G. C. Lavorato, E. Lima, D. Tobia, D. Fiorani, H. E. Troiani et al., Size Effects in Bimagnetic CoO/CoFe 2 O 4 Core/Shell Nanoparticles, Nanotechnology, vol.25, issue.35, p.355704, 2014.

G. C. Lavorato, E. Lima, H. E. Troiani, R. D. Zysler, and E. L. Winkler, Tuning the Coercivity and Exchange Bias by Controlling the Interface Coupling in Bimagnetic Core/Shell Nanoparticles, Nanoscale, vol.2017, issue.29, pp.10240-10247

G. C. Lavorato, D. Peddis, E. Lima, H. E. Troiani, E. Agostinelli et al., Magnetic Interactions and Energy Barrier Enhancement in Core/Shell Bimagnetic Nanoparticles, J. Phys. Chem. C, issue.27, pp.15755-15762, 2015.

,

T. Gaudisson, R. Sayed-hassan, N. Yaacoub, G. Franceschin, S. Nowak et al., On the Exact Crystal Structure of Exchange-Biased Fe 3 O 4 -CoO Nanoaggregates Produced by Seed-Mediated Growth in Polyol, CrystEngComm, vol.18, issue.21, pp.3799-3807, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02269343

R. D. Desautels, E. Skoropata, Y. Chen, H. Ouyang, J. W. Freeland et al., Increased Surface Spin Stability in ?-Fe 2 O 3 Nanoparticles with a Cu Shell, J. Phys. Condens. Matter, vol.2012, issue.14, p.146001

O. Masala and R. Seshadri, Spinel Ferrite/MnO Core/Shell Nanoparticles: Chemical Synthesis of All-Oxide Exchange Biased Architectures, J. Am. Chem. Soc, vol.127, issue.26, pp.9354-9355, 2005.

X. Sun, N. Frey-huls, A. Sigdel, and S. Sun, Tuning Exchange Bias in Core/Shell FeO/Fe 3 O 4 Nanoparticles, Nano Lett, vol.2012, issue.1, pp.246-251

A. Lak, M. Kraken, F. Ludwig, A. Kornowski, D. Eberbeck et al., Size Dependent Structural and Magnetic Properties of FeO-Fe3O4 Nanoparticles, Nanoscale, vol.2013, issue.24, p.12286

H. Khurshid, W. Li, S. Chandra, M. Phan, G. C. Hadjipanayis et al., Mechanism and Controlled Growth of Shape and Size Variant Core/Shell FeO/Fe3O4 Nanoparticles, Nanoscale, vol.2013, issue.17, p.7942

M. Sytnyk, R. Kirchschlager, M. I. Bodnarchuk, D. Primetzhofer, D. Kriegner et al., Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange, Nano Lett, vol.13, issue.2, pp.586-593, 2013.

E. E. Fullerton, J. S. Jiang, and S. D. Bader, Hard/Soft Magnetic Heterostructures: Model Exchange-Spring Magnets, J. Magn. Magn. Mater, vol.200, issue.1-3, pp.392-404, 1999.

B. Nakhjavan, M. N. Tahir, M. Panthöfer, H. Gao, T. Gasi et al., Controlling Phase Formation in Solids: Rational Synthesis of Phase Separated Co@Fe2O3 Heteroparticles and CoFe2O4 Nanoparticles, Chem. Commun, vol.47, issue.31, 2011.

V. Nandwana, G. S. Chaubey, K. Yano, C. Rong, and J. P. Liu, Bimagnetic Nanoparticles with Enhanced Exchange Coupling and Energy Products, J. Appl. Phys, vol.105, issue.1, p.14303, 2009.

J. Lee, J. Jang, J. Choi, S. H. Moon, S. Noh et al., Exchange-Coupled Magnetic Nanoparticles for Efficient Heat Induction, Nat. Nanotechnol, vol.6, issue.7, pp.418-422, 2011.

C. W. Kim, Y. H. Kim, H. G. Cha, J. C. Kim, and Y. S. Kang, A Study on the Exchange-Coupling Effect of Nd 2 Fe 14 B/CoFe Forming Core/Shell Shape, Mol. Cryst. Liq. Cryst, vol.472, issue.1, 2007.

M. Lamichanne, B. K. Rai, S. R. Mishra, V. V. Nguyen, and J. P. Liu, Magnetic Properties Hard-Soft SmCo<Sub>5</Sub>-FeNi and SmCo<Sub>5</Sub>-FeCo Composites Prepared by Electroless Coating Technique, Open J. Compos. Mater, vol.2012, issue.04, pp.119-124

Q. Song and Z. J. Zhang, Controlled Synthesis and Magnetic Properties of Bimagnetic Spinel Ferrite CoFe 2 O 4 and MnFe 2 O 4 Nanocrystals with Core-Shell Architecture, J. Am. Chem. Soc, vol.2012, issue.24, pp.10182-10190

A. Juhin, A. López-ortega, M. Sikora, C. Carvallo, M. Estrader et al., Direct Evidence for an Interdiffused Intermediate Layer in Bi-Magnetic Core-Shell Nanoparticles, Nanoscale, vol.6, issue.20, pp.11911-11920, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01088111

C. Sudakar and T. R. Kutty, Structural and Magnetic Characteristics of Cobalt Ferrite-Coated Nano-Fibrous ?-Fe2O3, J. Magn. Magn. Mater, vol.279, issue.2-3, pp.363-374, 2004.

F. Zan, Y. Ma, Q. Ma, Y. Xu, Z. Dai et al., Magnetic and Impedance Properties of Nanocomposite CoFe 2 O 4 /Co 0.7 Fe 0.3 and Single-Phase CoFe 2 O 4 Prepared Via a One-Step Hydrothermal Synthesis, J. Am. Ceram. Soc, 2013.

H. Zeng, S. Sun, J. Li, Z. L. Wang, and J. P. Liu, Tailoring Magnetic Properties of Core'shell Nanoparticles, Appl. Phys. Lett, vol.85, issue.5, pp.792-794, 2004.

G. Salazar-alvarez, H. Lidbaum, A. López-ortega, M. Estrader, K. Leifer et al., Two-, Three-, and Four-Component Magnetic Multilayer Onion Nanoparticles Based on Iron Oxides and Manganese Oxides, J. Am. Chem. Soc, issue.42, pp.16738-16741, 2011.

R. C. O&apos;handley, Modern Magnetic Materials: Principles and Applications, 2000.

G. Salazar-alvarez, J. Sort, S. Suriñach, M. D. Baró, and J. Nogués, Synthesis and Size-Dependent Exchange Bias in Inverted Core?Shell MnO|Mn 3 O 4 Nanoparticles, J. Am. Chem. Soc, vol.129, issue.29, pp.9102-9108, 2007.

K. Dwight and N. Menyuk, Magnetic Properties of Mn 3 O 4 and the Canted Spin Problem, Phys. Rev, vol.119, issue.5, pp.1470-1479, 1960.

K. L. Krycka, J. A. Borchers, M. Laver, G. Salazar-alvarez, A. ;-l?pez-ortega et al., Nogu?s, J. Correlating Material-Specific Layers and Magnetic Distributions within Onion-like Fe3O4/MnO/?-Mn2O3 Core/Shell Nanoparticles, J. Appl. Phys, vol.2013, issue.17

V. Gavrilov-isaac, S. Neveu, V. Dupuis, D. Taverna, A. Gloter et al., Synthesis of Trimagnetic Multishell MnFe 2 O 4 @CoFe 2 O 4 @NiFe 2 O 4 Nanoparticles, Small, vol.2015, issue.22, pp.2614-2618
URL : https://hal.archives-ouvertes.fr/hal-01467541

J. A. De-toro, D. P. Marques, P. Muñiz, V. Skumryev, J. Sort et al., High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect, Phys. Rev. Lett, issue.5, p.115, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01765315

,

S. Brice-profeta, M. Arrio, E. Tronc, N. Menguy, I. Letard et al., Magnetic Order in -Nanoparticles: A XMCD Study, J. Magn. Magn. Mater, vol.288, pp.354-365, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00112611

J. M. Byrne, V. S. Coker, S. Moise, P. L. Wincott, D. J. Vaughan et al., Controlled Cobalt Doping in Biogenic Magnetite Nanoparticles, J. R. Soc. Interface, vol.10, issue.83, pp.20130134-20130134, 2013.

A. Guinier and G. Fournet, Small-Angle Scattering of X-Rays

F. Cousin, Small Angle Neutron Scattering, EPJ Web Conf. 2015, 104, 01004
URL : https://hal.archives-ouvertes.fr/hal-00482114

S. Disch, E. Wetterskog, R. P. Hermann, A. Wiedenmann, U. Vainio et al., Quantitative Spatial Magnetization Distribution in Iron Oxide Nanocubes and Nanospheres by Polarized Small-Angle Neutron Scattering, New J. Phys, vol.2012, issue.1, p.13025

N. Flores-martinez, G. Franceschin, T. Gaudisson, P. Beaunier, N. Yaacoub et al., Part. Part. Syst. Charact, vol.0, p.1800290

R. Kumar, H. Kumar, M. Kumar, R. R. Singh, P. B. Barman et al., Nov. Magn, vol.28, pp.3557-3564, 2015.

J. Nogues, V. Skumryev, J. Sort, S. Stoyanov, and D. Givord, Phys. Rev. Lett, p.157203, 2006.

M. Dolci, Y. Liu, X. Liu, C. Leuvrey, A. Derory et al., Adv. Funct. Mater, p.1706957, 2018.

V. K. Mer and R. H. Dinegar, J. Am. Chem. Soc, vol.72, pp.4847-4854, 1950.

L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink et al., Chem Mater, vol.19, p.3624, 2007.

A. Uheida, G. Salazar-alvarez, E. Björkman, Z. Yu, and M. Muhammed, J. Colloid Interface Sci, vol.298, pp.501-507, 2006.

P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu et al.,

B. Polack, J. Lagarde, F. Daguerre, F. Marteau, L. Scheurer et al., Rev. Sci. Instrum, p.13106, 2014.

P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu et al., DEIMOS: A Beamline Dedicated to Dichroism Measurements in the 350-2500 EV Energy Range, Rev. Sci. Instrum, vol.85, issue.1, p.13106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01088125

N. Daffé, M. Sikora, M. Rovezzi, N. Bouldi, V. Gavrilov et al., Nanoscale Distribution of Magnetic Anisotropies in Bimagnetic Soft Core-Hard Shell MnFe 2 O 4 @CoFe 2 O 4 Nanoparticles, Adv. Mater. Interfaces, vol.2017, issue.22, p.1700599

J. Teillet, F. Varret, and . Software,

G. Chaboussant, S. Désert, P. Lavie, and A. Brûlet, PA20 : A New SANS and GISANS Project for Soft Matter, Materials and Magnetism, J. Phys. Conf. Ser, vol.340, p.12002, 2012.

E. Lima, E. L. Winkler, D. Tobia, H. E. Troiani, R. D. Zysler et al., Bimagnetic CoO Core/CoFe 2 O 4 Shell Nanoparticles: Synthesis and Magnetic Properties, Chem. Mater, vol.2012, issue.3, pp.512-516

K. Sartori, G. Cotin, C. Bouillet, V. Halté, S. Bégin-colin et al., Strong Interfacial Coupling through Exchange Interactions in Soft/Hard Core-Shell Nanoparticles as a Function of Cationic Distribution, Nanoscale, vol.2019, issue.27, pp.12946-12958

S. Lentijo-mozo, D. Deiana, E. Sogne, A. Casu, and A. Falqui, Unexpected Insights about Cation-Exchange on Metal Oxide Nanoparticles and Its Effect on Their Magnetic Behavior, Chem. Mater, vol.30, issue.21, pp.8099-8112, 2018.

L. Zhang, R. He, and H. Gu, Oleic Acid Coating on the Monodisperse Magnetite Nanoparticles

, Appl. Surf. Sci, vol.253, issue.5, pp.2611-2617, 2006.

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2009.

Y. Ren, K. Iimura, and T. Kato, Structure of Barium Stearate Films at the Air/Water Interface Investigated by Polarization Modulation Infrared Spectroscopy and ?? A Isotherms, Langmuir, vol.17, issue.9, pp.2688-2693, 2001.

T. J. Daou, J. M. Grenèche, G. Pourroy, S. Buathong, A. Derory et al., Begin-Colin, S. Coupling Agent Effect on Magnetic Properties of Functionalized Magnetite-Based Nanoparticles, Chem. Mater, vol.20, issue.18, pp.5869-5875, 2008.

C. Tang, C. Wang, S. Chien, . Ft-ir, and T. Raman, Characterization of Cobalt Oxides Studied by, Thermochim. Acta, vol.473, issue.1-2, pp.68-73, 2008.

G. V. Jacintho, A. G. Brolo, P. Corio, P. A. Suarez, and J. C. Rubim, Structural Investigation of MFe 2 O 4 (M = Fe, Co) Magnetic Fluids, J. Phys. Chem. C, issue.18, pp.7684-7691, 2009.

M. Sytnyk, R. Kirchschlager, M. I. Bodnarchuk, D. Primetzhofer, D. Kriegner et al., Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange, Nano Lett, vol.13, issue.2, pp.586-593, 2013.

T. Li, A. J. Senesi, and B. Lee, Small Angle X-Ray Scattering for Nanoparticle Research, Chem. Rev, vol.116, issue.18, pp.11128-11180, 2016.

P. Patnaik, Handbook of Inorganic Chemicals; McGraw-Hill handbooks, 2003.

D. R. Lide, Handbook of Chemistry and Physics, 2003.

M. B. Fernández-van-raap, P. Mendoza-zélis, D. F. Coral, T. E. Torres, C. Marquina et al., Self Organization in Oleic Acid-Coated CoFe2O4 Colloids: A SAXS Study, J. Nanoparticle Res, vol.14, issue.9, p.1072, 2012.

K. L. Krycka, J. A. Borchers, G. Salazar-alvarez, A. López-ortega, M. Estrader et al., Resolving Material-Specific Structures within Fe 3 O 4 |?-Mn 2 O 3 Core|Shell Nanoparticles Using Anomalous Small-Angle X-Ray Scattering, ACS Nano, vol.7, issue.2, pp.921-931, 2013.

W. Szczerba, R. Costo, S. Veintemillas-verdaguer, M. Morales, P. Thünemann et al., Analysis of Single-and Multi-Core Iron Oxide Magnetic Nanoparticles, J. Appl. Crystallogr, vol.2017, issue.2, pp.481-488

S. Brice-profeta, M. Arrio, E. Tronc, N. Menguy, I. Letard et al., Magnetic Order in -Nanoparticles: A XMCD Study, J. Magn. Magn. Mater, vol.288, pp.354-365, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00112611

T. E. Torres, A. G. Roca, M. P. Morales, A. Ibarra, C. Marquina et al., Magnetic Properties and Energy Absorption of CoFe 2 O 4 Nanoparticles for Magnetic Hyperthermia, J. Phys. Conf. Ser, issue.7, p.72101, 0200.

X. Zhu, S. S. Kalirai, A. P. Hitchcock, and D. A. Bazylinski, What Is the Correct Fe L23 X-Ray Absorption Spectrum of Magnetite?, J. Electron Spectrosc. Relat. Phenom, pp.19-26, 0199.

J. Li, N. Menguy, M. Arrio, P. Sainctavit, A. Juhin et al., Controlled Cobalt Doping in the Spinel Structure of Magnetosome Magnetite: New Evidences from Element-and Site-Specific X-Ray Magnetic Circular Dichroism Analyses, J. R. Soc. Interface, vol.13, issue.121, 2016.

E. Pellegrin, Characterization of Nanocrystalline Y-Fe2O3 with Synchrotron Radiation Techniques, Phys Stat Sol, vol.215, p.797, 1999.

N. Daffé, F. Choueikani, S. Neveu, M. Arrio, A. Juhin et al., Magnetic Anisotropies and Cationic Distribution in CoFe 2 O 4 Nanoparticles Prepared by Co-Precipitation Route: Influence of Particle Size and Stoichiometry, J. Magn. Magn. Mater, vol.460, pp.243-252, 2018.

J. A. Moyer, C. A. Vaz, E. Negusse, D. A. Arena, and V. E. Henrich, Controlling the Electronic Structure of Co 1 ? x Fe 2 + x O 4 Thin Films through Iron Doping, Phys. Rev. B, issue.3, p.83, 2011.

M. W. Haverkort, Spin and Orbital Degrees of Freedom in Transition Metal Oxides and Oxide Thin Films Studied by Soft X-Ray Absorption Spectroscopy, 2005.

J. F. Hochepied, P. Sainctavit, M. P. Pileni, and . X-ray, Absorption Spectra and X-Ray Magnetic Circular Dichroism Studies at Fe and Co L 2, 3 Edges of Mixed Cobalt-Zinc Ferrite Nanoparticles: Cationic Repartition, Magnetic Structure and Hysteresis Cycles, J. Magn. Magn. Mater, vol.231, issue.2, pp.315-322, 2001.

A. G. Roca, I. V. Golosovsky, E. Winkler, A. López-ortega, M. Estrader et al., Unravelling the Elusive Antiferromagnetic Order in Wurtzite and Zinc Blende CoO Polymorph Nanoparticles, Small, vol.14, issue.15, p.1703963, 2018.

P. K. Manna, E. Skoropata, Y. Ting, K. Lin, J. W. Freeland et al., Interface Mixing and Its Impact on Exchange Coupling in Exchange Biased Systems, J. Phys. Condens. Matter, vol.28, issue.48, p.486004, 2016.

T. Gaudisson, R. Sayed-hassan, N. Yaacoub, G. Franceschin, S. Nowak et al., On the Exact Crystal Structure of Exchange-Biased Fe 3 O 4 -CoO Nanoaggregates Produced by Seed-Mediated Growth in Polyol, CrystEngComm, vol.18, issue.21, pp.3799-3807, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02269343

E. P. Wohlfarth, Remanent Magnetization of Fine Particles, J. Phys. Radium, vol.20, issue.2-3, pp.295-297, 1959.
URL : https://hal.archives-ouvertes.fr/jpa-00236037

A. López-ortega, M. Estrader, G. Salazar-alvarez, A. G. Roca, and J. Nogués, Applications of Exchange Coupled Bi-Magnetic Hard/Soft and Soft/Hard Magnetic Core/Shell Nanoparticles, Phys. Rep, vol.553, pp.1-32, 2015.

G. Cotin, C. Kiefer, F. Perton, M. Boero, B. Özdamar et al., Evaluating the Critical Roles of Precursor Nature and Water Content When Tailoring Magnetic Nanoparticles for Specific Applications, ACS Appl. Nano Mater, vol.1, issue.8, pp.4306-4316, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02349404

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre et al., Begin-Colin, S. Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting, J. Phys. Chem. C, issue.7, pp.3795-3810, 2014.

P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu et al., DEIMOS: A Beamline Dedicated to Dichroism Measurements in the 350-2500 EV Energy Range, Rev. Sci. Instrum, vol.85, issue.1, p.13106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01088125

N. Daffé, F. Choueikani, S. Neveu, M. Arrio, A. Juhin et al., Magnetic Anisotropies and Cationic Distribution in CoFe 2 O 4 Nanoparticles Prepared by Co-Precipitation Route: Influence of Particle Size and Stoichiometry, J. Magn. Magn. Mater, vol.460, pp.243-252, 2018.

J. Teillet, F. Varret, and . Software,

E. Lima, E. L. Winkler, D. Tobia, H. E. Troiani, R. D. Zysler et al., Bimagnetic CoO Core/CoFe 2 O 4 Shell Nanoparticles: Synthesis and Magnetic Properties, Chem. Mater, vol.2012, issue.3, pp.512-516

H. A. Macpherson and C. R. Stoldt, Iron Pyrite Nanocubes: Size and Shape Considerations for Photovoltaic Application, ACS Nano, vol.6, issue.10, pp.8940-8949, 2012.

,

K. Sartori, F. Choueikani, A. Gloter, S. Begin-colin, D. Taverna et al., Room Temperature Blocked Magnetic Nanoparticles Based on Ferrite Promoted by a Three-Step Thermal Decomposition Process, J. Am. Chem. Soc, vol.2019, issue.25, pp.9783-9787
URL : https://hal.archives-ouvertes.fr/hal-02383685

K. Sartori, G. Cotin, C. Bouillet, V. Halté, S. Bégin-colin et al., Strong Interfacial Coupling through Exchange Interactions in Soft/Hard Core-Shell Nanoparticles as a Function of Cationic Distribution, Nanoscale, vol.2019, issue.27, pp.12946-12958

S. Lentijo-mozo, D. Deiana, E. Sogne, A. Casu, and A. Falqui, Unexpected Insights about Cation-Exchange on Metal Oxide Nanoparticles and Its Effect on Their Magnetic Behavior, Chem. Mater, vol.30, issue.21, pp.8099-8112, 2018.

L. Zhang, R. He, and H. Gu, Oleic Acid Coating on the Monodisperse Magnetite Nanoparticles

, Appl. Surf. Sci, vol.253, issue.5, pp.2611-2617, 2006.

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2009.

Y. Ren, K. Iimura, and T. Kato, Structure of Barium Stearate Films at the Air/Water Interface Investigated by Polarization Modulation Infrared Spectroscopy and ?? A Isotherms, Langmuir, vol.17, issue.9, pp.2688-2693, 2001.

L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink et al., Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation, Chem. Mater, vol.19, issue.15, pp.3624-3632, 2007.

T. J. Daou, J. M. Grenèche, G. Pourroy, S. Buathong, A. Derory et al., Begin-Colin, S. Coupling Agent Effect on Magnetic Properties of Functionalized Magnetite-Based Nanoparticles, Chem. Mater, vol.20, issue.18, pp.5869-5875, 2008.

J. , Exchange-Coupled Magnetic Nanoparticles for Efficient Heat Induction, Nat. Nanotechnol, vol.6, issue.7, pp.418-422, 2011.

D. Polishchuk, N. Nedelko, S. Solopan, A. ?lawska-waniewska, V. Zamorskyi et al., Profound Interfacial Effects in CoFe2O4/Fe3O4 and Fe3O4/CoFe2O4 Core/Shell Nanoparticles, Nanoscale Res. Lett, issue.1, p.13, 2018.

A. López-ortega, E. Lottini, C. Fernández, J. De, and C. Sangregorio, Exploring the Magnetic Properties of Cobalt-Ferrite Nanoparticles for the Development of a Rare-Earth-Free Permanent Magnet, Chem. Mater, vol.27, issue.11, pp.4048-4056, 2015.

,

P. Matthias, Structuration de nanoparticules magnétiques d'oxyde de fer en films et étude de leurs propriétés magnétiques et de magnétotransport, 2010.

W. Baaziz, B. P. Pichon, and J. Grenèche, Begin-Colin, S. Effect of Reaction Environment and in Situ Formation of the Precursor on the Composition and Shape of Iron Oxide Nanoparticles Synthesized by the Thermal Decomposition Method, CrystEngComm, issue.20, p.7206, 2018.

J. Tu?ek, R. Zboril, and D. Petridis, Maghemite Nanoparticles by View of Mössbauer Spectroscopy, J. Nanosci. Nanotechnol, vol.6, issue.4, pp.926-947, 2006.

N. Yaacoub, H. Mortada, Z. Nehme, and J. Greneche, Chemical Inhomogeneity in Iron Oxide@CoO Core-Shell Nanoparticles: A Local Probe Study Using Zero-Field and In-Field 57 Fe Mössbauer Spectrometry, J. Nanosci. Nanotechnol, vol.19, issue.8, pp.5014-5019, 2019.

P. M. De-bakker, E. De-grave, R. E. Vandenberghe, and L. H. Bowen, Mössbauer Study of Small-Particle Maghemite, Hyperfine Interact, vol.54, issue.1-4, pp.493-498, 1990.

,

T. J. Daou, S. Begin-colin, J. M. Grenèche, F. Thomas, A. Derory et al., Phosphate Adsorption Properties of Magnetite-Based Nanoparticles, Chem. Mater, vol.19, issue.18, pp.4494-4505, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00212131

F. L. Deepak, M. Bañobre-lópez, E. Carbó-argibay, M. F. Cerqueira, Y. Piñeiro-redondo et al., A Systematic Study of the Structural and Magnetic Properties of Mn-, Co-, and Ni-Doped Colloidal Magnetite Nanoparticles, J. Phys. Chem. C, issue.21, pp.11947-11957, 2015.

,

M. Liu, M. Lu, L. Wang, S. Xu, J. Zhao et al., Mössbauer Study on the Magnetic Properties and Cation Distribution of CoFe2O4 Nanoparticles Synthesized by Hydrothermal Method, J. Mater. Sci, vol.2016, issue.11, pp.5487-5492

T. J. Daou, G. Pourroy, S. Bégin-colin, J. M. Grenèche, C. Ulhaq-bouillet et al., Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles, Chem. Mater, vol.18, issue.18, pp.4399-4404, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00206075

M. Grigorova, H. J. Blythe, V. Blaskov, V. Rusanov, V. Petkov et al., Magnetic Properties and Mössbauer Spectra of Nanosized CoFe2O4 Powders, J. Magn. Magn. Mater, vol.183, issue.1-2, pp.1031-1038, 1998.

X. Zhu, S. S. Kalirai, A. P. Hitchcock, and D. A. Bazylinski, What Is the Correct Fe L23 X-Ray Absorption Spectrum of Magnetite?, J. Electron Spectrosc. Relat. Phenom, pp.19-26, 0199.

S. Brice-profeta, M. Arrio, E. Tronc, N. Menguy, I. Letard et al., Magnetic Order in -Nanoparticles: A XMCD Study, J. Magn. Magn. Mater, vol.288, pp.354-365, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00112611

T. E. Torres, A. G. Roca, M. P. Morales, A. Ibarra, C. Marquina et al., Magnetic Properties and Energy Absorption of CoFe 2 O 4 Nanoparticles for Magnetic Hyperthermia, J. Phys. Conf. Ser, issue.7, p.72101, 0200.

E. Pellegrin, Characterization of Nanocrystalline Y-Fe2O3 with Synchrotron Radiation Techniques, Phys Stat Sol, vol.215, p.797, 1999.

P. K. Manna, E. Skoropata, Y. Ting, K. Lin, J. W. Freeland et al., Interface Mixing and Its Impact on Exchange Coupling in Exchange Biased Systems, J. Phys. Condens. Matter, vol.28, issue.48, p.486004, 2016.

J. Li, N. Menguy, M. Arrio, P. Sainctavit, A. Juhin et al., Controlled Cobalt Doping in the Spinel Structure of Magnetosome Magnetite: New Evidences from Element-and Site-Specific X-Ray Magnetic Circular Dichroism Analyses, J. R. Soc. Interface, vol.13, issue.121, 2016.

J. F. Hochepied, P. Sainctavit, M. P. Pileni, and . X-ray, Absorption Spectra and X-Ray Magnetic Circular Dichroism Studies at Fe and Co L 2, 3 Edges of Mixed Cobalt-Zinc Ferrite Nanoparticles: Cationic Repartition, Magnetic Structure and Hysteresis Cycles, J. Magn. Magn. Mater, vol.231, issue.2, pp.315-322, 2001.

M. W. Haverkort, Spin and Orbital Degrees of Freedom in Transition Metal Oxides and Oxide Thin Films Studied by Soft X-Ray Absorption Spectroscopy, 2005.

J. M. Byrne, V. S. Coker, S. Moise, P. L. Wincott, D. J. Vaughan et al., Controlled Cobalt Doping in Biogenic Magnetite Nanoparticles, J. R. Soc. Interface, vol.10, issue.83, pp.20130134-20130134, 2013.

N. Daffé, V. Gavrilov, S. Neveu, F. Choueikani, M. Arrio et al., Small CoFe2O4 Magnetic Nanoparticles in Ferrofluids, Influence of the Synthesis on the Magnetic Anisotropies, J. Magn. Magn. Mater, vol.477, pp.226-231, 2019.

E. Skoropata, T. T. Su, H. Ouyang, J. W. Freeland, and J. Van-lierop, Intermixing Enables Strong Exchange Coupling in Nanocomposites: Magnetism through the Interfacial Ferrite in ? ? Fe 2 O 3 / NiO, Phys. Rev. B, vol.2017, issue.2, p.96

H. Sharifi-dehsari and K. Asadi, Impact of Stoichiometry and Size on the Magnetic Properties of Cobalt Ferrite Nanoparticles, J. Phys. Chem. C, issue.51, pp.29106-29121, 2018.

Z. Nemati, J. Alonso, I. Rodrigo, R. Das, E. Garaio et al., Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size, J. Phys. Chem. C, vol.122, issue.4, pp.2367-2381, 2018.

,

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2009.

G. Hadjipanayis, D. J. Sellmyer, and B. Brandt, Rare-Earth-Rich Metallic Glasses. I. Magnetic Hysteresis, Phys. Rev. B, issue.7, pp.3349-3354, 1981.
URL : https://hal.archives-ouvertes.fr/jpa-00220262

G. F. Goya, T. S. Berquó, F. C. Fonseca, and M. P. Morales, Static and Dynamic Magnetic Properties of Spherical Magnetite Nanoparticles, J. Appl. Phys, vol.94, issue.5, pp.3520-3528, 2003.

J. A. De-toro, D. P. Marques, P. Muñiz, V. Skumryev, J. Sort et al., High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect, Phys. Rev. Lett, issue.5, p.115, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01765315

,

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre et al., Begin-Colin, S. Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting, J. Phys. Chem. C, issue.7, pp.3795-3810, 2014.

W. Baaziz, B. P. Pichon, C. Lefevre, C. Ulhaq-bouillet, J. Greneche et al., High Exchange Bias in Fe 3?? O 4 @CoO Core Shell Nanoparticles Synthesized by a One-Pot Seed-Mediated Growth Method, J. Phys. Chem. C, issue.21, pp.11436-11443, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02269887

X. Liu, B. P. Pichon, C. Ulhaq, C. Lefèvre, J. Grenèche et al., Systematic Study of Exchange Coupling in Core-Shell Fe 3?? O 4 @CoO Nanoparticles, Chem. Mater, vol.27, issue.11, pp.4073-4081, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02269434

K. Sartori, F. Choueikani, A. Gloter, S. Begin-colin, D. Taverna et al., Room Temperature Blocked Magnetic Nanoparticles Based on Ferrite Promoted by a Three-Step Thermal Decomposition Process, J. Am. Chem. Soc, vol.2019, issue.25, pp.9783-9787
URL : https://hal.archives-ouvertes.fr/hal-02383685

K. Sartori, G. Cotin, C. Bouillet, V. Halté, S. Bégin-colin et al., Strong Interfacial Coupling through Exchange Interactions in Soft/Hard Core-Shell Nanoparticles as a Function of Cationic Distribution, Nanoscale, vol.2019, issue.27, pp.12946-12958

G. Cotin, C. Kiefer, F. Perton, M. Boero, B. Özdamar et al., Evaluating the Critical Roles of Precursor Nature and Water Content When Tailoring Magnetic Nanoparticles for Specific Applications, ACS Appl. Nano Mater, vol.1, issue.8, pp.4306-4316, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02349404

Y. Xia, X. Xia, and H. Peng, Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products, J. Am. Chem. Soc, vol.137, issue.25, pp.7947-7966, 2015.

L. Zhang, R. He, and H. Gu, Oleic Acid Coating on the Monodisperse Magnetite Nanoparticles

, Appl. Surf. Sci, vol.253, issue.5, pp.2611-2617, 2006.

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2009.

Y. Ren, K. Iimura, and T. Kato, Structure of Barium Stearate Films at the Air/Water Interface Investigated by Polarization Modulation Infrared Spectroscopy and ?? A Isotherms, Langmuir, vol.17, issue.9, pp.2688-2693, 2001.

M. Chen, Y. Feng, X. Wang, T. Li, J. Zhang et al., Silver Nanoparticles Capped by Oleylamine: Formation, Growth, and Self-Organization, Langmuir, vol.23, issue.10, pp.5296-5304, 2007.

M. P. Morales, M. Andres-verges, and . Veintemillas-verdaguer,

M. I. Montero and C. J. Serna, Structural Effects on the Magnetic Properties of Y-Fe2O3 Nanoparticles, J. Magn. Magn. Mater, vol.203, pp.146-148, 1999.

M. P. Morales, C. Pecharroman, and . Gonzalez-carreño,

C. J. Serna, Structural Characteristics of Uniform Y-Fe2O3 Particles with Different Axial (Length/Width) Ratios, J. Solid State Chem, vol.108, pp.158-163, 1994.

C. Tang, C. Wang, S. Chien, . Ft-ir, and T. Raman, Characterization of Cobalt Oxides Studied by, Thermochim. Acta, vol.473, issue.1-2, pp.68-73, 2008.

F. Davar, Z. Fereshteh, and M. Salavati-niasari, Nanoparticles Ni and NiO: Synthesis, Characterization and Magnetic Properties, J. Alloys Compd, vol.476, issue.1-2, pp.797-801, 2009.

P. A. Sheena, K. P. Priyanka, N. A. Sabu, B. Sabu, T. Varghese et al., , vol.10

G. V. Jacintho, A. G. Brolo, P. Corio, P. A. Suarez, and J. C. Rubim, Structural Investigation of MFe 2 O 4 (M = Fe, Co) Magnetic Fluids, J. Phys. Chem. C, issue.18, pp.7684-7691, 2009.

S. Brice-profeta, M. Arrio, E. Tronc, N. Menguy, I. Letard et al., Magnetic Order in -Nanoparticles: A XMCD Study, J. Magn. Magn. Mater, vol.288, pp.354-365, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00112611

X. Zhu, S. S. Kalirai, A. P. Hitchcock, and D. A. Bazylinski, What Is the Correct Fe L23 X-Ray Absorption Spectrum of Magnetite?, J. Electron Spectrosc. Relat. Phenom, pp.19-26, 0199.

T. E. Torres, A. G. Roca, M. P. Morales, A. Ibarra, C. Marquina et al., Magnetic Properties and Energy Absorption of CoFe 2 O 4 Nanoparticles for Magnetic Hyperthermia, J. Phys. Conf. Ser, issue.7, p.72101, 0200.

E. Pellegrin, Characterization of Nanocrystalline Y-Fe2O3 with Synchrotron Radiation Techniques, Phys Stat Sol, vol.215, p.797, 1999.

E. Skoropata, T. T. Su, H. Ouyang, J. W. Freeland, and J. Van-lierop, Intermixing Enables Strong Exchange Coupling in Nanocomposites: Magnetism through the Interfacial Ferrite in ? ? Fe 2 O 3 / NiO, Phys. Rev. B, vol.2017, issue.2, p.96

J. Li, N. Menguy, M. Arrio, P. Sainctavit, A. Juhin et al., Controlled Cobalt Doping in the Spinel Structure of Magnetosome Magnetite: New Evidences from Element-and Site-Specific X-Ray Magnetic Circular Dichroism Analyses, J. R. Soc. Interface, vol.13, issue.121, 2016.

J. A. Moyer, C. A. Vaz, E. Negusse, D. A. Arena, and V. E. Henrich, Controlling the Electronic Structure of Co 1 ? x Fe 2 + x O 4 Thin Films through Iron Doping, Phys. Rev. B, issue.3, p.83, 2011.

H. Ikeno, First-Principles Analysis of X-Ray Magnetic Circular Dichroism for Transition Metal Complex Oxides, J. Appl. Phys, vol.2016, issue.14, p.142104

M. Estrader, A. López-ortega, S. Estradé, I. V. Golosovsky, G. Salazar-alvarez et al., Robust Antiferromagnetic Coupling in Hard-Soft Bi-Magnetic Core/Shell Nanoparticles, Nat. Commun, 2013.

, Oscar Iglesias, Amilcar Labarta

X. Battle, Exchange Bias Phenomenology and Models of Core/Shell Nanoparticles, 2008.

A. López-ortega, M. Estrader, G. Salazar-alvarez, S. Estradé, I. V. Golosovsky et al., Strongly Exchange Coupled Inverse Ferrimagnetic Soft/Hard, MnxFe3?xO4/FexMn3?xO4, Core/Shell Heterostructured Nanoparticles, vol.2012

G. Salazar-alvarez, J. Qin, V. Sepelak, I. Bergmann, M. Vasilakaki et al., Cubic versus Spherical Magnetic Nanoparticles: The Role of Surface Anisotropy, J. Am. Chem. Soc, vol.130, issue.40, pp.13234-13239, 2008.

Z. Nemati, J. Alonso, I. Rodrigo, R. Das, E. Garaio et al., Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size, J. Phys. Chem. C, vol.122, issue.4, pp.2367-2381, 2018.

,

I. J. Bruvera, P. Mendoza-zélis, M. Pilar-calatayud, G. F. Goya, and F. H. Sánchez, Determination of the Blocking Temperature of Magnetic Nanoparticles: The Good, the Bad, and the Ugly, J. Appl. Phys, vol.2015, issue.18, p.184304

E. Winkler, R. D. Zysler, M. Vasquez-mansilla, D. Fiorani, D. Rinaldi et al., Surface Spin-Glass Freezing in Interacting Core-Shell NiO Nanoparticles, Nanotechnology, vol.19, issue.18, p.185702, 2008.

K. Gilmore, Y. U. Idzerda, M. T. Klem, M. Allen, T. Douglas et al., Surface Contribution to the Anisotropy Energy of Spherical Magnetite Particles, J. Appl. Phys, issue.10, p.97, 2005.

C. Cao, L. Tian, Q. Liu, W. Liu, G. Chen et al., Magnetic Characterization of Noninteracting, Randomly Oriented, Nanometer-Scale Ferrimagnetic Particles, J. Geophys. Res, issue.B7, p.115, 2010.

W. H. Meiklejohn and C. P. Bean, New Magnetic Anisotropy. Phys. Rev, vol.102, issue.5, pp.1413-1414, 1956.

M. Tadic, D. Nikolic, M. Panjan, and G. R. Blake, Magnetic Properties of NiO (Nickel Oxide) Nanoparticles: Blocking Temperature and Neel Temperature, J. Alloys Compd, vol.647, pp.1061-1068, 2015.

F. Bødker and S. Mørup, Size Dependence of the Properties of Hematite Nanoparticles, Europhys. Lett. EPL, vol.52, issue.2, pp.217-223, 2000.

Y. Liu, X. Liu, M. Dolci, C. Leuvrey, E. Pardieu et al., Investigation of the Collective Properties in Monolayers of Exchange-Biased Fe 3?? O 4 @CoO Core-Shell Nanoparticles, J. Phys. Chem. C, issue.30, pp.17456-17464, 2018.

P. Matthias, Structuration de nanoparticules magnétiques d'oxyde de fer en films et étude de leurs propriétés magnétiques et de magnétotransport, 2010.

A. Mumtaz, K. Maaz, B. Janjua, S. K. Hasanain, and M. F. Bertino, Exchange Bias and Vertical Shift in CoFe2O4 Nanoparticles, J. Magn. Magn. Mater, vol.313, issue.2, pp.266-272, 2007.

G. Franceschin, T. Gaudisson, N. Menguy, B. C. Dodrill, N. Yaacoub et al., Exchange-Biased Fe3?xO4-CoO Granular Composites of Different Morphologies Prepared by Seed-Mediated Growth in Polyol: From Core-Shell to Multicore Embedded Structures, Part. Part. Systmes Charact, issue.35, 2018.

E. Skoropata, R. D. Desautels, C. Chi, H. Ouyang, J. W. Freeland et al., Magnetism of Iron Oxide Based Core-Shell Nanoparticles from Interface Mixing with Enhanced Spin-Orbit Coupling, Phys. Rev. B, issue.2, p.89, 2014.

Q. Song and Z. J. Zhang, Controlled Synthesis and Magnetic Properties of Bimagnetic Spinel Ferrite CoFe 2 O 4 and MnFe 2 O 4 Nanocrystals with Core-Shell Architecture, J. Am. Chem. Soc, vol.2012, issue.24, pp.10182-10190

O. Masala, D. Hoffman, N. Sundaram, K. Page, T. Proffen et al., Preparation of Magnetic Spinel Ferrite Core/Shell Nanoparticles: Soft Ferrites on Hard Ferrites and Vice Versa, Solid State Sci, vol.8, issue.9, pp.1015-1022, 2006.

,

H. Zeng, S. Sun, J. Li, Z. L. Wang, and J. P. Liu, Tailoring Magnetic Properties of Core'shell Nanoparticles, Appl. Phys. Lett, vol.85, issue.5, pp.792-794, 2004.

S. Lentijo-mozo, D. Deiana, E. Sogne, A. Casu, and A. Falqui, Unexpected Insights about Cation-Exchange on Metal Oxide Nanoparticles and Its Effect on Their Magnetic Behavior, Chem. Mater, vol.30, issue.21, pp.8099-8112, 2018.

W. Baaziz, B. P. Pichon, C. Lefevre, C. Ulhaq-bouillet, J. Greneche et al., High Exchange Bias in Fe 3?? O 4 @CoO Core Shell Nanoparticles Synthesized by a One-Pot Seed-Mediated Growth Method, J. Phys. Chem. C, issue.21, pp.11436-11443, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02269887

X. Liu, B. P. Pichon, C. Ulhaq, C. Lefèvre, J. Grenèche et al., Systematic Study of Exchange Coupling in Core-Shell Fe 3?? O 4 @CoO Nanoparticles, Chem. Mater, vol.27, issue.11, pp.4073-4081, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02269434

J. A. De-toro, D. P. Marques, P. Muñiz, V. Skumryev, J. Sort et al., High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect, Phys. Rev. Lett, issue.5, p.115, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01765315

,

B. P. Pichon, A. Demortière, M. Pauly, K. Mougin, and A. Derory, Bégin-Colin, S. 2D Assembling of Magnetic Iron Oxide Nanoparticles Promoted by SAMs Used as Well-Addressed Surfaces, J. Phys. Chem. C, vol.2010, issue.19, pp.9041-9048

S. Synchrotron and . Malette-pédagogique,

N. Daffé, Anisotropies and magnetic couplings of texturable ferrofluids

C. Noguera, ;. Petiau, ;. Krill, ;. Gautier, ;. P. Renard et al.,

M. S. Taborelli;-c and ;. Fadley, Rayonnement Synchrotron Polarisé Électrons Polarisés et Magnétisme, Applications à l'étude Des Surfaces, Interfaces et Molécules, 1989.

M. Belakhovsky;-m.-bessiere, ;. Chandesris, ;. Chevallier;-r.-coisson, ;. Dhez, ;. Dorner et al., Rayonnement Synchrotron Dans Le Domaine Des Rayons X, Recueil Des Cours Dispensés à l'école d'été Rayonnement Synchrotron, Aussois Septembre, 1986.

C. J. Carlile, La production des neutrons, J. Phys. IV Proc, vol.103, pp.51-66, 2003.

P. A. Schéma-représentatif-de-la-ligne, , vol.20

T. Li, A. J. Senesi, and B. Lee, Small Angle X-Ray Scattering for Nanoparticle Research, Chem. Rev, vol.116, issue.18, pp.11128-11180, 2016.

,

F. Cousin, Small Angle Neutron Scattering, EPJ Web Conf. 2015, 104, 01004
URL : https://hal.archives-ouvertes.fr/hal-00482114

K. L. Krycka, R. Booth, J. A. Borchers, W. C. Chen, C. Conlon et al., Resolving 3D Magnetism in Nanoparticles Using Polarization Analyzed SANS, Phys. B Condens. Matter, vol.404, issue.17, pp.2561-2564, 2009.

G. Chaboussant, S. Désert, P. Lavie, and A. Brûlet, PA20 : A New SANS and GISANS Project for Soft Matter, Materials and Magnetism, J. Phys. Conf. Ser, vol.340, p.12002, 2012.

, Sasview software

. Gavrilov-isaac, Synthèse de Nanoparticules Magnétiques à Énergie d'anisotropie Modulable, 2015.

S. Lentijo-mozo, D. Deiana, E. Sogne, A. Casu, and A. Falqui, Unexpected Insights about Cation-Exchange on Metal Oxide Nanoparticles and Its Effect on Their Magnetic Behavior, Chem. Mater, vol.30, issue.21, pp.8099-8112, 2018.

,

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre et al., Begin-Colin, S. Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting, J. Phys. Chem. C, issue.7, pp.3795-3810, 2014.

K. Sartori, G. Cotin, C. Bouillet, V. Halté, S. Bégin-colin et al., Strong Interfacial Coupling through Exchange Interactions in Soft/Hard Core-Shell Nanoparticles as a Function of Cationic Distribution, Nanoscale, vol.2019, issue.27, pp.12946-12958

X. Liu, B. P. Pichon, C. Ulhaq, C. Lefèvre, J. Grenèche et al., Bégin-Colin, S. Systematic Study of Exchange Coupling in Core-Shell Fe 3?? O 4 @CoO Nanoparticles, Chem. Mater, vol.27, issue.11, pp.4073-4081, 2015.

,

E. Skoropata, R. D. Desautels, C. Chi, H. Ouyang, J. W. Freeland et al., Magnetism of Iron Oxide Based Core-Shell Nanoparticles from Interface Mixing with Enhanced Spin-Orbit Coupling, Phys. Rev. B, issue.2, p.89, 2014.

,

K. Gilmore, Y. U. Idzerda, M. T. Klem, M. Allen, T. Douglas et al., Surface Contribution to the Anisotropy Energy of Spherical Magnetite Particles, J. Appl. Phys, issue.10, p.97, 2005.

C. Cao, L. Tian, Q. Liu, W. Liu, G. Chen et al., Magnetic Characterization of Noninteracting, Randomly Oriented, Nanometer-Scale Ferrimagnetic Particles, J. Geophys. Res, issue.B7, p.115, 2010.

W. H. Meiklejohn and C. P. Bean, New Magnetic Anisotropy. Phys. Rev, vol.102, issue.5, pp.1413-1414, 1956.

E. Stavitski and F. M. De-groot, Micron, vol.41, p.687, 2010.

Z. Chen, A. Xu, Y. Zhang, and N. Gu, Preparation of NiO and CoO Nanoparticles Using M2+-Oleate (M=Ni, Co) as Precursor, Curr. Appl. Phys, vol.2010, issue.3, pp.967-970

N. Dharmaraj, P. Prabu, S. Nagarajan, C. H. Kim, J. H. Park et al., Synthesis of Nickel Oxide Nanoparticles Using Nickel Acetate and Poly(Vinyl Acetate) Precursor, Mater. Sci. Eng. B, vol.128, issue.1-3, pp.111-114, 2006.

,

F. Davar, Z. Fereshteh, and M. Salavati-niasari, Nanoparticles Ni and NiO: Synthesis, Characterization and Magnetic Properties, J. Alloys Compd, vol.476, issue.1-2, pp.797-801, 2009.

J. Park, E. Kang, S. U. Son, H. M. Park, M. K. Lee et al., Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction, Adv. Mater, vol.17, issue.4, pp.429-434, 2005.

Y. Li, M. Afzaal, and P. O&apos;brien, The Synthesis of Amine-Capped Magnetic (Fe, Mn, Co, Ni) Oxide Nanocrystals and Their Surface Modification for Aqueous Dispersibility, J. Mater. Chem, issue.22, p.2175, 2006.

N. R. Jana, Y. Chen, and X. Peng, Size-and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach, Chem. Mater, vol.16, issue.20, pp.3931-3935, 2004.

N. M. Hosny and . Synthesis, Characterization and Optical Band Gap of NiO Nanoparticles Derived from Anthranilic Acid Precursors via a Thermal Decomposition Route, Polyhedron, vol.30, issue.3, pp.470-476, 2011.

S. Farhadi and Z. Roostaei-zaniyani, Simple and Low-Temperature Synthesis of NiO Nanoparticles through Solid-State Thermal Decomposition of the Hexa(Ammine)Ni(II) Nitrate, vol.30, pp.1244-1249, 2011.

Y. Wang, J. Zhu, X. Yang, L. Lu, and X. Wang, Preparation of NiO Nanoparticles and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate, Thermochim. Acta, vol.437, issue.1-2, pp.106-109, 2005.

,

Z. Nemati, J. Alonso, I. Rodrigo, R. Das, E. Garaio et al., Improving the Heating Efficiency of Iron Oxide Nanoparticles by Tuning Their Shape and Size, J. Phys. Chem. C, vol.122, issue.4, pp.2367-2381, 2018.

H. B. Abrahamson and H. C. Lukaski, Synthesis and Characterization of Iron Stearate Compounds, J. Inorg. Biochem, vol.54, issue.2, pp.80025-80026, 1994.

N. Xu, D. K. Sarkar, X. Chen, and W. P. Tong, Corrosion Performance of Superhydrophobic Nickel Stearate/Nickel Hydroxide Thin Films on Aluminum Alloy by a Simple One-Step Electrodeposition Process, Surf. Coat. Technol, vol.302, pp.173-184, 2016.

K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 2009.

Y. Ren, K. Iimura, and T. Kato, Structure of Barium Stearate Films at the Air/Water Interface Investigated by Polarization Modulation Infrared Spectroscopy and ?? A Isotherms, Langmuir, vol.17, issue.9, pp.2688-2693, 2001.

X. Ding, L. Bao, J. Jiang, and H. Gu, Colloidal Synthesis of Ultrathin ?-Fe2O3 Nanoplates, RSC Adv, vol.2014, issue.18

T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process, J. Am. Chem. Soc, vol.123, issue.51, pp.12798-12801, 2001.

S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo et al., Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by "Heating-Up" Process, J. Am. Chem. Soc, vol.129, issue.41, pp.12571-12584, 2007.

W. Baaziz, B. P. Pichon, Y. Liu, J. Grenèche, C. Ulhaq-bouillet et al., Tuning of Synthesis Conditions by Thermal Decomposition toward Core-Shell Co x Fe 1-x O@Co y Fe 3-y O 4 and CoFe 2 O 4 Nanoparticles with Spherical and Cubic Shapes, Chem. Mater, vol.26, issue.17, pp.5063-5073, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02269868

J. Huang, H. J. Parab, R. Liu, T. Lai, M. Hsiao et al., Investigation of the Growth Mechanism of Iron Oxide Nanoparticles via a Seed-Mediated Method and Its Cytotoxicity Studies, J. Phys. Chem. C, issue.40, pp.15684-15690, 2008.

K. Sartori, F. Choueikani, A. Gloter, S. Begin-colin, D. Taverna et al., Room Temperature Blocked Magnetic Nanoparticles Based on Ferrite Promoted by a Three-Step Thermal Decomposition Process, J. Am. Chem. Soc, vol.2019, issue.25, pp.9783-9787
URL : https://hal.archives-ouvertes.fr/hal-02383685

Y. Xia, X. Xia, and H. Peng, Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products, J. Am. Chem. Soc, vol.137, issue.25, pp.7947-7966, 2015.

A. Feld, A. Weimer, A. Kornowski, N. Winckelmans, J. Merkl et al., Chemistry of Shape-Controlled Iron Oxide Nanocrystal Formation, ACS Nano, vol.13, issue.1, pp.152-162, 2019.

K. Nakamoto, Infrared Spectra of Metal Chelate Compounds III. Infrared Spectra, vol.83, p.1272, 1961.

. Lawson, The Infrared Absorption Spectra. Spectrochim. Acta, vol.17, p.248, 1961.

. Farzaneh, Green Synthesis and Characterization of Nickel, J. Ceram. Process. Res, vol.14, issue.6, p.673, 2013.

. Edwards, Transition Metal Acetates. Can. J. Chem, issue.46, 1968.

E. Pellegrin, Characterization of Nanocrystalline Y-Fe2O3 with Synchrotron Radiation Techniques, Phys Stat Sol, vol.215, p.797, 1999.

H. Ikeno, First-Principles Analysis of X-Ray Magnetic Circular Dichroism for Transition Metal Complex Oxides, J. Appl. Phys, vol.2016, issue.14, p.142104

E. Skoropata, T. T. Su, H. Ouyang, J. W. Freeland, and J. Van-lierop, Intermixing Enables Strong Exchange Coupling in Nanocomposites: Magnetism through the Interfacial Ferrite in ? ? Fe 2 O 3 / NiO, Phys. Rev. B, vol.2017, issue.2, p.96

J. Li, N. Menguy, M. Arrio, P. Sainctavit, A. Juhin et al., Controlled Cobalt Doping in the Spinel Structure of Magnetosome Magnetite: New Evidences from Element-and Site-Specific X-Ray Magnetic Circular Dichroism Analyses, J. R. Soc. Interface, vol.13, issue.121, 2016.

P. K. Manna, E. Skoropata, Y. Ting, K. Lin, J. W. Freeland et al., Interface Mixing and Its Impact on Exchange Coupling in Exchange Biased Systems, J. Phys. Condens. Matter, vol.28, issue.48, p.486004, 2016.

R. P. Tan, J. S. Lee, J. U. Cho, S. J. Noh, D. K. Kim et al., Numerical Simulations of Collective Magnetic Properties and Magnetoresistance in 2D

, Ferromagnetic Nanoparticle Arrays, J. Phys. Appl. Phys, vol.2010, issue.16, p.165002

D. Kechrakos and K. N. Trohidou, Effects of Dipolar Interactions on the Magnetic Properties of Granular Solids, J. Magn. Magn. Mater, pp.943-944, 1998.

D. Kechrakos and K. N. Trohidou, Dipolar Interaction Effects in the Magnetic and Magnetotransport Properties of Ordered Nanoparticle Arrays, J. Nanosci. Nanotechnol, vol.8, issue.6, pp.2929-2943, 2008.

B. Aslibeiki, P. Kameli, and H. Salamati, The Effect of Dipole-Dipole Interactions on Coercivity, Anisotropy Constant, and Blocking Temperature of MnFe, vol.2

. Nanoparticles, J. Appl. Phys, vol.2016, issue.6, p.63901

P. Matthias, Structuration de nanoparticules magnétiques d'oxyde de fer en films et étude de leurs propriétés magnétiques et de magnétotransport, 2010.

A. Espinosa, A. Muñoz-noval, M. García-hernández, A. Serrano, J. Jiménez-de-la-morena et al., Magnetic Properties of Iron Oxide Nanoparticles Prepared by Seeded-Growth Route, J. Nanoparticle Res, vol.15, issue.4, 2013.

I. J. Bruvera, P. Mendoza-zélis, M. Pilar-calatayud, G. F. Goya, and F. H. Sánchez, Determination of the Blocking Temperature of Magnetic Nanoparticles: The Good, the Bad, and the Ugly, J. Appl. Phys, vol.2015, issue.18, p.184304

E. Winkler, R. D. Zysler, M. Vasquez-mansilla, D. Fiorani, D. Rinaldi et al., Surface Spin-Glass Freezing in Interacting Core-Shell NiO Nanoparticles, Nanotechnology, vol.19, issue.18, p.185702, 2008.

B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2009.

R. C. O&apos;handley, Modern Magnetic Materials: Principles and Applications, 2000.

M. Tadic, D. Nikolic, M. Panjan, and G. R. Blake, Magnetic Properties of NiO (Nickel Oxide) Nanoparticles: Blocking Temperature and Neel Temperature, J. Alloys Compd, vol.647, pp.1061-1068, 2015.

J. Van-embden, A. S. Chesman, and J. J. Jasieniak, The Heat-Up Synthesis of Colloidal Nanocrystals, Chem. Mater, vol.27, issue.7, pp.2246-2285, 2015.

,

G. Cotin, C. Kiefer, F. Perton, M. Boero, B. Özdamar et al., Evaluating the Critical Roles of Precursor Nature and Water Content When Tailoring Magnetic Nanoparticles for Specific Applications, ACS Appl. Nano Mater, vol.1, issue.8, pp.4306-4316, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02349404

P. Ohresser, E. Otero, F. Choueikani, K. Chen, S. Stanescu et al., DEIMOS: A Beamline Dedicated to Dichroism Measurements in the 350-2500 EV Energy Range, Rev. Sci. Instrum, vol.85, issue.1, p.13106, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01088125

N. Daffé, F. Choueikani, S. Neveu, M. Arrio, A. Juhin et al., Magnetic Anisotropies and Cationic Distribution in CoFe 2 O 4

, Nanoparticles Prepared by Co-Precipitation Route: Influence of Particle Size and Stoichiometry, J. Magn. Magn. Mater, vol.460, pp.243-252, 2018.

,

, Je remercie vivement Catherine Bonnin et Sylvie Maingé de l'IPCMS. Sans vous nous serions certainement bien perdus ici

, Merci de m'avoir aidé dans les démarches administratives et merci à vous pour votre gentillesse. Sylvie, je te souhaite de passer une bonne retraite prochaine, tu l'auras vraiment bien méritée !

D. Burger, Et surtout, merci pour nos discussions, ton franc parlé et ton humour décalé qui ont rendu cette thèse un peu plus cocasse. A toi aussi je te souhaite une bonne retraite dans un futur plus ou moins proche, puisses tu attraper les plus gros poissons ! Merci également à Céline Kiefer de faire régner l'ordre au laboratoire. Merci à Gilles Versini pour nos bavardages et ton sourire qui égaye les couloirs de l'IPCMS. Je te souhaite encore un prompt rétablissement. Merci à Béatrice Masson de s'occuper de la bibliothèque et des imprimantes. Merci à José Radmacher pour la réception et l'envoi des colis et la réservation des salles, merci pour tous les ATG que tu m'as fait

, Toujours à l'IPCMS mais extérieur au DCMI, je tiens à remercier Nathaly, Matias et Wenjia pour nos discussions, soirées, jeux de rôles et tests culinaires. Bonne chance à vous dans la réussite de vos thèses

. Enfin, . Ipcms, . Merci-À-l&apos;addept, and . Surtout-À-françois, Marc et Anne pour organiser des soirées de retrouvailles entre collègues et, surtout, les soirées jeux de société

, Merci aux professeurs référents des cours : Matthias Pauly, Quentin Raffy, Marco Cecchini et Rachel Schurhammer. Merci aussi à Yannick Geiger pour son accompagnement lors des enseignements de TP et à Nicole Caccaveli et Aurélie Husser pour l'organisation de la salle

, Je remercie aussi mes encadrants de stage de M1 Rémy Barillon, Quentin Raffy et Nicolas Ludwig qui ont confirmé mon goût pour la physico-chimie et m'ont donné celui pour le monde des accélérateurs de particules

, Je tiens à remercier mes enseignants de la faculté de chimie de Strasbourg pour l'excellence de la formation, Burkhard Bechinger et Marc Henry, qui sont des enseignants passionnés et fournissent des cours exemplaires !

M. Marion, . Marina, C. Marie, . Olivier, . Wenjia et al., Et en particulier à Robin, Cédric et Coraline mes amis de la faculté et mes amis de galères. Je vous souhaite à tous de réussir dans vos entreprises professionnelles et personnelles !

S. Enfin, ici c'est aussi grâce à l'ensemble de ma famille et surtout ma maman, ma mamie et ma soeur. Merci de m'avoir permis de réaliser cette thèse. Et surtout, merci pour votre soutient moral et financier

, Merci aussi à ma soeur pour l'aide apporté dans l'élaboration du premier schéma, Je te souhaite de pouvoir t'épanouir dans tes études et de les réussir pleinement ! Pense à aller boire quelques verres avec tes camarades plus souvent

, En tout dernier lieu, je tiens à remercier ma compagne, Paula, de me supporter chaque jour et de m'avoir épaulé lors de cette thèse et surtout lors de sa rédaction. J'attends avec impatience de pouvoir te rendre la pareil pour ta soutenance qui arrive à grands pas ! Bon courage à toi pour ta dernière année ! Bientôt nous pourront mettre Drs sur la boîte aux lettres =)

, Représentation schématique de la configuration de spins pendant l'enregistrement du moment magnétique mesuré en fonction du moment magnétique appliqué après refroidissement sous champ à une interface FM/AFM avec a) KAFMVAFM>KFMVFM, b) KAFMVAFM<KFMVFM. Adapté de ref

, Afin de de synthétiser des nanoparticules de type coeur@coquille, avec l'oxyde de fer au centre et une coquille AFM, il faut que la phase AFM cristallise dans un système similaire avec un paramètre de maille le plus proche possible de celui de la magnétite (amagnetite = 8.396 Å fiche JCPDS, Ainsi, il est possible d'augmenter l'énergie d'anisotropie magnétique de petites nanoparticules d'oxyde de fer grâce à un couplage d'exchange-bias avec un matériau AFM, pp.19-0629

Å. Jcpds, MnO a une faible TN (118 K) et une constante d'anisotropie (KMnO = 2.8 10 -2 J/m 3 ) plus faible que celle de la magnetite (KFe3O4 = 2 10 4 J/m 3 3,4 ) qui fait qu'il n'arrivera pas à polariser les moments magnétiques de l'oxyde de fer. CoO est celui ayant la plus grande constante d'anisotropie de 5.0 10 2 J/m 3 pour une TN de 290 K

, Comme NiO et Fe3O4 ont des constantes d'anisotropies relativement proches, les nanoparticules Fe3-dO4@NiO ne présentent qu'un petit champ d'échange qui témoigne d'un faible couplage d'exchange bias. Bien que la TN de NiO soit élevée, la TB des nanoparticules Fe3-dO4@NiO est peu différente de celle des nanoparticules de Fe3-dO4 de base, vol.5, p.7

C. K-pour, C. S. Cssc-;-c, C. Cs, and . Respectivement, Grâce à l'ajout d'une coquille supplémentaire, TB a été augmentée au-delà de la température ambiante. A 10 K, le champ coercitif des nanoparticules C est de 0pour CSSC. Le grand HC pour CSSA et CSSB peut s'expliquer par l'augmentation de la phase de ferrite de cobalt. Puis la diminution de ce HC dans CSSC est attribuée à la croissance de la phase douce d'oxyde de fer. Pour mieux étudier les effets dur/doux, les champs coercitifs des échantillons CS, CSSA, CSSB et CSSC ont été mesuré à différentes températures. En appliquant la formule de Stoner-Wohlfarth au modèle obtenu, il est possible d'extraire les anisotropies magnétiques effectives de chaque échantillon, Ainsi Tmax a été augmentée de C à CS grâce à la propriété d'exchange bias jusqu'à la TN de CoO (290 K)

, J/m 3 dans CSSC qui est attribué à la présence d'une très grande quantité de ferrite de cobalt

, Les mesures d'aimantation en fonction d'un champ appliqué après refroidissement sous un champ de CSSA, CSSB et CSSC, ce qui conforte les hypothèses précédentes concernant la diminution de KAFMVAFM et l'augmentation de Jint qui petit à

, la quantité de CoO comme montré par les analyses RX même s'il reste encore du CoO dans CSSC tel que mis en évidence par les analyses EELS. CoO n'est alors plus suffisant pour régir seul les propriétés magnétiques des nanoparticules

, L'aimantation à saturation de CS est faible (41 emu/g) du fait de la présence de CoO AFM à la surface des NPs. Le MS augmente ensuite à 51, 55 puis 72 emu/g pour CSSA, CSSB et CSSC du fait de la diminution de la phase antiferromagnétique de CoO et de l'augmentation des phases d

M. R. Le-ratio, Ainsi l'hystérèse de CS est quelque peu penchée du fait du fort couplage d'exchange bias et aussi de la forte contribution antiferromagnétique du CoO. Ce ratio augmente à 59, 68 et 66 % pour CSSA

, montre que l'ajout de la seconde coquille ne produit pas un couplage d'échange supplémentaire. En effet, son effet sur les propriétés magnétiques est seulement lié à des effets de volume

. De, . Ms, and . De, Cela démontre une augmentation de la dureté magnétique de la nanoparticule avec la croissance de ferrite de cobalt en première coquille. Puis comme la seconde coquille a une composition chimique similaire à celle de la nanoparticule CS

, De la même manière, l'aimantation à saturation augmente de 58 à 78 emu/g de C à CS puis reste similaire à CS pour CSS

, Ainsi, les nanoparticules synthétisées ont bien une structure Fe3-dO4, Fe3-dO4@CoFe2O4 et Fe3-dO4@CoFe2O4@Fe3-dO4 qui ont été démontré à l'aide des techniques DRX, XAS, Mössbauer et TEM

. Dans-le-second-chapitre, Ainsi, les analyses Mössbauer et XAS XMCD s'entendent pour montrer qu'une couche interfaciale de ferrite de cobalt est bien présente dans ces dernières, des nanoparticules de Fe3-dO4@CoO, Fe3-dO4@CoFe2O4 et Fe3-dO4 dopées au cobalt ont été synthétisées dans le but d'étudier les phénomènes de diffusion interfaciale présent dans les nanoparticules de Fe3-dO4@CoO

. Dans-le-troisième-chapitre, Il apparaît que l'échantillon rechauffé a une taille plus petite que les Fe3-dO4@CoO natives. Cela a été attribué à un phénomène de resolubilisation partielle de la coquille du fait de la haute température du solvant utilisé. Les études précédentes ont été nécessaires dans le but de synthétiser des nanoparticules de composition espérée Fe3-dO4@CoO@Fe3-dO4. Il était attendu qu'un tel objet puisse bénéficier d'un double couplage d'exchange bias du fait de deux interfaces FiM/AFM. L'étude de la composition chimique grâce aux rayons X, spectroscopie Mössbauer, des nanoparticules de Fe3-dO4@CoO ont été rechauffées pour mimer la synthèse d'une seconde coquille (CS2r)

. Dans-le-quatrième-chapitre, En effet, il a été démontré que la température de blocage augmente fortement du coeur au coeur@coquille. A contrario, l'augmentation de TB de Fe3-dO4@CoFe2O4 à Fe3-dO4@CoFe2O4@Fe3-dO4 est beaucoup plus faible que précédemment et provient d'un effet de volume plutôt que d'un double couplage d'échange de type dur-mou, la synthèse de nanoparticules de Fe3-dO4@CoFe2O4@Fe3-dO4 permet de répondre à la question précédente

, Donc pour synthétiser les coquilles de NiO, une étude sur la décomposition de précurseurs organométallique à base de Ni a d'abord été menée. Celle-ci est présentée en annexe. Puis, une fois les conditions de synthèses déterminées, Le NiO possède une très haute TN de 525 K et pourrait donc augmenter la TB de nanoparticules de Fe3-dO4@CoO en synthétisant des nanoparticules de Fe3-dO4@CoO@NiO. La synthèse de NiO est très peu rapportée dans la littérature

V. Skumryev, ;. Stoyanov;-zhang, ;. Hadjipanayis, ;. Givord, and . Nogués, Beating the Superparamagnetic Limit with Exchange Bias, Nature, vol.423, issue.6942, pp.847-850, 2003.

,

J. Nogués, J. Sort, V. Langlais, V. Skumryev, S. Suriñach et al., Exchange Bias in Nanostructures, Phys. Rep, vol.422, issue.3, pp.65-117, 2005.

,

K. Gilmore, Y. U. Idzerda, M. T. Klem, M. Allen, T. Douglas et al., Surface Contribution to the Anisotropy Energy of Spherical Magnetite Particles, J. Appl. Phys, issue.10, p.97, 2005.

C. Cao, L. Tian, Q. Liu, W. Liu, G. Chen et al., Magnetic Characterization of Noninteracting, Randomly Oriented, Nanometer-Scale Ferrimagnetic Particles, J. Geophys. Res, issue.B7, p.115, 2010.

E. Skoropata, R. D. Desautels, C. Chi, H. Ouyang, J. W. Freeland et al., Magnetism of Iron Oxide Based Core-Shell Nanoparticles from Interface Mixing with Enhanced Spin-Orbit Coupling, Phys. Rev. B, issue.2, p.89, 2014.

A. Walter, Elaboration de nano-objets magnétiques dendronisés à vocation théranostic, 2014.

E. Skoropata, T. T. Su, H. Ouyang, J. W. Freeland, and J. Van-lierop, Intermixing Enables Strong Exchange Coupling in Nanocomposites: Magnetism through the Interfacial Ferrite in ? ? Fe 2 O 3 / NiO, Phys. Rev. B, vol.2017, issue.2, p.96

X. Liu, B. P. Pichon, C. Ulhaq, C. Lefèvre, J. Grenèche et al., Systematic Study of Exchange Coupling in Core-Shell Fe 3?? O 4 @CoO Nanoparticles, Chem. Mater, vol.27, issue.11, pp.4073-4081, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02269434

W. Baaziz, B. P. Pichon, C. Lefevre, C. Ulhaq-bouillet, J. Greneche et al., High Exchange Bias in Fe 3?? O 4 @CoO Core Shell Nanoparticles Synthesized by a One-Pot Seed-Mediated Growth Method, J. Phys. Chem. C, issue.21, pp.11436-11443, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02269887

G. Salazar-alvarez, H. Lidbaum, A. López-ortega, M. Estrader, K. Leifer et al., Two-, Three-, and Four-Component Magnetic Multilayer Onion Nanoparticles Based on Iron Oxides and Manganese Oxides, J. Am. Chem. Soc, issue.42, pp.16738-16741, 2011.

K. L. Krycka, J. A. Borchers, M. Laver, G. Salazar-alvarez, A. ;-l?pez-ortega et al., Nogu?s, J. Correlating Material-Specific Layers and Magnetic Distributions within Onion-like Fe3O4/MnO/?-Mn2O3 Core/Shell Nanoparticles, J. Appl. Phys, vol.2013, issue.17

V. Gavrilov-isaac, S. Neveu, V. Dupuis, D. Taverna, A. Gloter et al., Synthesis of Trimagnetic Multishell MnFe 2 O 4 @CoFe 2 O 4 @NiFe 2 O 4 Nanoparticles, Small, vol.2015, issue.22, pp.2614-2618
URL : https://hal.archives-ouvertes.fr/hal-01467541

W. Baaziz, B. P. Pichon, Y. Liu, J. Grenèche, C. Ulhaq-bouillet et al., Tuning of Synthesis Conditions by Thermal Decomposition toward Core-Shell Co x Fe 1-x O@Co y Fe 3-y O 4 and CoFe 2 O 4 Nanoparticles with Spherical and Cubic Shapes, Chem. Mater, vol.26, issue.17, pp.5063-5073, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02269868

J. A. De-toro, D. P. Marques, P. Muñiz, V. Skumryev, J. Sort et al., High Temperature Magnetic Stabilization of Cobalt Nanoparticles by an Antiferromagnetic Proximity Effect, Phys. Rev. Lett, issue.5, p.115, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01765315

,

W. Baaziz, B. P. Pichon, S. Fleutot, Y. Liu, C. Lefevre et al., Begin-Colin, S. Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting, J. Phys. Chem. C, issue.7, pp.3795-3810, 2014.

Y. Xia, X. Xia, and H. Peng, Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products, J. Am. Chem. Soc, vol.137, issue.25, pp.7947-7966, 2015.

S. Lentijo-mozo, D. Deiana, E. Sogne, A. Casu, and A. Falqui, Unexpected Insights about Cation-Exchange on Metal Oxide Nanoparticles and Its Effect on Their Magnetic Behavior, Chem. Mater, vol.30, issue.21, pp.8099-8112, 2018.

M. Estrader, A. López-ortega, S. Estradé, I. V. Golosovsky, G. Salazar-alvarez et al., Robust Antiferromagnetic Coupling in Hard-Soft Bi-Magnetic Core/Shell Nanoparticles, Nat. Commun, 2013.