko and R. G. Jones, Adsorption, absorption and desorption of gases at liquid surfaces: water on, Faraday discussions, vol.154, pp.265-288, 2012.

A. Dey, B. Bera, R. Bera, and D. Chakrabarty, Influence of diethylene glycol as a porogen in a glyoxal crosslinked polyvinyl alcohol hydrogel, RSC Adv, vol.4, pp.42260-42270, 2014.

P. Dürre, Biobutanol: an attractive biofuel, Biotechnol. J.: Healthcare Nutrition Technology, vol.2, p.1534, 2007.

N. W. Fadnavis and K. Koteshwar, An Unusual Reversible Sol? Gel Transition Phenomenon in Organogels and Its Application for Enzyme Immobilization in Gelatin Membranes, Biotechnol. Prog, vol.15, pp.98-104, 1999.

X. Gao, W. L. Xue, Z. X. Zeng, and X. R. Fan, Determination and Correlation of Solubility of Ntert-butylacrylamide in seven different solvents at temperatures between

, J. Chem Eng. Data, vol.60, pp.2273-2279, 2015.

P. Ghosh, Polymer Science & Technology of Plastics and Rubbers, Tata Mcgaw hills publishing company Limited, 1990.

A. Hajighasem and K. Kabiri, Cationic highly alcohol-swellable gels: synthesis and characterization, J. Polym. Res, vol.20, p.218, 2013.

A. R. Hernandez-martinez, J. A. Lujan-montelongo, C. Silva-cuevas, J. D. Mota-morales, M. Cortez-valadez et al., Swelling and methylene blue adsorption of poly (N, N-dimethylacrylamide-co-2-hydroxyethyl methacrylate) hydrogel, React. Funct. Polym, vol.122, pp.75-84, 2018.

A. R. Hirst, I. A. Coates, T. R. Bouchetean, J. F. Miravel, B. Escuder et al., Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model, J. Am. Chem. Soc, vol.130, pp.9113-9121, 2008.

M. T. Holtzapple and R. F. Brown, Conceptual design for a process to recover volatile solutes from aqueous solutions using silicalite, Sep. Technol, vol.4, pp.213-229, 1994.

. Kabiri, A. Azizi, M. J. Zohuriaan-mehr, G. B. Marandi, H. Bouhendi et al., Superalcogels based on 2-acrylamido-2-methylpropane sulphonic acid and poly (ethylene glycol) macromer, Iran, Polym. J, vol.20, pp.175-183, 2011.

K. Kabiri, S. Lashani, M. J. Zohuriaan-mehr, and M. Kheirabadi, Super alcohol-absorbent gels of sulfonic acid-contained poly (acrylic acid), J. Polym. Res, vol.18, pp.449-458, 2011.

K. Kabiri, A. Azizi, M. J. Zohuriaan-mehr, M. G. Bagheri, and H. Bouhenoi, Alcohophilic gels: polymeric organogels composing carboxylic and sulfonic acid groups, J. Appl. Polym. Sci, vol.120, pp.3350-3356, 2011.

K. Kabiri and S. Roshanfekr, Converting water absorbent polymer to alcohol absorbent polymer, Polym. Adv. Technol, vol.24, pp.28-33, 2013.

A. R. Khare and N. A. Peppas, Swelling/deswelling of anionic copolymer gels, Biomaterials, vol.16, pp.559-567, 1995.

Y. Kiritoshi, K. Ishihara, and K. , Preparation of cross-linked biocompatible poly(2-methacryloyloxyethyl phosphorylcholine) gel and its strange swelling behavior in water/ethanol mixture, J. Biomater. Sci. Polym. Ed, vol.13, pp.213-224, 2002.

C. Y. Kuo, C. H. Wu, and J. Y. Wu, Adsorption of direct dyes from aqueous solutions by carbon nanotubes: Determination of equilibrium, kinetics and thermodynamics parameters, J. Coll. Interface Sci, vol.327, pp.308-315, 2008.

Y. Li, L. H. Wee, J. A. Martens, and I. F. Vankelecom, ZIF-71 as a potential filler to prepare pervaporation membranes for bio-alcohol recovery, J. Mat. Chem. A, vol.2, pp.10034-10040, 2014.

N. B. Milestone and D. M. Bibby, Concentration of alcohols by adsorption on silicalite, J. Chem. Technol. Biotechnol, vol.31, pp.732-736, 1981.

N. A. Peppas and B. D. , Bar-Howell, Preparation methods and structure of hydrogels, Hydrogels in Med and Pharm, pp.1-26, 1986.

S. Nethaji, A. Sivasamy, and A. B. Mandal, Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass, Int. J. Env. Sci. Technol, vol.10, pp.231-242, 2013.

D. R. Nielsen and K. J. Prather, In situ product recovery of n-butanol using polymeric resins, Biotechnol. Bioeng, vol.102, pp.811-821, 2009.

D. R. Nielsen, G. S. Amarasiriwardena, and K. J. Prather, Predicting the adsorption of second generation biofuels by polymeric resins with applications for in situ product recovery (ISPR)

, Bioresour. Technol, vol.101, pp.2762-2769, 2009.

A. Oudshoorn, L. A. Vander-wielen, and A. J. Straathof, Assessment of options for selective 1-butanol recovery from aqueous solution, Ind. Eng. Chem. Res, vol.48, pp.7325-7336, 2009.

M. M. Ozmen and O. Okay, Swelling behavior of strong polyelectrolyte poly (N-t-butyl acrylamide-co-acrylamide) hydrogels, Eur. Polym. J, vol.39, pp.877-886, 2003.

V. Ozturk and O. Okay, Temperature sensitive poly (N-t-butyl acrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior, Polymer, vol.43, pp.5017-5026, 2002.

S. Patachia, A. J. Valente, and C. Baciu, Effect of non-associated electrolyte solutions on the behaviour of poly (vinyl alcohol)-based hydrogels, European Polym. J, vol.43, pp.460-467, 2007.

N. Qureshi and I. S. Maddox, Continuous production of acetone-butanol-ethanol using immobilized cells of Clostridium acetobutylicum and integration with product removal by liquid-liquid extraction, J. Ferment. Bioeng, vol.80, pp.185-189, 1995.

N. Qureshi and H. P. Blasehek, Recovery of butanol from fermentation broth by gas stripping, Renew. Energ, vol.22, pp.557-564, 2001.

N. Qureshi, S. Hughes, I. S. Maddox, and M. A. Cotta, Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption, Bioproc. Biosyst. Eng, vol.27, p.215, 2005.

Z. Qingchun and Z. Changling, Synthesis and characterization superabsorbent-ethanol polyacrylic acid gels, J. Appl. Polym. Sci, vol.105, pp.3458-3461, 2007.

S. R. Raghavan and J. F. Douglas, The conundrum of gel formation by molecular nanofibers, wormlike micelles, and filamentous proteins: gelation without cross-links? Soft Mater, vol.8, pp.8539-8546, 2012.

H. Y. Ren, M. Zhu, and K. Haraguchi, Characteristic swelling-deswelling of polymer/clay nanocomposite gels, Macromolecules, vol.44, pp.8516-8526, 2011.

Y. Samchenko, Z. Ulberg, and O. Korotych, Multipurpose smart hydrogel systems, Adv. Colloid Interface Sci, vol.168, pp.247-262, 2011.

D. J. Seo, A. Takenaka, H. Fujita, K. Mochidzuki, and A. Sakoda, Practical considerations for a simple ethanol concentration from a fermentation broth via a single adsorptive process using molecular-sieving carbon, Renew. Energ, vol.118, pp.257-264, 2018.

A. J. Silvestre, A. A. Silvestre, E. A. Sepulveda, and F. Rodriguez-reoriso, Ethanol removal using activated carbon: Effect of porous structure and surface chemistry, Micropor. Mesopor. Mat, vol.120, pp.62-68, 2009.

A. J. Straathof, A. Oudshoorn, and I. A. Vander-wielen, Adsorption equilibria of bio-based butanol solutions using zeolite, Biochemical engineering journal, vol.48, pp.99-103, 2009.

M. Weihn, T. J. Levario, K. Staggs, N. Linnen, W. Yuchen et al., Adsorption of short-chain alcohols by hydrophobic silica aerogels, Ind. Eng. Chem. Res, vol.52, pp.18379-18385, 2013.

. Salcedo, The fungus Phanerochaete chrysosporium has the ability to detoxify phenol and to reduce selenite ions to nano Se, cresols (o-cresol, m-cresol and p-cresol), nitrophenols (2-nitrophenol, 4-nitrophenol, chlorophenols, vol.2, p.6, 2017.

H. N. Abubackar, M. C. Veiga, and C. Kennes, Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid, Bioresour. Technol, vol.186, pp.122-127, 2015.

A. K. Azad, M. G. Rasul, M. Mofijur, M. M. Bhuiya, S. K. Mondal et al., Energy and waste management for petroelum refining effluents: A case study in Bangladesh, Int. J. Automot. Mech. Eng, vol.11, pp.2170-2187, 2015.

C. J. Campbell, Petroleum and people, Population and Environment, vol.24, pp.193-207, 2002.

S. Chakraborty, E. R. Rene, and P. N. Lens, Reduction of selenite to elemental Se (0) with simultaneous degradation of phenol by co-cultures of Phanerochaete chrysosporium and Delftia lacustris, J. Microbiol, vol.57, pp.738-747, 2019.

S. Chakraborty, E. R. Rene, P. N. Lens, M. C. Veiga, and C. Kennes, Enrichment of a solventogenic anaerobic sludge converting carbon monoxide and syngas into acids and alcohols, Bioresour. Technol, vol.272, pp.130-136, 2019.

S. Chakraborty, R. Bera, A. Mandal, A. Dey, D. Chakrabarty et al., Adsorptive removal of alcohols from aqueous solutions by N-tertiary-butylacrylamide (NtBA) and acrylic acid co-polymer gel, Mater. Today. Commun, 2019.

N. A. Elnaker, M. Elektorowicz, V. Naddeo, S. W. Hasan, and A. F. Yousef, Assessment of microbial community structure and function in serially passaged wastewater electrobioreactor sludge: An approach to enhance sludge settleability, Sci. Rep, vol.8, pp.7013-7023, 2018.

M. J. Ellwood, L. Schneider, J. Potts, G. E. Batley, J. Floyd et al., Volatile selenium fluxes from selenium-contaminated sediments in an Australian coastal lake, Environ. Chem, vol.13, pp.68-75, 2016.

Á. Fernández-naveira, M. C. Veiga, and C. Kennes, Selective anaerobic fermentation of syngas into either C2-C6 organic acids or ethanol and higher alcohols, Bioresour. Technol, vol.280, pp.387-395, 2019.

K. Liu, H. K. Atiyeh, B. S. Stevenson, R. S. Tanner, M. R. Wilkins et al., Continuous syngas fermentation for the production of ethanol, n-propanol and nbutanol, Bioresour. Technol, vol.151, pp.69-77, 2014.

J. Liu, Q. Lin, X. Chai, Y. Luo, and T. Guo, Enhanced phenolic compounds tolerance response of Clostridium beijerinckii NCIMB 8052 by inactivation of Cbei_3304. Microb, cell fact, vol.17, p.35, 2018.

S. Mayfield and P. K. Wong, Forum Chemical engineering: Fuel for debate, Nature, vol.476, p.402, 2011.

J. Mal, Y. V. Nancharaiah, E. D. Van-hullebusch, and P. N. Lens, Metal chalcogenide quantum dots: biotechnological synthesis and applications, Rsc Adv, vol.6, pp.41477-41495, 2016.

C. S. Psomopoulos, A. Bourka, and N. J. Themelis, Waste-to-energy: A review of the status and benefits in USA, Waste Manage, vol.29, pp.1718-1724, 2009.

G. M. Salcedo, L. Kupski, L. Degang, L. C. Maree, S. S. Caldas et al., Determination of fifteen phenols in wastewater from petroleum refinery samples using a dispersive liquid-liquid microextraction and liquid chromatography with a photodiode array detector, Microchem. J, vol.146, pp.722-728, 2019.

J. Saxena and R. S. Tanner, Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdaleii, J. Indus. Microbial. Biotechnol, vol.38, pp.513-521, 2011.

P. Sadrimajd, E. R. Rene, and P. N. Lens, Adsorptive recovery of alcohols from a model syngas fermentation broth, Fuel, vol.254, pp.115590-115597, 2019.

G. P. Sheng and H. Q. Yu, Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy, Water Res, vol.40, pp.1233-1239, 2006.

S. L. Wadgaonkar, V. Y. Nachariah, C. Jacob, G. Esposito, and P. N. Lens, Selenate reduction by Delftia lacustris under aerobic condition, J. Microbiol, 2019.

A. A. Werkeneh, E. R. Rene, and P. N. Lens, Simultaneous removal of selenite and phenol from wastewater in an upflow fungal pellet bioreactor, J. Chem. Technol. Biotechnol, vol.93, pp.1003-1011, 2017.

L. Y. Young and M. D. Rivera, Methanogenic degradation of four phenolic compounds, Water Res, vol.19, pp.1325-1332, 1985.

, Oral Presentations o Bioconversion of CO and CO2 to biofuels and bioelectricity, 1st International ABWET Conference: Waste-to-bioenergy: Applications in Urban areas, 2017.